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Abstract 

 

Deluge is a protocol used for remote re-programming of nodes in a wireless sensor 

networks by injecting messages into a network of motes without having the motes directly 

connected to the PC. It uses the 3-way handshake protocol consisting of 3 types of messages: 

advertise, request and data. The protocol is very useful but is restricted to homogeneous 

networks wherein all nodes must be programmed with the same code. This project is an attempt 

to modify the existing protocol to work for heterogeneous networks where different motes 

function differently and have to be programmed differently. 

The project was developed using Java and nesC (a dialect of C) which supports 

component based programming. The nodes run an operating system called tinyOS which is 

specifically designed for sensor networks. The system was tested on a network of micaZ and 

TelosB motes.  
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CHAPTER 1 - Introduction 

 

A wireless sensor network (WSN) is a network of widely distributed sensors which can 

be of different types. WSNs are increasingly becoming focused area of research because of their 

applicability in many different fields. A wireless sensor network can be used for common 

purposes such as monitoring temperature, pressure, or humidity of a particular area, be it a farm, 

a mill or a laboratory. For example, we have worked with researchers to use sensor networks to 

monitor temperatures in a flour mill in order to kill the insects and pesticides and not affect the 

quality of the food materials. Since it serves so many useful purposes, it has become important to 

come up with better way to maintain and manage sensor applications more efficiently.  

This project aims at modifying an existing protocol for remote re-programming of motes 

in a sensor network by injecting images into motes or the sensors wirelessly thus resulting in 

great saving of time and resources. We will discuss this in a bit more detail in the following. 

Suppose we have a large network of motes or sensors fixed in a field or a farm which is 

assigned some task such as sensing temperature for various portions of the field and sending it 

back to a mainframe system collecting data from all the motes and taking actions accordingly. 

Now, if we want all the motes to sense pressure instead of temperature after a certain point of 

time, then one doesn’t expect to individually remove all the motes from the network and 

individually connect them to the main system to program them with a different application and 

fix them again at their respective positions. Keeping this problem in mind, a very affective 

protocol called Deluge was designed 

[http://www.cs.berkely.edu/~jwhui/deluge/documentation.html] and implemented that had the 

capability of wirelessly re programming the motes over a multi hop network without having to 

shift them from their current positions. We will now describe this protocol in detail. 

1.1 –The Deluge protocol 

Deluge is a data dissemination protocol for re-programming the motes wirelessly 

over a multi hop network. The basic functionality of Deluge relies on a push-pull based 

algorithm where every mote periodically spreads a message over the network. The motes 
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advertise themselves periodically by giving information about the images they have with 

them. When a node receives this advertising message, it sends back its profile to the mote 

from which it receives the request. This mote, in turn checks whether it has that specific 

image or not. If it doesn’t, then it sends a request message back to the sender to send 

those images and hence the whole network eventually gets any image that was with a 

single node in the beginning. In this way, the whole network gets programmed with the 

same image. This is the reason for Deluge being said to operate on a homogeneous 

network. 

The protocol consists of 3 main types of messages: 

A – DelugeAdvMsg. 

When the motes start interacting, the first action they perform is to advertise their 

profile to all other motes. This message is the DelugeAdvMsg type which has the 

following structure: 

typedef struct DelugeAdvMsg { 

  uint16_t       sourceAddr;  

  uint8_t        version;    

  uint8_t        type;        

  DelugeNodeDesc nodeDesc;  

  DelugeImgDesc  imgDesc;    

  uint8_t        numImages;   

  uint8_t        reserved;    

} 

This message basically consists of the information about the image number, 

version number of the image, image description, and the type of image currently present 

on the mote and some meta-data along with it. When another mote receives this message, 

it sends an Adv message containing its profile information back to the mote it received 

the Adv msg from. 

B – When the mote receives an Adv msg back from another mote, it compares its 

own profile with the profile of the sender and checks if it has an obsolete version of the 

image. If it does, then it sends back what is called a DelugeReqMsg message to the 

sender that has the following structure: 
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typedef struct DelugeReqMsg { 

  uint16_t  dest; 

  uint16_t  sourceAddr; 

  imgvnum_t vNum; 

  imgnum_t  imgNum; 

  pgnum_t   pgNum; 

  uint8_t   requestedPkts[DELUGE_PKT_BITVEC_SIZE]; 

} 

This message contains the information of the requested packets of a particular 

image of a particular version number that the former mote is lacking. 

C – After a mote receives a particular request from another mote, it sends the data 

requested by the requester in form of a DelgueDataMsg message which has the following 

structure: 

typedef struct DelugeDataMsg { 

  imgvnum_t vNum; 

  imgnum_t  imgNum; 

  pgnum_t   pgNum; 

  uint8_t   pktNum; 

  uint8_t   data[DELUGE_PKT_PAYLOAD_SIZE]; 

} 

This message contains all the data requested by the requester and is sent only to 

the mote that requested it and is not broadcasted. 

