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CHAPTER I

INTRODUCTION

The digital computer has become an indispensable tool

in many areas of engineering analysis and design. Computers

are now being used extensively for problem solving In all

disciplines of engineering and new methods for Improving

their effectiveness are being developed every day. Kinematic

design of mechanical linkages is one of the areas that has

benefited enormously from the power of the digital computer.

Today, there exist hundreds of computer-oriented methods and

implementations that are capable of handling several classes

of mechanism design problems such as path generation,

precision point synthesis, etc.

Despite this profusion of available software and

methodology, there remain some critical problem areas which

have not yet been satisfactorily addressed. In many cases,

the problem areas were thought to be too difficult to be

tackled and were therefore left untried for a number uf

years. The advent of the digital computer has already

brought several of these previously intractable problem

areas into the realm of possible solution. It is reasonable

to expect that as the power of the available computer

hardware Increases, more research will be required to

develop computer-oriented methods for solving more

challenging classes of problems on state-of-the-art

equipment

.
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The research presented In this thesis Is an effort to

develop a computer-based design technique for handling a

very Important but largely overlooked problem In mechanism

design - the design of minimum sensitivity four-bar

linkages. This class of problems is of interest to the

design engineer as well as the manufacturing engineer. In

order to manufacture the linkage, appropriate machining

tolerances have to be specified on all dimensions. The

tolerances on any dimension should reflect the sensitivity

of the system performance to smal 1 changes or errors in that

dimension. If the system performance Is relatively

insensitive to variations in a particular dimension, the

tolerances on that dimension can be specified to be quite

loose. Conversely, if the system performance Is highly

sensitive with respect to a particular dimension, then the

tolerances on that dimension must be held very tight.

Generally, it is desirable to specify tolerances to be as

loose as possible because tight tolerances are associated

with high manufacturing cost. Since the tolerance on any

dimension is dependent on the sensitivity of the system

performance to variations in that dimension, it follows that

when we design a minimum sensitivity linkage, we are

effectively designing a minimum cost linkage as well.

Unfortunately, there has been very little work done in the

area of minimum sensitivity design of four-bar linkages,



although there has been some research on optimal allocation

of manufacturing tolerances [13.

The approach taken in this thesis is to convert the

minimum sensitivity problem into an equivalent constrained

optimal design problem which can then be solved by using

well-established nonlinear programming techniques. The

motivation for using this approach lies In the fact that

there exists a natural transformation from the minimum

sensitivity problem to the constrained optimal design

problem. The parameters whose values are to be determined

(e.g. link lengths, coupler point location, etc.) become the

design variables of the optimal design problem. The

performance requirements that the design should meet become

the constraint functions in the optimal design problem.

Finally, the sensitivity to be minimized becomes the

objective function of the optimal design problem. Once this

translation is done, the methodology of optimal design gives

us several systematic, semi-automated numerical schemes that

will lead to the desired solution.

In order to use this approach in a computer-aided

design environment, it is first necessary to develop a

computer-oriented method for kinematic analysis, since the

constraint functions of the optimal design problems will

generally depend on the position, velocity and acceleration

of the various links. Fortunately, several reliable methods



for kinematic analysis are already available and so all that

needs to be done is to select a method that is suitable for

the present purpose. The method selected was a loop closure

method [23 that is quite efficient and easy to implement in

a computer code.

In addition to the kinematic analysis, a method of

performing first order design sensitivity analysis is also

required. This is needed for two reasons: first, the

objective function is a first order sensitivity and so

evaluation of the objective function requires first order

sensitivity analysis; secondly, first order sensitivity

analysis is needed in order to obtain the derivatives of the

constraint functions so that an efficient derivative based

optimization method can be used. Since methods for

sensitivity analysis on four-bar linkages are not very well

developed, a scheme based on the direct differentiation

method C3] was derived specifically for use in the present

work

.

Finally, second order design sensitivity analysis must

also be performed on the system. As noted earlier, it is

desirable to use derivative based optimization algorithms

from the point of view of efficiency. Since the objective

function Is itself a first order sensitivity, its

derivatives can be evaluated only through second order

sensitivity analysis. Methods for performing second order



sensitivity analysis on four-bar linkages are practically

non-existent in the literature. Consequently, a new method

for computing the second order sensitivity, based on an

extension of the direct differentiation technique, was

devel oped.

Once the kinematic and design sensitivity analyses have

been completed, the results must be supplied to an

optimization algorithm to obtain the next updated design. As

was the case with kinematic analysis, excellent optimization

methods are freely available and one only needs to choose

the method that is most appropriate for the purpose at hand.

The method chosen was a sequential unconstrained

minimization technique (SUMT) [4] using an exterior penalty

function or augmented Lagrange multiplier method. The

unconstrained minimization was performed using a modified

steepest descent algorithm [53.

The derivation of the kinematic analysis is presented

in Chapter 2. In this chapter, the loop closure equations

that define the four-bar linkage are derived in order to

compute the position, velocity and acceleration of the

links. A detailed mobility analysis is also done to ensure

that only the allowable angular regions of the crank

rotation are analyzed. Chapter 3 presents the development of

the first and second order design sensitivity analysis for

the four-bar linkage. This chapter illustrates how the



equations are derived and describes how they can be solved

in a very efficient manner. The optimization methods used

are explained in Chapter 4 along with the formalization of

the minimum sensitivity problem as a standard nonlinear

programming problem. The methods developed in Chapters 2, 3

and 4 were Implemented in an Interactive, user-friendly

computer program that can be used for computer-aided design

of minimum sensitivity four-bar linkages. The structure and

capabilities of this program are presented in Chapter 5.

Several numerical examples were run on this program to

verify the design sensitivity analysis and to evaluate the

performance of the proposed approach to minimum sensitivity

design. Selected examples are described in Chapter 6. The

results show the approach to be very reliable and convenient

to use In addition to being computationally feasible.

Finally, an assessment of the method and some

recommendations for future research in this field are

presented in Chapter 7.



CHAPTER II

FOUR-BAR LINKAGE ANALYSIS

In order to analyze a four-bar linkage, it is first

necessary to formulate the kinematic equations that govern

the behavior of the linkage. The method presented in this

chapter is based on deriving position loop closure equations

for the linkage from the geometry. These equations are then

differentiated with respect to time to obtain the velocity

and acceleration loop closure equations. This method is easy

to implement in a computer program, making it possible for

the linkage to be analyzed at any angular position. The only

necessary input parameters required for this analysis are

the link lengths and the angular position, velocity and

acceleration of the input link. Knowing these inputs, the

positions, velocities and accelerations of the coupler and

output links can be calculated.

The following notation will be used in the derivation

of the kinematic equations and in the design sensitivity

analysis. Referring to Figure 2.1, the parameters arei

&1

:

Length of frame or ground link

b2 : Length of crank or input 1 ink

b3: Length of coupler link

b^: Length of output or follower link

q2 : Input crank angle

q3: Coupler link angle

7



Figure 2.1 Four-bar Linkage
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94 : Output link angle

q2 : Angular velocity of input link

q3 : Angular velocity of coupler link

•

q4 : Angular velocity of output link

q2 : Angular acceleration of input link

q3 : Angular acceleration of coupler link

q 4 : Angular acceleration of output link

"y : Transmission angle

2.1 Position Analysis

The equations used to calculate the coupler and output

link angular positions are derived using the Law of Cosines

Referring to Figure 2.2, we see that the following

relationship should hold:

Z 2 = (fc^) 2 + <b2 >
2 - 2.0*b

1
*b2*cos<q2 > 2.1

After evaluating Z from equation 2.1, we can apply the Law

of Cosines to the four-bar linkage in Figure 2.2, to obtain

the angles c* , p and <p ,as fol lows:

« = cos-1 (CZ 2 + (b4 ) 2 - <b3 > 2 )/C2.0*Z*b4 >) 2.2

fl = cos _1 (CZ 2 + (b
x

>
2 - (b2 )

2 >/C2.0*Z^b
1
)) 2.3

«• = cos_1 ((Z 2 + Cbo) 2 - (bO 2 )/(2.0*Z*bo)> 2.4



Figure 2.2 Position analysis angles

10



Care must be taken when evaluating the Inverse cosine

function on a computer since an argument value greater than

+1.0 or less than -1.0 might be encountered. This problem

could arise in two ways. One possibility Is that it can be

caused by round off error when the cosine value is near

+/-1.0. A second possibility is that the linkage has not

been properly defined. This situation could arise, for

example, if the optimization algorithm takes too large a

step.

If the absolute value of the argument does not exceed

1.0001, it is assumed that the error is due to round off. In

this case, the error is Ignored and the value is reset to

+/-1.0. This tolerance prevents small round off errors from

terminating the program prematurely.

In cases where the absolute value of the argument

exceeds 1.0001 it is assumed that the linkage is improperly

defined and the kinematic analysis is terminated. This

problem usually occurs when the optimization algorithm takes

too large a step in design space. In order to correct this

problem the step size used in the optimization package

should be decreased before restarting the process.

When choosing the sign of fi , it must be realized that

there are two possible ways to assemble the four-bar

linkage. To ensure that the desired solution Is computed.

11



two conditions must be set on the angular position of the

input 1 ink , q2 :

Condition 1. If( < q2 < 180)

ThenC < (3 < 180 )

Condition 2. If< 180 < q2 < 360)

ThenC 180 < fi < 360 )

Once f3 has been defined in this way, « and 4" wl 1 1

always be positive. The coupler and output link positions

are calculated from the following equations:

q3 = «* - fi 2.5

q4 = 180 - < « + ,9 ) 2.6

The transmission angle is easily calculated at this

point in the analysis once the coupler and output link

positions are known. Referring to Figure 2.1 the

transmission angle equation becomes:

T = ^4 ~ <*3 2.7

12



2.2 Velocity Analysis

The equations used for velocity analysis are velocity

loop closure equations that are derived from the following

position loop closure equations:

- D3*cos(q3> + b 4*COS(q4 ) - bj + b2*COS(q2 ) 2.8

- b3*sin(q3> + b4*sin(q4 ) = b2*sin(q 2 ) 2.9

Differentiating equations 2.8 and 2.9 with respect to

time, the desired velocity loop closure equations are

obtained as follows:

b3*sin<q3)*q3 - b4 *si n(q4 )*q4 = 2.10

- b2*sin(q2 >#q2

- b3*cos<q3)#q3 + b 4*cos<q4 >*q 4 = 2.11

b2*cos(q2 >*q2

At this point the only unknowns in equations 2.10 and

2.11 are the coupler and output link angular velocities, q 3

and q4 , respectively. Equations 2.10 and 2.11 can be solved

simultaneously resulting in the two velocity equations:

q3 = (- b2*cos<q2 >*q2*b4*sin(q4 ) 2.12

+ b4*cos(q 4 )*b2*sin(q2 )*q2 )/

13



(b3*cos(q3>*b4*sin<

q

4 > - b4*cos(

q

4 )*b3*si n( q^) )

q 4 = (- b2*sin(q2>*q2*b3*c°3(q 3 ) 2.13

- b3^sin(q3)^b2*co3Cq2)*q2 )/

(b3*cos(q3)*b 4*sin(q 4 ) - b4#coa( q 4 )*b3*si n< q3) )

2.3 Acce leration Analysis

The equations used for acceleration analysis are

acceleration loop closure equations that are derived from

equations 2.10 and 2.11. Differentiating equations 2.10 and

2.11 with respect to time, the acceleration loop closure

equations are obtained as follows:

- b3*cos(q3)*(q3) 2 - b3*sin<q3)*q'3 2.14

+ b4*COS(q 4 >*(q 4 )
2 + b 4*Sin(q 4 )*q 4 =

b2*cos(q2>*<q2 5 ^ + bofcsinCqo)*^

- b3#sin(q3)*(q3)2 + b3*cos< q3>*q3 2.15

+ b4*sin(q 4 >*(q4 )
2 - b 4*COS(q 4 )*q 4 =

b2*sin(q2>*<q2>^ ~ b2*cos(q2>*q2

At this point the only unknowns in equations 2.14 and

2.15 are the coupler and output link angular accelerations,

q3 and q4 , respectively. Equations 2.14 and 2.15 can be

solved simultaneously resulting in the two acceleration

equat ions:

14



^3 = C (b2*sin(q2>*<q2> " b2*cos(: ^2**q 2 2.16

+ b3*sin(q3>*(q3> 2 - b 4*si n(

q

4 )*(q 4 )
2 )*b 4*si n(

q

4 )

+ (b2*cos(q2>*<q2> 2
+ b2*si n(q2 >*q2

+ b3*cos(q3)*(q3)
2 " b4*COS<q4 )*<q4 ) 2 )*b4*COS( ^4^ >/

<b3*cos(q3>*b4*sin(q4 ) - b4*cos<q4 )*b3*sin(q3)

)

q4 = ( Cb2*cos(q2>*<q2 )2 + b2*si n(q2 >*q'2 2.17

+ b3#cos(q3>*(q3) 2 - b 4*cos(

q

4 )*(q4 )
2 )*b3*cos(

q

3 >

+ Cb2*sin(q2^Cq2) 2 - b2*cos(q2>*q*2

+ b3*sin<q3)*(q3> 2 - b4*si n(

q

4 >*(

q

4 >
2 )*b3*sin(

q

3 > )/

(b3#cos<q3>*b 4^sin(q4 ) - b4*cos(q4 )*b3*si n(q3>

)

The preceding scheme for kinematic analysis can be

conveniently implemented in a computer program. In order to

solve a given problem, it is necessary to know the initial

and final crank angles and the number of grid points between

these two angles at which the linkage is to be analyzed. The

angular position of the input link at a particular grid

point i becomes:

(q2 >j = ^2^0 + l**<*2*f " (q2 ) o )/n * i = 0»«--» n 2.18

where: (<32*o * s tne initial crank angle.

Cq2>f is the final crank angle,

n is the number of grid points.

15



2.4 Linkage Mobility

Linkage mobility is a major concern in general purpose

linkage optimization problems since a design returned from

the optimization algorithm could cause the input link not to

have full rotation. When the input link has full rotation

<360 degrees) there is no danger of the linkage locking, and

the initial and final crank angles can be set to any desired

values. However, if the Input link does not have full

rotation, care must be taken to ensure that only allowable

Input crank angles are used during the analysis. This is

achieved by calculating the extreme positions of crank

rotation and ensuring that the initial and final crank

angles lie between these extreme positions.

The extreme positions of a linkage that does not have

full crank rotation must be either dead center positions or

limit positions. A four-bar linkage is in its dead center

position when the coupler and output link lie along a

straight line with the coupler link overlapping the output

link. A limit position occurs when the coupler and output

link lie along a straight line with the two links being

end-to-end. The positions shown in Figure 2.3 illustrate the

symmetry that occurs when these extreme positions are

encountered.

The allowable angular regions lie between the extreme

positions and these regions are determined by the following

16



relationships. Referring to Figure 2.3, the allowable

regions are defined by:

Region i. b
1

+ b2 > b3 + b4 2.21

Region 2. IC^ - b2 > I < I Cb3 - b 4 >l 2.22

Region 3. b
1

+ b2 > b 3 + b4 and 2.23

I ib
L

- b2 >

I

< I <b3 - b4 )

I

When any of these conditions hold, the allowable

angular movement of the input link must be calculated. The

minimum and maximum angles of the input link in a particular

region are calculated using the Law of Cosines. The minimum

and maximum crank angles for region 1 are calculated from

the following equations:

Cq 2 ) Q = - cos_i ( ((b^ 2 + Cb2 )
2 - 2.24

2.0*(b 3 + b4 ) )/(2.0*b
1
*b 2 )

)

<q 2 )
f

= cos^CCCb^ 2 + <b2 >
2 - 2.25

2.0*(b 3 + b4 ) )/ (2.0*b
i
*b 2 )

)

17



REGION 1

REGION 2,

REGION 3,

Figure 2.3 Dead center and limit positions
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The minimum and maximum crank angles for region 2 are

calculated from the following equations:

Cq2>o = cos~ i (C(b
1

)
2

+ <b2 >
2 " 2 - 26

2.0*<b3 - b4 ) )/(2.0*b
1
*b 2 >

>

(q 2 >
f

= 360 - <q 2 > 2 - 27

If both conditions of equation 2.23 are satisfied and

the two regions overlap, equations 2.26 and 2.25 are used to

calculate the minimum and maximum crank angles respectively.

Thus, the minimum and maximum crank angles for region 3 are

calculated from the following equations:

<q2 ) Q = cos~ 1 <((b
1

)
2 + <b2 )

2 - 2.28

2.0*(b3 - b 4 > )/<2.0*b
i
*b 2 ) )

(q 2 )
f

= cos^CC (bj> 2 + <b 2 )
2 - 2.29

2.0*(b3 + b4))/C2.0*b i
#b2 >>

The input link mobility as well as the minimum and

maximum crank angles can thus be determined from the link

1 engths.

