THIS BOOK IS OF
POOR LEGIBILITY
DUE TO LIGHT
PRINTING
THROUGH OUT IT’S
ENTIRETY.

THIS IS AS
- RECEIVED FROM
THE CUSTOMER.



A WIENER-LEE TRANSVORM SCHEME FOR

CALCULATING QUANTTTTIES THAT OBEY DISPERSION RELATIONS

by
David M. Zimmerman

B.5., Kansas State Univevsity, 1972

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCFE

Department of Physics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1976
Approved by:

Ol bt

Major Professor



LD

N
‘-}»q;
1776
ZFa
¢-2 :
- e g g
LORRr e TABLE OF CONTENTS
TOEEOAUCEION & & & 5 @ & § © & € 8 & & & &€ % & 8 @ & % o4 § b 5 o
L. The Wiener-Lee transform method for calculating quantities
that obey a dispersion relation. . . . . . . . . . . .
II. The Kramers-Kronig dispersion relations . . . . . + . + « .
ITI. The Wiener-Lee transform process. . . . . « « ¢« « + + + « .
IV, A discussion of dispersion-relation and Wiener-Lee techniques
V. BAVERSE « w o 4 o » & « m % § 8 ® @ ¢ 5 8 ' % § § @ & = & &
VI. Results and Conclusions . . . . . « + ¢ & + ¢« v v & « v + o
Appendices
I. Dispersion relations in general . . . . . . . . . . . . . .
II. Some applications of causality and dispersion relations . . .
ITI.

SKKA: o w % & & % % & w @ # s % & & = 3 & % @ 5 s & o4 & 3 & o4 s

11
18
20

32
40
4y

49



Fig.

Fig.

Fig.

1:

2a

3:

TABLE OF FLGURES
Comparison of WLT calculation with subtracted Kramers-Kronig
numberical calculation. . « + « & ¢ « v v ¢ v vt 4 4 e v . o« 4 W36

Comparison of WLT calculation with most probable values for
Re{n(w)} (Downing and Williams, 1975) . . . . . « . . . « « . . .37

Effects of missing X(w) on an unsubtracted analysis . . ., . . . .38



ACKNOWLEﬁGHMENTS

T am happy to exptess-my gratitude to Dr., 0. L. Weaver, whe is the
source of a good deal of my understanding concerning disborsinn theory, and
who has provided me with invaluable assistance thrpughnut this work.

Drs. Williams, McGuire, Curnutte, and Pinkley have taken part in
many stimulating discussioqs relative to this work and have helped clarifly
a number of problems.

Ken Laws has provided me with the program, FSTDFT, from his personal
libragy and has given me numerous impromptu lectures on the theory of fast
Fourier transforms. Dr. L. Pinkley has provided me with a program to do
ﬁumerical Kramers-Kronig analysis.

I would alsc like to thank The Research Corporation for their financial

-assistance.



Introduction

Numerical analysis of dispersion relations or .causal relationsg of

the general form

Im(b(w )) dw”

Re(y )= & o -

has been used for years to calculate the Fourier transforms of céusal functions.
Precise calculations have necessarily been restricted to band-limited functions
with well-known asymptotic behavior.  And, since these are integral relations,
a more coﬁpute%—time efficient process than the Simpson's rule numerical
integration process (usually used to solve such relations) would be convenient,
Moreover, the integrals involved are principal-value integrals, which have
their own inherent difficulties when done numerically, because one must

banish integration over all singularities.

Recently, some research has aimed to circumvent these difficulties by
returning to the basic assumptions upon which dispersion relations have been
founded and deriving new relations which avoid the principal-value integrals.
One such approach is an analysis which stays in the time domain. This method,
advanced by Peterson and Knight (1973) and D.W. Johnson (1975),ultilizes the
fast Fourier transform to find the real part of g from the imaginary part
{or vice versa).

The research contained in this thesis_also makes use of the fast Fourier
transform, However, the approach herein is based on a conformal mapping
of the reéionlof analyticity of g(w) — the Fourier transformed causal funct-
ion. This mapping, called the Wiener-Lee transform renders the region of

avalyticity finite and bounded.

(1)



The purpose of this rescarch is to determine the uscfulness of thisg
Wiener-Lee transform method. This 1s assessced by Vzlpplying the Wiener-lLee
transform analysis to the absorption data of water and comparing the calcu-
lated resulté with those of the standard Kramers~Krondg numerical analysis.

This paper will {irst derive the Wiener-Lee tfansfo?m and explain how
this transform helps define a scheme for calculating quantities which also
obey the causal relations. Then the connection between this process and the
‘solution of the Kramers~Kronig-dispersion relations for the index of refraction
‘of watér is established. A computer program written by the author which
uses the Wiener-~lee transform technique is discussed (including a brief over-
view of fast Fourier transforms). It.is then applied to the ﬁfoﬁlem of
finding the real part of the index of refraction of water from the absorption
spectrum. Finally the results are compared with a standard Kramers—Kronié
analysis used.in the laboratory here at Kansas State and to the mostraccépted
values for the refractive index to date. 1In addition, the traditional
derivation of dispersion relations and some other applications of the causal

relations are explored in the appendices.

(2)



I. The Wiener-Lee Transform Method for Calculating Quantities That Obey a
Dispersion Relation,

The Dispersion relations are rules that apply in genéral to any physical
system which is linear, time-independent, and causal. Recently a good deal
of emphasis has been placed on solving the dispersion relations by Tourier
aﬁalysis methods.l’2 These Fourier methods come quite naturally from the
three assumptions about the physical system stated above,

The assumption of time-independence means that the laws governing the
system atrtime 1 are the same as those governing the system at.an earlier 17 T.e.,
the physics of-tomorrow is the same physics as today or yesterday. The system |
¢an, however, depend on the c¢hange in time 1-1". If the systems output, k(T);

is a linear functional of the input, f(7t”) as well, then

k(1) = ] g(r-17) £(r7) dv~ | (1)

g(1-17) is a Green's function or system function. Causality demands fhat no
output precede an input. Letting t-17=t

g(t)=0, t<0. ' ' (2)
g(t) may in general be a complex function possessing a Fourier transform,

g(w).

660 = T 5(t) e ae | (3a)

and

g(e) = 5= T a0 e Vg, (3b)

) .

Peterson, C.W. and B.W. Knight, "Causality Calculations in the Time
Domain: An Effective Alternative to the Kramers-Kronig Method," Jour. of the
Optics Soc. Amer., Vol. 63.10, October 1973,

2Johnson, D.W., "A Fourier Series Mcthod for Numerical Kramers-Kronig
Analysis," J. Phvs. A:Math. Gen., Vol. B.4, 1975.

(3)
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so long as §+0 as wre,

The function, £(w) can be seen to be an analytic

function in the upper half-plane since (2) implics

E(w) =
For w =

w o+ iw,
i i

g(w) =

Z g(t) o "Fde ' (4)
o iw t ~-w,t
g e T e T g(t) dt (5)

This integral converges 1f w,>03 and likewise all derivatives of ${w) with

- respect to w exist in the region wi>0.

Thus g(w) is an analytic function in

the upper half-plane.

Onc is often interested, not in g(w), the complex function, but the

function of real

H{w)

Hence,

H(wj

An arbitrary causal function can be expresscd as a sum

odd parts.

g(t) =
Because

g(t) =
clearly,

g+(t) =

Wi

lim g(wt+ie)
£-20

iwt

£ =-et
dt

.= iw
1im fw g(t) e e =
€30

7 () e (6)

<

of its even and

g, (0) +g (v (7)
0 for t<0 (2)
“g. (E) » £<0 (8)

(4)



Since 0 is even and g_ odd,

g, (t) = g (-1)
g_(t) = -g_(t).
Thus
| g, (t) =g (t) , 120

so that (8) and (10) can be written

g, (t) = sgn (t) g_(t)

g_(t) = sgn (t) g ()
From (6) with g(t) = gr(t) + igi(t)

H(w)

I

= R(w) + iX(w)

fm (gr(t) cos wt - gi(t) sin wt)dt + i fm (gr(t) sin wt +

g4 (t) cos wt)

If g(t) is further restricted to be a real function, then

R(w) = fm g{t) cos wt dt X{w) = - ?m g(t) sin wr dt

If g{t) is even

R{w) ?w g(t) cos wt dt and X{w) = 0

1l

If g(t) is odd,

R(w)

0 and X(w) = - ?m g(t) sin wt dt

Note that R(w) is even and X(w) is odd. Since g(t) is real,

i

g(t) pr(t) = %; ?m B (w) Othdw -

1

thus £ (w) o%x (~w)

(5)

1
2u =

?w f% (-w) v—jwrdw

(9a)

(9b)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



Hence, Re{g(w)} is even and Im{f(w)} is odd. Therelure, in the limit of w

real,
H(w) = H+(w)'+ H (W) = R(w) + iX{w) . (19)

so that under a Fourier transform:
g+(t)++R(w) g_(t)++ix(w) , real g(t) _ (20)

Taking the fourier transform of (11) and (12) along with (2) gives,

R(W) = —‘%i * -—‘—_i;{‘r(rW) | (21) |
iX(w) = 31 * 3%-1 (22)

Use has been made of the result,

24
sgn (t) 4——>w—1 (23)

and (8) indicates convolution.

