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PART I, CARDIOPULMONARY RESFONSES TO CO BREATHING IN THE CHICKEN
Abstract

Effects of carbon monoxide (C0) in various cardiopulmonary parameters
were determined in adult, male, White Leghorn type chickens (Babcock strain).
Four groups of ten birds each were allowed to spontaneously breath 0, 0,01,
0.1, and 0.5% CO, respectively, while cardiopulmonary aund carboxyhemoglobin
(HbCO) measurements were obtalned, No significant differences in respiratory
frequency (fresp)’ tidal volume (VT), minute volume (?), heart frequency

{f ), or systolic and diastolic blood pressure between birds receiving

card
G to 0,017 CO for 60 minutes were detected (HbCO = 9%), Inhaling 0.17% CO

for 60 minutes (HbCO = 39%) increased V., and ﬁ, and decreased blcod pressure

T

while frevn was unchanged. Inhaling 0.5%7 CO was lethal after aan average of

e
20.5 winutes (range, 17.5-24.5 min). That concentration increased VT and V
hut decreased £, bleod pressure and [ and resulted in HbCO concen=—
resp card
trations of 527 in 15 minutes, The effects of CO on cardiopulmonary control
camnot be explained by either direct or indirect action on peripheral
cheumorecptors {carotid body) because stimulation of those receptors increases
i as well as VT. €O may, therefore, act directly on other peripheral
i =

recepters (intrapulmonary COznaensitive receptors) or on the CNS,



- INTRODUCTION

Carbon monoxide (CO) is an asphyxiant gas with three deleterious.
physiological effects. 1t binds to hemoglobin with an affinity ranging from
162 times greater than oxygen in sheep to 247 times greater in the opossum
(Sendroy and 0'Neal, 1955). The resulting complex, carboxyhemoglobin (HhCO),
decreases the amount of hemoglobin available for 02 transport. Furthermore,

CO inhibits release of 0, from the remaining unbound hemoglobin and, thus,

2
causes the oxyhemoglobin dissociation curve to shift to the left (Stadie

and Martin, 1925). Tissue hypoxia is thereby augmented and the partial
pressure of 02 in the tissue must be decreased far below normal before a
significant amount of 02 will diffuse from the hemcglcbin., Finally, CO can
inhibit cytochrome oxidase activity (Ball et al., 1951) but high partial
pressures of CO (600 teorr) are required to stimulate carotid body chemo-
receptors by CO (Joels and Neil, 1962).

Few studies have considered effects of CO on the cardiopulmonary system
in birds. Acutely CO-poisoned chicks exhibit symptoms of uneasiness, stupor,
drowsiness, and labored breathing (Stiles, 1940), 1Inhaling 0.016% CO for
as long as 7 dayvs (HbCO of 7-12%) resulted in no noticeable symptoms (Carlson
and Clandinin, 1962). However, higher concentrations (0.06-0.1%) inhaled
for 27 minutes to 7 days produced signs of poiscning (diarrhea, 1rritability,
and dyspnea) with HbCO concentrations of 25-657%, but not death. CO concentra-
tions of 0.2% and higher with HbCO of 63-75% killed many birds., Histopatho-
logical lesions of brains of chickens exposed to CO were similar to lesions

in several cther diseases that effect the central nervous system (Carlson

and Clandinin, 1962).



Definitive measurements of CO effects on the cardiecpulmonary system of
chickens have not been made. We therefore studied the effects of inhaled CO
and associated HbCO concentrations on that system with particular attention

to alteration in control of the system.

METHODS

Animal preparation. Adult, male, White Leghorn type (Babcock strain,

1.75-2.25 kgs) chickens were anesthetized by injecting Equithesin (Jen-Sal
Lab, 2.2 ml/kg) into three sites in both the right and left pectoralis
muscles. A surgical plane of anesthesia (only a slight head movement to a
strong comb pinch) was reached in approximately 15 minutes,

Both the right and left sciatic arteries were cannulated. The trachea
was isolated and sectioned 8 cm caudal to the beak and was pulled into a

lass cannula. The glass cannula was short enough so as to not add additional

iQ

dead space to the respiratory system. The chicken was then placed in ventral
recumbency by securing the legs, wings, head, and tail to a wooden frame
(Fig. 1).

Cardiopulmonary recordings. All reccrdings were initiated one hour

after administration of anesthetic. Tidal voiume (VT) and respiratery

frequency (fre*w) were recorded using a closed system (Fig. 1). The tracheal

i
cannula was connected to a 53.7 liter carboy. A pressure transducer ({Statham,
P238B with the dome reroved) was ineerted thrcugh a rubber stopper in the

top of thz carboy. Presgure changes in the carboy, created by inspiration
and expiration of the chicken, were recorded on a multi~channel pen recorder
(Beckman, Type S). The system was calibrated by injecting into and with-

drawing from the carboy known voilumes of alr with a 50 ml, gas-tight syringe

50 tidal volume could be measured,
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Diagramatic arrangement of experimental animal
and accompanying apparatus. Pressure changes
in the carboy and blood were sensed by pressure
transducers and recorded by a multi~channel pen
recorder (arrows).



Blood pressure (Pb) and heart frequency (fcard) were detected by
connecting the sciatic arterial capnula (Fig. 1) to a blood pressure trans-
ducer (Statham, P23Gb) and recording the signal on the multi-channel pen
recorder. Rectal temperature was monitored by securing a thermistor 8 cm
into the rectum. Body temperature was held at 40°C (* 0.5°C) with a hot
water heating pad.’

Exposure gases. Four groups of ten birds each were allowed to spontane—

ously breath 0, 0.01%, 0.1%, and 0.5% CO, respectively, in 20.47% 02 from the
carboy for 1 hour or until death, The carboy was flushed for 35 minutes
with a pas wmixture containing the desired concentration ¢f CO, €O in the
carboy was measured by a chemical method (Universal Pump, Mine Safety
Appliances Co.). It varied less than 5% from one mixture of the same con-
centration to the next. Oxygen concentration in the inhaled gas mixture
was determined by using a paramagnetic O2 analyzer (Beckman, Modeal E 2),

Build up of €O, in the carboy was prevented by suspending 0.1 kg of CO2

7
absorbent, wrapped in cheese cloth, in the carboy. C02 concentrations in
the carboy were monitored with an infrared CO2 analyzer (Beckman, Model
LB 1), They did not exceed 0.25% after the chicken had breathed into the
caribboy 1 hour.

Arterial HLLO concentrations were monitored every 15 minutes while CO
was aduinistered by withdrawing 1 ml of arterial blood from the sciatic

cannula (Fig. 1) and analyzing it with a modified microdiffusion analysils

fes 18755,

il

(Lawbert et

Recoxd and data analysis. The respiratory paraucters VT, ml BTPS, and

fresp’ min ~, were measured from the reccrdings. The cardiovascular para-
. - -l i :
meters, T ord’ min =, and systolic and diastolic blood pressures, were

measured at li-minute intervals for 1 hour or until death, by reading 30



seconds of record, The differences in fre , and VT, and ﬁ among 0, 0.01%

5p
and 0,1% CO treatment groups at 13 time periods were analyzed using split-
plot analysis of variance. When significant values were obtained, the

Duncan multiple range test was used to determine means that differed (Fryer,

1966).

