
JOB EXECUTION
IN A DISTRIBUTED ENVIRONMENT

USING PETRI NETS

by

LING-LING HSU

B.S., Fu-Jen University, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

fit

Major Professor

Acknowledgements

c 2.

AllEQfl EDlbBS

I wish to thank my major professor, Dr. Rich A. McBride, for his guidance and

encouragement during the process of this report. I would also like to thank my husband

for reviewing this report.

Table of Contents

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Scope of the Report 2

1.3 Report Organization 4

CHAPTER 2 REVIEW OF THE LITERATURE 5

2.1 Computer Network and Distributed System 5

2.1.1 Distributed System Prototype 6

2.2 Definition of Petri Net [PETE77] 7

2.2.1 Elements of a Petri Net 7

2.2.2 Marking of a Petri Net 9

2.2.3 Firing Rules of a Petri Net 10

2.2.4 Time Limitation of a Petri Net 13

2.2.5 Numerical Petri Nets 13

2.2.6 Data Flow 16

2.3 Survey of Related Work 18

2.3.1 Formal Verification of Parallel Programs [KELL76] 18

2.3.2 Modeling Jobs in a Distributed System [McBR83] 19

2.3.3 The Representation and Distribution of Knowledge by a Petri Net

[McBR87] 21

2.3.3.1 Control Petri Net 21

2.3.3.2 Intelligent Token 22

2.3.3.3 Control Net Agent 22

2.4 Summary 23

CHAPTER 3 DESIGN SPECIFICATION 25

3.1 Design Objectives 25

3.2 Design Specification 27

3.3 The Control Net 27

3.3.1 The External Control Net 28

3.3.1.1 Use of the External Control Net 28

3.3.1.2 Sample External CNs 29

3.3.2 The Internal Control Net 37

3.4 The Intelligent Token 39

3.4.1 Types of Files 39

3.4.2 Components of Intelligent token 40

3.5 The Control Net Agent 46

3.5.1 Major Actions of a CN Agent 47

3.5.1.1 Checking the Time Table 48

3.5.1.2 Receiving Incoming Tokens 48

3.5.1.3 Generating ACKs 49

3.5.2 Pseudo Code of a CN Agent 50

3.6 Error Recovery 52

3.7 Summary 56

CHAPTER 4 CONCLUSION 58

4.1 Value of this work 58

4.2 Extensions of this Work 58

4.3 Concluding Remarks 59

Bibliography 60

Appendix A Flowchart 61

Appendix B Source Code Listing 63

List of Figures

FIGURE 2.1 A Simple Petri Net 8

FIGURE 2.2 A Marked Petri Net 9

FIGURE 2.3 A Petri Net After Firing Transition Tl 11

FIGURE 2.4 A Petri Net After Firing Transitions T2 and T3 12

FIGURE 2.5 A Petri Net After Firing Transition T4 12

FIGURE 2.6 Example of NPN 15

FIGURE 3.1 A Sequence of Marked CNs for Example 1 31

FIGURE 3.2 A CN With Predicates 34

FIGURE 3.3 A Sample CN for Example 2 36

FIGURE 3.4 Example of the Token Ids 42

FIGURE 3.5 An Example of a Token 45

FIGURE 3.6 Example of Sending a 'NOTICE' ACK 53

FIGURE 3.7 Example of Sending a 'DONE' ACK 54

FIGURE 3.8 Example of Sending a 'DEAD' ACK 55

CHAPTER 1

INTRODUCTION

1.1 Overview

In the broadest sense, all resource-sharing systems in which two or more

processors are involved can be described as distributed systems. A distributed system is

characterized by having processors and storage facilities which are physically separated

from each other. Also, data communication facilities are used to interconnect computers that

are dispersed and play a more significant role than in a centralized or nondistributed

system.

A distributed system performs the following three major activities [ENCY83]:

1) executes instruction sequences representing functions,

2) stores data at different locations,

3) allows control to be distributed among many sites.

A system which supports all these activities is said to exhibit a high degree of

distribution. Functions, which can be treated as operators or modules, may exist at

different sites. Data information can either be stored at only one site or at many different

sites. Finally, distributed system control means that decisions can be made independently

by one of the sites.

Petri nets [PETR76] provide a tool for modeling systems and the use of Petri nets

for this purpose offers users several potential advantages. The overall system being

modeled is often easier to understand due to the graphical and precise nature of the

-2-

representation scheme for Petri nets. Furthermore, the behavior of a system that is

modeled can be analyzed using Petri net theory.

This report describes a version of the Petri net model which incorporates extensions

for specifying and controlling the execution of tasks in a distributed environment. This

extended Petri net can be used to provide a job's specification, which will be referred to as

a Control net (CN). Moreover, transitions in a CN represent actions for a job to perform.

Predicates are used in conjunction with transitions in the Petri net in order to control when

these transitions may be performed.

A message which carries a CN is referred to as an intelligent token. This type of

message is designed to carry control and data information which are needed to perform a

task. A process called a Control net agent exists at every site in a distributed environment

and is responsible for receiving intelligent tokens, interpreting their CNs, processing

transitions of CNs, updating information in tokens, and forwarding them to another agent.

1.2 Scope of the Report

A version of a job that will contain local data, control information, constraints

along with a record of the job's history can be created which will permit the distributed

execution of the job to automatically be carried out. A CN and its marking supply the

control information as well as constraints on how the job's data may be manipulated. The

major purpose of this report is to describe the concept of a CN and also the implementation

of a prototype system which shows that execution of jobs can be controlled through the use

ofaCN.

Several types of constraints, including the timing restrictions which must be

observed by a job, are implemented as predicates in this prototype system. A job that is

sent to a CN agent for service should be processed in a reasonable amount of time.

Whenever this time limit is execeeded, a CN agent may try to route this job to some other

alternative procedure.

For an office system to be computerized, jobs have to be electronically represented

in addition to automating the routing ofjobs. The electonic versions ofjobs are designed as

intelligent tokens, which have control information, to enable them to be delivered

automatically to the next site on the routing list in accordance with its Control net. All the

operations and data which are needed for a job will be stored either in the CN or inside

other structures in the intelligent token. As a potential application, this system can be

applied to office information systems, which are inherently distributed systems, to help

automate the distributed processing ofjobs.

A prototype system which contains CN agents which manage the routing and

synchronization of jobs has been implemented on the 3B computer network in the

Computing and Information Science Department at Kansas State University. The 3B

Computer Network interconnects certain UNIX ' system-based host computers and other

network compatible peripheral devices to form a local computer network which use the

TCP/IP protocol. The TCP/IP computer network protocol serves as the basis for our CN

agents' intercommunication. The synchronization information for a job identifies the

sequences of procedures that are allowed to operate on a job. Routing and synchronization

requirements for a job are specified via a CN.

1 . Trademark of Bell Laboratories

-4-

The original concept of our proposed model comes from papers by Dr. McBride

[McBR83], [McBR87]. An electronic version of a job as well as an implementation of a

generic CN agent has been developed in our system. A job's designer who uses this tool

only has to concentrate on designing the specification of the job at a high level of

abstraction. The CN agent does the actual routing and synchronization ofjobs in the system

automatically.

1.3 Report Organization

This report is organized into four chapters. Chapter 1 gives an overview and

justification of this report. A survey of related articles from the literature is presented in

chapter 2. Details of the functional specification for our proposed system are presented in

chapter 3. In chapter 4, we discuss the value of this work and make suggestions for

possible extensions. Finally, two appendices at the end of this report provide supporting

documentation in the form of a flow chart and the source code for the system which was

constructed.

CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Computer Network and Distributed System

A computer network interconnects separate computers. The purpose of a computer

network is to allow users at one machine to utilize resources on other machines. A user

may log onto a machine at some (possibly distant) site and transfer files from one machine

to another. Furhermore, a single user's problem can be divided into subproblems so that

these subproblems can solved on different machines.

In this report, we describe a model for specifying and controlling the routing as

well as the synchronization of job processing in a distributed environment. A distributed

system can be considered a special case of a network, one with a high degree of

cohesiveness and transparency [AND81]. A user-friendly distributed system has a system-

wide operating system in which services are requested in a uniform way. The distributed

system should be location transparent; users of a distributed system should not have to be

aware that there are multiple computer systems being used. Resource utilization such as the

allocation of files to disks as well as movement of files between where they are stored and

where they are needed should also be hidden from the user. Consequently, most of the

functions in the system must be performed automatically without the user's attention. In

general, a distributed system should behave like a centralized system to its users. For the

sake of simplicity, we will not distinguish between computer networks and distributed

systems in this report.

-6-

The benefits of a computer network can be listed as follows:

1) allows software programs, data, and hardware resources to be made available to

anyone on the network,

2) has alternative resources available to increase reliability in the network; when a

single computer in the network fails, users can often be accommodated

elsewhere,

3) provides a powerful communication medium between computers, especially for

local computer networks,

4) increases system performance; some (or all) of the processors can be dedicated

to perform specialized functions. Much of the software complexity that is

associated with large mainframes can therefore be eliminated.

The prototype system has been designed to accomodate all these advantages.

2.1.1 Distributed System Prototype

The primary intent of this work is to find a good model which will handle the

problems of concurrency and distributed control for jobs executing in a distributed

environment. A Petri net-based model which matches our requirements for a good model

can be found in [McBR83] and [McBR87]. We have attempted to design a prototype

distributed system which uses this model as its basis. The Petri net model given in

[McBR83] and [McBR87] is extended to model the equivalent of a control program. This

extended Petri net, called a Control net (CN), is used as a control mechanism that utilizes

intelligent token(s). An intelligent token contains control and data information that is

necessary for executing a job. Furthermore, a process which is referred to as a Control net

agent is present in each machine node. Its primary responsibility is to execute jobs that are

-7-

delivered to the site; the agent accomplishes this task by selecting a transition to execute in

accordance with the current marking of the received CN. This extended Petri net satisfies

our requirement of modeling concurrent processing and distributed control. A prototype

based upon this model has been implemented to run on a small computer network; namely,

the 3B computer network at Kansas State University.

We will now proceed to consider the basic elements of Petri nets before looking at

their extensions.

2.2 Definition of Petri Net [PETE77]

Petri nets are useful for modeling the states of a system. Modeling can be

accomplished by marking the nodes of a graph with tokens. A Petri net can be described by

the basic properties of its elements, markings, and firing rules.

2.2.1 Elements of a Petri Net

A Petri net is a directed graph 1 with two types of nodes: places and transitions.

Places are represented by circles and transitions are represented by bars. The places of a

Petri net can be used to represent conditions, while transitions may represent actions or

events. Place nodes and transition nodes are connected by directed arcs, and the two

different node types must alternate on any path in the graph. A place that leads to a

transition by an arc is called an input place. A place that is connected to a transition by an

r Petri Nets are directed multigraphs, but we will only deal with directed graph in this

report.

-8-

arc leading from the transition to the place is called an output place for that transition.

Places in the net may be occupied by markers called tokens that are shown as dots. The

presence of a token in a place means that a certain condition holds at that place. Places,

transitions, tokens, and arcs form the basic elements of a Petri net. A simple Petri net is

shown in Figure 2. 1 in which all of the places and transitions are labeled.

Token

FIGURE 2.1

A Simple Petri Net

9-

2.2.2 Marking of a Petri Net

A marking is the collection of tokens which are found in the places of a net. The

number and position of tokens in a Petri net may change during the net's execution.

Markings of a net can be used to indicate which transition(s) are enabled at a certain time.

Hence, the state of a Petri net is given by its marking. An example of a marked Petri net is

shown in Figure 2.2.

FIGURE 2.2

A Marked Petri Net

-10-

2.2.3 Firing Rules of a Petri Net

The number of tokens as well as their distribution in a Petri net controls the

execution of the net. A Petri net executes by firing transitions. A transition may fire if it is

enabled, and the firing of transitions changes the arrangement of tokens in a Petri net.

When each input place to a transition contain at least one token, the transition is said to be

enabled and may therefore fire. Whenever a transition fires, a token is removed from each

input place of that transition and a token is added to each output place of the same

transition. All these firing actions occur as a single indivisible operation. Transition TO is a

source transition because it has only output place without any input place. TO can fire at any

time; the result of one such firing is illustrated in Figure 2.2. The result of firing transition

Tl of Figure 2.2 can be seen in Figure 2.3. Figure 2.4 shows the new marking that is

produced after firing both T2 and T3 of Figure 2.3. Firing transition T4 of Figure 2.4

yields the marking of Figure 2.5. Transition T5 becomes enabled when a token in place P5

and it can fire. Since transition T5 has no output place, this transiton is called a sink

transition. Whenever T5 fires, it merely removes a token from it's input place. An enabled

transition may fire at any time. Therefore, if more than one transition in a net is enabled, the

next transition to fire is chosen at random (see Figure 2.2 and 2.3).

This feature of randomness in Petri nets reflects the fact that in real life situations

several things can happen concurrently. The apparent order of the occurrence of events is

not unique, but rather reflects a possible observation sequence for the concurrent events.

Even though Petri nets are very simple in concept, they have powerful representational

properties which use nondeterminism to show concurrency in a simple and natural way.

-11-

Thus, Petri nets are ideal for modeling systems with distributed control in which multiple

processes can execute concurrently.

FIGURE 2.3

A Petri Net After Firing Transition Tl

12-

T5

FIGURE 2.4

A Petri Net After Firing Transitions T2 and T3

FIGURE 2.5

A Petri Net After Firing Transition T4

-13-

2.2.4 Time Limitation of a Petri Net

The normal concept of time is not involved in Petri nets. However, researchers

were concerned about the problem of overcoming this limitation. As a result, Time Petri

nets (TPNs) [MER74] were created to allow for the representation of timing knowledge in

a Petri net-like model. The TPN is defined by a Petri net where each transition has two

different specified times. The first denotes the minimal time that must elapse from the

moment all the input conditions of a transition are enabled until this transition can fire. The

second time denotes the maximum duration of time that the input conditions can remain

enabled before the transition must fire. These two times can be used to provide a measure

the range of execution times for a transition. The TPN model contains the Petri net as a

special case in which all transitions have a minimal time of zero and a maximal time of

infinity. If the timing of transitions or order in which transitions fire is important, a TPN

can be used to model the system under consideration.

2.2.5 Numerical Petri Nets

Numerical Petri nets (NPNs) are a generalization rather than an extension of Petri

nets. NPNs [SYMO80] incorporate some changes into the concept of a Petri net. For

example, NPNs can have several types of tokens, and each token type can have several

attributes. Places in the net can hold any number of different types of tokens at the same

time. Individual arcs of a net have independent enabling and firing conditions. A memory

reference enabling condition can be specified as a predicate condition on the memory

variables and every transition may have its own associated predicate. Also, two firing rules

are defined for each transition. One rule defines for each input arc what token(s) are

-14-

removed from the respective input place(s) when a transition fires. The other rule defines

for every output arc what token(s) are put into the respective output place(s) when the

transition fires. If in addition to the memory reference enabling condition of a transition, all

the enabling conditions of all the input arcs of a transition are true, the transition becomes

enabled and may fire. Transition firing actions include the withdrawal of tokens from input

places, the addition of tokens into output places, and operations on memory data. NPNs

overcome some of the limitations of PNs, such as the existence of oniy one type of token,

so that more diverse practical problems that are based on these extensions can be covered.