19



CHAPTER III

SENSITIVITY ANALYSIS

The objective of design sensitivity analysis is the

evaluation of the derivatives of relevant performance

functions with respect to the design variables. First order

design sensitivity analysis will yield the first partial

derivatives of these functions with respect to design;

similarly, second order design sensitivity analysis will

yield the corresponding second partlals. It is clear that

the second partials can be viewed as the first partial

derivatives of the first order sensitivity. Thus, if the

first order sensitivity coefficients enter into the

performance functions of interest, then the sensitivity

calculations relating to these functions will Involve second

order terms. For our present purpose, we need a way to

calculate the first and second order sensitivities of any

performance function of the form f = f (b,q,q,q,x ,y ) where

(x,y) are the coordinates of the coupler point. Since the

state variables and coupler point position are themselves

implicit functions of design, we must first devise a

computational scheme for performing first and second order

sensitivity analysis of these quantities. A

computer-oriented method for combined first and second order

design sensitivity analysis for planar four-bar linkages is

presented in this chapter.

20



3.1 First Order Sensitivity

The kinematic equations which were derived in the

preceding chapter are dependent on the link lengths of the

four-bar linkage and on the position, velocity and

acceleration of the links. The first order design

sensitivity can be calculated by differentiating the loop

closure equations with respect to the vector of desired

design variables. The method used in the present work is

based on the direct differentiation technique C33. In order

to apply this technique, it is necessary to first define the

design vector. Referring to Figure 3.1, the components of

the design vector are:

b^

:

Length of frame or ground link

b2* Length of crank or input link

b3: Length of coupler link

b^: Length of output or follower link

bg: Angle of coupler point from coupler link

bg: Distance to coupler point from reference end

of coupl er 1 ink

by: Angle of ground link

bg: x coordinate of ground link

b9 : y coordinate of ground 1 ink

21



Y

X

Figure 3.1 Design variables
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The derivation of the partial derivatives of the loop

closure equations and a technique for computing the first

order design sensitivity of position, velocity, acceleration

and coupler point position are discussed in the following

sect ions.

3.1.1 Position Sensitivity

The first order position sensitivity equations are

derived from the position loop closure equations 2.8 and

2.9. Differentiation of both sides of these equations with

respect to the appropriate design variables produces eight

equations containing twelve unknown position sensitivities.

The first order position sensitivity of the input link is

set equal to zero since the input link angle is

independently specified and does not depend on the design

variables.

The notation used for the first order position

sensitivity coefficients is:

aqi
q; ,

= , i =2,4 and j = 1,4 3.1

Differentiating both sides of the position loop closure

equations (equations 2.8 and 2.9) with respect to the link

lengths bj , t>2 » b3 and b4 yields the following set of

equat ions:

23



b3*sin <33 ) *q3 l
~ b4*sin(q4 )*q 4 1

= 3.2

- 1 - b2*sin(q2^q2
1

b3*sin(q3)*q3 2 ~ b4*si n< q4 )*q 4 f
2 = 3 • 3

cos(q2) - b2*si n( q2^*q2 2

b3*sin(q3 )*q3 3 - b 4*sin(

q

4 >*q4 t
3 = 3.4

cos(q3> - b2*sin(q2^*q2 3

b3*sin(q3>^q3 4 - b4*sin(q4 )*q 4 4 = 3.5

- cos(q4 > - b2^sin(q2>^q2 4

- b3*cos<q3>*q3 ^ + b4*COS<q4 )*q4 ^
= 3.6

b2*cos(q2^*q2
1

- b3*cos(q3)*q3 2 + b4*cos(q4 )*q 4 2 = 3 - 7

sin(q2) + b2*cos<q2>*q2 2

- b3^cos(q3)*q3 3 + b4*cos(

q

4 )*q4 3 = 3.8

sin(q3> + b2^cos(q2^*q2 3

- b3*cos(q3)*q3 4 + b4*cos(q4 )*q 4 4
= 3.9

- sin<q 4 > + b2*cos(q2>*q2 4

The preceding eight position sensitivity equations

contain eight unknown position sensitivities which occur on

the left side of the equations. The right hand sides depend

on position and design only.

24



The eight equations above can be written conveniently

in the standard matrix form A*x = y where:

A =

1 s3 s4 1

1 S3 s4 1

1 S3 s4 1

1 S3 s4 1

1 c3 c4 1

1 c3 c4 1

1 c3 c4 1

1 c3 c4 1

3.10

s3, s4, c3, and c4 are defined by:

s3 = b3#sin(q3> c3 = - b3*cos(q3>

c4 = b 4*cos(q 4 ) s4 = - b^^sinCq^)

The vectors x and y are given by:

x =

1 q3, 1
'

1 q 3, 2 '

1 q3, 3 '

1 ^3, 4 '

1 q 4, 1 '

1 q4, 2 '

1 q 4,,3 '

1 q4, 4 '

3.11
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- 1 - b2*si n( q2>*^2 1

cos(q2> - b2*si n(q2>*q2 2

cos(q3) - b2*si n< q2^*q2 3

- cos(q^j) - b2*si nC q2^*q2 4

b2*cos(q2>*q2
l

sin<q2> + b2*cos(q2>*q2 2

sin(q3) + b2*cos( q2>*q2 3

- sin(q^) + b2*cos(q2>*q2 4

3. 12

The system of equations above is easily solved by

decoupling it into sets of two appropriate equations with

each set containg the same two unknown position

sensitivities. For example both the first and fifth

equations contain unknown sensitivities q3 j_
and q^ 1. The

two position sensitivities are computed by solving these two

equations simultaneously.

3.1.2 Velocity Sensitivity

The first order velocity sensitivity equations can De

derived in one of two ways. The first method is to evaluate

the time derivative of the eight first order position

sensitivity equations; the second option is to evaluate the

time derivative of the position loop closure equations to

obtain the velocity loop closure equations and then

26



differentiate both sides of these equations with respect to

design. The derivation given below is based on the second

approach and it was verified by rederiving the equations

through the first method and comparing the results.

The notation used for the first order velocity

sensitivity coefficients is:

a qj
q 5 i

- , i = 2,4 and j * 1,4 3.13

Differentiating both sides of the velocity loop closure

equations (equations 2.10 and 2.11) with respect to the link

lengths b^ , b2» b3 and b4 yields the following set of

equat ions:

b3*sin(q3>*q3 ± - b4 *sl n(q4 )*q4 ^
= 3.14

- b2*<sin(q2>*q2
l

+ cos( q2>*q2*32 1^

- b3*cos(q3>*q3*q3
^

+ b4*COS(q 4 )*q4*q4>1

b3*sin(q3)*q3 2 " b4*sin(q 4 )*q4 2 = 3.15

- b2*<sin(q2>*q2 2 + cos( 32 ) *^2*q2 2 5

- b3*cos(q3>*q3*q3 2

+ b4*cos(q 4 )#q4*q4 2 ~ sin(q2>*q2

b3^sin(q3)*q3 3 - b 4#si n(q 4 >*q4 3 = 3.16

- b2*<sin(q2>*q2 3 + cos(q2>*q2*32 3^

- b3*cos(q3)^q3^q3 3
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+ b 4*cos(q 4 )#q4#q 4 3 - sin(q3)*q3

b3*sin(q3)*q3> 4 - b 4*si n(q 4 )*q 4 >4
= 3.17

- b2*<sin(q2>*q2 4 + C03( (32 ) * (^2* <3 2 4*

- b3*cos(q3)*q3*q3 4

+ b 4*COS<q4 )*q4*q4>4 + sin(q 4 >*q4

b3^cos<q3>*q3 ± + b4*cos(

q

4 >*q 4 j
= 3.18

b2*^cos(q2)*q2
1

~ sin( q2>*q2*32 1^

- b3*si n(q3>^q3*q3 j

+ b4*sin(q4 )*q4*q4> 1

b3*cos(q3)*q3 2 + b4*cos<

q

4 >*q 4 2 = 3.19

b2*<cos(q2>*q2 2 " s * n( 32 ) *^2* <32 2?

- b3*sin(q3)*q3*q3 2

+ b4*sin(q4 >*q4*q4 2 + COS<q2>*^2

b3*cos(q3)*q3 3 + b4*cos(q4 >*q 4 3 = 3.20

b2*<cos(q2)*q2 3 " sin(q2>*q2* c*2 3^

- b3^si n ( q3^*q3^q3 3

+ b 4*sin(q4 )*q4*q4 3 + cos(q3>*q3

b3#cos(q3>^q3 4 + b4*cos(q4 )#q 4 4 = 3.21

b2*(cos(q2>*q2,4 " si n(q2>*q2*32
, 4 5

- b3*sin(q3)^q3*q3 4

+ b4*sin(q 4 )#q 4*q4>4 - cos(q4 )*q4

28



The preceding eight velocity sensitivity equations

contain eight unknown velocity sensitivities. The velocity

sensitivity of the input link is zero since the input link

velocity is independently specified. As before, the number

of unknowns is equal to eight with the unknown velocity

sensitivities occuring on the left side of the equations.

The eight velocity sensitivity equations are solved using

the same technique applied to the position sensitivity. The

coefficient matrix A remains exactly the same but the vector

x now contains the unknown velocity sensitivities and vector

y contains the right hand sides of equations 3.14 through

3.21.

3.1.3 Acceleration Sensitivity

The first order acceleration sensitivity equations can

also be derived in one of two ways. The first method is to

evaluate the time derivative of the eight first order

velocity sensitivity equations; the second option is to

evaluate the time derivative of the velocity loop closure

equations to obtain the acceleration loop closure equations

and then differentiate both sides of these equations with

respect to design.

The acceleration loop closure equations are derived by

evaluating the time derivative of the velocity loop closure

equations 2.10 and 2.11. The first order acceleration
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sensitivity equations are then obtained by taking the

partial derivative of both sides of the acceleration loop

closure equations with respect to design. Differentiation of

equations 2.10 and 2.11 with respect to time and simplifying

results in:

b3*(sin(q3>*q3 + cos<q3)*<q3> 2
) - 3.22

b4*(sin<q4 )*q4 + cos(q4 )*(q4 )
2

) =

- b2*(sin(q2>*q2 + cos(q2>*<q2> >

- b3*(cos(q3>*q'3 - si n(q3 )*<q3)
2

) + 3.23

b4*(cos(q4 )#q'
4

- sin(q4 )*(q 4 > 2 ) =

b2*<cos(q2>*q2 ~ sin<q2>*<q2> 2)

The notation used for the first order acceleration

sensitivity coefficients is:

Oqj

b
q, |

= , i =2,4 and j = 1,4 3.24

J

Differentiating both sides of equations 3.22 and 3.23

with respect to the link lengths b^, b2» b3 and b 4 yields

the following set of equations:

b3*sin(q3 )*q3 j
- b4#si n(q4 )*q4 ±

= 3.25

- b2*<sin(q2>*q*2
i

+ cos< q2>*q2*92 1

+ 2.0*cos(q2>*q2*92
1

~ s * n( q2*** 32 5 ^*q2 1*
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- b3*<cos(q3>*q3*q3 1
"*" 2 . O*cos< ^3^^3*013 1

- Sin(q3)*(q3) 2*q3 j) + b4*< cos( q4
)*q'

4#q4 j

+ 2.0*cos(q4 )*q 4*q4 ^ - si n(

q

4 )*(

q

4 )
2*q 4 j>

b3^sin(q3)^q3 2 ~ b 4*si n(q 4 )*q 4 2 ~ 3.26

- b2*<sin<q2>*q2 2 + c°s<q2>*32*q2 2

+ 2.0*cos(q2)*q2*q2 2 ~ sin<q2>*<q2 )2*92 2 J

- b3*(cos(q3)*q3#q3 2 + 2.0*cos(q3)*q3*q3 2

- Sin(q3)*(q3> 2*q3 2} + b4*(cos(q 4
>*q'

4*q 4 2

+ 2.0*COS<q4 )*q 4*q4 2
_ sin(q4 >*(q4 )

2*q4 2 >

- (sin(q2>*q2 + cos( q2>*<q2> 2 >

b3*sin(q3)*q3 3 - b4*si n(q4 )*q4 3 = 3.27

- b2*<sin(q2>*q2 3 + cos(q2>*q2* <32 3

+ 2.0*cos(q2>*q2*^2 3 ~ sin< q2>*<q2 )2* <32 3 J

- b3^(cos(q3)#q3*q3 3 + 2.0*cos< q3>*q3*q3 3

- Sin(q3)*(q3 )
2*q3 3) + b4*(cos(

q

4 >*q4*q 4 3

+ 2.0*cos(q 4 )*q 4*q4 3 - si n(

q

4 >*<

q

4 >
2*q4 3)

- Csin(q3)*q3 + cos(q3)*(q3) 2
)

b3*sin(q3>*q3 4
- b4*si n(

q

4 >*q4 4 = 3.28

- b2*Csin(q2^q2 4 + cos(q2>*q2*92 4

+ 2.0*cos(q2>*q2*q2 4 " si n( q2 ) * ( ^2 )2*^2 4 5

- b3*<cos(q3)*q'3^q3 4 + 2 . 0*cos(q3>*q3*q3 4

- Sln<q3)*(q3 ) 2*q3 4 ) + b4*( cos< q 4
)*q'

4*q 4 f 4

+ 2.0*COS<q 4 )*q4*q4>4 - si n<

q

4 >*(

q

4 )
2*q 4 ^ 4

)

+ (Sin(q 4 )*q 4 + COS(q4 >*(q4 )
2

)
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b3*cos(q3>*q3
1

+ b4*cos(c54 ) *^4 1
= 3.29

b2^^cos(q2>*q2
1

" s * n( q2 ) *q*2*q 2 1

- 2.0*sin(q2>*q2* <32 1
" cos( q2^* ( ^2^*q2 1

J

- b3^-(sin( q3>^q'3#q3
j^

+ 2 . 0*si n< q3>*q3*q3 i

+ cos( q3 )^(q3)2#q2 j) + b4*( si n( q4
>*q'

4*q4 !

+ 2.0*sln(q 4 )*q4*q4 j + cos<

q

4 )*(

q

4 >
2*q 4 ^>

b3*co&<q3)#q'3 2 + b4*COS(

q

4 >*q4 2
= 3.30

b2*<cos(q2>*q2 2 " s * n( q2 ) *q2*q2 2

- 2.0*sin(q2>*q2*32 2 ~ cos(q2^^q2 ) *^2 2 5

- b3#(sin(q3)*q'3*q3 2 + 2. 0*si n< q3>*q3*q3 2

+ cos(q3)*(q3>2*q3 2) + b 4*(si n<q 4
)*q'

4*q 4 2

+ 2.0#sinCq4 )*q 4*q4 2 + C°S<

q

4 >*<

q

4 >
2*q 4 f

2>

+ (cos<q2>*q'2 " sin(q2>*<q2* >

b3*cos(q3>^q3 3 + b4*cos<

q

4 >*q4 3 = 3.31

b2*<cos(q2>*q'2 3 ~ s * n( q2 )
*'

c'2*q2 3

- 2.0*sin(q2>*q2* <32 3 ~ cos( q2>*< c?2 ) ^*q2 3 5

- b3*(sin(q3)#q'3-x-q3 3 + 2.0*sin(q3)*q3*q3 3

+ cos(q3)^(q3)2*q2 3) + b4*< si n( q 4
>*q'

4*q 4 3

+ 2.0*sin(q4 )*q 4*q4 3 + cos(

q

4 >*(

q

4 >
2*q4 3)

+ (COS(q3)*q*3 - si n<

q

3 >*(

q

3 )
2

)

b3*cos(q3>*q3 4 + b4*cos( q 4
)*q'

4 4
= 3.32

b2*<cos(q2>*q2 4 ~ s * n( c?2 ) * c*2*q2 4

- 2.0*sin(q2>*q2*32 4 ~ COsCqo^*^ 32*^*^2 4 5

- b3*(sin(q3)*q*3*q3 4 + 2 .0*si n(q3)#q3*q3 4
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+ COS<q3>*<C|3> 2*q3 4 5 + b4^Csi n(q4 )*q'
4*q4 4

+ 2.0*sln(q 4 )*q4#q4>4 + cos(

q

4 )*<

q

4 )
2*q 4 ^ 4

>

- (cos(q 4 >*q 4 - sin(q 4 )*(q4 )
2

)

The preceding eight acceleration sensitivity equations

contain eight unknown acceleration sensitivities. The

acceleration sensitivity of the input link is zero since the

input link acceleration is independently specified. Once

again, the equations can be arranged in matrix form with the

same coefficient matrix A. The right hand side vector y now

becomes the right hand sides of equations 3.25 through 3.32

and the vector x contains the unknown acceleration

sensitivities. This set of equations can also be solved

easily by decoupling them as described earlier.

