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Abstract
Pak-Stanley labeling was originally defined by Pak and Stanley in 1998 as a bijective

map from the set of regions of an extended Shi arrangement to the set of parking functions.

Later this map was generalized to other hyperplane arrangements associated with graphs

and directed multigraphs, but this map is not necessarily bijective in these more general

cases. It was shown by in Sam Hopkins and David Perkinson in 2016 and Mikhail Mazin

in 2017 that Pak-Stanley labeling is surjective to the set of G-parking functions, where G

is the directed multigraph associated with the hyperplane arrangement.

This leads to the natural question of when the generalized Pak-Stanley map is bijective.

We determine a necessary condition for a directed multigraph to admit a hyperplane

arrangement that admits a injective Pak-Stanley labeling. For the special case n = 3, we

present examples of directed multigraphs that satisfy our necessary condition but only

admit hyperplane arrangements with a non-injective Pak-Stanley labeling, showing that

the condition is not sufficient.
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Chapter 1

Introduction

Let U ⊂ Rn be given by x1 + x2 + · · · + xn = 0. A linear hyperplane is a subspace of U with

codimension 1 and an affine hyperplane is a translate of a linear hyperplane. An affine

hyperplane arrangement A ⊂ U is a locally finite set of affine hyperplanes in U. A directed

multigraph is a graph G that allows vertices to have multiple directed edges but no loops.

Definition. Let A be a hyperplane arrangement in U consisting of finitely many hy-

perplanes of the form Ha
i j = {xi − x j = a} where i, j ∈ {1, . . . ,n} and a > 0. The directed

multigraph GA associated withA is defined in the following way: the vertices of GA are

{1, . . . ,n} and edges in GA are given by (i→ j), where i, j ∈ {1, . . . ,n}, and each edge (i→ j)

has multiplicity mi j := #{a ∈ R>0 | Ha
i, j ∈ A}.We call hyperplanes arrangements of this type

multigraphical hyperplane arrangements.

Note that in a given arrangementA, there are a total of mi j + m ji hyperplanes parallel

to {xi = x j}. The multigraph GA does not determine the combinatorial type of the the

hyperplane arrangement A because we can shift the hyperplanes in A by changing the

constants ak in {xi − x j = ak} without altering the directed multigraph GA. An example is

shown in Fig. 1.1.
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1

2 3

Ha2
21Ha1

12

Hb1
13

Hc1
32

Hc2
32

Ha2
21Ha1

12

Hb1
13

Hc1
32

Hc2
32

Figure 1.1: Two hyperplane arrangements associated with the same directed multigraph

Definition. Let f : {1, . . . ,n} → Z≥0. We say that f is a G-parking function if for any non-

empty I ⊂ {1, . . . ,n} there exists a vertex i ∈ I such that the number of edges i → j ∈ EG,

where j < I, counted with multiplicity, is greater than or equal to f (i).

A region R of a hyperplane arrangement A is a connected component of U \ A. The

fundamental region R0 is the region ofA that contains the origin.

Definition. Pak-Stanley labeling is the map from the set R of regions of a multigraphical

arrangementA to the set of n-tuples of integers λ : R 7→ 〈λR(1), . . . , λR(n)〉 defined in the

following way: the fundamental region R0 is labeled by 〈0, . . . , 0〉. Each time we cross

a hyperplane Ha
i j moving away from the origin we increase the ith component by one,

leaving the rest of components unchanged.

Equivalently, the Pak-Stanley labeling can be defined as follows:

Definition. [5] Let R be a region of an arrangement A. Let AR ⊂ A be the subset of

hyperplanes that separate a region R from the origin. We define the label λR to be the

function λR : {1, . . . ,n} → Z≥0 given by the formula

λR(i) := #{(a, j) | a ∈ R>0, j ∈ {1, . . . ,n}, and Ha
i j ∈ AR}.
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In other words, λR(i) is equal to the number of hyperplanes in the arrangement A of the

form Ha
i j that separate the region R from the origin. Although i is fixed, j and a may vary.

Note that for any G-parking function λ there exists i ∈ {1, . . . ,n} such that λ(i) = 0.

Indeed, to see this, it suffices to take I = {1, . . . ,n} in the definition of a G-parking function.

An example of a Pak-Stanley labeling of a multigraphical arrangement is shown in Fig. 1.2.

1

2 3

Ha2
12Ha1

12

Hc1
23

Hc2
32

〈0, 0, 0〉

〈0, 1, 0〉

〈0, 0, 1〉

〈1, 0, 0〉

〈1, 1, 0〉

〈1, 0, 1〉

〈2, 0, 0〉

〈2, 1, 0〉

〈2, 0, 1〉

Figure 1.2: Multigraphical arrangement with Pak-Stanley labeling

The following results have been proved.

Theorem 1 ([2, 3]). Let R be any region of a multigraphical arrangement A. Then the corre-

sponding label λR is a GA-parking function.

Theorem 2 ([2, 3]). LetA be a multigraphical arrangement, and letλ be any GA-parking function.

Then there exists a region R ofA such that λR = λ.

A central hyperplane arrangement is a hyperplane arrangement A such that all hyper-

planes in A intersect at some point c = (c1, c2, . . . , cn). A simple acyclic digraph is directed

multigraph with no cycles and no multiple edges.

Lemma 1 ([4]). LetA be a central multigraphical arrangement. Then the corresponding directed

multigraph is simple and acyclic. Vice versa, if G is a simple acyclic digraph, then there exists a

central multigraphical arrangementA such that GA = G.
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Theorem 3 ([4]). Let V = {1, . . . ,n} and GA = (V,E) be an acyclic directed graph on n vertices.

Then the central multigraphical hyperplane arrangementA corresponding to GA produces dupli-

cate Pak-Stanley labels if and only if there exists k, i, j ∈ V such that (k → i), (k → j) ∈ E but

(i→ j) < E and ( j→ i) < E.