The convolution theorem on (21) and (22) yields

o - 17, Mo o w
- _ 1% R’ dv’
X(w) = TR W - w (25)

These are known as Hilbert transforms. R(w) and X(w) can also be related by

use of the mapping

A (26)

oo LA
-~

H[u
25

which maps the region of analyticity of g(w), the upper half-plane, onto the
unit circle in the s-plane. For w real, IHE = 1.T.e. ‘the real axis is mapped

to the boundary of the unit circle. Letting
H{w(s)) = h(s) . (27)

(6)



it can be scen that h(s) is analytic in the unit circle and so can be expanded

in a power series.

o n ' i '
his) = § A s (28)
Letting S=ela implies
o ind
: h{s) = fizo 'n®
=% A césné+1i3 A sinn 6 (29)
n=o n fi=o ‘n :
But (26) vields
w = tan 6/2 : {30)

e o , 3,4
This is called the Wiener-Leec transform.”’ Therefore,

Ll

id © . o . :
h(e”" ) =% A cosnd+ i % An sin n &8 (31)

H(tan &/2) I, A

R(w) + iX(w).
Relation (31) leads to a simple prescription for solving the Hilbert
transforms, (24) and (25). To calculate R{w) (or X(w)) from X(w) (R(w))
simply use the transf{ormation
w = tan &/2 (30)
to get |
H(tan §/2) = R(tan &/2) + i X(tan §/2)

2 p(8) + 1 x(8) ' (32)

3Lee, Y.W., Statistical Theory of Communication, John Wiley and Sons,
New York, 1960.

4Papou]is, A., The Fourier Integral and its Applications, McGraw-Hill,
New York, 1962,

(7)



(Since tan (-0) = - tan 6, p is even and x Is odd.) g(ﬁ)(p(ﬁ) can bhe expanded
into a sine (cosine) series and comparison of equation (31) with (13) shows
then

that the fourier coefficients are the same. That is, if one knows x (%),

from

x (&) = ? A sinn § (33)
n=1 n

one may find the An. Then;, knowing the values for each An’ p{(8) can simply

be summed

'p(ﬁ)_= Ao + Ezl An cos n 6 (34)

apart from a term AO. (Similarly, p(8) can be had from coefficients of p(8).)

Then using the inverse transform,
(35)

§ = 2Tan —lw

gives R(w) (or alternatively, X(w)).

(8)



II. The Kramers—Kronig Dispersion Relations

The name "dispersion relation” historically derives from the relation
between the real part (index of refraction) and the imaginary part (absorption
coefficient) of the complex index of refraction in optics

nfw) = n (w) + i n,(w) (D)
r i
The absorption coefficient is actually proportional to the imaginary part of n

u::ﬂn. (2)

= R «(w’) -
nr(w} 14 = 2 5y dw _ (3)
wT-w
or,S
2 e W ni(w}
nr(w) =1+ - gf TE‘P*— dw (4)
-w
where n(=w) 7 n* (w) has been adopted. This is a consequence of the fact

that. electric and magnetic fields are real quantities. TIf 1 is subtracted

from each side of (4),

& T — .
Re(n(w)-1) = n_{(w)-1 = 1 ? i‘____ dw™ = 1 _P]_S_I},(l"’”)*lld“f__
r 11 =0 Wi w T fe W - W

(5)

So n(w)-1 obeys a Hilbert transform.
The Lambert absorption coefficient can be measured experimentally, in a

wide range for a number of substances. Values for ni(w) can be inferred from

3 : 5 : ‘
Jackson, J.D., Classical Electrodynamics, John Wiley and Sons, Inc.,

New York, 1962 (lst edition, pp. 233-234).

(9)



«{w) and relation (5) might be solved by the Wiener~Lee transforming (W)

process. The utility of the WLT method can then be explored by comparing

: ' 6, 7.
the resulrs with studies which have made use of (3). '

6Robertson, C.W., DPowning, Curnutte, and Williams, "Optical Constants
of Solid Ammonia in the Infrared", Jour. Opt. Soc. Amer., Vol. 65.4, April, 1975,

Downing, H. and D. Williams, "Optical Constants of Water in the
Infrared”, Jour. Geophys, Res., Vol. 80.12, April, 1975.

(10)



ITT. The Wiener-Lee Transform Process

To test these conclusions the author has written a computer program to
determine the real part R(w) from the imaginary part X(w) by means of the
Wiener-Lee transform process. The method takes the following steps:

1. Using the transform

| -1
§ = 2 Tan w
the new domain is obtained where

x(8) = X(tan &/2)

2. x(8) is Fourier analyzed.

x(8) = bl sin ¢ + b2 sin 26 + .... + bn sinn §+ .....

3. The relation between coefficients is

where p(8) = a + a_, cos § +a, cos 28 + .... +a cos né§ + ....
o] 1 2 n

{(Note that p(d) will be correct to within an additive constant ao.)

4. Then using
w = tan &/2
to transform back to the w-domain, R(w) is recovered from the valuecs

of p(8)

p(8) = R(tan &/2)

At the outset, this process may appear to be a more involved cone than a
numerical integration of the dispersion relations. This is because step 2

above implies N integrals to find the coefficients

_ 1T o
b“ = £n ¥(8) sin nd d& (1)

(11)



of N terms necessary to express x(8), and hence p(8), to a desired degree of”
accuracy. Use of the fast Fourier transform (FFT) method éurmounts this
difficulty. ¢

The FFT program this author used was one from fhe pérsonal library of
Ken lLaws, Kansas State University Computing Center, and it is written in
Fortran G. The chief drawback to all FI'T brograms Is that they rcquiré largé
matrices of storage space to determine the Fourier coefficients, a disadvan-
tage which tends to offset their raﬁid'exccution time. In order to make
these matrices no larger than they absblutely have to be for a particular
problem, it is necessary to write the program in a language for which the
dimensions of these large matrices can have arbitrary (minimal)nsize.'That is
the language must be capable of steps such as

SUBROUTINE FFT(Y)

DIMENSION X(Y,Y)
where Y isra transferred value. Moreover, there are a number of neccessary
transfers in the process which depend on the value of Y, which may vary from
problem to problem.

Fast Fourier transftorms work by means of a matrix manipulation algorithm
which is too complicated to be dealt with here.g However,.tho process can
be visualized (and a number of its peculiar chavacteristics displayed) in the
following way.

If one starts with a finite number of data points, N, spread out in equal
8 .
Cooley, J. W., and J. W. Tukey, Math. Comput., 19, 297 (1965).

9
Ahmed, N. and K. R. Rao, Orthogonal Transformations for Dipital Signal

(12)



intervals over

X (m)

Ck:

the domain 0 to 2n then he has

1

2 |

N-1 . 20

; i N km
k=0

N-1 ~i(§ﬂ)km
L X(m) e

M=o

where the first equation is the discrete domain generalization to a finite

series.

evaluated at points

2n
N*m.)

One way to write (3) is

Ck =

N

:Ll& [& X  cos
M=1 DO

2mkm

m §
N ¥ =3k Xm

(I.e., there are N terms in the series (2) and the function X is

(2)
(3)

N
sin (2K ()

M=1

where we have written m as a subscript on X rather than an argument and

since X is periodic we can take m =

first summation on the right hand side A

1, N on our summations.

k

two matrix equations (considering K = 1, N)

A =
{B

where i -

=

cos

cos

2T
N K1 ™

%I-k m

22

)
[}
.

(13)

2y
cos N k]mz...

 2n
cos N kNmN

If we call the

and the second —in we can visualize

(5a)
(5b)
B - &
X
[l]]
X
H]2
(6) -
] X
‘] [TIN




with k1=1, k2=2,....; mi=1, m2=2,.... A similar matrix consisting of sine

terms holds for S and Bk coefficients make up B. Since.one would know the

5 2
values X X., etc., he would be able after N multiplications and nearly

17 2
that many addition procésses be able to produce A, This would be the usual
route taken in a discrete Fourier transform.