3.1t4 Coupler Point; Position Sensitivity

Another set of first order sensitivity coefficients

that is of importance in designing linkages is the

sensitivity of the coupler point position. The x and y

position of the coupler point is defined In terms of the

design variables and link angles. The two equations needed

to define the x and y location of the coupler point are:

x = bQ + b 2*cos<by + q2 > + bg*cos(b 7 + b5 + q3 > 3.33
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y = b9 + b2*sin(b7 + q2 > + bg*sin(b7 + b5 + q 3 ) 3.34

The notation used for the coupler point position

sensitivity coefficients is:

Ox
( x )

i

=
, j = 1 ,

9

3.35

fly
Cy> i

= , j = 1,9 3.36
° b

J

Differentiating both sides of equations 3.33 with

respect to the design variables yields the following set of

equat ions:

<x)
1

= - bgttsinCby + q3 + b5 >*q 3 j
3.37

(x>2 = - b2*sin(b7 + q2>*q2 2 + c°3(-bj + q2> 3.38

- b6*sin(b? + q3 + b5 )*q3>2

Cx) 3 = - b2*sin(b7 + q 2 )*q2 3 3.39

- b6*sin<b7 + q3 + b5 )*q 3t 3

(x) 4 = - b2^sin(b7 + q 2 >*q2 4 3.40

- bg*sin(by + q3 + bg)*q3 4

<x> 5 = - bg^sinCby + q3 + b5 > 3.41

Cx)g = cos(b7 + q 3 + b5> 3.42

Cx) 7 = - b2*sin(b7 + q2 > - b6*sin<b7 + q 3 + b5 ) 3.43

(x) Q = 1 .0 3.44

(x) 9 = 0.0 3.45
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Similarly, differentiation of both sides of equation

3.34 with respect to the design variables yields the

fol lowing:

(y)j = bg*cos(by + q3 + b5 >*q3 ± 3.46

(y>2 = b2*cos(b-7 + q2>*q2 2 + s i n(b7 + 92* 3.47

+ bg^cosCby + q3 + bg)*q3 2

(y>3 = b2*cos(b7 + q2>*q2 3 3.48

+ bg*cos<by + q3 + bg)*q3 3

(y>4 = b2*cos(b7 + q2 ) *c?2 4 3.49

+ bg*cos<b7 + q3 + b5)*q3 4

<y) 5 = b6*cos(b7 + q3 + b5 ) 3.50

<y>6 = sin(b7 + q3 + b5 > 3.51

(y>7 = b2*cos(b7 + q2 > + bg^cosCby + q3+b5 > 3.52

(y> 8 = 0.0 3 - 53

(y) 9 = 1.0 3.54

In general, the first order sensitivity of any function

of the form f (b,q,q,q,x ,y ) can be computed by directly

differentiating the function with respect to the design

variables and using the chain rule to account for the

dependency of the state variables on design as follows:

fb = '^explicit + fq^b + fq% + fq% 3
•
55

+ f xxb + f
y yb

35



The partial derivatives of the coupler and output link

positions, velocities and accelerations are merely the

corresponding first order sensitivities while the

derivatives of the x and y locations of the coupler point

are the coupler point position sensitivities derived in

equations 3.37 through 3.54.

3.2 Second Order Sensitivity

The second order design sensitivity coefficients of a

system are the partial derivatives of the first order

sensitivity coefficients with respect to the design

variables. We can solve for the second order position,

velocity and acceleration sensitivities by finding the

partial derivatives of the appropriate first order

sensitivity equations with respect to the four link lengths

Since position, velocity and acceleration sensitivities of

first order each have a set of eight defining equations,

there are 32 available equations for the 32 corresponding

second order sensitivities. However, owing to the symmetry

)
z
f A *-f

property of the second partials (i.e. = — — ) only
ci x, o

x

i
ox

2
dx,

20 of these 32 are Independent.
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3.2.1 Position Sensitivity

The notation used for the first order sensitivity

coefficients can be extended as follows to Include the

second order position sensitivity coefficients also:

q^ jk
=

* i = 2,4 , j = 1,4 and k = 1,4 3.56
obj abk

Evaluating the partial derivative of both sides of the

eight first order position sensitivity equations (equations

3.2 through 3.9) with respect to the link lengths bj_ , b2 . b3

and b4 and eliminating dependent equations leads to the

following set of 20 equations:

b3*sin<q3)*q3 n - b4 *si n(q4 )*q4 n = 3.57

- b2*<sin(q2>*q2 11 + cos(q2>*<q2 i> *

- b3*cos(q3>*(q3 j)
2 + b4*COS( q4 >*( q4 !>

2

b3^-sin(q3)^q3 ^ ~ b4*si n(q4 )*q 4 ^ = 3.58

- b2*<sin(q2>*q2 12 + cos<q2>*q2 1*^2 2 5

- b3*cos(q3)*q3 i*q3 2 + b4*cos<

q

4 >*q 4 t i*q 4 t 2

- sin(q2>*q2
l

b3*sin(q3>*q3 ^3 - b4*si n<

q

4 >*q4 13 = 3.59

- b2*<sin(q2>*q2 13 + cos(q2>*q2 1*^2 3 5

- b3*cos<q3)^q3 j*q3 3 + b4*cos(q 4 )*q 4 i*q 4> 3

- 9lnCq3>*q3fl
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b3*sin(q3>*q3 14 " b4*si n<

q

4 )*q 4 14
= 3.60

- b2*<sin<q2>*q2 14 + cos(q2>*q2 1*^2 4 5

- b3*COS(q3)*q3 > i*q3 4 + b 4*cos(q4 )*q 4 ^
j*q4 4

+ Sin(q4 )^q4>1

b3*sin(q3)*q3 22 ~ b4*sin<q4 )*q4 22
= 3.61

- b2*Csin(q2>^q2 22 + cos<q2>*<q2 2
)2 ^

- b3*cos(q3)*(q3 2 >
2 + b4*cos(

q

4 )*(

q

4 2
)2

- 2.0*sin(q2 >*q2 2

b3^sin(q3)*q3 23 ~ b4*sin(q4 )*q 4 23 = 3.62

- b2*<sin(q2>*q2 23 + cos(q2>*q2 2*q2 3 5

- b3*cos(q3)*q3 2*^3 3 + b4*cos<

q

4 >*q 4 2*q4 3

- sin(q2>*q2 3 ~ sin(q3>*q3 2

b3*sin<q3>*q3 24 ~ b4*sin(q4 >*q 4 24 = 3.63

- b2*Csin(q2>*q2 24 + cosCqo)*4!^ 2*q 2 4^

- b3*cos(q3)*q3 2*^3 4 + b4*cos(q4 >*q4 2*^4 4

- sin(q2 >*q2,4 + sin(q4 )*q4>2

b3*sin(q3>*q3 33 - b4*sin(q4 )*q4 33 = 3.64

- b2*(sin(q2>*q2 33 + cos(q2>*<q2 3 )2)

- b3*cos(q3>*(q3 3 >
2 + b4*COS<

q

4 )*(

q

4 3 >
2

- 2.0*sin<q3)*q3 3

b3*sin(q3>*q3 34 - b4*sin(q4 )*q4 34
= 3.65

- b2^Csin(q2)*q2 34 + cos<qo>*q2 3*q2 4^

- b3*cos<q3>*q3 3*q3 4 + b4*cos(q 4 )*q4 3*q4 4
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- Sin(q3 )*q3>4 + Sin(q4 )*q4>3

b3^sinCq3)^q3 >44 - b4*sin(q4 )*q4>44 = 3.66

- b2*<sin(q2>*q2 44 + cos<q2>*<<?2 4>^>

- b3*cos(q3>*(q3
f

4

) 2 + b 4*cos(q 4 )*(

q

4 t 4 ) 2

+ 2.0*sin(q4 )*q4>4

b3*cos(q3>*q3 jj + b4*cos(q4 )*q4 n = 3.67

+ b2*<cos(q2>*q2 n " sin(q2>*<q2 1* >

- b3#sin(q3)*(q3 j)
2 + b4*sin(q4 )*(q4 ^ 2

b3*cos(q3)*q3 12 + b4*cos(q4 )*q4 ^ = 3.68

+ b2*<cos<q2>*q2 12 " sin(q2>*q2 1*^2 2 J

- b3*sin(q3>*q3 i*q3 2 + b4*sin(q4 )*q 4 i*q 4 2

+ cos(q2>*q2
1

b3*cos(q3)*q3 ^3 + b4*cos<

q

4 )*q4 13 = 3.69

+ b2*<cos(q2>*q2 13 ~ 3in<- cl2^* Ci 2 l*q 2 3 5

- b3*sin(q3)^q3 i*q3 3 + b4*sin(q4 >*q4 i*q 4 3

+ cos(q3>*q3
±

b3*cos(q3)*q3 14 + b4*cos(

q

4 >*q4 i 4 = 3.70

+ b2*<cos(q2>*q2 14 " sin(q2 >*q2 1*^2 4*

- b3*sin<q3>*q3 i*q3,4 + b 4*si n(q 4 >*q 4 ^
i*q4 t 4

- COS<q 4 )*q4>1

b3*cos(q3)*q3 22 + b4*cos(

q

4 >*q4 22 = 3.71

+ b2*<cos(q2>*q2 22 ~ s i n(<32 ) * (q2 2
)2)
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- b3*sin(q3>*<q3 2
)2 + t>4*si n< q 4 )*< q 4 2

)2

+ 2.0*COS(q2 >*q2 2

- b3#cos(q3)*q3 23 + b4*cros( q4 )*q4 23 = 3.72

+ b2*<cos<q2>*q2,23 ~ sin( q2 ) * <^2,2^ c32,3 )

- b3*sin(q3 )*q3> 2^3,3 + b4*sin<cM ) * cl4,2* <*4,3

+ COS(q2>*q2 3 + cos(q3>*q3 2

- b3*cos(q3)*q3 24 + b4*cos(q4 )*q 4 24 = 3.73

+ b2*<cos(q2>*q2 24 ~ sin<q2>*q2 2*q2 4^

- b3*sin(q3 )^q3 >
2* c33,4 + b4*si n(q4 >*q4> 2*cJ4

, 4

+ cos(q2>*q2 4 " cos(q4 )*q4 2

- b3*cos(q3>*q3 33 + b4*cos(q4 )*q 4 33 = 3.74

+ b2*<cos(q2>*q2 33 ~ sin(q2>*<q2 3* *

- b3*sin(q3)^<q3 3 )
2 + b4*si n(

q

4 >*<

q

4 3>
2

+ 2.0*COS(q3)*q3 3

- b3*cos<q3>*q3 34 + b 4*cos(q4 >*q4 34 = 3.75

+ b2*Ccos(q2)-x-q2 34 " sin(q2>*q2 3*32 4^

- b3*sin(q3)*q3 >3*q3 >4 + b 4*si n(q4 >*q 4

(

3*q 4 p 4

+ COS(q3)*q3 4 - cos(q4 )*q4 3

- b3*cosCq3>*q3 >44 + b4*cos(

q

4 >*q4 r 44
= 3.76

+ b2*<cos< ^2**^2 44 " sin(q2>*<q2 4
)2)

- b3^sin(q3 )^(q3 t4
) 2 + b4*si n(q4 )*(

q

4 ^ 4
> 2

- 2.0*cos(q 4 )*q4 4
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The preceding twenty second order position sensitivity

equations contain twenty unknown second order position

sensitivities (omitting the second order sensitivities of

the input crank angle q2 since they are zero). The 20

equations above can be placed in matrix form as before but

the coefficient matrix B is now of dimension 20x20. The

unknown vector x wi 1 1 contain the second order position

sensitivities to be computed and the right side vector y

will contain the right hand sides of equations 3.57 through

3.76. The matrix B Is shown in Table 3.1 and the

corresponding vector of unknown second order position

sensitivities is given in Table 3.2.

This system of equations can be decoupled and solved as

before to obtain the second order position sensitivity

coef f lclents.

3.2.2 Velocity Sensitivity

The notation used for the second order velocity

sensitivity coefficients is:

^i jk = , i=2,4,j=l,4 and k = 1,4 3.77
ObjObk

Evaluating the partial derivatives of both sides of the

eight first order velocity sensitivity equations (equations
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Is3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 s4 01

10 S3 S4 01

10 S3 s4l

Ic3 c4 01

10 c3 c4 01

10 c3 c4 01

10 c3 c4 01

10 c3 c4 01

10 c3 c4 0!

10 c3 c4 01

10 c3 c4 01

10 c3 c4 01

10 c3 c4l

Table 3.1 Coefficient matrix for second order sensitivity
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1 q 3, 11 1

1 <*3, 12 1

1 <*3, 13 '

1 <i3, 14 '

1 q 3, 22 '

1 q3, 23 '

1 q 3, 24 '

1 q 3, 33 '

1 q 3, 34 '

1 q 3, 44 '

1 q 4, 11 '

1 q 4, 12 •

1 q 4, 13 '

1 q 4, 14 '

1 q 4, 22 '

1 q 4, 23 •

1 q 4, 24 '

1 q 4, 33 '

1 q4 34 1

1 q4 44 '

Table 3.2 Vector of second order position sensitivities
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3.14 through 3.21) with respect to the link lengths b^ , D2

,

D3 and b4 yields the following set of equations:

b3*sin<q3 )*q3>11 - b 4*si n(q4 )*q4> 1

l

= 3.78

- b2*<sin(q2>*q2 11 + cos(q2>*q2 1*^2 1

+ COS<q2 >*(q2 ,l*q2,l + (32* <52
> 11

)

- Sin(q2>*q2* (c32 1
)2)

- b3*(cosCq3 )*q3 1*33 1 + cos(q3)*(q3 1*^3 ±

+ <33*q3 ^) - si n( q3>*q3*( q3 i>
2

>

+ b4*(cos(q 4 >*q4> i*q4> ! + cos(q4 )*(q4>

x

#q4>

1

+ q4*q4,ll) - sin(q4 )*q4*(q4 ^ 1
)
2

)

b3*sin(q3)*q3 12 " b4*sin(q4 )#q4 12 = 3.79

- b2*<sin(q2>*q2, 12 + cos<q2>*q2 1*^2 2

+ cos(q2>*<q2 1*^2 2 + 32*q2 ' 12)

- sin(q2 >*q2 ,
i*<?2*q2, 2>

- b3^(cos(q3)*q3 i^q3 2 + COS<q3)*(q3 1*^3 2

+ q3*q3,12> ' »in<<l3 ) *<Sl3,1^3#<»3,2 )

+ b4*(cos(q 4 )*q4 i*q4> 2 + COS(q 4 )*<q4 i*q 4 2

+ <34* c?4
f 12 ) " sin(q 4 )*q4>1 *q4*q4>2 >

- Csin(q2>*q2
1

+ cos(c32 ) *q2 l*q2^

b3*sin(q3 )*q3f 13
- b4*si n(q4 )*q 4 ^ 13

= 3.80

- b2*<sin<q2 >*q 2> i3 + cosCq2 >*q2 , 1*32 ,

3

+ COS<q2 )*Cq2 tl ^q2> 3 + q2^q2,13 )

- sin(q2>*q2 i*92*q 2 3 5
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" b3*<cos(q 3 )*q3 l*q3 3 + cos( 3 3 >* ( S3 i*3 3 3

+ q3*q3>13 > " Sin(q3 )*q3t

1

*q3*q3>3 )

+ b4*(cos(q4 >*q4> i^q4 >3 + cos(q 4 )*(q4> i*q4>3

+ q4*q2 ,l3> " Sin(q4 )*q4>1 *q4*q4>3 )

- (sin<q3 >#q3 ± + cos(q3 )*q3 i*q3 >

b3*sin(q3 >*q3> 14
- b4*sin(q4 )*q4> 14

= 3.81

- b2*<sin(q2>*q2 14 + cos(q2>*q2 l*q2 4

+ cos(q2>*<q2 1*^2 4 + 92*92,14)

- sin(q2)*q2 i*92*q2 4^

- b3*(cos(q3 )*q3 1**13 4 + cos(q3 )*(q3 i*q 3 4

+ q3*q3>14 ) - Sin(q3 )*q3>

1

*q3*q3>4 )

+ b4#(cos(q4 )*q4f i^q4 >
4 + cos<

q

4 >*(

q

4> i*q4 f 4

+ 94*94, 14> ~ Sin(q4 )*q4>

1

*q4*q4f4 )

+ (Sin(q4 )*q4> 1
+ cos(q 4 )*q4> i*q4 )

b3*sin(q3 )*q3 22 " b 4*si n<q 4 )*q4 22 = 3.82

- b2*<sin(q2)*q2 22 + c°s<q2 ) *92 2*q 2 2

+ cos(q2)*^q2 2*92 2 + 92*^2 22^

- sin(q2>*q2* (<32 2 )2>

- b3*(cos(q3 )^q3t2*q3>2 + cosC

q

3 >*<q3

f

2*^3,

2

+ ^3*^3, 22 ) " Sin(q3 )*q3*(q3>2 )2)

+ b4*(cos(q4 )#q4>2*94 > 2
+ cos( 94>*<94

,
2*^4

, 2

+ ^4*^4, 22 5 ' sin<q4>*q4*<q4,2 )2)

- 2.0^(sin(q2^q2 2 + cos<92 ) *92* c?2 2 5
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b3*sin(q3>*q3 23 " b4*sin( 34 ) * <34,23 = 3.83

