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Abstract

We carry out Brownian Dynamics Simulations to study the self-assembly of ligated gold

nanoparticles for various ligand chain lengths. First, we develop a phenomenological model

for an effective nanoparticle-nanoparticle pair potential by treating the ligands as flexible

polymer chains. Besides van der Waals interactions, we incorporate both the free energy of

mixing and elastic contributions from compression of the ligands in our effective pair po-

tentials. The separation of the nanoparticles at the potential minimum compares well with

experimental results of gold nanoparticle superlattice constants for various ligand lengths.

Next, we use the calculated pair potentials as input to Brownian dynamics simulations for

studying the formation of nanoparticle assembly in three dimensions. For dodecanethiol

ligated nanoparticles in toluene, our model gives a relatively shallower well depth and the

clusters formed after a temperature quench are compact in morphology. Simulation results

for the kinetics of cluster growth in this case are compared with phase separations in binary

mixtures. For decanethiol ligated nanoparticles, the model well depth is found to be deeper,

and simulations show hybrid, fractal-like morphology for the clusters. Cluster morphology

in this case shows a compact structure at short length scales and a fractal structure at

large length scales. Growth kinetics for this deeper potential depth is compared with the

diffusion-limited cluster-cluster aggregation (DLCA) model. We also did simulation stud-

ies of nanoparticle supercluster (NPSC) nucleation from a temperature quenched system.

Induction periods are observed with times that yield a reasonable supercluster interfacial

tension via classical nucleation theory (CNT). However, only the largest pre-nucleating clus-

ters are dense and the cluster size can occasionally range greater than the critical size in the

pre-nucleation regime until a cluster with low enough energy occurs, then nucleation ensues.



Late in the nucleation process the clusters display a crystalline structure that is a random

mix of fcc and hcp lattices and indistinguishable from a randomized icosahedra structure.

Next, we present results from detailed three-dimensional Brownian dynamics simulations

of the self-assembly process in quenched short-range attractive colloids. Clusters obtained in

the simulations range from dense faceted crystals to fractal aggregates which show ramified

morphology on large length scales but close-packed crystalline morphology on short length

scales. For low volume fractions of the colloids, the morphology and crystal structure of

a nucleating cluster are studied at various times after the quench. As the volume fraction

of the colloids is increased, growth of clusters is controlled by cluster diffusion and cluster-

cluster interactions. For shallower quenches and low volume fractions, clusters are compact

and the growth-law exponent agrees well with BinderStauffer predictions and with recent

experimental results. As the volume fraction is increased, clusters do not completely coalesce

when they meet each other and the kinetics crosses over to diffusion-limited cluster-cluster

aggregation (DLCA) limit. For deeper quenches, clusters are fractals even at low volume

fractions and the growth kinetics asymptotically reaches the irreversible DLCA case.
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Chapter 1

Introduction

Gold Nanoparticles (NP) are small spheres of gold colloid ranging in size from few nanome-

ters to few hundred nanometers. Due to the large number of surface atom contributions,

nanoparticles show different electronic, optical, and mechanical properties from those of

their corresponding bulk materials and these properties are also effected by the size, shape

and surface chemistry of the particles [1]. The optical properties of the nanoparticles depend

upon the size of these particles. For example, the red color in stained glass windows is due

to the colloidal gold nanoparticles, first prepared, comprehensively studied and published by

Faraday in 1857 to account for the properties of these particles [2], and can be changed to

violet or blue by changing the size of the particles [3]. The electronic properties of nanopar-

ticles are also found to differ from those of their corresponding bulk form due to their small

sizes [4]. Mie was the first person to give theoretical explanation for the color of the col-

loidal gold. According to this theory, based on the solution of Maxwell’s equation, different

colors appear due to the extinction (combination of absorption and scattering) spectra of

the spherical particles [5]. Because of the size dependent properties, unique structures (i.e.

monolayers and thin films) and their propensity to form 3-D superlattice structures, these

nanoparticles have gained considerable attention in the recent literature [6]. Also, they

have wide range of biological and medical applications. For example, nanocomposites com-

posed of Au and biopolymer are employed as a novel biosensor. They can also be used

for applications such as quantum dot displays, transistors, organic thin films, chemical and
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pressure sensors, adhesion and friction modifiers, protective layers, and highly efficient cat-

alysts with larger surface to volume ratio [7]. In medicine, gold nanoparticles can be used

as drug carriers, tumor detectors and photothermal agents.

In some types, the surface of the nanoparticles are usually ligated with different kinds

of organic compounds which help them to show stability against irreversible aggregation.

These ligated gold nanoparticles, behaving as gold colloid solution, often show reversible

temperature and solvent dependent solubility [8] and one of the challenges during the syn-

thesis of these nanoparticles (NPs) is to prepare a monodisperse system of these colloids.

Monodispersity of these particles not only helps us to study the properties of the individual

building blocks present in the nanoparticle system but also these highly uniform particles

can aggregate to form 2-D or 3-D superlattices. Lin et al [9] applied a digestive ripening

technique to the polydisperse colloidal gold ligated with different thiols in toluene to achieve

a monodisperse system of these particles. In such cases, when the particle size is highly uni-

form, these dispersed nanoparticles in the solutions can self-assemble to form a aggregates of

the nanoparticles. For example, Lin et al have synthesized nanocrystal superlattices (NCS)

in a gold colloid solution through ligating the nanoparticle surface with dodecanethiol [10]

and they have shown that by changing the temperature, one can control the superlattice

formation. This reversible behavior shows a strong analogy with the molecular solutions and

it is important to understand these variations in the behavior of the nanoparticle solutions.

In order to control the superlattice formation and to understand the stability of the NP

colloidal dispersions, it is very important to have a detailed understanding of the interaction

between the nanoparticles. For the case of non-aqueous solutions, in recent years, the NP

colloidal systems are stabilized by using a variety of synthetic polymers and biopolymers

and the mechanism is termed as the steric stabilization. As mentioned above, a protective

surface coating or ”capping” is used during the synthesis process to achieve a disperse

state and this stabilization due to ligands or polymeric shells is becoming more and more

common. A detailed theory or modeling of such systems is lacking in literature. Theoretical
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modeling of NP-NP interactions can broadly be classified into two groups. In the first

group, a coarse-grained approach is taken, and the interaction potential is often written

in terms of effective van der Waals (vdW) interactions between the cores alone [11], [12].

Korgel et al considered ligated nanoparticles as ”soft spheres” and estimated the steric

repulsion between two nanoparticles by using the deGennes expression for two dense layers

of strongly adsorbed chains in a good solvent [13]. This steric repulsion is compensated

by the attractive vdW part of the overall inter particle interaction potential. In some

work, the free energy of mixing between the tethered chains is also considered [14]. In the

second group of theoretical modeling, a semi macroscopic approach is taken, and NP-NP

interactions are calculated directly by numerical simulations [15], [16]. In such simulations,

one typically considers two nanoparticles at a fixed distance in the presence of flexible

chains that can adsorb onto the nanoparticles with some adsorption energy. The interaction

between polymer segments is modeled by the Lennard-Jones potential, and the effective force

between two nanoparticles is computed by using a virial relation. For the theoretical study

of the interaction between the ligated NPs in solution, our approach is phenomenological.

In addition to the vdW interactions between the nanoparticle cores, we treat the ligands as

flexible polymer chains and do consider a free energy of mixing approach. Furthermore, we

consider elastic contributions from compression of the ligands to the effective nanoparticle-

nanoparticle pair potential.

Since the nanoparticle colloidal systems can be understood and manipulated as large,

nearly stoichiometric molecular solutions, it is then reasonable to ask what is the nature of

nucleation and growth [17], [18] of the insoluble phase? Does the classical nucleation theory

(CNT) [19], [20], [21] apply to NP solution nucleation or is the pathway more complex? Does

the two-step model proposed for protein crystallization [22], [23], [24](where a stable cluster

forms as a dense liquid as the first step and then the particles in the cluster reorganize into

an ordered structure) apply to NPs? What is the shape of the fluctuating pre-nucleating

SCs of NPs (we use the term supercluster to imply a cluster of nanoparticles, which are

3



often referred to as nanoclusters)? Are these spherical as assumed in classical nucleation

theory or have other shapes as implied by recent colloid work [25], [26]? Such questions are

not only of inherent intellectual interest but are also very useful, for with an understanding

of this science, we will be able to control the self-assembly of NPs into either superlattices,

ramified aggregates, gels or films on surfaces. Nucleation in nanomaterials is of particular

interest since for these systems the ”atoms” are nanoparticles (NPs) that are easily seen by

table-top laboratory methods such as light scattering. By using our phenomenological model

of the nanoparticle interaction, we studied the nucleation mechanism for the dodecanethiol

ligated nanoparticle system in our simulation. Once the simulation system is quenched

from a stable to a metastable regime, nucleation phenomena divide into two halves: those

that happen before a critical nucleus occurs and those that happen after the critical nucleus

forms. Before the critical nucleus forms, we desire to know the size, structure and number of

pre-nucleation clusters that appear and disappear in the system. After the critical nucleus

forms, we desire to know the kinetics of the ensuing cluster growth, number density and

structure and compared our simulation results with the well known Classical Nucleation

Theory (CNT) [27] and modified nucleation theory, known in literature as Fisher’s Droplet

Model [28].

According to our phenomenological model for the Np-Np interaction, the depth of the

potential well is deeper for the case of decanethiol (C10) ligated system as compared to

that of the dodecanethiol (C12) ligated system. The change in well depth not only change

the critical size of the nucleating cluster but also affects the morphology of the aggregates.

Due to the difference in depth of the potential well for the two cases, the morphology of

the clusters is compact for the C12 ligated system. On the other hand, for the case of

decanethiol ligated system, a hybrid morphology of the clusters is observed (i.e. compact

structure at short length scale and more fractal-like structure at large length scale). Such

hybrid morphology has been seen in both simulation and experiments. Range of interaction

also plays an important role in the formation and structure of the colloidal aggregates and
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hence on the phase diagram. If the range of interaction is larger than the size of the particles,

the growth of the clusters resembles to those of the atomic clusters. On the other hand,

for the case of short-ranged attractive systems, solid ordered phase starts to develop in the

surrounding fluid phase [24] whereas for the intermediate range (i.e. comparable to the

size of the particle), the solid phase coexists with the dilute and dense liquid phases. For

the detailed analysis of the effects of range on assembly of the particles, we studied the

nucleation and growth process in a simple colloidal model.

Even though the colloidal systems have long history and have been observed and used

since the early civilizations, their scientific and systematic study has been developed recently.

The quantities such as surface tension, electrostatic interactions, van der Waals interactions,

steric interactions and other factors such as the presence of the polymers adsorbed at the

surface of the colloids are generally responsible for the stability of the colloidal particles (By

stability, we mean here that the particles have no tendency to aggregate) [29]. Different

models have been proposed for different colloidal systems. For the case of colloidal disper-

sions in polar solvents or aqueous media, where electric charge is present on the surface of

the particles (The evidence of the presence of these charges comes from the phenomenon

known as electrophoresis), the stability is explained by a comprehensive theory known as

Derjaguin-Landau-Verwey-Overbeck (DLVO) theory [30]. The theory describes a competi-

tion between the attractive van der Waals (vdW) forces and the electrostatic repulsive forces

due to the surface charges. The van der Waals interactions are fairly independent of the

electrostatic fixed charges and of electrolytic strength. Mainly, it depends upon the molec-

ular density of the colloids. The electrostatic forces between the colloids originate either

from the dissociation of surface groups (e.g. Carboxylic group COOH 
 COO− +H+) or

due to the adsorption or binding in of ions from solution. The final charge is balanced by an

equal and oppositely charged region of counter ions. Some of the counter ions are bound to

the surface within the so-called ’Stern layer’ while the others form an electric double layer

due to the thermal motion of the counter ions. According to Debye-Huckel Theory, the
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electric double layer depends on the ionic strength I. As the ionic strength increases, the

ionic double layer decreases rapidly. The effective length of the double layer is measured

by a parameter known as Debye Screening Length k. The overlap of the double layers of

two identical particles leads to the repulsion between the particles. Hence depending on the

particle size, molarity of the salt and the surface potential, the DLVO potential can take

various forms for details see ref. [29]. The electrostatic repulsive forces are very sensitive to

the salt concentrations and if the double layer is larger than the particle radius, only one

minima occurs in the overall potential curve and the particles coagulate irreversibly. Sec-

ondary minima starts appearing in the curve if the length of the double layer is comparable

or smaller than the size of the particle and leads to the formation of reversible aggregates.

Another simplest possible interaction model for certain colloidal systems, composed of

identical spheres, is known as the hard-sphere interaction model. Theoretically speaking, this

model is based on the fact that a collection of identical particles, at lower packing fractions,

are in a liquid state and as the packing fraction exceeds a certain value, a transition to

an ordered solid phase takes place [31]. The only interaction between the particles, in

this case, is the hard-sphere repulsion. For the case of protein solution systems, a short-

range interaction model, introduced to study the protein crystallization [24], is used. This

interaction model is a generalized extension to the Lennard-Jones potential.

In the case of non-adsorbing polymers added to the system in addition to the dispersed

colloids in solution, an attractive force arise due to the osmotic pressure of these polymers.

It is called the depletion interaction. The polymers added to the system are intermediate

in size between the colloids and the size of the solvent molecules. These interactions are

useful when rheological properties of the colloids are needed to control [32]. A decorative

paint is a good example. Depletion interaction can also be used to cause the particles to

phase separate. This interaction was first suggested by Asakura and Oosawa and later

formulated by Vrij [33] based on the idea of a ’depletion layer’ close to the surface of a

particle [34]. Within this layer, the concentration of the non-adsorbing polymers is less
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than average leading to an osmotic pressure on the colloids from the surrounding polymers.

The range of interaction is controlled by the size of the polymers whereas the interaction

strength is controlled by the concentration of polymers. Using this model, one can easily

change the strength and range of interaction and hence the effects of range and strength on

the assembly of the colloids can be studied by using this model. We have studied nucleation

mechanism and morphology of the aggregates using the AO model potential for different

ranges. Furthermore, we studied the formation of small clusters in the bulk and the effect

of their geometry on the nucleation process.

In this dissertation, our main focus will be to explore the Np-Np interactions in details

and study the formation of nanoparticle assembly. Also, we will look at the morphology of

these clusters by using Brownian Dynamics Simulations. In addition, we will look at the

kinetics and morphology of cluster growth in the depletion model of short-range attractive

colloids. The remaining chapters are outlined as follows.

In chapter 2, we present the phenomenological model to describe the interaction between

two ligated gold nanoparticles in solution in details. The interaction potential is calculated

for different ligands attached to the surface of the nanoparticles. Chapter 3 is devoted to the

simulation technique used to study the assembly of these nanoparticles and other colloidal

systems. Throughout this study, a a molecular dynamics algorithm with a stochastic heat

bath is used for the simulation purpose. We use the model potential described in chapter

2 and depletion interaction potential as input to our simulation. In Chapter 4, we will be

focused on the theoretical study of the NP nucleation from their solution into a precipitated

SC phase. Here, we will explore the nucleation process in our simulation and compare it with

the Classical Nucleation Theory (CNT). Chapter 5 will focused on the identification of the

crystalline structure of the nucleating clusters in details. Chapter 6 and 7 will be committed

to study the morphology and growth of the aggregates by using the phenomenological model

of the NPs interaction potential and depletion interaction potential respectively. In chapter

8, we use depletion model to study the factors responsible for the nucleation mechanism in
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the short-ranged and long-ranged interaction of the colloids. Furthermore, we looked at the

structure and distribution of small size clusters in the bulk.
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Chapter 2

Phenomenological Modeling of the
Ligated Gold Nanoparticles

In this chapter, our focus will be on the study of interaction between two monodisperse

ligated gold nanoparticles required for their self-assembly. Generally, self-assembly has been

defined as the impulsive organization of molecules/nanoparticles into well-defined three-

dimensional geometry under a suitable circumstances [35]. In the case of ligated gold

nanoparticle (NP) system, ligands are attached to the surface of the gold colloids. The-

oretical modeling of NP-NP interactions can broadly be classified into two groups. In the

first group, a coarse-grained approach is taken, and the interaction potential is often written

in terms of effective van der Waals interactions between the cores alone [11], [12].In some

other works, the free energy of mixing between the tethered chains is also considered [14].

Such a coarse-grained approach to include the free energy of mixing ligands with solvent

can be criticized for two reasons. First, the free energy of mixing is typically calculated for

polymers end-grafted to flat surfaces and then converted to spherical particles via the Der-

jaguin approximation. However, the curvature effects of the nanoparticles are quite strong,

and the Derjaguin approximation is expected to break down. Moreover, such a calculation

typically considers the tethered chains as flexible polymer chains, which might not be a good

approximation for the short alkane chains ligated onto nanoparticles.

In the second group of theoretical modeling, a semi macroscopic approach is taken, and
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NP-NP interactions are calculated directly by numerical simulations [15], [16].In such sim-

ulations, one typically considers two nanoparticles at a fixed distance in the presence of

flexible chains that can adsorb onto the nanoparticles with some adsorption energy. The

interaction between polymer segments is modeled by the Lennard-Jones potential, and the

effective force between two nanoparticles is computed by using a virial relation. A recent

study [16] finds that the effect of curvature of the nanoparticles is highly pronounced when

the diameter of the nanoparticle (d ) is about 5 times the bond length (σ) between the ad-

jacent segments in a polymer chain. These types of calculations, however, are also limited

by various factors. For example, the modeling of the ligand-ligand and ligand-nanoparticle

interactions is phenomenological Lennard-Jones type. In addition, computational time limi-

tations often restrict the choice of the size of the nanoparticles in such simulations. A typical

gold nanopazrticle has a diameter of about 5 nm whereas the carbon- carbon bond length

in an alkane chain is about 0.15 nm. Thus, the ratio of the diameter of the nanoparticle

(d ) and the bond length (σ) between the adjacent segments in a ligand is about 33, which

is much larger than the values (typically 5 or 10) used in simulations. In addition, these

calculations are extremely time-consuming, and often a direct comparison to experimental

results is not possible.

Our approach in this chapter is phenomenological. We treat the ligands as flexible

polymer chains and do consider a free energy of mixing approach. In addition, we also

consider elastic contributions from compression of the ligands to the effective nanoparticle-

nanoparticle pair potential. As discussed earlier, this method has its limitations. However,

such a calculation is important for various reasons. First, the separation of the nanopar-

ticles at the potential minimum can be directly compared to experimental results of gold

nanoparticle superlattice constants for various ligand lengths. Second, the calculated pair

potentials can be used as input to Brownian dynamics simulations to study the forma-

tion of nanoparticle assembly. Finally, this type of phenomenological calculation can set a

benchmark against which more accurate calculations can be compared.
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2.1 Components of the Effective NP-NP Interaction

Potential

In our phenomenologicalmodel,we consider a solution of gold nanoparticles of diameter d=5

nm ligated with various alkanethiol ligands in toluene. Ligands are considered to be flexible

chains, and free energy of mixing and elastic contributions due to ligand compressions are

considered in addition to van derWaals interactions.

2.1.1 van der Waals Interaction between Two Gold Nanoparticles.

The expression for the van der Waals interaction potential between two spherical particles

was first derived by H.C. Hamaker [36] in 1937 in the pairwise summing approximation and

can be written as

V1(x) = − A
12

[
1

x2 − 1
+

1

x2
+ 2 ln(1− 1

x2
)

]
;x = r/d (2.1)

Here, A is the Hamaker constant and x is the rescaled centercenter distance between the two

particles (i.e., x = r/d where r is the bare center-center distance and d is the diameter of the

gold core). In the presence of ligands on the nanoparticles, the effective Hamaker constant

between two nanoparticles will have contributions from the bare gold-gold Hamaker con-

stant, the ligand ligand Hamaker constant (treated as a continuum layer), and the solvent-

solvent Hamaker constants. However, the Hamaker constants of the solvent and the ligands

are similar to each other and are much smaller than the Hamaker constant for gold. Thus,

the effective Hamaker constant between two ligated nanoparticles can be estimated as the

gold- gold Hamaker constant through the ligand medium and is taken as A = 75.5kT in our

calculations (with T = 300 K) as used in a previous study [37].

2.1.2 Free energy of mixing.

We estimate the free energy of mixing of the ligands when ligand layers from two different

nanoparticles start overlapping. This estimate is based on the segment density distribution
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function of the ligands as they start to overlap. Depending upon the value of the segment

density distribution function, two different regimes of interaction are defined. In the first

regime, which is called interpenetration regime, the segment density is defined by the length

of the ligands (based on the fact that the ligands are fully extended when present in good

solvents) . In the second regime, the chains undergo both interpenetration and compression

and the segment density is defined by the separation between the nanoparticles [38]. These

two regimes are shown schematically in figures 2.1 and 2.2, respectively.

Figure 2.1: Schematic drawing of the interpenetration of ligand layers from two different
nanoparticles.