The fact that € in (6) can be seen to be symmetric 'suggests, however, that
N2 multiplications are not really needed. Moreover, the rows and columns of
C show a good deal of periodicity if N is divisiﬁle by 2, or 4, or 8, etc.
(E.g. 1if N=8, (row 4)C = (row S)C). One could then use this redundancy in
the rows and columns to simplify the process. (E.g., for N=8, do the
multiplicatibn of (row 4)ctimes X to get A4=A8') As it turns out, if the
calculaéor is willing to restrict N te a power of 2, the Cooley-Tukey
algorithm provides for an N logZAwaold process usually known as a fast
Fourier transform (FFT). But the savings in execution time over the Nz—fold
discrete fourier transform (for large N) is even better than N log‘2 N/N2
would indicate, since the program "knows" the elements of C or § cnce N
is specified; and the process is one of interchanging, restoring, and
multiplying elements of X by certain known constants. (These are operations
which recent software does much faster than finding values for cos (2 km/N)

10
and multiplying.)

Moreover, the restriction to N = power of 2 number of data points

may not be a restriction sometime in the future. For N arbitrary, a aumber

of approximations for C have been tried in (6) hopefully to yield A ta some
reasonably approximate degree.  Some moderate successes have occurred here

for N divisible by 2 but so far no algorithm has been clever cnough to make

use af all the symmetrics available. (Note: FFT calculates A exactly.) A
discussion of FF1 schemes can be found in N. Ahmed and K.R. Rao, Orthogonal
Translormations for Digital Signal Processing, Springer-Verlayg, New York (1975).

(14)



The Ffast Fourier transform program is called "FSTDFT" and is listed
along with the main program in the following section “DAYERSI".
In addition to the four steps outlined at the beginniug of this scction,
the program also has other functions:
a. Data is iniLialiy read in reversce order; that is, from large
frequencies to small. The program then rights the order.
b. Since X(w) is initially defined only over positive real frequencies,
the program antisymmetrizes X(w} over the nepative frequency region.
c. Since fast Fourier transforms require evenly spaced points over
the domain (-w, 1), the subprogram LINTRP is called to interpolate
linearly over d=-7 to §=m in equal increments.
d. The program scales w.
The transformation w = tan §/2 is mon-lincar and the effects of shifting and

scaling & have also been investigated. With .no scaling

x(8) = gﬁl A sinn 8 ' (7
which gave

R{tan &/2) = p(8§) = AO + g—l An cos n & (8)

Now,if a scaling factor is introduced,

§ =mé , (9)
So that,
x(87) = x"(S8) = E=] Au sin nmé
the
- = + 3 = -
p (8) A §=l An cos nmd p(87)

(15)



Hence R;(tan §/2) defined equal to p*(8) will be the same as R{tan 87/2)
and so the introductipn of a scaling factor makcs no difference in the final
values.for the real part.

An analogous argument for the shift

§ =8 + v
does not give p{8°) = p(8) and so cannot be used.

After cénsiderdble trial-and-error with various scalings it was ceoncluded
that any reasonable scaling works well. '"Reasonable" means that the scale
factor is such that all the data is not shifted to near *m or 0. That is,
the central region of data should fall around *n/2 and the sharpness of each
peak shquld Se minimized. This is accomplished roughly bj thé program, which
introduces a scale factor, such that the largest peak in the data is scaled
to /2.

The program also contains a mumber of important checks:

Is Data initially read is echo printed, and values of X(w) and

w are printed after:
a, The w~domain is inverted,
b. The interpolation,
¢, The Wiener-Lee transform.
2.  The point where X(w) is a maximum and the scaling factor are printed.
3 Both sine and cosine coefficients of X(w) are printed. (cosine
coefficients should be very small, sine coefficients should
decrease with increasing n.)

4, After X(w) has been Fourier analyzed, it is resummed using the

cocfficients. Tﬁis is then compared with the values X(w) used be-

fore the analysis. The absolute value of the difference gives a

(16)



measure of Fourler efficiency and is printed along with the final output

of R(w) and w.

(17)



IV. A Discussion of Dispersion-Relation and Wiencr-Lee Techniques

One of the chief difficulties in the numerical integration of dispersion

relations of the form

:2, fi’f . ,1_9-{5.(14__)-}([‘« ’ "
N - W= w

Ref{g (w)}

f

=B

Im{g(w)} ﬁf BEE%LELl}dw’ 7 o

-0 W

is that one may not know the assumptotic hehavior of g(w), hence may not
know whether cne or several subtractions are necessary to achieve desired
accuracy in the calculation.

A simple example should illustrate what is meant by "desired accuracy".
Consider the fictious example:

—(w-wl)z lw(www2)2/2

Imig(w)} = e - E - Wy Wy (3)

Suppose, however, that the experimenter were only able to measure in the
domain of the first peak. He measures

—(w—w1)2/2
Im{g(w)}l = e + 7

It would be crude to calculate Re{g(wl)} from (1) using only the first term

in (3) since he would make a mistake of approximately

2
1o o 0wyl /2 TE
Rls RS RSE
2 | 2 1

(w? occurs in the denominator because most of the eorror occurs for values of
the integral near WZ') Better accuracy can be achieved by making a subtraction

at w near w, ).
- Q ( 1

(18)
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(w~w0) Im{g(w™)}

-

dw

1 o

— 3 r T e i} L,

Re{g(w)} RL(L(WQ)} = Bf (w’«w)(w'mwo)
The error made now is appreoximately (for Wi wo)
2]

~(w’- )2

-w ) ? = s dw = —Fe-= 2
o’ =m o, =¥ )2
"2

(w

1

This subtraction procdedure gives an integral with a more rapidiy convergent
integrand,

In terms of §, the Wiener-Lee transform would give integral (1) over
the range (-w, w). That is, w = tan &8/2 maps (-=, -1, 0, 1, «)} to
(-, -v/2, 0, w/2, 7). The transform w = tan §/2 has the peculiar property
that values g(w) for small w are mapped onto 8§ with gfeater weight than g (w)

for larger w. Consider the exanple of a double-gaussian above:

Img (w)
[ 3

Tf the frequency is appropriately scaled so that some wO(w1<wO<w2) is

) -1
scaled to 1 (This point maps ionto § n/2.) the transform $=wTan (w) would

" Tmg (w)
gve *

(1)



The smaller second peak will give small contribution to the fundamental
harmonics (small n), and hence the first peak will "reasonably" approximate

g(w) in the lower frequency region of w (i.e. Should the second peak be

1
left out of Im{g(w)}, Re{g(w)} is still given approximately by the [irst peak.)
"Reasonably" means that the approximation will be good only to the extent

that the unsubtracted dispersion relation is good without the second peak

of Im{g(w)}:
Relalw)} = %jﬂ-" Im g(wi) . -

with

2
Im{g(w”)} = e~ (W) /2

(20)



V. DAVERS1: A program to calculate quantities related by dispersion relations
' by means of the Wiener-Lee transform technique

Crcoi-n'ntd.--n--.no-uo----------c-v--a‘----u-Olnitla-o-l--looc-----nlao

C

T

—

e T Wi o T M M TN, B S T e 40 B B o T Y

1T

faiz !

b BN ]

MALN PRIGHAY :
DIMTMEION X{G28) ,XX11524) ,w(923) ,¥Y1364) yERRI464) ;21924
C y W L1024)
COMPLEX CXXTLlO2+b,05TA{1074})
DIMERSINNS ARETHE FOLW I NG: Ko W AMD T MUST HAVEZ 2=NPTS DIMEMILIINS
Y OAND FRRE MUST HAVE NOTS DIMINSTUINS
KX gCXX g WWNETA MIST HavE Too INTEPPOLATED POWER OF 2 GIMEN
L3GICAL LMD IRY
COAMONLCNE T L g BT A Xy LUFT o MPT Sy Ky 2 .
FACaTS: 1)J=-149 ARE READ F3MATS,  1353-199 ARE WRITES, 200- ARE NIAG
133 FORYMAT(22X,12})
1O Pl MAT (4P 4.0,9%,F7.0,4X))
122 FOEYATIEL B, 8)
150 FORMAT [T1',¢PT NI,
C tDIFFERENC-SERT
154 %ORMAT(Y vV, 13,6Xs 13
155 FIORMAT (v ',13) :
155 FORMATE! 7,13, 6XeE15.8,6XE15.843(13%X,E15.3))

$ VEREQUENCY ¥y 13X, *REAL PART ', 16X,
E QATAY)
1697 13.8,10%,E15.8)