The surjectivity of generalized Pak-Stanley labeling was conjectured by Art Duval,

Caroline Klivans, and Jeremy Martin in [1] and was proved for bigraphical arrangements

by Sam Hopkins and David Perkinson in [2] and generalized to multigraphical arrange-

ments by Mikhail Mazin in [3]. In the classical case of extended Shi arrangements, one

can show the bijectivity of generalized Pak-Stanley labeling by using the above results

and comparing the cardinalities of the two sets. In general, however, generalized Pak-

Stanley labelings often fail to be injective. Based on examples studied so far, the map is

not injective “globally” if it is also not injective “locally.”

Conjecture ([4]). LetA be a multigraphical arrangement. Then the generalized Pak-Stanley map

from the regions ofA to the set of parking functions is injective if and only if it is injective locally.

More precisely, suppose that the generalized Pak-Stanley map is not injective. Then there exists a

point x ∈ U such that x belongs to the boundaries of two distinct regions with the same label.

A natural question is to characterize the directed multigraphs for which there exist

arrangements whith bijective labelings. In this thesis, we describe partial results in this

direction for the special case of n = 3. The layout is as follows. In Chapter 2, we prove

a neccessary condition for a directed multigraph to admit a corresponding hyperplane

arrangement with an injective Pak-Stanley labeling. We also present a thorough example

of constructing a hyperplane arrangement from a directed multigraph where an injective

Pak-Stanly labeling is guaranteed. In Chapter 3, we present examples for the special case

n = 3 in which the condition from Chapter 2 is satisfied but the directed multigraph does

not admit a hyperplane arrangement with an injective Pak-Stanley labeling.

4



Chapter 2

A necessary condition for an injective

Pak-Stanley labeling

As discussed in Chapter 1 and demonstrated in Fig. 1.1 the directed multigraph associated

with a multigraphical arrangment corresponds to a family of hyperplane arrangements.

We already know that the Pak-Stanley labeling is always surjective (Theorems 1 and 2).

Sometimes the Pak-Stanley labeling is not bijective in an arrangementA associated with

a directed multigraph GA but is bijective if one or more of the hyperplanes inA is shifted.

This shift is obtained by replacing a hyperplane Ha
i j = {xi − x j = a} with the hyperplane

Ha′
i j = {xi − x j = a′}. For an example, see Fig. 2.1.

Since the Pak-Stanley labeling is always surjective, the number of regions is bounded

from below by the number of parking functions and the labeling can only be bijective if

the number of regions is equal to the number of GA-parking functions. Therefore, for a

given directed multigraph we always consider a hyperplane arrangement with the fewest

possible regions.
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1

2 3

Hb1
13

Ha1
12

Hc1
23

Hc2
23

〈0, 0, 0〉

〈1, 0, 0〉

〈1, 0, 0〉

〈0, 1, 0〉

〈2, 0, 0〉

〈1, 1, 0〉

〈0, 2, 0〉
〈1, 2, 0〉

〈2, 1, 0〉

〈2, 2, 0〉

Hb1
13

Ha1
12

Hc′1
23

Hc2
23

〈0, 0, 0〉

〈1, 0, 0〉

〈0, 1, 0〉

〈2, 0, 0〉

〈1, 1, 0〉

〈0, 2, 0〉
〈1, 2, 0〉

〈2, 1, 0〉

〈2, 2, 0〉

Figure 2.1: Two hyperplanes associated with the same directed multigraph with different Pak-
Stanley labelings. Both are surjective, but only the one on the right is injective.

2.0.1 A necessary condition

Every intersection in a hyperplane arrangement A is locally a central multigraphical

arrangement. We know from Theorem 3 that a central multigraphical arrangement A

corresponding to GA produces a duplicate Pak-Stanley labeling if and only if there exists

1 ≤ i < j < k ≤ n such that (i → j), (i → k) ∈ E but (k → j) < E and ( j → k) < E. On the

corresponding multigraphical arrangementA, we will call the point of intersection of Ha
ki

and Hb
kj a bad intersection.

A duplicate Pak-Stanley label can be eliminated if there exists a hyperplane Hc
jk or Hc′

kj

also intersecting Ha
i j and Hb

ik at the potential bad intersection. This occurs when c = b − a

if b > a and c′ = a − b if b < a.

The following theorem provides a necessary condition for a directed multigraph to

correspond to a hyperplane arrangement that admits an injective Pak-Stanley labeling.

Theorem 4. Suppose A is a multigraphical arrangement with a bijective Pak-Stanley labeling

and GA = (V,E) is the corresponding directed multigraph. Fix i, j, k ∈ V and assume mi j , 0 and

mik , 0. Then m jk + mkj ≥ mi j + mik − 1.

Proof. Let GA be a directed multigraph where mi j = s and mik = t. Then the arrangement
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A contains the following hyperplanes that induce potential bad intersections:

{xi−x j = a1}, {xi−x j = a2}, . . . , {xi−x j = as} and {xi−xk = b1}, {xi−xk = b2}, . . . , {xi−xk = bt}.

Assume without loss of generality that a1 < a2 < . . . as and b1 < b2 < · · · < bt.

i

m i j
=

s ,
0 m

ik =
t
,

0

j
m jk

k
mkj

origin

Has
i jHa3

i jHa2
i jHa1

i j

Hbt
ikHb3

ikHb2
ikHb1

ik

ps+t−1 H−cs+t−1
kj

ps+t−2 H−cs+t−2
kj

ps+t−3 H−cs+t−3
kj

ps H−cs
kj

p3 Hc3
jk

p2 Hc2
jk

p1 Hc1
jk

. . .

. . .

Figure 2.2: General directed multigraph and hyperplane arrangement for Theorem 4 with potential
bad intersections circled

Define p1, . . . , ps+t−1 to be the intersection points of Ha1
i j , . . . ,H

as
i j and Hbt

ik along with the

intersection points of Hb1
ik , . . . ,H

bt
ik and Has

i j .

To find the hyperplane that intersects Ha1
i j = {xi − x j = a1} and Hbt

ik = {xi − xk = bt}, we

substitute xi = x j + a1 into Hbt
ik and find that {x j− xk = bt− a1}, so Hc1=bt−a1

jk intersects with Ha1
i j

and Hbt
ik . This eliminate their potential bad intersection. We follow a similar process to fix

values for c1, . . . , cs+t−1 such that each potential bad intersection has a third hyperplane to

pass through it. Let c1 = bt−a1, c2 = bt−a2, . . . , c` = bt−a`, c`+1 = as−b`+1, . . . , cs+t−2 = as−b2,

and cs+t−1 = as − b1. Also let ` be such that c` > 0 > c`+1.

