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ABSTRACT

In this thesis, we first consider the problem of distributed estimation in an

energy and rate-constrained wireless sensor network. To this end, we study three

estimators namely - (1) Best Linear Unbiased Estimator (BLUE-1) that accounts for

the variance of noise in measurement, uniform quantization and channel, and derive

its variance and its lower bound; (2) Best Linear Unbiased Estimator (BLUE-2) that

accounts for the variance of noise in measurement and uniform quantization, and

derive lower and upper bounds for its variance; (3) Best Linear Unbiased Estima-

tor (BLUE-3) that incorporates the effects of probabilistic quantization noise and

measurement noise, and derive an upper bound for its variance.

Then using BLUE-1, we analyze the tradeoff between estimation error (BLUE

variance) at the fusion center and the total amount of resources utilized (power and

rate) using three different system design approaches or optimization formulations.

For all the formulations, we determine optimum quantization bits and transmission

power per bit (or optimum actions) for all sensors jointly. Unlike prior efforts, we in-

corporate the operating state (characterized by the amount of residual battery power)

of the sensors in the optimization framework. We study the effect of channel quality,

local measurement noise, and operating states of the sensors on their optimum choice

for quantization bits and transmit power per bit.

In the sequel, we consider a problem in distributed detection and signal

processing in the context of biomedical wireless sensors and more specifically pulse-

oximeter devices that record photoplethysmographic data. We propose an automated,

two-stage PPG data processing method to minimize the effect of motion artifact.

Regarding stage one, we present novel and consistent techniques to detect the presence

of motion artifact in photoplethysmograms given higher order statistical information

present in the data.For stage two, we propose an effective motion artifact reduction

method that involves enhanced PPG data preprocessing followed by frequency domain



Independent Component Analysis (FD-ICA). Experimental results are presented to

demonstrate the efficacy of the overall motion artifact reduction method.

Finally, we analyze a wireless ad hoc/sensor network where nodes are con-

nected via random channels and information is transported in the network in a coop-

erative multihop fashion using amplify and forward relay strategy.
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Chapter 1

Introduction

A wireless sensor network (WSN) consists of spatially distributed autonomous

devices that are capable of communicating with each other or a fusion center wire-

lessly. Typically, they are employed for detecting or estimating an underlying physical

phenomenon without human intervention. This requires the participating sensors to

collect local information related to the physical process of interest, and then wirelessly

communicate relevant information to other sensors or a fusion center.

These wireless sensor networks are well-suited for surveillance and moni-

toring applications(e.g., military surveillance, environment and habitat monitoring,

traffic surveillance, smart homes and health care). For instance, a WSN can be used

to detect/track targets, and coordinate actions among combat units based on data

collected from the battlefield. In health care, the combination of body-area sensors

and environmental sensors embedded in a home can be used for real-time health-

monitoring and care. In short, these sensor networks are steadily leading the world

towards an information technology revolution where networked autonomous devices

are connecting the physical world, devices and humans like never before.
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1.1 Distributed Detection

In a classical distributed detection setting, information regarding a state H is re-

ceived by a set of distributed nodes. Based on observation, each node sends relevant

data or decision to the fusion center that makes a final decision on the state by em-

ploying appropriate data/decision fusion. In the context of distributed detection in

WSNs, factors such as spectral bandwidth constraints, energy constraints, imperfect

communication between nodes and the fusion center are incorporated in the classical

framework. However, if there are no constraints on the spectral bandwidth or im-

perfect communication, complete information can be transported to the fusion center

for processing without distortion. The nodes may make a hard decision (binary de-

cision) and transmit this information to the fusion center for decision fusion. The

nodes may also choose to send multi-level decisions or soft decisions that indicate the

level of confidence in their decisions. Then the fusion center is faced with the task

of identifying the appropriate fusion technique. In some cases, the nodes may send

raw measurement data to the fusion center that then applies appropriate data fusion

techniques to formulate the final system decision. Data/decision fusion techniques

for the classical distributed detection framework have been extensively covered in [1]

and the references therein. Alternatively, techniques of data/decision fusion can be

used in other contexts of signal processing that involve decision formulation; for e.g.,

let H be a state present in a noisy observation and fi, i ∈ {1, . . . , N} be N features

that ascertain its presence. Now the actual values of the N features or N decisions

based on feature values can be fused by relevant data/decision fusion techniques to

determine the presence of state H in the noisy observation.

In general, a large variety of distributed detection architecture can be con-

ceived for different configurations and topologies in order to realize desired system-

level performance objectives ([1] and the references therein).