RESULTS

Lethal expesures to CQ. Cardiopulmonary responses to a high concentra-

tion of CO (0.5%Z) were determined in 10 birds. Typical records are shown
in Fig. 2. VT was more than doubled at maximum response, then decreased

to £ at 20.5 minutes. Blood pressure and fc began to decrease 15 minutes

ard
after initiating CO inhalation.

Mean responses of the various cardicpulmonary pavameters are shown in
Fig. 3. Respiratory frequency did not change significantly during the
first 10 minutes but both VT and V increased, Tidal volume remained
elevated until the chickens went into apnea (not shown in Fig. 3). Respira-
tory frequency and V decreased gignificantly from 10 until 1.5 minutes
before death. Mean time to death was 20.5 minutes (range, 17.5--24.5 min.).
Both blood pressure and fcard significantly decreased throughout inhalation.
Fifteen minutes after 0,57 CO was administered carboxyhemoglobin in the

arterial blood was 52.1% and averaged 55.4% at death (Fig. 4).

Sublethal exposure to CO. Inhalation of 0.01% CO for a one hour

period did not produce differences, from those birds receiving 0% C0O, in
any of the cardiopulmonary parameters measured (Table 1). Changes did

occur in £ s and V, during the one hour peried, within each group

T
resp® T’

of bivds indicating that they were not in a steady state condition. The

changes may have resulted from alterations in the plane of anesthesia
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TAB

LE 1

10

Influence of inhalation of 0.01% CO for 60 minutes on various cardiopulmonary

parameters in the chicken. Mean * SE,
. 0% co 10.01% €O
Parameter
.0 pin . 60 min 0 min 60 nin
Systolic Pb, mumHg 136 * 6 140 * 3 134 % & 124 % 6
Diastolic Pb, muHg 98 £ 6 102 t 4 107 £ 4 94 % 3
f , min 247 £ 2 253 + 2 260 £ 5 266 * 5
card _
£, min 26,9 + 2,5 23.8 * 2.6 23.3 £ 1.8 | 19.7 * 1.8
resp .
Vg, ml BIPS 24,4 + 1.2 30.3 + 1.4 25.3 1.7 29,6 * 2.2
¥, ml BIPSemin L 634 + 44 695 + 55 508 35 608 + 39




because additional drug was not administered. However, neilther blood

pregsure nor fc changed that hour.

ard
HbCO concentration in the arterial blood in birds receiving 0% CO was
never more than 17 after 60 minutes of breathing into the carboy, which
is within analysis error. HbCO concentrations progressed linearly to 9%
in 60 minutes in birds exposed to 0,017 CO (Fig. 4).
Spontaneous inhalation of 0.1% CO significantly increased VT and %, hut
did not change fresp significantly from those chickens receiving 0% CO (Fig.
5). Increases in VT and i occurred within 15 minutes after initiating 0.1%
€0 inhalation. The increase in & (571 to 885 ml-min—l) resulted entirely
from an increase in VT (23.7 to 44.5 ml) as fresp was not significantly
changed (24.6 to 20.2 breaths-min“l).
Changes in the cardiovascular system alsc occurred from inhaling 0.1%
€0, Hezit frequency increased from 278 to 292 baats-min—l in 30 minutes,
then decreased to 274 beats-min"l after 60 minutes. Blood pressure continually

decreased throughout the experiment. HbCO concentrations were 39% in 60

minutes {Fig. 4).
DISCUSSION

Cardiopulmonary changes in response to inhaled CO may be mediated by
indirect or direct effects on both the peripheral and central nervous
systems. However, our results do not support the idea that the indirect
effect (hypoxia) is responsible for the ventilatory responses to CO.
Chickens inhaling 0.1% CO fresp did pot significantly alter fresp even
though HbCO concentrations reached 39%%, but VT was increased significantly,
That response is not like the response Lo hypoxia that Butler (1967) and
Ray and Fedde (1969) reported in chickens. Hypoxia primarily increases

I

Lresr with smaller incrcases in resplratory amplitude., Peripheral receptors,
=
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such as the carvotid body (Magno, 1973), which appear to be sensitive to
hypoxia, therefore, appear not to be inveolved in the response. Furthermore,
other peripheral receptors (intrapulmonary COz~sensitive receptors), which
have been shown to be invelved in control of avian respiration (Fedde and
Peterson, 1970; Osborne, 1971; Molony, 1972), are not sensitive to hypoxia
and therefore are probably not influenced indirectly by CO.

Direct effects of CO on peripheral chemoreceptors in the cat have been
demonstrated by Joels and Neil (1962). They suggest that high C0Q tensions
(600 mmHg) act on the cytochrome oxidase in the glomus cells and thereby
increase the discharge frequency. Even though Mills and Edwards (1968)
found that carotid body stimulation in the cat by 2-7 mmHg PCO did not
result directly from the effect of CO on the cytochrome system, all cyto-
chrome oxidases may not be identical. Substrate specificities of enzyme
systems vary from tissue to tissue even in the zame species (Mannering, 1971).
Therefore, CO perhaps directly affects the intrapulmonary Cozﬂsensitive
receptors in birds. Increased CO2 concentrations in the inhaled gas, which
alter the activity of these receptors, predominantly alter amplitude of

respiratory movements with minimal effects on frev

o

. (Ray and Fedde, 1969},
a response similar to that produced by inhalation of 0.1%7 CO.

The cardiopulmonary response to CO also may result from a direct effect
of CO or the central mervous system. Chiodi et al., (1941) indicated that
CO depresses the respiratory centers, and Duke and Killick (1952) have
suggested that €O inhibits contractility of vascular smooth muscle. The
increased VT duz to inhaling 0.1% CO in our experiment might be explained by
decreased sengitivity of the respiratory neuronal pool to the inhibitory
input from the intrapulmonary COzwsensitive receptors, Further speculation

on the site and mode of action of CO must await direct evidence of its

effects on intrapulmonary COz—sensitivé receptors.
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PART I1. EFFECTS OF CARBON MONOXIDE ON AVIAN INTRAPULMONARY CO_--SENSITIVE
RECEPTORS 2

Abstract

The effects of carbon monoxide (CO) on intrapulmonary Co?nsensitive
receptors were investigated in unidirectionally ventilated chickens., Ex-

cluding CO, from the ventilating gas stream produced maximal stimulation of

2

the COzmsensitive receptors and induced apnea. Single-unit, afferent vagal
activity from the COZ—sensitive receptors was not changed by including 0.1%
CO in the ventilatory gas mixture; nor did CO alter static or dymamic C02~
sensitivity curves, indicating the receptors' sensitivity to 002 was not
altered. However, 6 minutes after CO was administered cyclic respiratory
movenents began., Rapid increases in HbCO to 50% with a simultanecus decrease
in P302 from 85 to 62 torr developed in 15 minutes.

The occurrance of respiratory movements during C0 administration cannot
be attributed to a direct action of CO on intrapulmonary COzwsensitive
receptors notr to an increase in the activity of other chemoreceptors due
to hypoxia. The movements may have resulted from a depressing action by
CO on inhibitory interneurons in the CNS that normally are activated by
intrapulmonary COzmsensitive receptors. Inactivity of those inhibitory
interneurons would allow cyclic respiratory movements to resume from in-~

herent rhythw of the respiratory meuronal pool even though continued high

discharge of intrapulmonary CO,-sensitive receptors occurred.