- b2*<sin(q2>*q2 23 + cos ^ c?2 ) * <^2 2*q2 3

+ cos(q2^*(q2 2*q2 3 + q2*q2 23^

- sin<q2 >*q2 ,
2*^2*^2,

3

)

- b3^(cos(q3>^q3> 2*q3 f 3
+ cos( q3>* ( q3 ,

2*q3 ,3

+ q3^q3> 23 ) " si n( q3>*q3, 2*q3*q3,3>

+ b4*(cos(q4 >*q4> 2*q4,3 + cos(

q

4>* (

q

4 ,2*q4 ,

3

+ q4*q4,23> " si n <q4 ) ^4^2*^4*^4,

3

)

- (sin(q2>*q2 3 + cos(q2>*<32 3*q2*

- (sin(q3)^q3 2 + cos(q3)*q3 2*q3 J

b3*sin(q3>-*q3 24 ~ b4*si n<

q

4 )*q4 24 = 3.84

- b2*<sin(q2>*q2 24 + cos(<32 )#^2 2*q2 4

+ cos(q2 >*<q2,2*q2,4 + q2*q2,24 5

- sin(q2>*q2 2*q2*q2 4^

- b3*(cosCq3>*q3> 2*q3,4 + cos(

q

3 ) * Cq3, 2*q3 ,

4

+ q3*q3,24> " sin(q3 ) *q3,2*q3*q3,4 )

+ b4*<cos(q4 >*q4 2*^4 4 + cos(q4 )*(q 4 2*^4,4

+ q4* c?4,24 ) " sin<q4 )*q4> 2^^4^ cJ4,4>

- CsinCqo)*^ 4 + cos<q2^*q2 4*^2 )

+ (sin(q 4 )*q4f2 + cos(

q

4 >*q4 ^ 2
*q4>

b3-x-sin(q3)^q3 33 - b 4*sin(q4 )*q4 33 = 3.85

- b2^(sin(q2)*q2> 33 + cosCq2 ) *q2,3*q 2 ,3

+ COS<q2 )*(q 2 ,3*q2,3 + q2*q2,33>

- sin<q2>^q2* (c52 3*^
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- b3*<COS<q3 >*q33*q3>3 + cos( 93>*<<*3, 3*^3
, 3

+ ^3^3, 33 ) " sin<q3 >*q3*Cq3>3 >
2

>

+ b4*(COS(q4 )*q43*q4>3 + COS(

q

4 >*(

q

4 ^ 3*q4 ^ 3

+ ^4* <^4
> 33 ) ~ sin(q 4 )*q4*<q4>3 )

2
)

- 2.0*(sin<q3 >*q3 3 + cos(

q

3 >*q3*q3 3)

b3^sin(q3)^q3 34 - b4*si n<q4 )*q4 34 = 3.86

- b2*<sin(q2>*q2 34 + cos(q2>*q2 3*q2 4

+ cos(q2^Cq2 ,3^2,4 + ^2*^2, 34 )

- sin(q2 )*q2 ,
3*^2*^2, 4>

- b3#(cos(q3)^q3> 3^q3 >4 + cosC

q

3 >*Cq3)3*q3 f 4

+ q3*q3>34 ) " Sin(q3 >*q3>3*q3*q3f4 )

+ b4*(cos(q4 )*q43^q4>4 + COS<

q

4 )*(

q

4

?

3*q 4 ^ 4

+ ^4*^4, 34> - sin(q4 )*q4>3*q4*q4>4 >

- <sin<q3 )*q3 4 + COS(q3 )*q 3 4*q3 >

+ (Sin(q4 )*q4>3 + COS(q 4 )*q 4>3*q4 )

b3*sin(q3 >*q3 44 - b4*sin(q 4 >*q4>44 = 3.87

- b2*<sin(q2>*q2 44 + cos(q2>*q2 4*^2 4

+ cos<q2 >*<q2,4*^2,4 + q2*q2,44 )

- sin(q2^q2* (cJ2 4
)2)

- b3*(cos(q3 )*q3 4*q3 4 + cos(q 3 )*(q3 4*q3 4

+ q 3*q3>44 > ~ sin(q3 )*q3*(q3>4 )
2

)

+ b4*(C0S(q 4 )*q4>

4

*q4>4 + COS(

q

4 )*<

q

4 f
4*^4

f 4

+ q4^«34,44> * sin(q4 )*q4*(q4f4 )
2

)

+ 2.0*<sinCq4 )*q 4 4 + COS(

q

4 )*q4*q 4 f 4
>
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b3*cos<q3>*q3 11 + b4*cos( c?4 ) * c54 n = 3.88

+ b2*(cos(q2 >*q2 11 ~ sin(q2>*q2 l*q 2 1

- sin(q2 >*<q2 ,
1*32,1 + ^2^2, 1^

- cos(q2>^q2^ (c?2 1
)2)

- b3*(sin(q3)*q3 i*q3 i
+ sin(q3)*(q3 i*q3 1

+ <?3*q3 u> + cos(q3)^q3*<q3 i>
2

>

+ b4*<sin(q4 )*q4f i*q4t 1 + si n(

q

4 >*(

q

4

>

^q 4

(

j

+ 34*^4, H> + cos(q4 )*q4*(q4> j)
2

)

b3^cos(q3>*q3 ^2 + b4*cos(q4 >*q 4 12 = 3.89

+ b2*<cos(q2>*q2 12 " sin(q2>*q2 l*q 2 2

- Sin(q2 >*(q2>1 *q2,2 + ^2*^2, 12>

- cos(q2 )*q2 i*92*q2 2^

- b3*Csin<q3>*q3>1 *q3 f
2 + sin<q3>*<q3f i*q3> 2

+ q3*q3>12 ) + COS(q3 )*q3 >1 *q3*q3> 2>

+ b4*(sin(q4 )*q4> i*q4f 2
+ sin< c?4 ) * ( ^4 ,

1*^4
, 2

+ ^4*^4, 12 J + cos(q4 )#q 4> j#q4*q4>2 )

+ (cos<q2 >*q2 1
~ sinCq2)*q2 i* (?2 )

b3*cos(q3>*q3 ^3 + b4*cos<q4 >*q4 j3 = 3.90

+ b2*Ccos(q2>^q2 13 " sinCqo)*^ l*q2 3

- 3in(q2 )*(q2>1 *q2>3 + q2*q2,13>

- COS(q2 )*q2 4#q2*q2 3)

- b3*(sin(q3>*q3 j*q3 3 + sin(q3>*(q3 i*q3 3

+ ^3*^3, 13 ) + cos(c33 )^3
>
1^^3^3,3 )

+ b4*(sin(q 4 )*q 4> i*q4> 3 + si n(

q

4 )*(

q

4 ,i*q4 t 3
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+ q4*q4,i3> + COS(q4 )*q4>

1

^q4^q4>3 )

+ Ccos(q3)*q3 j
- sin(q3>*q3 i*q3>

b3*COS<q3)*q3 14 + b4*COS(

q

4 >*q 4 f 14
= 3.91

+ b2*<cos(q2>*q2 14 ~ sin(q2>*q2 1*^2 4

- sin(q2 >*<q2, 1*^2,4 + q2^2,14 )

- cos(q2^"*q2 1*92*^2 4^

- b3*<sinCq3>*q3>1 *q3 >4 + sin<q3>*<q3t

1

*q3f 4

+ ^3*33, 14> + COS(q3 )*q3f i*q3*q3> 4 >

+ b4*<sin(q 4 )*q4 i*q4 4 + sin(q 4 )*(q 4 1
*q4 4

+ q4*q4f 14> + COS(q4 >*q4> j*q4*q4>4 >

- <cos<q4 >*q4> 1 - Sln<q4 )*q4 ^q4 >

b3#cos(q3 )*q3 22 + b4*cos(q4 )*q4 22 = 3.92

+ b2*<cos(q2)*q2 22 ~ sin(q2>*q2 2*^2 2

- sin(q2^*^q2 2*^2 2 + ^2*^2 22^

- cos(q2>*q2* (c32 2^ 5

- b3*(sin(q3 )*q3>2*q3,2 + sin( *3>*<<l3
,
2*^3

, 2

+ 93*^3, 22> + COS(q3 >*q3*(q3f 2>
2

>

+ b4^Csin(q4 )*q4> 2#c?4,2 + si n( q4 ) * ( ^4 ,2*^4 , 2

+ 34*94, 22^ + cos<q4 )^q 4*(q4>2 )2)

+ 2.0*(cos<q2>*q2 2 ~ si n(q2>*q2*q2 2^

b3*COS(q3)*q3 23 + b4*COS(

q

4 >*q 4 f
23 = 3.93

+ b2*Ccos(q2 )*q2 ,23 " sin(q2 >*q 2 ,
2*^2 ,3

- sln<q2>*<q2 , 2*^2,3 + q2* <*2,23 )

- cos(q2^q2 2*^2* CJ2 3*
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- b3*Csin(q3 )*q3 2*q3 3 + sin(q3 >*<q 3 2*q 3 3

+ q3*q3>23 ) + cos( ^3 >#^3 ,

2*q3*q3 ,

3

)

+ b 4*<sin(q4 )*q42*q4,3 + si n( q4>*< ^4 ,
2*q 4 , 3

+ c?4* c34,23 ) + cos(q4 )#q4 2*^4*^4 3>

+ (cos(q2^42 3 ~ sin(q2>*q2 3#<^2 )

+ <cos(q3)*q3 2 " sin(q3 )*q3 2*q3^

« •

b3*cos(q3 )*q3 24 + b4*cos<q4 >*q4 24 = 3.94

+ b2*<cos(q2>*q2 24 ~ sin(q2>*q2 2*q2 4

- sin(q2 >*<q2,2*^2,4 + q2*q2,24 )

- cos(q2>*q2 2*q2*q2 4^

- b3*<sin<q3>*q3f 2*<*3,4 + sinC<33 )#c<?3,2#<33,4

+ ^3*^3, 24 5 + cos(q3 ) * c'3,2^3^3,4 )

+ b4^(sinCq4 )*q4>2* c34,4 + si n(

q

4 )*C

q

4 ^
2*^4 ,

4

+ q4*q4> 24 ) + cos<q4 )*q 4> 2*q4*34,4>

+ <cos(q2)*q2 4 ~ sin(q2 >*q2 4*^2^

- <cos(q4 )*q4> 2 " sin<q4 )*q 4f 2*q4>

b3*cos(q3 )*q3 33 + b4*cos<q 4 )*q4 33 = 3.95

+ b2*<COSCq2 >*q2,33 ~ si n( q2 > *^2 ,
3*q 2 ,

3

- sin(q2 )*(q2 ,3*q2,3 + q2*q2,33>

- COS<q2 )^q2*Cq2 3 )2)

- b3*(sin(q3)*q3 >
3*q3> 3 + si n(

q

3 >*<

q

3>

3

*q3> 3

+ q3*q3,33 ) + cos(q3 )*q3*<q3>3 >
2

)

+ b4*(sin(q4 )*q43*q4>3 + si nC q 4 ) * (

q

4 ,
3*q 4 ,

3

+ q4*<34 t 33 > + COS(q 4 )*q4^(q4>3 ) 2 )

50



+ 2.0*<COS<q3 )*q3 3 - Sin<q3)*q3*q3 3)

- b3*cos(q3>*q3 3^ + b4*cos(

q

4 )*q4 34 = 3.96

+ b2*<cos<q2 >*q2,34 " si n( <?2 ) *^2 ,3*^2, 4

- sinCq2 >*Cq2,3* (32,4 + ^2*^2, 34 >

- cos(q2 >*q2,3* <32*q2,4 )

- b3*(sinCq3)#q3 f
3*q3>4 + si n( q3>*<q3 ,3*q3 ,

4

« m

+ q3*q3
f
34> + COS(q3)*q3> 3*q3*q3>4 )

+ b4#(sin(q4>*q4t 3*q4> 4 + sin(q4 )*(q4> 3*q4>4

+ ^4*q4, 34> + COS(q4 )*q4> 3*q4^q4>4 )

+ Ccos(q3)*q3 4
- sin(q3>*q3 4*q3>

- (cos(q4 >*q4> 3 - si n(q4 )*q 4 ^ 3*q4 >

• «

- b3*cos(q3>#q3 >44 + b4*cos(q4 >*q4 ^ 44
= 3.97

+ b2*<cos<q2 )*q2 44 - sin(q2 >*q2 4*q2 4

- sin(q2 )#(q2 4*q2 4 + q2* c?2 44^

- cos(q2 )^q2*(q2 4 > 2 >

- b3*(sin(q3>*q3 4*q3 4 + sin(q3>*(q3 4*q3 4

+ q3*q3>44 ) + C0S(q3 )^q3#(q3>4 )
2

)

+ b4#(sin(q4 )*q4>4*q4>4 + si n(q 4 >#(q 4 ^ 4*q 4> 4

+ q4*q4 >
44> + COS(q4)*q4*(q4>4 >

2
)

- 2.0*(COS(q4 )*q4>4 - sin(q4 )^q4*q4>4 )

The preceding twenty velocity sensitivity equations

contain twenty unknown second order velocity sensitivities

(omitting the second order velocity sensitivities of the

input crank q2 since they are zero). The 20 equations
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above can be written in matrix form with the right side

vector containing only known values. The coefficient matrix

that results is identical to that shown in Table 3.1 and the

same solution procedure can be applied.

3.2.3 Acceleration Sensitivity

The notation used for the second order acceleration

sensitivity coefficients is:

qj j k
= , i = 2,4 , j = 1,4 and k = 1,4 3.98
objObk

Evaluating the partial derivative of both sides of the

eight first order acceleration sensitivity equations

(equations 3.25 through 3.32) with respect to the link

lengths bj , b2» b3 and b4 yields the following set of 20

equat ions:

b3*sin(q3 )*q3 11
- b4*sin(q4 )*q4> ^ = 3.99

- b2*<sin(q2>*q2 li
+ cos(q2>*q2 l*q 2 1

+ cos<q2>*<q2 1*^2 1
+ ^2*^2 11 *

- Sin(q2>*q2*<q2
1
)2

+ 2.0*(cos(q2>*<q2*^2 11
+ ( ^2 1

)2)

- sin(q2>*q2 i*92*q2 1^ ~ sin<q2>*<2.0*q2*q2 1*^2 1

+ <q2 )
2^q2 n> ~ COS(q2 >*<q2 )2* (c32 1

)2)

- b3*(cosCq3)*q3 i*q3 j
+ cos(q3)*(q3 i*q*3 j
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+ ^3*^3 11 J " Sin(q3)#q3^<q3 ^)2

+ 2.0*(cosCq3)*(q3^q3 ^ + <q3 !>
2

)

- sin<q3>*q3 i*q3*q3 i> - si n(q3)#( 2.0*q3*q3 i*q3 i

+ <q3> 2*q3
f n> - COS(q3)*(q3 )

2^(q3>

1

)
2

)

+ b4*<COS(q4 >*q4> i*q4> i
+ COS(q4 )*<q4> ^q 4>

1

+ ^4*^4, n> " sin(q4 )*q4*Cq4>1 >
2

+ 2.0*(cos<q4 )*(q4*q4>11 + <q4> i>
2 >

- Sin(q4 >*q4> i^q4^q4 f i>
- si n(

q

4 )*< 2 .0*q4*q4 ^
j*q4 >

1

+ (q4 >
2*q4

> u> ~ COS(q4 )*<q4)
2^(q4>1 )

2
)

b3*sin(q3)*q*3 \2 ~ b4sin( q4>*q4 12 = 3.100

- b2*<sin(q2>*q2 12 + cos(q2>*q2 1*^2 2

+ cos(q2^*^q2 l*q2 2 + q2*q2 12^

- sin(q2)*q2 i*32*q2 2

+ 2.0*Ccos(q2>*<q2* (32 12 + q2 l*q 2 2?

- Sin(q2)*q2 i*92*q2 2? ~ s * n( S2 5 ** 2 «0*q2*q2 l*q2 2

+ (q2 )2"*q2 \2? ~ c°9<q2 ) *q2 i*<q2^*q2 2?

- b3*(cos<q3>*q3 >1 *q3> 2 + cos(q3 )*(q3f ^q'3^

+ q*3*q3
f i2 ) " sin(<53 )>q3, l*^3*q3,2

+ 2.0*(cos(q3)^(q3*q3 ^2 + ^3 l*q3 2?