2



1.2 Distributed Estimation

In many WSN applications, WSN nodes attempt to reconstruct a physical phe-

nomenon or estimate a parameter based on their measurements. These measurements

are locally processed and are communicated with other sensors or a fusion center be-

fore the final reconstruction or estimation. Design of such distributed estimation

techniques pose greater challenges as compare to traditional centralized estimation

for a multitude of reasons -

1. WSN nodes are distributed over a large geographical area and thus estimation

using WSN require participating sensors to perform processing of local infor-

mation and communicate this information with the other sensors or a fusion

center. This introduces the complexity of wireless communication and network-

ing to the problem of distributed estimation in wireless sensor networks, that is

otherwise absent in traditional estimation problems.

2. WSN nodes are highly resource constrained -

• They operate on limited battery power that needs to be optimally utilized

in order to prolong the functional lifetime of the network. This strict

power constraint stems from cost/size limitations and more often the fact

that sensors are deployed in areas that are inaccessible, rendering them

non-rechargeable.

• Additionally, WSN nodes have only limited bandwidth available for com-

munication with each other or with a remote fusion center. Subject to

these constraints, each sensor may transmit only a quantized version of

the actual measurements to each other or to the fusion center.

There exists an ineludible trade-off exists between measurement/estimation ac-

curacy attained and total amount of resource consumed by a WSN.
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3. Sensor nodes are generally equipped with low-performance and low-memory pro-

cessors and these factors result in corresponding constraints on computational

speed, and memory. This not only makes low-complexity algorithms (with fast

convergence rates) a desirable feature in WSNs, but makes tradeoff between re-

source efficiency, performance, and implementation complexity a critical aspect

in WSN algorithm and protocol design.

4. Obtaining complete knowledge of signal (data and noise) models of all WSN

nodes is impractical in many cases due to the dynamic nature of the sensing

environment. In such cases estimation algorithms and techniques (regarded

optimal in the context of centralized estimation) cannot be directly applied.

All these factors compel the need for a new paradigm in distributed and

collaborative signal processing - Distributed estimation in wireless sensor networks

that enables to achieve a desirable and efficient tradeoff between resource utilization,

estimation accuracy or performance efficiency and implementation complexity.

1.3 Prior Work and Motivation

The problem of distributed estimation is a well investigated topic. [3, 4, 5] are some

of the early works that studied distributed estimation in the context of spatially dis-

tributed observers, sensors or processors based on a linear measurement model and

that the joint distribution of the measurements is known. [6] generalized distributed

estimation to the case of nonlinear observation models under the assumption that joint

distribution of the measurements is known. In all these works, the sensors communi-

cate real values of their measurements to the central location (fusion center) with zero

distortion where the final estimate is generated. [7, 8, 9] are some of the important

works that first intertwined estimation and quantization by considering the problem

of designing efficient distributed estimators where the information is first digitized
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using joint distribution of measurement data and then communicated over noiseless

channel links. Later, [10] considered the design of estimator for networks with com-

munication constraints and unknown measurement statistics based on the use of a

training sequence to realize optimal quantization. [11] investigates sequential signal

encoding for distributed estimation for networks with power and delay constraints.

Distributed estimator and quantizer design is studied in [12] that accounts for the

spatial correlation among sensor measurements. [13] proposes a class of maximum

likelihood estimators (MLEs) that achieves a variance close to the clairvoyant estima-

tor when the observations are quantized to one bit. In [14], a universal decentralized

estimator is proposed that is based on the rules of linearity and unbiasedness (BLUE)

without the knowledge of measurement noise distribution. The premise adopted in

all the above mentioned works assumes distortion-less communication of sensor ob-

servations to the fusion center.

In [15], the best linear unbiased estimator is used that considers the effect of

channel noise on the variance of the estimator. Also in [15], an upper bound for the

variance for the estimator is derived based on which an energy and rate-efficient es-

timation scheme is formulated. In [16], a rate-efficient distributed estimation scheme

is proposed based on the upper bound of the BLUE variance from [15]. In [19], a

tradeoff between the number of active sensors and bit-rate that minimizes estimation

error is analyzed. Using the same formulation, [20] investigates the tradeoff between

energy used by each sensor and number of active sensors. In [21], the concept of

function based network lifetime is introduced and optimized for distributed estima-

tion in order to achieve a particular estimation accuracy at the fusion center. The

formulations in [19], [21] assume distortion-free communication links to the fusion

center from the sensors. Optimum energy allocation and number of quantization bits

in WSN to minimize estimation error in a binary symmetric channel with cross-over

probabilities is analyzed in [23]. The work investigates optimal actions (power level
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per bit and quantization bits in an information transmission) of the participating

sensors that minimizes estimation error at the fusion center for various strategies

namely - Optimal power allocation for fixed quantization bits, optimal quantization

bits for fixed power per bit and the joint case of power per bit and quantization bits

optimization. However, the effect of channel conditions on optimal sensor actions is

not analyzed.