INTRODUCTION

Spentaneous inhalation of 0.1% carbon monoxide (C0) by the chicken
increases tidal wvolume but produces no change in respiratory frequency
(Part 1 of this thesis). The exact mechanism by which CO produces the
regponse is not understood. 1In CO polsoning the degree of hypoxia is
severer than expected from just the formatlon of HbCO because the release
of 02 by the remaining unbound hemoglobin is also inhibited (Stadie and
Martin, 1925). However, hypoxia in the chicken increases respiratory fre-
guency (Butler, 1967) with less effect on amplitude of breathing (Ray and
Fedde, 1963). Because that response does not occur during €0 intoxication,
it is not likély that peripheral chemoreceptors, such as the carotid body,
are responsible for the increased tidal volume produced by inhaled CO.

Intrapulmonary CO,-sensitive receptors appeatv to be distributed through-—

2
out the avian lung, perhaps in the epithelium of the tubular system (Fedde
and Peterson, 1970). Altering the activity of these receptors by inhaling

various mixtures of €O, markedly influences amplitude of breathing with little

2
effect on frequency (Ray and Fedde, 1969). Thus, altering the receptors
activity might cause the respiratory changes observed during CO inhalation.

Our objective was to determine if CO influences respiratary control in

the chicken by acting on intrapulmonary CDzwsensitive receptors,
METHODS

Animal prepavation. Adult, male, White Leghorn type chickens (Babcock

strain, 1.7-2,0 kg) were anesthetized by injecting phencbarbital sodium
(160mg/kg) through a cannulated left, cutaneous ulnar vein. Each bird was
secured in dorsal recumbency, its trachea cannulated in the midcervical

region, and its thoraco~abdominal cavity exposed by a midventral incision
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through the skin, underlying muscles, and sternum (Fig:‘ﬁ). The abdominal
and thersacic air sacs were incised and a warmed, humidified gas was passed
into the tracheal cannula, through the lungs, and out to the atmosphere
through the opened air sacs. The unidirectional ventilation procedure has
been previously described (Fedde et al., 1969). A constant flow rate (4
liters/min) of gas was used. The concentration of 0,, COZ’ and CO in the
ventilating gas stream was monitored just before it entered the trachea by
an oxygen analyzer (Beckman, Model E 2), an infrared CO2 analyzer (Beckman,
Model LB 1), and a CO Universal Sampling Pump (Mine Safety Appliance Co.).
In all experiments, the chickens were unidirectionally ventilated with 20.4%
02, balance NZ’ with 0.1% CO added for 15 minutes. Body temperature held
at 40° C * 0,5° C, was monitored with a rectal thermistor inserted 8 cm,

Experiment 1. In experiment 1, single uvnit, afferent neuronal activitv

was recorded from intrapulmonary, COzwsensitive receptors in 5 bhirds during
unidirectional ventilation with 0.1% CO, The left vagus nerve in the cervical
region was exposed and immersed in a mineral oil pool formed by a ring of
skin., All branches of the nerve except those from the lung were transected.
The epinevrium was removed and the nerve was placed on a mirrcer support.,

Small fasciculi were divided with the aid of a dissection microscope until

a single active unit could he identified.

Single unit activity was detected by placing the dissected strand of
nerve on a small bipolar hook electrode (907 platinum~10% iridium, 76u in
diameter). The signal was amplified (Grass Imst. Co., Model P-5), displayed
on a multi-chamneled oscilloscope (Tektronix, type 565), and recorded with
an FM tape recorder (Hewlett-Packard, Mcdel 3960).

Impulse activity was determined to be from COz~senSitive receptors by

rapidly removing and adding CO, to the unidirectional ventilatory gas by

2
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using a_solenoid valve in the CO2 line. The rapid increase in impulse

frequency when the intrapulmonary CO, concentration was reduced is a char-

2
acteristic of those receptors (Fedde and Peterson, 1970).
Vertical sternal movement was detected with a strain gauge attached to
the caudal tip of the sternum, displayed on the oscilloscope, and tape recorded.
The neural activity and sternal movements were recorded on film from the tape
with a kymographic camera (Grass Inst. Co., Model C-4) for analysis of data.
When we found a single intrapulmonary COZ«sensitive unit, we followed
the same protocel on 5 birds: 1) Obtalned static and dynamic sensitivity

curves; 2) removed CO, from the ventilating gas stream to produce maximal

2
static discharge frequency; 3) approximately 5 minutes later, introduced
0.1% CO into the ventilatory gas stream; 4) tensminutes after beginning to
administer CO, we again obtained static and dynamic CO2 sensitivity curves;
53) removed CO from the ventilatery gas stream after 15 minutes cf exposure;
6) obtained static and dynamic COz—sensitivity curves 1 minute and 30 min-
utes after removing CO.

Static CO,-sensitivity curves were obtained by determining the impulse

2

discharge frequency at steady CO, concentrations of 0, 2, 4, 6, and 8% in

2
the ventilating gas stream. Recordings were taken only when the discharge
frequency had stabilized (at least 30 seconds) after CO, concentration was

P

changed. Dynamic CO,~sensitivity curves were obtained by determining the

2
change in discharge frequency as a function of time when the CO2 concentra-
tion in the ventilating gas stream was abruptly reduced from 4 to 0%, The
curves were used to determine if CO changed the sensitivity of the receptors
to their adequate stimulus, COZ‘

The data were analyzed for sipgnificant changes by a split-plot analysis

of varience (Fryer, 1966). Changes were considered significant when P<0.05.
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Experiment 2. In experviment 2, the effects of CO of arterial blood gas
tensions and HbCO concentrations were ﬁetermined in 9 unidirectionally,
ventilated chickens. Arterial oxygen tension, (PaOz), pHa, and carbon diexide
tensions, (PaCOz) were determined by withdrawing 3 ml of blood from a sciatic
arterial cannula and analyzing it with a blood gas analyzer (Instrumentation
Lab., Model 113). An equal volume of heated (40° C), air-equlibrated blood
was returned to the bird immediately after the sample was withdrawn. Carbo-
xyhemoglobin concentration was determined on the sample by a modified
microdiffusion method (Lambert et al., 1972). Vertical sternal displacement
was continvously monitored as described in experiment 1. We attempted to
reproduce the protocol of experiment 1 as closely as possible to correlate
the respiratory response to CO observed in that experiment with any changes
in arterial blood gas tensions and HLCO,

One unidirectionally ventilated chicken in experiment 2 was given 67 802
after €O administration was discontinued to determine if adding 002 would

increase HbCO removal from the blood.