Figure 2.2: Schematic drawing of the interpenetration and compression of ligand layers
from two different nanoparticles.

If the length of the ligands is denoted by L, then the regions of interactions in both

regimes can be defined by the rescaled length of the ligands L̃ where L̃ = L/d. We calculate

the free energy of mixing in our rescaled units (details given in appendix A) and its expression

in regime I is given by;
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V2(x)

kT
=

πd3φ2
av

2Vm
(
1

2
− χ)

[
x− (1 + 2L̃)

]2

; 1 + L̃ < x < 1 + 2L̃ (2.2)

where Vm is the volume of a solvent (toluene) molecule and φav is the average volume fraction

of the ligand segments in the tethered layer, which are assumed to have a step profile with

a uniform segment density in the layer and a sharp drop to zero segment density outside of

the layer.

Similarly in regime II, the free energy of mixing can be written as

V3(x)

kT
=

πd3φ2
av

Vm
(
1

2
− χ)L̃2

[
3 ln(

L̃

x− 1
) + 2(

x− 1

L̃
)− 3

2

]2

; x < 1 + L̃ (2.3)

Note that when x=1+L̃, V2(x) = V3(x), as expected.

2.1.3 Elastic Contribution from Ligand Compression.

The elastic contribution to the potential due to ligand compression is also known in the

literature [39]. On close approach between two nanoparticles, the volume available for the

tethered chains to fit is much less than when the two nanoparticles are infinitely separated.

This gives rise to a loss of configurational entropy of the tethered chains and leads to an

elastic repulsion between two nanoparticles. In terms of the rescaled variables used in this

article, this can be written as (details given in appendix B)

V4(x)

kT
= πd2ν

[
(x− 1)(ln(

x− 1

L̃
)− 1) + L̃

]
; x < 1 + L̃ (2.4)

where v is the number of ligands per unit area of the nanoparticle.

2.2 Evaluation of the Effective NP-NP Interaction Po-

tential

We compute the effective pair potential between two nanoparticles in toluene with de-

canethiol, dodecanethiol, and hexadecanethiol ligands, respectively. The parameters used
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Table 2.1: Parameters Used in the Calculations for Dodecanethiol Ligands in Toluene

parameters values references
diameter of gold nanoparticle (d) 5nm
dodecanethiol ligated Hamaker
constant

1.95eV or 75.5kT [11]

size of the solvent molecule
(toluene)

Vm = 1.78× 10−28(m3) [40]

Flory χ parameter =(Vm/RT )(δs − δm)2 + β1;
where β1=0.34 while δm
and δs are the Hildebrand
solubility parameters with
the values listed in Table 2.2

[14]

surface area of gold covered by a
thiol group Athiol−gold

21.5 A2 [41]

Table 2.2: Hildebrand Solubility Parameters

solubility parameters δ values ×104
√
Pa references

decane (C10H22) 1.58 [42]
dodecane (C12H26) 1.60 [42]
hexadecane (C16H34) 1.63 [42]
dodecanethiol (C12H26S) 1.65 [43]
decanethiol (C10H22S) 1.74 [43]
hexadecanethiol (C16H34S) 1.69 [43]
toluene 1.82 [42]

in the calculations for dodecanethiol in toluene are listed [42], [43] in Tables 2.1 and 2.2. The

parameters for the other two cases are similar [40], [44]. The value of ν, the number of ligands

per unit area of the nanoparticle, is calculated from the estimated surface area of gold covered

by a thiol group, [41] Athiol,gold as ν = 1/(21.5(10−10m)2) = 4.65×1018m−2, and the number

of ligands per nanoparticle is N≈ Asurface,gold/Athiol,gold ≈ 365. Assuming that dodecanethiol

has a molecular volume found from its molar weight and density of ∼ 3.98 × 10−28m3, we

can find an estimate for φav. The ligand shell extends from r = d/2(= 2.5nm) up to

r = d0/2 + L(∼ 4.3nm). This shell has a volume of Vshell ≈ 2.68 × 10−25m3. Then
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NVdodecane/Vshell ≈ 365(3.98× 10−28/(2.68× 10−25) ≈ 0.54.

In the model calculation, we have assumed that the contributions to the free energy of

mixing for ligand-ligand interpenetration originates only from the alkane-chain part of the

ligands whereas the thiol group is firmly attached to the gold surface and does not play

any role in this interaction. This is why we have used the solubility parameter values of

unthiolated alkane chains (i.e., for C10H22) instead of those for thiolated chains (C10H22S) in

Table 2.2. If we instead use the solubility parameters for the thiolated chains, the effective

NP-NP potentials become too shallow and the NPs would not assemble as superlattices.

Figure 2.3: Total interaction potential with its various components between two dode-
canethiol ligated gold nanoparticles.

The overall effective interaction potential between two nanoparticles is the combination

of all the components mentioned in section 2.1. In Figure 2.3, we show various contribu-

tions to the effective potential for the dodecanethiol ligands. The location of the minimum

of the potential compares extremely well to the superlattice constant calculated in experi-

ments [45]. Next, we calculate the effective interaction potential for three different ligand
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lengths. Figure 2.4 shows the total effective interaction potential for three different ligands.

Figure 2.4: Effective interaction potential between two gold nanoparticles with decanethiol,
dodecanethiol, and hexadecanethiol ligands. The potential curves are effective potentials with
contributions from van der Waals, ligand mixing with and without compression, and elastic
compression terms.

For dodecanethiol and hexadecanethiol, the location of the minimum of the effective pair

potential agrees well with the superlattice constant seen in experiments. In addition, it is

known experimentally that the solubility of gold NP in toluene improves with increasing

ligand length. This is consistent with the trend seen in Figure 2.4 because the depth of the

potential becomes shallower as the ligand length is increased.

2.3 NP-NP Interaction Based on Denting Conforma-

tion Model.

Considering the constant segment density function of the polymers, an alternative model was

proposed by Baghei [38]. According to this model, instead of undergoing interpenetration
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and compression mechanism, the polymer chains collapse during the interaction between two

nanoparticles. This corresponding compression of chains is termed as ”denting” mechanism.

We have also considered this as possible situation and calculated the denting potential for

our system. In the denting model, the ligand free energy of mixing potentials V2(x) and

V3(x) is replaced by a denting potential given in our rescaled units as;

Vdent
kT

= 4
πd3φ2

av

Vm
(
1

2
− χ)L̃2

[
3 ln(

2L̃

x− 1
) + (

x− 1

2L̃
)− 1

]
; 1 < x < 1 + 2L̃ (2.5)

Using the denting model, the interaction potential is calculated for decanethiol,dodecanethiol

and hexadecanethiol ligated nanoparticles in toluene. Figure 2.5 shows the effective poten-

tial curves for the denting potential in comparison to our phenomenological model.

Figure 2.5: Effective interaction potential between two gold nanoparticles with decanethiol,
dodecanethiol, and hexadecanethiol ligands. The solid lines are effective potentials with con-
tributions from van der Waals, ligand mixing with and without compression, and elastic
compression terms. Symbols are for the effective potentials where the ligand mixing parts of
the effective potential have been replaced by the denting potential. (See the text.).

The symbols in the figure show the effective potential curves for the denting potential

whereas the solid lines show the respective curves for our phenomenological model. From
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figure 2.5 one observes that the potential wells are deeper for the denting potential for all

of the ligand lengths considered in this study. The variation in the potential depth for hex-

adecanethiol and dodecanethiol ligands are not substantial. However, for the decanethiol

ligands, the potential well becomes totally negative without any energy barrier to the pri-

mary van der Waals minimum. This is not a realistic description of the NP-NP interaction

because decanethiol ligated gold nanoparticles do form superlattices [45]. We thus con-

clude that the denting potential is not a good alternative to the phenomenological model

considered in section 2.2.

2.4 NP-NP Interaction Model Without Free Energy

of Mixing.

Furthermore, we also studied the interaction between the nanoparticles based on the model

where we have considered only the van der Waals interaction potential (V1(x)) and the elastic

contribution from ligand compression (V4(x)) from section 2.1, neglecting contributions from

the free energy of mixing of the ligands. The potential curves based on this model for the

case of decanethiol, dodecanethiol and hexadecanethiol systems are shown in figure 2.6

From the figure 2.6, we can observe that even though there is a formation of potential

minima, the quench depth for the respective systems is much shallower as compared to

the case when we include the free energy of mixing to the overall interaction (sections 2.2

and 2.3). To test the validity of this model, we have carried out several simulation runs

for different volume fractions ranging from 0.002 to 0.03 using this model but we have not

observed any cluster formation even in the highest volume fraction case in any of the above

mentioned systems. Although direct experimental studies of high monomer concentration

in solution are not found in the literature, superlattices do form in nanoparticle solutions

(on a TEM grid for example) where the solvent is allowed to evaporate, resulting in a dense

system. The lack of cluster formation for any of the above mentioned ligand system indicates

the lack of reliability of this model.
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Figure 2.6: Effective interaction potential between two gold nanoparticles without consid-
ering the free energy of mixing calculations for three different systems.

2.5 Conclusion.

Based on our model calculations and analysis of experimental data, we conclude that just

the van der Waals interaction among nanoparticles is not sufficient to describe NP-NP

interactions and that the free energy of mixing term for the ligands plays an important role,

particularly in dense systems. Furthermore, our phenomenological model which includes

the interpenetration and compression of the ligands explains the experimental data better

when compared to the denting model of ligand interaction.
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Chapter 3

Brownian Dynamics Simulation
Method

This chapter is devoted to the simulation technique we used to study the self-assembly of

our nanoparticles/colloidal systems. The simulation of the molecular-scale to µm range

particles can be divided into three major sections. First step is the construction of a model

for the relevant problem then the calculations of molecular trajectories are performed in

the second step while the third step is the analysis step where the calculated trajectories

are analyzed to obtain the property values of the system particles. Depending upon the

technique to calculate the particle positions, different molecular simulation methods can be

distinguished. In the case of molecular dynamics method, different differential equations of

motion are solved using numerical techniques to obtain the positions of the particles and

all the positions are connected in time (i.e., the trajectories of the individual molecules can

be extracted as in a motion picture). In the case of other most commonly used technique,

known as the Monte Carlo Simulation Method, the molecular positions are not connected

in time but are generated such that each new configuration of the particles stochastically

depends only on their previous configurations. Such a process, in which the result of a

random event in a sequence depends only on the outcome of the instantaneously previous

event, is known as a Markov process. Apart from these two main branches of molecular

simulations, there are other techniques in which the positions are computed by using a
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hybrid method that involves some stochastic characteristics such as in Monte Carlo, and

some deterministic properties, as in molecular dynamics. In this chapter, our focus will be

on the continuum-dynamical method, known as Brownian Dynamics (BD) Method, which is

based on the Langevin Equation [46] of motion. This method is an efficient way used for the

study of many-particle systems, such as liquids, colloidal systems and macromolecules. For

the case of solutions which are generally composed of larger colloidal particles and smaller

solvent molecules such as the brownian particles, the motion of the colloidal particles are

effected by the motion of the solvent molecules. As we have mentioned above that these

effects can be described by a combination of the random forces and a frictional term in the

equation of motion of the colloidal particles. In this method, some of the forces, such as

effect of the solvent molecules on the solute particles, are not computed explicitly but are

substituted by stochastic quantities as a replacement of the the fluctuating local environment

experienced by the molecules.

3.1 Brownian Motion

Robert Brown was the first person to observe the Brownian motion in 1827 while studying

the random motion of the pollen grains in a fluid. Theoretically speaking, first comprehen-

sive theory of Brownian motion was proposed by Einstein in 1905 even though he was not

conscious of the discovery of the phenomenon. According to Einstein’s theory, the motion

of such particles is diffusive in nature and the mean displacement of the particles is related

to the diffusion coefficient D as;

〈r2〉 = 6Dt (3.1)

where 〈r2〉 is the mean square displacement of an ensemble of the particles and D is the

diffusion coefficient. The motion of colloidal particles in a fluid medium gives rise to a

frictional (or drag) force, which is proportional to velocity, at least if the particles are
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smooth and the velocity is not too great, such that the overall equation of motion of the

particle is given by

M
dv

dt
= −Γv (3.2)

where Γ is the frictional coefficient and v is the velocity of the particle. Γ is inversely

related to the mobility of the particles. The frictional coefficient can be related to diffusion

coefficient by the relation

DΓ = kT (3.3)

where kBT represents the approximate translational kinetic energy per particle, kB being

the Boltzmann constant. Here Γ for a spherical particle is given by Stokes law;

Γ = 6πηR (3.4)

where R is the hydrodynamic radius of the particle (i.e. the effective radius presented by the

particle to the liquid flowing locally around it) and η. The equation 3.3 is commonly known

as the Einstein relation. It was later postulated by Langevin that, in the absence of any

external force, the equation of motion of the particle is determined by the randomly varying

instantaneous force acting upon it [46]. The motion resulting from this force is opposed by

the resistance arising from the viscous force, which is proportional to the velocity of the

particle. Hence the overall motion of a brownian particle is controlled by two important

forces : one being the viscous drag force acting on the particles as they diffuse through

the fluid and the second one being the rapidly fluctuating random force F (t) acting on the

particles (which average out to zero over long intervals of time) because of the collisions

with the solvent molecules, such that we may write

Mv̇ = −Γv + F (t) ; ¯F (t) = 0 (3.5)

So, the ensemble averaged equation is given by

M ˙〈v〉 = −Γ〈v〉 (3.6)
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Solving above equation, one gets

〈v(t)〉 = v(0) exp(−t/τ) (3.7)

where τ is the relaxation time. Considering the limiting cases, it can be observed that in

the limit when time t� τ , the solution of the equation is comparable to the linear equation

of motion as described by the Newton’s second law(i.e. r = vt ) whereas for the case when

t� τ , one can recover the Einstein’s diffusion equation(i.e Eq. 3.1).

3.2 Verlet Algorithm For Molecular Dynamics

In 1967, Verlet introduced an algorithm, based on the finite-difference technique, to effi-

ciently manage data in a molecular dynamics simulation using neighbor-lists [47]. Mathe-

matically speaking, this simple method is a combination of two Taylor expansions, combined

as follows. First write the Taylor series for position from time t forward to t+ ∆t:

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
∆t3 +O(∆t4) (3.8)

Also, in the backward direction from t,

x(t−∆t) = x(t)− dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
∆t3 +O(∆t4) (3.9)

Adding both eqs. 3.8 and 3.9 and eliminating the odd terms, the resultant equation is given

by

x(t+ ∆t) = 2x(t)− x(t+ ∆t) +
1

2

d2x(t)

dt2
∆t2 +O(∆t4) (3.10)

This is the Verlet’s algorithm for positions with a local truncated error of (∆t)4 and hence has

the accuracy up to third order, even though it does not contain any third-order derivatives.

One important feature of this algorithm is that it is a two-step method because it estimates

the next position x(t+∆t) from the current position x(t) and the previous position x(t−∆t).

It should be noted that the equation 3.10 for positions does not involve any function of the

velocities while the acceleration in the equation is obtained from the intermolecular forces.
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3.3 Brownian Dynamics Algorithm

In Brownian Dynamics, generally, the equation of motion of the particles (i.e solute particles)

in a system is approximated by including the systematic force between the solute particles

into the Langevin Equation:

miv̇i(t) = −miΓivi(t) + Fi({x(t)}) +Ri(t) (3.11)

where Fi is the explicit mutual force between the colloidal particles and is derived from the

interparticle interaction potential V ({x(t)}) (see sections 2.1 and 6.1) between the colloids

which depend on the coordinates of the particles and Ri is the random force due to the

bombardment of the solvent molecules on the solute particles. Although the origin of both

the forces is same, the random force Ri is assumed to be a stationary, Markovian and

gaussian process with each random distribution has normalized with a mean zero:

〈Ri(t)Rj(t́)〉 = 2mΓkBTrefδijδ(t− t́), (3.12)

where Tref is the reference temperature and is given by (3NkB)−1
∑3N

i=1mi〈v2
i 〉.

W (Ri) = [2π〈R2
i 〉]−1/2 exp−R2

i /(2〈R2
i 〉), where 〈Ri〉 = 0 (3.13)

where W (Ri) is the gaussian probability of the stochastic force [48] .Also, the random force is

assumed to have no correlation with prior velocities or the random force and the correlation

in time is very short.

〈vi(t)Rj(t́)〉 = 0, t− t́ ≥ 0 (3.14)

〈Fi(t)Rj(t́)〉 = 0, t− t́ ≥ 0 (3.15)

In the above mentioned equations, the notation < ... > represents an average over an

equilibrium ensemble and kB is the Boltzmann’s constant. The above mentioned assumptions

for the random force Ri(t) are reasonable for a Brownian particle because of the fact that
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these particles have much larger mass than the colliding molecules and hence its motion is

a result of large number of successive collisions. Also, the time between successive collisions

is much shorter than the time scale of the Brownian motion. The velocity relaxation time is

given by Γ−1 and if ∆t is BD time step then in order to generate the stationary markovian

gaussian process, the following condition must be satisfied

∆t� Γ−1 (3.16)

Next, we follow the algorithm described by van Gunsteren and Berendsen [49] which is

identical to the Verlet’s algorithm mentioned in section 3.2. Solving equation 3.11, we get:

v(t) = v(tn) exp[−Γ(t− tn)] + exp[−Γ(t− tn)]
1

m

∫ t

tn

exp[Γ(t́− tn)]{F (t́) +R(t́)}dt́ (3.17)

where v(tn) is the velocity at the initial time t = tn and the indices of the particles and their

cartesian components have been omitted. The integral over the systematic force Fi(t) can

be obtained by expanding F t́ in a power series upto 2nd order:

F t́ = F (tn) + ˙F (tn)(t́− tn) +O[(t́− tn)2] (3.18)

Since, Verlet algorithm (section 3.2) is very accurate up to 3rd order in position, we only

need to go up to first order inclusive in eq. 3.18. The derivative of the systematic force with

respect to time at t = tn is denoted as Ḟ (tn). The integration in 3.17 can be written as;

v(tn + ∆t) = v(tn) exp[−Γ∆t]

+ (mΓ)−1F (tn)[1− exp[−Γ∆t]]

+ (mΓ2)−1Ḟ (tn)[Γ∆t− [1− exp[−Γ∆t]]]

+ m−1 exp[−Γ∆t]

∫ tn+∆t

tn

exp[Γ(t− tn)]R(t)dt

+ O[(∆t)3] (3.19)

Furthermore, to obtain the position of the particles, we integrate the velocity over a time
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step ∆t = tn+1 − tn by using the partial integration for the term involving R(t),

x(tn + ∆t) = x(tn) +

∫ tn+∆t

tn

= x(tn)

+ v(tn)∆t(Γ∆t)−1[1− exp[−Γ∆t]]

+ (m)−1F (tn)(∆t)2(Γ∆t)−2[Γ∆t− [1− exp[−Γ∆t]]]

+ (m)−1Ḟ (tn)(∆t)3(Γ∆t)−3[
1

2
(Γ∆t)2 − [Γ∆t− [1− exp[−Γ∆t]]]]

+ (mΓ)−1

∫ tn+∆t

tn

[1− exp[−Γ(tn + ∆t− t)]]R(t)dt

+ O[(∆t)4] (3.20)

From equations 3.19 and 3.20, we define two random variables:

X (∆t) ≡ m−1 exp[−Γ∆t]

∫ tn+∆t

tn

exp[Γ(t− tn)]R(t)dt (3.21)

and

Y(∆t) ≡ (mΓ)−1

∫ tn+∆t

tn

[1− exp[−Γ(tn + ∆t− t)]]R(t)dt (3.22)

where X (∆t) and Y(∆t) have the same properties as those of R(t).In the simulatins, both

X (∆t) and Y(∆t) are correlated as they are applied in the same time interval. So, they

obey bivariate gaussian distribution:

W (X (∆t),Y(∆t)) =
1√

4π2σ2
1σ

2
2(1− r2

12)
exp

[
−(σ1X (∆t)− σ2Y(∆t))2

2σ2
1σ

2
2(1− r2

12)

]
(3.23)

The parameters σ1 ,σ2 and r12 of this distribution can be determined by evaluating quantities

< X 2(∆t) >, < Y2(∆t) > and < X (∆t)Y(∆t) > using the definition of X (∆t) and Y(∆t)

mentioned in eqs. 3.21 and 3.22 and the correlation property mentioned in eq. 3.12.The

detailed description of these parameters is given in Appendix C. Also, it can be seen in the

Appendix C that for the limit, Γ→ 0, Verlet Algorithm can be retrieved.
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3.4 Simulation Parameters

In our BD simulations, we consider three-dimensional systems and in most of the cases, the

size of the box is L = 128d in units of monomer diameter d. All other length scales are

measured in units of d as well. Furthermore, we choose Γ = 0.5 and time step ∆t = 0.005

in reduced time units of d
√

(m/kT ) with m = 1. In each time step, we are required to

determine the interaction potential of the particles and their appropriate summation. Ide-

ally, in order to calculate the force acting on a particle, one should calculate the interaction

potential between all the particles is the system but since the potential (and corresponding

forces) decays rapidly with the increase in the separation between the particles and inter-

action is restricted to next-neighbors, a certain threshold, beyond which all the interactions

are neglected, is defined and forces are calculated up to that threshold. The threshold pa-

rameter is termed as cut off distance (rcut) and it characterizes the range of the interaction

potential. Hence, all the contributions to the forces on particle i that stem from particle j

with rij � rcut are neglected. The value of rcut is chosen large enough that the effects on

the total energy of the system are negligible.