For example, NPNs can represent systems where the flow of different types of messages is

important. As a result, Numerical Petri nets are especially suitable for representing

systems, such as communication protocols, where the flow of different types of messages

is important.

15-

An example of an NPN is shown in Figure 2.6.

G, H TOKENS

E ENABLING CONDITION

F FIRING RULE

Y := F(X) TRANSITION OPERATION

[M] MEMORY REFERENCE ENABLING CONDIITON

FIGURE 2.6

Example of NPN

Source: [SYMO80]

For instance, the enabling condition E5 in Figure 2.6 refers to 'at least one token H

residing in the input place C of transition Tl . A predicate condition on memory variable M

(e.g. M = 0) is specified for transition Tl as a memory reference enabling condition [M],

-16-

When the enabling condition E5 and the memory reference enabling condition [M] are true,

the transition Tl is enabled and may fire. Transition Tl has a firing rule F5 associated with

the input arc 'defining a token H is to be removed from the input place C when Tl fires.

Also, firing rule F6 is associated with the output arc of transition Tl that 'defines a token H

is to be placed into the output place A'.

Petri nets can be considered a restricted class of NPNs in which no memory is

associated with the net. Tokens do not contain values in Petri nets. Also, when a transition

fires, only one token is removed from each input place and one token is put into each

output place. On the other hand, a NPN allows different types of tokens to be present. In

addition, NPNs add the enabling condition, specific firing rules, and memory reference

enabling condition to the concept of a transition firing in the original Petri net graph. These

additions serve to increase human understanding of complex systems and make NPNs

more program-like.

2.2.6 Data Flow

The Data flow model [FILM84] makes use of directed graphs to illustrate the flow

of data and control which must occur between instructions in a system. The arrival of

operands are used to trigger the execution of an operation or instruction in the Data flow;

thus this model is data driven. Also, data representing the result of one operation can be

passed as an operand to another instruction.

In contrast with Petri nets, "places" in this model do the work (e.g. assignment)

while "arcs" (edges) serve as storage. Places representing instructions are activated by data

-17-

tokens. Data flow graphs distinguish between data-carrying paths and control paths. Data

paths carry the data values resulting from a computation. Every Data flow token has some

value in a specific data type such as integer, boolean, or character. Control paths, on the

other hand, carry control values (booleans) that "open" and "close" values; thereby,

regulating the flow of data around the graph. In this way, the flow of control is tied to the

flow of data.

A Petri net graph could be represented by a Data flow graph, and vice versa. Both

Petri net and Data flow models share the same conceptual basis of modeling change

through successive markings of a graph structure. The control flow for a Petri net is

hightlighted, while the data computation for a Data flow graph is more prominent. Petri

nets are useful for modeling the states of a system and transitions are used to represent

major operations which are needed for a system. However, tokens that are passed around a

Petri net do not contain any data value information. Even though tokens in the model of

[McBr83] do carry control and data information, the information that these tokens convey

cannot be seen on the graph. In this sense, a computation modeled with a Petri net is still

not as natural as with the Data flow model. The Data flow model broadens the limited

capabilities of Petri nets into a mechanism that can perform computable functions. Data

tokens in a Data flow graph may have a constant, a parameter name, or a boolean value

written next to these tokens making the flow of data more prominent. The Data flow model

has been a source of ideas for both computer hardware and programming languages. This

model is suitable for the design of both low level computer hardware and programming

languages. On the other hand, a Petri net is more suitable for designing and simulating the

high level flow of control for a system.

-18-

2.3 Survey of Related Work

In the following sections, we will review several articles that are directly related to

job execution using Petri nets in a distributed environment

2.3.1 Formal Verification of Parallel Programs [KELL76]

In this paper, R. M. Keller developed a formal model to represent parallel

programs. In his model, place nodes represent points at which an instruction pointer of a

processor may dwell and transition nodes denote events which correspond to the execution

of particular instructions. Keller modeled the action of transition nodes in a Petri net upon

program variables. With his modification, each transition has an associated unary predicate

and a function that is defined upon the program variables.

According to Keller, the state of execution of a parallel program consists of both a

control state which represents the vector of place variables (marking) and a set of data states

which reflects the vector of program variables (local data). The control state of a program at

any point in its execution is given by the number and location of all tokens residing in the

Petri net. Each token in the net corresponds to an instruction pointer. The data state of a

program is equivalent to the current values of all its program variables.

The existence of a predicate indicates a precondition that is associated with a

transition which must be true before that transition can fire. The firing requirements of a

transition is defined as follows:

1) Each input place of the transition must have at least one token present,

-19-

2) The predicate associated with a transition must be true.

Firing a transition in Keller's net causes the following events to occur:

1) a token is removed from each input place,

2) a transformation upon the program variables is performed in accordance with the

function specified by the transition; this operation has been added to the usual

Petri net firing operations,

3) a token is added to each of the transition's output places.

By allowing arbitrarily many instruction pointers (or processes) to execute the

program, this model has the capability to represent an infinite set of control states.

2.3.2 Modeling Jobs in a Distributed System [McBR83]

In this paper, McBride and Unger described a method for modeling the execution of

jobs in a distributed system. A model was presented to depict the control and information

flow of a job in a distributed processing environment. Individual Petri nets define the

procedures that are available in the system, and a "Control" Petri net is used to define how

a job is to be executed by the system. The Control Petri net oversees the execution of

procedures that are available in the distributed system. The state of a job is defined by the

location of token(s) in the Control net. This can be thought of as the position of the

instruction pointer(s) in a job control program as was done in Keller's model.

The Control Petri net is augmented by attaching system resources (such as files) to

the transitions in the net An arc can be directed from a file where input data is needed by a

-20-

transition which utilizes the data. Similarly, when a transition outputs data to a file, a

directed arc will go from that transition to the file. In this way, transitions that depend on

the availability of data in files are brought into prominent view. The collection of tokens

over a net represents the execution state of a job. This information, called the marking of a

net, is stored inside an intelligent token. The Control net defines possible sequences of job

steps; each job step may be implemented at a different site. The intelligent token migrates

through the distributed system to the site where its Control net has determined the next job

step can be performed. Therefore, tokens can be visualized as intelligent data objects that

carry meaningful information through the system. The Control net is stored as a data

structure contained within a token while the token is flowing between nodes, whereas

individual Petri nets correspond to the procedures that are requested by the job. These

individual Petri nets are triggered by the arrival of intelligent tokens.

Each intelligent token can be thought of as an object that consists of the following

information:

1) local data,

2) Control Petri net,

3) marking,

4) a list of capabilities,

5) a history list.

Five major components which are necessary to model the processing of a job in a

distributed environment were identified:

1) a structural model for each procedure or function,

2) a structural model of the control program,

-21-

3) the status of a job (control and data),

4) global information,

5) data files.

Since the intelligent token contains control information, a site in the distributed

system can decide what procedure to perform for a job according to the control information

and also which site it should be forwarded to next.

2.3.3 The Representation and Distribution of Knowledge by a Petri Net

[McBR87]

In this paper, McBride and Unger refined some of the ideas from their previous

work [McBR83]. For example, refinements were made to the Control Petri net and the

intelligent token. The new feature in this paper involves the addition of a Control net agent.

2.3.3.1 Control Petri Net

A Petri net can be used to provide a top-down, hierarchical representation of a

system. Any action performed by a transition in a net at a high level can be represented by

another Petri net Each net provides the coordination and communication among its actions

or underlying nets. The uppermost net in a hierachy of Petri nets is referred to as a Control

Net (CN). It enumerates possible sequences of significant events which may occur in a

system. Thus the CN can serve as a source for both the routing and synchronization

information in a distributed environment.

-22-

A set of program variables is used to construct unary predicates. Preconditions and

post conditions are constructed by unary predicates which are attached to transitions. A

unary predicate is used as a precondition predicate to govern the firing of a transition. Also,

unary predicates are used as postconditions after a transition fires. The use of a

postcondition predicate results in a test that ensures each job step will meet its specification,

consequently increasing the system's reliability.

2.3.3.2 Intelligent Token

Tokens mark the transaction's progress through the system and contain job-related

information. Accordingly, a token contains both control information, such as the logical

routing, and data information. The key point here is that the intelligent token must contain

enough information so that each site can figure out how to react to tokens that are delivered

to the site in a distributed system.

2.3.3.3 Control Net Agent

A CN can be attached directly to a token instance and accompanies the token on its

journey through the system. Furthermore, the CN acts as a guide for a particular job. A

group of cooperating entities, named Control Net agents (CN agents), exists in every site

of a distributed system. A CN agent at each site in the system interprets the Control net to

oversee processing as tokens pass through the system. CN Agents actually carry out the

physical routing, perform the execution of the Control net, and update data information of

the token. Details of the routing algorithm and re-routing of a transaction to an alternate

module or procedure are transparent to the transaction's CN.

-23-

As suggested by its title, this model is suitable for the communication system in a

distributed environment . A token has to carry the control message with it so that the next

site which receives the token can figure out how to react upon the token's arrival. The

advantage of this model is that a job can access all the functions which are supported in the

network. This system can execute a job in accordance with its control information as well

as the precondition and postcondition predicates of the transitions. The loss of messages on

theirjourney through the system has not been dealt with in this report

2.4 Summary

In general, all of the referenced articles retain the basic principles, symbols, and

modes of operations of original Petri nets given by Petri. The authors have suggested ways

to extend Petri nets in order to cover a wider range of situations. Some of these ideas are

similar or overlap with each other.

If all of the features (e.g., timing knowledge, types of tokens, input and output

firing rules, precondition, postcondition, program variables, intelligent tokens, Control net

and Control net agent) could be combined, a model would arise which would become a

very powerful tool. However, the resulting Petri net model would become complicated and

cumbersome to use. The designer has to decide which features will fit his needs for a

particular practical situation.

Control Petri nets which incorporate the idea of program variables and predicates

are used in our prototype system. The concept of intelligent tokens is from [McBR83] with

many of the other extensions being taken from [McBR87]. The design of this system

-24-

consists of three major parts: CN, intelligent token, and CN agent. We proceed to describe

the design of our prototype system in the next chapter.

-25-

CHAPTER 3

DESIGN SPECIFICATION

3.1 Design Objectives

The purpose of this report is to describe a system that permits the execution of jobs

in a distributed environment. A prototype of this system has actually been implemented

using a TCP/IP 1 WIN2/3B system on a network of AT&T 3B series of computers. Details

for the design of this system are discussed in this chapter. Also, a sample of the code for a

CN agent can be found in appendix B.

Our prototype system is designed to solve simple numerical calculation (referred to

as CALC) problems. An ideal distributed system should not only be able to compute

solutions for numerical calculation problems, but should also permit the distribution of

messages between different machines so that nonnumerical computation could be

performed. For ease of explanation, CALC will be discussed in this chapter instead of

other more general jobs or problems. Readers should keep in mind that this simple

prototype system can be expanded to solve numerical computations that are more complex

than the simple examples given in this chapter.

In general, the goals of our prototype system can be listed as follows:

1) reduce the demand for user involvement after a job has been created,

1. Transmission Control Protocol/Internet Protocol is a set of computer

networking protocols which allows two or more hosts to communicate.

2. A trademark of the Wollongong Group, Inc.

-26-

2) effectively utilize needed resources (e.g., functions and utilities) in a distributed

environment that are distributed over multiple locations,

3) raise the reliability of the environment which is provided to users,

4) take advantage of concurrent processing that is possible.

Accordingly, our prototype system has been implemented to meet these goals. After

a user submits a CALC job to the system, he is relieved of the responsibility for the job and

only has to wait for the result. The user does not have to worry about the location (site) of

the functions which are needed by that job. This system will automatically take charge of

routing the actions for each job. A simple error recovery strategy is used to ensure that

tokens are not lost.

Concurrent processing is approached by dividing a job into multiple subjobs or

tasks. If these tasks are logically independent from each other, they can be executed

simultaneously in an effort to cut down on the total run time of a job; thereby, making the

execution of a job more efficient.

Three main steps are involved when designing this system to perform a task,

namely, the design of: the CN, the intelligent token, and the CN agent . The actions of the

CN agent depend on how the CN and intelligent token are designed. After the CN and

intelligent token are designed, the actions of the agent can then be coded.

The set of actions locally available to a CN agent dictates the tasks that can be

performed at that agent's site. If the condition predicated upon an action's outcome cannot

-27-

be met or no desired function is available, the task to perform will be transferred to another

site. The coordination of actions for a job at a site are taken care of by that site's CN agent.

3.2 Design Specification

We designed of our system based on the model which was described in [McBR83]

and [McBR87] with some slight modifications. In the remainder of this chapter we provide

a description of both the design and implementation of this system. This description

logically falls into three parts. First, we describe the CN representation of a job. Next, we

look at the components that comprise an intelligent token. Lastly, we discuss the flow of

control which a CN agent follows, i.e., the actions that a CN agent performs on a task and

the order in which they are done. Finally, some problems concerning error recovery are

mentioned, and a simple error recovery strategy which is used in this prototype is also

described.

3.3 The Control Net

Both internal and external representations of a CN are needed in this system. The

external CN is designed for use by humans, while the internal CN is designed to be used

by machines. An external CN is generated by the user to describe the processing

requirements of a particular job, while the internal CN provides the representational

structure used by computers. The internal CN contains only the structure of the external

CN and so captures static properties of the external CN. On the other hand, the sequence of

markings recorded by an external CN capture the dynamic properties of the net; these

dynamic properties are not recorded in the internal CN. The marking is recorded separately

-28-

from the internal CN as a distinct component of an intelligent token. This internal

representation is stored in such a way that a CN agent can recognize it.

3.3.1 The External Control Net

3.3.1.1 Use of the External Control Net

Users of this prototype system must do two things before the system takes over the

processing of a CALC job. First, an external Control net which represents the control flow

of a particular job has to be manually created. The external Control net (CN) is an extension

of a Petri net, which permits predicate conditions to be associated with transitions. Also,

the maximum period of time which may elapse before a transition times out can be specified

for each transition. Secondly, an external CN must be manually translated into an internal

CN. After the internal CN of a job is created, that job will continue to be executed by the

system until the job is either done or it fails. In the prototype system, users need to

manually transform an external CN to an internal CN for each job. In order to make this

prototype system more complete, a graphical editor should be built. This graphical editor

allows the creation of an external CN which is later automatically transformed into an

internal CN. We will first look at the design of an external CN.