RESULTS

Experiment 1. Response of intrapulmonary COp-sensitive receptors to CO.
Discharge frequency from intrapulmonary C02~sansitive receptors was deter-
mined for 10 seconds each minute for the first 10 minutes after 0.1% CO was
added to the ventilating gas stream. A typical response is shown in ¥ig. 7.
The discharge frequency for this receptor during ventilation with 0% CO2 was
10.5 impulses par second before administering CO (2A); it was 11.0 iwmpulses
per second 7 minutes after (2B) and 11.5 impulses per second 10 minutes
after (2C) CD was Included in the ventiléting gas, The mean discharge

freguency of 5 receptors from 5 birds during CO administration is shown in
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Fig, 7. Effect of CO on discharge frequency from an intrapulmonary
COn-sensitive receptor and on cyelic respiratory movements,
Unidirectional ventilation with 0% CO0p; in the ventilating
gas: (A), before administration of C0; (B), 7 minutes after
including 0.1% CO in ventilating gas; (C), 10 minutes after
including CO, 'Top tracing in each record dis sternal move-
ment; middle tracing is a tima line with 0.5 second intervals;
bottom tracing is idmpulse discharge from intrapulmonary CO;-
sensitive receptor. Increases in sternal movements (tracings
B and C) were observed without significant changes in discharge
frequency of the inrrapulmonary COo,—sensitive receptor.
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Fig. 8. Although the discharge frequency tended to increase as CO was
administered, the change (9.4 * 0.6 to 11,1 * 0.9 SE) was not significant,
The mean coefficient of variation for the discharge frequency during the 10
minute period for the 5 receptors was 8.0%.
Ten minutes after CC administration was begun and 1 and 30 minutes

after 30 was removed, static and dynamic CO_=-sensitivity curves were deter-

2

mined to provide information about the receptors' response to changes in
intrapulmonary 602 concentrations. The impulse frequency of the receptors

decreased as the CO2 concentration in the environment surrounding the receptor

increased. Differences among curves did not differ significantly as a
result of CO administration (Fig. 9 & 10), It thus appears that CO, at the
partial pressure given, does not influence the discharge frequency of intra-

pulmenary €O -sensitive receptors nor thelr sensitivity to 602.

2

Experiment 2. Sternal movement, HbCO, and blood gas tensions during

Ao
—

€0 administration. For 5 minutes before and during the first 10 minutes

of CO administration, the chickens were ventilated with a gas containing

no CO When €0, was removed from the wventilatory gas before CO was given,

2" 2

no cyclic respiratory motions were exhibited and the birds assumed hyper-
ventilatory apnea, However, during CO administration, cyclic respiratory
motions began (Fig. 11}. These movements were studied more carefully in 6
birds in experiment 2, They began approximately 6 minutes after CO was
included in the ventilating gas and, in most birds, increased in frequency
(Fig. 11). The moticns began when the HbC(O concentratjon was approximately
25%. The amplitude of the movements also increased but our recording tech-

nique did not permit amplitude to be quantitated (Fig., 7). Removing CO

from the ventilating gas stream put the birds again Into apnea,
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HbCO concentratvions rose from 0 to 38% in only 10 minutes during
unidirectional ventilation with C.1% CO (Idg. 12). Likewise, one-half of
the HbCO was lost within 25 minutes after CO administration ceased. One
hour after CO was removed, HbCO concentrations were only 16.8 * 0.6% (SE).

Two chickens, in which HbCO exceeded 47% in 10 minutes, died--one 10
minutes after CO administration began; the other, 15 minutes after CO was
removed {Fig. 12). In both of these birds the rate of rise of HbCO was
more rapid than in those birds that survived and the maximum HbCO was in
excess of 50%.

Adding CO, to the inhaled gas has been reported'to reduce the affinity

2
of hemoglobin for CO (Best and Norman, 1966). To determine if the HbCO
removal rate could be increased, we addesd 6% 802 to the ventilatory gas of
1 bird after CO was removed., The rate of removal of HbCO did not differ
between that bird and the six that received no CO2 (Fig. 12).

An unexpected change in Pa0, occurred during the experiment, One minute

2

before CO was introduced, Pa0, was 84.8 * 7.1 (SE) torr. It decreased (61.6 *

2
7.8 torrj within 5 minutes after CO administration (Fig. 13) and appeared to
increase slightly, but not to pre-exposure levels, after CO was removed from
the ventilatory gas.

Because the ventilatory gas contained 0% C02 when the blood samples
were taken, plla was high (approximately 8,0) and PaC0, was low (below 10

torr) throughout the course of the experiment. Limitations in the blood

gas analyzing system prevented exact measurements of pla and PaCOz.
DISCUSSION

Carbon monozide poisoning seldom reduces Pa0, until respiration is

2

depressed by pronounced central hypoxia (Root, 1965; Lambertsen, 1968).
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was added to the ventilatory gas mixture at 0 minute and removed
at 15 minutes (arrow).

29



Pag, [torr]

Fig, 13.

501 9

30

1525 35
TIME [min ]

| ;ST s ST [T e N
0 5 10

Effects on PaO, during unidirectional ventilation with 0%
CO0p and 0.1% €O, The mean (% SE) of Pa0, from 6 birds
before (reading at time 0), during, and after CO adminis-—
tration, CO was introduced at time 0 and removed after
15 minutes (arrow). Values were not obtained during

time indicated by the break in the graph.
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The marked decrease in Pa0, in the chickens recedving CO in our experiments

2

most likely resulted from a facet cf the experimental procedure other than

adding CO, Removing CO, from the ventilating gas in unidirectionally ven-

2

tilated chickens has been reported to increase tracheal pressure, probably
via increased pulmonary airway resistance (Ray and Fedde, 1969). It appears
that low intrapulmonary 002 concentration causes smocth muscle contraction,
which is abundant in the avian lung, especilally surrounding the parabronchi
(King and Moleny, 1971). Such action could shunt gas from the parabronchi

and decrease parabronchial ventilation. In recent experiments, when we unidi-

rectionally ventilated chickens first with 5.0% 002 and 20,0% 02 then, for

15 minutes, with 0% CO, and 20.0% 0,5 Pa0, decreased from approximately
118 to 73 torr (Fedde, unpublished observations). In the current study,

COQ was removed from the ventilating gas stream 4 minutes before I’aO2 was

first measured. The mean Pz0,, 84.8 torr, was considerably less than ex-—

2’

pected during ventilation with 20.4% 0, and it continued to drap {to a

2
minimum of 61.6 torr) the next 5-6 minutes. Administration of CO likely was
not involved in the response., Most probably, low intrapulmonary CO2 con-
centration constricted parabronchial smooth muscle which decreased para-
bronchial ventilation and that, in turn, likely reduced PaOz.