5X
65

IFRD CVERYTHING IMIALLY. J.T,Z,M ARE USED ALWAYS AS DUMMIES
EXPLANAT ION OF THE VARIARLES:
XtJ AN TMAGINARY 9ART FUMNMCTICN OF FREC WHICH TRANSFORMS
TO THIIDELTA )
(NOTESTHE RF AL PARTIRY TOAMNSFURMS T RHA(DELTAL

Wid) FEEQUENCY DIMATN PTS,DELTA
HPTS 4 OF DATA PTS UK I35 T4INE THE % ANO L IS 4OTS+1)
XX{J) VALUES FOP THE STORFD I4TiaPOLATED FN
WNES) VALUES 0FR THE STORTD INTIFPCLATED DOMAIY
IR0 TNy IMDICAT 20 TNVERSFE FIIR[E TRANSFIRM
PNT INTERPILATED  MUMBER OF JATA PTS. FJOR USE WITH FSTOFT
RETA THE VECTAP NF CRMPLEX CIEEF,
F OIS A STORAGE VECTNR :
LDFT 1§ MUMRCZE CF YaRMONICS US-0 IN FSTOAT
PINFIN VALUSE OF T {w) AT INFINITY
K 1S 2 = NPTS
L IS 1 MCRE THAN M2 TS
N¥L IS RPTS MINUS 1. - .
1=0
N7 T1=@,256
1=1+1

RETELII={d.040a0)
WAl T)1=9,0
XA ¥=2,0
1 O WTINUE

READ THE (DIVIDIBLE BY 4} ¥ OF DATA PTS. ANMD VALUT 38 2(W)
AT INFINITY

EEAD (5,100)8PTS
READ (54100 }IHARMN
REATD (H.100)MI0RT
NNPTE=NPTS/4
AFAD(S,102)RIMFIN
L=NPTS+ 1
J=3
(21}
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[ e N e

[l (e 0 My s S

D10 JI=1,MAPTS
J=Jel
M=o .
10 REANID LOE W IM=3 g X UM=R ) g el (M2 ) o XAH=2) g W M=1) g X{M=1 )}y W M) X (1)

PIINT WHAT WAS JUST RIAD

230 FARMAT (V1 YWALYES FOR THT DATAM )
2O1 FORPMAT(Y VP IPT MLt 3,3, 2 0E15.3) /134, 81EL5.8) /)
#2]TE [6.200D)
715 J=14MPTS,8
IT{NPTS SLT SJ+7IGOTD 156
JT=4+7
COWRITE(A 201 ) Ul T g I=dyd Ty IX LY 1200 T)
15 CONTINUF .
L2 Le FINDS VALUGES  IMAGUINOEX NF PEFRACIFOCHM EXPERIMENTAL VALJES

CF OALPHALSBSTFS COZFFY  AND LIOP LT RESTORES NATA PROPERLY OV:E
THE DOMAIN{TND-FOR-ZND FLIP-FLGP OF THE DATA)

J=0

O 16 JJd=14+NPTS

J=J+l

X=Xt UN A4/ 20141592654 /W)
16 wlJ)=273.1415972654*UW{J)
J=9
D7 15 JJ=1,A0TS
J=J+1
17 E{JI=W(d)
J=9
PTOLT dd=1yNTTS
Cd=d+1
ANPTS+1L~J) =24 4)
(J)=x{J1
=0
T8 Jd=1,8278
J=J+]
13 XI{NPTS+1-dy=E( )
202 FO2MATAVLY ,PDLTA FTCHECK I ALTEREDDYEGAL N=-IMAG) ")
WRTITELH,202)
Hr29 9=1,MPT5,8
IF(ARPTS LT J+7) G T 22
JT=J+7
WEITE(AS201 0 (T g I=dyd TIodX(T)yI=d,d T
22 TONTINUE

17 =

oL

SCALI THE DATA
PICKS THE MAX vaLut I8 THT FUNCTION,X, AND OCTEIMIMES SCALE
S0 THAT THIS POINTY 3ECCAES W=)

K=2:0pTS
M10PT =hPTS—-1-MIDPT
TMEFAC=0, D
PEAKHT=0.0
J=0
07 2 JI=1,MPTS
JEJFL
IFUXUJ) LT PEEKHT) GO TD 2
(22)



PEAKHT=X(J])
AMESAC=WLS)
M= I .
? CONTIRUE
T2=94NPTE/ALQ
ZL=NPTS/10
T=M s
TFITLGEL22) GU T 6
IF{TL L7213 GC T2 &
G TO 3
6 PEAKHT=X(MI2PT)
NMIGRAC=W("IDPT])
5 WRITE{E, 54 )R, M2l AKHT M GAC
PYI2ERO=0.,0
J=2
07 & JJ=1,MHPTS
J=d+1
4 wWld)=ldld)=PTIERDY/(OMEGAL-PTZERT)
2999 FOEMAT(! 1,001
WEITEL5H,2596) _
G TRAMSFIRM T THT ZERA T PI DOMATM FROM THE FREJUSNCY DOMA TN,
G -OUTPUT THE RESLLT : )
c Lr7P 3 GIVES A 2FERD FOR TR FIasT VALUZ OF W EF ORE 1S N3T THERE,
rC g

NML=NOT§~1
IF (W{1).E0.7.0) 530 TN 7
WRITE[6,709%)
AN WNES IS
XM -db=xtL-J-1)

2 odil-=wll-J-1)
WRITELE,2595)

x{1)=0.0
Wi11=2, 3
T J=0

WRLTLLE y29%9%)
DO 25 Jdd=bMNeTE
J=dl

29 W)= ATANL W(J))
WRITFE (Hhe 29%5)

T WFOSCALE HERE Y A FACTOR (CaLLED FACTORY T0 GET MYELW ALL WAL UES

FACTUR=3 , 14/ (HPTS)
J=:3
o0 21 JJ=1,.NPTS
RENES ]
21 W{JS)I=FACTIOP W)
WRITE(6,2699)
J=1
N0 20 Jd=1e0]
J=Jd+1
WINPT S# 14+ 20, 2831383=WI{NPTS+1-)
20 XIMPTS+1+03==-XupTS+1-J)
WRITE[&429061)
X{MeT5+1t=043
WIHPTS+1)=2.1415%2654
207 FWMATO'L 20 LTA-TRANSFIRMFN DATAY)
WRITE{6,207)
(23}
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oYY Y Oy

¥

T

b

[l R

laBakal

DY 32 J=1,K 18

PR LTod+7) G3 TN 27

JI=J+7

WOTTELE 201 T (WIT) s 1=dsd Ty UXIT)
32 CONTYRIN

,T=J:J 7,

SELUCTS THE CORSECT POWER OF 2 4 0OF DTS{ANT) 02 AMALYSETS AND

[NTERM ATES EVEN STEPS OF THE FN,
ST s ]
XENT =K

199 XMMT=XINT /2.
HNT=2 %M NT
TFIXKNNT W GT L 1.0)GHTIL86

AND TATERPILATES OVER THF We=DOMATW, T
We WITH THE FUNCTINH STOYED Ih XX

STFP=6, 2023 LR5208/ 41T
J=0
N3 Jd=1,NM0T
J=J+1
TN+ {I-1}STED
MTZpME =2 )
CALL LIMNTRPLW X oo NINT guWy XX}
234 FORMAT( VO, PINTFER2OLATED DATAN)
WRITF[G,4204)
D23 gl gMAT,R
TF{ANT JLTLJd47) 570 TD 23
JT=J+7
WETTELA G201 e tUWHNTTY s T=00d T1 XYL
23 CLNTINUE

USES D T 2PF DUMATH AMD STCRTS XX 1

NNT2=MNT/2
MY27 1=],NNT
27 CXR{TI=XX(1}
INGENVE FALSE,
LOFT=N1T/2

Faus> T2 ARALYZE X(NTLTA)RY A FAST FUU
CALL FETOFTIOXX g MNT y TROTNVLOFT y 2
PRINT T LOCFES AND SUM CHI s40K UP
WRITE 16,205)
24923 FOPAAT(Y ¢ POODFREY 4 12,3%,3(£15,3)
20% FORMATLEPLC, TDIAGHMISTIC VALUES FIR
LBETMI=LOFT -]
PEIMTS OUT THFE ALPHA COEFFS FIRST
" N=D -
NN 30 NM=1,LOFTM1

RS
(24)

HEST VALUES ARE STIRED 1IN

I’t!=JvJ 1)

1T CCAPLEX ARDAY (IXX)

ISR OTRAKGSFORM

TA)