A user must first design an external CN according to a job's specification. Some

basic knowledge of Petri nets is assumed in order to effectively design the flow of control

for a job. We assume that the user will design a correct and efficient external CN. Hence,

our prototype system does not check for the correctness or efficiency of the external CN.

By correctness, we mean a CN does not have any simple graphic mistakes nor any illegal

-29-

control flow for a job. This system can reduce the total run time by performing tasks in

parallel, thus, making the execution more efficient. By permitting the 'fork' transition,

concurrent activities among tasks can be accomplished. Users should therefore take

advantage of the fact that this system can handle the concurrent execution of a set of tasks.

It is the user's responsibility to design an external CN with (a) fork transition(s) whenever

it is effective to execute tasks concurrendy.

An intelligent token is used to represent a task. A token at a fork transition will split

into several sibling tokens or 'tasks'. These sibling tokens can then be executed

concurrently, because they are independent of each other. A JOIN, also called MERGE

transition, is used to combine several sibling tasks or intelligent tokens into a single task.

3.3.1.2 Sample External CNs

Next, we will show two different examples of external CNs.

Example 1. (a + b) * (c - d)

Two subexpressions, (a + b) and (c - d), are considered to be independent of each

other whenever these expressions have no data in common. Thus, these expressions can be

evaluated simultaneously. We can design the external CN for this type of example as given

in Figure 3.1a. In the initial state, the source transition TO will deposit a token into place

PO. Since no more than one token is allowed at any place in a CN in our prototype system,

the source transition can produce only one token at a time when its output places are empty.

In the state shown in Figure 3.1b, transition Tl is enabled and can therefore fire. After

transition Tl fires, two different markings are created to represent the two sibling tokens or

tasks that are deposited into places PI and P2. At this time, the two tasks become

-30-

independent of each other. Figure 3.1c and 3. Id show the two tasks that are initiated. Only

one copy of this type of CN is stored on each site even though multiple instances may exist

in the system.

Tuple (1,0,0,0,0,0) represents the initial marking for the net of Figure 3.1b. Each

item in a marking represents the number of tokens at a place in the CN; the i th item in the

marking corresponds to the number of tokens at place Pi. A '0' in place Pi means that there

is no token in that place, while a T means that there is a token present at that place. In our

prototype system, the maximum number of tokens at any place is limited to 1. The

markings for the two sibling tasks right after transition Tl fired are (0,1,0,0,0,0) and

(0,0,1,0,0,0). Since these two sibling tasks are independent of each other at this moment

they can execute concurrently.

Before the 'multiplication' operation at transition T4 of Figure 3.1b can be

performed, tokens corresponding to the results of the 'plus' and 'minus' sub-expressions

must be made available on the same machine. One way of accomplishing this goal is to let

the user specify a particular machine that is going to execute the '*' operation. A transition

can be qualified to specify which site is to perform an operation by enclosing the selected

site inside a pair of curly brackets.The curly brackets can be omitted if no specific site is

chosen by the net's creator . In our example, a site has been specified by the user at which

transition T4 should be executed in Figure 3.1b. Consequently, the CN Agents will

forward the results of the '+' and '-' operations to that particular site.

-31

(3.1a)

-32-

TO (source)

T2(+) T3(-)

T5 (sink)

(3.1b)

y'

TO (source) TO (source)

Tl (fork)

T3(-)

*) (site)

T5 (sink)

(3.1c) (3.1d)

FIGURE 3.1

A Sequence of Marked CNs for Example 1

-33-

A system can be designed to let users enter a list of sites that are capable of

performing a 'MERGE' transition (for example, transition T4 in Figure 3.1b might have

(site) replaced by (site 1, site 2, ..., site n)). A list of sites at which an operation can be

performed is used to increase the reliability of this system. In the event that the first

machine in the list goes down, those agents which execute the '+' and '-' operations can

send their results to a second site in the list, and so on. This feature has been left out in our

prototype system.

Preconditions and postconditions can be added to the net of Figure 3.1b in order to

illustrate the additional power of CNs. For instance, a user might only want the action of

the '*' operation to occur after a particular time, say 3:00 pm. In this case, a precondition

can be specified for that transition with a predicate [>=15:00] written right above the

transition as in Figure 3.2. This predicate permits transition T4 to only execute on or after

15:00 for the current day. Users who want an integer result from transition T3 can use a

postcondition predicate which has the form [result in integer], written below the transition,

to restrict the result of this operation to be an integer (See Figure 3.2 for an example). If the

result from T3 is not an integer, the agent which was currently responsible for performing

T3 has to re-route the task until the result of the requested operation (-) becomes an integer.

Re-routing a task involves choosing another version of the desired function, and may

involve sending the task to another agent. This entire process is transparent to the user.

The Petri net of Figure 3.2 demonstrates the additional types of contraintswhich can

be made to Figure 3.1b by the user.

T2(+) T3(-)

[result in integer]

[time>=15:00]

T4(*) (site)

T5 (sink)

FIGURE 3.2

A CN With Predicates

The Petri net graph of Figure 3.2 can be used as an isolated CN that represents all

of the work a user has requested or, alternately, it may represent a subgraph of some other

CN. Once a CN gets more complicated, the details of any action which is performed by a

transition can be represented by a subnet. In this way, a hierarchy of CNs can be provided;

each action in a CN may require a sequence of operations which is carried out by another

CN. If the net of Figure 3.2 is a first level CN, the source transition will represent a job

entering the system while the sink transition stands for a job terminating. The destination

site(s) for a job will be in accordance with the needs of the user. A job may have just a

-35-

single destination site or multiple destination sites. In order for the graph of Figure 3.2 to

be a subnet corresponding to the effects of a transition in the first level CN, the source

transition will represent the invocation of that transition, while the sink transition stands for

the completion of that transition. For this graph to be a subnet, the sink and source

transitions must be at the same site. In the prototype system which has been developed, the

actions which are named in a CN are not implemented as other CNs.

In order to simulate a database environment, the data is stored in different files in

our prototype system. Data files can be kept on either the same machine or different

machines. The data which are needed for a transition will be requested only when the

transition is enabled. In this way, the value of the data will be the most current updated

value.

Example 2. (a + b) * (b - d) / (e - f)

The sub-expressions (a + b), (b - d), and (e - f) can be executed concurrently

because they do not modify any common data. However, the 'multiply' and 'divide'

operations have to be executed in a left to right order for this particular example to produce

the intended results. Furthermore, both the '*' and 7 operators require results that are

derived from different sub-expressions before proceeding. One way to accomplish a merge

transition is to have the users of our system explicitly specify sites that are to perform '*'

and '/' operations. The external CN for this type of example can be designed as shown in

Figure 3.3:

-36-

TO (source)

T4(-)

T7 (sink)

FIGURE 3.3

A Sample CN for Example 2

Thus far, we have shown some simple calculation operations. Other desired actions

can be much more complicated than the calculations we have shown, and may involve more

complex procedures or modules. If the desired procedure or module required by an action

does not exist in any site of a distributed system, the user has to develop that particular

-37-

module or procedure and store it at a site before a job requiring that function can be

executed.

3.3.2 The Internal Control Net

To make sure that agents at every site understand a CN, an internal form of a CN

(internal CN) is employed; this type of CN can be derived directly from the external Petri

net graph which was described in the previous section. This internal version of a CN must

be created in such a way that it can be recognized and understood by a computer rather than

users. The internal CN used in this prototype is produced by a simple transformation on a

corresponding external CN. The internal CN is a data structure which records the static

properties of the external CN. These static properties include the relationships between the

places and transitions of a net as well as predicates associated with the transitions of a net.

For example, information such as the set of output places associated with each transition

and the collection of input places for every transition depict the relationships between places

and transitions.

We now discuss details of the internal CN that was designed to represent the CN

shown in example of Figure 3.1a. An internal CN's data structure depicts the relationship

between places and transitions in a net and depicts the predicates on transitions. Since an

internal CN contains only the static properties of an external CN, the structure of the

internal CN will not be modified during a job's execution in the system

The CALC problems used in our examples are assumed to be requested quite often

by users. For efficiency, the prototype system preserves a copy of the internal CN for each

-38-

type of job at every site instead of passing the static structure of a job through the

communication links. In this case, only dynamic information (e.g. the marking, local data,

and routing history) that will be modified as a job's execution is passed between sites.

Thus, for a frequently used job, its token will not carry its internal CN. It makes sense to

store the static structure of a CN on every site so as to save the cost of transferring data. On

the other hand, a job which is executed only rarely does not need to store its static structure

at every site. Thus, in the case of infrequently executed jobs, the expense of initializing and

maintaining the internal Control net at each site is spared. Instead, the internal CN is

communicated as necessary between sites as information in the intelligent token. Users

have to decide whether to store the static structure on every site or to pass the static

structure as part of the token between sites.

An intelligent token in our prototype system is an object that contains: the marking

of an internal CN, any local data, and a routing history of a job. Thus, a token is reduced to

the minimal amount of information that is required for execution. This reduction of

information decreases the cost of transferring messages between sites and the probability

that transmission errors will occur during data transfer is also decreased.

Certain control information, which is not related to the CN also has to be included

inside a token. This information includes the token's id and an index for the next position

of the routing history. Further details of the intelligent token used in this prototype sytem

are described in the next section.

-39-

3.4 The Intelligent Token

3.4.1 Types of Files

In this report, we regard the token in a Petri net as an intelligent communication

object that contains both control information and local data. Control information for a token

is provided by the marking of a CN which the token contains. The local data of a token

holds values required by the corresponding job. A token is stored as a file in our prototype

system. Files are used as the unit of communication in this prototype system and so agents

communicate with each other by transfering files. A token may be treated as either a MSG

(message) token or a DATA (data) token. The need for both MSG and DATA tokens arises

because of MERGE transitions which require multiple tokens to be input, but which ouput

at most one token. Both MSG and DATA tokens contain the marking of a CN, local data,

and routing history. A complete listing of the components of a MSG token is given in

section 3.4.2.

MERGE transitions are handled by our prototype in the following manner. Only the

token to arrive at the first input place for a MERGE transition will be kept as a MSG token

(this token will become the master token). All of the master token's siblings which arrive

at the MERGE's other input places become DATA tokens. The agent will use the master

token and its control information when the MERGE transition is fired. The agent will

perform this MERGE transition by collecting information from all of the data tokens in

accordance with the MERGE transition and inserting this information into the MSG token

which is output.

-40-

In addition to token messages, the prototype system utilizes two other types of

messages, namely, the request (REQ) and acknowledgement (ACK) messages. A REQ

message is used by an agent to request a particular variable's current value from the agent at

the site where the variable is located. An ACK message is used to inform another agent that

a token (including the MSG token and DATA token) has been successfully received or that

the requested operation has failed.

3.4.2 Components of Intelligent token

Before discussing the actions of a CN agent, we will first explain the components

of an intelligent token. This type of token is an object which is used as an information unit

for communication between sites. Basically, intelligent tokens carry the marking of a CN,

local data, and a routing history. Moreover, a token in this implementation contains six

different items. The items are the id of a token, token's type (either MSG or DATA),

next location in history, marking of a CN, local data, and routing history.

Each item in a token can be described in detail as follows:

1) The first item carried by a token is the id of that token. This id consists of a four

digit integer in which the first digit (i.e. leftmost digit) stands for the type of

CN. Several types of CNs may exist in a distributed system. Ten types of

CALC CNs ranging from type to type 9 in decimal, are allowed in this

prototype system because only one digit is used to represent each type. The

second digit stands for the instance number of a type of CN. Copies of a token

for the same type of CN are considered instances for that CN. Each type of CN

ideally can have an arbitrarily large number of instances. However, this

particular prototype system can only handle up to ten instances for each type of

-41-

CN; since only one digit is used. Extending the number range for CN types and

instances according to any particular need is easy to accomplish by simply

adding more digits. All instance's ids from the same type of CN have an

identical first digit but a different second digit.

The third and fourth digits are taken together to stand for the current

place which is marked in a CN. These two digits are appropriately named 'place

number' for ease of reference. The place number is mainly designed for

programming the FORK and MERGE transitions. A token before a fork

transition will produce multiple copies of sibling message tokens. Each message

token is distinguishable from its siblings by the place number of its token id.

This place number is later used to distinguish between multiple copies that need

to be merged. The token ids of these copies will have the same first and second

digits, but different third and fourth digits. The first and second digits of a

token does not change, but the third and fourth digits are dynamic and therefore

depend on the current place that the token resides in. Thus, the last two digits of

the id for a token changes each time that a transition successfully fires. Each

sibling token will have a different marking, local data value, and a routing

history after a fork transition. Since two digits are sufficient to show the

maximum number of places in our examples, only two digits are used to

represent the place number in our prototype system. Therefore, place numbers

can range from '00' to '99'.

An example of how a simple token id is used is shown in Figure 3.4.

Numbers which reside inside the circles of a Petri net are called token ids. We

-42-

can see from the first and second digits that this token is a type 1 CN and each

time the token is used, it refers to the first instance of this CN type. The last

two digits corresponds to the place where a token would reside.

FIGURE 3.4

Example of the Token Ids

2) The second data item in each token is used to specify the token type; it can either

be MSG (message) or DATA (data). Even though a token type can be

determined from its data file name, information about the type is easily kept

-43-

inside a token. Doing so allows the MSG and DATA token to be distinguished

through the use of either the file name or this field.

3) The third item is called 'next location in the history'. This is an index to the

position in the routing history entries where firing information for the next

transition is to be placed.

4) The fourth item keeps a record of the current marking for a CN; this is

implemented as an integer array. This array will keep track of existing token(s)

in every place of a CN. At this time, the allowable values of the marking are "0"

and "1".

5) All local data that is needed for a job must also be stored in the intelligent token

that corresponds to a job. Local data are used mainly for storing intermediate

results that are produced during a job's execution as well as input data that are

needed for an operation.

6) A list of the routing history is the last item in a token. The routing history is used

to keep a record of the processing which a token has undergone. The

information in the routing history consists of the token's id, transition number,

name of operation, site where the operation was executed, and the time at which

the operation occurred. Only successfully executed transitions are kept in the

history list.

A sample token with all its items is shown in Figure 3.5 (this token corresponds to

the CN of Figure 3.3). This job is started with a token having the following information,

2100 m 100000000 [empty local data list] [empty history list] along with an

internal CN at every site. When the job is completed, its final token has 2108 as id.

Looking at this final id in Figure 3.5, we see that: this job belongs to the second type of

-44-

CN; the instance number of this job is T; its current place is P8; W is the token type

signifying that this is a MSG token; and its 'next location in history' is pointing to position

'9'. This marking shows that the job has completed. A list of local data which contains the

result and input data follows the marking of the CN. Finally, a routing history list makes

up the last item of the token. In the routing history, '2100 source november Wed-

Apr-13-12:32:07-CDT-1988' is the first line in the history. Upon closer inspection of

this entry, one can see that 2100 indicates the token's id. The next new location in the

history is which means that its own history will be placed at position in the history. The

operation which was performed was 'source', on the machine 'november' which fired the

source transtion, and finally, 'Wed-Apr-13-12:32:07-CDT-1988' is the time stamp for

when this transtion fired.