- sin(q3 )*q3 i*q3*q3 2> ~ si n( q 3 )*(2 .0*q3*q3 1*^3 2

+ Cq3 )
2*q3>12 ) - C0S<q3 >*q3 >1 *<q3>

2*q3> 2>

+ b4*(cos(q 4 )*q4> i*q4> 2 + COS(q 4 )^(q 4> i*q 4> 2

+ ^4* <^4,12 ) " 9in(q4 )*q4> i
*q4*q4>2

+ 2.0*(cos(q 4 >*<q4*q4>12 + q4,l*q4,2 )
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- Sin(q4 )*q4> 1*^4*^4,

2

5 " si nC 94>*< 2 • O*^*^
, l *^4 , 2

+ (q4> 2*q4,i2 > " COs(q 4 >*q4>

1

*(q4 > 2*q 4> 2 )

- <sin(q2>*q2
l

+ cos(q2^*q2 1*^2

+ 2.0*cos<q2>*q2*q2
1 ~ sin(q2>*q2 i*<q2> 2)

b3*sin(q3)*q'3 13 - b 4*3in( q4 )*q 4 13 = 3.101

- b2*<sin(q2>*q2 13 + cosCq2>*<32 l*q2 3

+ COS<q2 )*<q2tl *q2>3 + q 2*q2, 13 )

- sin<q2 >*q2>1 *q2*q2f3

+ 2.0*<COS(q2 )*(q2*q2 13 + ^2 l*q2 3 5

- sin(q2 )*q2 i*^2*q2 3* " sin(q2 )*(2.0*q2*q2 1*^2 3

+ Cq2 )
2^q2>1 3) - cos(q2 )^q2f 1

*(q2 ^
2^2,3 )

- b3*<COS<q3>*q3 fl *q3> 3 + COS(q3 >*< q 3 f^3f3

+ q3*q3>1 3> - Sin(q3 )^q3 >1 *q3*q3> 3

+ 2.0*(cos(q3>^(q3*q3 ^3 + 153 1*^3 3)

- sin(q3)*q3 i*<33*q3 3) - si n( q3)*( 2. 0*q3*q3 i*q3 3

+ <q3 >
2*q3>1 3> - cos(q3>*q3>1 *(q3>

2*q3
f
3>

+ b4*(cos(q4 )*q4> ^q4> 3 + COS(

q

4 >*<

q

4 f i*q4 t 3

+ ^4*^4, 13 5 " sin(q4 )*q41 *q4*q4>3

+ 2.0*(cos(q4 )#(q 4^q4> 13 + ^4,1^^4,3)

- Sin(q4 )*q4 ^q4*q4>3 ) - sin(q4 >*(2.0*q4*q4 ^
±*q4 ,3

+ <q4 ^ 2*q4
f i3>

- COS(q4 )*q4>

1

*Cq4 ) 2*q4> 3>

- <sin(q3)*q'3 j + cos(q3>*q3 1*^3

+ 2.0*cos(q3)*q3#q3 j
- sin(q3)*q3 j^Cc^) 2 )
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b3*sin(q3>*q3, 14
_ b4*sin(q4 >*q4> 14

= 3.102

- b2*<sin(q2>*q2 14 + cos(q2>*q*2 1*32 4

+ COS(q2>*Cq2> 1*^2,4 + q2*q2,14 )

- Sin(q2)*q2 ,i*q2^2,4

+ 2.0*(cos(q2>*<q2*^2 14 + q2 l*q2 4^

- sin(q2>*q2 l*32*q2 4^ ~ si n(c?2 ) * ( ^ •°*^2*q2 l*q2 4

+ (cj2>2*q2 14 ) - cos(q2>*q2 i*^^^*^ 4^

- b3#<cos(q3)*q3 i*q3 4 + cos(q3>#(q3 1*^3 4

+ q3*q3 >14 ) ~ Sin(q3)*q3>1 *q3^q3 >4

+ 2.0*(cos(q3)*(q3*q3
j 4 + q$ 1*^3 4>

- sin<q3)*q3 i*q[3*q3 4 > - sin(q3>*< 2.0*q 3*q3 1*^3 4

+ (q3>^*q3 i 4 ) - cos(q3)*q3 j-fcC^^aq^ ^)

+ b4*(cosCq 4 )#q4j

1

*q4>4 + COS(

q

4 >*(

q

4 ^

!*q'
4 f

4

+ 94*^4, 14> " Sin(q4 )*q41 *q 4*q44
+ 2.0#(COS(q4 )*(q4*q4>14 + 34,1*^4, 4>

- Sin(q4 )*q4>

1

*q4^q4>4 ) - si n(

q

4 >*( 2 . 0*q4*q 4 p 1
*q4 p

4

+ ^q4^ 2^q4
f i4>

~ COS(q4 )*q4>

1

*<q4 )
2*q4>4 )

- (sln(q4 )*q4> j + cos(q4 )*q 4> i*q 4

+ 2.0*cos(q4 )*q4#q 4 j
- sin(q4 )*q 4 i*<q4 > 2 )

b3*sin(q3>*q'3 22 ~ b4*sin(q4 )#q4 22 = 3.103

- b2*( si n( q2^*q2 22 "*" cos(q2^*q2 2*q2 2
* • • *

+ cos(q2^*^q2 2*q2 2 + q2*q2 22^

- sin(q2>**q2* (cj2 2)^

+ 2.0*(cos(q2 ^Cq2*^2 22 + (q2 2
)2)
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- sin(q2>*q2 2*q2*q2 2^ ~ 3i n^^*** 2 *^*^*^ 2*q 2 2

+ (q2 >
2*q2 22 J " cosCq2 >*<q2 )2^ c ^2 2

)2)

- b3*(cosCq3>*q3> 2*q3,2 + cos(^^^3, 2*<*3
, 2

+ ^3*^3, 22 ) " sin<q3 )*q3*<q3>2 >
2

+ 2.0*<cos(q3 >*<q3*q3>22 + ((^3,2 )2)

- sin(q3 )*q3 2*^3*33 2^ ~ 3in(- q3 )#( 2 .0*q3*q3 2*^3 2

+ <q3 > 2*q3 22^ ~ cos(q3 )*(

q

3 )
2*(

q

3 2
)2)

+ b4*(cos(q4 )*q 4> 2* c54,2 + cos( 94 >*< ^4 ,
2*^4

, 2

+ ^4*^4, 22 ) " Sin(q4 )*q4*<q4> 2
)2

+ 2.0*(cos(q4 )*<q4*q4>22 + C(^4,2 )2)

- Sin(q4 )*q4>2*44*q4f 2 ) ~ sin( q4>*<2.0*q4*q4 ,2*^4,

2

+ (<34>
2
*q4,22 ) " COS<q4 )*(q4 )

2*(q4>2 )2>

- 2.0^<sin<q2)*q
#

2 1
+ cos(q2>*q2 1*^2

+ 2.0*cos(q2 )*q2*^2 1 ~ sin(q2 >*q2 i*<q2 )2)

b3*sin(q 3 )#q3 23 ~ b4#sin(q4 )*q4 23 = 3.104

- b2*Csin(q25*q2 23 + cosCqo)*^ 2*q2 3

+ cos(q2 )*<q2 ,2^2,3 + ^2*^2, 23>

- sin(q2>*q2 2*^2* c?2 3

+ 2.0*(cos(q2)*(q2*^2 23 + ^2 2*^2 3^

- sin(q2>*q2 2*^2*^2 3 J ~ sin(q2>*(2.0*q2*q2 2*q2 3

+ (q2) 2*q2 23^ ~ cos ^ <32 )#q2 2* (c*2 )2* c*2 3^

- b3*Ccos(q3 )*q3f2*q3>3 + COS(q3 )#(

q

3 >2^^3 ,3

+ q3*q3>23 ) " sinC<3 3 >*q3> 2*^3*33, 3

+ 2.0*(cos<q3 >*(q3*q3f23 + ^3,2*^3,

3

)
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- sin<q3 )#q 3 ^ 2*q3*q3 3> " si n(q3 )*<2 . 0*q3*q3 2*^3 3

+ Cq3 >
2*q3> 23 ) " COS<q3 >*q3 f 2*<q3>

2^3 ,
3>

+ b4*<COS(q4 )*q4>2* c?4,3 + COS(q 4 >*(q4 2*^4,3

+ q 4*q4>23 ) ~ sin( ^4 ) *^4 ,2*^4*^4 ,3

+ 2.0*<COS(q4 )#(q4*q4> 23 + ^4,2*^4,3*

- Sin<q4 )*q4t2*q4* c!4
t
3> ~ sin(q4 >*(2.0*q 4*q4 f

2*^4
, 3

+ <q4 > 2*q4f 23> " cos< q4 >*q4 j2
* ( <34 )2*<34 ,3>

- Csin<q2)*q2 3 + cos<qo>*<32 3*^2

+ 2.0^cos(q2>*q2* cl2 3 " 3in(q2 >*q2 3* ( 92 )2)

- <sin(q3 >#q3 2 + coa(q3 )*q3 2*^3

+ 2.0*cos(q3 )#q3*q3 2 ~ sin(q3 )*q3 2* (<33> 2 >

b3*sin(q3 )*q3 24 ~ b4*sin(q 4 )*q'
4 24 = 3.105

- b2*Csin(q2>*q2 24 + COSCqo^*^ 2*q2 4

+ cos(q2^*^q2 2* c'2 4 + ^2*^2 24^

- sin(q2^*q2 2*^2*^2 4

+ 2.0*(cos(q2>*<q2* <32 24 + ^2 2*^2 4^

- sin(q2>*q2 2*q2*q2 4^ ~ sin(q2>*<2.0*q2*q2 2*q2 4

+ Cq2 ) 2*q2? 24 ) " COS(q2 >*q2 ,
2* (

q

2
)2*q2 ,

4>

- b3*<cosCq3 >*q3> 2*S3,4 + cos( q3 ) ^ (

q

3,2*q3,

4

+ q3*q3,24> * 8inCq3>*q3 f
2*«l3*q3

f 4

+ 2.0*<COS(q3 >*<q3*q3>24 + q3,2*^3,4 )

- sin(q3 )*q3 2*q3*q3 4^ " si n<

q

3 )*( 2.0*q3*q3 2*q3 4

+ Cq3 )
2*q3>24> - cos(q3 >*q3 § 2*<<*3>

2
*<33, 4 )

+ b4#(cos<q 4 >*q 4 2***4,4 + COS< q 4 >*( q4 ^
2*^4

, 4
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+ <?4*q4,24 ) " sinC<54 ) * c?4,2*q4*q4,4

+ 2.0*<cos(q4 >*(q4*q4> 24 + q4,2*q4,4 )

- sin(q4 )*q4> 2* <34* c54,4 ) ~ si n(q 4 >*(2 . 0*q 4*q4 f
2*^4

, 4

+ ( 34> 2* <34,24 ) " cosC<34>*q4
>
2* (q 4

)2^q4 > 4
)

+ (sin(q4 )*q4>2 + cos<q4 >#q4 2*3*4

+ 2.0*COS<q 4 )*q4*q4 2
" sin(q4 >*q4 2*<q4 )2)

b3^-sin(q3)*q3 33 - b4*si nC q 4 )*q4 33 = 3.106

- b2*( si n( q2^*q2 33 + cos(q2^*q2 3*^2 3

+ cos(q2^Cq2f 3*q2 r 3 + ^2*q2,33 )

- sin(q2>*q2* (<32 3^

+ 2.0*(cos(q2 >*<q2*32 33 + (q2 3 )2)

- sin(q2>*<92 3*q2*q2 3^ " si n(q2>*< 2 .0*q2*q2 3*q2 3

+ Cq2 )
2*q2 33) ~ COS(q2>*<q2 )2*< <32 3

)2)

- b3*(cos(q3)*q3 >
3*q3> 3 + cos<

q

3 >*(

q

3>

3

*q 3 % 3

+ q3*q3,33> " sin<q3>*q3*Cq
3t 3)2

+ 2.0*(cos(q3)^(q3^q3 33 + (q3 3>
2

>

- sin(q3)*q3 3*<33*q3 3) - si n(q3>*( 2 .0*q3*q3 3*q3 3

+ <q3> 2*q3 33) - cos(q3)^-(q3)2*(q3 3)^)

+ b4*(cos(q 4 >*q4 3*q4> 3 + COS(q4 >*<q 4 3*0(4 3

+ ^4*^4, 33> " sin(q4 >*q4*(q4>3 >
2

+ 2.0#(cos(q4 )*(q 4-*q4> 33 + (q4 3 ) 2 )

- sinCq 4 )*q4>3*q 4*q4> 3) - si n(

q

4 >*< 2 . 0*q 4*q 4

(

3*q 4 f 3

+ (q4 )
2#q4>33 ) - cos(q4 >*(q4 )

2*(q 4> 3>
2

>

- 2.0*<sin(q3)*q'3 3 + cos(q3>*q3 3*^3
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+ 2.0*cos(q3 )*q 3*q3 3 " sin<q3 >*q 3 3*<q3 >
2 >

b3*sin(q3 )*q3 34 - b4*si n(q4 >*q'
4 34 = 3.107

- b2*(sin(q2 )*q2 34 + cosCqo^fcq's 3*^2 4

+ cos(q2 >*Cq2 ,3*q2,4 + <*2*q2>34 >

- sinCq2 >*q2 ,3*^2*q2,4

+ 2.0*(cos<q2 )*<q2*q2 34 + q2 3*q2 4)

- sin(q2 )*q2 3*q2*q2 4) - sin(

q

2 )*< 2 .0*q2*q2 3*q2 4

+ Cq2 )
2*q2>34> - COS(q2 >*q2>3*(

q

2 >
2*q2>4 >

- b3*Ccos(q3 >*q'
3>3*q3>4 + cos(q3 >*Cq3f

3

*q3>4

+ q3*q3>34 ) - Sin(q3 )*q3>3*q3*q3>4

+ 2.0*(cos(q3 )*(q3*q3 34 + q3 3*q3 4 >

- sin(q3 )*q3 3*q3*q3 4 > - sin< q3 )*( 2.0*q3*q 3 3*q3 4

+ <q3 >
2*q3>34 > - cos<q3 )*q3t3*(q3 >

2*q3>4 >

+ b4*(cos(q4 )*q43*q4>4 + COS< q 4 )*( q 4 f 3
*q"

4 ^ 4

+ ^4*^4, 34 5 " Sin(q4 )*q4>3*q4*q4>4

+ 2.0*(cos(q4 )*(q 4*q4>34 + q 4 ,3*q4,4>

- Sin(q4 )*q4>3*q4*q4>4 ) - si n(

q

4 )*(2.0*q 4*q 4 f 3*q4 p 4

+ <q4 > 2*q4>34 > " COS(q4 )*q43^(q4 ) 2*q4>4 )

+ (Sin(q4
)*'q

4>3 + cos(q4 >*q4>3*q4

+ 2.0*COS<q4 )*q4*q4 3 - si n(

q

4 >*q 4 f 3*<

q

4 )
2

>

- (sin(q3 )*q3 4 + cos(q3 >*q3 4*q3

+ 2.0*cos(q3 )*q3*q3 4
- sin(q3 )*q3 4*(q3 )

2
)
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b3*sin(q3>*q3,44 " b4^sin(q4 )*q4 ^ 44
= 3.108

- b2*(sin(q2>*q2 44 + cos<q2>*q*2 4*^2 4

+ cosCq2 >* ( 92,4*^2, 4 + q2*q2,44 )

- sin(q2)*q*2*^ c32 4
)2

+ 2.0*(cos(q2 >*<q2*q2,44 + Cq2,4 )2>

- sin(q2>*q2 4*^2*q2 4 5 " sin<q2>*<2.0*q2*q2 4*q2 4

+ (q2 )
2^q2 44> ~ COS( q2 >*< q2 >

2*< q2 4
)2)

- b3^(c03<q3)*q*3 4*q3 4 + COS(q3)*(q3 4*^*3 4

+ q3*q3,44> " 3in(q3 )*q3*(q3 >4 )
2

+ 2.0*(cos(q3 )*<q3*q3 44 + (q3 4 ) 2 )

- 9in(q3>*q3 4*<33*q3 4 > - si n< q3>*( 2 .0*cj3*q3 4*q3 4

+ Cq3> 2*q3 44 > - COS<

q

3 )#(

q

3 )
2*(

q

3 4 )
2

>

+ b4*(COS<q4 )^q4>4^q4>4 + COS( q4 ) *< q4 f 4
*q*

4 p 4

+ q4*q4
p
44> - sin(q4 )*q4^(q4>

4

)
2

+ 2.0*(cos<q4 )*(q4*q4>44 + <<34,4> 2)

- Sin(q4 )^q4>4*q 4*q4>4 ) - si n( q4 )*< 2 . 0*q4*q4 f 4
*q4 p 4

+ <q4 >
2*q4>44 > - COS(

q

4 )*(q4 >
2*(

q

4 ^ 4
)
2

)

+ 2.0*(sin(q4 >*q4>4 + cos(q 4 >*q4>4*q4

+ 2.0*COS(q4 )*q4*q4>4 - si n(q4 >*q 4 # 4
*(

q

4 )
2

)

b3*cos(q3 )*q'3 ^ + b4*COS<q 4 >*q4 n = 3.109

+ b2*<cos(q2>*q'2 11 ~ sin(q2>*'q2 l*q2 1

- gin(q2)*(q2 ,i*q2,l + q2*q2,U )

- cos(q2)*q2#(c32 1
)2

- 2.0*(sin(q2>*<q2*cJ2 11 + (q2 1
)2)
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- COS(q2)*q2 i*q2*q2 1* ~ cos( q2 ) * ( 2«°*q2*q2 1*^2 1

+ (q2 )
2*q2 ii 5 + sin(q2 >*(q2 )2* (<32 1

)2)

- b3*(sin(q3)*q3 i*q3 i
+ sin(q3)*(q3 1*^3 1

+ <33*q3 n> + cos(q3>*q3*<q3 j_>2

+ 2.0*(sin(q3)*(q3*q3 A1 + <q3 j>
2

>

+ cos(q3>*q3 i*q3*q3 i> + cos( q3>#( 2.0*q3*q3 1*^3 1

+ <q3)2*qg ^) - si n<q3>*( q3> 2*<q3 i
)2 >

+ b4*(sin(q4 >*q4# j*q4> ! + si n(

q

4 >*<

q

4 ^

i*q'
4 t 1

+ ^4*^4, n> + COS(q4 )*q'
4*<q4>1 >

2

+ 2.0*<sinCq4 )*(q4*q4>n + <q4> i>
2

>

+ COS(q4 )*q4t

1

*q4*q4> j ) + COS(

q

4 )*< 2 . 0*q4*q4 f i*q4

t

1

+ (<54 )2#<34,ll ) " sin(q4 )^(q4 )
2*(q 4> t

)
2

)

b3^cos(q3)*q'3 J2 + b 4*cos(q4 >*q4 ±2 ~ 3.110

+ b2*<cos<q2>*q2 12 ~ s i n((32 ) *'^2 l*q2 2

- sin(q2)*(q2 1*^2 2 + ^2*^2 12^

- cos<q2>*q2 l*32*q2 2

- 2.0*(sin(q2>*<q2*^2 12 + ^2 1*^2 2?