Next, we learn to find a way for the efficient description of the neighbors of a particle in

the system. The technique we used for this purpose is termed as Linked Cell Method [50] in

literature. The main concept of the linked cell method is to divide the physical simulation

box of length L into uniform smaller boxes of equal sizes(called as cells Lbox ) such that

the length of the cell should be bigger than the potential cut-off value and the interactions

are limited to the particles within the cell and the adjacent cells. Hence, the neighbor

search is limited to the adjacent cells instead of searching in the whole simulation box and

smaller the size of the cell is, faster are the force calculations. In order to keep track of the

positions and to store all the dynamical variable of the particles in each cell, a link list [51]

is generated. All the dynamical variables of each particle in the cell are stored in this list.

In our simulation system, we have chosen the cell size to be Lbox = 4d. In 3D, each cell in

the interior of the box is attached to its 26 adjacent cells whereas the cells at the boundary
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or edges of the box are linked to the adjacent cells by using periodic boundary conditions

where the grid of the cells is extended periodically.
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Chapter 4

Self-Assembly of Dodecanethiol C12
and Decanethiol C10 Ligated Gold
Nanoparticles from solution

Nucleation of one phase of matter to another is of great and enduring interest. Applications

range from materials processing, including both atomic and molecular based materials and

the new nanomaterials, to particle formation in the atmosphere with consequences for the

global environment. Nucleation in nanomaterials is of particular interest since for these

systems the ”atoms” are nanoparticles (NPs) that are easily seen by table-top laboratory

methods such as light scattering. NP solution nucleation provides an experimentally ac-

cessible system that will reflect on the age-old problem of atomic and molecular system

nucleation. Although a few experiments exist in the literature on NP nucleation, [52], [53],

theoretical work is rare. Often colloids of surface ligated NPs act as solutions with the NPs

displaying reversible temperature and solvent dependent solubility [8], [54], [55], [56]. and

nucleation phenomenon [57], [58]. These NPs, also called nanoclusters of atoms, often have

non-bulk properties due to finite size effects and/or a large fraction of surface matter. The

novel, size-dependent properties combined with the uniformity suggest that NPs can be

understood and manipulated as large, nearly stoichiometric molecules. Because of this, NPs

and their assemblies have great promise as a basis for a wide variety of new materials with

unprecedented properties and hence have seen considerable attention in the recent litera-
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ture. Nanoparticles are usually surface ligated with any of a variety of organic compounds

and these ligands cause colloids of the NPs to be stable against irreversible aggregation.

In many cases when the NPs are highly uniform, the precipitating solid is a two- or three-

dimensional superlattice of the NPs [59], [60] [9]. This behavior shows a strong similarity

to the molecular solutions and such analogies make one more intriguing about the factors

involved in the phase behavior of these NPs [17], [18]? How nucleation and crystal growth

take place in NP solution and can one apply classical nucleation theory (CNT) [19], [20], [21]

to NP solution or the pathway is more complex? Does the crystallization mechanism match

with the protein systems where it behaves as two-step process [22], [23], [24]? How the

pre-nucleating superclusters dynamically evolve into a stable structure? Are these spherical

as assumed in classical nucleation theory or have other shapes as implied by recent colloid

work [25], [26]? Such interesting questions are useful to control the self-assembly of these

NPs. Before the critical nucleus forms, we desire to know the size, structure and number of

pre-nucleation nanoparticle superclusters (NPSCs) that appear and disappear in the system.

After the critical nucleus forms, we desire to know the kinetics of the ensuing cluster growth,

number density and structure. In this chapter, we present a comprehensive theoretical study

of shape and growth kinetics of NPSCs in the pre-nucleation and nucleation regimes. We

will use our phenomenological model [61] for the effective interaction potential between two

ligated gold nanoparticles. The computed NP-NP effective pair potential is used here in

a Brownian Dynamics simulation for studying kinetics of nucleation and growth and the

morphology of the SCs.

4.1 Nucleation of the Nanoparticle Superclusters

Nucleation is a stochastic process which takes place due to the formation of a nucleus of

new phase (solid phase in our case) in an old phase (gas phase in our case). In this chapter,

we study the nucleation process in the dodecanethiol ligated nanoparticle system described

in chapter 2. For that matter, we tune our system volume fraction f in a way that the
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transition from a disperse phase to the solid phase may lead to the formation of one or few

isolated SCs in the system. An example of a single cluster growing in the system is shown

in figure 4.1. In the following section, the nucleation process is studied by using Classical

Nucleation Theory (CNT).

Figure 4.1: Time evolution of a single cluster growing a) at t = 3000, b) at time t = 5000
and c) at time t = 10000. d) magnified nucleating cluster of the system att = 40, 000 .
.

4.1.1 Classical Nucleation Theory

According to the classical nucleation theory, as a new phase is formed in an old phase, two

competing forces contribute to the formation of a droplet [27]. One of the contributions

comes from the fact that there is a gain in bulk energy of the new phase as the size of

the nucleus grows and is commonly known as the bulk free energy. But, as the cluster of

the new phase appears, some work has to be done to create an interface between the two
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phases and is known as the surface free energy. So, the overall free-energy required to form

a homogeneous cluster of radius R results from these two competing energies and is given

as;

∆G(R) =
−4πR3∆µ

3v0

+ 4πγR2 (4.1)

where ∆µ is the change in chemical potential between the two phases, γ is the interface

energy separating the two phases (also known as interface tension) and ν0 is the volume of

each monomer in the cluster. The minimum separation of the particles in the nucleating

NPSC coincides with the minima of total interaction potential between the nanoparticles,

which is 1.33d (where d is the diameter of the particle) for the case of C12. Thus, we

considered the effective volume of the nucleating cluster as ν ′0 = πd′3

6
where d′ = 1.33d.

Figure 4.2: Schematic drawing of the overall free energy of the droplet as a function of the
size of the cluster along with the competing terms .

A balance between these two competing terms will give rise to the critical size of the

stable nucleating NPSC. A schematic representation of these competing terms and the

overall free energy is shown in the figure 4.2. To estimate the critical size of the nucleating

cluster, we can solve equation 4.1 as a function of the size of the nucleating cluster. The
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critical size cluster is found to be

n∗ =
32πγ3v2

0

3(∆µ3)
(4.2)

The critical size of the nucleating NPSC n∗ can be estimated if we can find a way to figure

out the values for unknown parameters (i.e. γ and ∆µ) in our simulation.

Evaluation of ∆µ

Mathematically, the change in chemical potential (also known as supersaturation) is written

as

∆µ ≡ µold − µnew (4.3)

Physically speaking,the supersaturation is the gain in free energy per particle during the

phase transition from an old phase (e.g. gas or liquid) to a new phase (e.g. solid). We can

compare our system with the condensation of a vapor system. In this case, the change in

chemical potential from an old phase to a new phase depends upon the pressure p of the

vapors. So, the chemical potential in the old phase is given by

µold(p) = µe + kT ln(p/pe) (4.4)

and in the new phase, chemical potential is given by

µnew(p) = µe + νe(p− pe) (4.5)

where pe(T ) is the phase-equilibrium pressure and µe = µold(pe) = µnew(pe) is the chemical

potential of the vapors. Using equations 4.4 and 4.5 into 4.3, we can write the change in

chemical potential as [19]

∆µ = kT ln(p/pe)− ν0(p− pe) (4.6)

Since, usually ν0pe << kT , so we can approximate the above equation 4.6 as

∆µ = kT ln(p/pe) (4.7)
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Also, in our simulations, since we work at low volume fractions (i.e. dilute system), we can

approximate the pressure as the volume fraction f of our system such that the equation 4.7

can be written as

∆µ = kT ln(f/fe(T )) = kT ln(S) (4.8)

where S is defined as the Supersaturation of the system.

Figure 4.3: Variation the of number of unaggregated monomers left in the system Nm as
a function of time. The curves show the variation of the monomers left in the system at
three different volume fractions of f=0.0027(black symbols), 0.0025 (red symbols) and 0.0023
(green symbols) respectively. The equilibrium volume fraction of unaggregated monomers is
estimated as fe = 0.0002.

Transition from a dispersed phase to a state in which the solid phase starts to develop

is observed in the simulations when the monomer volume fraction f is larger than a critical

value fe. To estimate the equilibrium volume fraction fe(T ), we look at the number of

monomers left in the system as the solid phase grows in the system.

A plot of the variation in the number of monomers left in the system Nm is shown
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in figure 4.3 for three different volume fractions. Since, we are quenching at the same

temperature, from figure 4.3, it can be seen that even though the initial value of Nm is

different for all three different volume fractions f, all values of Nm ultimately settle to one

value of 0.0002. A constant value of monomers at this volume fraction indicates that two

phases are at equilibrium at this volume fraction (i.e equilibrium volume fraction, fe). The

constant values of monomers at initial times (i.e. higher constant values) in the figure 4.3

are indicative of the fact that there is no solid phase appear in the system during that time

and also that if quenched at different volume fractions, solid phase may appear at different

times, although not necessarily in the same order.

So, by using this estimated value of fe, we can determine different values of change in

chemical potential (or supersaturation) by quenching our nanoparticle system at different

volume fractions, f.

Evaluation of the interface tension γ

According to classical nucleation theory (CNT), the nucleation rate or the nucleation fre-

quency J is related to the activation barrier energy ∆G(R)∗ as

J = J0 exp(
−∆G(R)∗

kT
) (4.9)

Furthermore, the induction time tind can be used as a measure of the nucleation frequency,

where the induction time tind can be defined as the time elapsed between the creation of

supersaturation and formation of nuclei of critical size, such that one can describe it by the

relation [21]

tind ∝ J−1 = C exp(
∆G(R)∗

kT
) (4.10)

or we can write

tind = C exp(
16πv

′2
0 γ

3

3(kT lnS)2
) (4.11)
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To determine the value of induction time in our simulations, we studied the variation of the

mean coordination number (i.e., the mean number of neighbors) Cn(t), for particles with at

least one neighbor.

Figure 4.4: A plot of the mean coordination number Cn(t) as a function of time after
quenching our system at different volume fractions. The dashed line at Cn(t) = 1.5 is our
criterion to indicates nucleation with which induction time can be determined.

Figure 4.4 shows the variation of the mean coordination number as a function of time

for the system in one simulation run for various values of supersaturation. As shown in

figure 4.4,Cn(t) remains constant at a small value over a certain period of time and then

there is a sudden rise in Cn(t) indicating the formation of a critical nucleus. Choosing a

particular value of Cn(t) helps to determine the induction time. During our analysis, it

was observed that choosing any reasonable value of Cn(t) will not make any difference to

the calculation of surface tension and critical size so we have chosen to take Cn(t)= 1.5

as the threshold for nucleation to determine induction time. The veracity of equation 4.11
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for our simulation is seen in figure 4.5 where ln(1/S2) is plotted versus tind . Figure 4.5

Figure 4.5: Plot of the variation in induction time versus supersaturation S (See eq. 4.11).
Induction time is averaged over 10 to 20 different initial configurations for each S value.
The error bars show the standard error.

shows the plot of the induction time (tind) as a function of the supersaturation. For each

supersaturation value, the induction time is calculated for 10-20 different runs. Although the

error bars show a large variations in the value of induction time over different runs, still the

averaged values of induction time can be seen as showing a linear behavior with ln(1/S2),

as predicted by equation 5.11. From the slope of the graph in figure 4.4, the interfacial

tension γ can be calculated. In our case, the γ is found to be γ = 1.3 ± 0.05. This value

of γ is about twice the experimental value of γ = 0.76kT/d′2 obtained in [57] from a study

of gold NPSC nucleating from a toluene-butadiene mixed solvent. Given the inaccuracies

in our theoretical model and the errors involved in estimating γ from a simulation of a

finite-sized system, such a discrepancy is not unexpected. Using this value of γ for a given

supersaturation value in equation 4.2, we can calculate approximate size of the nucleating

NPSC. The critical size value of the nucleating NPSC is found to be n∗ ≈ 10.
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4.2 Dynamical and Morphological analysis of Prenu-

cleating SCs

The results obtained in the above section 4.1 imply that our simulations embody CNT, so

we proceed further to explore the nucleation process in our simulation and test the validity

of CNT for our case, by analyzing some of its postulates. CNT assumes that the nucleating

NPSC are compact in shape and the growth of the nucleating NPSC is sequenced by the

addition of monomers in the system. In the following sections, we test these assumptions;

4.2.1 Cluster Dynamics

To further test the validity of CNT for our case, we observe the dynamics of the largest

NPSC in the system. In order to have better understanding of the dynamics of the largest

NPSC, we run 50 different simulations. The dynamics of the biggest NPSC can be divided

into two regions as shown in figure 4.6. The region where the nucleating NPSC is unstable

and fluctuates around an average size 10, indicated by the hatched area, is named as the

prenucleating regime and the region where a nucleating NPSC smoothly grows to a stable

size, is named as nucleating regime. It is worth mentioning here that out of 50 runs that we

made to study the dynamics of the biggest NPSC, most of the runs show large fluctuations

in the size of the NPSC in prenucleation regime while in other runs, these fluctuations are

small enough to be ignored. According to classical nucleation theory (CNT), the growth of

the stable nucleating NPSC arises from the bimolecular addition of the monomers in the

system [20]:

A+ A⇔ A2

A2 + A⇔ A3

. . . . . . .

An−1 + A⇔ An

In order to understand the mechanism of the nucleation, we examined the fluctuations in

size by looking at the change in size of the biggest NPSC ∆N between two successive time
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Figure 4.6: Plot showing the size fluctuations of the biggest supercluster in the pre-
nucleation regime. The overall dynamics can be divided into two regimes (i.e Pre-nucleating
Regime and Nucleation Regime). The induction time is tind ≈ 2600. Excursions above the
critical size of N∗ ≈ 10 (cross hatched region) can be observed in the prenucleation regime.

steps in both prenucleating and nucleation regimes. A distribution of the ∆N during the

growth and fragmentation of the biggest NPSC in both regions is shown in figure 4.7.

From this distribution, it can be seen that during the growth process in both regimes, the

fluctuations in size are mostly dominated by the exchange of monomers and dimers. Even

though bigger NPSCs appear to contribute, seemingly due to the loosely bound structure of

the biggest NPSC at initial times, still this contribution is small enough to be ignored. The

dominance of addition/removal of monomers in both regimes is consistent with the CNT.
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Figure 4.7: A log-linear plot of the normalized distribution of the absolute value of the
change in size of biggest NPSC ∆N during consecutive time steps for both pre-nucleation
and nucleating regimes. A slope is drawn as a guide to show the exponential behavior of the
distribution which seems to describe the data well for smaller values of ∆N . Larger ∆N
occurrences are rare and thus have much larger uncertainty..

4.2.2 Morphology and Shape of the Nucleating NPSCs

We also looked at the morphology of the biggest NPSC in both prenucleating and nucleation

regimes. At early time (i.e. in prenucleating regime), the biggest NPSC appears to be non-

compact (see fig. 4.8) whereas at late times (i.e. in nucleation regime), the structure of the

NPSC appears to be more compact (Figs.fig. 4.8b,c,d). CNT also assumes that nucleating

NPSCs are compact and spherical in shape.

In this section, we address the issue of shape by plotting the number of monomers in the

pre-nucleating NPSCs as a function of the supercluster radius of gyration, Rg, for both the

largest NPSC in the system and all NPSCs of specific sizes. The analysis for the biggest

NPSC is averaged over 50 runs. Next, we created artificial NPSCs of relevant sizes randomly
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Figure 4.8: Morphology of the biggest NPSC at various times (a)t = 2000 with ns = 14,
(b)t = 3000 with ns = 33, (c)t = 4000 with ns = 60 and (d)t = 5000 with ns = 209.
The approximate time for the formation of stable cluster is t ≈ 2800. The symbol sizes for
monomers are scaled so that each cluster appears to have the same linear size.

placed on the lattice sites of pure FCC and BCC crystals using self-avoiding random walk

method. Figure 4.9 shows the Rg vs N plot for the biggest NPSC in the system in the

prenucleation regime and all the NPSCs present in the system at a given time and one can

argue that the small pre-nucleating NPSCs are well described by self-avoiding walks on an

fcc lattice. No evidence of any bcc structure in the pre-nucleating NPSCs is seen although

such claims exist in the literature [62], [63]. More importantly and surprisingly, the largest

NPSC in the pre-nucleating system has a compact morphology once bigger than about size

N = 10, the critical size. Since the largest cluster plays a critical role in nucleation, the

compact morphology for a size comparable to again supports the CNT scenario. Another

41



Figure 4.9: Plot of the number of nanoparticles in the supercluster versus supercluster
radius of gyration for: 1) the biggest supercluster Nlargest(•) in the system (averaged over 50
runs) and 2) the other, smaller superclusters in the system at pre-nucleating times. During
the pre-nucleating times, the structure of the small NPSCs in the system appears to be non-
compact and well described by self-avoiding walks on an fcc lattice, while the largest size
NPSCs appear to be more compact with a dimension of ca. 3.

important feature can be observed in fig. 4.6. As one can see that the excursions in the size

of the biggest NPSC in the prenucleating region can be observed, leading to the formation

of unstable NPSCs of size up to N ∼ 40 in some cases; a size afar from the one predicted

by CNT (i.e N ∼ 10). These excursions indicate the formation and break-up of the biggest

NPSC in the system. To understand these excursions, we compared the energy per NP

between prenucleating regime and nucleating regime NPSCs. This comparison is shown in

fig. 4.10 where we can see that the nucleating SCs have lower energy than the pre-nucleation

NPSCs at any given size of the nucleating SC. This implies that the prenucleating NPSC

fluctuates around the critical size predicted by CNT until a SC of enough lower energy
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Figure 4.10: Plot of the energy per nanoparticle of the pre- and post-nucleation NPSCs as
a function of the supercluster size N.

appears in the system and grows to a stable size.