The following figure shows the interactions between motes that take place in 

Deluge: 



 

 4 

 

Figure 1.1 Interactions in Deluge 

This whole process is repeated based on a timer which fires periodically. 

Eventually, there is no mote in the whole network that has the obsolete version of any 

image that was injected through the PC. 

1.2 – The Deluge JavaToolchain  

In order to inject messages into the network, Deluge provides a Java tool chain which is 

responsible for sending messages from the PC to the motes. These messages are forwarded by 

the Base Station. The base station is a mote fixed on MIB510 board running the TOSBase 

application that forwards messages from the UART to radio and from the radio to UART thus 

acting as a bridge between motes and the PC. The following figure shows MIB510 board with 

micaz mote that forms a part of a base station. 
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Figure 1.2 - MIB510 board with micaz mote 

 The toolchain consists of a set of various commands which include Inject, reboot, erase, 

reset, ping. They are explained in detail below: 

1.2.1 - Ping: 

The Ping command is given to check the current profile information on a mote. It 

retrieves the images stored on a particular mote at a point of time. It gives the information about 

the type of image, image number, page number, etc for each of the 4 slots present on the external 

flash of a mote. The format of the ping command is: 

java net.tinyos.tools.Deluge --ping 

The only condition for executing a ping command is that the mote should be in direct 

contact with the PC through a base station. 

1.2.2 - Inject: 

The inject command is used to inject a particular compiled image into the network. 

Before injecting the image, it is necessary to make or compile the application using the “make” 

command which compiles the image in form of binaries and stores it in the build/platform folder. 

The platform depends on the type of mote being used, in our case MicaZ or TelosB. The reason 

being that these images that need to be injected into the network are pretty large and cannot be 
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injected directly as they are, that’s why they are stored in form of binaries and are further divided 

into pages which further break them into packets. The format of inject command is: 

java net.tinyos.tools.Deluge --inject --tosimage=<file> --imgnum=<imgnum> 

where –tosimage is the image file to be injected and imgnum is the image number to be 

injected into the network. 

1.2.3 - reset: 

The reset command is used to reset an image in a particular slot. The format for the reset 

command is: 

java net.tinyos.tools.Deluge –reset imgnum = <ingnum> where imgnum is the image 

number we want to reset. 

1.2.4 - erase: 

The erase command is given to erase a particular image on a mote so that it is ready to 

store another image in the specified slot. The format of the erase command is: 

java net.tinyos.tools.Deluge –erase –imgnum=<imgnum> 

1.2.5 - Dump: 

The Dump command is used to extract the exact information of the image on a specific 

slot on a mote. It actually gives the tos_image.xml file for that particular application. 

java net.tinyos.tools.Deluge –dump –imgnum=<imgnum> --outfile=<xml> 

 

All these commands, when invoked, use their respective Java classes to send a message 

in one of the respective formats as discussed earlier to the base station where it is injected into 

the network, hence reprogramming the motes with the desired application. 

1.3 -The need for a change 

As we saw in the earlier section, Deluge is a pretty promising and reliable protocol that 

has been widely used for wirelessly re-programming the motes. However Deluge has its own 

merits and demerits that are discussed below. 

Deluge provides a  reliable way to inject images into the network based on the fact that 

motes are able to interact with each other and hence can eventually have the same image running 
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on them even if the image is not directly injected to the mote ( in other words, the mote is not in 

direct contact with the base station). The following figure shows the concept of Deluge: 

 

Figure 1.3 Message spreading in Deluge 

 The problem arises, however, when we wish different motes to run different images or 

applications simultaneously being a part of the network as well. This cannot be possible in the 

original Deluge model as the image is delivered to all motes in the network. This leads to a lot of 

wasted resource since all the 4 slots in each of the motes would be having the same images 

which means that at one time, there cannot be more than 4 images simultaneously existing in the 

network. This is a problem since we are not making complete utilization of the available 

memory. This project aims at designing and implementing a protocol where different images can 

be injected into the network for a particular mote which is also a part of the mesh of motes 

without affecting the applications running on the other motes that are not interested in getting the 

image. This paves way for the possibility of having a large heterogeneous network where 

different motes are used for different purposes of recording temperature, pressure, density etc as 

per the need. 

The rest of the document is framed as follows. 

Section 2.1 describes the initial approach taken to get Deluge working for heterogeneous 

networks, its drawback and the need to look for a better mechanism. Chapter 2 describes the 

approaches taken to achieve heterogeneity using Deluge and the changes made in the original 
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protocol. Chapter 3 provides the implementation details and how to use the modified Deluge 

program to reprogram motes (including code snippets and commands needed). Chapter 4 

provides details about testing the application. Chapter 5 concludes the document. 