- cos<q2^*q2 l*32*q2 2? ~ COS<q2>*< 2 .0*q2*q2 1*^2,2

+ ^2 )2* c52,12 ) + sin(t32 ) * <?2,l* ((^2 )2^2,2 )

- b3*(sin<q3)*q3>1 *q3 >
2 + sin<q3>*(q3t i*q'3 ,2

+ *q3*q3 >1 2 ) + cos(q3 )*q3f !*q3*q3> 2

+ 2.0*(sln<q3>*<q3*q3>1 2 + 43,1*43,2'

+ cos<q3)*q3 i*q3^q3 2* + COS( q3>*(2 . 0*q3*q3 i*q3 2

+ Cq3 )
2*q3>12 ) " sin(q3>*q3 fi

*Cq3> 2*q 3> 2>
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+ b4*(sin(q 4 )*q4> 1*^4,2 + si n( ^4>*< ^4 ,
1*3*4

, 2

+ ^4^ c^4,12 ) + cos(q4 )*q 4fl *q4*q4) 2

+ 2.0*<sin<q4 )*(q4*q4>12 + ^4 , l*^ , 2 J

+ COS(q4 )*q4> i*q4^q4> 2 ) + COS<

q

4 >*( 2 . 0*q 4*q 4 ^q 4 2

+ (q4^ 2^q4
f i2 ) " sin(q4 )*q4f i*<q4 >

2*q 4> 2>

+ Ccos(q2^q2
l

+ sin(q2>*q2 1*32

+ 2.0*sin(q2 >*q2*32 1
" COS(q2 >*q2 i*<q2 )2 >

b3^cos<q3)*q'3 ^3 + b4*cos<q4 )*q4 13 = 3.111

+ b2*<COS(q2>*q2 13 ~ sin(q2>*q'2 1*^2 3

- sinCq2 >*(q2 , 1^2,3 + 32*q2 ,i3 )

- cos(q2^*q2 1*32*^2 3

- 2.0#(sin(q2>*<q2*^2 13 + q 2 l*q2 3*

- cos(q2>*q2 i*32*q2 3 5 ~ cos( q2^* ( 2 .0*q2*q2 l*q 2 3

+ Cq2> 2*q2 13) + sin(q2>*q2 i*<q2 )2*32 3*

- b3^(sin(q3)*q3>1 *q3 f
3 + si nC

q

3 >*(

q

3 f 1
*q3> 3

+ q3* c'3,13 ) + cos(q3)*q3
fl *q3*q3> 3

+ 2.0*<sin(q3 >*Cq3*q3 fl3 + q3 ,l*q3,3 )

+ cos(q3)*q3 i*<33*q3 3) + cos< q3>*( 2 .0*q3*q3 i*q3 3

+ <q3 >
2*q3>13 > + sinCq3)*q3

fl *(q3 )
2*q3

f
3)

+ b4*(sin(q4 )*q4> i*q4> 3 + sin<q4)*<q4 1**34 3

+ 94*^4, 13) + cos(q4 )*q4tl *q 4*q4>3

+ 2.0*(sinCq4 )^(q 4*q4>13 + ^i*^^
+ COS(q4 )*q4> i*Q4*q4> 3> + cos(q4 )*(2.0^q4*q4>1 *q4f 3

+ <q4> 2
*q4,i3> - sinCq4 )*q4>1 *<q 4 )

2*q4>3 )
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+ (C0S<q3>*q'3
i

+ Sin(q3>*q3 i*q*3

+ 2.0#sin(q3)->«-q3^q3 j
- cos(q3>*q3 i* ( q3>^>

b3*COS(q3)*q*3
> 14 + b4*COS(q4)*q'4 14

= 3.112

+ b2*^cos(q2^*q2 14 " sin(q2>*q
#

2 1*^2 4

- sin<q2 )*Cq2f 1
*'q

2 ,4
+ ^2*^2, 14 )

- cos(q2^q2 1*^2*^2 4

- 2.0*Csin(q2)*Cq2*q2 14 * ^2 1*^2 4 5

- COS(q2 >*q2 l*92*q2 4 5 ~ cos(q2>*< 2
.
0*q2*q2 1*^2 4

+ <q2^#c?2 14* + s i n(c32 )#q2 l* (q2^*q2 4 5

- b3*(sin(q3)*q'3 i*q3 4 + sin(q3)*(q3 1*^3 4

+ q3^3,14 ) + cos(q3 )*q3> i*q3*q3 ,4

+ 2.0#<sin(q3)*(q3*q3 14 + q^ 1*^3 4^

+ cos(q3>*q3 i*q3*q3 4) + cos( q3>*( 2. 0*q3*q3 j*q3 4

+ (q3 )
2*q3>1 4) ~ Sin<q3 )*q3 ^(q 3 )

2^q3> 4)

+ b4*(sin(q4)*q4> 1*^4,4 + si n(q4 >*< q4 f

^q'4
f 4

+ $4*q4
>
14> + COS(q4 )*q4 f

1

*q4*q4 4

+ 2.0*<sin(q4>*<q4*q4>1 4 + <34,i*q4,4>

+ cosCq4)*q4> !*q4*q4 t
4> + COS(

q

4 >*( 2 . 0*q 4*q 4 f
!*q 4 ^

4

+ (q4 )
2*q4>1 4) - Sin(q4 )*q4 >1 ^(q 4 )

2*q4
>
4)

- Ccos(q4>*q4
> 1

- si n( q4 >*q4 f
^q'4

- 2.0*sin(q4)*q4*q 4> 1
- cos(

q

4 >*q4 t
i*Cq4 ) 2)

b3*cos(q3)*q3 22 + b^COSCq^)*^^ 22 = 3.113

+ b2*( cos( q2^*q2 22 ~ sin(q2^*q2 2*^2 2
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- Sin(q2>*(q2>2*q2> 2 + 32*^2, 22>

- cos<q2 )*q'
2*(q2 2

)2

- 2.0*(sin(q2 )*(q 2*q2 22 + ((^2 2
)2)

- cos(q2 )*q2>2*q2*q2 ^ 2 ) " cos(

q

2 >*( 2.0*q2*q2 2*^2 2

+ (q2 )2#cl2 22* + sin(q2 )*(q2 )
2*(q2 2

)2)

- b3*(sin(q3>*q3 2*^3 2 + sin(q3)*(q3 2*q*3 2

+ ^3*^3, 22> + cos(q3 )^q3*<q3f2 ) 2

+ 2.0*(sin(q3)*(q3*q3 22 + (q3 2 )2)

+ cos(q3>*q3 2*^3*q3 2^ + cos < c?3>*<2.0*q3*q3 2*^3 2

+ Cq3> 2*q3 22 J " si n( ^3^ ( 43> 2*<q3 2 )2)

+ b4*(sin(q4 )*q4>2*q4>2 + si n( c?4 ) * (q4 ,
2*^4 ,2

+ $4*^4, 22 ) + COS(q4 )#q4#(q4)2
)2

+ 2.0*(sln(q4 )*(q4*q4>22 + q4,2*^4,2 >

+ COS<q4 )*q4>2#q4*q4>2 ) + cos( 3 4 >*< 2.0*q 4*q4 ^ 2*q 4 ,

2

+ ^4^ 2*q4
> 22 ) " sin(q4 )*(q4 )

2*(q4>2 )2)

+ 2.0*<cos(q2 >*q2 2 + s i n<:<32 ) *q2 2*^*2

+ 2.0*sin(q2 >*q2*q2 2 ~ cos(q2 )*q2 2* (<^2 )2)

b3^cos<q3)*q3 23 + b4#cos(q4 )*q*
4 23 = 3.114

+ b2#( cos( q2 )#q2 23 ~~ sinCqo^*^? 2*^2 3

- sin(q2 >*<q2 ,2*32,3 + qVq2,23 )

- cos(q2 )#q2 2*^2*^2 3

- 2.0*(sin(q2 >*(q2*q2 23 + q2 2*q2 3)

- COS(q2 )*q2 2*q2*q2 3) - cos(

q

2 >*( 2. 0*q2*q2 2*q2 3

+ Cq2 >2*q2 2g) + sin(q2 )*q2 2*(q2 ) 2*q£ 3)
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- b3*(sin(q3)*q3 2*q3 3 + sin(q3>*(q3 2*q3 3

+ q3*q3>23 ) + cos(q3 >*q3t

2

*q3*q3,

3

+ 2.0*<sin(q3 )*Cq3*q3> 23 + q3,2*q3,3>

+ cos(q3)*q3 2*q3*q3 3^ + cos( q3>*C2 .0*q3*q3 2*q3 3

+ (q3 )
2*q3> 23 ) " si n(<*3>*<J3, 2* (q3 )2*q3 ,3>

+ b4*(sin<q4 >*q4>2*q4,3 + 9in<q4>* c q4,2*q4 ,

3

+ q4*q4,23 ) + cos<q4 >*q4>2*<?4*q4,3

+ 2.0*(sin(q4 )*(q4*q4>23 + ^4 ,2*^4,3*

+ COS(q4 )*q4>2*q4#q4,3 ) + COS<

q

4 >*< 2 . 0*q4*q4 ^
2*^4 ,

3

+ Cq4 )
2*q4>23 ) " si n(

q

4 >*q 4 f 2*<

q

4 ) 2*q4 3)

+ Ccos(q2>*q2 3 ~ sin(q2>*q2 3*^2

- 2.0*sin(q2>*q2*q2 3 "" cos(q2>*q2 3* (q2 )2)

+ <COS(q3)*q'3 2 ~ Sin(q3)*q3 2*q3

- 2.0^sln(q3>*q3^q3 2 ~ cos(q3)*q3 2* (q3 )2)

b3*cos<q3>*q3 24 + b4*cos(

q

4 )*q 4 24 = 3.115

+ b2*(cos(q2^qi2 24 ~ sin(q2>*q2 2*q2 4

- sin(q2>*<q2 2*q2 4 + q2*q2 24^

- cos(q2^q2 2*q2*q2 4

- 2.0*(sin(q2>*Cq2*q2 24 + q2 2*q2 4^

- COS(q2 )*q2 2*q2*q2 4 J " cos<

q

2 >*<2.0*q2*q2 2*q 2 4

+ <q2> 2*q2 24^ + s i n(<J2**q2 2* (q2
)2*q2 4 5

- b3#(sin<q3 )*q3 >2#q3 >4 + sin(q 3 >*<q3f 2*q3,4

+ q3*q3,24> + cos(q3 )#q3,2*q3#q3,4

+ 2.0^(sin(q3 )*<q3^q3> 24 + q3,2*q3,4 )
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+ cos<q3 )*q3 2*q3*q3 4* + COS<qo>*<2.0*q3#q3 2*^3 4

+ <q3 )
2*q3> 24 ) " si n<q3 >*q3 , 2* ( q3

)2*q3 , 4 )

+ b4*(sin<q4 )*q42*q4,4 + sin( q 4 )*( q 4 >2*^4 , 4

+ ^4* c?4
> 24 ) + cos( q 4 ) * t*4,2*q4*q4,

4

+ 2.0*(sin(q4 >*<q4*q4>24 + q4,2*q4,4 )

+ COS(q4 )*q42*q4*q4,4 ) + cos(

q

4 >*( 2 . 0*q4*q4 ^
2*^4 ,

4

+ (q4 ) 2*q4> 24 ) " si nC <34 ) * <?4, 2* <q4
)2*q4 , 4

)

- (cos<q4 )*q4>2 " sinCq4 )*q4>2*q4

- 2.0*sin(q4 )*q4*q4 2 ~ cos(q4 )*q4 2* ( ^4 )2)

b3*cos(q3 >*q3 33 + b4*cos(q4 )*q4 33 = 3.116

+ b2*<cos(q2 >*q2 f33 - Sin(q2 >*q2 >3*q2, 3

- sin(q2 )*Cq2>3*q2 >3 + ^2*q2,33 )

- cos(q2>*q2* (c32 3
)2

- 2.0*(sin(q2>*(q2*^2 33 + Cq2 3
)2)

- cos(q2>*q2 3*92*q2 3 J ~ cos( c32 )#( 2 ,(-'*q2*q2 3*q2 3

+ Ccj2> 2*q2 33 > + si n( q2>*< q2 )2* ( ^2 3
)2)

- b3*Csin(q3 )*q3>3*q3>3 + sin(q3 >*<q 3>

3

*q3>3

+ q3*q3,33> + cos(q3 )*q3*(q3>3 )2

+ 2.0*(sin<q3 >*(q3*q3 33 + (q3 3 >
2

>

+ COS(q3 )*q3 3*q3*q3 3 > + COS(q3 )#< 2.0#q3*q3 3*q3 3

+ Cq3 ) 2*q3>33 ) - Sin(q3 )*<q3 ) 2*(q3>3 ) 2 )

+ b4*<sin(q4 >*q4>3*q4>3 + si n<

q

4 >*(

q

4 t 3*q 4 p

3

+ 94*^4, 33 > + cos(q4 )*q4*Cq4>3 )
2

+ 2.0*<sin<q 4 )*(q 4*q4j33 + <q4>3 >
2

>
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+ COS(q4 )*q4 3*q4*q4 3 ) + cos(

q

4 >*( 2. 0*q 4*q 4 ^ 3*q4 ^

3

+ (q4 )
2*q4>33> - si n(

q

4 >*(

q

4 >
2*<

q

4 p 3
)
2

)

+ 2.0*<cos(q3)*q*3 3 - sin(q3>*q3 3*^3

- 2.0*sin<q3)*q3*q3 3 - cos(q3>*q3 3*<q3> 2
>

b3^cos(q3>*q3 34 + b4*cos(q4 )*q4 34 = 3.117

+ b2*Ccos<q2>^q2 34 ~ sin(q2>*q2 3*q2 4

- sin(q2 >*<q2,3*^2,4 + q2*q2,34>

- cos(q2^q2 3*^2*^2 4

- 2.0*(sin(q2 )*Cq2*q2,34 + <^2,3*^2,4 )

- cos(q2>*q2 3*32*q2 4^ ~ cos(^^^ 2 *0*q2*q2 3*q2 4

+ Cq2> 2*q2 34^ + sin(q2>*q2 3* (q 2 5 ^*q2 4*

- b3*Csin(q3 )*q3> 3*q3>4 + sin(

q

3 >*Cq3>

3

*q3f 4

+ <J3*q3
f
34> + coa(q3 )#q3 (

3#q3*q3>4

+ 2.0*(sin(q3 )*(q3^q3 34 + q3 3*^3 4 )

+ COS(q3 )*q3 3^q3^q3 4 > + cos< q3 )*( 2 .0*q3*q3 3*0(3 4

+ Cq3 )2^q3>34 ) _ Sin<q3>*q3> 3*<q3>
2*q3 >4 >

+ b4*(sin(q4 )*q4> 3*q4>4 + si n(

q

4 >*<

q

4 ^
3*q4 t 4

+ q4*q4,34 ) + cos(q4 )*q4>3*q 4*q4>4

+ 2.0*(sin(q4 )*(q4*q4>34 + q4,3*q4
f
4>

+ C03(q4 )*q4>3^q4*q4>4 ) + cos(

q

4 >*( 2 . 0*q4*q4 f
3*q4 t 4

+ Cq4 )
2*q4>34 ) - Sin(q4 )*q 4> 3*(q4 ) 2*q4>4 >

- (cos(q4 )^q 4> 3 - Sin(q4 )*q4> 3*q4

- 2.0*sin(q4 )*q4*q 4 3 - cos(q4 )*q4 3*(q 4 )
2

)