Intrapulmonary, CO,~sensitive receptor activity was not influenced by

2
0.1%Z €O in the ventilatory gas mixture, Furthermore, the receptors' responsc
to 062 remained unaltered in the presence of €O, as indicated by no changes
in static or dynamic response curves. Thus, initiation of ecyclic ventilatory
motions, which began about 6 minutes after CO administyation, could not have

beea caused by alierations of that receptor system's activity. Therefore,

an alternate explanation of CO action on ventilatory control is needed.
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The HbCQO concentration reached 25% when qyclic ventilatory motions were
initiated. A hypoxic stimulus sufficient to affect such peripheral chemo-
receptors as the carotid body (Jones and Purves, 1970; Magno, 1973) may have
been present., It is doubtful, however, that such a stimulug was responsibtle
for ecyclic ventilatory motions observed during CO administration, because

the chickens were hot receiving CO, in the ventilatory gas mixture during CO

2
administration., The intrapulmonary COzmsensitive receptors were, thérefore,
discharging at relatively high frequency., An increase in discharge frequency
of the receptors correlates with a decrease in respiratory motoneuronal
activity and apnea (Fedde and Peterson, 1970)., Furthermore, that receptor
system's inhibitory influence is extremely strong. Fedde and Peterson (1970)

showed that during apnea, produced by low intrapulmonary CO, concentratiens,

5
removing 02 from the ventilatory gas mixture produced lethal hypexia but

did not induce cyclic ventilatory motions. Neither are those motions induced
during less hypoxia (5% 0, in the ventilating gas) nor by infusing epinephrine
or norepinephrine so long as the intrapulmonary CO2 concentration is low
(Fedde, unpublished observations), Thus, all receptor systems, such as
carotid and aortic bodies, which could be stimulated by hypoxia, cannot
produce enough excitation on the central respiratory neurcnal pool to over-
come the strong inhibition from the intrapulmonary Cozvuensitive receptox
system, Therefore, even if hypozia (due to increased HbCO, increased

binding of 02 by Hb, and decreased Pa02) was strongly stimulating the carotild
bodies, it is not likely that their activity could have been responsible for
the cyeclic ventilatory motions that occurred during CO administration,

To explain the influences of CC on the respiratory control system, its

effect on other regions of the body must be considered. Chiodi et al. (1941)



found that a given concentration of CO2 in inspired air induced less increase
in ventilation in the hypoxia of (0 poisoning than in the non—poilsoned animal.
They concluded that €O may depress centers in the CNS that control respira-
tion, Barrios et al, (1969) extended that idea when they found latency of
many reflexes, especially polysynaptic reflexes, increased during and after
cats were exposed to various concentrations of CO,

Our results suggest a hypothesis tc explain the site ¢f depressing
effect of CO on the CNS and resulting changes in ventilatory control (Fig. 14).
Befcere CO is administered, Inherent respiratoyy rhythmicity of inspiratory
and expiratory centers is modulated by peripheral receptors and possibly

by higher centers. When intrapulmonary CO, concentration is low, impulses

2
from intrapulmonary Cozwsensitive receptors inhibit respiratory rhythm and
cause apnea in the chicken, During CC administration, a depression of
inhibitory interneurons (which are activated by the intrapulmonary COzu
sensitive receptors) would prevent the strong inhibitory influence of these
receptors from reaching the respiratory centers, The action of €O must,
however, be selective because generation of cyelic breathing movements shows
the respiratory neuronal pool is still capable of activity. The inherent
respiratory activity in the respiratory centers then could cause cyclic
ventilatory motions.

The cardiovascular response aof the chicken to spontaneous breathing of
0.1% CO is decreased bleood pressure with constant heart frequency (Part 1 of
this thesis)., Those changes are also explained by the hypothesis that
CO selectively depresses the CNS, 1If both sympathetic and parasympathetic
control of the heart were depressed, the result could be negligible change im
heart frequency. Mowever, because vascular tone is predominantly provided

by sympathetic activity, depressed activity of sympathetic fibers may produce
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vasodilitation and reduce cardiac output and, hence, the cbserved decrease
in blood pressure, <{onfirmation or rejection of the hypothesis must await
single-unit recordings from iInhibitory interneurons activated by intrapul-
nonary COZ"sensitive receptors. Perhaps a dirept effect of CO on these neurons

may thereby be shown,
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APPENDIX TABLE 2

IDE ON TIDAL VOLUME (ML BTPS)

WITH MEANS (X), STANDARD DEVIATIONS (SD), AND STANDARD ERROR (SE)’

EFFECTS OF 0% CARBON MONCX
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BIRD f{

TIME
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i

{MIN)

1.2

3.8

24,4

21.8 31,4 28.0  23.0 20,7  23.5

20.7

1.2
0.2
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22.4  31.4

24,2
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(401

3146 29.1 23.5

21.8

0.6 0.6 0.0 0.9 0.6 1.7 0.7 0.6
21.3 24,1 24,6 24,1 31.9

24.1

L
28.6

Law)

0.0
22.4

®

1.7
21.3

3.9
0.7
3:9

31.9

16

(]

1.0
26.0

p.

2]

1.3
24,6

0.6 0.6 1.1l 0.6 0.6
31.4 25.2 21.8 24,1

31.4

0.6
22,4

L2
0.3

21.8

"
=l

2.2
26.3

1.3 0.9

26,2

1.7
31.9

1.3
25.1

0.5
24.6

1.1
21.3

3.4
3G.8

0.0

[

1.1
22.4

1.4
0.3

~t

23.0

20

2.2 1.8 0.9
26.8

32.5

Lol
235

1.8
25.5

1.1
24,1

0.6
22,4

3.4
28.0

L.l Za 2 2.8
34.7 31.4

24.6

1.7
213

1.5

4,6

25

2.4 1.4

2.8
34,7

1.7
23.0

2,8 Fets 3.4 5.0
34.2 29.7

25.8

0.6
22.4

1.4
0.5

1.6
Gk
1.5

M~ ™

26.3 24.6

24.6

30

5.0
35.3

3.9 2.8 3.9 6.3 o Lol 3.0 2,8
31.9  28.6 23,0 26.4  26.9

25.8

L.
22.4

1.4

27.9

ol

Ly

0.5

3.5
28.7

5.6
35,3

5.0

27.4

3.1
26,9

2.2
23.5

32 2.2 3.9 5.6
39.2  30.8 29.1

26.3

1.7
23.0

1.6
0.6

5.1
i.9

25.8

40

4.3
28.8

5.6
34.2

5.6
29.7

3.6
27.6

2.8
24,1

6.2

28.6

2.8
30,2

4.5 7.8
38.6

26.3

2.2
22.4

145

4.8

0.6
LoB
0.8
1.4
D7

4.5 4.5 2.1
29.4

34.7

7.8
32,5

4.3
38.4

2.8
26.9

3.4
23.5

4.5
38.6

26,3

23.0

4.9

29,12

30.8

50

2.6
4,6
2wl

5.0 D,
34.7 30.0

0.6

5.2
20,3

2,8
25,2

2.8 6.7
291

31.4

7.3
39,2

4.5

27.4

2.2
23.5

o

[

28.0

55

5.0
34,7

10,1

6.0
30,2

4.5
28.6

4.5
24,6

6.2
30.8

3.4

31.9

7.8
37.5

5.6
28.0

el
23.5

5.6
30,3

4.3

33.0

60

0.8

2.4

5.9

5.0

11.2

6.2

6.2 5,2 2.9 7.8 Sl

2.8

“%Absolute change values obtained by subtract

d 0 from

tory parameter at time perio

s

ing respira

time perieds 5, 10, 15...60.
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L9
0.2
2.1
0.4

SD

6.1
0.7
6.8

&5

S (SD) AND STANDARD ERROR (SE)

23.3
23.1°
-0.1
23.0

THE EFFECTS OF 0.01% CARBON MONOXIDE ON FREQUENCY (BREATHS MTN

WITH MEANS (X), STANDARD DEVIATIC

0.8

10
0.4
20.7

21.2

36.0
36.2

0.2
38.0

21.6
21.8

0.2
21.0

1
15.6
15.0
-0.6
14.4

APPENDIX TABLE 4

25.4
25.0
-0, 4
24.2

26.1
26.6

0.5
26.8

26.1
25.8
—003
26,0

24.7
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0.3
24.8

2
17.3
16.38
-0.5

5%

BIRD #
i
17.4

18.0

10

TIME

(MIN)