7



Therefore, we have the distinct hyperplanes Hc1
jk , . . . ,H

c`
jk and H−c`+1

kj , . . . ,H−cs+t−1
kj to elimi-

nate all of the potential bad intersections. So m jk ≥ ` and mkj ≥ s+t−1−`.Adding these to-

gether, we obtain m jk+mkj ≥ s+t−1. Finally, since s = mi j and t = mik,m jk+mkj ≥ mi j+mik−1.

�

2.0.2 Multigraphical arrangements that admit an injective Pak-Stanley

labeling if mi j = 0 or mik = 0

Let GA = (V,E) be a directed multigraph corresponding to a multigraphical arrangement

A. Fix i, j, k ∈ V. If either mi j = 0 or mik = 0 for all i, j, k ∈ {1, . . . ,n}, there are no bad inter-

sections, so the directed multigraph will always admit a hyperplane arrangement with an

injective Pak-Stanley labeling. Consider the multigraphical arrangement in Fig. 2.3. Note

that the directed multigraph consists only of a cycle.

1

2 3

Ha
21

Hb
13

Hc
32

〈0, 0, 0〉

〈1, 0, 0〉〈0, 1, 0〉

〈0, 0, 1〉

〈1, 1, 0〉

〈0, 1, 1〉 〈1, 0, 1〉

Figure 2.3: A multigraphical arrangement with i = 1, j = 2, and k = 3. There are no bad
intersections since m21 = m13 = m32 = 1 and m12 = m23 = m31 = 0.

Let GA = (V,E) be a directed multigraph corresponding to the the multigraphical

arrangement A pictured in Fig. 2.4. Although the directed multigraph does not form a

cycle, there are no bad intersections because m12 = m31 = 0 and m21 = m13 = 0.
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1

2 3

Ha2
12Ha1

12

Hb1
31 Hb2

31

〈0, 0, 0〉

〈0, 0, 1〉

〈1, 0, 0〉

〈1, 0, 1〉

〈0, 0, 2〉

〈2, 0, 0〉

〈1, 0, 2〉

〈2, 0, 1〉

〈2, 0, 2〉

Figure 2.4: A multigraphical arrangement with i = 1, j = 2, and k = 3. There are no bad
intersections since m12 = m31 = 0 and m21 = m13 = m23 = m32 = 0.

2.0.3 Example of multigraphical arrangement that admits an injective

Pak-Stanley labeling

Now we present an example of a building a hyperplane arrangement with an injective

Pak-Stanley labeling from a directed multigraph. Fix i = 1, j = 2, and k = 3. Let GA be a

directed multigraph with m23 = 2,m32 = 1,m12 = 1,m13 = 2,m21 = 1, and m31 = 0 (Fig. 2.5).

1

2 3

Figure 2.5: Directed multigraph from which we will construct a hyperplane arrangement that
admits an injective Pak-Stanley labeling

We start with the hyperplanes Ha1
12 = {x1−x2 = a1},Ha2

21 = {x2−x1 = a2},Hb1
13 = {x1−x3 = b1},

9



and Hb2
13 = {x1 − x3 = b2} and fix the values a1, a2, b1, and b2. We will clarify restrictions on

these values as needed.

Ha2
21Ha1

12

Hb1
13 Hb2

13

Figure 2.6: First four hyperplanes constructed from the directed multigraph in Fig. 2.5

Next we deal with bad intersections created by the intersection of the hyperplane Ha1
12

with the hyperplanes Hb1
13 and Hb2

13. To find where {x1 − x2 = a1} and {x1 − x3 = b1} are equal,

we add x1 − x2 = a1 and −(x1 − x3 = b1) to obtain x3 − x2 = a1 − b1. So we need to add

the hyperplane Hc1
32 = {x3 − x2 = c1 = a1 − b1} to the hyperplane arrangement. We know

that m32 = 1. Using a similar process, the hyperplane we need to add to eliminate the bad

intersection of Ha1
12 with Hb1

13 is Hc2
23 = {x2 − x3 = c2 = b2 − a1}.

Now we consider potential bad intersection induced by the hyperplanes Ha2
21 and Hc2

23.

Since m31 = 0, we need Hb2
13 = {x1 − x3 = c2 − a2}. Note that we already set c2 = b2 − a1

and now we found that c2 = a2 + b2. Therefore, the values a1, a2, b1, and b2 must satisfy

b1 = a1 + a2 + b2. We still have Hc3
23 left to place in the hyperplane arrangement. It must

intersect with Ha2
21 somewhere and can potentially cause a bad intersection. To avoid this,

we need to fix c3 = a2 + b1.

Finally, we demonstrate that there are no duplicate Pak-Stanley labels in Fig. 2.9.

10



Ha2
21Ha1

12

Hb1
13 Hb2

13

Hc1=a1−b1
32

Hc2=b2−a1
23

Figure 2.7: Hyperplanes Hc1
32 and Hc2

23 added to the hyperplane arrangement in Fig. 2.6

Ha2
21Ha1

12

Hb1
13 Hb2

13

Hc1=a1−b1
32

Hc2=b2−a1
23

Hc3=a2+b1
23

Figure 2.8: Final hyperplane Hc3
23 added to the arrangement in Fig. 2.7. There are no bad

intersections, so this arrangement admits an injective Pak-Stanley labeling.
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Ha2
21Ha1

12

Hb1
13 Hb2

13

Hc1=a1−b1
32

Hc2=b2−a1
23

Hc3=a2+b1
23

〈0, 0, 0〉

〈0, 0, 1〉

〈1, 0, 0〉
〈0, 1, 0〉

〈1, 1, 0〉

〈2, 0, 0〉

〈1, 0, 1〉

〈1, 0, 0〉

〈0, 2, 0〉

〈2, 0, 1〉

〈3, 0, 0〉

〈2, 1, 0〉 〈1, 2, 0〉

〈0, 3, 0〉

〈3, 0, 1〉

〈3, 1, 0〉

〈1, 3, 0〉〈2, 2, 0〉

〈2, 3, 0〉

〈3, 2, 0〉

Figure 2.9: Multigraphical arrangement that admits an injective Pak-Stanley labeling constructed
from the directed multigraph in Fig. 2.5
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Chapter 3

Examples of directed multigraphs that

only admit hyperplane arrangements

with a non-injective Pak-Stanley labeling

This chapter contains examples of directed multigraphs that satisfy the conditions of

Theorem 4 but still do not admit a hyperplane arrangement with a bijective Pak-Stanley

labeling for the special case n = 3.