CHAPTER 2 - Design Considerations 

This chapter describes the two design approaches taken to solve the problem and 

finalizing one of them that proved to be most efficient. 

The very first step was to identify a mechanism to stop the motes from interacting with 

each other (using advertise messages).If they are allowed to interact and exchange data, they will 

eventually be having the same application. This was achieved by stopping the mote to send the 

Adv message on timer.fired event. In this way, the motes are just waiting for the messages from 

the base station and no inter-mote interaction takes place. After this step, the following 2 

approaches were considered. 

2.1 The Initial Approach 

The first approach taken was to include an extra field called destAddr in the message structure of 

DelugeAdvMsg and to respond to messages according to the contents of the destAddr field. So, if a message is 

injected for a particular node id, then only that node will accept the message and all other nodes will forward 

the message, or broadcast the message until it reaches the destination. At the first go, it looked like a pretty 

simple and a straight forward approach to attain heterogeneity, but if we go into it in more detail, we find some 

interesting issues. 

1 – There are 3 main types of messages that are a part of Deluge; these are DelugeAdvMsg, 

DelugeReqMsg and DelugeDataMsg. If we look at the concept of including a destAddr field just for 

DelugeAdvMsg, then it won’t solve our purpose since all three kinds of messages must be parsed properly for 

correct injection based on destination address. The problem here is that we cannot include the same field in the 

other 2 message structures because they are already designed to have the maximum packet length that TinyOs 

packet can take (which is by default 28). Any change in the structure might affect the transmission of packets 

for Deluge. Hence, this approach doesn’t seem to be that efficient and robust. One can think of using the same 

field from message type DelugeAdvMsg and access it in different files involved in the protocol. Although this 

doesn’t seem  feasible since the messages DelugeReqMsg and DelugeDataMsg are being accessed from a file 
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which itself acts as a component for Deluge Protocol. So it is possible to access the methods and variables of 

this file in DelugeM.nc but not vice versa. 

2 - Another approach would be to increase the default size of Tinyos message while installing Tinyos 

(which is possible as per the Tinyos forum messages.) and before issuing the make command so that we can add 

the destAddr field in DelugeAdvReq as well as the DelugeAdvData message. This would well solve our 

purpose and would achieve what is desired, but let us take a look at it in a bit more detail. 

Now, as the message enters the network, it goes through all the motes that can listen to it since it is a 

broadcast message and all the motes forward or broadcast it so that it can eventually reach the base station. The 

problem that is unseen here is the network traffic. As can be seen from Figure 2.1, the work of forwarding can 

be done by just id 1 or 2 alone and the rest of the motes don’t even need to participate in the forwarding process. 

 

 

 

Figure 2.1 Initial approach taken to achieve heterogeneity 

 

All motes taking part increases the network traffic manifolds as is pretty obvious from the above figure 

and there are great chances of the actual message being lost or not received because of a loop of messages that 

are formed in the network. This forces one think that if it is possible to come up with a way where we can 

assure that all the motes in the network are not taking part in forwarding the messages and only those motes that 

are on the shortest path from the base station to the destination participate and rest of the motes ignore the 
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messages they receive. This approach reduces the network traffic manifolds as compared to the original 

approach and will be more robust. The approach being taken finally is explained in the next section. 

2.2 The second approach 

To ensure that  only the motes interested should be the participating, we need to first 

come up with a way to set up a fixed path from the source to the destination so that  messages 

travel only through that path. Also, it would be best to have that path as the shortest path so that 

the message can reach the destination in the minimum number of hops. The current approach is 

based onthis. Before even starting Deluge, a set path message is sent through the base station to 

the network of motes. The message contains a ‘to’ field which contains the destination address to 

which we want to set the path. The message is broadcasted so it traverses through the whole 

network. Each mote that receives the message checks whether the message is from the base 

station (the reason will be explained later), if yes, then it checks whether the ‘to’ field matches 

it’s TOS_LOCAL_ADDRESS or not. If yes, then it knows that it is the destination and sends 

back a message to the base station. However, if it is not the destination, then it just forwards the 

message further so that it reaches the destination eventually. However, before sending the 

message further, it does an important thing: it stores the hop-count of the message it receives and 

also the ‘id’ address, i.e., the address from which it received the message increases the hopcount 

by one and attaches its own id to the ‘id’ field and sends the message further so that it can reach 

the destination. The purpose of doing this is explained further. 

Now, when the message has reached the destination, the destination node also needs to 

respond to the base station saying that it has received the message. Otherwise the PC will have 

no idea as to whether the path has been set or not. Before sending the message, the  destination 

mote waits for a certain period of time so that it receives all the messages it can and decide 

which one is coming from the nearest source and sets the hopcount accordingly. The hopcount 

comparison action takes place at every mote since each mote can listen to all the broadcasted 

messages by other motes and hence need to decide which ones are useful messages and which 

are not. 