Y.2

-0.3

0.3
20,3,
~0.3

0.7 =1l.1 -0.6 2.0
23.8 37.5

26,1

0.1
24,5

—l

-~

-2.1

2al,
0.3

T

22,7
-0.6

22

15.4

25.5

15.9
=1.4
16.0
. =1.3

1.9
G.3

1.1
6.2
0.9

22:53
~1.0
22,

19.8

1.5
35.8

0,4
20.4

-0.2
14.8
_008

-1.6
23.5
-1.6

0.0

25,6
-0.5

-0.6
25.4
-0.7

-0.2
24.9

0.2
24,6

3.l

6.4
15.6

20

L

6.6

<

25,5 23.0 14.2 20,8 36.6 19.5
-1

2552

15,4

~T

-0.8 0.6 -0.9
37.2

FA
e T

14,0
~1.6

-0,9 -0.6 =2.4
22.4

=0.1
24,1

2.1
0.5
252
0.5
0.5
1.9

5.8
1.5
6.8
1.6
6.8

21,8
~1.5
21.4
-2.0
21.2

18.8

19.2
-1.2
~1.6
18.8

1.2
36.2
0.2
36.4

2C.5
20.4
-1.2
20.0

13.8

3.5
-2.1
-1.8

-3.0
2242
-3.2

1.6
-3.8
22.0

-1.1
25,2
-0.9
24.7

24.9
g2
24.8
~2.3
24 .4

0.9

-0.6
23.7

15.7
-1.6
15.0
~2.3

15.0
-4.5
14.0
=55

30
35

1.7
5.9

-1.6

0.4
32,4

=1.4

-1.0

1

-6.0

20.6

18,4

19.2

13.6
-2.0

24,0
-2.1
23.9

cry
[

2d.5

14,7

0.4
1.8

1.3

-2.7

-3.6

-2.4
19.6

-2.6 =1,2 -=2.2

14,6

-5.7

5.6

20.2

18.0

L]
=

23.0 21,2  12.8
-3,1

23.2

14,2

50

0.4
1.8
0.4
1.8
0.3

1.3

-3.1
19.9

4.2 =-2,8 -2.0 4.8 -=2.4
17.86

-2.2

5.6
1.2

31.0

i4.3 23,2 22.6 23.4 21.4 12,5 9
_2-4‘

14,0

)
Ia]

5.7
1.0

=3.4
19.7
-3.5

-3.2

~-5.0
~4,6

18.8
-2.8

-3.1
12.0
-3.6

21.2
4,2

23.0
-3.1

-3.0 =-1.5 =3.5
14,3
-3.1 =-1.6 =3.9

time periods 5, 10, 15...60.

60

*Absolute change values obtained by subtracting respiratory parameter at time period 0 from
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SE
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1

TIME
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1.7

5.4
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26.9

5.6 1.8

0.8

25.8-

24,1 15.7 21.3

31.4

31.4 23,5 23,3 23.9

29.1

[ta]

0.2
1.7

0.0 -0.6 0.5
26.2

16.2

0.6
24,6

0.6

29,7

0.6
34,2

5.3

21.8

\D
<

26,1 24.6

31.9

0.0 0.9 1.1 0.3
22.4

0.6
16.2

~—

-1.1

0.6
34,7
1

(3]

0.6
24,1
0

0.6

31,9

2.8
30.8

LS

~ QO

1.4

1.2

0.6
22.4

24,56
0.6
1642

29,7
~1.1

~

2.1
25.8

25,2
2.8

O

0.6
32.5

32

30.8

15

30.8  24.6

35.3

20

1.4 4.3

Jou T
27.8

0.6
23.0

0.5
16.8

!

0.0
32.5

Lk 1.7
35..3

25.8

3.9
26.9

3.9
34.2

1,8
0.6

5.8

25,2

33.0

25

1.9

2.5
28,2

1.1
23.5

$a L 7 4.5 2.7 L7 1.7 0.6 Lyl
26.3  36.4 33.0 25.2 17.9
2 1.7 1

33.6

7.3
34.2

[ W o)
i O

5.9
1.9

29

1.1

1.7
17.9

~t O
™~

2.2
33.6

7.3

34.7

30

36.4  33.0  25.2

2643

-2

o~

25.7

35

1.9 0.6

3.1
29,0

1.7
23.5

2.2

17.9

1.7
26.3

€

2.8
37.0

Fud
26.9

5.0
28.G

242
26,3

2

35.3

7.8
35.8

1.9

6.1

33.0

™~

2.1

3.7
29.3

1.7
24,1

2.4

2.8
26.9

2.2
33,6

~t

3.8
6.4

3.9 2.8 5.6
26.9 29,1

34.7

3.0
35.8

5.5

L

rd

36.4

45

2.1 0.7

5.9

4.0
30.2

2.2
25,2

2.8
20.2

~

2.8
35.8

3.8 2.8
37.5

27.4

6.7
28.7

1.8
0.6

27.4

2744

35.3

50

4,9 1.8

3L.1

3.4
26.3

4.5

23,0

5.0
36.4

4.4 3.9
38.6

38.6

7.3
30.2

(=]
(a8 ]

39
35.8

90
35.3

1.6
0.5

3.1
1.5

28.6

28,0

55

. 5.8
29.6

4.5
27.4

7.3
22.4

5.6 5.0
29.7

15.1

5.0
39.2

7.9
30.8

4.5
28.6

4.5

8.4

2.2
0.5

[

25.7

6.6

5.6

6.7

6.6 5.6 6.7

4.8

5.0

[-o TN g}

10.1

1.6

atory parameter at time period 0 from

ing respir

.

*Absolute change values obtained by subtract

time perieds 5, 10, 15,..60,

43



44

*09°°°CT ‘0T ‘¢ sporiad auwyl
woxy ( porasd swry je Iojoueied Axojeardssi Jurjoealzqns Aq psurelqo SINTRA 9JUBYD SINTOSqVs

6T 09 6¢
6t €T 809
0¢ 9 £t
6 Wil 109
9T 0§ 6T
7€ 80T 16s
9T 0§ 1T
€€ SOT g65
LT €S 8T
e 91T L85
LT € €T
e 0T1 €8S
St 7 6T
9¢ 91T GL§
A S 1
¢ TIT 65
¢l 6t 11
6E  €CT LLs
T v ot
9¢  _¢TT 616
0T v& 61
£ L1T LLS
S G1 Y
9¢ %11 clg
¢e  CIT 89¢
as as X

(2S) GOWME CUVANVIS aNV (dS) SNOILVIAIQ QUVANVLIS “(X) SNVIN HIIA

9Z. 6€T 0% 0E- - ig 66 6L e - )