Distributed BLUEs that have been used in prior works in the context of

wireless sensor networks incorporate either only measurement noise variance or mea-

surement noise and quantization noise variance. To the best of our knowledge, [17]

is one work that employs a generalized version of the best linear unbiased estimator

in [14] and [15]; i.e., the variance of noise in observation, quantization and channel is

incorporated into the design of the estimator. Here the BLUE is used locally at all

sensors in order to determine optimal sensor locations and implement a decentralized

motion-planning algorithm. The impact of imperfect channels incorporated in this

estimator follows the model from [18] that investigates the average effect of channel

fading on the performance of a mobile sensor node.

Moreover, the problem of distributed estimation has been addressed for a

snapshot of the system without accounting for the history of utilization of each sensor

node or the aspect of fairness in sensor scheduling that eventually affects its resid-

ual battery power. Note that intuitively the residual battery power can be used to

characterize the operating state or the health of a sensor node. In this context, we

are motivated by the notion that forcing optimum actions of the active sensors in

the network to depend on their residual battery power, characterizing their operat-

ing state (or health), is essential for prolonging network lifetime and realizing a fair

power, rate allocation.

Based on this concept, we investigate and develop distributed estimation

techniques in wireless sensor networks with resource constraints. Unlike all prior
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efforts in distributed estimation in resource constrained WSNs, we consider a dis-

tributed BLUE that captures the effects of noise in measurement, uniform quanti-

zation, and channel. It maybe highlighted that the distributed BLUE used in the

case of imperfect channel links is optimal only when the estimator is weighted us-

ing weights that depend on the variance in measurement, quantization and channel.

We analyze the tradeoff between estimation error at the fusion center, resource uti-

lization of the sensors to achieve that accuracy and implementation complexity to

achieve that accuracy. This forms the central theme of this thesis. Unlike all works

in the past, we develop insights into different optimization formulations based on

the tradeoff analysis between estimation error and resource utilization. Prior efforts

have primarily focussed on the dependency of channel conditions, quantization noise

and measurement noise on optimal sensors actions for distributed estimation. In this

thesis, we account for the sensor operating states (characterized by residual battery

power), which is also an important consideration in WSN design - Optimum actions

of a sensor with low residual battery power are expected to be different from that

with high residual battery power under similar conditions. This forms another novel

part in our approach. Using these constructs, we seek to determine optimal sensor ac-

tions and their collaborative behavior, and understand their dependencies on various

factors like measurement noise, channel conditions and operating state.

1.4 Contributions

The key contributions of this thesis are summarized in this section. From chapters 2

through to 6, we present our work in the area of distributed BLUE in WSN and our

contributions can be summarized as follows -

• We study the use of three Best Linear Unbiased Estimators for distributed

estimation in an energy and rate-constrained wireless sensor network namely -
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– We consider the best linear unbiased estimator (BLUE-1) that accounts for

the variance of noise in measurement, uniform quantization and channel.

We derive the estimator (BLUE-1) variance and its lower bound [26] in

section 2.3. We observe that the lower bound is tight when the participat-

ing sensors have comparable channel variances and depends on the sensor

with the best channel conditions.

– We consider the best linear unbiased estimator (BLUE-2) that accounts for

the variance of noise in measurement and uniform quantization. We derive

lower and upper bounds for estimator (BLUE-2) variance [27] in section

2.4. We observe that both upper and lower bounds are tight as long as

the channel noise variances of the participating sensors are comparable to

each other and depend on the sensors with the worst and best channels

respectively.

– We consider the best linear unbiased estimator (BLUE-3) in [15] that in-

corporates the effects of probabilistic quantization noise and measurement

noise. We derive an upper bound for its variance [27] in section 2.5. We

see that our bound is tighter than the bound in [15] for low measurement

noise variances of the participating sensors.

For all the three estimators investigated, bounds are derived for any modulation

scheme employed by the sensor nodes to communicate with each other or the

fusion center in general. We present representative results based on BPSK and

QAM modulation schemes.

• Unlike all prior efforts, we use BLUE-1 for distributed estimation in resource

constrained WSN and study the optimal tradeoff between overall estimation

accuracy at the fusion center and resource utilization of the sensors using three

different system design approaches (or optimization formulations) [28] -
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– Formulation A - Minimize estimation error (BLUE variance) at the fusion

center subject to a total system resource utilization constraint (rate and

power) in section 3.2.

– Formulation B - Minimize total system resource utilization subject to a

constraint on the the estimation error in section 4.1.

– Formulation C - Minimize the system resource utilization and estimation

error jointly at the fusion center [25] as in section 5.1.