When the destination has received all the messages, it sends back a message and sets 

another global variable ‘interested’ to 2. However, this time, it does not broadcast the message. 

Rather it sends the message only to the mote from where it received the message that had the 
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least hopcount. This mote receives the message and sets the ‘interested’ field to 1 and further 

sends the message to the mote from where it received the message with the least hopcount and so 

on till it finally reaches the PC. We now have established a path where only the destination mote 

has the variable ‘interested’ set to 2 and the other forwarders (motes involved in the path) have 

it set to1 and the rest of the motes have it set to 0. Now when we send any Deluge message to the 

network of motes, the messages can be parsed on the basis of the variable and the ones that are 

not in the path will simply ignore the messages. 

The following figure shows the concept more clearly 

 

 

 

Figure 2.2 Correct approach to achieve heterogeneity 

 

2.3 Changes made to Deluge 

First of all, an extra message structure was added to the deluge messages file called the 

DelugePathMsg having the following structure: 

typedef struct DelugePathMsg { 
  uint8_t  from; 
  uint8_t  hopcount; 
  uint8_t  id; 
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  uint8_t  dest; 
}  
where: 
  ‘from’ contains the address of the source of the message. 
  ‘hopcount’ contains the hopcount of the message. 
  ‘id’ conatins the address of the source from where the message is coming. 
  ‘dest’ contains the destination address where the PC wants to send the message. The change is 
made in: 
tinyos-1.x/tos/lib/Deluge/DelugeMsgs.h  

 
One might think that “from” and “id” fields are essentially the same, which is true apart from the 
fact that “from” remains constant between the times it goes from the source to the destination, 
and changes at the destination and then again remains constant till it reaches the source. It is 
basically used by the mtoes to decide on what action to perform based on whether the message is 
from the base station or a mote. The “id” field is changed at every hop. 
Now as the message classes are being generated by MIG, we need to make changes in the make 
file in  
tinyos-1.x/tools/java/net/tinyos/deluge/ 
 
We added the following lines to the make file: 
DelugePathMsg.java: 
 $(MIG) -java-classname=$(PACKAGE).DelugePathMsg 
-target=$(DELUGE_PLATFORM) $(INCLUDES) $(DELUGE_LIB)/DelugeMsgs.h 
DelugePathMsg -o $@ 
 
Also, we need to add DelugePathMsgs.java to the variable MSGS. 
 
Next, the interaction of messages between the motes and the PC takes place on the basis of 
AM(Active Message) value of the message which is provided as an argument to the message. 
We need to add an AM type for DelugePathMsg so that it can interact with the motes. We 
provide AM value of 165 to the path message since AM values up till 164 are already being 
assigned to different message structures. 
So, we need to add the following line to DelugeMsgs.h as an enum 
AM_DELUGEPATHMSG = 165. 
 
One can now go ahead and issue the “make” command in 
tinyos-1.x/tools/java/net/tinyos/deluge. 
 
Doing so will generate the required classes used by DelugePathMsg. 
NOTE- THESE ARE AUTO GENERATED FILES BY THE MIG, SO DO NOT CHANGE OR 
TRY TO MODIFY IT. 
 
Second, a Java program was written to send the setpath message from the base station to the 
motes. This Java file has to be a part of DelugeJava toolchain since it is based on this message 
and we need to set and access the global variables in the Deluge files as we discussed earlier. 
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The program simply sets the path message and implements a MessageListener class so that it can 
as well listen to the messages coming back from the motes. 
 
   
 

Figure 2.3 Code snippet for sending path message 

 
The send method uses the standard moteif.send() method to send a message m to an address a as 
shown in the above figure.It has the following format moteif.send(a,m) 
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While setting the path, we will receive many messages other than the one we are expecting (the 
one sent by the destination) that we need to ignore since these are the messages that other motes 
are broadcasted while forwarding. Since these are broadcasted messages, the base station will 
also receive it, and forward it the UART but the program needs to ignore those messages. 
 

Figure 2.4 - Code Snippet for receiving path messages 

If we do not receive a message back from the destination, then this implies that the path has not 
yet been set and we need to send the set path message again till we get this message on the PC. 
 
The next change was made in the Deluge Protocol which is responsible for receiving the 
messages and parsing them and taking actions accordingly. 
 