4.3 Induction Time Analysis using Fisher’s Droplet

Model

Although the nucleation of our SCs is well described by CNT, for completeness, however,

we further analyzed the energetics of the nucleation process going beyond the CNT. Such a

theoretical development exists in the literature in terms of Fishers droplet model [28] which

differs from the CNT by an additional contribution to the total free energy to accommodate

the entropic effects of the shape of the NPSCs. According to this model, the free energy

required to form a nucleating NPSC is given by,

∆G(R) =
−4πR3∆µ

3v′0
+ 4πγR2 + τkT ln(

4πR3

3v′0
) (4.12)
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where the logarithm term on the right hand side is due to the statistical mechanical treat-

ment of the free energy which includes contributions from the translational, rotational and

configurational partition functions. Lothe and Pound [64] included the translational and ro-

tational degrees of freedom of the NPSC. According to their theory,τ = −4. Fisher obtained

τ to be 2.2 arising from configurational entropy contributions [65]. Other modifications of

this model were carried out by several groups. For example, Reiss, Katz, and Cohen in-

cluded the center of mass fluctuations and Reiss assumed the nucleating droplet as liquid

drop and made appropriate modifications. Fisher’s theory is found to be in good agreement

with experimental results [66], [67]. Later, further modifications were proposed by Lowe

and Wallace to account for the presence of smaller clusters in the system [68] and argued

that works best to explain experimental data. We have used a modified Fisher droplet

model and used to be 1.25 for our analysis. Since, from 4.10, we can relate induction time

tind(i) = C exp(∆G∗(Si,γ)
kT

) with different supersaturation values; for i = 1,2,3. To estimate

the value of γ, we solve this transcendental equation by taking the ratio of the induction

time tind for any of the two given supersaturation values as mentioned in the equation 4.13

below;

tind(i)

tind(j)
=
C exp(∆G∗(Si,γ)

kT
)

C exp(
∆G∗(Sj ,γ)

kT
)

(4.13)

or we can write

ln(
tind(i)

tind(j)
) = ∆G∗(Si)−∆G∗(Sj) (4.14)

Plotting both sides of the above equation versus γ, we can obtain the approximated value of γ

from the intercept of these two curves as shown in the figure 4.11. After solving equation 4.14

for different volume fractions, we find the value of γ to be about γ = 1.5± 0.5kT/σ′2. This

value of γ compares well to the one calculated earlier from the CNT. Using this value of γ,

the critical size of the cluster,n∗, calculated from this model, for a given supersaturation S,
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Figure 4.11: A Plot of LHS and RHS of equation 4.14. The constant lines indicate LHS
of the equation 4.14 while the curved lines show the RHS of the equation for the two given
supersaturation values, showing the variation of γ from minimum of 2.6 to maximum value
of 3.0.

is slightly bigger in comparison to the CNT as shown in the Table 4.1. From these results,

Table 4.1: Comparison of the critical size n′ between CNT and Fisher Model

S S1(10.95) S2(11.9) S3(12.95) S4(14.28) S5(15.33) S6(16.52)
n′(CNT ) 9.5 8.5 7.5 6.75 6.25 5.75

n′(FisherModel) 12 11.2 10.3 9.5 8.3 7.4

we can conclude that the introduction of the logarithmic term to the CNT does not have a

strong effect on the calculations of γ and n∗ in our system.
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4.4 Aggregation at Higher Volume Fractions

When ligated nanoparticles are mixed with a solvent (Toluene in our case), their aggregation

produce different results depending on how far the system is from equilibrium. Aggregation

is a process which leads to nonlocal formation of larger clusters of particles. These clusters

are formed either by the aggregation of smaller clusters or by the addition of monomers

in the system. After quench, if the particles in the bulk can find adjustable position in

the growing cluster and can find the suitable position to minimize the surface energy, the

growing clusters are assumed to have compact morphology. On the other hand, if the added

particles to the cluster stick irreversibly at the point of contact with the aggregate, irregular

shaped clusters are formed. As mentioned above, the growing process of the aggregates can

be formed due to the addition of monomers known as particle-cluster aggregation or it can be

formed due to the small size aggregates known as cluster-cluster aggregation. Furthermore,

aggregation also depends on how the particles approach each other (i.e. their trajectory

can be either Brownian or Ballistic). Using above mentioned rules, different models are

used to describe the aggregation processes. If the two approaching particles stick together

immediately and forever, the rate of aggregation is limited by the diffusion mechanism and

the aggregation is called the diffusion limited aggregation. If there is a small repulsion

involved in the growth then the aggregation is called the reaction limited aggregation. In

one more possibility, there is a finite probability of dissociation and this process is called the

reversible aggregation [69]. To understand the morphology and growth kinetics in the dense

(at higher volume fraction) systems, we quenched our dodecanethiol (C12) and decanethiol

(C10) ligated system at rather higher volume fractions (i.e. 0.005 ≤ f ≤ 0.02) [61]. In this

section, we will analyze the growth and morphology of the growing NPSCs in our system of

C12 and C10 ligated gold nanoparticles in Toluene. Our analysis is based on the dynamical

variations in the NPSC size and their average radius of gyration in the system. Furthermore,

we also looked at the morphology of the NPSCs by calculating the structure factor of the

NPSCs in the system.
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4.4.1 Structure Factor

Since, we can relate the scattered field Esca with the scattering wave vector as Esca ∝

exp(−i~q.~r) where ~q = ~ki − ~ks is the momentum transfer between the incoming and scat-

tered wave (or the difference between the incoming and the outgoing wave vectors) and q−1

represents the length scale to be compared to the length scale of the scatterer. Under the

assumption of elastic scattering, it can be related to the scattering angle θ as;

q =
4π

λ0

sin
θ

2
(4.15)

For a system of N particles, the scattered intensity I(q) is the square of the scattered

amplitude (i.e. I(q) = |
∑

exp(−i~q.~r)|2. The Structure Factor S(q) is proportional to the

scattering intensity and is defined as

S(q) =
1

N
〈|
∑

exp(−i~q.~r)|2〉 (4.16)

As the magnitude in Eq. 4.16 is the product of the sum and its complex conjugate, S(q) can

be written as

S(q) =
1

N
〈
∑
i

∑
j

exp(−i~q(~ri − ~rj))〉 (4.17)

where ri and rj represent the positions of the ith and jth scatterers. The Structure Factor

S(q) can be defined as the fourier transform of the correlation function C(r) for a system

with randomly oriented aggregates;

S(q) = 4π

∫ ∞
0

C(r)
sin(qr)

qr
r2dr (4.18)

For the intermediate q regime (regime corresponding to the interparticle distance in the

cluster),we can assume that C(r) has power law behavior such that its functional form is

given by the expression C(r) = rD−3f(r/R). Here, f(r/R) is the cut-off function for the

correlation function such that f = 0 for r ≥ R where R is the size of the cluster. Using this

form for C(r) in equation 4.18, one finds;

S(q) ∼ q−D
∫ ∞

0

f(z/qR) sin(z)zD−2dz (4.19)

47



where z = qr. Furthermore, considering the fact that the integral in equation 4.19 is

convergent for D < 2, we can write that in the intermediate regime, S(q) ∼ q−D.

4.4.2 Growth Kinetics in C12 Ligated System

In this section, we will focus on the growth kinetics and morphology of the clusters formed

at higher volume fractions in our C12 ligated system. First, we observe the morphology

by looking at the snapshots of the simulation clusters. For f > 0.003, several clusters are

found to nucleate and grow with time in the system. This can be seen in Figure 4.12A

for f = 0.005, for example, where several spherical spherical clusters grow in the system

indicating a compact morphology of the clusters. Next, we quenched at further higher

volume fraction of f=0.02. For such dense system (such as shown in Figure 4.12B for

f=0.02), the morphology of domains is quite similar to the interconnected structure seen

in a typical spinodal decomposition of a liquid-liquid mixture. Also, by focusing on one

individual cluster for both f = 0.005 and 0.02, we were able to see the ordered close-packed

structures of the clusters.

In order to study the kinetic growth of these clusters in the system, we studied the

variation in the shape of the growing clusters. For that matter, we calculated the radius of

gyration Rg of these growing clusters. In Figure 4.13 , we show log-log plots of the average

radius of gyration Rg of the clusters as a function of time for f = 0.005. The data shown in

the figure is averaged over 10 runs. As we can see from the figure 4.13 that for f = 0.005, we

see three regimes in the growth kinetics. First, there is an induction period (t ≤ 300) where

droplets of critical size are yet to nucleate and hence only small clusters of fluctuating sizes

are observed in the system. This regime is then followed by second regime where nucleating

clusters are found to have sudden fast growth corresponding to the heterogeneous nucleation

of many clusters (300 ≤ t ≤ 3000). Subsequently, these clusters grow with time with a power

law of Rg ≈ tn with n ≈ 0.16. Although the data at this stage show large fluctuations even

after averaging over 10 runs, one can understand the observed value of the exponent n in
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Figure 4.12: (A) Simulation snapshots for dodecanethiol-ligated nanoparticles at different
times for a volume fraction of f=0.005: (a) t=1000, (b) t=3000, (c) t=5000, (d) t=10,000.
(B) Simulation snapshots for dodecanethiol ligated nanoparticles at different times for a
volume fraction of f = 0.02: (a) t=500, (b) t=1000, (c) t=4500, (d) t=6000.

the following ways. As first suggested by Binder and Stauffer [70] and nicely summarized

by Furukawa, [71], the domain growth kinetics at this stage is mostly controlled by surface
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Figure 4.13: Log-log plot of the radius of gyration (Rg) versus time for dodecanethiol-ligated
nanoparticles. Here the volume fraction is f = 0.005. The solid line yields an exponent of
∼ 0.16. Even after averaging over 10 runs, the statistics are poor here because there are
relatively few clusters formed at this volume fraction. Simulations with a much larger system
would be necessary to get better statistics on the clusters at long times.

reorganization of the clusters in order to reduce interfacial tension. In such a case of domain

growth, one obtains n=1/(D+3) where D=3 is the spatial dimension of the system. Our

observed value of n ≈ 0.16 agrees with the theoretical prediction. Next, we study the

dynamics at higher volume fraction of f = 0.02. A plot of the cluster dynamics is shown in

figure 4.14. In this case, the domain growth is so fast that we did not observe any induction

period and the growing clusters are found to follow the power law of Rg ≈ tn with n ∼ 0.3

over a long period of time. This value of the exponent is consistent with a domain growth

exponent of n = 1/3 in the spinodal decomposition of off-critical liquid-liquid mixtures [72],

(when hydrodynamic interactions are not important).

Next, we further analyzed the morphology of the clusters by calculating the Structure

50



Figure 4.14: Log-log plot of the radius of gyration (Rg) versus time for dodecanethiol-ligated
nanoparticles. Here the volume fraction is f = 0.02. The solid line yields an exponent of ∼
0.3.

Factor S(q) for the volume fraction of f = 0.02. A plot of the Structure Factor S(q) is shown

in figure 4.15. In Figure 4.15(A), we show the log-log plot of the structure factor S(q,t) versus

q. A fit to the data shows that S(q) is consistent with Porod’s law (S(q) ∼ q−4) over a large

range of q values, confirming our direct observations that the growing clusters are compact

at both short and large length scales. Phase-separation processes in liquid mixtures can

be described by a dynamical scaling form with a time-dependent characteristic length. [73]

A major feature of this description is that the structure factor S(q, t) can be written in

a time-independent dynamical scaling form kdm(t)S(q, t) = F [q/qm(t)] where qm(t) is the

location of the peak in the structure factor and is a measure of the (inverse) characteristic

length in the system. We have tested the dynamical scaling hypothesis for domain growth

in quenched nanoparticle solutions for f = 0.02. The results are shown in Figure 4.15B.

Reasonably good scaling is observed in the simulation over the time interval shown in the
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Figure 4.15: (A)Log-log plot of the structure factor at different times for dodecanethiol-
ligated nanoparticles. Here the volume fraction is f = 0.02. The solid line yields a slope
of -4 (Porods law), indicating the compact structure of the clusters at both short and large
length scales. Deviations from Porods law might arise from finite-size effects. Simulations of
a much larger system size would be necessary to get more accurate results for the structure
factor. (B) Dynamical scaling plot for the structure factor (see text) for dodecanethiol-ligated
nanoparticles.

Figure 4.15(B). We also note that the quality of scaling actually improves at late times.

4.4.3 Growth Kinetics in C10 Ligated System

In this case, the potential well depth is deeper than for the previous case of C12 studied in

our simulations. Here also, our analysis is confined to same two volume fractions of f=0.005

and f=0.02. By looking at the snapshots of the system for both volume fractions, the

large-scale morphology is fractal-like as seen in Figure 4.16(A,B) whereas the short-range

close-packed ordering becomes clear as we focus on individual clusters (Figure 4.16C). So,

the C10 ligated system is seen to have hybrid morphology and such hybrid morphology of

clusters has previously been seen in both simulations [74], [17] and experiments [75], [76] of

colloidal self-assembly.

The hybrid morphology of the clusters observed in real space leaves its mark on the

structure factor as well. In Figure 4.17, we show the log plot of structure factor S(q, t) versus

q. A fit to the data shows that S(q) is consistent with Porod’s law (S(q) ≈ q−4) for large q
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Figure 4.16: (A) Simulation snapshots for decanethiol-ligated nanoparticles at different
times for a volume fraction of f = 0.005 (a)t = 500, (b)t = 1000, (c)t = 5000, (d)t = 10000.
(B) Simulation snapshots for decanethiol-ligated nanoparticles at different times for avolume
fractionof f=0.02 (a)t = 500, (b)t = 2000, (c)t = 3000, (d)t = 4000. (C) Close-up structure
of decanethiol-ligated nanoparticle clusters for volume fractions of f = 0.005 and 0.02.
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Figure 4.17: log-log plot of the structure factor at several times for decanethiol-ligated
nanoparticles with f=0.005. The two dashed lines yield exponents of ∼ −1.8 and ∼ −4,
respectively, indicating the hybrid nature of the clusters with a short length scale compact
structure and a large length scale DLCA-type fractal structure.

values, whereas for intermediate values of q, S(q) ≈ q−Df with Df ≈ 1.8 consisting of the

well-known diffusion-limited cluster-cluster aggregation (DLCA) value [77]. This confirms

our direct observations that the growing clusters are compact at short length scales but

are fractal-like at large length scales. For fractal cluster growth in the traditional DLCA

model, one can use kinetic theory based on the Smoluchowski equation for irreversible

aggregation [78]. At late times, one finds that the mean cluster size grows as s(t) ≈ tz

where the kinetic exponent is z =1 for Brownian coagulation. Because the total number

of monomers is fixed in the system, the number of clusters Nc then decays with time as

Nc ≈ t−z . In addition, if the fractal dimension of the clusters is given by Df , then s ≈ R
Df
g

or Rg ≈ tn ≈ tz/Df with time, yielding n = z/Df . For the 3D DLCA model, Df ≈ 1.8 and

one finds n ≈ 0.55.

Our results for Rg versus t and Nc versus t are shown in Figure 4.18A,B in the log-log

plots. Figure 4.18 A shows the temporal evolution of Rg for volume fractions of 0.005 and
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Figure 4.18: (A) log-log plot of the radius of gyration (Rg) versus time for decanethiol-
ligated nanoparticles with f=0.005 and 0.02. The dotted line yields an exponent of ∼ 0.45.
(B) log-log plot of the number of clusters (Nc) versus time for decanethiol-ligated nanopar-
ticles with f = 0.005 and 0.02. The dotted line yields an exponent of ∼ −0.8.

0.02. Both curves yield a slope of 0.45. In Figure 4.18B, the variation of the number of

clusters Nc with time is plotted on a log-log scale. The curves yield a slope of -0.8. From the

kinetic exponents observed in Figure 4.18A,B, it seems that although the potential well is

deeper for the decanethiol ligand case, the growth kinetics still does not belong to the pure

DLCA model. To test whether the DLCA model is truly recovered when the potential well

depth is extremely deep, we set kT = 0.5kTroom in the next set of simulations. This would
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Figure 4.19: (A) log-log plot of the radius of gyration (Rg) versus time for deeply quenched
decanethiol-ligated nanoparticles with f = 0.02. The solid line yields an exponent of ∼ 0.55.
(B) log-log plot of the number of clusters (Nc) versus time for deeply quenched decanethiol-
ligated nanoparticles with f = 0.02. The dotted line yields an exponent of ∼ −1.

make the minimum of the potential well depth equivalent to 10 kTroom. Results for such a

deep quench are shown in Figure 4.19A,B. It is exciting to observe that indeed, irreversible

DLCA model results are recovered in the limit of deep potential well depths.
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4.5 Conclusion.

In summary, in this chapter, we have used an effective pair potential between two ligated

5 nm gold nanoparticles (detailed description in chapter 2) in a Brownian dynamics simu-

lation to study nucleation of NPSCs from a temperature quenched NP solution. Both the

kinetics and morphology of the NPSCs were studied. To study the nucleation phenomenon

in the aggregates of NPSC, we divide the dynamics of the growing cluster into two regimes;

pre-nucleation regime and nucleation regime. Analysis of a pre-nucleation induction period

with classical nucleation theory yielded a supercluster interfacial tension that compare rea-

sonably well with other theory and experimental measurements. We observed that most of

the smaller sized pre-nucleating NPSCs have non-compact morphology whereas the larger

sized NPSCs are compact, and the growth of the nucleating NPSC is dominated by the

addition/subtraction of monomers as postulated by CNT. An unexpected and surprising

observation was that the pre-nucleation cluster size can occasionally range greater than the

critical size in the pre-nucleation regime without nucleation occurring. Only when a cluster

with low enough energy occurs will nucleation ensue.

Next, we study the aggregation at higher volume fractions for both dodecanethiol (C12)

and decanethiol (C10) ligated NPs. For the case of C12 NPs, where the depth of the

interaction potential between the NPs is 3.1kT, round shaped clusters are found to coexist

with the dispersed phase and the cluster morphology is found to be compact at all length

scales. The kinetics of cluster growth in this case is compared with phase separations in

binary mixtures. For decanethiol-ligated NPs, where the model potential well depth is found

to be deeper ( - 5.15kT), the aggregating NPSCs at higher volume fraction are found to have

hybrid, fractal-like structure. Cluster morphology in this case shows a compact structure

at short length scales and a fractal structure at large length scales. The growth kinetics for

this deeper potential depth is compared with the diffusion limited cluster-cluster aggregation

(DLCA) model.
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Chapter 5

Crystalline Structure of the
nucleating cluster in Dodecanethiol
Ligated Nanoparticles

In chapter 4, we have studied the nucleation of NPSCs in the quenched ligated gold nanopar-

ticle system. During that study, we not only calculated the approximate size of the critical

size of the nucleating NPSC but also analyzed the structure of the prenucleating NPSCs

in the system. In this chapter, our work will be focused on the dynamics and structure of

the stable nucleating cluster (i.e in the nucleation regime). We will start our discussion by

looking at the morphology of the stable nucleating NPSC at late times in our simulations

shown in figure 4.1. Since our NPSC is mostly spherically symmetric throughout this region,

we compute the radius of gyration Rg and perimeter radius Rp of the nucleating NPSC by

using the relations;

Rg =

√√√√ 1

N

N∑
i=1

(ri − rCOM)2 (5.1a)

Rp =

√
5

3
Rg (5.1b)

where rCOM represents the position of the Center of Mass(COM) of the cluster and all the

particles residing inside the Rg define the core of the NPSC whereas all particles residing

outside Rp are considered to form the surface of the NPSC. In the following section, we will

focus on identifying the structure of the particles in the core and the surface of the NPSC.
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5.1 Radial Distribution Function

To define the neighbors of the particles in the NPSC, we calculate the radial distribution

function g(r) for a given size of the NPSC. Physically speaking, the radial distribution

function (RDF) describes the variation in the density of the particles as a function of the

distance from the reference particle. For detailed description, let us consider a system of

N particles. The Probability of finding particle 1 in dr1, particle 2 in dr2 and so on ...., is

given by [79]

PN(r1, ....rN)dr1....drN =
exp(−βUN)dr1dr2....drN

ZN
(5.2)

where ZN is the configurational integral. The probability that particle 1 is in dr1 at r1, ....,

molecule n in drn at rn, irrespective of the configuration of the remaining N −n is obtained

by integrating equation 5.2 over the coordinates of molecules n+ 1 through N :

PN(r1, ....rN) =

∫
.......

∫
exp(−βUN)drn+1....drN

ZN
(5.3)

Now, if any particle 1 is in dr1 at r1, ...., and any particle n in drn at rn then the probability

is given by

ρn(r1, ....rn) =
N !

(N − n)!
PN(r1, ....rN) (5.4)

The prefactor comes from the fact that the 1st particle can be chosen in N ways, the 2nd

one in (N − 1) ways and so on. So the probability of finding any particle at ~r1 in d~r1 for an

isotropic fluid is given by

ρ1 = N

∫
.......

∫
exp(−βUN)dr2....drN

ZN
(5.5)

or
∫
ρ1d~r1 = N . But since ρ1 is independent of ~r1 (isotropic fluid) so we can write ρ1 =

N
V

= ρ. Similarly, it can be shown that for an ideal gas, ρ2(~r1, ~r2) ≈ ρ2. We define the

distribution functions g(n)(~r1, ~r2.....~rn) as g(n)(~r1, ~r2.....~rn) = 1
ρn
ρ(n)(~r1, ~r2.....~rn). In the
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case of spherically symmetric particles of a liquid, we can write g2(~r1, ~r2) = g(2)(r) = g(r)

such that we can write

∫
ρ2g(r)d~r =

N(N − 1

V
(5.6a)∫

ρg(r)4πr2dr ≈ N (5.6b)

Here ρg(r)4πr2dr is really the number of particles between r and r + dr from the reference

particle.This is why, g(r) is called the radial distribution function. We calculate the radial

distribution function for our late time cluster with Np ∼ 10000. Figure 5.1 shows the

RDF of the nucleating NPSC. The sharp peaks of the RDF indicate the presence of the

crystalline structure in our nucleating NPSC. The first minima of g(r) correspond to the

Figure 5.1: A plot of the Radial Distribution Function g(r) as a function of separation
between the particles ’r’ for the nucleating NPSC for C12 and C10 ligated gold nanoparticles.
The first minima of the radial distribution function g(r) is used to identify the neighbors in
a NPSC.

nearest neighbor (NN) distance δ between the particles in the NPSC whereas first maxima
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are indicative of the lattice spacing in the NPSC [80]. So, in our analysis, all the particles

separated by the NN distance δ are known as the neighbors of the particles in the NPSC.

Next we calculate the distance of the ith nearest neighbor (NN) of each particle and average

over the core and surfac particles separately. This is shown in Fig. 5.2 for NPSCs at early and

late times. Since the potential minimum for dodecanethiol ligated system is at rmin = 1.33

(see figure 3 in Chapter 2) , the first NN is located at this distance. At the latest time, the

NPSC core shows 12 NN within a small spread of distance indicating a closed packed crystal

structure (fcc or hcp). A subsequent discontinuity in distance indicates the beginning of the

Figure 5.2: Plots for the average distanec r(i) of the ith neighbor for the particles in the
nucleating cluster at given time for dodecanethiol ligated gold nanoparticles. Early time
cluster behaves the same way as the surface of the late time cluster

next NN sequence and six such next NNs follow. Another weak discontinuity comes next and

then the sequence of 12 third NNs follows. In contrast, at earlier times, the growing NPSC

has only five or six pure NNs at separation rmin = 1.33 and then a sequence of neighbors

whose distance increases continuously. As also shown in Fig. 5.2, this liquidlike morphology

of the NPSC at early times is strikingly similar to the surface structure of the NPSC at late
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times. To further characterize the crystalline structure of the nucleating NPSC, we analyze

the growing NPSC by using the local bond order parameters first introduced by Steinhardt

et al [81] which represents the local orientational symmetry of the neighbors of each particle

in the system.