LY 0L 8¢S 0Sh TES £89 v80 H%9 606 625 09

81 9T oY 9Z- LZ- 99 66 69 0g- 0g-

£9Y 80/ 8%< 5Gy 128 899 £89 059 €16 v6Y g6

8 <9 o€ 7z 8G %< 86 cg LZ=- cI-

£Ch 629 8ES 8Gh  G6L 659 789 9£9 GGG 60S 0%

z - 7¢ 8 72— £G= €y TTT 18 A og-

709 665 91¢ LGy T08 S%9 969 Z£9 01¢ C6Y Vi

g€ - L8 8T Cg= cG- 29 66 iy g - 0y-

hY 759 97§ 95 86/ £99 £89 H29 9¢¢g v8Y oy

I %8 9 He- C— 19 <6 7€ 6~ Q¢-

£€GY 679 ass 9%y 808 £99 6.9 €19 %0¢ 98Y% GE

g - 18 8 ¥4 T 9¢ 66 0% CI~- ZI-

Ty %€¢ LTS 56y €18 859 £89 TZ9 876 1% 0€

Z oS 9T 61— Ti7- 9T €6 8€ £c- 8

87y 19 49 9% 118 1S9 919 029 606G 7€5 Gz

- LT G - 5T~ vZ- LS %8 9% €£Z- 6T~

7hY 186 LHs 96 629 659 199 L29 A% €05 02

c 7Yy 71 £Z— LT~ 9¢ 8¢ ® ce- T -

oSy 609 zZ8 LEY 978 8S9 %9 065 L0G %28 cT

S R 6 €5 Lz~ 8¢ 9g 91 CZ—~ g -

Ay {19 18 12% 128 099 Cy9 L6S LTS 9Tg 0T

9 8 LT 01— T 13 12 1 5T- %0

6% 9GY €zs 0Ly #66 8€9 L09 88S LZ8 VT4 g

Sty %95 805 08y £58% Z09 68¢ 08¢ €98 VEAS 0

o1 6 8 L g g i € z T (WL
# @Ig  AWI

AWIZHZ.mMHm 1) HWNNTOA FIANIW NO HAIXONOW MOMIVO %T0°0 40 SIDH4LT HHL

9 JT4VI XIANHdaV



SE

2.4
2.4
0.1
2y
0.5
2.1
0.5
1.5
1.4

7.5
7.6

sD
0.3

24,6
24,9
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17.8
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b
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APPENDIX TABLE 7
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24.5
25.0
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1
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TIME
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0.0
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0.4
29.4
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25.2

0.8
23.6

o

0.2
26.5

0.4%
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6.7
1.9

0.3
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23.2

1.6
34.5

2.4 0.6
25.8
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16.2
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0.9
18.8
1.
18.2
0.5
18.0

.2
23.8
1.0
24,2
1.4
24.0
1.2
23.8
1.0
23.5
0.7
22.6

-0,2
28.0
-0.6
28,5
-0.1
27,6
26.4
~2.2
26,2

-4.0
78.8
-6.4
30.0
~5.2
28.0
27.5
=
25.0
-10.2

-0.4
24,2
-0.4
23.5
-1.1
22.4
20.0
-4.6
19.8
-4.8

2.3
23.72
2.9
24.0
2.8
22.6
22.5
1.4
21,4
0.2
22.0

17.4
2.0
2.0

16.4
0.6

16.8
1.0

16.0

3.0
23.0
-3.7
~4,7
18.5
18. 6
~7.6

1.2
17.3
16,8

0.4
-2.9
14.5
15.0

30
40
45

1.1

3.3

20.6

—{
[t |

24,5
-11,2

19.8

16.0 19.8

50

1.8
1.0
0.9
2.0

5.8
3.0
2.9
6.2

=4.1
20.2
=4.4
20.2
=4.5

-16.6
21.4
-16.4
20,6
-17.2

=-0,3
17.8

0,1
17.5
-0,2

-0.2
20.2
~2.6
19.8
-3.0

=2.4
25.5
-3.1
25.5
-3.1

-12.8
21.6
"'.L3. 6

-4.8
20.0
-4.6
20.0
4,6

C.8
1.6
22.5

22.+8
1.3

0.2
16.5
16.8

.0

-6.4
20.2
-6.0
21.5
~4,7

15,5
-0.9
16.0

-0.4
time periods 5, 10, 15...60.

60
*Absolute change values obtained by subtracting respiratory parameter at time period 0 from




APPENDIX TABLE B
ANS (X), STANDARD DEVIATIONS (SD), AND STANDARD ERROR (SE)

THE EFFECTS OF 0,1% CARBON MONOXIDE ON TIDAL VOLUME (ML BTPS)

WITH

SE

sSD

10

A

e
M

1.3
1.2
0.3
1.5
4.8
4.2

4.0
3.9
0.9
4.7
33.8 15.1

23,7
25.0
1.3
4.1

20.2
23.5

3.4
35.8
15.7
38.6

27.4
28.0
0.6
28.6
1.1
29.1

26.3
26.9
27.4

1.1
29.7

20.7
21.3
0.6
22 .4

24,1
25.2
1.1
31.4
7.3
32.5

22,4
24.6
7.2
25.2
2.8
29.7

28.0
201

1.7
30.8

20,2
20.7

L.
24,6

17.9
9,
14

19.0
L.l

23.0

29.7
31.4
7%
36.4
6.7
75.0
45.4

10

TIME
{(MIN)

10.1 13.3

1.7 18.5

30.8

3.4
33.6

8.4
35.8

7.3

33.6

2.8
33.0

4.5

b, b

8

37.7 13,

47.5

~F

27,

73.9 29.7

44,2

20

27.4

3.4
30.2

I~

6.7
30.8

11.8
40.3

11.8 5.0
33.6

11.8

4.0
3.0

38.6 12,7
16.0 11.8

49.8
29.7

i1.2
71,7 30.2 38,6 358
iz.3  18.4 5,6 12,8 16.2  10.1 9.5 2.8
36.4 33.0

42.0

25

56.0

s

]

o

40.9 34,2

37.0

34.2

66.6

y
i

16,2 21.3 8.4 14.6 16.8
39,2

34.7

37.0

3.2
3.8

19.4 10.3
43.3 12.0

59.9
39.8
60.5

36.4
9.0
35.3

39.2
12.9
40.3

14,6
35.8
14.1

41.4
17.4
43,7

38.6
1642
42,6

11.2

40.9
20.6
33.0

16.7
33.0

68.9

40

19,7 11.0 3.5

40.3

7.8
38.6

eiv]
.

i5.1 12,8 14,k 17.89 19,5

39.2
64,4

10.2 3.2
3.2

43,0 106.2

19.2

59.9
39.8
58.2

40,3
12.9

42.0
40.9

36.4

45.4
42.6

45.4

b4d, 2
23.0

42,0
14.0
42.0

36.92 31.9
8.0 11.8

34.3

45

8.9
44,2 11.0

19.2

14.6 38.0

8.5
49,3

]

10.6 13,4 14,0

30.8

3.5
3.0
3.5
3.2

9.6

44,5 11,1
'20.8 10,1

2C.6

57.7
37.5
61.0
40.9

40.9
‘13.4
40.3
12.9

16.2
42.0
1547

42,6
ratory parameter at time period 0 from

15.1
ing respi

35.8
15,1
35.8

25'2
48.7
24.6

44.8
22.4
44,8
22.4

40.9
12,9
41.4
13.4

35.3
15,1
37.0
16.8

29.1
11.2
25.1
11.2

36.4
65.0

66.1
time periocds 5, 10, 15...60.