Before making any changes to the files DelugeM.n and DelugePageTransferM.nc which form the 
original Deluge protocol, we need to specify to Deluge that we would be using a receive event 
for DelugePathMsg which can be done by wiring it in the DelugePageTransferC.nc file as 
follows: 
DelugePageTransferM.ReceivePathMsg = ReceivePathMsg; 
We also need to mention in the DelugeC.nc file that we would be using AM 165 for 
DelugePathMsg so that it is consistent on both sides. This can be done by adding the following to 
DelugeC.nc: 
  PageTransfer.ReceivePathMsg -> Comm.ReceiveMsg[AM_DELUGEPATHMSG] 
The Comm interface is the one that actually takes part in the transferring messages from a mote 
to the base station.. Similar work has to be done for the SendMsg interface for the PathMsg 
message  in the same files as follows: 
DelugePagTransferC.nc: 
  DelugePageTransferM.SendPathMsg = SendPathMsg; 
DelugeC.nc 
 PageTransfer.SendPathMsg -> Comm.SendMsg[AM_DELUGEPATHMSG]; 
Now we can use the send interface and the receive event in our files. 
Coming back to the receive event:The receive event basically receives all the path messages it  
listens to.  
TinyOS Messages have a fixed structure that is transmitted over the Radio which is as follows: 
 
  uint16_t addr; 
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  uint8_t type; 
  uint8_t group; 
  uint8_t length; 
  int8_t data[TOSH_DATA_LENGTH];     /* data that is sent through PC or through motes as 
the case may be  */ 
  uint16_t crc; 
 
The int8_t data[] is the actual part that is of  interest to us since that contains the actual data that 
is being set by the PC. 
So whenever we receive a message, the first step is to extract the data part from the msg and cast 
it to the proper message type. It is done as follows: 
 
DelugePathMsg *pathmsg = (DelugePathMsg*)(pMsg->data); 
 
Now we can access the separate fields of the message. 
 
Whenever motes receive a path message, there can be 2 possibilities. 
A – The message is from the base station: 
 If the message is from the base station and is intended for the mote receiving it, then it 
accepts the message, and checks whether the hopcount of the message received is lower as 
compared to any message that was received earlier. If yes then it starts a timer. The following 
snippet shows the above part 
 

Figure 2.5 - receive event for path messages for the destination mote 

If the message is from the base station but is not intended for the mote receiving it, then it just 
forwards it or broadcasts it further after setting the hopcount and to fields. The following snippet 
shows the above: 
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Figure 2.6 - receive event showing forwarding part for non destination motes 

B – The message is from another mote (while coming back from the destination mote) 
 If the message is coming from another mote and the mote is receiving it, that implies 
that the mote will be a part of the path through which rest of the messages will be traveling, so it 
sets its “interested” variable to 1 and passes on the message to the id stores in its “to” field. The 
following snippet shows the above: 
 
interested = 1; 
setupfurtherPathMsg(to); 
 
 
Next step is to consider message forwarding within the motes: 
 
There are 2 types of messages: 
A – One that the mote forwards (broadcasts) 
 When the mote forwards a message, it just sets the “hopcount” and the “to” fields and 
then makes a new message with its own id and increasing the hopcount by 1. The following 
snippet shows the following: 
 

Figure 2.7 Forwarding(broadcasting) part of the protocol 

 

B – One that the mote forwards (not broadcasts) 
 This is the message received only by the motes that will be a part of the path between 
source and destination. The following snippet shows the above. 
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Figure 2.8 Forwarding (not broadcasting) part of the protocol 

 
setupinitialPathMsg() is just for the purpose of sending the initial message from the destination 
mote since that has to be done outside the receive event since that only happens when the timer is 
fired. 

Figure 2.9 Initial message send by the destination mote 

 
This completes the process of setting the path from the source to destination. The rest of the 
protocol is as follows: 
 
   

When receive any kind of Deluge messages from Base Station: 

 If the value of the “interested” is 1, forward it. 

 If the value is 2, accept it and take actions accordingly 

 If the value is 0, ignore the message. 

For this purpose following code was added to the original deluge protocol: 

DelugeAdvMsgFwd() in DelugeM.nc 

SetupReqMsgFwd() in DelugePageTransferM.nc 
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SetupDataMsgFwd() in DelugePageTransferM.nc 

We don’t need a separate send interface for Adv and Req message since it is already present in 

the protocol for these messages. There also exists a separate send interface for Data msg but still 

we need to have a different send interface for AdvFwd messages since the sendDone event of 

DataMsg actually starts a timer that does some actions after being fired, while with message 

forwarding, we do not want to do anything apart from simply forwarding the message so that it 

reaches the destination. 

One very important point while writing the Forwarding functions is that whenever a function is 

being forwarded, it should be assured that exactly the same message is being forwarded as was 

received by the Base station, the reason being that there is some metadata associated with each 

and every packet that contains information about that packet. This metadata is used to decide 

what action needs to be taken after receiving the messages, so if this metadata is not forwarded 

correctly, there might not be any visible error in the protocol, but it won’t behave the way it 

should be and that can become pretty hard to debug 

Let us discuss these 3 functions in detail: 

DelugeAdvMsgFwd: 

This method is for forwarding the Adv messages further so that they reach the destination. 