5.2 Bond-orientational order Parameter

During the growth of a nucleating NPSC in our system, a transition may take place from

an isotropic liquidlike structure to more ordered solidlike structure. To distinguish between

the structure of the crystalline solids and isotropic liquids, a study of the translational and

rotational broken symmetries plays an important role. A ”broken” symmetry process is a

process which results due to a transition from a disordered state to a more ordered state.

Here less ordered state is considered more symmetric in the sense that small variations to

it would not have much effect on its overall state. The isotropicnematic phase transition in

liquid crystals and the isotropiclamellar phase transition for amphiphiles or block copolymers

can be considered as the prominent examples of the symmetry breaking transitions. The

orientational anisotropy refers to the ”bonds” joining the neighbors of the particles rather

than the particles themselves and its importance in 3D was first emphasized by Frank [82]

in 1952. Here ”bonds” meanings are different from the chemical bonds and represent the

line joining the neighbors of a particle in the NPSC. Local bond order parameters can also

be used for the accurate identification of the crystalline structure of the NPSCs and are

obtained from an algorithm which is based on the spherical harmonics and is given by the

quantity;

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(θ( ~rij), φ( ~rij)) (5.7)

where the Ylm(θ, φ) are the spherical harmonics and θ(~r) and φ(~r) are the polar angels of

the bond measured with respect to some reference coordinate system. Since all the even

spherical harmonics are invariant under inversion, we limit our analysis to the even l values.
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Here Nb(i) represents the number of neighbors of the ith particle and the sum is taken over

all the Nb(i) bonds that the ith particle has with its neighbors. Because the qlm(i) for a

given l can be scrambled drastically with the variation in the rotation coordinate system, it

is important to have a rotationally invariant combination of the coordinates such as;

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2 (5.8)

and

ŵl(i) = wi(i)/(
l∑

m=−l

|qlm(i)|2)3/2 (5.9)

where

wl(i) =
∑

m1,m2,m3,m1+m2+m3=0

(
l l l
m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i) (5.10)

These local order parameters are used to determine the order around particle i. For the

case of l=6, the vectors add up coherently for the case of solidslike particles and hence a

larger nonzero global bond order parameter value is obtained for each crystalline structure

while in the case of liquidlike particle, the vectors add up incoherently such that the bond

order parameter value is zero. Table 5.1 shows the different global order parameter values

for different structures. From the table 5.1, we can see that the bond order parameter for

l=6, not only distinguishes between the solidlike and liquidlike structures but also we can

differentiate between different crystalline structure [83].

5.3 Crystalline Structure of Dodecanethiol and De-

canethiol Ligated System NPSCs

In this section, we look at the morphology of the nucleating NPSC at late times using the

bond order parameter algorithm. Our observation is confined to q6 parameter calculations.
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Table 5.1: Bond Orientational Order Parameter values for different crystalline structures

structure Q4 Q6 Ŵ4 Ŵ6

fcc 0.191 0.575 -0.159 -0.013
hcp 0.097 0.485 0.134 -0.012
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013

icosahedral 0 0.663 0 -0.17
liquid 0 0 0 0

As an example, q6 distribution of the pure crystals of fcc, bcc, hcp and Mackay Icosahe-

dral [84] is shown in the figure 5.3. Each structure has its distinct peak such that one

can easily differentiate between different crystalline structures. Next, we calculate the q6

distribution for the late time nucleating NPSC of C12 ligated system and compare it with

pure crystals as shown in figure 5.3. Notice the broad distribution of our nucleating NPSC

near the fcc and hcp peaks and also that there appears to be no contribution of the pure

icosahedral structure. In order to have better understanding in the spread of the nucleating

NPSC distribution, we artificially created spread in the distribution of pure fcc, bcc and hcp

crystals. This spread is created by randomly displacing the particles in the crystals about

their lattice sites. The random displacement of the particles varies differently in different

regions of the crystals indicating the different levels of distortions created by the thermal

vibrations of the particles in the crystal about their lattice points as described in table 5.2.

A plot of q6 distribution of these randomly displaced crystals along with the nucleating

NPSC is shown in fig. 5.4.

The matching of the randomly displaced structures of fcc and hcp with the nucleating

NPSC also indicates that there is no indication of the bcc structure in the NPSC. We also

observe that the q6 distribution of the NPSC core is analogous to the structure of a mixture

of fcc/hcp randomly distorted structure whereas the distribution of the NPSC surface at late

times (at t = 40,000 and N being 10147) overlaps with the initial time liquid-like structure

of the NPSC (at t = 4000 and N being 57). This observation matches well with the analysis
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Figure 5.3: q6 distribution of the pure crystals of hcp, bcc, fcc and icosahedral in compar-
ison with the nucleating cluster at t = 40, 000(np = 10147).

Table 5.2: A table of the random variations in the lattice sites at different shells in the
hcp, bcc, fcc and ich crystal lattices

shell shell < Rg Rg < shell2 < Rp Rp ≤ shell3
fcc 2% 4% 10%
bcc 2% 4% 10%
hcp 2% 4% 10%
ich 2% 4% 10%

done in 5.1. For the case of C10 ligated system, the crystalline structure of the nucleating

NPSC at late times is found analogous to the C12 system NPSC.
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Figure 5.4: A comparison of the nucleating NPSC at t = 40000 with the randomly varying
crystals of bcc, fcc and hcp. The particles in the pure crystals are given 5% displacement.

5.3.1 Possibility of icosahedral (ich) structure

The Icosahedral structure is another example of the closed packed structure. From figure 5.3,

it can easily be perceived that there is no structural contribution of a pure icosahedral

structure to our nucleating NPSC. What happens when we randomly displace the particles

about their lattice points in a pure icosahedral structure? For that purpose, we created a 14

layered cluster on an icosahedral structure (with N = 10179) such that the particles in the

cluster are given random distortions about their lattice points as shown in the Table 5.2.

Figure 2.5 shows the comparison of the q6 distribution of this random cluster on icosahedral

(ich) lattice with our nucleating NPSC at t = 40, 000(withnp = 10147). It can be seen that

the q6 distribution of the random cluster on ich lattice overlaps with the distribution of our
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Figure 5.5: q6 distribution of icosahedral structure (red curve) with randomly distorted
regions in comparison with the nucleating NPSC (black curve). The particles in the pure
crystals are given 5% displacement.

nucleating NPSC, although the peak positions are not the same in the two cases. In our

understanding, the reason of the similarities between fcc, hcp and ich randomly distorted

structures lies in the fundamental structural difference of these crystals. In the case of fcc

and hcp structures, all neighbors are equally spaced while in the case of icosahedral (ich),

the neighbors on upper and lower layers are separated by d distance while the neighbors

on the same layer are 1.05d distance apart. So, giving a random variation of 5% or more

about the lattice sites will remove this spacing difference between the neighbors and the

structure of the cluster on ich lattice would behave very similar to the cluster on fcc/hcp

lattice. To further test the possibility of the presence of an ich structure in our system,

we focus on the morphology and energetics of the inner core of the nucleating NPSCs in

the post-nucleation regime for both C12 and C10 ligated systems. All particles closest to
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the center of mass (COM) are considered as inner core particles. To study the energetics

of the inner core particles, we select first 13, 55 and 147 particles nearest to the COM

of NPSC. Next, we created a system of same number of particles on a fcc, hcp and ich

lattices using our nanoparticle interaction model potential in chapter 2 Although energy per

particle calculation favors fcc/hcp structures for each of the special sized 13, 55 and 147

(icosahedral magic numbers) [84] N clusters, the actual NPSCs of these sizes seen during

time evolution show a distinct tendency (see Fig. 5.6) toward icosahedral (ich) morphology

for the C10 system. The C12 clusters of these special sizes are, on the other hand, non-

crystalline because no ordered structure was found in these special size clusters for C12

system.

Although few crystalline particles can be seen in the inner core of N = 147 but overall

it behaves as liquidlike. To gain a better understanding on the evolution of the NPSC

morphology, we then looked at the inner core of a 2000 particle NPSC during its growth

dynamics. In both systems (i.e. C12 and C10), we observe that both systems have ich

morphology in the inner core as shown in fig. 5.6. For the C10 ligated case, as the system is

deeply quenched in comparison of the C12 system such that thermal fluctuations have little

effect on the formation of small size clusters and hence more stable crystalline structures

are observed. On the other hand, C12 system is shallower and the smaller size NPSCs

are unstable leading to the formation of loosely bound structures. But as the nucleating

NPSC size grows, the inner core of the NPSCs starts getting thermally stable and ordered

structures also start appearing in the inner core of the C12 NPSCs as shown in fig. 5.6.

From this observation, it can be concluded that the randomly distorted icosahedral (ich)

and other closely packed crystals (hcp and fcc) have similar crystalline structure although

inner core analysis shows that energetically ich structure is more favorable for these stable

nucleating NPSCs. Another way of looking at the crystalline structure of the nucleating

NPSC is to observe the scatter plot of the NPSC in the q4 − q6 and q4 −w4 planes and has

been used before [85], [86]. The graph of q4 − q6 and q4 − w4 planes in figure 5.7 shows the
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Figure 5.6: A plot of the energetic comparison of the nucleating NPSCs for C12 and C10

ligated nanoparticles with the energetically stable clusters on the ich, fcc and hcp lattices.
The solid line represent the C10 clusters of size 13,55 and 147 on the fcc/hcp and ich lattices
whereas the dashed lines correspond to the respective size clusters for the C12 case. The
squares and the circles represent the C10 and C12 NPSCs in the simulations. The C10

NPSCs overlap with the ich clusters whereas C12 NPSCs energetically show no evidence of
crystalline structure. The core clusters of respective size of the C10 and C12 late time NPSCs
of size 2000 also show that the core of the nucleating growing NPSCs in both cases behaves
like ich.

scatter plot for the structure of the C12 ligated nanoparticles in comparison with randomly

distorted crystalline structures.

The Fig. 5.7 shows the q4− q6 2D plane plot of the nucleating NPSC in comparison with

the randomly distorted fcc, and hcp crystals. From these plots, one can clearly identify

and distinguish the patchy regions of different crystalline structures. The data points of the

nucleating NPSC in this q4−q6 plane plot appears to be overlapping with the random crystals

in some regions of the plane but still there are few areas which can not be explained with

these random crystal structures. Same nucleating NPSC is then overlapped with randomly

69



Figure 5.7: The q4−q6 plane plot (a) showing the comparison between the nucleating NPSC
(black) and the randomly distorted fcc and hcp crystals (red and green respectively) and
(b) between the nucleating cluster (black) and the randomly distorted icosahedral structure
(magenta color). Comparing (a) and (b), one finds that there is a huge overlap between fcc,
hcp and icosahedral structures. Similarly, q4−w4 plane plots of the respective structures are
shown in fig. 19(c) and (d). Surprisingly, no fcc overlap with icosahedral is observed from
this comparison of q4 − w4 plot.

distorted icosahedral structure of 14 layers (as the number of particles in the nucleating

NPSC (np = 10147) is nearly same as the 14 layered icosahedral structure (np = 10179)) as

shown in fig. 5.7(b). From fig. 5.7(b), we can see that the patches created by the randomly

distorted icosahedral structure overlaps with the nucleating NPSC in the crystalline regions
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of the scatter plot and also it overlaps with both fcc and hcp distorted crystals. Similarly,

figs. 5.7(c) and (d) show the comparison of the hcp, fcc and icosahedral structures and the

nucleating NPSC in the q4 − w4 plane plots. From fig. 5.7(c) and (d), it can also be noted

that the crystalline structures of fcc and hcp can better be distinguished as compared to

q4− q6 plane plots as the patchy regions indicating these both crystalline structures are well

separated out in the planes. Although these plots are helpful to distinguish between fcc and

hcp structures but still the overlap between the hcp, fcc crystalline structures and icosahedral

can not be separated out and it becomes difficult to determine the exact structure of the

nucleating cluster based on these bond order parameter analysis. Lechner and Dellago [85]

introduced another method based on averaged local bond order parameters to determine the

crystalline structure. According to their improved method, the information of the structure

is not restricted to the neighboring shell of each particle (as is in the case of the conventional

local order parameter) but the second shell is also included in the analysis. Our analysis

based on this method does not show any improvement in the structure identification.

5.3.2 Evaluation of Crystalline Fraction

To further look at the details of the cluster morphology and to differentiate between the

liquid-like and solid-like particles, we make use of the scalar product definition of the vector

q6 for the ith particle with the neighboring j particles which is given by;

cij = q6(i) · q6(j)∗ =
l∑

m=−l

q̃lm(i) · q̃lm(j)∗ (5.11)

This vector product between the neighboring particles helps to distinguish between the solid-

like and liquid-like particles in the whole NPSC. First, we define the connected neighbors.

Two neighbors are considered to be connected if the above mentioned correlation function is

greater than a threshold value of 0.5 as described in [87]. In order to indicate the threshold

for the choice of connected particles, all the particles with value of 0.5 or more are considered

connected particles. For distinction between solid-like and liquid-like particles, we set the

threshold value of more than 6 connections per particles as mentioned by Frenkel [87].
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All the particles having more than 6 connections are considered as solid-like particles and

otherwise they are considered as liquid-like. In literature, different definitions have been

used to distinguish between the solid-like and liquid-like particles. For example, Eduardo

Mendez-Villuendas and Bowles [88] have used a threshold value of 0.65 of Cij instead of 0.5

as used by ten Wolde et al [87] for definition of the connected particles and also their method

to identify the liquid-like and solid-like particles is different. In our observation, both of these

definitions give more or less same result for the distinction between the liquid-like and solid-

like particles in our analysis of the nucleating cluster. Now, to further identify the crystalline

structure in the solid-like particles, we use the method described in Ref. [89]. This method is

based on the values of and. According to their definition, if w6(i) ≤ 0 and q4(i) ≥ 0.15 then

the structure of the ith solid-like particle is considered as FCC structure and if q4(i) ≤ 0.15

and w6(i) ≥ 0 then the structure is considered as HCP. Furthermore, based on scatter plots

in fig. 5.7, we find that there are some dense regions (representing crystalline structures)

which are different from any of the described structures. These supplementary structural

regions are categorized as unknown structures .So, based on above mentioned definition for

the identification of the crystalline structure, we looked at the morphology of the nucleating

cluster at four different times of the growing cluster in our simulation. The morphology

is shown in fig. 5.8. It can be seen in fig. 5.8(a) that at initial times, the particles in the

nucleating NPSC behaves as liquid-like particles and all different crystalline structures start

to appear simultaneously in the NPSC once it achieves a certain size (around 150 particles

in this case) and as the NPSC grows, the core becomes more and more crystalline while its

surface is more liquidlike as shown in fig. 5.8(b)-(d). From this analysis, it has been observed

that the formation of a stable nucleating NPSC is a two step process. The nucleating embryo

is initially liquidlike and then in the second step, fcc/hcp crystalline structure start to

evolve alongside other unknown strcture in the stable nucleus simultaneously and ultimately

different layers of crystalline structure are formed. Another important conclusion can be

drawn from our analysis that the surface of the nucleating cluster is always dominated by
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Figure 5.8: The morphology of the nucleating cluster in the C12 system showing the presence
of liquid structure and different crystalline structures at a) t = 3000(np = 147), b) t =
5000(np = 1296), c) t = 10, 000(np = 5346) and d) t = 40, 000(np = 10147). The blue color
indicates the liquid-like particles in the cluster, green indicates the hcp structure, red color
is indicative of the presence of fcc and unknown structure in the system is shown in the pink
color.

the liquid-like particles. Similar observation was found by van Meel et al during their study

of the LJ system below triple point [90].

Another view of looking at the crystalline structure of the nucleating cluster is to see the

fractional composition of different crystalline structures existing in the cluster. Figure 5.9

shows the structural composition of the nucleating NPSC as a function of the time for C12
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Figure 5.9: A plot showing the variation and growth of the different crystalline structure in
a nucleating cluster as a function of time. At initial times, when the size of the nucleating
cluster is small, the structure is dominated by liquidlike structure but as the size increases,
different crystalline structures start to dominate

ligated system. It can be seen from the figure that the initial time NPSC is dominantly

liquid-like in structure but it grows in size, crystalline structures start appearing at its core.

Also, by looking at the fractional composition as a function of the distance from COM

suggests that even though, crystalline structures do constitute the core of the NPSC, the

surface is always dominated by the liquid-like particles.

5.4 Conclusion.

In this chapter, we gave a detailed structural description of the nucleating NPSC . Our

analysis is based on the bond orientational order parameter and for the case of C12 ligated

system, we observed that the formation of the stable nucleating cluster is a two step process.
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Initially, a stable liquid-like structure is formed leading to the formation of different crys-

talline structures growing in the core of the cluster. Even though the crystalline structure

is found to be dominant in the core, the surface of the growing NPSC is always found to

be liquid-like. Also, the crystalline structures in the NPSC are found to be similar to the

distorted close-packed crystalline structures of fcc and hcp crystals. A comparison of the

crystalline structures between large size (more than 2000 particles in the cluster) stable C10

and C12 nucleating NPSCs shows that the nucleating NPSCs in both cases have same crys-

talline fraction. But, in the case of small size clusters (as an example, we used N=13), C10

being deeper quench, appears to have more crystalline order as compared to C12 system.
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Chapter 6

Self-Assembly in a model of
short-range attractive colloids

Self-Assembly of the interacting colloidal systems results in the phase transition between

gas, liquid and solid states [91]. The liquid phase can be amorphous or liquid crystalline and

the solid phases can be crystalline, amorphous (often fractal), and gel. The possibilities of

formation of certain structures are related to the details of the potential between the disperse

components of the structure . For the case of hard sphere interactions, a fluid to crystal

transition occurs whereas an addition of attractive potential brings the possibility of an

equilibrium between different phases. One important parameter that affects larger changes

in the phase diagram is the relative range of the attractive interaction between the colloidal

particles. For short-range attractive potentials, the system develops a gas-crystalline coexis-

tence with a metastable liquid-liquid coexistence region. The presence of such a metastable

liquid-liquid coexistence region affects the kinetics of nucleation and growth of clusters in

colloidal and protein solutions [24]. In addition, kinetics of cluster growth in colloidal sys-

tems with short-range attractions [92] has striking similarity with other phase changes such

as spinodal decomposition in binary mixtures of molecular systems [72] and the formation

of precipitated crystalline solids from solutions [93]. Thus, colloidal systems are of funda-

mental interest for a detailed understanding of how a dispersed phase, such as particles in

a colloid or molecules in a solution, comes together when destabilized and forms a con-
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densed phase such as aggregates, gels, or crystalline solids. Parts of this grand problem

have seen considerable previous research such as irreversible aggregation and the formation

of fractal aggregates, [94] gelation, spinodal decomposition,[72] nucleation, and early studies

of growth during precipitation. [93] However, a general theory that encompasses all these

related phenomena is lacking.