3.0.1 Directed Multigraphs with m32 = m31 = 0

The following lemma generalizes when multigraphical arrangements with only four dif-

ferent types of hyperplanes satisfies the necessary condition for an injective Pak-Stanley

labeling described in Theorem 4.

Lemma 2. LetA be a multigraphical arrangement such that m32 = m31 = 0 and all other mi j be

non-zero. ThenA satisfies the conditions of Theorem 4, i. e., m23 + m32 ≥ m12 + m13 − 1,

m13 + m31 ≥ m21 + m23 − 1, and m12 + m21 ≥ m31 + m32 − 1, whenever m12 = m21 = 1 and

m13 = m23.

13



Proof. Consider the multigraphical arrangmentA such that m32 = m31 = 0 and all other mi j

are non-zero. From Theorem 4, we know that m23 ≥ m12 + m13 − 1 and m13 ≥ m21 + m23 − 1.

Adding these together, we obtain that 2 ≥ m12 + m21. Since both m12 and m21 are non-

zero, m12 = m21 = 1. Finally, m23 ≥ m13 and m13 ≥ m23, so m13 = m23. Therefore, any

multigraphical arrangement with m32 = m31 = 0,m12 = m21 = 1, and m13 = m23. �

The following examples demonstrate that the necessary condition is not sufficient for

determining when a multigraphical arrangement such that m32 = m31 = 0 admits an

injective Pak-Stanley labeling.

Example 1. Let GA be the directed multigraph with m12 = m21 = m13 = m23 = 1. The

corresponding hyperplanes are Ha1
12,H

a2
21,H

b
13, and Hc

23 (Fig. 3.1).

1

2 3

Hb1
13

Ha2
12Ha1

21

Hc1
23

〈0, 0, 0〉

〈0, 1, 0〉

〈0, 1, 0〉

〈1, 0, 0〉

〈0, 2, 0〉 〈1, 1, 0〉

〈2, 0, 0〉

〈2, 1, 0〉

〈1, 2, 0〉

Hb1
13

Ha2
12Ha1

21

Hc′1
23

〈0, 0, 0〉

〈0, 1, 0〉 〈1, 0, 0〉

〈1, 0, 0〉

〈2, 0, 0〉

〈1, 1, 0〉
〈0, 2, 0〉

〈1, 2, 0〉

〈0, 1, 0〉

Figure 3.1: Multigraphical arrangement with duplicate labels 〈0, 1, 0〉 and 〈1, 0, 0〉

Potential bad intersections occur where Ha1
12 = {x1 − x2 = a1} and Hb

13 = {x1 − x3 = b}

intersect and also where Ha2
21 = {x2 − x1 = a2} and Hc

23 = {x2 − x3 = c} intersect. Assume that

this multigraphical arrangement admits an injective Pak-Stanley labeling. To eliminate

the potential bad intersection of Ha1
12 with Hb

13 we need Hc
23 = {x2 − x3 = c = b − a1} because

m32 = 0. For the intersection of Ha2
21 with Hc

23 we need Hb
13 = {x1 − x3 = b = a2 − c}. But then
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since c = b − a1 and c = b + a2, b = b − a1 − a2, a contradiction because m13 = 1 and both a1

and a2 are non-zero.

Example 2. Let GA be the directed multigraph with m12 = m21 = 1 and m13 = m23 = 2. The

corresponding hyperplanes are Ha1
12,H

a2
21,H

b1
13,H

b2
13,H

c1
23, and Hc2

23.

1

2 3

Ha2
21Ha1

12

Hb1
13Hb2

13

Hc2
23

Hc1
23

〈0, 0, 0〉

〈1, 0, 0〉

〈0, 1, 0〉

〈0, 1, 0〉
〈2, 0, 0〉

〈1, 1, 0〉

〈2, 1, 0〉

〈1, 2, 0〉

〈0, 2, 0〉

〈0, 3, 0〉

〈3, 0, 0〉

〈3, 1, 0〉

〈1, 3, 0〉〈2, 2, 0〉

〈3, 2, 0〉

〈2, 3, 0〉

Ha2
21Ha1

12

Hb1
13Hb2

13

Hc1
23

Hc2
23

〈0, 0, 0〉

〈1, 0, 0〉

〈1, 0, 0〉 〈0, 1, 0〉

〈2, 0, 0〉

〈1, 1, 0〉

〈3, 0, 0〉

〈1, 2, 0〉〈2, 1, 0〉

〈0, 3, 0〉

〈3, 1, 0〉 〈0, 2, 0〉

〈2, 2, 0〉 〈1, 3, 0〉〈3, 2, 0〉

〈2, 3, 0〉

Figure 3.2: Multigraphical arrangement with duplicate labels

Potential bad intersections occur where the following pairs of hyperplanes intersect:

Ha1
12 = {x1 − x2 = a1} and Hb1

13 = {x1 − x3 = b1}, Ha1
12 = {x1 − x2 = a1} and Hb2

13 = {x1 − x3 = b2},

Ha2
21 = {x2−x1 = a2} and Hc1

23 = {x2−x3 = c1}, Ha2
21 = {x2−x1 = a2} and Hc2

23 = {x2−x3 = c2}. For

an injective Pak-Stanley labeling, we need, respectively, c1 = b1−a1, c2 = b2−a1, b1 = c1−a1,

and b2 = c2 − a2. Since b2 = c2 + a1 and b2 = c2 − a2, c2 = c2 − a1 − a2, a contradiction since

a1 > 0 and a2 > 0.

The following theorem generalizes the previous two examples.