-45-

tyP* history marking ^

2108 m 9 000000001 3

rouun;
histoi y

2100 source november Wed-Apr-13-12:32:07-CDT-1988

2101 1 fork november Wed-Apr-13-12:32:10-CDT-1988

2104 2 + november Wed-Apr-13-12:34:38-CDT-1988

2102 1 fork november Wed-Apr-13-12:32:10-CDT-1988

2105 3 - hotel Wed-Apr-13-12:33:59-CDT-1988

2107 5 * november Wed-Apr-13-12:34:42-CDT-1988

2103 1 fork november Wed-Apr-13-12:32:10-CDT-1988

2106 4 - hotel Wed-Apr-13-12:34:28-CDT-1988

2108 6 / november Wed-Apr-13-12:34:47-CDT-1988

/\
id transition operation machine

number name

operation

occurrence

time

FIGURE 3.5

An Example of a Token

The reader is referred to appendix B for more information concerning the actual data

structure of the CN.

-46-

3.5 The Control Net Agent

Each machine in a distributed system should have a copy of a controller process

which is referred to as a CN agent This agent is locally in charge of the actual management

and execution of jobs in accordance with a job's control specification. The CN agent is

responsible for receiving tokens and then performing the next executable transition of a

token whenever possible. If the result obtained from firing a transition meets this

transition's post-condition, the agent updates the marking, local data and routing history,

and ensures that the token is transfered to agent(s) responsible for the next operations to be

done.

On the other hand, if the CN agent has tried all the possible alternative solutions to

complete an operation at its own site, and has still failed to meet the postcondition

associated with a transition, the token will be transmitted to another site that supports the

desired type of function. In case no available site supports this function, a failed

information containing the message 'FAILED to continue' will be sent to the site where the

job originated. Any re-routing of a token which is required for processing is transparent to

the user since only transitions that are successful are recorded in the token's routing

history. In general, the location where a task is performed is not important as long as the

task is successfully completed. However, for some cases the user can name the specific site

where the operations are to be performed for a transition. For instance, the user explicitly

specified the location where the transition is going to perform a 'multiply' operation in our

first example (see Figure 3.1b).

-47-

For efficiency purposes, CN agents could be directly incorporated into the

operating system (OS). However, CN agents are implemented in the prototype system as

user-level modules. This was done so that the integrity of the OS would be preserved even

in the presence of a faulty agent and also because it is easy to modify and expand agents

that are single modules. We can view the CN agent as a daemon server process.

The processing which a CN agent must undertake is recorded in its Time Table. A

Time Table is a data structure which maintains a list of information about tokens that are

waiting for an acknowledgement message, a DATA token, or variable values to be retrieved

from another machine. This list of information includes: the token's id, the time at which a

token was last sent out or put to the list, the site which this token was sent to if any, and a

copy of the local routing history for the intelligent token which activated the current

transition. The CN agent will periodically check whether any tokens in the Time Table have

timed-out, or any new in-coming message tokens or requests for a variable from other

agents has arrived. A token that has timed-out will be re-processed in preference to a new

in-coming token.

3.5.1 Major Actions of a CN Agent

A CN agent is responsible for three major actions: periodically checking the Time

Table to catch timed-out tokens, receiving any new incoming tokens, and generating an

ACK to inform the other agent of a particular token's receiving status. These three actions

will be discussed in detail in the next sections.

-48-

3.5.1.1 Checking the Time Table

An agent will periodically check the Time Table in order to catch tokens which have

timed-out. A token that has exceed a time limit while waiting for an ACK is resent by the

agent to the same site again. An agent can only resend tokens, which have previously timed

out, to the same site for a certain number of times. This maximum number of retry attempts

is specified beforehand to the system. A site is assumed to be currently down if the number

of tries to it reaches this maximum number. Whenever the maximum number of retries is

reached for a site, the agent must check if any other site supports this type of desired

function according to a capability list for all machines. If another site does support this

function, the token will be re-routed to that new site with the current transition still marked

as enabled. A token that has timed-out while waiting for a DATA token will again be

reprocessed. After the number of retries for a token which is waiting for an DATA token

reaches the maximum number, a 'DEAD' ACK will be generated in our prototype system.

A token that times out while waiting for a variable's value to be transfered from another site

will make the same 'REQ' message again. After sending the maximum number of same

'REQ' message without any success, the token will be re-routed to an alternative site which

also holds a value for that desired variable.

3.5.1.2 Receiving Incoming Tokens

Whenever a new MSG token has been received, the agent will try to perform the

next executable transition. An agent in our prototype system will create another process,

called a child process, to actually execute the operation. The agent will then go to sleep for

a while. If the child process has not finished the operation when the agent wakes up, that

-49-

agent will re-route the token to some other version of the desired function (module). If the

result of this function meets the transition's postcondition, this token will continue to

process until either the token completes all of its required processing or this current site can

no longer support functions requested by the enabled transitions of the CN. On the other

hand, if the result which is obtained fails to meet the postcondition of a transition and no

alternative module is available, the agent will consider this token to be dead. A 'FAILED to

continue' flag is sent to the original site of the job as well as any site that is waiting for an

ACK from the current site.

3.5.1.3 Generating ACKs

The three types of acknowledgements (ACK) uses in this prototype system are

'NOTICE', 'DEAD', and 'DONE'. A 'NOTICE' ACK is used to indicate successful

receipt, a 'DEAD' ACK indicates that processing of a token can no longer continue,

whereas a 'DONE' ACK indicates that a job has completed. A 'NOTICE' ACK will be

generated after an agent has successfully received either a MSG or a DATA token from

another site. A token is considered successfully received if the first enabled transition of its

CN has fired successfully. For example, an agent at site A who has tried all possible local

operations to accomplish a requested function without success will try to transmit this token

to another site that supports the desired function. After the CN agent on site A has sent out

a token to site B, site A's agent will await a 'NOTICE' ACK from site B's agent. This

ACK information must be received within a certain time period. After site A receives an

ACK ('NOTICE' type) from site B, the copy of the MSG or DATA token in site A will be

purged. Site A's agent will try to send the same token to site B again if no ACK is received

within a cenain time period. If site A's agent has tried all possible ways of re-routing a

-50-

token to alternative agents without any success, a 'DEAD' ACK will be sent to the starting

machine. After an agent completes a job, a 'DONE' ACK will be sent to the starting site as

well as to the previous site which is waiting for an ACK from the current site.

While performing an executable transition, an agent may need a certain variable's

value from another site. In this case, a REQ message is sent to the site that holds the

required variable. The agent who owns the requested variable has to send the value of that

particular variable to the requesting agent. The above method was used in our prototype

system. There are certain tradeoffs when using this approach. It makes sense to send data

across the communication line if the requested variables are small in size. However, large

amounts of requested data will cost too much to transfer. In the latter case, it might be

better to transfer the desired function or module to the site which holds the required data.

However, the best solution is to keep both the data and desired function at the same site.

After reviewing the main actions for a CN, we can now present the pseudo code of

the control flow for a CN agent as follows:

3.5.2 Pseudo Code of a CN Agent

/* pseudo code of the driver and main module */

main driver

t

initialization;

FOR NOT system crash

DO
IF no incoming data

THEN
sleep 60 seconds

FI;

-51-

IF incoming data is an acknowledgement
THEN

update [Time Table]

do some clean up
FI;

IF incoming data is a request

THEN
forward the value of a variable

FI;

IF incoming data is a message
THEN

insert this token id to [Ready List]

FI;

check the timed-out table;

IF there are any messages which have timed-out

THEN
copy those message's id(s) from [Time Table] to [ready list]

FOR NOT empty [Ready List]

DO
process the message

OD;
OD;

} /* main driver */

process the message

IF terminate marking
THEN

send 'DONE' ack to the start site

ELSE
get the current transition number from the marking;
IF there is a function in this site

THEN
select the module;
IF the pre-condition holds

THEN
do the action

ELSE
wait until the precondition is true

FI;

IF the post-condition does not hold
THEN

re-select the module
check the pre- and post- conditions

ELSE
update the marking, local data, and history of
the message

FI;

ELSE

-52-

IF the function is supported by some other site

THEN
send the message to that site

ELSE
/* no nodes supplied such a function or no nodes

supply the desired function which will satisfy

the post-condition */

send 'DEAD' ack to start site

FI;

FI;

) /* process the message */

Notes:

[Time Table] is a list which keeps information about the time of occurrence for each

operation.

[Ready List] is a list which keeps the ids of messages that are ready for processing.

A flowchart of the CN agent can be found in appendix A.

3.6 Error Recovery

The CN agent deals with error recovery by sending out an acknowledgement

(ACK) message to other site(s) in three situations. A different type ofACK is sent out in

each case. The first situation occurs after the first enabled transition of a new incoming

token has completed. For instance, the CN agent on machine B will send a 'NOTICE'

ACK to the agent that sent the token. The 'NOTICE' ACK is used to inform the CN agent

on a particular machine that a certain token has been received as well as the completion of

the first enabled transition. This type of ACK is designed to recover from the cases when

either a network error occurs or a machine is down.

-53-

Figure 3.6 shows a fragment of a CN in which Ti is the first enabled transition of

a token. Assume Ti-1 was just completed at machine A and that this token has been sent to

machine B. At this point, machine A is waiting for an ACK from machine B. If Ti is

successfully fired on machine B then a 'NOTICE' ACK will be sent to machine A.

machine A =&=_

X
\ 'NOTICE'
I ACK

machine B

FIGURE 3.6

Example of Sending a 'NOTICE' ACK

The second situation occurs after the entire task has completed. In this case, a

'DONE' ACK is sent to the starting site and to any previous site if needed. 'Previous site'

is taken to mean another site which sent a token to the current site and is waiting for the

-54-

current site to send an 'ACK' back. In Figure 3.7 after transition T; has completed, a

'DONE' ACK is sent to the starting site as well as to the previous site.

machine A ==^^

\
'DONE'

i ACK

machine B %:x
\ 'DONE'
ACK

machine C fZm*
*---~~"

Tj

FIGURE 3.7

Example of Sending a 'DONE' ACK

A job that cannot continue constitutes the third situation. An example is a required

function which does not exist in the distributed system. In this case, a 'DEAD' ACK is sent

to the site where the job originated as well as to the previous site if needed. Assuming that

transition Ti of Figure 3.8 has failed and the agent on the current site has judged that the

token cannot be further processed. Here, a DEAD' ACK will be sent to the starting site as

well as to the previous site.

55-

Tj

machine A £-^_

o
machine B -=

~\
DEAD

/

ACK

machine C
-£-=*"

=---"-'

\
\ 'DEAD

1

I ACK

FIGURE 3.8

Example of Sending a 'DEAD' ACK

Since error recovery is one of the responsibilities of a CN agent, this system has

high probability of recovering in the event of some machine(s) going down.

Let us consider the following situation where machine A sends a token to machine

B so that the token can continue its processing. The agent on machine A will try to send the

token to machine B several times. In case all of the attempts failed, the agent on A will re-

route the token to some other site to perform the desired operation. Thus, a 'time out' must

be defined for each transition. The time interval for the associated transition can be used to

-56-

judge how long the agent has to wait for an ACK before deciding to repeat or re-route the

transition. The value for a 'time out' variable for a 'source' transition has to be declared

large enough so that the maximum possible delay may occur before the starting site receives

a 'DONE' message for a job. A copy of the token is always kept in the starting site until the

site receives a 'DONE' ACK for that token. The worst case occurs when the source

transition times out and has to restart the job all over again. This simple strategy guarantees

some degree of recovery.

The CN can be hierarchically designed to handle more complicated jobs. A complex

action associated with a transition can be thought of as a sub-CN, and a sub-CN can be

treated in the same way as the highest level CN. In this way, recovery of the sub-CNs are

made independent of each other. This simple recovery strategy can be applied from every

sub-CN to the first level CN.

3.7 Summary

We discussed the design specification of this system with regard to the external

CN, internal CN, intelligent token, and the CN agent. The external CN is designed for

humans, while the internal CN is designed for machines. A token containing the marking

of the CN, local data, and a routing history of the job is passed through the network. As a

job is being processed, the CN agent at each site evaluates the job according to its marking

and CN. The agent either performs the required action or forwards a token to the next

processing site. Recovery problems are dealt with by a simple recovery strategy that is

used in this prototype.

-57-

This system can be made more complete by designing a nice graphical interface

between users and the system. In addition, transformation of the external CN to the

internal CN should also be made automatic. Possible extensions of this work and

concluding remarks will be given in the next chapter.

-58-

CHAPTER 4

CONCLUSION

4.1 Value of this work

Our system is designed to use the Petri net model to permit the distributed execution

of a job. We have designed this system so that it is very easy to use, understand, and

maintain. The internal construction of a job in this system is the result of a direct mapping

by the user from its external representation. A CN agent is mainly responsible for

overseeing that transitions are correctly carried out. The execution ofjobs in this system is

simple and straight-forward because the Petri net is a well-defined model.

A hierarchy of CNs may be necessary if a job gets complicated. This hierarchy

makes the design of the control specification for a job easier. Actions of a simple job can be

based upon the use of existing modules. A top-down hierarchy of CNs can help to solve a

complicated job, complicated actions can be represented as subnets so that details of these

actions could be hidden in lower levels of the CN. In this way, the program is easier to

design and debug.

4.2 Extensions of this Work

One limitation of this work is the lack of a user interface. A graphical interface is

needed to help guide the user during the process of designing the specification of a job. A

good environment for graphic facility is needed for this purpose. A complete graphical

interface package should not only provide the graphical environment, but also perform

-59-

some property checks based on the net created by the user. A graphical interface can also be

used to simulate or track the actual movement of tokens in the net. Moreover, this graphical

representation of a Petri net might also be automatically transformed into an internal data

structure. Human mistakes can be eliminated by following such a procedure.

The ability to specify a number of sites where a merge transtion can be performed

can be used to increase the reliablity of the system. Other extensions could be made

depending upon the particular application of a job. For example, utilization of data files can

be specified for transitions that either need the data from or output some data to particular

data files.

4.3 Concluding Remarks

The intent of this work is to implement a model which can be applied to jobs that

execute in a distributed environment. A 3B computer network was selected as the target

environment of the prototype system since it is available in the Computing and Information

Science Department at Kansas State University. Furthermore, this network offers a realistic

environment for simulating our prototype system. An extended version of Petri nets is used

because it provides the modeling power that is needed in a distributed system when

parallelism is involved.

60-

Bibliography

[ENCY83] Encyclopedia of Computer Science and Engineering, Van Nostrand
Reinhold Company, 1983, pp. 563-565.