Phase behavior of short-range attractive colloids has been studied extensively both the-

oretically and experimentally. The equilibrium behavior of these systems being reasonably

well understood, recent attention has been directed to the understanding of kinetics of phase

transitions and colloidal gelation [95] and its relation to glass transition and the more general

jamming transition [96], [97]. Hobbie [98] studied the growth kinetics of the crystallization

process in depletion driven colloids and compared experimental results with mean-field theo-

ries of aggregation-fragmentation [99]. Direct observation of crystallization and aggregation,

on one hand,and sublimation of these crystals, on the other, has been carried out by de Hoog

et al [100] and more recently by Savage et al [101] by varying the depth of the depletion po-

tential. Arrested spinodal decomposition and the formation of solidlike network in colloids

and protein solutions were studied by several groups [102], [103], [104]. A recent work by

Lu et al. [102] suggested that gelation in short-range attractive colloids starts from density

fluctuations (en route to spinodal decomposition) that get dynamically arrested. Computer

simulations have also been carried out to study transient gel formation and crystallization

in these systems. Evidence of metastability, homogeneous nucleation, kinetically arrested

gel state, and density instability was reported in various simulations [102], [105]−[106]. In

addition, simulations strongly suggest that kinetic behaviors in short-range attractive col-

loids [102] do not depend on microscopic details but generally apply to any particle system

with short-range attractions. [107]

In this chapter, we present results from extensive Brownian dynamics (BD) simulations

(details in chapter 3) for a system of colloidal particles interacting via a short-range and

relatively long-range attractive potential. To demonstrate our general results with a specific
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example, we consider the AsakuraOosawaVrij (AOV) model of depletion interaction [34], [33]

which approximately accounts for the interaction between a pair of colloidal particles by an

effective two-body interaction. We focus on lower monomer concentrations and study the

nucleation, kinetics, morphology and structure of clusters growing in the large-scale three-

dimensional simulations. In the context of recent experiments by Lu et al. [102] mentioned

above, how the cluster growth kinetics changes as one increases the volume fraction and the

depth of the potential well will be of particular interest. This is studied in our large scale

simulations. Clusters obtained in the simulations range from dense faceted crystals to fractal

aggregates which show ramified morphology on large scales but close-packed crystalline

morphology on short length scales. For low volume fractions, the morphology and crystal

structure of a nucleating cluster are studied at various times after the quench. Also, we

estimated the critical size of the nucleating cluster based on the fact that most energetic

clusters would grow out to form a stable nucleating cluster. We also observed some ordered

structure arising in the nucleating clusters. Although, the nucleating cluster seem to grow

some ordered structure in their core, the overall structures are quite liquid-like at early

times. As the volume fraction of the colloids is increased, growth of clusters is controlled

by cluster diffusion and cluster-cluster interactions. For shallower quenches and low volume

fractions, clusters are compact and the growth-law exponent agrees well with theoretical

predictions [70], [108] and with recent experimental results [102]. As the volume fraction is

increased, clusters do not coalesce when they meet each other and the kinetics crosses over to

the diffusion-limited cluster-cluster aggregation [109] (DLCA) limit. For deeper quenches,

clusters are fractals even at low volume fractions and the growth kinetics asymptotically

reaches the irreversible case, namely, the DLCA. Fractal clusters observed in our simulations

have a hybrid structure [76], [74] with a closed-packed crystalline ordering at short length

scales and a ramified morphology at larger length scales.
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6.1 Interaction Model Potential and Simulation Pa-

rameters

In our BD simulations [49] (discussed in chapter 3), we consider three-dimensional systems

of sizes L = 128d in units of monomer diameter d. All other length scales are measured in

units of d as well. We consider a wide range of monomer volume fractions from f = 0.0001 to

0.02, with the number of monomers ranging up to Nm = 84000. The potential U acting upon

each colloidal particle has a twofold contribution: the two-body depletion potential of AOV

(UAO) plus a repulsive hard-core-like interaction (Uhc) given by the following expressions;

U(rij) = UAO(rij) + Uhc(rij) (6.1)

where UAO(rij) represents the depletion interaction potential and Uhc(rij) represents the

hardcore potential. The depletion interaction is attractive in nature and arises whenever the

solution contains, in addition to suspended colloidal particles, other particles of intermediate

size (most commonly polymers are used which do not adsorb on the suspended particles) as

compared to the size of the colloidal particles and solvent molecules. The depletion inter-

action arise due to the osmotic pressure when the polymer molecules are excluded from the

depletion zone between the colloidal particles as they approach each other. Mathematically,

the depletion interaction is given by;

UAO(rij)

kT
= φp(

1 + ζ

ζ
)3[

3rij
2(1 + ζ)

− 1

2
(
rij

1 + ζ
)3 − 1] for rij < 1 + ζ (6.2)

= 0 for rij > 1 + ζ

where ζ is the size ratio between a polymer coil (Rg of the coil) and a colloidal particle which

controls the range of the depletion interaction in the AOV model and φp is the polymer

volume fraction which controls the strength of the interaction. Most of our simulations are

for ζ = 0.03 and 0.1, while some simulations have also been carried out for ζ = 0.06. For

the nucleation studies purpose, our simulation is done for ζ = 0.05 and ζ = 0.3 and we

consider a monomer volume fractions of f = 0.003 with number of monomer Nm equal to

79



12000 for ζ = 0.05 and potential depth of Umin = 4kT . At 10kT, the volume fraction is

set at f = 0.000017 with Nm = 1500 and L = 360d. For the case of ζ = 0.3, monomer

volume fraction is chosen to be f = 0.00364 and Nm = 14680 at Umin = 3kT whereas at

Umin = 10kT , we set f = 0.0004, Nm = 1750 and L = 128d. For the case of ζ = 0.8, volume

fraction is set to be f = 0.000186 and Nm = 6000 at Umin = 4kT with L = 256d. In the

hardcore-like repulsive interaction given by Eq. 6.3 as;

Uhc(rij)

kT
= r−αij (6.3)

where we have set α = 36. Exponents α ≥ 36 are reported to lead to anomalies when a hard-

core mimic is required in the potential [105], [110]. The total pair potential U = UAO +Uhc

passes through a minimum value (Umin) that depends on ζ and φp. In what follows, we

will often characterize the strength of the potential in terms of the absolute value of the

minimum potential depth, Um =| Umin |. In the simulation parameters, we choose Γ = 0.5

and time step ∆t = 0.005 in reduced time units of σ(m/kT )1/2 with m=1. For this choice of

Γ, particle motion is purely diffusive for t� 1/Γ, i.e., t� 2 in our units. Periodic boundary

conditions are enforced to minimize wall effects. All simulations start from a random initial

monomer conformation and the results for the kinetics are averaged over several (five to

ten) runs whereas for nucleation, the results are averaged over 100 runs.

6.2 Nucleation and Crystalline Structures for short-

ranged shallow quenches

To study the nucleation process in the bulk of our quenched system at finite temperature, the

largest cluster of size N plays an important role in understanding the behavior and growth

of the nucleating cluster. So our analysis is based on the dynamics of the largest cluster in

the bulk. To study the effect of range of interaction on nucleation process, we perform our

simulation at two different ranges, rc, i.e. 1.05d, and 1.3d, where d is the diameter of the

particles and the depth of the potential well is set to be 4kBT and the volume fraction, f , is
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tuned such that only one or few small clusters grow in the quenched systems at all ranges.

To have better comprehension of the nucleation phenomenon, we made 100 different runs

for both ranges at correspondingly different volume fractions. In these simulation runs,

we show that the largest cluster in the system grows in two ways. In Type-1, frequent

excursions in size take place in the prenucleation regime (it is the time domain in which

the largest cluster is unstable) whereas in Type-2, there are no huge size fluctuations in

the prenucleation regime and the cluster smoothly enters the nucleation regime (the time

domain in which a stable growing cluster is formed) without many hiccups. We also observe

that Type-1 dynamics of the largest cluster happen more frequently ( 60% of the total

number of runs) as compared to Type-2 dynamics. Fig. 6.1 shows the size fluctuations of

the largest cluster formed in both types of nucleation processes during the simulation for

the case of range of 1.05d.

In both cases, such fluctuations were observed although, for the case of long-range sys-

tems of rc = 1.3d, the size variations are not large at well depth (maximum excursion up

to N = 10). Thus, it becomes difficult to do the analysis for such small size clusters. So,

for better understanding of these size fluctuations, we study the nucleation mechanism at

3kT for the case of rc = 1.3d where we observe the size variations up to N = 40. To fur-

ther investigate such complex dynamics, we compared the morphology and structure of the

prenucleating and nucleating regime clusters by comparing the radius of gyration Rg and

cluster shape anisotropy (A13) variations with size for both regimes. The radius of gyration

(Rg) and cluster shape anisotropy (A13) calculations done for the pre-nucleating and nucle-

ation regime clusters are shown in fig. 6.2. As it can be seen from figs. 6.2(a&b) that radius of

gyration (Rg) calculations give us the indication of compact structure (i.e.N ∼ R3
g) of both

pre-nucleation regime and nucleation regime clusters in both short-ranges and relatively

long-ranged systems. Also, from the cluster shape anisotropy studies (ratio of the major

and minor axes eigenvalues of the moment of inertia tensor) [16] shown in figs. 6.2(c&d) for

both ranges, it can be established that both prenucleating and nucleating regime clusters
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Figure 6.1: A plot showing two different types of size fluctuations during the dynamics of
the largest cluster in the system. Type 1 shows the excursions above the critical size in the
prenucleating regime whereas in Type 2, no such excursions are seen. Rather a nucleating
cluster is seen to grow monotonically to a stable size in this type of nucleation.

have identical shape morphology though the larger error bars for the pre-nucleation regime

clusters suggest the shape fluctuations of these clusters.

Next, we calculate and compared the averaged potential energy < E > per particle of

the clusters in both prenucleating and nucleating regimes.
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Figure 6.2: A plot showing the variation of the radius of gyration (Rg) and shape anisotropy
(A13) as a function of the size (N) for both ranges of ζ = 0.05 and 0.3. Figs. 6.2(a&b) show
the variation of the Rg indicating a compact morphology of the clusters in both cases. Figs.
6.2(c&d) describe the variation of the shape anisotropy parameter A13 as a function of the
size indicating that the clusters in both regimes have identical shape although bigger error
bars for the pre-nucleation regime indicate the shape fluctuations of these clusters

The comparison is shown in figure 6.3 suggesting the fact that, in the case of short range

interaction (i.e.rc = 1.05d), the nucleating regime clusters have higher < E > values as

compared to pre-nucleating regime clusters for size N ≥ 10. It indicates that the nucleating

regime clusters of size N ≥ 10 are more stable energetically as compared to prenucleating

clusters of the same size while the smaller size clusters seem energetically identical. The

bifurcation in energies also gives an indication of the critical size of the nucleating cluster.

Similarly, for the case of relatively long range interaction (i.e.rc = 1.3d), this division in

energies between prenucleation and nucleation regime clusters start appearing at N ∼ 16

and the nucleating regime clusters are always seem energetically more stable.
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Figure 6.3: A plot for the comparison of the potential energy per particle < E > as a
function of the size for both prenucleating and nucleation regime clusters. The bifurcation
in energy takes place at N 10 and 16 for ζ = 0.05 and 0.3 respectively indicating that the
nucleating clusters are energetically more stable as compared to the prenucleating regime
clusters once they are above those sizes.

So far, we have been able to establish the fact that, in the case of short range attractive

colloidal system, the clusters in nucleating regime are energetically more stable as compared

to the clusters in prenucleating regime even though they are equally compact and isotropic.

We further probe the problem of nucleation mechanism by looking at the inner structure of

these clusters in more details. One important parameter leading to nucleation process is the

crystallization mechanism. To study the crystallization process, we used the scalar product

q6(i).q6(j) parameters derived from the Steinhardt bond order parameters [81].

If this scalar product for any two neighboring particles is greater than a threshold value of

0.7, the particles are regarded as the connected and a particle with more than 8 connections

is known as crystalline particle. Since the number of crystalline particles Nc fluctuate with

time in both prenucleating and nucleating regimes, we calculate the average number of

crystalline particles < Nc > in a given size cluster for both regime. A comparison of the

< Nc > between the regions is shown in figure 6.4. It can be seen from the figure that
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Figure 6.4: A plot showing the variation in the number of crystalline particles Nc (averaged
over 100 runs) as a function of the cluster size N for both nucleating and prenucleating
regime clusters. The averaged number of crystalline particles < Nc >, remain almost zero
up to size zero in both regimes. The y-axis is shown to have the same values in both graphs to
emphasis the presence of no crystalline structure for rc = 1.3d. A significant rise is < Nc >
is observed in nucleating regime for N ≥ 14 indicating the importance of the crystalline
particles in the nucleation process.

for the short range system of rc = 1.05d, the clusters in prenucleating regime have no or

very small number of crystalline particles while, in the nucleation regime, the clusters have

significant rise in the < Nc > once their size is more than 13 indicating that the ordered

structure plays an important role in the formation of stable nucleating cluster. On the other

hand , for the case when rc = 1.3d, on presence of crystalline structure is observed. The

y-axes of both graphs in figure 6.4 are kept at the same scale to emphasize the absence

of crystalline structure in rc = 1.3d system. As an example, snapshots at different times

during the dynamics of the largest cluster for a given size are shown in Figure 6.5 in both

nucleating and prenucleating regimes of a typical simulation run.

These snapshots indicate that only the clusters with crystalline structure grow up to

a stable size whereas the clusters with no crystalline order disintegrate back in the bulk.

The formation of the crystalline structure in the nucleating regime cluster indicates that

crystallization plays an important role in the nucleation mechanism of the short range
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Figure 6.5: A comparison of the crystalline structure between the prenucleating and nucle-
ation regime clusters of a given size N. No crystalline structure is observed in the prenucle-
ating clusters (in black color) whereas nucleating regime clusters have the ordered structure
indicated by crystalline particles Nc

interaction colloidal system and the nucleating clusters are not only energetically more

stable but also they develop some ordered structure in their core during their growth.

We also characterize the crystalline structure of the growing cluster. To characterize such

a cluster at different times during the growth process, we compute the radius of gyration
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Rg and the perimeter radius Rp for the growing cluster. For a compact spherical cluster,

Rp is related to Rg such that Rp =
√

5/3Rg such that the core of the cluster is comprised

of all particles residing at a distance ≤ Rg from the center of mass and the cluster surface

as a collection of all particles residing at a distance ≥ Rp from the center of mass. Next we

calculate the distance of the ith nearest neighbor (NN) of each particle and average over

the core and surface particles separately. At the latest time, the cluster core shows 12 NN

within a small spread of distance indicating a closed packed crystal structure (fcc or hcp).

A subsequent discontinuity in distance indicates the beginning of the next NN sequence and

six such next NNs follow. Another weak discontinuity comes next and then the sequence of

12 third NNs follows. In contrast, at earlier times, the growing cluster has only five or six

pure NNs at separation of the position of the minima of the interaction potential and then a

sequence of neighbors whose distance increases continuously, indicating a liquidlike behavior

of the particles. We have also observed that this liquidlike morphology of the cluster at early

times is strikingly similar to the surface structure of the cluster at late times.

Next, we compute local bond order parameters for particles in the growing cluster, as

described in details in chapter 5. Based on the our results for the frequency distribution

P (q6) for the cluster core, we observe that the crystal structure inside the core of the cluster

is predominantly a mixture of fcc and hcp. Similar analysis of the bond orientational order

of the surface sites at late times is compared with the core of the growing cluster at early

times as shown in Fig. 6.5.

From the broad distribution of the order parameters observed in Fig. 6.6, one can con-

clude that both the early time cluster core and the late time surface sites are liquidlike in

structure. These results are in good agreement with experimental results obtained from

real-space imaging of colloidal crystallization [25]. We do not see any evidence of a bcc

structure either at early times or at the surface of the growing cluster at late times. It

seems that the hcp structure is more dominant at early stages while the fcc structure is

dominant in the later stages. Our analysis for P (q4) supports these conclusions.
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Figure 6.6: (a) Distribution of bond order parameter q6 for surface particles at a late
time of t=40,000 of the nucleating cluster for Um=4kT, ζ = 0.05, and f =0.002 and its
comparison with an early time cluster core at t=8500. Distribution for pure crystals of bcc,
fcc, and hcp are also shown in the figure. (b) Distribution of bond order parameter q6 for
the nucleating cluster core in comparison with pure crystals of bcc, fcc, and hcp.

6.3 Symmetric Structures of Small Size Clusters and

Their Distribution

During nucleation process, while a nucleating cluster is forming and growing in the system,

different small size clusters grow and disappear in the bulk. To observe the presence of the

most symmetric structures in our system for a given size N, we accumulated the clusters

of different sizes at different times as they grow and dissolve in the system. We classified

the clusters of a given size based on the number of contacts, C, present in the cluster. In

the case of short-range interaction, where the energy of the cluster is proportional to the

number of contacts, the bond length (rmin) of the contacts can be approximated by the

range of interaction (rc) between the particles (i.e.rmin = rc) whereas, for the long-range

interaction, the bond length is approximated by neighbor separation for the particles (rbond)

in the cluster (i.e.rmin = rbond). Furthermore, since our system is not in equilibrium with the

environment and the clusters are energetically unstable, so in order to reduce the thermal

effects, we increase the quench to 10kT instead of 4kT and hence the volume fraction is

lowered such that only one or few isolated clusters grow in the system at 10kT. First, we

study the structure of small size clusters for the short range colloidal system where the
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range of interaction is 5% the size of the particles. A list of maximum number of contacts

(Cmax) is shown in Table1 for such system in comparison with the theoretically calculated

values of Cmax using the concept of minimally rigid packing of spheres. For details about

the Packing of Spheres, see reference [111]. For example, for a cluster of size N = 6, there

can be a minimum of 5 and maximum of 12 possible contacts. So, in our system, we can

see a distribution of contacts from minimum of Cmin = 5 to the maximum of Cmax = 12.

After selecting the clusters at different times during the nucleation process, we can filter out

the clusters with maximum number of contacts (for example, 12 contact clusters for N =

6). Based on the finite sphere packing calculations [112], there are two possible structures

(octahedron and polytetrahedron) with maximum number of contacts (Cmax = 12) for N =

6 size clusters. The presence of these two structures can be observed based on the moment

Table 6.1: A comparison of our simulation clusters with maximum number of contacts
for a given size ground state cluster with a short range interaction system and long-range
interaction such as LJ system are also given.

n Cmax for short range intercation Cmax in our System for rc = 1.05 Cmax for LJ interaction
3 3n-6 3n-6 3n-6
4 3n-6 3n-6 3n-6
5 3n-6 3n-6 3n-6
6 3n-6 3n-6 3n-6
7 3n-6 3n-5 3n-5
8 3n-6 3n-5 3n-5
9 3n-6 3n-4 3n-4
10 3n-5 3n-4 3n-3
11 3n-4 3n-3 3n-2
12 3n-3 3n-3 3n
13 3n-3 3n-2 3n+3
14 3n-2 3n-1 3n+3
15 3n-1 3n-1 3n+3

of inertia (I) and symmetry number (σ) calculations. The most symmetric structures will

have lower I value and higher symmetry number value as compared to the one with less

symmetric structure. These two parameters are also related through the rotational partition
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function (i.e.Zrot ≈
√

(I)/σ). So the smaller values of Zrot will represent the more symmetric

structures in the system. Since, it has been proposed earlier by Meng et. al. [113] that

rotational entropy makes the largest contribution to the free energy difference between the

two structures in equilibrium so the analysis here is based on the calculation of these two

parameters. For the calculations of symmetry numbers [114], we make use of an algorithm

mentioned in ref. [115]. Since our clusters, being in the bulk, are not in equilibrium with the

environment, it is difficult to achieve the exact value of the symmetry numbers for a given

cluster with higher symmetry numbers. For example, for the case of Octahedron structure,

Oh, the exact value of symmetry number is σ = 24. But in our calculations, we get a broad

distribution of symmetry numbers ranging from σ = 4 to σ = 24 as shown in the figure 6.7.

Figure 6.7: A plot of the distribution of symmetry numbers calculated for N = 6 size
clusters with Cmax = 12.

The calculations of the symmetry number (σ) are very sensitive to the positions of the

particles and since the clusters are not in equilibrium with the environment, the broadness

in distribution is due to the thermal noise present in the system. On the other hand, since

90



most symmetric structures have lower moment of inertia (I) values [116], these calculations

seem more reliable as shown in fig. 6.8.

Figure 6.8: A plot of the moment of inertia (MOI) distribution for N = 6 cluster. Less
symmetric structure polytetrahedron (red structure) is found to appear 20 times more fre-
quently as compared to more symmetric one of octahedron (black structure).

The distribution shows that the most symmetric ones occur less frequently as compared

to the less symmetric ones i.e. less symmetric structure of polytetrahedron appears ap-

proximately 25-30 times more frequently as compared to the most symmetric Octahedron

structure, even though both structures are energetically same (as both have same num-

ber of contacts). To confirm the validity of moment of inertia calculations regarding the

distribution of the structures, we also made use of the W6(i) parameter calculations [31],

based on the measurement of the local bond order parameters defined in eqn. 5.8 and it

describes the order of the neighbors around each particle in the cluster. Mathematically,

it is defined in chapter 5. Each structure has unique value of W6 parameter [31] and we

calculate the W6 for each particle and average over all the particles in the cluster. Based
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on these calculations, we also found that the distribution of the structures is very much

consistent with our moment of inertia (I) calculations. For smaller size clusters (i.e. n =

3,4,5), moment of inertia calculations show that there is only one ground state structure

with maximum number of contacts present in the system, another observation consistent

with the experiment and theory mentioned in ref. [113].

Figure 6.9: A plot of the W6 distribution showing the comparative appearance of octahedron
and polytetrahedron structures in the system. W6 = 0.0 is indicative of the appearance of
the Octahedron while W6 = 0.013 indicates the formation of Polytetrahedron.

For the higher size clusters, the number of ground state structures increases with minor

differences in their moment of inertia values and it becomes difficult to distinguish these

structures based on this analysis. But based on the symmetry number calculations, we

can identify the presence of most symmetric structures for N=7 and N=8. Figure 8 shows

our analysis based on the symmetry number calculations and it can be seen that the most

symmetric structures do appear in the bulk and the probability of the occurrence is very

much comparable to the theoretically and experimentally observed values [113]. For the case
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of N = 7, the most symmetric structure is D5h and our calculations indicate the presence

of this structure in the bulk sample and more surprisingly, this distribution is very much

comparable to experimental value of 3% . Also, for the case of N = 8, we did not find any

presence of the highly symmetric structures of Td, and D3d , which is yet another evidence

of the relevance of our results with the experimental observations by Meng et al.