The following snippet shows the SendAdvMsgFwd method: 
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Figure 2.10 - Adv Message Forwarding 

The function takes as arguments all the fields and pointers from the original message and 

prepares a new message with exact same structure and then forwards it. 

SharedMsgBuf.getMsgBuf() is the command that is called to get the message buffer for 

preparing a new message and put the data in the data field of Tos_MsgPtr. It is important to 

make a copy of DelugeImgDesc* and DelugeNodeDesc* first and then use the memcpy function 

to copy the data from the copied version to the new message that is being prepared. The reason 

being that both the messages are using different buffers and if we try to use memcpy without 

making a copy of the pointer, it can go to a deadlock state where it is waiting to access the buffer 

but is never able to access the buffer. 

SetupReqMsgFwd: 

This method is for forwarding the Req messages further so that they reach the destination and 

also forward the request messages from motes to Base Station. 

The following snippet shows the function body: 
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Figure 2.11 Req Message Forwarding 

Similar to the DelugeAdvMsgFwd function, this method also takes as arguments all 

necessary fields and pointers from the original message and form a new message and pass it on. 

SetupDataMsgFwd: 

This method is for forwarding the data messages further so that they reach the destination and 

also forward the data messages from motes to Base Station. 

The following snippet shows the function body: 

Figure 2.12 - Data Message Forwarding 

 

Similar to the DelugeAdvMsgFwd function, this method also takes as arguments all 

necessary fields and pointers from the original message and form a new message and pass it on. 
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CHAPTER 3 - Implementation 

The following steps must be followed to install tinyos. 

� Install tinyos-1.11 from tinyos.net 

� Upgrade to tinyos-1.15 by using the following rpm and issuing the following 

command. 

� Replace the tinyos-1.x folder by the folder attached. 

 

To run Deluge on any mote, do the following: 

go to tinyos-1.x/apps/TestDeluge/FormatFlash and issue the following command: 

Make micaz install mib510,/dev/ttySx 

Where x = ComPort-1, ie if your base station is connected at COM4, the command 

would be using ttyS3. 

NOTE: To check the comport being used 

Right Click on My Computer->properties->Hardware->DeviceManager-> scroll 

down a bit and you can see the ports being used by your system. 

Format Flash is a simple application to format the motes memory for each and every 

slot. It’s a good practice to always run this application before starting Deluge. 

After FormatFlash, go to DelugeBasic application in the same folder and issue to 

following command: 

make micaz install.id mib510,/dev/ttySx 

for telosb the command is 

make telosb install.id bsl,x 

id is the id with  which you want to program the mote, x is explained before. 

Deluge Basic is an application with minimum support for Deluge, its generally kept 

as Golden Image in slot 0 of each mote. If the motes run into an infinite loop or any 

other problem, just restart the mote 2-3 times continuously and they will reboot to the 

Golden Image hence avoiding the need to again program them for Deluge support. It 

is not necessary to have DelugeBasic as the Golden image, one can have any 

application as the Golden Image but it should be having the support for Deluge. 
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Now the motes are all set and one can disconnect them from the board and place 

them wherever required. 

Now to form the base station, take a mote and program it with TOSBase application 

by going to tinyos1.x/apps/TOSBase by issuing the following command: 

make micaz install.0 mib510,/dev/ttySx 

Remember to assign the Id 0 to base station since it’s a standard. 

For telosb the command is 

Make telosb install.0 bsl,x 

To run Deluge on any application, we need to wire it with the current application. 

This can be done by going to the configuration file of the application and adding 

DelugeC to the list of components and then wiring it with the module like this 

Main.StdControl -> DelugeC 

We will take the example of Blink application to insert images into the network 

using Deluge. 

Go to tinyos-1.x/tools/java and give the following command 

java net.tinyos.sf.SerialForwarder -comm serial@COMy:micaz 

for telosb, the command is  

java net.tinyos.sf.SerialForwarder -comm serial@COMy:telos 

where y is the com port.. This opens the serial forwarder. Serial Forwarder is an 

application through which the port can read all the messages from the serial port and 

forwards them through an internet connection. If the serial forwarder opens 

successfully, you will see a window as shown in the following figure. 
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Figure 3.1 - serial Forwarder running 

Go to tinyos-1.x/apps/Blink after changing its configuration file and issue the 

following command: 

1 - make telosb 

Now, in order to re-program an individual mote, we need to set the path to that mote. 

In order to do that, go to tinyos-1.x/tools/java and issue the following command: 

Java net.tinyos.tools.Deluge  --setpath  --nodeid=m 

where m is the node that we wish to program. If the path has been successfully set, 

you will receive a message confirming that the path has been set. 
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Figure 3.2 - sending path message 

NOTE: If the message is not received, that means that the path is not properly set, 

you need to again send the path setting command till the ack message is received. 