[FILM84] Filman R. E. and Friedman D. P., Coordinated Computing Tools and
Techniques for Distributed Software, McGraw-Hill Book Company, 1984,
370 pages.

[KELL76] Keller, R. M. "Formal Verification of Parallel Programs," Communications
of the ACM, Vol. 19, No. 7, July 1976, pp. 371-384.

[LAMP85] Lampson B. W. , Paul M. and Siegert H. J., Distributed Systems:
architecture and implementation, Springer-Verlag, 1985, 510 pages.

[McBR83] McBride, R. A. and Unger, E. A. "Modeling Jobs In A Distributed
System," ACM 0-89791-123-7/83/012/0032, 1983, pp. 32-41.

[McBR87] McBride, R. A. and Unger E. A. "The Representation and Distribution of
Knowledge by a Petri Net," Draft Working Paper, Department of Computer
Science, Kansas State University, March, 1987

[PETE77] Peterson, J. L. "Petri Nets" ACM Computing Surveys, Vol. 9, No. 3,

Sept. 1977, pp. 223-252.

[PETE81] Peterson, J. L. Petri Net Theory and the Modeling of Systems, Prentice-
Hall Inc., 1981, 290 pages

[SYMO80] Symons, F. J. W. Introduction to Numerical Petri Nets, a General
Graphical Model of concurrent Processing Systems, Australian
Telecommunication Research, Vol. 14, No. 1, 1980, pp. 28-32.

[TCP/IP] Enhanced TCPflP WIN/3B User Guide.

61-

Appendix A

Flowchart

62-

resena msg

or ready list
sleep

J
send data

to other site

J

-63-

Appendix B

Source Code Listing

64-

#include <stdio.h>

#define TRACE 1

#defineACK0141
#define DATA 0144

#define MSG 0155

#define NONE 0156

#define OTHER 0157
#defineREQ0162
#define WATT 0167

#define YES 0171

#defineREST2
#define PATH "ageni/"

#defineDEAD0
#define NOTICE 1

#defme DONE 2

#defineNEW'n'

#define NO -1

#define TRUE 1

#define FALSE

#defme MAX_MACHINE 7

#define MAX_PLACE1 6
#define MAX_TRANS1 6
#define MAX PLACE2 9
#define MAXJTRANS2 8

#defineMAX_IN3
#defineMAX_OUT3
#defineMAX_OP2
#defme MAX_IN_PLACE 3

#define MAX_OUT_PLACE 3

#defmeEND-999
#define MAX_NODE_NAME 10

#define MAX_FILE_NAME 30
#define MAX_HISTORY 20
#define MAX_TIME_LEN 30
#define MAX_TIME_LIST 10

(/define MASTER_COPY 1

#define MAX_RECORD 10

#define MAX.STACK 10

#defineMAX_PRO_LEN 10

#define MAX_CMD 50
#define MAX_TRY 10

#define MARK 042

#define DEFAULT 5

typedefint BOOLEAN;

struct machine_type

65-

char op; /* single operation symbol */

char *node; /* machine which support the op */

char 'process; I* process' name */

struct record_type

(

char to[MAX_NODE_NAME]; /* the destinataion node name */

char process[MAX_PRO_LEN]; /* name of module •/

struct wait_ack_data_type /* waiting for ACK, DATA or variable */

{

int id; /* msg or data id */

char type; /* msg or data */

charumerMAX_TiME_LEN]; /* last time stamp processed */

int no_try; /* number of times retry the op */

char wait_for, /* wait for ACK, DATA, or REQ */

int interval; /* time interval before retry */

struct recordJype record[MAX_RECORD]; I* local history */

struct place_type

(

char *merge_next; /* site of a merge takes place */

int mergejrans; /* label of a merge transition */

struct action_type

(

int ins[MAX_IN]; /* local input data, positive for a variable; negative for input plcae */

char op;

);

struct trans_type

{

char *take_p; /* executing site */

int in_p[MAX_IN_PLACE]; /» input places */

char *pre_cond; J* pre-condition */

struct action_type act; /* transition */

char *post_cond; /* post-condition */

int out_p[MAX_OUT_PLACE]; /* output places */

int lime_out; /• time out interval */

struct petri_net_type I* petri net includes places and transitions */

(

struct place_type p[MAX_PLACE2];
struct trans_type t[MAX_TRANS2];

struct history_type /* history of the execution */

{

int id; /* msg id */

66-

int trans;

char op;

char node[MAX_NODE_NAME];
char process[MAX_PRO_LEN];
char time[MAX_TIME_LEN];

/* transition no */

/* opeartaion */

f* op took place */

/* process name.haven't used */

I* time stamp of op */

struct data_type

(

char site[MAX_NODE_NAME];
char name[2];

int id;

I* request site name */

I* variable name */

I* msg id */

struct messg_type

1

int id; /* message id - 4 digits: 1 -- type of CN; 2 -- instance number; 3,4 -- current place */

char type; /* MSG or DATA */

int nextji; /* index for next history location */

char *start_node;

char *dest_node;

int marking[MAX_PLACE2];
struct petri_net_type net;

int result;

int inputs[2];

I* the starts node */

I* the destination node */

/* marking */

I* petri net */

/* result */

I* local input data */

struct history_type history[MAX_HISTORY]; /* routing history */

struct ack_type I* acknowledgement */

int id; I* MSG or DATA'S id */

char type; /* MSG or DATA */

int info; /* DEAD, NOTICE or DONE */

};

struct ready_type /* ready list */

(

int id; /* msg id */

char wait_for, I* wait for ACK, DATA, or REQ otherwise is NEW */

char host[MAX_NODE_NAME];
int status;

int child;

-67-

/* in_record */

/* If the process has been tried then return TORE else return FALSE */

BOOLEAN in__record(process, p_record, op)

char *process;

struct record_rype p_recordD;

char op;

(

int i;

for (i = 0; i < 10 && p_record[i].to[0] != MARK && strcmp(p_record[i].process, process) != 0; i++)

if (i >= 10 II p_record[i].to[0]= MARK)
retum(FALSE);

else

retumfTRUE);

) I* in_record */

I* get_record */

/* place record into local history */

get_record(p_record, process, node)

struct record_type p_recordQ;

char *process, "node;

{

int i;

for (i = 0; i < 10 && p_record[i].to[0] != MARK; i++)

if (i < 10)

(

strcpy(p_record[i].prccess, process);

strcpy(p_record[i].to, node);

)

) I* get_record */

- available_module -

I* If there is an available module in its own site then return YES, if other site provides an available
module then reutm OTHER, else return NONE */

char available_module(take_p, op, modulejist, new_node, p_record, module)
char *take_p;

char op;

struct machine_type module_listD;

char new_node[];

struct record_type p_record0;

char 'module;

{

int i;

BOOLEAN isjiost = FALSE, got_one = FALSE;
char found = NONE;

68-

for (i = 0; i < MAX_MACHINE && !is_host; i++)

(

if (op= moduIe_list[i].op && !in_record(module_list[i] .process, p_record, op))

{

if (!got_one)

t

if (strcmp(module_list[i].node, take_p)= II strcmp("ANY", takc_p) == 0)

{

•module = op;

got_one = TRUE;
if (strcmp(host, module_list[i].node)= 0)

(

get_record(p_recordjnodule_!ist[i].processjiost);

is_host = TRUE;
found = YES;

]

else

(

sircpy(new_node, module_Iist[i].node);

get_record(p_recort,moddejist[i].process,new_node);

found = OTHER;

else

if (strcmpfhost, module_list[i].node)= 0)

(

•module = op;

get_record(p_record,module_rist[i].process,host);

is_host = TRUE;
found = YES;

retum(found);

} /* available_module */

coming_data

I* receive coming information: message, ACK, or request */

char coming_data(msg_id, ack, req)

int *msg_id;

struct ack_type *ack;

struct data_type "req;

{

int i;

FILE *fp, *fopen();

char file[MAX_FILE_NAME];

for (i = 0; i < MAX_FTLE_NAME; i++)

file[i] = \)';

fp = NULL;

69-

for (i = 1 100; i <= 3000 && fp == NULL; i++) /» open ack file which was sent to it */

sprintf(file, "a%s%d", host, i);

fp = fopen(file, "r");

)

if(fp!=NULL)

{

fscanf(fp, "%d", &ack->id);

fscanf(fp, " %c", &ack->type);

fscanf(fp, " %d", &ack->info);

fclose(fp);

#if TRACE
printf("* received an ACK for message (%d)W, ack->id);

#endif

unlink(file);

retum(ACK);

)

for (i = 1 100; i <= 3000 && fp= NULL; i++) /» open req file */

sprintf(file, "r%d", i);

fp = fopen(file, "r");

)

if(fp!=NULL)

{

fscanf(fp, "%s", req->site);

fscanf(fp, " %s", req->name);

fscanf(fp, " %d", &req->id);

fclose(fp);

#if TRACE
printf("» received an request for variable (%s) from site (%s) for message (%d)W, req->name, req->site, req-
>id);

#endif

unlink(file);

retumfREQ);

}

for (i = 1 100; i <= 3000 && fp= NULL; i++) /» open msg file */

sprintf(file, "m%d", i);

fp = fopen(file, "r");

)

if(fp!=NULL)

{

fscanf(fp, "%d", msg_id);

fclose(fp);

#if TRACE
printf("* received a MSG message (%d)W, *msg_id);
#endif

return(MSG);

}

else

retnm(NONE); /» no MSG or ACK files */

) /* coming data */

70-

/* read_msg */

/* read in information */

BOOLEAN read_msg(type, id, msg)
char type;

int id;

struct messg_type *msg;

(

int i, times = 0, max_place;

FILE *fp, *fopen0;

char file[MAX_FILE_NAME], sys[MAX_CMD];

sprintf(file, "%c%d", type, id);

for(fp = NULL; fp= NULL && ++times < 3;)

fp = fopen(file, "r");

if (times >= 3) return(FALSE);

fscanf(fp, "%d", &msg->id);

fscanf(fp, " %c", &msg->type);

fscanf(fp, " %d", &msg->next_h);

if (id/1000 =1)
max_place = MAX_PLACE1;

else

max_place = MAX.PLACE2;
for (i = 0; i < max_place; i++) /* marking */

fscanf(fp, "%ld", &msg->marking[i]);

fscanf(fp, "%d", &msg->result);

fscanf(fp, "%d", &msg->inputs[0]);

fscanf(fp, "%d", &msg->inputs[l]);

if (msg->next_h > 0)

(

fscanf(fp, "\n");

for (i = 0; i < msg->next_h; i++) /* history */

fscanf(fp, "%d", &msg->history[i].id);

fscanf(fp, " %d", &msg->history[i].trans);

fscanf(fp, " %c", &msg->history[i].op);

fscanf(fp, " %s", msg->history[i].node);

fscanf(fp, " %s\n", msg->history[i].time);

else /* treat it as the start node */

(

sircpy(msg->history[0].node, host);

msg->history[0].id = msg->id;

msg->history[0] .trans = 0;

msg->history[0].op = 's';

strcpy(msg->history[0].time, get_time0);

msg->next_h++;

]

fclose(fp);

-71-

/* after read the msg move the msg to wait file */

if(type= MSG)
{

sprintf(sys, "mv %s w%d", file, id);

system(sys);

)

retumfTRUE);

I
/* read_msg */

- execute_action */

/* execute a transition by creating a child process to perform the function */

BOOLEAN execute_action(var, trans_no, module, t_m)
struct datajype varQ;

int trans_no;

char module;

struct messg_type *t_m;

{

intdl,d2,d3, i;

FILE *fp, *fopenO;

char sys[MAX_CMD], *function;

if (module == T)

{

fork_it(trans_no, t_m);

retumfTRUE);

}

else

{

dl = t_m->inputs[0];

d2 = t_m->inputs[lj;

switch(module)

{

case '+':

function = "plus";

break;

case '-':

function = "minus";

break;

case'*':

function = "multi";

break;

case/:

function = "divide";

break;

default: break;

)

sprintf(sys,"%s %d %d %s",funcuon,dl,d2,"temp");

system(sys);

for (i = 1, fp = NULL; i <= 2 && fp == NULL; ++i, sleep(2))

fp = fopen("temp", "r");

if(fp!=NULL)

-72-

fscanf(fp, "%d", &d3);

fclose(fp);

unlink("temp");

t_m->result = d3;

retum(TRUE);

)

else

retumfFALSE);

)
/* execute_action */

count_out_place

/* return the number of out put places of a transition */

count_out_place(trans_no, t_m)
int trans_no;

struct messg_type *t_m;

(

int i;

for (i = 0; i < MAX_OUT_PLACE && t_m->neLt[trans_no].out_p[i] != END; i++)

return(i);

/* fork_it */

/* perform a fork transition of a Petri net, the marking will be different for every sibling token */

fork_it(trans_no, t_m)

int trans_no;

struct messg_type *t_m;

(

int pidl, pid2, no_child, num. place_no = 0, total, t, i;

char temp[4], fiIerMAX_FILE_NAME], fl[6], f2[6];

for (i = 0, num = t_m->net.t[trans_no].in_p[i]; num != END;)

t_m->marking[num] = 0;

num = t_m->net.t[trans_no].in_p[++i];

}

total = count_out_pIace(trans_no, t_m);

fflush(stdout);

if((pidl = forkO)!=0)

{

t_m->id = t_m->id /100 * 100 + t_m->net.t[trans_no].out_p[pIace_no];

num = t_rn->net.t[trans_no].out_p[place_no];

t_m->marking[num] = 1;

sprintf(G, "w%d", t_m->id);

write_msg_to_file(t_m, f2);

}

else

-73-

I* create a new msg id for child */

child = gerpidO;

t_m->id = t_m->id /100 * 100 + t_m->net.t[trans_no].out_p[++place_no];

num = t_m->net.t[trans_no].out_p[place_no];

t_m->marking[num] = 1;

t_m->next_h = 0; I* wipe out the history */

/* write marking and data to parent */

sprintf(fl, "w%d", t_m->id);

write_msg_to_file(t_m, fl);

if (total > 2 && (pid2 = forkO) == 0)

{ /* create another msg id for child */

child = getpidO;

t_m->marking[numj = 0;

t_m->id = t_m->id /100 * 100 + t_m->neLt[trans_no].out_p[++place_no];
num = t_m->net.t[trans_no].oul_p[pIace_no];

t_m->marking[num] = 1;

sprintf(fl, "w%d", t_m->id);

write_msg_to_file(t_m, fl);

pre_trans_no

/* return the previous transition label */

int pre_trans_no(msg)

struct messg_type *msg;

[

int i, max_trans;

BOOLEAN get_it = FALSE;

if (msg->id/100 == 1) max_trans = MAX_TRANS 1;

else maxjrans = MAX_TRANS2;
for (i = 1; i < max_trans; i++)

(

if(msg->marking[msg->neLt[i].out_p[0]])

get_it==TRUE;
retum(i);

retum(-l);