Theorem 5. LetA be a multigraphical arrangement such that m31 = m32 = 0. If m12 = m21 = 1

and m13 = m23, even though m23 ≥ m12 + m13 − 1 and m13 ≥ m21 + m23 − 1,A does not admit an

injective Pak-Stanley labeling.
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Proof. Consider the general hyperplane arrangement represented in Fig. 3.3. Note that

b1 > b2 > · · · > bt, and c1 > c2 > · · · > ct. Assume that the Pak-Stanley labeling is injective.

Then every potential bad intersection has three hyperplanes that intersect it.

1

2 3
m23 = m13

m
13 =

m
23m 12

=
1

m 21
=

1

Ha1
12Ha2

21

Hb1
13Hb2

13Hb3
13Hbt

13

Hc1
23

Hc2
23

Hc3
23

Hct
23

...

. . .

p2

p1

Figure 3.3: General directed multigraph and hyperplane arrangement that satisfy the conditions
of Theorem 5

Consider the potential bad intersection p1 of Ha2
21 = {x2−x1 = a2}with Hck

23 = {x2−x3 = ct}.

Then there has to be a hyperplane Hb j

13 = {x1 = x3 = b j = ct − a2} passing through that

intersection as well. Let p2 be the potential bad intersection of Ha1
12 = {x1 − x2 = a1} with

Hb j

13 = {x1−x3 = b j = ct− a2}. Then there has to be a hyperplane Hck
23 = {x2−x3 = ck = b j− a1}

also at that intersection. So we have ck = ct − a1 − a2. But this is a contradiction because ct

is the smallest ci for 1 ≤ i ≤ t, so it cannot be that ck < ct. �
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Ha1
12 Ha2

21 Ha3
21

Hb1
13 Hb2

31

Hc
23

〈0, 0, 0〉

〈1, 0, 0〉 〈0, 0, 1〉

〈1, 0, 0〉 〈0, 1, 0〉

〈1, 0, 1〉

〈2, 0, 0〉 〈0, 1, 1〉

〈1, 1, 0〉
〈0, 2, 0〉

〈2, 1, 0〉

〈1, 2, 0〉

〈0, 2, 1〉

〈0, 3, 0〉
〈0, 3, 1〉

〈1, 3, 0〉

Ha1
12 Ha2

21 Ha3
21

Hb1
13 Hb2

31

Hc
23

〈0, 0, 0〉

〈1, 0, 0〉 〈0, 0, 1〉

〈0, 1, 0〉

〈1, 0, 1〉

〈2, 0, 0〉 〈0, 1, 1〉

〈1, 1, 0〉 〈0, 2, 0〉

〈2, 1, 0〉

〈1, 2, 0〉

〈0, 2, 1〉

〈0, 2, 1〉

〈0, 3, 0〉

〈0, 3, 1〉

〈1, 3, 0〉

1

2 3

Figure 3.4: Multigraphical arrangement with 5 types of hyperplanes that admits only a non-
injective Pak-Stanley labeling despite meeting the conditions of Theorem 4

3.0.2 Directed multigraphs with m32 = 0

Example 3. Let GA be the directed mulitigraph with m12 = 1,m21 = 2,m13 = 1,m31 = 1,

and m23 = 1 (Fig. 3.4). The corresponding hyperplanes are Ha1
12,H

a2
21,H

b1
13,H

b2
31, and Hc

23. To

confirm that the conditions of Theorem 4 are satisfied,

m23 ≥ m12 + m13 − 1

1 ≥ 1 + 1 − 1

1 ≥ 1

m13 + m31 ≥ m21 + m23 − 1

1 + 1 ≥ 2 + 1 − 1

2 ≥ 2
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Assume that this multigraphical arrangement admits an injective Pak-Stanley labeling.

Then each potential bad intersection has three hyperplanes going through it. First we con-

sider the potential bad intersections induced by Ha2
21 and Ha3

21 with Hc
23. To avoid duplicate

Pak-Stanley labels, we will need the hyperplanes Hb1
13 and Hb2

13. We have a2 + b1 − c = 0 and

−a3 +b2 +c = 0, so we fix the values b1 = c−a2 and b2 = −c+a3.Next we look at the potential

bad intersection caused by Ha2
12 and Hb1

13, which occurs at a1 − b1 + c = 0. We need Hc
23 to

pass through the intersection of Ha2
12 and Hb1

13, so c = b1 − a1. Thus, c = c − a1 − a2. But this

is a contradiction because a1 > 0 and a2 > 0. Therefore, this multigraphical arrangement

does not admit an injective Pak-Stanley labeling.

3.0.3 Directed multigraphs with all mi j non-zero

Example 4. Consider the multigraphical arrangement A with m12 = m21 = 2 and m13 =

m31 = m23 = m32 = 1 (Fig. 3.5). We confirm thatA satisfies the conditions of Theorem 4:

m23 + m32 ≥ m12 + m13 − 1

1 + 1 ≥ 2 + 1 − 1

2 ≥ 2

m13 + m31 ≥ m21 + m23 − 1

1 + 1 ≥ 2 + 1 − 1

2 ≥ 2

m12 + m21 ≥ m31 + m32 − 1

2 + 2 ≥ 1 + 1 − 1

4 ≥ 1

Assume that A admits an injective Pak-Stanley labeling. Potential bad intersections

and the hyperplanes needed to avoid them are organized in Table 3.2.

Without loss of generality, fix a1 > a2. Consider the potential bad intersection of Ha1
12

and Hb1
13 along with that of Ha2

12 and Hb1
13. Note that have one hyerplane each of Hc1

32 and Hc2
23.

Since a1 > a2, b1 − a2 > b1 − a1. To eliminate the potential bad intersections of Hai
12 with Hb1

13

for i = 1, 2, it must be that b1 − a2 > 0 > b1 − a1. Thus we set c1 = b1 − a2 and c2 = b1 − a1.

Note that c1 and c2 are both positive.