AS A CHFLK

}
THZ COUFFICIENTS BRETA?Y)
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e B Wi oy T oy W

PO T YOy

CoOoOOo8 N

39

339

49

11

WW{N) =2 o *RELLIAFTAINT]L))

Nt 33 Jd=1,L08TML,3

TE {(LDFTYH JLT .J+7)50 T9 33
J7=J+7

WRITE (G203 )y (Wi (1) 1=d4d7)
CONTINIE

N7 335 N2 ,LDFTHM]

W (N ) ==, TATYAGIAFT A(N+L1})
Y40 U=1,105T4],3
TRILOFTYL oL TWJd+T) 500 T 40D
JT=4+7

WRTITEC A 233 S (Wl ), I=d,J7 )
CUNMTINUE

J=3

N L1 JJ=14K

J=J+1

E¢)=x{J)

NOW FTND 2e2{LFLTAIZY USIMG ALPHA{N)==9FTLIN} AND SUMMING UP TH7
COSING SERIESLSHM THZ SIND SERTZS ALSY TO GET A CHECK ON THE
FREDAMWITH THE STIRED VALUZS T E) We HOLDS THE STORED VALUES

50

51

HJ

[l

IF{LDFT.GTJLCCEFRILDFT=NCIEFF

J=0

N3 60 Jd=1,KP75

J=J+1

YiJ ¥=0.0

P‘l:j

ERIET |

TF IMeGTLIGHTOSE

T=0 WWliN  }) ACNSAN=WIJ))
TT={wulh ) PES I {d =l d))
X(Jdy=xX({ J)+7

Yi{J b=yid Y417

TE{M LT NHARMN) GITD 50
XOJy=x(Jp+P MR T
CANTIMGE

J=12

7 61 JI=1,KPTE

J=l+l

P =HLY) SR AT TR

MUMENRT 9 THE COZFrICTENTS:

REF0r e HAD

HE =2 0=T A 0/2) +1 X(=TaN D/ 2)

THAT IS,

HY (7 ) =2H™ (D) + T{=CHT (D))

THON FRHO GIVES 4'S AMD CHI GIVES g's SUCH THAT aA(A)=-8{i)

BUT WE USE wW=sTAN DD/2 INSTRAD OF W=TAN 072 M2 IKS

HOLnD = FROISG)Y + 1 CHICON) + o« o THUS ’

CHI(DD) =X{TAN DOI/2) 3Y DEFINITIOY

==(HIT=-TAN D/2)==CHI(D) THIS LAST AL3D BY DEFIMIT 1IN, AND SINCE
CHIINMI=CHI LY o WE HAVE THAT [8 THZ DD SYSTEM, ALH)=3{N)

(SFE T AMD TT AT STNJe 51)

T GIT THE PEAL PAFRT FROM FHOD WE SIMPLY USEF THE FACT THAT W=TAN(DSL/2)
RESCALE BACK TN T NRIGIMAL AND SHIFT {MLY REAL FRER ARz SHIETED)

(25)



TES JJ=1 ¢ NPTS

(JI=TANL )/ P 00) TUVALGAL=OT2ER P T IR
FREEA)=ALS{E(Y I-YLJdn
WRITE {09120]

J=u
Dol JJ=1,NeTS

J=Jd+1

ALY =Wl ) /2,/73.141592604

TL WEITE (64 156 WO 200 o E0J) Y LI, ERSL )
934 COMTIRUE -

LETURN

=MD

[ ]
2D

(26)



O

Lo I e |

L R B I I R R I R R N I R R L
Se L Er T T MRS r WA TR TR RT R R E Ry A R AN XA AT R N s Rty iy

SUSRIUT INF LINTED (X Yy ¥ PTS, P TSy X1 1Y UT)
OIMZHSTUNX (G289 (528) 3 XIN(LI2% ), ¥ UT{LI2%)
J=0

a9 99 JJ=1,NPTS

N2 APBOPRIATE VALURS OF X

oo

1
SOTLKPTSY G0 T 3
Xt LT XINGd)) GO T 2
-1

S50 10 ag
3 YT HI)=Y(KPTS ) =Y(XPTS) (XTI =X (KPTS) ) /H{6,2831853-X(kPT3))
S9 CUHNTINUF

RETURM

FAD

(27)



C*‘;#".”f‘l" t:);-.-{:*tr:'t-.t.*:k::*;v.r o ammts domh demg it R RMES pe ki ekl AR Rl EREy fa gk b b e

[y o ]

%

ST OITDD YOO OO OSSO0 N O OO0

7O DY

Do

T R

153

SURRJUT INF
FSTNFT, #MOnfL 1, V=ASION . .
USTNG FORTZAL YV COMP LYY G, LEVEL 21.
PURE(ISF
T COMPUTFE CORRFICTISNTS bF ToE ODISCRZT: FOURIER
TOAMNEETRM NO (TS IMYERSE,
USAGHE
CALL DFT (PT,ROTS, INDINY,LOFT,IFT )

DESCRIDTION 0OY DPLIAMETEZQSR
PT = THT VELTO: OF COMPLE=X DATA DOINTS,  FMNUUGH
STORAGE MUST 3 DIMENSTINED TN INCLUDE TH=Z
PIOWER NF 2 GREEATFER THAM O EJJAL TO MPTS,
NPTS = THz RUBRER QOF DATA PUINTS ATTUALLY 2R=zZSHNT,

IRCINY = A LDGICAL INCICATOR SET TR ,TRUE, [F THE
[MVERSE TRANSFCOM IS DS TRED,
LDFT = THE LEMNGTH (F THE VECTO? OF COSFFICIENTS o
DFT - THE COMPLEX VECTOR OF DISCRETE FAURIER
COFFFICTIEMTS. IT SHDULD 8E DIMENSTONED TN
THI SAME NUMBER OF 3TIRAGE LOCATIONS AS PT.
REMARKS

CFT MAY CCCUPY THE SAME STORAGZ AS PT,  THT LENGTH
VARTARLES MAY ALSC COINCIOE. i

SUPRFDOUTIRES AnND FURNCTICH SUAPRUGRAMS REQUIRE
SCLA [S5ETS GACH ZLFARNT OF A VECTOR TO A SCALAR)
MCPY {COPITS O MATEIX INTO ANITHLR)
SHpY {MULTIPLIES FACH FLEMENT OF 2 VECTNZ 0¥ & SCALATY)

METEND -
THE BT VECT MY {0F THE CRTFFICIENT VECTOR) IS EXPayYZD w[TH
ZEROS TO The REXT HIGHER PIALR (F 2. THE FAST FOUS[TR
TOLNSFURM 18 TS [NVEQSE IS THEN APPLIGTG SEF AMME)

AHD RAT, APTHOSOMAL TRANSFORAS FOE DIGITAL SIGNAL
PROCFSSTHG, SPuINGIR=VEILAG, 1975,

L R R R R R R I R I R I I R R T R R R A B I R R R U B RO A )

SUARGYTINE FSTLFT {RPT MOBTS, TNDINY 4L GFT, NFT)
LOGICAL TNDTIMY

CUOAPLEL PTINPTS )y YETLILDFT )y Wl TR TP
CUMPLER OMPLY

PRITIALIZE FOP EITHED THE FUORJARD 0% & VARSE TEAMSFOIM,
CALCULATE THE REAQUIRFD VECTIA LANGTH [THT NMIXT 904ER 95 2],
MO NP TS
I [INDINYY MPUS=LDFT
1F AMPOS LT WRITE ta,150)
FORMATO LYy YTH® INPUT VECTOR HAS LENGTH LESS THAN 1. ')
CAPY THE [MNPUT DATA& TNTI THE WORKING (DUTPUT) VECTOR,

ITFOLIRDINVY 60 TN 100
CALL MOPY (PT,DFTWNPTS,2,2)

(28)
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o 6 1 %6

e oo

]

L e |

T |

123

20

2190

220

230

SIBN==1.0
50 TN 119

CALL MUPY IDET,PT,LOFT,2,0)
SIGH=1.0

CONT INUE

FLIND THE NUHMSOR OF JTERATIONNS (LUG NPAIS T THE= RBAS: 2,

FOUNDER UPWATD) .

MITRS=4LAGLOCFLIATENPDS) ) 043010203
LV C=2%#NITRS
17 (LVEC.EQ.NPOS] G TN 120

FILL TRATUING PASITIONG 15 THE WURKING VeCT0R
WITH ZER0OS 1F NEEDED.