I
/* pre_trans_no */

get_trans_no

/* check the marking to find out current trans no */

int get_trans_no(msg)

struct messg_type *msg;

(

int i, j, max_trans;

BOOLEAN getjt = TRUE;

74-

if(msg->id/100= l)max_trans = MAX_TRANSl;
else max_lrans = MAX_TRANS2;
for (i = 1; i < max_trans; i++, get_it = TRUE)
{

for (j = 0; j < MAX_IN_PLACE && msg->neu[i].in_p|j] != END; j++)
if (!msg->marking[msg->net.t[i].injp[j]])

{

get_it = FALSE;
break;

)

if(get_it= TRUE)

{

retum(i);

retum(-l);

1
1* get_trans_no */

/* get_host */

I* get host node name */

char *get_host0

{

char name[MAX_NODE_NAME], temp[MAX_CMD], ffle[MAX_FILE_NAME];
FILE *fopen0, *fp;

strcpy(file, "hostnamel");

sprintf(temp, "hostname > %s", file);

system(temp);

fp = fopen(file, "r");

fscanf(fp, "%s", name);

fclose(fp);

unlink(file);

retum(name);

) /* get_host */

I* get_val »/

/* get the local input variable */

BOOLEAN get_val(trans_no, msg, var, wait_for)

int trans_no;

struct messg_type *msg;
struct data_type varQ;

char *wait_for;

(

int index 1, index2, times, tl;

char var 1[2], var2[2], sys[MAX_CMD], fl[10];

FILE *fp, *fopen0;

struct messgjype *tmp;

indexl = msg->neu[trans_no].act.ins[0];

index2 = msg->neLt[trans_no].act.ins[l];

75-

varl[01 = indexl + 0101; varl[l] = ">0';

var2[0] = index2 + 0101; var2[l] = M)';

fp = NULL;

if (indexl= END) retumfTRUE);
if (indexl >= && msg->inputs[0] == -999) /* from variable list */

if (strcmpfhost, var[indexl].site) != 0) /* var is not at host */

(

sprintf(fl, "%s%d", varl, msg->id);

fp = fopen(fl, V);
if(fp= NULL)

remote_get_val(indexl, var, varl, msg);

else

(

fscanf(fp, "%d", &msg->inputs[0]);

fclose(fp);

unlink(fl);

else I* var is at host */

(

fp= fopen(varl, "r");

if(fp!=NULL)

I

fscanf(fp, "%d", &msg->inputs[0]);

fclose(fr));

fclose(fp);

if(fp= NULL)
(

•wait_for = REQ;
return(FALSE);

}

) I* else from input places */

else

{

if (msg->inputs[0]= -999)

msg->inputs[0] = msg->result;

)

if (index2 >= && msg->inputs[l] = -999) /* from variable list */

{

if (strcmp(host, var[index2].site) != 0) I* var is not at host */

{

sprintf(fl, "%s%d", var2, msg->id);

fp = fopen(fl,"r");

if(fp= NULL)
remote_get_val(index2, var, var2, msg);

else

(

fscanf(fp, "%d", &msg->inputstl]);

fclose(fr));

unlink(fl);

-76-

)

)

else /* var is at host */

(

fp = fopen(var2, "r");

if(fp!=NULL)

(

fscanf(fp, "%d", &msg->inputs[l]);

fclose(fp);

)

}

fclose(fp);

if(fp= NULL)
{

*wait_for = REQ;
retum(FALSE);

}

else

retum(TRUE);

)

else /* else from input places */

t

if (msg->inputs[l]= -999)

{

tl = msg->id/l00*100 + msg->neLt[trans_no].in_p[l];

for(fp = NULL, times = 1; fp == NULL && ++times <= 3;)

sprintf(fl, "d%d", tl);

fp = fopen(fl,"r");

if(fp= NULL)sIeep(3);

)

fclose(fp);

I* before real merge action, we have to update the marking first, up to this point, only
have to know the marking of the child */

if (times <= 3)

(

tmp = (struct messg_type *) malloc(sizeof(struct messg_type));

init_msg(tmp, msg->id/1000);

read_msg(DATA, tl, tmp);

combine_info(msg, tmp);

free(tmp);

retum(TRUE);

)

else

(

*wait_for = DATA;
retum(FALSE);

)

)

I
/* get_val */

77-

I* remote_get_val */

I* request variable from other site */

remote_get_vaI(index, var, variable, msg)
int index;

struct data_type var[];

char variablelj;

struct messg_type *msg;

{

char sys[MAX_CMD], file[MAX_FILE_NAME];
FILE *fopenO, *fp;

int times;

sprintf(file, "r%d", msg->id);

fp = fopen(fiIe, "w");

fprintf(fp, "%s", host);

fprintf(fp, " %s", variable);

fprintfffp, " %d", msg->id);

fclose(fp);

sprinlf(sys, "rep %s %s:%s", file, var[index].site, file);

system(sys);

sprintf(sys, "rm %s", file);

#if TRACE
printf("request variable (%s) from other site (%s) for message (%d)W, variable, var[index].site, msg->id);
#endif

system(sys);

) I* remote_get_val */

/* initialization */

init(var, ready_stack, wait_ack_data, modulejist)

struct data_type varD;

struct ready_type ready_stackQ;

struct wail_ack_data_type wait_ack_dataD;

struct machine_type module_list[];

(

int i;

init_var(var);

strcpy(host, get_hostQ);

for (i = 0; i < MAX_TIME_LIST; i++)

wait_ack_dala[i].id = END;
ready_stack[OJ.id = 1;

init_machine(module_list);

) I* init */

I* assume all variaibes are in site november */

init_var(var)

struct data_type varO;

78-

int 1;

char name;

for (name = 'A', i = 0; i < 10; i++)

{

var[i].name[0] = name++;
var[i].name[l] = \)';

strcpy(var[i].siee, "november");

init_machine

I* initialize machine list */

init_machine(module_list)

struct machine_type module_listD;

{

module_list[0].op = '+';

module_list[0] .node = "november";

module_list[0].process= "plusl";

module_list[l].op = '*';

module_lisl[l].node = "november";

module_Iisl[l].process = "timesl";

module_list[2].op = '-';

module_list[2].node = "hotel";

module_list[2] .process = "minus 1"

module_list[3].op = '-';

module_list[3].node = "hotel";

module_list[3].process = "minus2"

module_list[4].op = T;

module_list[4].node= "november";

module_list[4]
.
process = "forkl";

module_list[5].op = T;

moduleJist[5].node = "hotel";

module_list[5].process = "fork2";

module_list[6].op = 7;
moduIe_list[6].node = "november";

module_list[6].process = "dividel";

) /* init_machine */

79-

/» init_msg */

I* initialize the static structure of Petri net for messages */

init_msg(msg, msg_index)

struct messg_type *msg;
int msg_index;

(

if (msg_index= 1)

{

msg->start_node = "november";

msg->dest_node = "november";

msg->net.p[0].merge_next = "NO";
msg->net.p[0].merge_trans = -1;

msg->net.p[l].merge_next = "NO";
msg->netp[l].merge_trans = -1;

msg->net.p[2].merge_next = "NO";
msg->neLp[2].merge_trans = -1;

msg->net.p[3].merge_next = "november";

msg->net.p[3J.merge_trans = 4;

msg->net.p[4].merge_next = "november";

msg->net.p[4].merge_trans = 4;

msg->net.p[5].merge_next = "NO";

msg->neLp[5].merge_trans = -1;

msg->neu[0].in_p[0] = END;
msg->neu[0].out_p[0] = 0;

msg->neu[0].out_p[l] = END;
msg->net.l[OJ.act.ins[0] = END;
msg->neLt[0].acLop = 's';

msg->nett[0].take_p= "ANY";
msg->net.t[0].time_out = DEFAULT + 10;

msg->neu[l].in_p[0] = 0;

msg->net.t[l].in_p[l] = END;
msg->nett[l].out_p[0] = 1;

msg->net.t[l].out_p[l] = 2;

msg->net.t[l].out_p[2] = END;
msg->neLt[l].acLins[0] = END;
msg->net.t[l].acLop = 'f;

msg->net.t[l].take_p= "ANY";
msg->neLt[l].time_out = DEFAULT;

msg->nett[21.in_p[0] = 1;

msg->net.t[2J.in_p[l] = END;
msg->neu[2].out_p[0] = 3;

msg->nel.t[2].out_p[l] = END;
msg->nett[2].acLins[0] = 0;

msg->neLt[2].acLins[l] = 1;

msg->net.t[2].actins[2] = END;
msg->net.t[2].actop = V;
msg->net.t[2].take_p= "ANY";
msg->neU[2].time_out = DEFAULT;

80-

msg->net.t[3].in_p[0] = 2;

msg->neu[3].in_p[l] = END;
msg->neLt[3].oul_p[0] = 4;

msg->net.t[3].out_p[l] = END;
msg->neLt[3].acLins[0] = 2;

msg->neu[3].acLins[l] = 3;

msg->net.t[3].act.ins[2] = END;
msg->neU[3].acLop = '-';

msg->net.t[3].take_j>= "ANY";
msg->neu[3].0me_out = DEFAULT;

msg->net.t[4].iji_p[0] = 3;

msg->neLt[4].in_p[l] =4;
msg->net.t[4J.in_p[2] = END;
msg->net-t[4].out_p[0] = 5;

msg->neu[4].out_p[l] = END;
msg->neLt[4].acLins[0] = -3;

msg->net.t[4].acLins[l] = -4;

msg->net.t[4].acLins(2] = END;
msg->neLt[4].act.op = '*';

msg->neu[4].take_p= "november";

msg->nett[4].time_out = DEFAULT;
} /* msg_index = 1 */

if (msg_index= 2)

(

msg->start_node = "november";

msg->dest_node = "november";

msg->net.p[0].merge_next = "NO";

msg->netp[0],merge_trans -1;

msg->net.p[l].merge_next = "NO";

msg->neLp[l].merge_trans = -1;

msg->net.p[2].merge_next = "NO":

msg->netp[2].merge_ttans = -1;

msg->net.p[3].merge_next = "NO":

msg->netp[3].merge_trans = -1;

msg->net.p[4].merge_next = "november";

msg->net.p[4].merge_trans = 5;

msg->net.p[5].merge_next = "november";

msg->net.p[5].merge_trans = 5;

msg->net.p[6].merge_next = "november";

msg->net.p[6].merge_trans = 6;

msg->net.p[7].merge_next = "november";

msg->net.p[7].merge_rrans = 6;

msg->net.p[8].merge_next = "NO";

msg->neLp[8].merge_trans = -1;

msg->net.t[0].in_p[0] = END;
msg->net.t[0].oui_p[0] = 0;

msg->net.t[0].out_p[l] = END;
msg->net.t[0].acLins[0] = END;
msg->net.t[0].act.op = 's';

msg->net.t[0].lake_p= "ANY";

81-

msg->net.t[0].time_oul = DEFAULT + 20;

msg->neu[l].in_p[0] = 0;

msg->net.t[l].in_p[l] = END;
msg->neu[l].out_p[0] = 1;

msg->neu[l].out_p[lj = 2;

msg->neu[l].out_p[2] = 3;

msg->net.t[l].out_p[3] = END;
msg->net.t[l].acLins[0] = END;
msg->net.t[l]jcLop = 'f;

msg->neu[l].take_p= "ANY";
msg->neLt[l].time_out = DEFAULT;

msg->neLt[2].in_p[0] = 1;

msg->neLt[2].in_p[l] = END;
msg->nett[2].out_p[0] =4;
msg->net.t[2].out_p[l] = END;
msg->net.t[2].actins[0] = 0;

msg->neLt[2].acLins[l] = 1;

msg->neLt[2].acLins[2] = END;
msg->neLt[2].acLop = '+';

msg->nett[2].take_p= "ANY";
msg->neut[2].time_out = DEFAULT;

msg->neLt[3].inj[0] = 2;

msg->net.t[3].in_p[l] = END;
msg->neLt[3].out_p[0] = 5;

msg->neU[3].out_pD] = END;
msg->neLt[3].acLins[0] = 2;

msg->neLt[3].acLins[l] = 3;

msg->neu[3].acLins[2] = END;
msg->net.t[3].acuop = '-';

msg->net.t[3].take_p= "ANY";
msg->neLt[3].Ume_out = DEFAULT;

msg->neLt[4].in_p[0] = 3;

msg->neu[4].in_pil] = END;
msg->net.t[4].out_p[0] = 6;

msg->net.t[4].out_p[l] = END;
msg->neLt[4].acLins[0] =4;
msg->neLt[4].acLins[l] = 5;

msg->nct.t[4i.acLins[2] = END;
msg->net.t[4].acLop = '-';

msg->net.t[4].take_p= "ANY";
msg->neLt[4].time_out = DEFAULT;

msg->neLt[5].in_p[0] = 4;

msg->neu[5].in_p[l] =5;
msg->neLt[5].in_p[2] = END;
msg->neu[5].out_p[0] = 7;

msg->net.t[5].out_p[l) = END;
msg->neLt[5].acLins[0] = -4;

msg->net.t[5].act.ins[l] = -5;

msg->net.t[5].acLins[2] = END;

-82-

msg->net.t[5].act.op = '*';

msg->net.t[5].take_p= "november";

msg->neU[5].tiine_out = DEFAULT;

msg->neu[6].in_p[0] = 7;

msg->neLt[6].in_p[l] = 6;

msg->neu[6].in_p[2J = END;
msg->nelt[6].out_p[0] = 8;

msg->net.t[6].out_p[l] = END;
msg->neLt[6].act.ins(0] = -7;

msg->net.t[6].act.ins[i] = -6;

msg->neu[6].act.ins[2] = END;
msg->neLt[6].acLop = 7;
msg->net.t[6].take_p= "november";

msg->neUf6].time_out = DEFAULT;
) /* msgjndex= 1*1

I
/* init_msg */

/* main */

/* main body */

mainO

{

struct machine_tvpe module_list[MAX_MACHINE];
struct wait_ack_data_type wait_a_d[MAX_TIME_LIST];
struct ack_type *ack;

char "mallocO, *freeO, *temp, ans, sys[MAX_CMD];
struct ready_tvpe ready_stack[MAX_STACK];
int msg_id, test = 30, i, pid;

struct recordjype p_record[MAX_RECORD];
struct data_type var[10], *req;

ack = (struct ack_type *) malIoc(sizeof(struct ack_type));

req = (struct data_type *) mallcc(sizeof(struct data_type));

init(var, ready_stack, wait_a_d, moduIe_list);

for (; test- > 0;)

switch(ans = coming_data(&msg_id, ack, req))

case ACK:
delete_wait_a_d(wait_a_d, ack);

break;

case REQ:
sprintf(sys, "rep %s %s:%s%d", req->name, req->site, req->name, req->id);

system(sys);

break;

case NONE:
sleep(REST);

case MSG:
I* keep the new msg in ready_stack, check the time out event first */

if (ans= MSG)
{

ready_stack[ready_stack[0].id].wait_for = NEW;
ready_stack[ready_stack[0].id++].id = msg_id;