Next we consider the potential bad intersection of Ha3
21 and Hc2

23 along with that of Ha4
21

18



Potential bad intersection Possible resolving hyperplane
Ha1

12 and Hb1
13 Hck

23 or Hck
32 k ∈ {1, 2}

Ha2
12 and Hb1

13 Hck
23 or Hck

32 k ∈ {1, 2}
Ha3

21 and Hc2
23 Hb j

13 or Hb j

31 j ∈ {1, 2}
Ha4

21 and Hb1
23 Hb j

13 or Hb j

31 j ∈ {1, 2}
Hb2

31 and Hc1
32 Hai

12 or Hai
21 i ∈ {1, 2}

Table 3.1: Potential bad intersections and hyperplanes that can be used to eliminate duplicate
labels

and Hc2
23. We have one hyperplane on each side of the origin that can be used to eliminate

either of these potential bad intersections: Hb1
13 and Hb2

31.Without loss of generality, assume

that a3 < a4. Then c2 − a3 > c2 − a4 and because we have one hyperplane on each side of

the origin, it must be that c2 − a3 > 0 > c2 − a4. Therefore, we must set b1 = c2 − a3 and

b2 = c2 − a4, where b1 and b2 are both positive.

From the values we fixed to elminate the potential bad intersections of Hai
12 with Hb1

13,

we know that b1 = c2 + a1. Commbining this with the values we found to eliminate the

potential bad intersections of Hai
21 with Hc2

23 we have c2 +a1 = c2−a3. Thus 0 = −a1−a3,which

is a contradiction because a1 > 0 and a3 > 0. Therefore, this multigraphical arrangement

does not admit an injective Pak-Stanley labeling.

Example 5. Consider the multigraphical arrangementA (Fig. 3.6) with m12 = m21 = 3 and

m13 = m31 = m23 = m32 = 2. We begin by confirming that A satisfies the conditions of

Theorem 4:

m23 + m32 ≥ m12 + m13 − 1

2 + 2 ≥ 3 + 2 − 1

4 ≥ 4

m13 + m31 ≥ m21 + m23 − 1

2 + 2 ≥ 3 + 2 − 1

4 ≥ 4

m12 + m21 ≥ m31 + m32 − 1

3 + 3 ≥ 2 + 2 − 1

6 ≥ 3

Without loss of generality, fix a1 > a2 > · · · > a6 and b1 > b2 > · · · > b4. Consider the

following potential bad intersections: Ha1
12 andHb2

13, Ha1
12 and Hb1

13, Ha2
12 and Hb1

13, Ha3
12 and Hb1

13.
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Potential bad intersection Possible resolving hyperplanes
Ha1

12 and Hb1
13 Hck

23 or Hck
32 k ∈ {1, 2, 3, 4}

Ha1
12 and Hb2

13 Hck
23 or Hck

32 k ∈ {1, 2, 3, 4}
Ha2

12 and Hb1
13 Hck

23 or Hck
32 k ∈ {1, 2, 3, 4}

Ha2
12 and Hb2

13 Hck
23 or Hck

32 k ∈ {1, 2, 3, 4}
Ha3

12 and Hb1
13 Hck

23 or Hck
32 k ∈ {1, 2, 3, 4}

Ha3
12 and Hb2

13 Hck
23 or Hck

32 k ∈ {1, 2, 3, 4}
Ha4

21 and Hc3
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha4

21 and Hc4
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha5

21 and Hc3
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha5

21 and Hc4
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha6

21 and Hc3
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha6

21 and Hc4
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Ha4

21 and Hb1
23 Hb j

13 or Hb j

31 j ∈ {1, 2, 3, 4}
Hb3

31 and Hc1
32 Hai

12 or Hai
21 i ∈ {1, 2, 3, 4, 5, 6}

Hb3
31 and Hc2

32 Hai
12 or Hai

21 i ∈ {1, 2, 3, 4, 5, 6}
Hb4

31 and Hc1
32 Hai

12 or Hai
21 i ∈ {1, 2, 3, 4, 5, 6}

Hb4
31 and Hc2

32 Hai
12 or Hai

21 i ∈ {1, 2, 3, 4, 5, 6}

Table 3.2: Potential bad intersections and hyperplanes that can be used to eliminate duplicate
labels

To eliminate these potential bad intersections, we will need Hck=b j−ai

23 or Hck=ai−b j

32 , where

i ∈ {1, 2, 3}, j ∈ {1, 2}, and k ∈ {1, 2, 3, 4}.

We know that a1 − b2 < a1 − b1 and b1 − a1 < b1 − a2 < b1 − a3. But we cannot have both

a1 − b1 and b1 − a1 because if a1 = b1, then ck = 0 for some k ∈ {1, 2, 3, 4}, which contradicts

that ck > 0. Therefore we must choose whether to position ck = a1 − b1 above or below the

origin.

Suppose ck = a1 − b1 is below the origin. Then we have

a1 − b1 < a2 − b1 < a3 − b1 < 0 < a1 − b2,

which means we have three hyperplanes below the origin and only one above it. But this

contradicts the fact that m23 = m32 = 2. Therefore, ck = b1 − a1 must be above the origin.
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Potential bad intersection Resolving hyperplane
Ha1

12 and Hb2
13 Hc1

32 = {x3 − x2 = c1 = a1 − b2}

Ha1
12 and Hb1

13 Hc2
32 = {x3 − x2 = c2 = a1 − b1}

Ha2
12 and Hb1

13 Hc3
23 = {x2 − x3 = c3 = b1 − a2}

Ha3
12 and Hb1

13 Hc4
23 = {x2 − x3 = c4 = b1 − a3}

Table 3.3: Correspondence of potential bad intersections with resolving hyperplanes

Potential bad intersection Resolving hyperplane
Ha6

21 and Hc3
23 Hb4

31 = {x3 − x1 = b4 = a6 − c3}

Ha6
21 and Hc4

23 Hb3
31 = {x3 − x1 = b3 = a6 − c4}

Ha5
21 and Hc2

23 Hb2
13 = {x1 − x3 = b2 = c4 − a5}

Ha4
21 and Hc1

23 Hb1
13 = {x1 − x3 = b1 = c4 − a4}

Table 3.4: Correspondence of potential bad intersections with resolving hyperplanes

Then a1 − b1 < a2 − b1 < 0 < a1 − b2 < a1 − b1, so we assign the values c1, c2, c3, and c4

according to Table 3.3.