LVFC=LVED®:2
HITRS=MITESH]

IF (W8T IMGINY) CALL SCLA (DFTIN9TS+1IoO.O.LVFC—NPTS,Z;J}

IF CINDINYY CALL SCLA (PTILDFT+1)4240,LVEC~LDFT 2,0}
CONTINUE

DERFORK AN TTERPATTIIN FOR FACH POWER 78 2,

LHLF=LVES

JC 230 MOWITE=1,NITES
LRl =LHLF

LHLE={RLK/ 2

PRk =3,1415%2/LHLF

CIMPUTE A MULTIPLIER FI2 FACH HALF=3LJCk POSITIIM,

DG 220 NIAPGS=1LHLF
PG NTWPOS =1 ) PYE
wOHIZCAPLX{C ISLARD) 5, STONS ST (ARG )
LSTAT =D

ARPLY THE ALGARTTHY T2 THE S4ve POSITIC IN ZACH RLOCK,

TE [LSTOT .6, LYER) 6 T9 239
CIERT={ TP T ULPAS

FAXDT= V[NPTHLHLF
LSTOT=L8TPTH+LALK

TEANSENZN THE APPRESPRIATEZ VoOT0R,

TE [IHDTIMVY G0 T 210
CMETMP=DFT{MILDT)=OFT (MAXPT)
JETIMINPT ) =NIT{MINGTY+NFT (MAXPT)
AEY[MAXPT ) =k dWp 02T P

GUTN 229
CAPTMP=PT (M IMDPT)=PT{ MAXPT)
PTIMINPT)=PT{MINPT ) +PT{MAXPT )
PT{AAXPT) =wPYURTCHPTMD

GDOTD 200

CONTINUG

SOeT THE QUTRUY VECTOR THTD THE PROPER ORDER.
(29)



The first half of FSTDFT is matrix manipulation which does the
essential calculations involved. Matrix manipulations are achieved
with the help of IBM-supplied subroutines MCPY, SCLA, and SMPY. These
are contained in the "Scientific Subroutine Package".

The second half of the program then sorts the coefficients into
their appropriate order in the output vector COMPLX.

Input for FSTDFT must be defined éver the interval from (and

including) zero to (but not including) two pi.

(30)



tn I e |

Cy Y

[ e}

ER )

azn

LHLF=LVEC /7
HAX?T=uPTS=1

NEWAT =1 -

00 330 MOWPT=2,MAXPT

COMPUTE THE ZERD=TORIGIN SIT-REIVIISAL OF NOWPT,

LWPHRE LY

IF (NEWPTLLE.MMWPAR]Y GO TO 310
HEWDT 2N Ed P TR WY
HONEWR =N PWi /2

55T 200

MEWPT=M EWPT 48 WP WR

SWAP FLUNMTHTS IF APPROIPRIATE AND NDOT ALRTADY O0ME,

It INEWPTLLL.KIW2T) GO T 330
IF (INDTHNVY GO T7 329
CMPTMP=CFT [ hJWPT)
DFET(MOWPT) =DF T{NEWPT )
DETINEWPT }=CHPTMP

G T 230

CMPTMP=PT{MNMNDTY

PTINOGWP TI=PT{MENW2T)
PTIIMNEWPT )= ¥DPTMP

COnT IMNUE

SCALE THE FOSULTS OH THE FOSWARD TIANSHIEM,
TF (SNITLIMDIMY ) CALL SHMPY [DFT,L.3/LVEC,DFT,LVED 42,01
AR TURN

ENn

(31)



VI. Results and Conclusions

The WLT calculation of R(w) from X(w) will then be compiared with two
other R(w)'s. The first is a once-subtracted nuwmerical KK calculation which
is done by a computer program written by Lary Pinkley. The éecnnd is a
comparison with the resulés, R(w), of the survey of Downing and Williams.
Their values R(w) were derived by a weighted averaging of dispersion relation
calculations and actual cxperimental measurements. This R(w), for purposes
of comparison, will be taken as the exact R(w).

X(w), for the computation of R(w) by the WLT process, is the imagina;y
paft of the index of refraction of water taken primarily from the critical
surﬁey of H. Downing and D. Williams.l1 This survey alse makes use of studies
by Robertson, Curnutte, Rusk, Palmer, Ray, Querry, and Williams.12’13’14'15’16
Values of X(w) are taken for v = 2ww = 10 cm_l through 9500 cm_1 comprising
464 points. Downing and William's values for « range from 10 cmfl_to 5000 cmﬁl

= from 5000 cm_l to 9500 cm—] has been taken from Palmer.l

1 n
Downing, H. and D. Williams, "Optical Constants of Water in the Infrared",
Jour. Geophys. Res., 80, 12 (1975).

2R0bertson, C.W. and D. Williams, "Lambert Absorption Coefficients of
Water in the Infrared", J. Opt. Soc. Amer., 61, 1316 (1971).

1
3Robortson, C.W. and B. Curnutte, and D, Williams, "The Infrared Spectrum

lARusk. A.N., D. Williams, and M.R. Querry, "Optical Constants of Water
in the Infrared", J. Opt. Soc. Amer., 61, 895 (1971).

1!
SPalmur, K.F., and D. Williams, "Optical Properties of Water in the Near
Infrared, J. Opt. Soc. Amer., 64, 1107 (1974).

16Ray, P.S., "Broadband Coumplex Refractive Indicies of lece and Water,
Appl. Opt. 11, 1836 (1972).

17 i ; ;
Palmer's work was done at 27°C., which is consistent with the afore-
mentioned survey.

(32)



Figure 1 shows the subtracted Kramers-Kronig calculation alongside the WLT

calculation. Figure 2 shows R along with the survey results of Downings and
W

L.

R is found in the survey by 3 techniques and then a weighted

re 9 T )
Williams, RDW W

average of the results was taken to give "best values for the index of refract-
tion". The techniques Jrc, 1) the Kramers-Kronig analysis Crom known values

of the absorption; 2) Norﬁnlly incident reflectance measurements and the dis-
persion relation,

2v

Pv) = S du” : ()

—
|3
fe
=
~

=

S

et I

Ff il W I P
Q

“where v is the frequency and @ is the phase of the complex reflectivity amplitude

£v) = (REv)] T TP (@)
whence,_

~ ~ ~1 i
Reln(v)} = (1~R)/(1+R—2Rﬁ cos §) (3)
3) Normally incident reflectance and absorption measurements which give Ref{n(v) )
by the boundary conditions at the vacuum-water interface

®eln(} =1)% + (min(u)1) | "

R(Y) = 5 2
(Re{n(v)} 4+1)" + (Imin(v)})

Notice that in either figure, the shape of RwL only approximates RKK or

R_.,. Note too, that R agrees with R The remainder of this section will

DW KK DWW’

attempt to show how some of these differences can be explained while other
differences are still the subject of ongoing rescarch.

Consider the difference between the hypothetical "exact" R(w); for the
index of refraction of water, and R(w) corresponding to a calculation by means

of sowe method which corrvesponds to the unsubtracted

RGw) = 27 Xelddoo (5)

T w - W

(33



Since in practice the calculator can never extend his limits of Integration
to #=, he must restrict calculation to some band and of course make an crror

in the caleculation of (2) of

BET 4 = } i V_K_(}g-_l.ﬁﬂ | : (6)

where © indicates all values outside the baund of integration. If most of the

] . err . ) . .
contribution to R ~(w) comes in some region @ near w™ = w_ the integral (6)

2
can be approximated,
err 1 1 P s
R (w) = = —>—_ [ X(w") dw (7)
T (w,—w)
2 {
Defining

1 ” :
A== [ X(w') dw

"o

R (w) = —— , A>0 (8)

lLetting R (w) designate the actual solution of (2) and RD(w) the errancons

ACT
approximation
- _A
Rp() = Ry op () W,V
or - _ ()
- A
Rycr (W) = Rplw) + W,

Figure 3 shows a sketch of what R CT(W) might look like for one absorption

A
[1L‘dk. At th extrema {‘ ’{ R W Y
. » :.r].( )

- R - R” LA
0 = RACT (w) = RD {(w) 4(W2Hw)2 | (10)

(34)



2 : =
Since A/(wz—w) is positive for all w,RD(w) must- be negative-at this value

> w (w,

of w (6) shows hd(w) < RACT(w) if w 9

5 in ultraviolet) but RD(W)_> RACTCW)

for w, < w {w

2 9 in infrared). These two possibilities are designated R;v and

IR s
RD respectly in Figure 3.