-83-

check_time_out(wait_a_d, ready_stack);

for (i = ready_stack[0].id-l; i > 0; —i)

(

#if TRACE
printf("> process message (%d)W, ready_stack[i].id);

#endif

process_msg(var4eady_stack[i].idjnodule_Iist,wait_a_d,p_recordj'eady_sack[i].wait_

for);

}

ready_stack[0].id = 1;

break;

default:

break;

) f switch */

free(ack);

free(req);

) I* main */

in_wait, U._TTtUU /

I* if message is kept in waiting list then return TRUE else return FASLE */

BOOLEAN in_wait(id, wait_a_d, index)

int id;

struct wait_ack_data_type wait_a_d0;
int "index;

(

int i;

for (i = 0; i < MAX_TTME_LIST; i++)

(

if(wait_a_d[i].id= id)

(

•index = i;

retumCTRUE);

)

)

•index = -1;

return(FALSE);

) I* in_wait */

combine_wait
/* combine parent and child's waiting list */

combine_wait(w)

struct wait_ack_data_type v/Q;

{

FILE *fp, *fopen0;

inti.j, rl = 1, r2 = 1;

struct wait_ack_dala_type *t;

if (child !=0)

84-

fp = fopen("wait", "a");

for (i = 0; i < 10; i++)

if(w[i].id!=END)

(

fprintf(fp,"%d %c %s %d %c %d",

w[i].id,w[i].type,w[i].time,w[i].no_try,w[i].wait_for,w[i]. interval);

for = 0; j < 10; j++)

fprintf(fp," %s %s",w[i]j-ecord[j].to,w[i]jecord[j].process);

fprintf(fp, "^i");

)

fclose(fp);

)

else

{

fp = fopen("wait", V);
if (fp > 0) I* parent read in the wait list and combine */

(

t = (struct wait_ack_data_type *) mallcc(sizeof(struct wait_ack_data_type));

for (i = 0; i < 10 && rl > 0; i++)

(

rl=fscanf(fp,"%d %c %s %d %c %d",&t->id,&t->type,t->time,&t->no_try,

&t->wait_for,&l->interval);

for = 0; j < 10 && rl > && r2 > 0; j++)

r2=fscanf(fp," %s %s",t->recordrj].to,t->recordfj].process);

fscanf(fp, '\\")\

f combine the t into the wait list */

for (j = 0; j < 10 && rl > && w[j].id != t->id; j++)

if(j'>=10)
for (j = 0; j < 10 && w[j].id != END && rl > 0; j++)

if (j < 10 && rl > 0)

(

w[j].id = t->id;

w[j].type = t->type;

strcpy(w[j].time, t->time);

w(j].no_try = t->no_try;

w[j].wait_for = t->wait_for;

w[j].interval = t->interval;

dump_record(w|j]jecord,t->record);

)

)

fclose(fp);

unlink("wait");

free(t);

)

)

) I* combine_wait */

I* process the message */

prccess_msg

-85-

process_msg(var, id, modulejist, wait_a_d, p_record, wait_for)

struct data_type varQ;

int id;

struct machine_type moduleJistQ;

struct wait_ack_data_type wait_a_dD;

struct record_type p_recordQ;

char wait_for;

(

struct messg_type *msg, *t_m;

struct ack_cype *ack;

char to[MAX_NODE_NAME], op, module, temp[MAX_FILE_NAME];
BOOLEAN is_msg = FALSE, post_cond = TRUE, done, why;
charresp;

int i, trans_no, index, max_place;

msg = (struct messg_type *) malloc(sizeof(stnict messg_type));

t_m = (struct messg_type *) malloc(sizeof(struct messg_type));

ack = (struct ack_type *) malloc(sizeof(struct ack_type));

I* if the msg is from wait list then the local history dump back to p_record else re-init p_record */

if (!in_wait(id, wait_a_d, &index))

for (i = 0; i < MAX_RECORD; i++)

{

p_record[i].to[0] = MARK;
p_record[i].to[l] = ">0';

p_record[i].prccess[0] = MARK;
p_record[i].process[l] = \)';

)

else

dump_record(p_record, wait_a_d[index]jecord);

child = 0;

init_msg(msg, id/1000);

if(wait_for= NEW)
why=read_msg(MSG, id, msg);

else

why=read_msg(WAIT, id, msg);

do{
if (id/1000= 1) max_place = MAX.PLACE1;
else max_place = MAX_PLACE2;
if (msg->marking[max_place-l])

(

ack->id = msg->id;

ack->type = MSG;
ack->info = DONE;

#if TRACE
printf("msg id=(%d) is DONENn", ack->id/l 00*100);

#endif

delete_wait_a_d(wait_a_d, ack);

is_msg = FALSE;

)

else

(

if (post_cond)

86-

trans_no = get_trans_no(msg);

op = msg->net.l[trans_no].act.op;

)

switch(availabIe_module(

msg->neLt[trans_no] .take_p,

op, modulejist, to, p_record, &module))

(

case NONE:
ack->id = msg->history[0].id; ack->type = MSG;
ack->info = DEAD;
if (strcmp(msg->history[msg->next_h-l].node,hosf) != 0)

send_ack(ack,msg->history[msg->next_h-l].node);

#if TRACE
printf("There is a dead msg. pid=(%d),op=(%c),t=(%d)\n",getpidO,op,trans_no);

#endif

delete_wait_a_d(wait_a_d, ack);

is_msg = FALSE;
break;

case OTHER:
sprintf(temp, "w%d", msg->id);

write_msg_to_file(msg, temp);

send_msg(MSG, msg->id, to);

if (strcmp(msg->history[msg->next_h-l].node, host) == 0)

(

insert_wait_a_d(to,wait_a_djnsg->id,msg->type,p_record,ACK,

msg->neU[trans_no].lime_out);

}

else /* current node will not be in the history */

(

sprintf(temp, "w%d", msg->id);

unlink(temp); /* remove the wfile */

}

is_msg = FALSE;
break;

case YES:
/* specify the pre_cond to be the time problem */

/* while (!pre_cond) sleep(2); */

if (msg->marking[0])

(

#if TRACE
printf("insert the msg (%d) for the source transiton to wait listV, msg->id);

#endif

msert_wait_a_d("none",wait_a_djnsg->id,msg->type,p_record,ACK,

msg->nett[trans_no].time_out);

)

init_msg(t_m, id/1000);

copy_msg(t_m, msg);

if (!get_val(trans_no, t_m, var,&wait_for))

(

is_msg = FALSE;
for (done = FALSE, i = 0; i < MAX_RECORD && !done; ++i)

(

if (p_record[i].to[0] = MARK)
done = TRUE;

-87-

)

i = i - 2;

p_record[i].lo[0] = MARK; p_record[i].to[l] = "O';

#if TRACE
printf("insert message (%d) into wait list for (%c)\n" ,msg->id ,wait_for);

#endif

insert_wait_a_d("NO",wait_a_djnsg->id^nsg->type,p_record,wait_for,

msg->net.t[trans__no].time_out);

break;

}

if (!execute_action(var, trans_no, module, t_m))

(

is_msg = FALSE;
break;

)

if (post_cond)

{

/* o-ok, c-child, m-msg, f-failed */

resp = 'o';

if (in_wait(t_m->id, wait_a_d, &index) && (wait_for= DATA II

wait_for= REQ))
wait_a_d[index] id = END;

update_msg(trans_no,t_m,msg,&resp,var);

strcpy(tempjrisg->net.p[msg->net.t[trans_no].out_p[0]].merge_next);

if (resp 'c' II resp= 'm')

{

is_msg = FALSE;
if (strcmp(temp, host) != 0)

(

#if TRACE
printfO'insert data message (%d) into wait list, wait for ACKV, msg->id);

#endif

insert_wait_a_d("NO",wait_a_d^nsg->id,DATA,p_record,ACK,

msg->neLt[trans_no].time_out);

)

) else

if(resp= 'f)

(I* erase the last history */

for (done = FALSE, i = 0; i < MAX_RECORD && Idone; ++i)

t

if (p_record[i].to[0]= MARK)
done = TRUE;

}

i = i - 2;

p_record[i].to[0] = MARK; p_record[i].to[l] = M)';

is_msg = FALSE;
#if TRACE
printfC'insert message (%d) into wait list, wait for DATASn", msg->id);

#endif

insert_wait_a_d("NO",wait_a_d^nsg->idJ)ATA,p_record,DATA,

msg->neLt[trans_no].time_out);

}

else /* resp == 'o' */

is_msg = TRUE;

break;

default break;

} I* switch */

) I* else */

) while (is_msg); /* do */

combine_wait(wait_a_d);

free(msg); free(t_m); ftee(ack);

if (child !=0)exitO;

1
1* process msg */

-89-

write_msg_to_file

/* write message to a file */

write_msg_to_fiie(msg, file)

struct messg_type *msg;

charfileD;

(

FILE *fp, »fopenO;

int i, max_place;

fp = fopen(file, "w");

fprintf(fp, "%d %c %d ", msg->id, msg->type, msg->next_h);

if(msg->id/1000= l)

max_place = MAX_PLACE1;
else

max_place = MAX_PLACE2;
for (i = 0; i < max_place; i++)

fprintf(fp, "%d", msg->marking[i]);

fprintf(fp, " %d", msg->result);

fprintf(fp, " %d", msg->inputs[0]);

fprintf(fp, " %d", msg->inputs[l]);

fprintf(fp, ""«");

for (i = 0; i < msg->next_h; i++)

{

fprintf(fp, "%d", msg->history[i].id);

fprintf(fp, " %d", msg->history[i].trans);

fprintf(fp, " %c", msg->history[i].op);

fprintf(fp, " %s", msg->history[i].node);

fprintf(fp, " %s\n", msg->history[i].time);

)

fclose(fp);

)
/* write_msg_to_file */

/* send_ack */

/* send ACK to other site */

send_ack(ack, node)

struct ack_type *ack;

char nodeO;

(

char fl[MAX_FTLE_NAME], sys[MAX_CMD];
FILE *fp, *fopenO;

sprintf(fl, "a%s%d", node, ack->id);

fp = fopen(fl,"w");

fprintf(fp, "%d %c %d", ack->id, ack->type, ack->info);

fclose(fp);

#if TRACE
printf("send ack to site (%s) for message (%d)\n", node, ack->id);

#endif

sprintf(sys,"rcp %s %s:%s", fl, node, fl);

system(sys);

unlink(fl);

90-

) I* send_ack */

send_ack_cleanup

I* send ack mainly after merge transition */

send_ack_cleanup(msg)

struct messg_type *msg;

(

char tmp[MAX_CMDJ, pIace_no[2];

int pre_trans, no, place, i;

struct ack_type *ack;

ack = (struct ack_type *) maUoc(sizeof(struct ackjype));
no = msg->next_h - 2;

if (no >= 0) pre_trans = pre_trans_no(msg); /* get merge trans no */

if (no >= && strcmp(msg->history[no].node, host) != 0)/* from child */

if (strcmp(msg->neLt[pre_trans].take_p, msg->history[no].node) !=

&& strcmp("ANY"jnsg->net.t[pre_trans].take_p) != 0)

(I* right after merge transaction */

ack->id = msg->id/10O*10O<-msg->neLt[pre_trans].in_p[l];

ack->type = DATA;
ack->info = NOTICE;
send_ack(ack, msg->history[no].node);

else /* general sending ack */

ack->id= msg->history[0].id;

ack->type = MSG;
ack->info = NOTICE;
send_ack(ack, msg->history[no].node);

)

)

I* send_ack_cleanup */

I* send_old_msg */

/* resend old msg or data file */

send_old_msg(i, wait_a_d)

int i;

struct wait_ack_data_rype wait_a_dD;

char cl, c2, sys[MAX_CMD], fl[MAX_FILE_NAME], f2[MAX_FILE_NAME];

#if TRACE
printf("send_old_msg id=(%d) again to node=(%s)xn", wait_a_d[i].id, wait_a_d[i].record[0].to);
#endif

switch(wait_a_d[i].type)

{

case MSG:
cl = WAIT; c2 = MSG; break;

91-

case DATA:
cl = DATA; c2 = DATA; break;

default break;

)
/* switch */

sprintfffl, "%c%d", cl, wait_a_d[i].id);

sprintf(f2, "%c%d", c2, wait_a_d[i].id);

sprintf(sys,"rcp %s %s:%s",fl,lasi_node(wait_a_d[i].record),f2);

system(sys);

I
/* send_old_msg */

send_msg */

I* send message to other site */

send_msg(type, id, node)

char type;

int id;

char nodeQ;

(

char fT[MAX_FILE_NAME], f2[MAX_FILE_NAME], sys[MAX_CMD];
int i;

if(type= MSG)
(

#if TRACE
printf(" send message MSG (%d) to node=(%s)V, id, node);
#endif

sprintfffl, "w%d", id);

sprintf(f2, "m%d", id);

)

else

(

#if TRACE
printf(" send message DATA (%d) to node=(%s)W, id, node);
#endif

sprintf(fl, "d%d", id);

sprintf(r2,"d%d",id);

}

sprintf(sys,"rcp %s %s:%s", fl, node, 12);

system(sys);

} /* send_msg */

getjune -

/* get time stamp */

char *get_timeO

(

FILE *fopen(), *fp;

char t[6][10], current[MAX_TIME_LEN], temp[MAX_CMD],
filerMAX_FILE_NAME]

;

int i;

sprintf(file, "date%d", getpidO);

92-

sprintf(temp, "date > %s", file);

system(temp);

fp = fopen(file, "r");

for (i = 0; i < 6; i++)

fscanf(fp, "%s", t[i]);

i = atoi(t[2]);

if (i < 10)

sprintf(t[2], "0%d", i);

sprintf(current,"%s-%s-%s-%s-%s-%s",t[0],t[l],t[2],t[3],i[4],t[5]);

fclose(fp);

unlink(file);

retum(current);

I f get_time */

month to int

I* convert month to an interger */

int month_to_int(tl, t2, t3)

char tl, t2, t3;

(

char temp[3];

sprintf(temp, "%c%c%c", ll, r2, t3);

if (strcmp(temp, "Jan")=) return(l);

if (strcmp(temp, "Feb")=) retum(2);

if (strcmp(temp, "Mar")=) retum(3);

if (strcmp(temp, "Apr")=) retum(4);

if (strcmp(temp, "May")=) retum(5);

if (strcmp(temp, "Jun")=) retum(6);

if (strcmp(temp, "Jul")=) retum(7);

if (strcmp(temp, "Aug") ==) return(8);

if (strcmp(temp, "Sep")=) return(9);

if (strcmp(temp, "Oct")=) retum(lO);

if (strcmp(temp, "Nov")=) return(U);

if (strcmp(temp, "Dec")=) return(12);

else return(0);