+ Ccos(q3)*q'3 4 - sin(q3)*q3 4*q3
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- 2.0*sin<q3 >*q3* <33,4 " cos<q3 )*q3 >4*(q 3 ) 2 )

- b3*cos(q3 )*q3 >44 + b4*COS<q4 )*q'
4> 44

= 3.118

+ b2*(cos<q2>*q*2 44 ~ sin(q2>*q2 4*^2 4

- sin(q2 >*<q2, 4*^2,4 + c*2*q2,44 )

- cos<q2>*q2* (c32 4
)2

- 2.0*<sin(q2>*<q2*q2 44 + (q2 4
)2)

- cos(q2>*<32 4*q2*q2 4^ ~ cos(q2>*< 2.0*^2*^2 4*q2 4

+ (q2 >
2*q2 44^ + sin(q2 )*(q2 )2* (c32 4

)2)

- b3*<sinCq3>*q3>4*q3 >4
+ si n(

q

3 >*(

q

3 f 4
*q3) 4

+ q*3*q3 >44 ) + COS<q3 )#q3*(q3 ^ 4 >
2

+ 2.0#(sin(q3)#(q3*q3 44 + (q3 4 >
2

>

+ cos<q3)^q3 4*<33*q3 4) + cos( q3>*( 2.0*q3*q3 4*^3 4

+ Cq3 )
2*q3 44 ) - sin(q3)^(q3) 2*(q3 4 >

2
>

+ b4*(sin(q4 )*q44*q4>4 + S i n(

q

4 ) *(

q

4 ^ 4*q4 f 4

+ q4*<?4,44> + cos(q4 )*q4#Cq4>4 ) 2

+ 2.0*(sin(q4 >*<q4#q4>44 + <q4t4 >
2

>

+ COS(q4 )*q44*q4*q4>4 ) + cos<

q

4 )*( 2 . 0*q4*q 4 ^ 4
*q 4 ^ 4

+ <q4 )
2*q4>44 ) - Sin(q4 )^(q 4 )

2^(q4>4 )
2

)

- 2.0*(cos(q4 )*q4>4 - sin(q4 )*q4>4*q4

- 2.0*sin<q4 )*q4*q4>4 - COS(

q

4 >*q4 f 4
*< q 4 >

2
>

The preceding twenty acceleration sensitivity equations

contain twenty second order acceleration sensitivities

(omitting the second order acceleration sensitivities of the
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input crank ^2 since they are zero). The 20 equations above

can be written in matrix form with the same coefficient

matrix as before. Again, the right side vector contains only

known values. This system of equations can obviously be

solved by the same decoupling technique that was used for

the position and velocity sensitivity equations .
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CHAPTER IV

THE MINIMUM SENSITIVITY DESIGN PROBLEM

Design optimization theory has been successfully

applied to a large number of problems in the engineering

field. Optimization methods are usually iterative numerical

procedures that typically require a large amount of

computing time .for the solution process. The design

optimization approach provides a semi-automatic tool for

making design decisions which must otherwise be based on the

designees intuition and experience. The computer can be

used as a resource for performing the repetitive

calculations required at each iteration.

There are many well developed optimization packages

available to date that require only the initial design,

cost/constraint functions and their gradients as input. In

the present work the optimization and kinematic/sensitivity

analysis segments were kept independent. This allows some

flexibility in choosing an optimization package. The

numerical examples presented in Chapter 6 were obtainea by

sequential unconstrained minimization using a modified

steepest descent algorithm for the required first oraer

unconstrained nonlinear optimization. The subroutine used

for this was the routine VA06A from the Harwell Subroutine

Library [5] . .

The aim of the optimization process is to find the

design that minimizes a suitable objective function subject
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to specified constraints. The standard nonlinear constrained

optimization problem is generally defined as follows:

Minimize: F(b) (objective function) 4.1

Subject to:

9j(b) <= 0.0 j - 1 ,m (inequality constraints) 4.2

h^(b) = 0.0 i = m+l,m+k (equality constraints) 4.3

where: b is the vector of design variables.

In order to solve any design problem using optimization

techniques it is necessary to first convert the design

problem into a standard nonlinear programming problem in the

above format.

4.1 Formulation of the Minimum Sensitivity Problem

The first order sensitivity coefficients derived in

Chapter 3 are the derivatives of the change in position,

velocity, acceleration and coupler point position with

respect to the design variables. In general, the first order

sensitivity coefficients of any function of design and state

may be viewed as measures of the change in the value of the

function for a small change in design. Manufacturing errors

can be viewed as being small changes in design. Thus, the

problem of minimizing the sensitivity of the system

performance with respect to manufacturing error is
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equivalent to minimizing the first order sensitivity

coefficients of a suitable function of the form

f = f Cb,q,q,q,x,y)

.

The minimization of the first order sensitivity

coefficients can be achieved through the use of nonlinear

programming methods. To do this, however, we must restate

the problem in the form of a standard nonlinear programming

problem as described in the preceding section. First of all,

in order to minimize the maximum first order sensitivity

requires the introduction of an artificial design variable

that will represent the maximum sensitivity at the optimum.

Accordingly, an artificial design variable b^Q is introduced

in addition to the design variables b^ - b<? that are used to

define the four-bar linkage. The objective function is then

chosen to be the artificial design variable while added

constraints are set to ensure that the magnitude of the

appropriate first order sensitivity coefficient is less than

the artificial design variable. Upper and lower bound

constraints are also set for the artificial design variable.

After taking these steps, the original minimum sensitivity

problem can be converted from a minmax problem into a

standard nonlinear problem as given below:

Minimize: F(b) = b 10 4.4

Subject to: 9j ( b) <= 0-0 j=l ,m 4.5
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h i(b) = 0.0 i=m+l,m+k 4.6

The inequality constraints of equation 4.5 include those

that specify that the magnitude of all sensitivity

coefficients of interest are less than t^Q. These

constraints can be written as:

CSk )
2 - <b 10 >

2 <= °-° k = 1.2,.. 4.7

where: Sk are the first order sensitivity

coefficients of interest

Implementing this into a general nonlinear constrained

optimization algorithm will require the second order

sensitivities since the gradient of the first order

sensitivity constraint of equation 4.7 will be second order

sensitivities. The gradient of the objective function with

respect to b^Q is 1.0 and with respect to all other design

variables it is zero. The gradient of the sensitivity

constraint of equation 4.7 with respect to the design

variables depends on the choice of sensitivity coefficients

to be considered. For example, if we wish to minimize the

maximum position sensitivity, then the constraint equation

becomes:
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(q^j) 2 - (b 10 )
2 <= 0.0 i = 2,4 4.8

J = 1,4

The corresponding gradients, G are given by:

G = 2.0*q
i ^ j|<*qi t

j i = 2,4 4.9

J = 1,4

k » 1,4

The gradient of the bound constraints on each design

variable with respect to itself is 1.0 for the upper bound

constraint and -1.0 for the lower bound constraint; the

gradient with respect to all other design variables is zero.

The number of sensitivity constraints required depends

on the number of grid points to be considered since the

sensitivity is calculated at each grid point. However, for

any number of grid points the general statement of the

problem still conforms to the format of the standard

nonlinear problem and can therefore be solved using suitable

optimization techniques. In the present work, sequential

unconstrained minimization techniques <SUMT) were used for

this purpose C4] . These techniques are described briefly in

the next section.
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4.2 Sequential Unconstrained Minimization Techniques

To solve the constrained optimization problem through a

sequence of unconstrained minimizations, the objective

function must be modified to reflect the influence of the

constraints. This is done by creating a pseudo-objective

function that is formed from the true objective function by

the addition of a penalty term as follows:

Fp (b,x,rp ) = F(b) + r
p
*P<b> 4.10

Here, FCb) is the original objective function defined

by equation 4.1, PCb) is a measure of the constraint

violation, and rp is a multiplier used to control the

magnitude of the penalty term. The multiplier r p is

increased slowly from one unconstrained minimization to the

next in order to avoid the problem of 1 1
1 -condi

t

ioning. An

ill-conditioned problem occurs when the pseudo-objective

function or its derivatives become discontinuous or

ill-behaved at the constraint boundaries.

The penalty function method adds a penalty to the

pseudo-objective function depending on the violations in the

constraints. The first method discussed in the next section

is the exterior penalty function method; it was the easiest

to incorporate but it has some disadvantages. The second

method used was the augmented Lagrangian multiplier method
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which is more complex but less sensitive to numerical

i 1
1 -condi t ioning.

4.2.1 Exterior Penalty Function Method

The exterior penalty function method is the easiest to

incorporate into an unconstrained optimization algorithm. No

penalties are imposed if all the constraints are satisfied:

however, if one inequality or equality constraint is

violated the penalty imposed is of the form:

m m+k
PCb) = X) <max<0.0,gj (b))) 2 + Sch^b)) 2 4.11

j = 1 i =m+

1

Squaring the terms in equation 4.11 ensures a slope of

zero for the penalty function at the constraint boundary.

This, in turn, ensures a continuous slope for the first

derivative of the pseudo-objective function at the

constraint boundary.

The multiplier r
p is a very critical parameter and is

increased from iteration to iteration by multiplying the

current value by a fixed scalar 7. For the first

unconstrained minimization, r p is kept small (

r

p
= 2.0) and

the pseudo-objective function is minimized. However, the

solution that is found might have large constraint

violations. The multiplier r p is then increased by a factor

of -y , which is usually in the range of 2.0 to 5.0. After r
p

is updated, the next unconstrained minimization is performed

using the latest estimate for the design
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variables. If the design ever goes into the infeasible

region, the design approaches the true constrained optimum

from the infeasible region as r
p

is increased and becomes

feasible only in the limit as r
p approaches infinity. This

is one major disadvantage of the exterior penalty function

method because if the minimization is stopped before the

optimum is reached the design will be in the infeasible

region and therefore will not be acceptable.

4.2.2 Augmented Lagrange Multiplier Method

The augmented Lagrange multiplier method CALM) is a

better penalty function method since it reduces the

probability of numerical i 1
1 -condi

t

ioning. The augmented

Lagrange multiplier method helps reduce the dependency of

the algorithm on the choice of penalty parameters and the

way in which they are updated. The general augmented

Lagrange psuedo-object i ve function becomes:

4.12
m

A(b,x,r
p

> = F(b) + X) (x i*^j + r
p*(Vj>

2
)

j = l

m+k
+ X) (>*i*n i

(b) + TpttChjCb)) 2
)

i=m+l

where: Vj = maxCgj(b),- Xj/2.0*r
p

> 4.13
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The major difference between the exterior penalty

function method and the ALM method is the presence of the

multiplier X. If the X in equation 4.12 were equal to zero,

the penalty function for the ALM method would reduce to the

penalty function for the exterior penalty function method in

equation 4.11. The update formulas for the Lagrange

mul t ipl iers are

:

C Xj )P +i = ( x
J
)P 4.14

+ 2.0*r
p
(max(gj(b> ,(-\j >P/2.0*r

p
>

)

(X.)P+l = (x
i

)P + 2.0*r
p
*h

i
(b) 4. 15

This method is insensitive to the value of r p and there

is no need to increase r p to infinity in order to reach the

optimum. The factor r p is multiplied at each iteration by *y,

but only up to a preset maximum value; after that, it is

held constant throughout the remainder of the minimization

process. Some advantages of the ALM method are:

1. The starting point may be either feasible or

i nf easibl e

.

2. Acceleration to the optimal solution is

achieved by updating the Lagrange multipliers.

3. Precise gj<b) = 0.0 and hj(b) = 0.0 is possible.

4. At the optimum, the value of (Xj)* f 0.0 will

automatically identify the active constraint set.
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There are many other penalty function methods available

that could be used for this type of problems. The interior

penalty function and extended penalty function methods both

offer attractive features. Furthermore, SUMT is not the only

gradient based method available. Other methods such as

gradient projection techniques and the generalized reduced

gradient method <GRG) can also be applied effectively.
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CHAPTER V

IMPLEMENTATION

The methods derived in the preceding chapters were

implemented in an interactive, menu driven program which was

used to solve the numerical examples presented later in this

thesis. The program consists of four modules, each of which

has a well-defined function. These modules are: input,

analysis, optimization and output. The main program serves

as the driver from which any one of the four options can be

interactively selected. When the user selects an option, the

program enters that particular module and may be returned to

the main driver by selecting the return option within the

module. Each of the modules is described in detail in the

following sections.

5.1 Input Module

The parameters that must be read in by the input module

are the design variables b
1 -b9 , the initial conditions for

the input link (i.e., the initial angular velocity and the

angular acceleration) and the number of grid points. The

input can be read from one of two files (named D.INP1 and

D.INP2) which must be generated prior to execution of the

program. The input can also be provided interactively from

the keyboard. If desired, the design variables can be input

interactively from the screen using the tablet to draw each
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links end points. Before the screen input, a grid is

displayed to represent units of length and an option is

provided to change the grid size. Upon completing the screen

input for the design variables, the velocity, acceleration

and number of grid points are read from a file generated

beforehand. After all the input has been given to the

program, the user can return to the main driver and choose

to analyze or optimize the design linkage.

5.2 Analysis Module

The analysis module does not support any subcommands

and control of the program is automatically returned to the

main driver upon completion of the analysis of the linkage.

The input link's mobility is first calculated depending on

the link lengths, as explained in Chapter 2. Once the

minimum and maximum crank angles are defined, the kinematic

and design sensitivity analyses are simultaneously

performed. The analysis is done at each grid point. The

kinematic and design sensitivity analysis are done in

separate subroutines (VELAC and SENS respectively).

5.3 Optimization Module

The optimization module may be called from the main

program at any time after the first call to the input
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module. Since the analysis module is called from within the

optimization module, it is not necessary to perform an

analysis before the first call to the optimization module.

The user is allowed to select one of the two penalty

function methods discussed in Chapter 4 to perform the

optimization. Each penalty function method requires

additional parameter values to be input. The input

parameters required for the exterior penalty function method

are

:

NITER Number of r
p updates

STEP Initial design change

MAXFUN Number of function evaluations within an update

r
p Multiplier for penalty term

~y Scalar for the multiplier r
p

The input parameters for the ALM method are the same as the

exterior penalty function method with the addition of the

f ol 1 owing:

(

r

p
)max The limit for the multiplier rp

X The initial values for the Lagrangian multipliers

The program automatically reads the appropriate penalty

function method's input file, which must be generatea prior

to execution. Once the optimization method has been
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selected, a flag Is set within the program to store this

i nf ormat ion

.

After the optimization method has been selected and the

appropriate input parameters are read, the program flow

within the optimization module enters a loop. From within

this loop, it calls an unconstrained optimization subroutine

(VA06A from the Harwell subroutine library) to obtain the

design updates. The number of cycles within the loop is

determined by the parameter NITER which also controls the

number of updates for the multiplier r
p . Within subroutine

VA06A, a routine CALCFG is called to perform function

evaluations for the pseudo-objective function and its

gradients. The constraints and gradients of the constraint

functions are provided through a subroutine (called SETUP)

before the pseudo-objective function and its gradients are

calculated. The subroutine SETUP is provided by the user

prior to execution and contains the equations for the

constraint functions and their gradients for the particular

problem being solved.

The output from the optimization module is written to

two separate files whose file names can be specified by the

user. The final constraint violations and minimized

pseudo-objective function are printed to the screen and to a

file specified by the user for storing the kinematic/design

sensitivity analysis output. The optimization output for
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each function evaluation is written to a different file

selected by the user prior to exiting the optimization

modu 1 e

.

5.4 Output Module

The output module has a local driver that allows the

user to select different types of output to display the

final results. The user can select from one of four options:

file, screen, plots or pictorial representations. If the

user chooses to display analysis results to the screen or to

a file they may select from various types of output. Once

this selection is made and an optimization is performed

these results will be printed to the specified file or

screen. The type of output can be chosen from the following:

kinematic, first order design sensitivity, second order

design sensitivity or all of the kinematic/design

sensitivity analysis. The kinematic/design sensitivity

results can also be plotted against the crank angle. The

user can Interactively select the predetermined y-axls

variables (maximum of two per plot) and select between two

choices of x-axis variable (crank angle or grid point

number). The pictorial representations consist of a

graphical display of the four-bar linkage. The user can

choose from one of the following three types of pictorial
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representations: superposition, single position and

animat ion.

The selections made from the menus were done by using a

tablet and very little keyboard interaction was required

from the user. The program ran on a Harris 800 supermini

computer with DI-3000 graphics.
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CHAPTER VI

NUMERICAL EXAMPLES

The techniques developed in Chapters 2, 3 and 4 were

implemented in the computer program described in Chapter 5

and tested on several numerical examples.