Looking at the curvature,

(W) = B () + 2y

RACT (w2~w)

3 zeros in the second derivatives occur at 1, 2, and 3 (see Fig. 3) In each

in the low frequency region but

function. Since 2A/(w2~w)3 is negative for W

positive for w, in the high frequency region the curvature of R;R and R%V can

2
be compared to R in four regions:
ACT
<1 1-2 2-3 >3
RIR more less more less
D positive negative positive negative
uv less more less more
R v ; o
. D | positive | mnepative | positive | negative }

One final qualitative observation is apparent in Fig. 3. The integrand
of (2) is in the form X(w)/(w'- w). Thus R(w) will have less contribution
from X(wz’) the farther w is from wz’. And for Q>w2' the Fontribution will
be négative; for w<w2f the contribution will be positive. E}g,,RBV is quite

a bit less than RACT'for high frequency but nearly the same for low frequency.
the qunntity.Rm -R , will be greater than in

. uv IR
In either case of R or R
D ax min

D

I rase of R g
the case o ACT
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The point of all this is of coursc that R in Fig. 2 or RKK in Fig. 1

DW
should he nearer exact R(w) than RWIT' Indeed, the qualitative features of
REV in Fig. 3 can be seen in RWI in Figs. 1 and 2. Regions of anomalous

dispersion occur ﬁuar_bOO vmpl, 1700 cm—], and 3400 cm‘l. In each case the
maxima of RWL are sﬁarper; thé minima, of less curvature; ghe Rmngmein
quantity is larger. In addition the figures show the width (a or a”) of these
~anomalous regions to be greater for RWL (a">a).

So in a qualitative sense, much of the difference betwecn RﬁCT and RWﬁ
is explained by noting that it corresponds to an unsubtracted dispersion
relation, {2). 1t would be very instructive to sece if does indeed give
the same results as an unsubtracted KK analysis. This is presentiy the
subject‘of continuing research.

There are reasons for belieying that it does not, for reasons that are
not now understood.

1. R in addition to its differing shape is shifted to the

WI.’
i -1
right by about +60cm =, from RDW or RKK;
2. The Fourier efficiency (defined as the uncertainty in a Fourier

series fit) of FSIDTFT for the case considered is about 4%.

This value is too small to bring RWI into conformity with

RKK at the 3400 cm_labsorption.
The Fourier efficiency is derived in the fellowing manner. After the

cocflicients An are calculated for p(8) + 1 x(8), the scries

x(8) = §=] An sin n §

(36)



is resummed and compared with the original data for ;((6)7. ~The average
efficiency is then determined as about 4% for this problem.  This efficicency
is poorer ncar an absorptive region (since Fouricr fits are difficult near
sharp turning points) but the derived calculationsrindicnte about 7% {g the
worst that is possible.

The shift ig particularly enigmatic. No explanation for it has been
devised by the author at this time. Diagnostic tests indicate no programming
errors in DAVERS] could be causing unwanted shifts. It may be due to an
absorption band in the ultraviolet (then WLT process is equivalent to an
unsubtracted KK), but no complete X(w) for the ultraviolet is accessible at

this time. Hence, some fresh approach is required if the WLT process is to

be made practical.

(37)



2.0

L.o5

Re{n(w)}

1.0

Figure 1:

Comparison of WLT Calculation with Subtracted
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Figure 2: Comparison of WLT Calculation with most Probable

Values for Re{n{w)} (Downing and Williams, 1975)
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Figure 3: Effects of Missing M?V on an Unsubtracted Analysis
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Appendix T Dispersion Relations in General

In a linear, time—~independent physical system, the input F(t”) and

response g{t) may be related by
k(t) = F_ gle=t7) f(x7) dr~

Causality demands g(r1~-717) = 0 for 1«1~
since the response can only come after the input.

Taking the Fourier transform of (1) gives

IE(W) = é(w} . E(W)

"with the relations

g(7) = 1”‘? g R g(w) dw
2w =

g(w) = ?w WE (0 ar

t = =17

Equation (5) shows that g(w) is analytic in the upper half-planec of w.

Proof: Writing

(1)

(@)

(3)

(4)
(5)

(6)

w = w_+ iw and using the retarded green function (2), (5) becomes

R I

glw) = z dt g(t) elet erIt

Tor wi>0 (9) is convergent and defines an analytic function g(w).

. dg(w )
Moreover, the derivative "ﬁé@l exists for-wI‘i 0. If a function and its

derivatives exist in some region, the function is analytic in that region.

Therefore, g(w) is analytic in the upper half-plane. 8o in the upper half-

plane the Cauchy Integral Formula can be applied. The contour C]'is then

(40
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_deformed to the contours C. running along the real axis form - I to L plus

1

CL the semicircle of radius L. Then 1. is allowed to approach infinity

R B (' W e p
g(w) = 2l D we w .

The integral has 2 pieces:

C,+ C

But the integral over C_  vanishes

because as R

glw?) dw” -
i Wi w 5 lg(w )!max. i

" where ig(w’)lmax is the maximum magnitude of ‘g anywhere on the semicircle.

But Ig(w’)l -+ 0 as R+», and so the integral over C_does likewise. Therefore,
max ©

gy = == 7 Bl )8y (Tm(w)>0) (10)

i w Wi w

~

If the function of physical interest is g(w) which is measurable only

on the real axis

y(w) = lim g(w + ig)

£+0
The (1) becomes
- w  BWT) dw’
z#i ¥ (w) ii: [m w—- w - it
_m. o ylwr) L . 18
= f£ e dw” + wi v{w)

18rhis property of the principal value integral is derived in most mathe-
matical physics texts., For a particularly good derivation sec Paul Reman's
Advanced Quantum Theory (Addision-Wesley, 1965) Appendix A4-3.
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Tmplies

Separating real and imaginary parts yiclds

Re{y(w)} = %—fi-lgi%igbl}dw,
In{y(w)} = - -i- By REEI(‘JJ )}, -

Since g(t) is assumed to be real,

g(t) = g*(t)
from the Fourier representation for g(t) it is seen

y(w) = y*(-w)
This relation is known as crossing symmetry. Thus:

TR SCREE Ji (R L

-0 w S

o w4+ w

which implies

Re{y(w)} = %-%f E:%Ei}(g')L
w - w

dw”

Similarly

“2w &, Rely(w’)}

r 5 P2 2
W -w

dw”

Im{y (w)}

In many cases, the generalized amplitude wa) does not tend to

(11)

(12)

(13) ~

(14)

(15)

zero for

[w]* « but tends to some constant. In that case we cannot directly apply

Cauchy's theorem. However, y(w) - v(») does + 0 as w = =, hence Cauchy's

thcorem is

1= yu)= y() -
21i =w who-w

y(w) - y(=) =

(43)



But by definition,

ﬁ& “gﬂ_“_ = 0 . - - (16)

W - W

Therefore,

= xy s —]_'._.. “,j Y(W’) . Y(m) ” .
Y(W) = v(=) 4 g A W W dw - (17)

Comparing with (11) shows that the rule is: A constant y(~) may be added to
(11) and (14) to correct for the asymptotic behavior of v. In general, one
may also know a value Y(wo) for some experiment of calculation. One many
use this measurement to achieve better assymptétic convergeﬁce of the inte-
grand by the following method (called a subtraction). Subtract equation (11)

(or_(l?)) evaluated at v from equation (11) (or(17)):

y{w?’) dw”
» (w‘—w)(w‘-wo)

. 1 o
s = i ——— r
YO - v(w) = (w-w ) 7/
Taking the real part gives

Re{y(w)} = Re{Y(wo)} + (w—wo) ?m I?izfg)%i}_:w; A (18)
o

kil

Comparing (12) with (18) shows rthat the intégrand in this last converges one
power faster.

It isin amore general case also possible that in the complex w-repre-
sentation, y(w) has a finite number of poles at points wi (i-1,2,....,N)
(but vy(=) = 0). Then

R A LU WL T (o B
; w-W, 2ui S wi- w
i=1 i

In the limit of w real (and taking real part and principal value)

teifes il 1w 1ulbyte™] dw
Vo~ W L woo-w

1 i

N
Re{y(w)} = ¥
i=

(44)



Appendix II  Some Applicatiggﬁﬁpf Causality and Dispersion Relations

Since 1960, interest has been focused on dispersion relations for
potential scattering as well as the Kramers-Kronig relations for light
; » - (- R
scattering. These were derived by Klein and Zemach. Briefly sketched,

from the Schridinger equation for potential scattering

2 ,
(7" + k- v @) = 0 (1)
the scattering amplitude is

_'Au.} !+ (-> 3+
L. petker U(r) ¢k xf)' d’r _ - (2)

£(k,0) = - 72/

~ ~

whére k is the final momentum vector (k = nk) and wk + (53 the outgoing

solution of the Schédinger equation:

y > ik 3 3 3
£ e, D% 1 ulied &MT  d% (3)

+ ik.r

P -

by (r) = e
5 ‘

where ko is, the incident momentum and G is the full, retarded Green function.