Now we consider the following potential bad intersections: Ha6
21 and Hc3

23, Ha6
21 and Hc4

23,

Ha5
21 and Hc4

23, Ha4
21 and Hc4

23. To eliminate these potential bad intersections, we will need

Hbj=ck−ai
13 or Hb j=ai−ck

31 , where i ∈ {1, 2, 3}, j ∈ {1, 2}, and k ∈ {1, 2, 3, 4}.

From the values we fixed above, we know c4 > c3 > 0, so 0 < c3 − a6 < c3 − a5 < c3 − a4

and 0 < a6 − c3 < a6 − c4. But we can’t have both 0 < c3 − a6 and 0 < a6 − c3. If 0 < a6 − c3,

then c4 − a6 < 0 < c3 − a6 < c3 − a5 < c3 − a4. Again, this leaves us with one hyperplane on

one side of the origin and three on the other, contradicting the fact that m13 = m31 = 2.

So we must choose 0 < c3 − a6 and c4 − a6 < c3 − a6 < 0 < c4 − a5 < c4 − a4. Thus we

assign the values b1, b2, b3, and b4 according to Table 3.4.

From Table 3.3, we know that b1 = c4 − a4 and from Table 3.4 we know that b1 = a3 + c4.

Then c4 − a4 = c4 + a3, so implies 0 = a3 + a4, which contradicts the assumption that a3 > 0

and a4 > 0. Therefore, this multigraphical arrangement A does not admit an injective

Pak-Stanley label.

21



The following theorem generalizes the previous two examples.

Theorem 6. Let A be a multigraphical arrangement such that m13 = m23 = m32 = m31 = t and

m12 = m21 = t + 1. Even though m23 + m32 ≥ m12 + m13 − 1,m13 + m31 ≥ m21 + m23 − 1, and

m12 + m21 ≥ m31 + m32 − 1 (Theorem 4),A does not admit an injective Pak-Stanley labeling.

Proof. First, we confirm that m23 + m32 ≥ m12 + m13 − 1,m13 + m31 ≥ m21 + m23 − 1, and

m12 + m21 ≥ m31 + m32 − 1 :

m23 + m32 ≥ m12 + m13 − 1

t + t ≥ (t + 1) + t − 1

2t ≥ 2t

m13 + m31 ≥ m21 + m23 − 1

t + t ≥ (t + 1) + t − 1

2t ≥ 2t

m12 + m21 ≥ m31 + m32 − 1

(t + 1) + (t + 1) ≥ t + t − 1

2t + 2 ≥ 2t − 1

2t ≥ 2t − 3

Consider the multigraphical arrangement A in Fig. 3.7. We begin by looking at the

potential bad intersections of Ha1
12 with Hb j

13 where 1 ≤ j ≤ t along with the potential bad

intersections of Hb1
13 with Hai

12 where 1 ≤ i ≤ t + 1. These are indicated by p1, p2, . . . , p2t in

Fig. 3.7.

To eliminate the potential bad intersection of Hai
12 = {x2−x1 = ai}with Hb j

13 = {x1−x3 = b j},

we will need either Hck
23 or Hck

32, where ck ∈ {c1, . . . , c2t}. Assume without loss of generality

that a1 > a2 > · · · > at+1. Then b1 − at+1 > b1 − at > · · · > b1 − a1. Similarly, assume without

loss of generality that b1 > b2 > · · · > bt. Then a1 − bt > a1 − bt−1 > · · · > a1 − b1. But we

cannot have both b1 − a1 and a1 − b1 because if a1 = b1, then ck = 0 or c′k = 0 for some k such

that 1 ≤ k ≤ t. Therefore we must choose whether we have ck = a1 − b1 above the origin or

c′k = b1 − a1 below the origin.

Let c′k = b1−a1. Then a1−b1 < a2−b1 < · · · < at+1−b1 < 0 < a1−b2 < a1−b3 < · · · < a1−bt.

So there are t + 1 hyperplanes below the origin and t − 1 hyperplanes above the origin.

While this still adds up to the 2t hyperplanes we need to eliminate the potential bad
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Potential bad intersection Resolving hyperplane
p1 Hc1

32 = {x3 − x2 = c1 = a1 − bt}

p2 Hc2
32 = {x3 − x2 = c2 = a1 − bt−1}

...
...

pt Hct
32 = {x3 − x2 = ct = a1 − b1}

pt+1 Hc′1
23 = {x2 − x3 = c′1 = b1 − a2}

pt+2 Hc′2
23 = {x2 − x3 = c′2 = b1 − a3}

...
...

p2t Hc′t
23 = {x2 − x3 = c′t = b1 − at+1}

Table 3.5: Correspondence of potential bad intersections with resolving hyperplanes

intersections p1, . . . , p2t, this contradicts the condition that m23 = m32 = t. Thus we must fix

a1 − b1 above the origin.

This means that we have the following string of inequalities:

a1 − bt > a1 − bt−1 > · · · > a1 − b1 > 0 > a2 − b1 > a3 − b1 > · · · > at+1 − b1.

Now we have t hyperplanes on each side of the origin. We assign the values ck and c′k,

where k ∈ {1, . . . , t}, according to Table 3.5.

Now we consider the potential bad intersections of H
a′i
21 and Hc′1

23 along with those of

Ha′t+1
21 and H

c′k
23, indicated by q1, . . . , q2t in Fig. 3.7. Assume without loss of generality that

a′1 < a′2 < · · · < a′t+1. Then c′t − a′1 > c′t − a′2 > · · · > c′t − a′t+1. Similarly, assume without loss

of generality that c′1 < c′2 < . . . c
′

t. Then a′t+1 − c′t > a′t+1 − c′2 > · · · > a′t+1 − c′t. But we cannot

have both c′t − a′t+1 and a′t+1 − c′t because this implies that b j = 0 or b′j = 0, for some j such

that 1 ≤ j ≤ t. So we must decide whether c′t − a′t+1 > 0 or a′t+1 − c′t > 0.

Suppose c′t − a′t+1 > 0. Then

c′t − a′1 > c′t − a′2 > · · · > c′t − a′t+1 > 0 > c′t−1 − a′t+1 > c′t−2 − a′t+1 > . . . c
′

1 − a′t+1.