Figure 6.10: A plot of the distribution of symmetry numbers calculated for N = 7 and N =
8 with maximum number of contacts. About 4 % presence of the most symmetric structure
(D5h) for the N = 7 and appearance of no symmetric structures of Td, D3d and D2d for N
= 8 in the sample is surprisingly similar to the experimental observations mentioned in the
text.

Next, we study the effects of range of interaction on the distribution of these structures.

For this purpose, we studied these structures for rc = 1.3d and 1.8d respectively. It has

been observed that for these long range systems, the number of contacts of the ground state

structures is similar to the Lennard-Jones potential ground state clusters [117] mentioned

in the Table 6.1. For example, for N=13, we observed the presence of icosahedral structures

in the bulk for rc = 1.3d and rc = 1.8d systems. During our study of nucleation process,
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it was also noticed that the distribution of the symmetric structures is same in the pre-

nucleation and nucleation regimes indicating that most symmetric structures do not play

any role in the formation of the stable nucleating cluster. Also, an interesting observation

during our analysis was to study the nascent structures for a given size cluster. Based on the

distribution of number of contacts for both short range and long range systems, we observe

that the small size nascent clusters are relatively open structures (i.e. C < Cmax). From

this observation, we can conclude that the small size clusters have open structures in the

beginning and as the time progresses, they develop into either larger size clusters by the

addition of monomers/dimers or grow into more compact structures.

6.4 Morphology and growth kinetics for shallow quenches

In this section we continue with quenches to a depth of 4kT but increase the volume fraction

of the colloids. In Fig. 6.11, we show snapshots for the system at various times for f = 0.005

and ζ = 0.1. Now several clusters nucleate and grow with time. The shape of the clusters is

Figure 6.11: Snapshots of the system for a Um=4kT quench with f =0.005 and ζ = 0.1 at
different times: (a) t=1000, (b) t=2000, (c) t=5000, and (d) t=10 000.

generally round for all values of ζ. When two clusters meet each other, it seems that they

have time to coalesce into one spherical droplet before another cluster is encountered. If
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the clusters do not encounter a any other clusters, spherically round clusters grow by the

addition of monomers in the system. Next, we analyze at the morphology of the clusters

by calculating the Structure Factor S(q). In Fig. 6.11, we show the log-log plot of the

structure factor S(q, t) versus q. From the figure 6.12 for ζ = 0.03, a fit of slope −4 to

Figure 6.12: Log-log plot of the structure factor S(q,t) as a function of q at different times
for system with Um = 4kT , f =0.005, and ζ = 0.03. For large and intermediate q values,
S(q) is consistent with Porods law although some deviations from q−4 form can be observed.

the data at different times, during the growth, shows that S(q, t) is consistent with Porods

law [118] [S(q) ∼ q−4] over a large range of k values, confirming our direct observations

that the growing clusters are compact at both short and large length scales. Furthermore,

we studied the growth dynamics by studying the variation of radiation of gyration Rg with

time. In Fig. 6.13, we show log-log plots of average radius of gyration Rg of the clusters as

a function of time for ζ = 0.03 and ζ = 0.1. Initially, we observe a sudden fast growth of Rg

corresponding to heterogeneous nucleation of many clusters (100 ≤ t ≤ 1000). Subsequently,

these clusters grow with time with a power law

Rg ∼ tn (6.4)
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Figure 6.13: Log-log plot of radius of gyration Rg as a function of time for f =0.005,
Um=4kT, and two different ζ values (0.03 and 0.1). The dotted line with slope of 0.17 is a
guide to the eyes.

with n ≈ 0.17. As suggested by Binder and Stauffer [70] and Binder and Kalos [108] and

later summarized by Gunton et al. [72] and Furukawa [71], domain growth kinetics at this

stage is mostly controlled by cluster diffusion until eventually two such clusters coalesce.

The mechanics of cluster diffusion is dominated by surface reorganization of the particles in

the cluster. Following Gunton et al. [72], we briefly summarize these arguments below.

The diffusion constant of a cluster containing N particles can be estimated as

DN ≈ ω(∆xG)2 (6.5)

where ∆xG is the change in the center of mass position by a given process of particle motion

in the cluster and ω is the rate at which such a process takes place. In a typical process of

particle motion on the surface of a cluster, a particle changes its position by a few units of

σ. As a result the center of mass of a cluster containing N particles changes by

∆xG ≈ N−1 (6.6)
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in units of σ. As the rate of such a particle motion at the surface is proportional to the

number of surface sites, one estimates

ω ≈ R2
g (6.7)

If the clusters are compact, Rg ∼ N1/d, where d is the spatial dimension. One thus obtains

DN ≈ N2/d−2 (6.8)

Once an estimate for cluster diffusion constant is obtained, one can now treat the cluster-

cluster coalescence in terms of the mean-field Smoluchowski equation (SE) [119] which ex-

presses the rate of change of cluster concentration, nk(t), containing k monomers per cluster

as

dNk

dt
=

k−1∑
i=1

K(i, k − i)nink−i − nk
∞∑
i=1

K(i, k)ni (6.9)

The kernel K(i,j) expresses the rate of aggregation or coalescence between clusters of size

i with clusters of size j. If K is a homogeneous function of cluster size, i.e., K(ai, aj) =

aλK(i, j), where λ is the degree of homogeneity, the solutions to the SE are self-preserving

scaling solutions for nk. If one further assumes that the cluster size distribution is approxi-

mately monodisperse, one can write the appropriate collision kernel as

K ∼ Nλ (6.10)

The kinetic exponent z, which characterizes the power-law decay with time of the number

of clusters Nc(t), is related to the homogeneity λ by

z =
1

1− λ
(6.11)

In addition, since NcN =constant (=the number of monomers), one easily finds that Rg(t) ∼

tn, where

n = z/d (6.12)
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for compact clusters. The next step in this scaling description [120], [121] is to pinpoint

limiting cases of the functional form of the kernel and hence determine the homogeneity. The

rate at which two clusters collide, K, is proportional to their relative collision cross-sectional

area A and relative velocity, v, yielding K ∼ Av, consistent with the units of [L3/t]. One

typically writes A as A ∼ Rg2 , where Rg is the radius of gyration of a cluster with number

of particles N . For the diffusive case of cluster motion, v becomes a characteristic velocity

relevant for diffusion. This velocity must scale as

v ∼ DN

Rc

(6.13)

where DN is the diffusion constant of a cluster containing N particles and Rc is a charac-

teristic diffusional length scale. In the dilute limit of the StokesEinstein diffusion, Rg is the

only relevant length scale in the system and one can write v ∼ DN/Rg. In addition, A ∼ R2
g

. Thus one finds K ∼ DNRg, a result originally derived by Smoluchowski [119] in a more

rigorous fashion. For the BinderStauffer [70] cluster growth mechanism DN ≈ N2/d−2 and

for compact clusters Rg ∼ N1/d. One thus finds

K ∼ DNRg ∼ N (2/d)−2+(1/d) ∼ N3/d−2 (6.14)

Hence the homogeneity

λ =
3

d
− 2 = −1 (6.15)

in three dimensions and

z =
d

3d− 2
=

1

2
(6.16)

also in three dimensions. The domain growth kinetics is then governed by the exponent n

which is given by

n =
z

d
=

1

3d− 3
(6.17)

Our observed value of n ≈ 0.17 agrees quite well with the theoretical prediction. In addition,

we note that this same growth exponent has recently been observed in experiments on
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depletion driven colloids [102]. For the case of denser systems, we study the shallow quench

at f = 0.01 and f = 0.02. A plot of the morphology for these two volume fractions is shown

in figure 6.14 The morphology of domains in figure 6.14 is similar to the interconnected

Figure 6.14: Late time configuration for Um = 4kT and ζ = 0.1 for (a) f = 0.01 and (c)
f = 0.02 at t=5000. A zoomed-in cluster for the corresponding cases are shown in (b) f
=0.01 and (d) f =0.02.

structure seen in a typical spinodal decomposition of a liquid-liquid mixture. The structure

factor data for these volume fractions show interesting features.
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Figure 6.15: (a) Log-log plot of the structure factor S(q,t) as a function of q at different
times for Um = 4kT , f =0.01, and ζ = 0.1. Our results are consistent with Porods law for
large q values and for small q values; a slope of -1.8 is consistent with the data. (b) Log-log
plot of the structure factor S(q,t) as a function of q at different times for Um = 4kT , f
=0.02, and ζ = 0.1. Our results are consistent with Porods law for large q values and for
small q values; a slope of -1.8 is consistent with the data.

Fits to the data in Figs. 6.15(a) and 6.15(b) show that S(q) is consistent with Porods

law [S(q) ≈ q−4] for large q values while for intermediate values of q, S(q) ≈ q−Df with

Df ∼ 1.8 consistent with the well-known DLCA value. [109] We see such hybrid morphology

in Fig. 6.13 as well when we zoom in to the clusters: the growing clusters are compact at

short length scales but are fractal-like at large length scales [76].Growth kinetics for these

denser systems is still controlled by cluster-cluster interactions. As before, clusters do diffuse

around until they meet each other. However, the clusters at these denser systems do not

seem to coalesce into compact clusters when they meet but keep their ramified shape. Thus

one would expect that the growth-law exponent would crossover to the irreversible limit,

i.e., to the DLCA limit for dense systems. Further, we studied the variation of the number of

clusters with time. In Figs. 6.16(a) and 6.16(b), we plot the number of clusters versus time in

log-log plots for volume fractions f =0.01 and f =0.02, respectively. For f =0.02, Nc(t) ∼ t−1

consistent with the DLCA value of z=1 as discussed above. Note that if the clusters are

compact and they would completely coalesce when they meet, z=1/2 corresponding to the
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Figure 6.16: (a) Log-log plot of the number of clusters Nc as a function of time for Um =
4kT and f = 0.01. The dotted line with the slope of -0.75 is a guide to the eyes. (b) Log-log
plot of the number of clusters Nc as a function of time for a Um = 4kT and f = 0.02. The
dotted line with the slope of -1 is a guide to the eyes.

value of n=1/6 seen before. It seems that for f =0.01, one gets an intermediate value of

z ≈ 0.75, in between the coalescence and the DLCA limit. These conclusions are supported

Figure 6.17: (a) Log-log plot of radius of gyration Rg as a function of time for Um = 4kT
and f = 0.01. The dotted line with the slope of 0.4 is a guide to the eyes. (b)Log-log plot
of radius of gyration Rg as a function of time for Um = 4kT and f = 0.02. The dotted line
with the slope of 0.55 is a guide to the eyes.
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by the data for the radius of gyration as shown in Figs. 6.17(a) and 6.17(b). For f =0.02,

one gets a clear-cut DLCA value for n = z/Df = 0.55 with z=1 and Df = 1.8, while for f

=0.01, the growth exponent is yet to reach the DLCA limit and one finds an intermediate

exponent of n ∼ 0.4. This intermediate value of n ∼ 0.4, however, is consistent with the

intermediate value of z ≈ 0.75 seen before as n = z/Df = 0.75/1.8 = 0.42. We now provide

estimation for the intermediate value of the growth exponent seen above. For this purpose

we assume that the cluster growth kinetics is still controlled by a BinderStauffer mechanism

but clusters do not coalesce completely when they meet each other. As a result clusters

can be treated as fractals in the modified BinderStauffer scheme instead of treating them as

compact objects. Equations 6.5 and 6.6 will still be valid but now Rg ∼ N1/Df and hence

DN ≈ N2/Df−2 (6.18)

The kernel K is then given by

K ∼ DNRg ∼ N2/Df−2 ∼ N (2/Df )−2+(1/Df ) (6.19)

yielding a homogeneity of λ = 3/Df − 2, a kinetic exponent of

z =
1

1− λ
=

Df

3Df − 3
(6.20)

and a growth exponent of

n =
z

Df

=
1

3Df − 3
(6.21)

For Df = 1.8, one finds z = 0.75 and n = 0.42 in excellent agreement with our simulation

results described above.
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6.5 Morphology and growth kinetics for deep quenches

In this section, we study morphology and growth kinetics of clusters for a deep quench

characterized by Um = 10kT and ζ = 0.1. Snapshots of the system for two different volume

fractions f =0.002 and f =0.02 are shown in Fig. 6.18.

Figure 6.18: Snapshots of deep quenched (Um = 10kT ) systems for two different volume
fractions. (a) and (b) are for a volume fraction f =0.002 at t=250 and t=10 000, respectively.
(c) is for f =0.02 at t=5000 while (d) shows the zoomed-in version of a typical cluster of the
system shown in (c). Short range crystalline order in the zoomed-in cluster of (d) is much
weaker than the ones seen, for example, in Figs. 6.4(b) and 6.4(d).

As observed in Fig. 6.18(b), now the clusters have fractal morphology even at very low

volume fractions. Also, noteworthy is the fact that the zoomed-in version of a typical cluster

of the system [Fig. 6.18(d)] shows much weaker short-range crystalline order than seen in
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clusters for 4kT quenches shown in Figs. 6.14(b) and 6.14(d), for example. This is expected

as for deeper quenches, colloidal particles do not break as often from the parent cluster and

thus get stuck in low coordination number sites. Growth kinetics in this case crosses over

to the DLCA limit as the volume fraction is increased. For a dilute system characterized by

f = 0.002, the kinetic exponent is given by z ∼ 0.75 consistent with our scaling analysis for

the intermediate regimes as can be seen from Fig. 6.19(a). It is interesting to note that for

Figure 6.19: (a) Log-log plot of the number of clusters Nc as a function of time for a deep
quenched system of Um=10kT at f =0.002 and f =0.02, respectively. The kinetic exponents
computed from the slopes of these graphs are z = 0.75 and z = 1, respectively. (b) Log-log
plot of radius of gyration Rg as a function of time for a 10kT deep quenched system with
ζ = 0.1 for four different values of the volume fraction f: 0.002, 0.005, 0.01, and 0.02. The
growth exponents n for these volume fractions are given by n=0.4, 0.43, 0.5, and 0.55. The
growth exponent at low volume fractions is consistent with the intermediate regime scaling
value of n ∼ 0.42 discussed in the text while for larger volume fractions one asymptotically
obtains the pure DLCA value of n = 0.55.

this deep quench, the intermediate regime result applies to much smaller volume fractions

than for the 4kT quench analyzed before. The kinetic exponent takes on a pure DLCA value

of z = 1 for f = 0.02. The evolution of the growth exponent n with volume fractions is

depicted in Fig. 6.15(b). For low volume fractions, we again obtain the intermediate value

of the growth exponent given by n ∼ 0.42 while for larger volume fractions, the growth

exponent is given by a pure DLCA value of n = 0.55.
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6.6 Conclusion.

In summary, we have carried out extensive BD simulations to study cluster morphology and

growth kinetics in quenched short-range attractive colloidal systems. The model potential

we have studied here is given by the AOV depletion interaction. However, we expect that

our results would apply for general short-range attractive potentials. For very low volume

fractions and shallow quench depths, we have studied the morphology of the growing crystals

in terms of various bond orientational order parameters. Also, we estimated the critical

size of the nucleating cluster based on the fact that most energetic clusters would grow

out to form a stable nucleating cluster. We also observed an ordered structure arising in

the nucleating clusters indicating that the nucleating clusters not only are energetically

more favorable but the presence of an ordered structure plays an important to their stable

growth. Although, the nucleating cluster seem to grow some ordered structure in their

core, the overall structures are quite liquid-like at early times. At late times, the core of

the crystal is characterized by a close-packed symmetry ( mixture of fcc and hcp ) while

the surface of the crystal at late times is liquid-like. We have not seen any evidence of

a bcc structure at early times or at the surface of the growing crystal. As the volume

fraction is increased for a shallow quench, cluster-cluster interactions control the growth

kinetics. For low volume fractions, clusters seem to diffuse following a mechanism described

by Binder and Stauffer many years ago. When two clusters meet each other, they coalesce

and clusters remain compact. In this regime the growth-law exponent agrees well with

BinderStauffer predictions and with recent experimental results. When volume fractions

are increased further, clusters do not have time to completely coalesce when they meet each

other. Clusters show hybrid morphology now: ramified on large length scales but close-

packed crystalline at short length scales. We have extended the BinderStauffer mechanism

to explain the observed growth kinetics for this intermediate regime. Such an intermediate

value of the growth exponent (n 0.42) has not been observed in experiments yet and our

simulations would motivate further experimental studies. For deeper quenches, clusters are
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fractals even at low volume fractions and the intermediate value of the kinetic exponent is

observed even at very low volume fractions. When volume fractions are increased further,

the growth kinetics asymptotically reaches the DLCA limit.
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Chapter 7

Conclusions

In this thesis work, we present extensive simulation studies of the self-assembly of ligated

nanoparticles and short-range attractive colloidal systems. For the case of ligated nanopar-

ticles, we have developed a phenomenological model to describe the interactions between

two such particles in solution. Besides the van der Walls interaction between the nanopar-

ticles, we also consider the free energy of mixing and elastic compression of the ligands in

the model. The location of the minimum of the phenomenological pair potential agrees well

with the experimentally observed values for the superlattice constants for gold nanoparticles

decorated with decanethiol, dodecanethiol, and hexadecanethiol ligands. Next we use the

model potential as input for Brownian dynamics simulations to obtain a broad perspective

in the dispersed-phase to solid-phase transition. For dodecanethiol ligated nanoparticles,

the minimum of the interaction potential is - 3.1kT. At room temperature, the system re-

mains in the single phase until a critical volume fraction is reached, when the nucleation

process starts. Analysis of a pre-nucleation induction period in terms of classical nucle-

ation theory yields a supercluster interfacial tension that compares reasonably well with

other theory and experimental measurements. We observe that most of the smaller sized

pre-nucleating NPSCs have non-compact morphology whereas the larger sized NPSCs are

compact, and the growth of the nucleating cluster is dominated by the addition/subtraction

of monomers as postulated by CNT. An unexpected and surprising observation was that

the pre-nucleation cluster size can occasionally range greater than the critical size in the
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pre-nucleation regime without nucleation occurring. Only when a cluster with low enough

energy occurs will nucleation ensue. Furthermore, our analysis of the crystalline structure

of the nucleating cluster based on the bond orientational order parameter suggests that the

formation of the stable nucleating cluster is a two step process. Initially, a liquid-like struc-

ture is formed. Subsequently, we observe the formation of different crystalline structures

growing in the core of the cluster. At higher volume fractions, compact clusters are found

to coexist with the dispersed phase. The kinetics of cluster growth in this case is compared

with phase separations in binary mixtures.

For decanethiol-ligated nanoparticles, the model well depth is found to be deeper ( -

5.15kT), and simulations show hybrid, fractal-like morphology for the clusters. Cluster

morphology in this case shows a compact structure at short length scales and a fractal

structure at large length scales. The growth kinetics for this deeper potential depth is

compared with the diffusion limited cluster-cluster aggregation (DLCA) model. There is

very little experimental work available in the literature on the kinetics of self-assembly of

nanoparticles. This is why a comparison of our Brownian dynamics simulation results to

experiments is not possible at this time.

In the second part of the thesis, we have carried out extensive BD simulations to study

cluster morphology and growth kinetics in quenched short-range attractive colloidal systems.

The model potential we have studied here is given by the Asakura-Oosawa-Vrij (AOV)

depletion interaction. However, we expect that our results would apply for general short-

range attractive potentials as well. For very low volume fractions and shallow quench

depths, we have studied the morphology of the growing crystals in terms of various bond

orientational order parameters. Also, we have observed in our analysis that, in the case of

very short range system (i.e. 5% of the diameter of the particles), the nucleating clusters

are not only energetically more stable than the same sized pre-nucleating clusters but also

develop some crystalline order in their structure. In spite of the presence of some crystalline

structure in the core of the nucleating clusters, the overall structures are quite liquid-like
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at early times. In contrast, on relatively long-range systems (i.e. 30% of the diameter

of the particles), our simulations show that the nucleating clusters are liquidlike and no

crystalline order is present in a nucleating cluster. However, the nucleating clusters are

still energetically more stable as compared to the same sized prenucleating clusters. At

late times, the core of the crystal in both short range and relatively long-range systems is

characterized by a close packed symmetry (mixture of fcc and hcp) while the surface of the

crystal at late times is liquidlike. We have not seen any evidence of a bcc structure at early

times or at the surface of the growing crystal.

As the volume fraction is increased for a shallow quench, cluster-cluster interactions

control the growth kinetics. For low volume fractions, clusters seem to diffuse following a

mechanism described by Binder and Stauffer many years ago. When two clusters meet each

other, they coalesce and clusters remain compact. In this regime the growth-law exponent

agrees well with Binder-Stauffer predictions and with recent experimental results. When

volume fractions are increased further, clusters do not have time to completely coalesce

when they meet each other. Clusters show hybrid morphology: ramified on large length

scales but close-packed crystalline at short length scales. We have extended the Binder-

Stauffer mechanism to explain the observed growth kinetics for this intermediate regime.