Now go to tinyos-1.x/apps/Blink/build/micaz and issue the following command: 

java net.tinyos.tools.Deluge --inject --tosimage=tos_image.xml --

imgnum=<imgnum>. 
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Figure 3.3 - Injecting an image into the network 

You can see the node m being programmed and the nodes in the path forwarding and 

the rest of the nodes just sitting idle. 

REMEMBER:  If we are just injecting or erasing the images into a particular mote, 

we do not need to send a path message again and again, but is we are sending a 

reboot message to that mote, the variables will get reset and we have to again send a 

path message to that mote to send other commands. 
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CHAPTER4: Testing and Performance Analysis 

The application was tested for two different hardwares. The Broadcasting power of motes and 
the Base Station was reduced using CC2420Control interface for the purpose of testing. 

1 – The first setup was using the Micaz hardware that has the following specifications: 

ATMega 128L Processor 
802.15.4 Radio Transceiver 
2.4 GHz, IEEE 802.15.4 compliant 
250 kbps, High Data Rate Radio 

 

Figure 4.1 micaz motes 

The application was tested with 4 different applications injected into the network on different 
motes based on the path settings: 

 

 

 

The following table shows the observations: 
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Application Size of the 
application(in terms 
of pages to be 
injected) 

Time to inject from 
Original protocol 

Time to inject from Modified 
protocol 

Blink 22 48 seconds 51 seconds 

CountToLedsAndRfm 21 45 seconds 50 seconds 

SenseToLeds 22 40 seconds 42 seconds 

Oscilloscope 23 59 seconds 65 seconds 

Table 4.1 Observation table for micaz 

The results are based on the injection for the motes that were not in direct contact with the Base 
Station and were programmed using the Forwarding protocol. The time of injection shown is 
taken by averaging the times taken to inject an image into a particular mote keeping it at 
different locations and also based on the number of motes involved in forwarding, ie the number 
of motes that were a part of the message path. 

There can be a great variation in the results because of the battery power supplied to a micaz 
mote. Its advisable to keep the battery more than 2.5 V for micaz to work properly. 

2 – The second setup was using the telosb hardware that has the following specifications: 

 250 kbps, high data rate radio.  
TI MSP430 microcontroller with 10kB RAM 

 

Figure 4.2 - telosb motes 

The experiment was done with 3 different applications injected into the network on different 
motes based on the path settings. These applications were chosen because of the difference in the 
number of pages they contain since the testing is also based on the size of the message being 
injected. Since the test bed had a limited size, the application was tested by reducing the RF 
Power to 2 so that forwarding part can be tested reliably. Three types of scenarios were 
considered to check the performance under various conditions: 
1 – Direct interaction of destination with Base Station – 1 hopcount 
2 – Interaction through one forwarder – 2 hopcount 
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3 – Interaction through two forwarders – 3 hopcount 
 
 
NOTE: The following table is based on the fact that the TOSBase has to be restarted again and 
again since the TOSBase has a queue length of 12 which gets filled up pretty quickly since there 
are a lot of messages received by TOSBase when we are injecting images into multiple motes at 
a time. This problem has been taken care of in the modified protocol by modifying TOSBase as 
has been discussed earlier. 
 
The following figure shows the scenario for 1st case. 
 

Figure 4.3 test case1 
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The following table shows the observations for 1st case (HOPCOUNT = 1 - this means we are 

injecting images directly through TOSBase to destination) 
 

Application Size of the 
application(in terms 
of pages to be 
injected) 

Average Time to 
inject from Original 
protocol 

Average Time to inject from 
 Modified protocol with 0 hops in 
between 

Blink 20 1 min 25 seconds 1 min 13 seconds 

OscilloscopeRF 23 1 min 39 seconds 1 min 25 seconds 

GroupCoord6 27 4 min 15 seconds 1 min 41 seconds 

Table 4.2 - Observation table for telosb 

These are the observations based on the direct interaction of the motes with the TOSBase. 
 
Experiments with hopcount 1: There are 2 ways to give issue commands for injection or as a 
matter of fact any command in original deluge. One is where we specify the nodeid to be 
programmed specifically and another one where we do not specify any nodeid and both are 
generic messages for all the motes in the network. The difference is that when moteid is 
specified, the TOSBase first establish a connection with that mote and then starts injecting 
messages into the network. In this case if the destination is some hops away, it takes too 
long(TL)(beyond 10 minutes) to even establish a connection of TOSBase and destination. The 
reason being that in case where destination is far away, it periodically requests the intermediate 
mote to send the image but the intermediate mote doesn’t even have the image since TOSBase 
has not started injecting the images since its waiting to establish a connection first. However 
whene the nodeid is not specified, the moment TOSBase starts injecting images, the first mote 
nearest to the Base Station will start receiving the images and sending the acknowledgments to 
the Base Station and then this mote can be used to fulfill the request of other motes.  
 