) I* month_to_int */

*/

/* if over time then return TRUE else return FALSE */

BOOLEAN over_time(table_time, current, interval)

char tablejimeQ, currentQ;

int interval;

t

int tl, t2;

if (table_time[24] < current[24]) retumfTRUE); /• years */

if (table_time(24] > current[24]) retum(FALSE);

if (table_time[25] < current[25]) retum(TRUE);

if (table_time[25] > current[25]) retum(FALSE);

if (table_time[26] < current[26]) retumfTRUE);

•93-

if (table_time[26] > current[26]) retum(FALSE);
if (lable_time[27] < current[27]) retum(TRUE);
if (table_u'me[27] > current[27]) retuni(FALSE);
tl = month_to_int(table_tinie[4], table_time[5], table_time[6]);

t2 = month_to_int(current[4], current[5], current[6]);

if (Cl < t2) return(TRUE); j* month »/

if (tl>t2) return(FALSE);
if (table_time[8] < current[8]) retumfTRUE); /* date */

if (table_time[8] > current[8]) retum(FALSE);
if (table_time[9] < current[9]) retura(TRUE);
if (table_time[9] > current[9]) retum(FALSE);
if (table_time[ll] < curremfll]) retum(TRUE); /» hours */

if (table_time[l 1] > current[l 1]) return(FALSE);
if (table_time[12] < current[12]) retum(TRUE);
if (table_time[12J > current[12]) return(FALSE);
if (interval >= 10) /* minutes */

(

interval = interval/10;

if ((current[14] - table_time[14]) > interval)

retum(TRUE);
else retum(FALSE);

}

else

(

if (table_time[14] < current[14]) retumfTRUE);
if (table_time[14] > current[14]) return(FALSE);
if ((current[15] - table_time[15]) > interval)

retumfTRUE);

elseretum(FALSE);

)

1
1* overjime */

last_node

I* return the last node in the record */

char *last_node(record)

struct recordjype record[];

(

inti;

for (i = 0; i < 10 && record[i].to[0] != MARK; i++)

if (i <10) retum(record[i].to);

elseretumfNONE");

) I* Iast_node */

check_time__out

/* check the wait list for timed-out message */

check_time_out(wait_a_d, ready_stack)

struct wait_ack_data_type wait_a_dQ;

94-

struct ready_type ready_stackQ

;

{

int i, interval;

char current[MAX_TIME_LEN];
struct ack_type *ack;

strcpy(current, get_timeO);

for (i = 0; i < MAX_TIME_LIST; ++i)

switch(wait_a_d[i].wait_for)

(

case REQ: interval = wait_a_d[i] .interval - 4;

break;

case DATA: interval = wait_a_d[i].imerval;

break;

case ACK: interval = wait_a_d[i].interval + 50;

break;

default: break;

}

if (wait_a_d[i].id != END && (over_time(wait_a_d[i].time,current,interval)))

if(wait_a_d[i].no_lry <= MAXJTRY)
1 1* redo old path */

wait_a_d[i].no_try++;

strcpy(wait_a_d[i].time, current);

f only the last try time stamp will be kept */

if (wait_a_d[i].wait_for= ACK)

#if TRACE
printf("# message (%d) timed out for waiting ACK, resend messaged", wait_a_d[i].id);
#endif

send_oId_msg(i, wait_a_d);

)

else

(

#if TRACE
printf("# message (%d) timed out for DATA or REQ\n", wait_a_d[i].id);
#endif

ready_stack[ready_stack[0].id].wait_for = wait_a_d[i].wait_for,

ready_stack[ready_stack[OJ.id++].id = wait_a_d[i].id;

)

else I* reroute the new path */

#if TRACE
printf("# RE-ROUTE message (%d) for=(%c)W',waiLa_d[i].id,wait_a_d[i].wait_for);
#endif

if (wait_a_d[i].wait_for= ACK)

ready_stack[ready_stack[0].id].wait_for = wait_a_d[i].wait_for;

ready_stack[ready_stack[0].id++].id = wait_a_d[i].id;

wait_a_d[i).id = END;
)

else

(

-95-

ack = (struct ack_type *) malloc(sizeof(struct ack_type));

ack->id = wait_a_d[i].id;

ack->type = MSG;
ack->info = DEAD;
delete_wait_a_d(wait_a_d, ack);

fice(ack);

) I* time_out */

- dump_record -

I* copy record 2 to record 1 */

dump_record(rl, r2)

struct record_type rlQ, t2Q;

{

int i;

for (i = 0; i < 10; i++)

(

strcpy(rl[i].to, r2[i].to);

strcpy(rl [i].process, r2[i].process);

)

) /* dump_record */

I* insert_wait_a_d */

/* insert message into wait list */

insert_wait_a_d(to, wait_a_d, id, type, p_record, wait_for, interval)

char toO

;

struct wait_ack_data_type wait_a_dQ;

int id;

char type;

struct record_type p_recordQ;

char wait_Jbr,

int interval;

t

int i;

for (i = 0; i < MAX_TIME_LIST && id != END && id .'= wait_a_d[i].id; ++i)

if (i >= MAXJTTMEJJST && id != END)
for (i = 0; i < MAX_TIME_LIST && wait_a_d[i].id != END; ++i)

if (i < MAX_TIME_LIST && id != END)
{

wait_a_d[i].id = id;

wait_a_d[i].type = type;

wait_a_d[i].wait_for = wait_for;

strcpy(wait_a_d[i].time, get_ume0);

if (waitjor= DATA II wait_for == REQ)
wait_a_d[i].no_try++;

96-

else

wait_a_d[i].no_try = 1;

wait_a_d[i].interval = interval;

dump_record(wait_a_d[iJjecord, p_record);

)

) I* insert_wait_a_d */

delete_wait_a_d -r delete_wait_a_(

I* delete message from wait list */

delete_wait_a_d(wait_a_d, ack)

struct wait_ack_data_type wait_a_dQ;

struct ack_type *ack;

(

int i, j;

char fl[MAX_HLE_NAME], f2[MAX_FTLE_NAME], type, sys[MAX_CMD];
struct messg_type *msg;
BOOLEAN ok = TRUE;
FILE *fopenO, *fp;

for (i = 0; i < MAX_TIME_LIST &&
(wait_a_d[i].id != ack->id II

wait_a_d[i].type != ack->type); i++)

if (i < MAX_TTME_LIST) /* found*/
wait_a_d[i].id = END;

if (ack->info= DEAD II ack->info= DONE)
(

msg = (struct messg_type *) malloc(sizeof(struct messg_type));
init_msg(msg, ack->id/1000);

if (strcmp(host, msg->start_node)= 0)

if(ack->info= DEAD)
{

sprintf(fl, "dead%d",ack->id/100*100);

fp = fopen(fl,"w");

fprintf(fp, "Failed to continue job - %d", ack->id/100* 100);

fclose(fp);

ok = read_msg(V, ack->id, msg);

sprintfcn, "done%d'>ck->id/100*100);

write_msg_to_fde(msg, fl);

else

send_ack(ack, msg->start_node);

sprintf(fl, "w%d", ack->id/100);

sprintf(f2, "d%d", ack->id/100);

sprintf(sys, "rm %s*", fl);

system(sys);

sprintf(sys, "rm %s*", f2);

-97-

system(sys);

for (i = 0; i < MAX_TIME_LIST; i++)

if (wait_a_d[i].id/100= ack->id/100)

wait_a_d[i].id = END;
)

else

(

msg = (struct messg_type *) malIoc(sizeof(struct messg_type));
ok = read_msg('w', ack->id, msg);

for (j = 0; ok && j < msg->next_h; ++j) /* clean up files */

sprintfffl, "w%d", msg->history[TJ.id);

sprintf(f2, "d%d", msg->history(j].id);

unlink(fl);

unlink(f2);

)

free(msg);

}

)
/* delete_wait_a_d */

combine_info

I* combine messages */

combine_info(t_m, tmp)

struct messg_type *t_m, *tmp;

int i, k, temp, max_place;

temp = pre_trans_no(tmp);

if (t_m->id/100 == 1) maxjlace = MAX_PLACE1;
else max_place = MAX_PLACE2;
for (i = 0; i < max_place; i++) /* combine marking */

if (t_m->marking[i]= TRUE II tmp->marking[i] = TRUE)
t_m->marking[i] = TRUE;

else t_m->marking[i] = FALSE;

t_m->inputs[l] = unp->result; I* local information */

for (i = t_m->nextji, k = 0; k < tmp->next_h; i++, k++) I* combine history */

t_m->history[i].id = tmp->history[k].id;

t_m->history[i].trans = unp->history[k].trans;

t_m->history[i].op = tmp->history[k].op;

strcpy(t_m->history[i].node, tmp->history[k].node);

strcpy(t_m->history[i].time, Unp->history[k].time);

t_m->next_h = i;

) /* combine_tnfo */

/* before_merge

I* settings for merge transtion */

•98-

before_merge(trans_no, t_m, merge_node, resp)

int trans_no;

struct messg_type *t_m;

char merge_nodeQ;

char *resp;

(

int i, out_p, tl, mark, merge, b[MAX_PLACE2], times = 0;

FILE »fp, *fopen0;

char f1[MAXJFTLENAME], buf[30], c;

struct messg_type *tmp;

merge = t_m->net.t[trans_no].out_p[0];

merge = t_m->neLp[merge].merge_trans;

if (t_m->id % 100 != t_m->net.t[merge].in_p[0])

/* write marking and data to parent */

sprintf(fl, "d%d", t_m->id);

t_m->type = DATA;
write_msg_to_file(t_m, f1);

I* send data to merge node */

if (strcmp(merge_node, host) != 0)

send_msg(DATA, t_m->id, merge_node);
•resp = 'c'; I* c - child */

)

else I* master copy */

(

I* if the current node is not the merge node, then send out the msg to merge node */

wait(&status);

if (strcmp(merge_node, host)= 0)

(

tl = t_m->id / 100 * 100 + t_m->net.t[merge].in_p[l];

for(fp = NULL, times = 1; fp == NULL && ++times <= 3;)

sprintf(fl, "d%d", tl);

fp»&pen(fl,y);
if(fp= NULL)sleep(3);

}

fclose(fp);

I* before real merge action, we have to update the marking first, up to this point, only have
to know the marking of the child */

if (times <= 3)

{

tmp = (struct messg_type *) malloc(sizeof(struct messg_type));
init_msg(tmp, t_m->id/1000);

read_msg(DATA, tl, tmp);

combine_info(t_m, tmp);

resp = 'o'; / o - ok */

free(tmp);

)

else

(

resp = 'f; ft- failed/

t_m->marking[t_m->net.t[merge].in_p[l]] = 1;

t_m->inputs[l] = -999;

-99-

)

)

else f* write out the msg to a file and send it to the merge node */

{

sprintf(fl, "w%d", t_m->id);

write_msg_to_file(t_m, fl);

send_msg(MSG, t_m->id, merge_node);

•resp = 'm'; /* m - message */

}

)

) /* before_merge •/

copy_msg */

I* copy message 2 to message 1 */

copy_msg(ml,m2)
struct messg_type *ml, *m2;

(

int i, max_place, max_data;

ml->id = m2->id;

ml->type = m2->type;

ml->next_h = m2->next_h;

if(m2->id/1000=l)
max_place = MAX_PLACE1

;

else

max_place = MAX_PLACE2;
for (i = 0; i < max_place; i++)

ml->marking[i] m2->marking[i];

ml->result = m2->result;

ml->inputs[0] = m2->inputs[0];

ml->inputs[l] = m2->inputs[lj;

for (i = 0; i < m2->next_h; i++)

(

ml->history[i].id = m2->history[i].id;

ml->history[ij.trans = m2->history[i].trans;

ml->history[i].op = m2->history[i].op;

strcpy(ml->history[i].node, m2->history[i].node);

strcpy(ml->history[i].time, m2->history[i].time);

update_marking
/* update the marking after a transtion is completed */

update_marking(trans_no, t_m)

int trans_no;

struct messg_type *t_m;

{

int i;

I* fine the out_put places according to trans_no update the marking for all input and output places */

100-

for (i = 0; t_m->neLt[trans_no].in_p[i] != END; i++)

t_m->marking[t_m->net.t[trans_no].in_p[i]]

= FALSE;
for (i = 0; t_m->neLt[trans_no].ouLp[i] != END; i++)

t_m->marktog[t_m->net.t[trans_no].out_p[i]]

= TRUE;

update_msg */

/* update the message after a transtion is completed */

update_msg(trans_no, t_m, msg, resp, var)

int trans_no;

struct messg_type *t_m, *msg;
char *resp;

struct data_type varTJ;

(

int index l,index2;

char varl[2], var2[2], merge_node[MAX_NODE_NAME], fl[6], f2[6];

t_m->inputs[0] = -999; t_m->inputs[l] = -999;

strcpy(merge_node,t_m->neLp[t_m->neLt[trans_no].out_p[0]].merge_next);

if (t_m->net.t[trans_no].acLop != T)

update_marking(trans_no, t_m);

t_m->id = t_m->id / 100 * 100 + t_m->neLt[trans_no].out_p[0];

t_m->history[t_m->next_h].id = t_m->id;

t_m->history[t_m->next_h].trans = trans_no;

t_m->history[t_m->next_h].op = t_m->net.t[trans_no].acLop;

strcpy(t_m->history[t_m->next_h].node, host);

slrcpy(t_m->history[t_m->next_h++].time, get_time0);

send_ack_cleanup(t_m);

if (strcmp(merge_node, "NO") != 0) /* before merge transition */

before_merge(trans_no, t_m, merge_node, resp);

copy_msg(msg, t_m);

sprintf(f2, "w%d", t_m->id);

write_msg_to_file(t_m, f2);

) I* update_msg */

JOB EXECUTION

IN A DISTRIBUTED ENVIRONMENT

USING PETRI NETS

by

LING-LING HSU

B.S., Fu-Jen University, 1982

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

ABSTRACT

The concept of distributed computing is in broad use today and will become even

more popular in the future. All resource-sharing systems involving two or more

processors are considered distributed systems. A system for automatic routing of jobs is

needed in a distributed environment to ease the task of users and to ensure the correctness

of results. A system has been constructed which contains three major components: Control

nets (CNs), intelligent tokens, and Control net agents. Routing and synchronization

requirements of a job are represented via an extended Petri net. Predicates are used in

conjunction with transitions of this Petri net. Electronic versions of jobs are designed as

intelligent tokens which contain both the control and data information that are needed to

perform jobs. A Control net and its marking supply control information as well as

contraints on how the job's data may be manipulated. A process called a Control net agent

exists at every site in a distributed environment and is responsible for interpreting the CN,

performing functions, and physical routing of jobs. This prototype system was

implemented to show that execution ofjobs can be controlled through the use of a CN.