Such an intermediate value of the growth exponent (n ∼ 0.42) has not been observed

in experiments yet and our simulations would motivate further experimental studies. For

deeper quenches, clusters are fractals even at low volume fractions and the intermediate

value of the kinetic exponent is observed even at very low volume fractions. When volume

fractions are increased further, the growth kinetics asymptotically reaches the DLCA limit.
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[17] J. J. Cerdà, S. Tomàs, C. Holm, C. M. Sorensen, and A. Chakrabarti, Phys. Rev. E

78, 031403 (2008).

[18] A. M. Kulkarni and C. F. Zukoski, Langmuir 18, 3090 (2002).

[19] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heiemann,

Oxford, 2000.

[20] F. F. Abraham, Homogeneous Nucleation Theory, Academic Press, New York and

London, 1974.

[21] J. W. Mullin, Crystallization, Butterworth, 1972.

[22] P. Vekilov, J. Cryst. Growth 275), 65 (2005).

[23] D. Erdemir, Y. A. Lee, and A. S. Myerson, Acc. Chem. Res. 42, 621 (2009).

[24] P. R. t. Wolde and D. Frenkel, Science 277, 1975 (1997).

[25] U. Gasser et al., Science 292, 258 (2001).

[26] E. Sloutskin, Nucleation of hard-sphere colloidal crystals, Bull. of Amer. Phys. Soc.,

P-514, 2010, (March Meeting).

[27] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cam-

bridge, 2000.

111



[28] M. E. Fisher, Physics 3, 255 (1967).

[29] D. H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, 1988.

[30] J. N. Isrelachvili, Intermolecular and Surface Forces, 2nd Ed., ACADEMIC PRESS

LTD, 1992.

[31] S. Auer and D. Frenkel, Adv. Polym. Sci. 173, 149 (2005).

[32] R. A. L. Jones, Soft Condensed Matter, Oxford University Press, 2002.

[33] A. Vrij, Pure Appl. Chem. 48, 471 (1976).

[34] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).

[35] Y. S. Lee, Self-Assembly and Nanotechnology: A Force Balance Approach, John Wiley

and Sons, Inc, 2008.

[36] H. C. Hamaker, Physica 4(10), 1058 (1937).

[37] E. J. W. Verwey and J. T. G. Overbeck, Theory of the Stability of Lyophobic Colloids,

Elsevier: Amsterdam, 1948.

[38] R. Smitham, J. B.; and Evans and D. H. J. Napper, J. Chem. Soc., Faraday. Trans.1

71, 285 (1975).

[39] R. Evans and D. H. J. Smitham, J. B. and Napper, Colloid Polym. Sci 255, 161

(1977).

[40] L. Motte, F. Billoudet, and M. P. Pilani, J. Phys. Chem. 99, 16425 (1995).

[41] G. Poirier and E. Pylant, Science 272, 1145 (1996).

[42] J. Brandrup, E. H. Immergut, and E. A. Gruike, Polymer Handbook, Wiley: New

York, 1999.

112



[43] C. L. Yaws, Chemical Properties Handbook, McGraw Hill: New York, 1999.

[44] C. Bain, J. Evall, and G. M. Whitesides, J. Am. Chem. Soc. 111, 7155 (1989).

[45] B. L. V. Parsad, S. L. Stoeva, C. M. Sorensen, and K. J. Klabunde, Chem. Mater 15,

935 (2003).

[46] R. K. Pathria, Statistical Mechanics, Elsevier, 2005.

[47] L. Verlet, Phys. Rev. 159, 98 (1967).

[48] R. Kubo, Rep. Prog. Phys. Suppl 29, 255 (1966).

[49] W. F. Van Gunsteren and H. J. C. Berendsen, Mol. Phys. 45, 637 (1982).

[50] M. Grieble, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dy-

namics, Springer, 2007.

[51] R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms, Addison-

Wesley, 1996.

[52] K. J. Klabunde, Nanoscale Materials in Chemistry, Wiley Interscience, New York,

2001.

[53] B. L. V. Parsad, C. M. Sorensen, and K. J. Klabunde, Chem. Soc. Rev. 37, 1871

(2008).

[54] B. L. V. Parsad, S. I. Stoeva, C. M. Sorensen, and K. J. Klabunde, Langmuir 18,

7515 (2002).

[55] A. Centrone et al., Proc. Nat. Acad. Sci. 105, 9886 (2008).

[56] O. Uzun et al., 2, 196 (2008).

[57] H. Yan, S. Cingarapu, K. J. Klabunde, A. Chakrabarti, and C. M. Sorensen, Phys.

Rev. Lett. 102, 095501 (2009).

113



[58] B. Abecassis, F. Testard, and O. Spalla, Phys. Rev. Lett. 100, 115504 (2008).

[59] M. D. Bentzon, J. V. Wonterghem, S. Morup, and A. Tholen, Philosophical Magazine

60, 169 (1989).

[60] C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).

[61] S. J. Khan, F. Pierce, C. M. Sorensen, and A. Chakrabarti, Langmuir 25(24), 13861

(2009).

[62] P. R. Wolde et al., Phys. Rev. Lett. 75, 2714 (1995).

[63] S. Alexander and J. P. McTague, Phys. Rev. Lett. 41, 702 (1978).

[64] J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).

[65] A. Egginton, K. C. S., D. Stauffer, and G. H. Walker, Phys. Rev. Lett. 26, 820 (1971).

[66] Racz and T. Vicsek, Phys. Rev. Lett. 51, 2382 (1983).

[67] A. Perini, G. Jacucci, and G. Martin, Phys. Rev. B 51, 2382 (1983).

[68] M. J. Lowe and D. J. Wallace, J. Phys. A 13, L381 (1980).

[69] R. Jullien and R. Botet, Aggregation and Fractal Aggregates, World Scientific, 1986.

[70] K. Binder and D. Stauffer, Phys. Rev. Lett. 33, 1006 (1976).

[71] H. Furukawa, Adv. Phys. 34, 703 (1985).

[72] J. D. Gunton, san Miguel M., and P. S. Sahni, Phase Transition and Critical Phe-

nomenon, Academic Press: London, 1983.

[73] A. J. Bray, Adv. Phys. 43, 357 (1994).

[74] A. Chakrabarti, D. Fry, and C. M. Sorensen, Phys. Rev. E 69, 031408 (2004).

114



[75] E. B. Zuckerman, B. J. Oliver, C. M. Sorensen, and K. J. Klabunde, 1, 12 (1989).

[76] A. T. Skjeltrop, Phys. Rev. Lett. 58, 1444 (1987).

[77] P. Meakin, 15, 97 (1999).

[78] S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, Oxford

University Press: New York, 2000.

[79] D. A. McQuarrie, Statistical Mechanics, HARPER and ROW, 1976.

[80] J. xing Yang et al., J. Chem. Phys. 93, 711 (1990).

[81] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

[82] F. C. Frank, 215, 43 (1952).

[83] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932

(1996).

[84] A. L. Mackay, Acta Crysta. 15, 916 (1962).

[85] W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).

[86] C. Desgranges and J. Delhommelle, Phys. Rev. B 77, 054201 (2008).

[87] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Phys. Rev. B 104, 93 (1996).

[88] E. Mendez-Villuendas and R. K. Bowles, Phys. Rev. Lett. 98, 185503 (2007).

[89] S. Yanting Wang S. Teitel and C. Dellago, J. Chem. Phys. 122, 214277 (2005).

[90] J. A. van Meel et al., J. Chem. Phys. 129, 204505 (2008).

[91] W. C. K. Poon and M. D. Haw, Avd. Colloid Interface Sci. 73, 71 (1997).

[92] P. Charbonneau, Phys. Rev. E 75, 011507 (2007).

115



[93] A. G. Walton, The Formation and Properties of Precipitates, Interscience: New York,

1967.

[94] F. Family and D. Landau, Kinetics of Aggregation and Gelation, North-Holand:

Amsterdam, 1984.

[95] E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).

[96] A. J. Liu and S. R. Nagel, Nature(London) 396, 21 (1998).

[97] V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz, Nature(London)

411, 772 (2001).

[98] E. K. Hobbie, Phys. Rev. Lett. 81, 3996 (1998).

[99] C. M. Sorensen, H. X. Zhang, and T. W. Taylor, Phys. Rev. Lett. 59, 363 (1987).

[100] E. H. A. de Hoog, W. K. Kegel, A. van Blaaderen, and H. N. W. Lekkerkerker, Phys.

Rev. E 64, 021407 (2001).

[101] J. R. Savage, D. W. Blair, A. J. Levine, R. A. Guyer, and A. D. Dinsmore, Science

314, 795 (2006).

[102] P. J. Lu et al., Nature(London) 453, 499 (2008).

[103] F. Cardinaux, T. Gibaud, A. Stradner, and P. Schurtenberger, Phys. Rev. Lett. 99,

118301 (2007).

[104] K. Kroy, M. E. Cates, and W. C. K. Poon, Phys. Rev. Lett. 92, 148302 (2004).

[105] K. G. Soga, J. R. Melrose, and R. C. Ball, J. Chem. Phys. 108, 6026 (1998).

[106] G. Foffi, C. Michele, F. Sciortino, and Tartagila, Phys. Rev. Lett. 94, 078301 (2005).

[107] M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000).

116



[108] K. Binder and M. H. Kalos, J. Stat. Phys. 22, 363 (1980).

[109] R. Jullien and R. Botet, Aggregation and Fractal Aggregates, World Scientific, Singa-

pore, 1987.

[110] J. R. Melrose, Europhys. Lett. 19, 51 (1992).

[111] N. Arakus, Theoretical Approaches to Self-Assembly and Biology,, PhD thesis, Applied

Mathematics, Harvard University, Cambridge, Massachusetts, 2009.

[112] N. Arkus, V. N. Manoharam, and M. P. Brenner, Phys. Rev. Lett. 103, 118303 (2009).

[113] G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharam, Science 327, 560 (2010).

[114] L. M. Felicov, Group Theory and Its Physical Applications, The University of Chicago

Press, 1966.

[115] J. C. Cole, Acta Crysta. B57, 88 (2001).

[116] V. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).

[117] M. R. Haore, Adv. Chem. Phys 40, 49 (2007).

[118] O. Glatter and O. Kratky, Small Angle X-ray Scattering, Academic,London, 1982.

[119] S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley,

New York, 1977.

[120] D. Fry, T. Sintes, A. Chakrabarti, and C. M. Sorensen, Phys. Rev. Lett. 89, 148301

(2002).

[121] F. Pierce, C. M. Sorensen, and A. Chakrabarti, Phys. Rev. E 74, 021411 (2006).

[122] P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.

117



Appendix A

Free Energy of Mixing in the
Interpenetration Regime

The total free energy, mentioned in chapter 2, can be written as

∆GT = ∆GM + ∆Gel (A.1)

where ∆GM is the free energy of mixing of the polymer segments and ∆Gel represents the

elastic contribution to the free energy. We will now focus on the derivation of the ∆GM .

Using the Flory-Huggins Theory, the change in free energy of mixing by bringing two

polymer segments a and b,a distance d apart, is given by (see ch.12 of [122] for details):

δ(∆GM) =
kTdV

Vl
[ln(1− (ρa + ρb)Vs) + χVs(ρa + ρb)](1− (ρa + ρb)Vs) (A.2)

By expanding the logrithmic term in above eqn. A.2 and simplifying, one can obtain the

following expression

δ(∆GM) = 2kT (1/2− χ)ρaρb(V
2
s /Vl)δv (A.3)

where χ is the flory chi parameter for the solvent-polymer interaction, ρa and ρb are the

density distribution functions of the polymer segments in the respective elements when the

polymers are far apart from each other, Vs is the volume of the segment and Vl is the

solvent molecular volume. The total free energy change can be obtained by integrating

above equation A.3 over the whole volume as:

∆GM = 2kT (1/2− χ)(V 2
s /Vl)

∫
ρaρbδV (A.4)
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To estimate the free energy of mixing between the ligands on the surface of two spheres,

we first derive the expression for the case of two parallel plates and then , by using the

Deryagin Approximation (seeIsrealvilliebook),we can extend our results for case of two

identical spheres. For the case of parallel plates,considering that the total number of polymer

segments normal to the surface are n, separated by a distance d, the free energy of mixing

is given by

∆GM = 2kT (1/2− χ)n2(V 2
s /Vl)

∫ L

d−L
ρaρbdx (A.5)

where L is the length of the ligands, d is the separation between the plates and n is the total

number of ligand segments in the volume normal (in the x-direction) to the unit surface.

Assuming the constant density distribution of the ligand segments(i.eρa = ρb = 1/L), the

above expression is given by

∆GM = 2kT (1/2− χ)n2(V 2
s /Vl)

2

L
(1− d/2L) (A.6)

This assumption of constant density of the ligands is valid for the regime where the ligands

are not significantly compressed. In literature (givereferencesofthepapers), this regime is

termed as the interpenetration regime. Now, using the Deryaguin Aprroximation ∆GM ∼

πd
∫∞
d0

(∆GM)dd, we can write the free energy of mixing for the case of two identical spheres

as

V2(r) = πkT (1/2− χ)NAω
2(v2

2/Vl)2d(1− d0/2L)2 (A.7)

where ω is the weight of the ligands per unit surface area and v2 is the partial specific

volume of the ligands. We have also used V2(r) as the potential energy to keep our notation

consistent with the equations in chapter 2. In our case, we can write NA

Vl
= 1

vm
where vm

is the volume of one solvent molecule (Toluene in our case). For Toluene, vm = 107cm3

NA
=

1.78× 10−28. Also , we can replace ωv2 by φavL where φav =
NVligand

Vshell
is the average volume

fraction of the ligands in the tethered layers. In our rescaled units, L̃ = L/d, x = r/d

and h̃ = h/d where L is the ligand contour length, h is the surface-surface distance of
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the nanoparticles and r is the center-center distance of the nanoparticles. Hence, for the

interpenetration regime (i.e.1 + L̃ < x < 1 + 2L̃),above eqn. A.7 is given by

V2(r) =
πd

vm
φ2
av(

1

2
− χ)L22(1− h

2L
)2

or

V2(r) =
πd

vm
φ2
av(

1

2
− χ)

1

2
(2L− h)2 (A.8)

or in rescaled lengths,

V2(x) =
πd3

2vm
φ2
av(

1

2
− χ)[x− (1 + 2L̃)]2 (A.9)

The above derivation in equation A.9 is done for the interpenetration regime.
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Appendix B

Free Energy of Mixing in
Interpenetration and Compression
Regime

For the case where ligands from opposite surfaces are compressed against each other (i.e.

when d¡L), the regime is known as interpenetration and compression regime in literature

give reference. The main assumption, in this regime , is the fact that the segment density

function is related to the separation between the ligands as compared to the ligand length

i.e. ρa = ρb = 1/d. Interpenetration effects are the same in this regime as mentioned in A

whereas the compression term is due to the fact that in this regime, ligands not only self-

interpenetrate but there is also an elastic compression between the ligands. Thus, for the

case of parallel plates, the mixing term in this regime is given by,

∆GM = 2kT (1/2− χ)(V 2
s /Vl)[

∫ d

0

ρaρbdx+

∫ d

0

ρ2
adx−

∫ ∞
0

ρ2
adx] (B.1)

For the case of spherical particles, we apply Deryaguin Approximation to the above equation.

By solving above equation for the case of spherical particles, in the rescaled lengths, the

resultant equation is given as

V3(r) =
πd

vm
φ2
av(

1

2
− χ)L23 ln(

L

h
) + 2

h

L
− 3

2
(B.2)

or in the rescaled form,

V3(x) =
πd3

vm
φ2
av(

1

2
− χ)L̃23 ln(

L̃

x− 1
) + 2

x− 1

L̃
− 3

2
(B.3)
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The formalism for the elastic contributions is based on the description by Flory (see refer-

ence [122] for details). According to Flory, the elastic contributions arise due to the change

in the configurational microstates of the ligands as they transform from an uncompressed

state to aa compressed state. The change can be represented by the following relation;

∆G = −2kT
∑
j

νj ln δρ(aj)/ρ(aj/δ) (B.4)

where ρ(x) is the segment density distribution,ν is the total number of chains per unit

area and δ is the ratio of the ligands length before and after compression. Considering the

constant segment model, we can set ρ = 1/L such that for the case of flat plate

∆G = −2kTν ln δ (B.5)

For the case of spherical particles, using Deryaguin Approximation,

V4(r) = π
d

2

∫ δ∞

δ0

∆G (B.6)

where δ0 = h
L

. Solving above equation, we get

V4(r) = dπνh(ln(
h

L
)− 1) + L (B.7)

= dπνh(ln(δ0)− 1) + L (B.8)

or in the rescaled form

V4(x) =
1

2
d2πνL̃(

h

L
− 1)2

=
1

2
d2πνL̃(

r − d
L
− 1)2

=
1

2
d2πνL̃(

x− 1

L̃
− 1)2

=
1

2

d2

L̃
πν(x− 1− L̃)2

=
1

2

d2πν

L̃
(x− (1 + L̃))2 (B.9)
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Appendix C

Parameters of Brownian Dynamics
Algorithm

The parameters in the equation 3.23 are given by

σ2
1 ≡< X 2(∆t) >=

kBTref
m

A(γ∆t) (C.1)

σ2
2 ≡< Y2(∆t) >=

kBTref
m

(∆t)2B(γ∆t) (C.2)

and

r12σ1σ2 ≡< X (∆t)Y(∆t) >=
kBTref
m

(∆t)C(γ∆t) (C.3)

where

A(y) ≡ 1− exp[−2y] (C.4)

B(y) ≡ y−2(2y − 3 + 4 exp[−y]− exp[−2y]) (C.5)

C(y) ≡ y−1(1− exp[−y])2 (C.6)
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In eqns. 3.19 and 3.20, we also defined some useful functions

c0(y) ≡ exp[−y] (C.7)

c1(y) ≡ y−1(1− exp[−y]) (C.8)

c2(y) ≡ y−1(y−1(1− exp[−y])) (C.9)

c3(y) ≡ y−1(
1

2
− y−1(1− y−1(1− exp[−y]))) (C.10)

where we have used y ≡ γ∆t. For small values of y, we can use the power series expansion

given by

c0(y) = 1− y +
1

2
y2 − 1

6
y3 +

1

24
y4 − 1

120
y5 +

1

720
y6

− 1

5040
y7 +

1

40320
y8 (C.11)

c1(y) = 1− 1

2
y +

1

6
y2 − 1

24
y3 +

1

120
y4 − 1

720
y5 +

1

5040
y6

− 1

40320
y7 +

1

362880
y8 (C.12)

c2(y) =
1

2
− 1

6
y +

1

24
y2 − 1

120
y3 +

1

720
y4 − 1

5040
y5 +

1

40320
y6

− 1

362880
y7 +

1

3628800
y8 (C.13)

c3(y) =
1

6
− 1

24
y +

1

120
y2 − 1

720
y3 +

1

5040
y4 − 1

40320
y5 +

1

362880
y6

− 1

3628800
y7 +

1

39916800
y8 (C.14)

and

σ1 = [
kBTref
m

(2y − 2y2 +
8

6
y3 − 16

24
y4 +

32

120
y5 − 64

720
y6 +

128

5040
y7

− 256

40320
y8)]1/2 (C.15)

σ2 = [
kBTref
m

(∆t)2(
4

6
y − 1

2
y2 +

28

120
y3 − 60

720
y4 +

124

5040
y5 − 252

404320
y6

+
508

362880
y7 − 1020

362880
y8)]1/2 (C.16)

and r12 can be obtained obtained by using eqs. C.15, C.16 and C.6 into eq. C.3. Using above
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mentioned function values, we can rewrite eqs. 3.19 and 3.20 as

v(tn + ∆t) = v(tn)c0(γ∆t) + (m)−1F (tn)c1(γ∆t)

+ (m)−1Ḟ (tn)(∆t)2c2(γ∆t) + X (∆t) + O[(∆t)3] (C.17)

x(tn + ∆t) = x(tn) + v(tn)(∆t)c1(γ∆t) + (m)−1F (tn)(∆t)2c2(γ∆t)

+ (m)−1Ḟ (tn)(∆t)3c3(γ∆t) + Y(∆t) + O[(∆t)4] (C.18)

Also, we can see that when γ → 0 then γ∆t → 0 which means that c0(0) = 1, c1(0) =

1, c2(0) = 1/2, c3(0) = 1/6, σ1 = 0, σ2 = 0 and r12 =
√

(3/4) and above eqs. C.17 and C.18

can be reduced to

v(tn + ∆t) = v(tn) + (m)−1F (tn)(∆t) + (2m)−1Ḟ (tn)(∆t)2 + O[(∆t)3] (C.19)

x(tn + ∆t) = x(tn) + v(tn)(∆t) + (2m)−1F (tn)(∆t)2 + (6m)−1Ḟ (tn)(∆t)3

+ O[(∆t)4] (C.20)

which are the Verlet algorithm.
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