However there is one drawback to the latter one. If we want to inject images to the very last mote 
but do not specify the nodeid, the first mote will receive all the messages and send all the 
acknowledgments to the base station indicating that the images have been properly injected into 
the network, which is true apart from the fact that the injection might not have been completed 
for the whole network. This scenario was tested and it was found that sometimes only partial 
motes have been programmed and the rest have been not. After that it may take any amount of 
time for the partially injected motes to interact with the ones that have full images and 
synchronize themselves based on what RFPower has been used. 
 
The following figure shows the scenario for the 2nd case. 
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Figure 4.4 test case 2 

 

The following table shows the observations for the 2nd case (HOPCOUNT = 2- this means we 

are injecting images through 1 forwarder in between TOSBase and destination) 

 

Application Size of the 
application(in terms 
of pages to be 
injected) 

Time to inject from 
Original protocol 

Time to inject from 
 Modified protocol with 1 hop in 
 between 

Blink 20 TL(see comments for 
hopcount1 and 2) 

2 min 24 seconds 

OscilloscopeRF 23 TL(see comments for 
hopcount1 and 2) 

2 min 27 seconds 

GroupCoord6 27 TL(see comments for 
hopcount1 and 2) 

3min 24 seconds 
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Table 4.3 - Observation table for telosb 

The following figure shows the scenario for 3rd case 
 

Figure 4.5 test case 3 

 
The following table shows the observations for the 3rd case (HOPCOUNT = 2- this means we 

are injecting images through 2 forwarders in between TOSBase and destination) 

 

Application Size of the 
application(in terms 
of pages to be 
injected) 

Time to inject from 
Original protocol 

Time to inject from 
 Modified protocol with 1 hop in 
 between 

Blink 20 TL(see comments for 
hopcount1 and 2) 

2 min 25 seconds 

OscilloscopeRF 23 TL(see comments for 3 min 31 seconds 



 

 32 

hopcount1 and 2) 

GroupCoord6 27 TL(see comments for 
hopcount1 and 2) 

3 min 40 seconds 

Table 4.4 - Observation table for telosb 

 

As can be seen from the observation table, there can be a bit delay in the time taken to inject 
messages, that too in the cases where forwarding needs to take place, but on the other hand there 
is a great saving of the resources available to us in terms of mote’s memory to store images. 
Now, each mote can have 4 different images in its slot as compared to the original protocol 
where the whole network can have maximum 4 applications at a time. Also, it increases the 
range through which a mote can be programmed drastically. 

Apart from the time performance testing, various other kinds of tests were done to see if the 
protocol gets stuck at a certain point. In a network of 8 motes, Blink application was injected 
after setting the path to nodeid=8, after that Oscilloscope was being injected to nodeid=1 by 
setting the path to 1. nodeid 8 was then rebooted to Blink application and nodeid 1 was rebooted 
to OscillscopeRF application. It was seen that the both the motes ran different applications 
without interfering with each other and the rest of the motes were sitting idle and could be 
programmed with different applications. It was interesting to see that till we are injecting images 
and erasing or dumping images to a particular mote, we do not need to set the path again and 
again but if we inject a reboot command to a mote, the variables are all reset since the whole 
application reboots. In this case, we have to again set the path to do further interaction with the 
same mote. 

So, if we are taking even about not a very large network, say having 10 motes, with this protocol, 
there can be 40 different applications existing in the network as compared to the original 
protocol that can support only 4. 
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CHAPTER 5: Future Enhancements 

 

One of the future things to be looked at is the message failure detection. While injecting 

the path message, if we are not able to establish a path between the source and the destination the 

first time since the destination mote can crash at any point of time, it should be able to 

automatically take care of injecting another path message and so on till the connection is 

established. Right now, this part has to be done manually each and every time we are unable to 

establish a connection. 

Secondly, there might be a situation when the mote was working while setting the path 

but after setting the path, it crashed at some point of time. In this case, it won’t forward the 

images properly and we won’t be able to detect where the things are going wrong. For that 

purpose, we have a minimum number of attempts it tries to inject images into the network. If it 

cannot inject complete image within those number of attempts, it goes into an idle state. In the 

modified protocol, there is no way to identify whether the destination mote or the forwarder 

crashed. This is one more issue that can be looked at in future. 
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CHAPTER6: Conclusion 

We have modified the Deluge protocol to allow each mote to be individually 

programmed. It can be seen from the above experiments that the modified protocol works better 

and gives better results in terms of space and time both since now it is possible to have multiple 

images in the network (400 different images in a network of 100 motes) as compared to Deluge 

that only allows few images (4 images in a network of 100 motes) 

Apart from the space, there is also a great saving in terms of time since we do not need to 

pluck the individual motes from their locations and program them again and again with different 

applications, this can be now achieved by using the modified protocol without plucking the 

motes from their respective locations, and that too with a greater time efficiency 
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