Counting the hyperplanes on each side of the origin, there are t + 1 hyperplanes Hb j

13 such

that b j > 0 and t− 1 hyperplanes H
b′j
31 such that b′j > 0.While this is enough hyperplanes to

elminate the 2t potential bad intersections we have at q1, . . . , q2t, it contradicts the condition
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Potential bad intersection Resolving hyperplane
q1 Hb′t

31 = {x3 − x1 = b′t = a′t+1 − c′1}
q2 Hb′t−1

32 = {x3 − x1 = b′t−1 = a′t+1 − c′2}
...

...

qt Hb′1
32 = {x3 − x1 = b′1 = a′t+1 − c′t}

qt+1 Hbt
13 = {x1 − x3 = bt = c′t − a′t}

qt+2 Hbt−1
13 = {x1 − x3 = bt−1 = c′t − a′t−1}

...
...

q2t Hbt
23 = {x1 − x3 = b1 = c′t − a′1}

Table 3.6: Correspondence of potential bad intersections with resolving hyperplanes

that m13 = m31 = t. Therefore we must fix a′t+1 − c′t > 0.

Now we have the following string of inequalities:

c′t − a′1 > c′t > · · · > c′t − a′t > 0 > c′t − a′t+1 > · · · > c′2 − a′t+1 > c′1 − a′t+1.

We assign the values b j and b′j where 1 ≤ j ≤ t according to Table 3.6.

Consider b1 = c′t − a′1, the value fixed to eliminate the bad intersection q2t along with

c′t = b1 − at+1, the value fixed to eliminate the bad intersection p2t. Since b1 = c′t − a′1 and

b1 = c′t +at+1,we know c′t−a′1 = c′t +at+1,which implies 0 = a′1+at+1.But this is a contradiction

because a′1 > 0 and at+1 > 0. Therefore, the multigraphical arrangement does not admit an

injective Pak-Stanley labeling.

�
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1

2 3

Ha4
21Ha3

21Ha2
12Ha1

12

Hb1
13 Hb2

31

Hc1
32

Hc2
23

〈0, 0, 0〉

〈0, 0, 1〉〈1, 0, 0〉

〈0, 1, 0〉

〈1, 0, 1〉

〈0, 0, 2〉

〈2, 0, 0〉
〈0, 1, 1〉

〈1, 1, 0〉 〈0, 2, 0〉

〈1, 0, 2〉〈2, 0, 1〉 〈0, 1, 2〉

〈0, 2, 1〉

〈0, 2, 1〉
〈2, 1, 0〉

〈0, 3, 0〉〈1, 2, 0〉

〈3, 0, 0〉

〈0, 3, 1〉

〈1, 3, 0〉

〈0, 2, 2〉

〈2, 0, 2〉

〈3, 0, 1〉

〈3, 1, 0〉

Ha4
21Ha3

21Ha2
12Ha1

12

Hb1
13 Hb2

31

Hc2
23

Hc1
32〈0, 0, 0〉

〈0, 0, 1〉

〈0, 1, 0〉〈1, 0, 0〉

〈1, 0, 1〉 〈0, 0, 2〉

〈0, 1, 1〉

〈2, 0, 1〉

〈0, 2, 0〉
〈1, 1, 0〉

〈2, 0, 1〉

〈2, 0, 0〉

〈0, 3, 0〉〈1, 2, 0〉

〈1, 0, 2〉

〈0, 1, 2〉

〈0, 2, 1〉〈3, 0, 0〉

〈1, 2, 0〉

〈3, 0, 1〉

〈1, 3, 0〉

〈2, 0, 2〉

〈0, 2, 2〉

〈0, 3, 1〉〈1, 3, 0〉

Figure 3.5: Multigraphical arrangement with m12 = m21 = 2 and m13 = m31 = m23 = m32 = 1
that admits only a non-injective Pak-Stanley labeling despite meeting the conditions of Theorem 4
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Hc2
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Hc3
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Hc4
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〈0, 0, 0〉

〈0, 0, 1〉〈1, 0, 0〉

〈0, 1, 0〉

〈1, 0, 1〉

〈2, 0, 0〉 〈0, 1, 1〉

〈1, 1, 0〉 〈0, 2, 0〉

〈0, 0, 2〉

〈1, 0, 2〉

〈2, 1, 0〉

〈0, 1, 2〉

〈0, 2, 1〉

〈1, 2, 0〉 〈0, 3, 0〉

〈3, 0, 0〉

〈2, 0, 1〉 〈0, 0, 3〉

〈0, 3, 2〉

〈2, 0, 2〉

〈4, 0, 0〉

〈3, 0, 1〉

〈1, 3, 0〉 〈0, 4, 0〉

〈0, 3, 1〉

〈0, 1, 3〉

〈0, 0, 4〉
〈1, 0, 3〉

〈0, 2, 2〉

〈4, 1, 0〉

〈0, 4, 1〉

〈1, 0, 4〉〈2, 0, 3〉〈3, 0, 2〉

〈4, 0, 1〉

〈0, 3, 2〉

〈5, 0, 0〉

〈3, 2, 0〉

〈2, 3, 0〉 〈1, 4, 0〉

〈0, 2, 3〉

〈2, 2, 0〉

〈0, 1, 4〉

〈1, 5, 0〉〈2, 4, 0〉

〈0, 5, 0〉

〈3, 1, 0〉
〈5, 1, 0〉

〈5, 0, 1〉

〈4, 0, 2〉

〈0, 5, 1〉

〈0, 4, 2〉

〈0, 3, 3〉

〈0, 2, 4〉

〈4, 2, 0〉

〈2, 0, 4〉〈3, 0, 3〉

〈2, 5, 0〉

〈0, 3, 4〉

〈0, 5, 2〉
〈5, 2, 0〉

〈3, 0, 4〉

Figure 3.6: Multigraphical arrangement with m12 = m21 = 3 and m13 = m31 = m23 = m32 = 2
that does not admit an injective Pak-Stanley labeling despite meeting the conditions of Theorem 4
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q2
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Figure 3.7: Generalized multigraph arrangement for Theorem 6 such that m12 = m21 = t + 1 and
m13 = m31 = m23 = m32 = t
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