R + -3 > -
“G(E, T k) = 6TE, Pk + 7 6T, TR UG o(e", 17y k) dor

(4)
where
G+ (r,r”; k) = —[l:”— _Q’EP_.S.‘_%__JE}'_'iL)_
le-r~|
By noting the symmetries of G(?, ;’; k) and its hermiticity one is able to
analytically extend G(?, ?‘; k) to complex values of k (z=k+ip). Then in
the upper half plane, G(?, ?‘, z) can be written as a bilinear formula
over all eipenfunctions and used to solve (3). Using (3) in (2), f can be
written as a function of z and the momentum transfer A, where

f{k,A) = lim f(z,A) (5)
. B-ro

]'gK,lx'in, A. and Ch. Zemach, Ann. Phys. 7, 440 (1957).
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Changing variables to energy gives

z2 = g, T ® A2 ' (6)

results in an expression for the scattering amplitude
N

Re(e(e, b = £g0 + 1 Il w0 e 0 0 7
j=1 e+ Lj[ T o Ef = B

fB(T) is the first Born approximation,

>
= 7 N N 3>
fB(T) = le (A) o fe U(r) d7r (8)

and Rj (i|Ej],T) is a shorthand notation for the term

1 o A
R, (1le, [,82) = - 2= I exp[(-1/20 (et ") Jexpli-d e, [-a2) * =2 ) on]
R b % (9

> 3

U(r) U(r’) ¢j(?) ¢j*(¥‘)d3r'd s

i :
¢j(r) here is an eigenfunction of the target + particle state belonging to

€,
the bound state energy ngljl,_
2

For non-forward scattering, (7) requires rhe knowledge of Im{f(¢,1)}

down to £=0. This contains an unphysical region since

A = 2k sin 8/2
2
thus T =4 = 2¢ (l-cos 8)
If #0 is fixed this shows that experiments can give f(eg,t) only for %A> %
since for physical angles cos 0 cannot be less than -1.  That is, E'T < F < @

so the region 0 < ¢ < 1/4 is unphysical but may be included in the dispersion
integral. The method used to determine Im{f(e,1)} in the unphysical region
is to analytically continue Im{l(+,t)} by using the partial wave cexpansion

. 1 % ; id } 1
flea) = = §=0 (28 + 1) o R({) sin ég(v) PP(I- %m), real g (10)
3 v J £
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and extending P (1= %TJ to the unphysical region (11), dﬂ(c) is, of course,

£

measureable at real cnergics, and is extrapolated into the unphysical region.
Experimentally, of course, no scattering at 8=0 can be detected. Yer,

f(e, 0) is a crucial test for any theory since the amplitude varies rapidly

in the vicinity of 6=0. TFor forward scattering t=0 and the optical theorem

gives

Ve
Im{f(e,0)} = —— a(e) (11)
4
Thus measurements of the total cross-section are related to Im{f(c,0))}.
Hence, Im{f(e,0)} and Re{f(e,0)} is valuable information.

(7), along with the observation that f and Rj are always real gives

B
the analytic properties of f(e,7). f(e,7) is analytic in the entire ¢ plane
cut-alodg the line from 0 to «.(The principal value integral is infinite for
any € > 0.) and has poles of order one at all values Ej which lie along the
negative real axis (see summationrterm).

Gerjuoy and Krall have applied (7) to the interesting problems of elect-
rons scattering elastically off hydrogen and larger atoms in the forward

041 They show that both direct and exchange amplitudes have the

. . 2
direction,
same analytic properties, hence both obey dispersion relations similar to (7).
By taking linear combinations of these dispersion relations they derive use-

ful relations which indicate that only certain angular distributions at low

energies are consistent with certain measurements of ™ Hence dispersions

Cerjuoy, LE. and N. Krall, "Dispersion Relations in Atomic Scattering
Problems'", Phys. Rev., 119, 2, (1960).

1 ’ X ; ; ;
Gerjuoy, L. and N. Krall, "Dispersion Relations for Electron Scattering
from Atomic Helium", Phys. Rev., 127, 6, (1962).

(47)



relations could be used as a consistency check on the experimental measure-
ments of scattering experiments. Lawsén and others and Brandsden and MeDowell
have applied these techniques to the electron-helium system to preferrably
distinguish betwecen various measurements of the elastic cross-gection avail-

b}

2 3 , .
able at the time. This work has been continued and extended Lo atomic

neon and elastic positron scattering measuremeﬁts in the last few years.za‘z5
Dispersion tecﬁniques also have a wide range‘of applicability in quantum
field theory. This application grew out of the failure of perturbation
theory to solve the field equations directly. Hence an exploitation of the
consequences of basic principles is sought. These include causality, unitarity
a positivc—tiﬁelike momentum spectrum, and relativistic covariance. Origin—
ally, work in this area set out to ascertain from field theory the analytic
properties of scattering amplitudes, verify these analytic properties experi-
ménta]ly, and derive dispersion relations. However, many of the analytic
properties which are in wide use have vet to be derived from the field theory.

Nevertheless, dispersion techniques have enjoyed considerable usage since

from a practical standpoint it matters little if one postualtes the necessary

2
: Lawson, J., et.al., "Dispersion Relations and Elastic Scattering of
Electrons by Helium Atoms'", Proc. Roy. Soc. London, Ser. A 294, 149 (1966).

23 ’
Bransden, B. H. and M. R. C. McDowell, "A Phase-Shift Analysis of
Electron-Helium Scattering below the S Resonance'", Jour, Phys. B, Vol. 2,
Ser. 2, (1969).

24
Naccache, P. F. and M. R. C. McDowell, "A Phase Shift Analysis of
Electron-Atom Scattering', Jour. Phys. B, Vol. 7, No. 16, (1974).

258run$dun, B. H. and P. K, Hutt, "Elcctron and Positron Scattering by
Helium and Neon'", Jour. Phys. B, Vol. 8, No. 4, (1975).
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analytic properties of an amplitude as self-cvident —- which will someday
be derived from ficld theory. The important thing is that the theory be able
to predict scattering amplitudes. |

A simple example of a dispersion relation in field theory arises in the
application to form factors and to decay processes, where a central part is
played by the vacuum expectation values of products of two gnd three ficld
operators. (A derivation of this example is given in Barton, Dispcrsion

Techniques in Field Theory) The Fourier transforms of these vacuum expecta-

tions values, called the two-and three- point functions respectively, can be
written so that the S-matrix assumes the time-ordered product form. The
time-ordered product in the T-matrix obeys a crossing symmetry. Hence analytic
continuation is possible. The Fourier transform of the time—brdered product

(called the Feynman function) then obeys a dispersion relation.

2

L2 o 2 .2 2.
AF(p)=gdp p(p” )/ (p” = p - i)

That is, in the limit as e>o

2 2
—elp”7)
2 2

- p

de

A = B
= P -
F P 0 .
P
. I i 2y
AF(D ) is the Feynman function, o is the momentum, and p(p~) is the
Lehmann spectral function whose form is derivable from experiment. Of course,

this relation is valid only so long as the integral coverges and A;(m) = 0,

If either of these conditions does not hold we must perform at least one

QHﬂmriol Barton, Dispersion Techniques In Field Theory, W. A, Benjamin,
Inc., New York (1965), p. 87.
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subtraction. In particular, if the integral does not converge we might choose

a subtracted form:

_ 2 .7

© 2y = Aoy ¥ n2 3 407 ) o (pI7)

ap () AF(U) Fp S B g g
ppTT- pT- dE)

Now A;(O) must be inferred or guecssed from other considerations. Tf it must

be guessed then the status of AE(O) is that of a fundamental parameter. In

‘a particular theory onec might have a number of dispersion relations. If,

many of these fgndamental, non-calculable, parameters such as Aﬁ(O) are reqﬁired
one might aesthetically reject the theory as "weak'”. Hence, it is important

that a theory have "simple'" dispersion relations or well-justified subtractions.
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Appendix III SKKA: A program to calculate quantities that obev dispersion relations
by means of the subtracted Kramers-Kronig numerical analysis.
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ABSTRACT

A proaeés which makes use of the Wivner—Lué transform and the fast
Fourier transform is used to calculate quantitics whichlobey dispersion
relations. Qualitative agreement with numerical analysis of the disper-
sion relations is obtained, but difficultics persist in determining Lhusb‘
quantities exactly enough for the process Lo be used in practice at this

time.