60

55
*Absolute change values obtained by subtract
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APPENDIX TABLE 16 CONTINUED

30 MINUTES A¥TER CO OFF

1 MINUTE AFTER CO OFF
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5.0 2.6
=7.48

-5.0
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- 9.9

0.0
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-6.8
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-6.3

~8.3
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3.5 0.9
—7.6
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- 8.3

0.5 0.0
-7.8

4.0

8.3

~-8.3

6.0

5.6 2.8 1.3
-6.0

-3.2

8.8

0.0
- 8.8

5.6 2.8 1.3
-3.2 -6.0

8.8

27

r~

0.3
-~10.3

L
-9.4

2.6
-8.0

6.2

4.4

10.6

0.3
-10.3

6.2 2.6 1.2
"'4.4 "8.0 —904

10.6

28

0.98
0.13
0.05

0.84
G.52
0.23

2.20
0.77
0.34

4.96

9.26
0.98
0.43

3.26
0.43
0.19

0.94
.72
.32

2,04
0.92
0.41

5.06
0.85
0.38

8.90
0.99
0.44

i,03

SD

~t

- 9.18

-7.06 =8.42

-4,30

.84 -6.86 -7.96 - 8.64

0.51
G.22

X%
Sh#*

0.86
0.38

0.81
0.36

0.86

0.77

1.14
0.50

1.14

0.50

1.03
0.40
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APPENDIX TABLE 22
upulses per second) AT 0Z CARBON DTOXIDE BEFORE, DURING AND AFTER UNIDIRECTIONAL VENTILATION WITH 0.1iX

CARBON riCNOXIDE WITH MEAN (X), STANDARD DEVIATION (5D) AND STANWDARD ERRCR (S&E)
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ADDENDUM TO APPENDIX TABLE 22

AVERAGE COLEFFICIENT OF VARIATION OF THE IMPULSE FREQUENCY

FROM CO, SENSITIVE RECEPTORS. BEFORE, DURING, AND AFTER
CO ADMINISTRATION.

_ COEF, OF
BIRD # X SD SE Y,p (8
5 10.9 1.055 .318 9,7
6 8.5 Mok Wi 4.t
B 7 8.2 . 504 .152 6.1
27 11.2 979 .295 8.7
28 11.7 1,278 . 384 10,9
X of CV 8.0
SD 2.7
SE 142

*{ = mean discharge frequency over 10 minutes for_each
receptor and coefficient of variation is $D/X x 100.
Average coefficient of variation gives an idean of
the variability over this time period within a
receptor.
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APPENDIX TABLE 24

AVIAN ARTERTAL CARBCN DIOXIDE TENSION (torr) BEFORE, DURING AND AFTER UNIDIRECTIONMAL VENTILATION WiITH 0.1% CARBON MONOXIDE WITH

0.1% CARBOX MONOXIDE WITH HMEAN (X), STANDARD DEVIATION (SD) ARD STANDARD. ERROR {SE}

TIMZ {MINUTLS

DURING CO

REFORE CC

AFTER CC OFF
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ned by subtracting the arterisl carbon dioxide tension values at time 1 from time 2, 3, 400014,
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APPENDIX TABLE 26

CYCLIC VENTILATORY MOTION DURING UNIDIRECTIONAL VENTILATION WITH 0.1% CAREON
MONOXIDE WITH MEAN (X¥), STANDARD DEVIATION (SD), AND STANDARD ERROR (SE).

TIME (MIN) DURING CO

Birdf L 2 3 4 5 6 1 8 s 1o
1 0 0 0 0 0 20 10 6 10 25
4 0 4] a 0 0 0 15 12 12 17
5 ¥ 0 0 0 0 15 10 20 25 30
8 ] 0 1] 0 0 G 12 15 11 10
9-1 0 0 0 0 0 7 9 9 8 20
9-2 0 0 0 0 0 0 7 6 8 15
X 0 0 0 0 0 7.0 10.5 11.4 12.3 19.5
SD 8.7 2.7 5.5 6.4 12

SE 3.6 - 2.2 2.6 2.9
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ABSTRACT

The effect of carbon monoxide (CO) on avian cardiopulmonary control
was determined in adult, male White Leghorn type chickens (Babcock strain).
in one serles of experiments, four groups of ten birds each were allowed
to spontanecusly breath 0%, 0,01%, 0.1% and 0.5% CO in air, respectively,
for 60 minutes or ;ntil death while respiratory frequency (fresp’ breaths
min—l), tidal volume (VT’ ml BTPS), minute volume (0, ml BTPSHmin"l), gystolic
and diastolic blood pressure (mmHg), carboxyhemoglobin (HbCO) concentrations
and heart frequency (fcard) were recorded. Imhalation of 0.5% CO produced
increases in Ve and V while fresp’ blood pressure and fcard decreased. The
HhCO levels reached 527 in 15 minutes and mean death time was 20,5 minutes
with a range of 17.5 to 24.5 minutes, No significant differences in the
cardiopulmonary parameters were detected between birds receiving 0 and 0,01%
CO for a 60 minute period (HbCO = 9%). However, inhalation of 0,1% CO for
60 minutes (UbCO 39%) increased VT and % and decreased blood pressure while
£ was unchanged. The =ffects of CO on cardiopulmonary control canncot be

resp

experienced by either dirvct or indirect action on peripheral chemoreceptors

(carotid body) because stimulation of those receptors increases f

resp’
well as VT' {0 may, therefore, act directly on other peripheral receptors

(intrapulmonary CO,-sensitive reccptors) oxr on the CNS, The possible effect

2
of CO on the CNS is discussed.

In order to further explain why CO affected the control of avian
ventilation, 14 chickens were unidirectionally ventilated for 75 minutes
with a gas wmixture containing 20,4% 02, balance NZ’ with 0.1% CO being

adninistered f[or 15 minutes during this pericd. Excluding CO, from the
£

ventilatory gas stream produced maximal stimulation of CU-sensitive



receptors and produced Apnea. Afferent vagal activity from intrapulmonary
CDz—senSitive receptors and vertical sternal movements were recorded in
five birds, while carboxyhemoglobin (HbCO) conceuntrations, arterial oxygen
tension (PaOZ) and vertical sternal movements were monitored in 9 birds.
intrapulmonary COZ-sensitive receptor activity was not changed by the
presence of (.1% CO in the ventilatory gas mixture. Furthermore, CO did
not significantly alter the COzwsensitive receptor's sensitivity to COE'
However, 6 minutes after CO was administered cyclic respiratory movements
began. Rapid increases in HhCO values te 50% with a simultaneous decrease
in PaO2 from 85 to 62 torr developed in 15 minutes.

The occurrence of respiratory movements during CO administration cannot
be attributed to a direct action of CO on intrapulmonary COzfsensitiva
receptors nor to an increase in the activity of other receptors due to
hypoxia., The movements may have resulted from a depressing action of CO
on iphibitory interneurons in the CNS that normally are activated by
intrapulmonary COz-sensitive receptors. Inactivity of those inhibitory
interneurons would allow cyclic respiratory movements to resume from
inherent rhythm'of the respiratory neuronal pool even though continued

high discharge of intrapulmonary CO,-sensitive receptors occurred.

2