6.1 Sens itivity Analysis Verification

This section discusses the results obtained for the

first and second order sensitivity analysis of selected

linkages. In order to verify the sensitivity analysis using

a finite difference technique, the linkage was analyzed for

a given set of design variables, b. One design variable was

then given a small perturbation Abs , so that the new value

of this design variable became:

Cbj>* = bj + Abj 6.1

The four-bar linkage was then analyzed at the new design.

The first order position sensitivity value at a particular

grid point should be approximated by:

<*i,J = «*i">J>* " qi<bj>>/<<bj>* - bj) 6.2

i = 2,4

J = 1,4
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Similarly the second order position sensitivity value at a

particular grid point can be approximated by:

^i.Jk - <q lfJ <bk
>* " q lfJ <bk >>/<<bk >* - b|c ) 6.3

i = 2,4

J = 1,4

k = 1 ,4

The preceding method can be used to check the first and

second order velocity and acceleration sensitivities as

wel 1 .

The following example illustrates the use of a small

perturbation in design variable b\ in checking the first and

second order position sensitivity for q3 . The initial values

of the design variables corresponding to the link lengths

are:

b
1

= 7.0

b2 = 3.0

b3
= 8.0

b4
= 6.0

Using a perturbation of 0.001 in design variable b^ , the

following data was obtained:

q3 1
= 0.06455

q3(Cb 1
>*> = 0.81282
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q3 Cb 1
) = 0.81276

<bj_ >* = 7.001

b
1

= 7.000

Using equation 6.2 to check the first order position

sensitivity of q3 with respect to bj , we see that we

require

:

0.06455 = (0.81282 - . 81276)/(7.001 - 7.000)

i .e. 0.06455 = 0.0646

Thus, the first order position sensitivity calculated

matches up to the third significant figure when compared to

the finite difference approximation of the first order

position sensitivity.

The following calculation was used to check the second

order position sensitivity of q3 using the same perturbation

in 1 ink 1 ength bj

:

q3 11
= " 0.07918

q3>1 (<b
1
>*) = 0.06447

q3,l (b
l

) = 0-06455

Using equation 6.3 to check the second order position

sensitivity coefficient q3 j< , we see that we should have:

- 0.07918 = (0.06447 - .06455)/( 7 .001 - 7.000)

i .e. - 0.07918 = - 0.07920
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The second order position sensitivity is accurate to the

third significant figure when compared to the finite

difference approximation the second order position

sensitivity calculated from the perturbation analysis.

Similar calculations were done for first and second order

velocity and acceleration sensitivities for several cases.

The agreement with the finite difference perdiction was

uniformly good (within 1%) and indicates that the proposed

technique for sensitivity analysis works with a very high

degree of accuracy.

6.2 Minimum Sensitivity Results

The second order sensitivity analysis was incorporated

into an optimization scheme for semi -automated design of

minimum sensitivity four-bar linkages. Some examples of

minimum sensitivity design using this method are presented

in this section. The objective in all the examples was to

minimize the maximum first order position sensitivity of the

coupler link with respect to the link lengths. Each example

was run for one full rotation of the crank with 16 grid

points. Since there are four position sensitivity

constraints for each grid point, 64 inequality constraints

are required to enforce the condition specified in equation

4.8. In addition to these constraints there are upper and

lower bound constraints for all the design variables,
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including the artificial design variable b 1Q . Additional

performance constraints may also be required, depending on

the problem to be solved.

In all the examples presented in this section, the

crank is driven at an angular velocity of 1.0 with a

constant angular acceleration of 0.0. In addition, all the

examples used the following initial estimate for the design

vector

:

b
1

= 7.0

b2
= 3.0

b3
= 8.0

b4
= 6.0

bg - l.o

b6
= 6.0

b7 - 0.0

b8
= 0.0

b9
= 0.0

The parameters required for the optimization algorithm

also remained the same for all the examples. The values

chosen for the exterior penalty function and ALM method

were

:

NITER = 8 Number of multiplier updates

r
p

= 2.0 Multiplier rp , initial value

*y = 5.0 Multiplying factor for updating rp
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The additional parameters required for the ALM method were

(rp)max = 500.0 Maximum value for rp

X =1.0 The Lagrangian multiplier

The multiplier rp for each example was increased up to a

final value of 156250.0 to insure a reasonably effective

correction of constraint violations.

Example 1; Straight Line Generator

A straight line generator should satisfy the

requirement that the coupler point trace an approximate

straight line during a portion of the complete rotation of

the input link. One linkage that can be used for this

purpose is the Chebyshev linkage, which is defined by the

relative proportions of the link lengths. The equality

constraints needed to ensure that these proportions hold in

the final design are as follows:

b2 - 2.0*bj_ = 0.0 6.8

b3 - b4 =0.0 6.9

b3 - 2.5*b2 =0.0 6.10

b6 - 2.0*b3 =0.0 6.11

b5 = 0.0 6.12
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Initially, the values for the violated equality

constraints in equations 6.8 through 6.12 were relatively

large but after optimization they were very close to zero.

The values of the constraint functions of equations 6.8

through 6.12 before and after optimization were:

Before: After:

- 0.94388 - 0.22E-04

0.92722 - 0.41E-04

3.11640 - 0.33E-04

2.15500 0.33E-04

- 0.23E-10 0.13E-21

The final values of the design variables after optimization

were

:

b
i

= 3.7924

b2 = 1 .8962

bo = 4.7404

b4 = 4.7403

be = - 0.23E-23

b6 = 9.4808

b7 = 0.0

b8 = 0.0

b9 = 0.0
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a. Straight line generator at initial design

b. Straight line generator at final design

Figure 6.1 Example 1: Straight line generator
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In addition to correcting the performance constraints

as described above, the cost function, i.e. the maximum

position sensitivity of the coupler link showed an increase

from 0.2582 at the initial design to 0.538 at the final

design. This increase in cost was due to the strict

requirements placed by the equality constraints in equations

6.8 through 6.12. The exact proportions of the design

variables were analyzed and compared with the final design.

In this case, the final design cost function was reduced by

nearly 50%.

Example 2; Perpendicular Line Generator

The perpendicular line generator is to be designed so

that the coupler point traces two straight line segments

that are approximately perpendicular to each other during a

portion of the rotation of the input link. This can be

ensured by maintaining certain proportions between the

lengths of the links. The equality constraints required for

this are as follows:

bj - 2.83*b2 =0.0 6.13

b3 - b2*2. 17=0.0 6.14

6.15

6. 16

6. 17
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Initially, the values of the violations in the

constraints of equations 6.13 through 6.17 were relatively

large but after optimization they were almost exactly

satisfied. The values of the constraint functions of

equations 6.13 through 6.17 before and after optimization

were:

Before: After:

0.94857 0.267E-05

3.14760 0.349E-05

0.56386 0.892E-05

0.32159 0.358E-05

- 0.24E-10 - 0.347E-15

The final values of the design variables after optimization

were

:

b
x

= 5.9585

b2 = 2.1055

b3 = 4.5689

b4 = 4.5689

b5 = 0.61E-17

btr = 9.1378

b7 = 0.0

b8 = 0.0

bo = 0.0
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a. Perpendicular line generator at initial design

b. Perpendicular line generator at final design

Figure 6.2 Example 2: Perpendicular line generator
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Once again the cost function In this example Increased

from 0.2582 at the initial design to 0.286 at the final

design due to the requirements for the constraints. However,

when the cost functions from the exact proportions of the

design variables were compared to the final design and there

was a reduction.

Example 3: Circle Generator

The circle generator is required to satisfy the

condition that the coupler point trace an approximate circle

during one complete rotation of the input link. The equality

constraints needed to maintain the correct proportions

between the link lengths are:

b
1

- 1 .41*b3 =0.0 6. 18

b2 - 0. 136*b3 =0.0 6.19

b3 - b 4 =0.0 6.20

b6 - 2.0*b3 = 0.0 6.21

b5 = 0.0 6.22

At the initial design, the values of the violated

constraints of equations 6.18 through 6.22 were relatively

large but after optimization they were almost exactly

satisfied. The values of the constraint functions of
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equations 6.18 through 6.22 before and after optimization

were:

Before: After:

0.13215 - 0.8158E-02

2.01370 0.16299

- 0.98492 0.5099E-02

- 0.243E-10 - 0.1227E-28

- 3.19420 - 0.1024E-01

The final values of the design variables were:

b
1

= 6.9728

b2 = 0.83634

b3 = 4.9511

b4 = 4.9460

b5 = 0.214E-30

b6 = 9.8919

b7 = 0.0

b8 = 0.0

b9 = 0.0

The observed cost reduction in this example was from

0.2582 at the initial design to 0.208 at the final design
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a. Circle generator at initial design

b. Circle generator at final design

Figure 6.3 Example 3: Circle generator
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Example 4: Four-bar Linkage Design with Transmission

Angle Limits

In this example it is required that the transmission

angle remain between 80 and 100 degrees throughout the

rotation of the input link. The constraints needed to

enforce these limits on the transmission angle at each grid

point are:

*y - 100.0 <= 0.0 6.23

- -Y + 80.0 <= 0.0 6.24

Initially the violated constraints were relatively

large but after optimization they were almost fully

corrected. The three highest constraint violations before

and after optimization were:

Before: After:

13.3 0.109

12.0 0.221

8.5 0.144

The maximum constraint violation was reduced from 13.3 to

0.221. The final values of the design variables were:

!D
i

- 8.99

b2 = 7.73
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b3 = 7.02

b4 = 5.68

b5 = 1.0

b6 = 6.0

b7 = 0.0

b8 = 0.0

b9 = 0.0

The violated constraints at the final design were caused by

the transmission angle falling below 80 degrees to a value

of 79.9 and going above 100 degrees to a value of 100.008.

The maximum position sensitivity i.e. cost function was

minimized from 0.2582 at the initial design to a value of

0.145 at the final design.

Example 5: Design for Coupler Link Angular Velocity

In this example, it is required that the angular

velocity of the coupler link remain between 0.1 and -0.1

(radians/sec) throughout the rotation of the input link. The

constraints needed to impose this requirement are:

q3 - 0. 1 <= 0.0 6.25

- q3 - 0.1 <= 0.0 6.26
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Initially, the constraint violations were relatively

large but after optimization the constraints were almost

fully corrected. The three highest constraint violations

before and after optimization were:

Before: After:

0.65 0.022

0.37 0.018

0.11 * 0.012

The maximum constraint violation was reduced from 0.65 to

0.022. The final values of the design variables were:

b
1

= 9.4241

b2 = 0.99466

b3 = 8.7684

b4 = 5.9697

b5 = 1.0

b6 = 6.0

b7 = 0.0

b8 = 0.0

b9 = 0.0

The angular velocity condition was not exactly satisfied but

the largest negative and positive velocities were equal to -

0.122 and 0.112, respectively. The maximum position
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sensitivity was minimized from 0.2582 at the initial design

to a value of 0.124 at the final design.

Example 6; Rigid Body Guidance

In this rigid body guidance problem, it is required

that the coupler link remain at a 45 degree angle throughout

the rotation of the input link. The constraint needed to

enforce this requirement Is:

q3 - 45 = 0.0 6.27

The performance constraint of equation 6.27 must be

converted to radians before verifying these results. The

three highest constraint violations before and after

optimization were:

Before: After:

- 0.403 - 0.105

0.487 0.114

0.407 0.101

The maximum constraint violation was reduced from 0.487 to

0.114. The final values of the design variables were:

t>
1

= 8.3873

b2 = 0.87126
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b3 = 8.3150

b4 = 6.3946

b5 = 1.0

b6 = 6.0

b7 = 0.0

b8 = 0.0

b9 = 0.0

The largest and smallest angles for the coupler link were

equal to 38.6 and 51.5 degrees, respectively. The maximum

sensitivity was minimized from 0.2582 at the initial design

to a value of 0.139 at the final design.

Example 7: Coupler Curve Synthesis

In this example, it is required that the coupler point

trace a straight line at 45 degrees to the horizontal

throughout the rotation of the input link. The slope and

y-intercept for the coupler curve were required for the

specification of this example problem. In order to achieve

this desired path a slope of 1.0 and y-intercept of 0.0 were

used. The constraint needed to enforce this requirement is:

2 _=0.0 6.28
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The three highest constraint violations before and

after optimization were:

Before: After:

2.210 0.931E-01

3.737 0.1313

2.862 0.1141

The maximum constraint violation was reduced from 3.737 to

0.1313. The final values of the design variables were:

bj = 8.13

b2 = 0.86

b3 = 7.78

b4 = 6.06

b5 = 0.00

b6 = 6.52

b7 = 0.0

b8 = 0.0

bo = 0.0

The violated constraints were due to the fact that the

coupler point did not trace an exact 45 degree line but had

a maximum vertical deviation of 0.131. This deviation seems

large, but compared to the maximum vertical deviation of

11.0 before the optimization, it is seen to be considerably

smaller. The maximum sensitivity was minimized from 0.2582
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at the initial design to a value of 0.149 at the final

design

.
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CHAPTER VVI

CONCLUSIONS

The research presented in this thesis was to develop a

computer-based design technique for- the design of minimum

sensitivity four-bar linkages. In order to manufacture the

linkage, appropriate tolerances have to be specified on the

link lengths. The tolerances on any dimension reflect the

sensitivity of the system performance to small variations in

that dimension. If the system performance is relatively

insensitive to variations in a particular dimension, the

tolerances on that dimension can be specified to be quite

loose. Since the tolerance on any dimension is dependent on

the sensitivity of the system performance to variations in

that dimension, it follows that in designing a minimum

sensitivity linkage, we are effectively designing a minimum

cost linkage as well.

The primary objective of the research described in this

thesis was the development of a general method for the

design of minimum sensitivity four-bar linkages using a

nonlinear programming approach. The underlying idea was to

convert the minimum sensitivity design problem into a

nonlinear optimal design problem which would then be solved

through the use of a gradient-based optimization technique.

It was realized that this would require not only kinematic

analysis of the linkage but first and second order design

sensitivity analysis as well. The method that was adopted
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for the kinematic analysis was a well-known loop closure

formulation. Since suitable methods for first order design

sensitivity analysis for the four-bar linkages were not

readily available in the literature, a set of first order

sensitivity equations was derived from the kinematic

equations by a direct differentiation approach. This direct

differentiation method was applied again to the first order

sensitivity equations to obtain a set of equations for the

second order design sensitivity analysis. The results of the

kinematic and design sensitivity analyses were supplied to

an optimization algorithm to obtain the next improved

design. The optimization method used was a sequential

unconstrained minimization technique that could make use of

an exterior penalty function or an augmented Lagrangian

funct ion

.

A second goal of the present work was the

implementation of the above solution method in an

interactive computer-aided design program that could be used

for efficient design of minimum sensitivity four-bar

linkages. This goal was also accomplished successfully. The

program developed offers several attractive features and is

highly interactive and user-friendly. The kinematic/design

sensitivity analysis and optimization sections are

completely independent, allowing the optimization package to

be interchanged quite easily. The program does not require
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much user Involvement other than the Input of an Initial

design, specification of cost/constraint functions and their

gradients and selection of a penalty function method. The

program also offers a variety of graphical displays for

inputting the problem description and for interpreting the

output

.

The program described in the preceding paragraph was

used to run several examples in order to verify the

sensitivity analysis schemes that were developed and to

evaluate the performance of the proposed scheme for the

design of minimum sensitivity four-bar linkages. The results

indicate that the sensitivity analysis is very accurate

(within 1% when checked by perturbation analysis) and the

optimization scheme works very effectively and reliaDly in

reducing the sensitivity of the system and in satisfying

specified performance requirements.

The work that has been presented in this thesis offers

many possilities for future development in several areas.

The loop closure and direct di f f ent iat i on techniques can be

extended to cover a wide range of dynamic systems. The

Harwell subroutine could be replaced with other routines to

improve the efficiency of the optimization algorithm. Second

order optimization techniques should also be tried to

improve efficiency. The program could be made more

user-friendly to give the user greater control over the
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design process. Other uses of the second order sensitivity

information should also be investigated. Possible uses for

this information include second order optimization,

reliabilty design and approximation of system behavior in

the neighborhood of a design point.
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ABSTRACT

The objective of this research endeavor was the

development of a general scheme for the minimum sensitivity

design of four-bar linkages using mathematical programming

techniques. An algorithm that utilizes gradient-based

optimization was derived for this purpose. This algorithm

required not only the kinematic analysis of a four-bar

linkage but the first and second order design sensitivity

analyses as well. The kinematic analysis of the four-bar

linkage was performed using a loop closure technique. The

first order sensitivity analysis was obtained by direct

differentiation of the loop closure equations with respect

to the appropriate design variables. The second order

sensitivity analysis was obtained by direct differentiation

of the first order sensitivity equations with respect to the

appropriate design variables. The constrained minimum

sensitivity problem was solved using exterior penalty and

augmented Lagrangian methods. An interactive, user-friendly

computer program was developed for computer-aided design of

minimum sensitivity four-bar linkages based on this

algorithm. Finally, several numerical examples were solved

in order to evaluate the performance and rellablity of the

proposed solution technique.