• We adopt a novel approach in optimization formulation by accounting for the

operating state or the residual battery power of the sensors in the network. This

is an important consideration in WSN design as optimum actions (power level

per bit and quantization bits in an information transmission) of a sensor with

low residual battery power are expected to be different from that with high

residual battery power under similar conditions.

• We formulate energy and rate efficient schemes that enable optimal operation

of the sensor nodes supposing that the sensors communicate with the fusion

center over noisy channel links using two modulation schemes namely - BPSK

and QAM.

• We counter non-convexity imbued in the three optimization problems framed, by

applying techniques to transform it into a Difference of Convex Functions (D.C.)

problem [22],[24]. Further, we approximate all the three D.C. formulations as

convex optimization problems by applying first-order Taylor expansion. We

observe that the solutions obtained from the D.C. problem version is the same

as in the convex approximated version in all the three formulations. i.e., that the

non-convex problem in all the three original formulations can be approximated

as appropriate convex problems without affecting optimality.
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• We study the relation between optimal actions of the sensors and channel con-

ditions, operating states, and error in measurement. In effect, we see that the

amount of error in estimation at the fusion center depends on the nodes’ mea-

surement quality, but also its operating state and local channel conditions.

• We develop insights into optimization formulations by performing a comparative

analysis between the three optimization formulations in terms of the tradeoff

between estimation error and resource used, optimal sensor actions, and col-

laborative behavior. We observe that Formulation B is the most economical

approach in terms of resource consumed for a target BLUE variance and For-

mulation A enables achieve high quality estimator but at the cost of excess

amount of resources.

In the ensuing chapters from 7 to 9, we present a problem in distributed

detection and signal processing of PPG data obtained from pulse-oximeter sensors

[29]. More specifically, the contributions are as follows -

• We formulate a motion artifact detection scheme in PPG data [30] using higher

order statistics (HOS) properties of clean and motion-corrupted PPG data - In

the time domain, we use skew and kurtosis measures associated with the data

to aid detection. In the frequency domain, the presence of random components

due to motion artifact is ascertained using a frequency-domain kurtosis measure

as in [48]. Also, bispectral analyses of PPG data indicate the presence of strong

quadratic phase coupling (QPC) and more specifically self coupling in the case

of clean PPG data. In motion-artifact-corrupted data, QPC between random

frequency components is observed, but the self coupling feature is absent. To

the best of our knowledge, this is the first effort to employ HOS analysis for

motion detection in PPG data.

• We formulate Neyman Pearson (NP) tests based on these time-domain and
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frequency-domain metrics. Using practical test data, we characterize the per-

formance (probability of false alarm - PF , probability of detection - PD, and

probability of error - Perror) of the artifact detection tests. The performance

results illustrate the potency of the proposed method for consistent and robust

detection of PPG motion artifact.

• Treating each of the measures as observations from independent sensors, we

perform soft decision fusion from [33] and hard-fusion (Varshney-Chair rule)

from [32] to fuse individual decisions to form a global system decision.

• In chapter 9, we present a new motion artifact reduction method [31] that

combines an enhanced signal preprocessing unit and a frequency-domain ICA

unit.

• We propose a new enhanced preprocessing unit incorporates a Fourier series

reconstruction of the PPG data that utilizes the spectrum variability and quasi-

periodicity of the pulse waveform.

• We develop a novel frequency-domain ICA routine (FD-ICA) that considers

only magnitude information is presented. This technique assumes instantaneous

mixing of statistically independent sources in the time domain and a constant

mixing matrix for the time frame considered. A comparison of the technique

used in this thesis with the time-domain ICA and complex FD-ICA techniques

in the literature implies that the new magnitude-based frequency domain ICA

approach more effectively reduces motion artifact.

Finally in Appendix A, we present an analysis of a wireless ad hoc/sensor

network where nodes are connected via random channels and information is trans-

ported in the network in a cooperative multihop fashion using amplify and forward

relay strategy [55]. The contributions are summarized as follows -
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• To the best of our knowledge, this is the first work that attempts to analyze

and characterize such a random network using important parameters like: (1)

SNR degradation with hop, (2) outage probability, (3) maximum permissible

number of hops and (4) source-destination node pairs that communicate with

each other simultaneously.

• Using constructs from graph theory, we formulate the basic operation of the

network by demonstrating a scheme for choosing appropriate nodes for relaying

information over disjoint routes between all source-destination node pairs. We

establish the condition of existence of such disjoint paths between all source

and destination nodes in the network and their characteristics.

• We evaluate the achievable throughput of the network and its asymptotic scaling

for channel strengths drawn from an exponential density and observe that the

throughput scales asymptotically as O(log n), where n is the number of nodes

in the network.

1.5 Organization

The thesis is organized as follows - In Chapter 2, the concept of BLUE for centralized

and distributed estimation are introduced. Three BLUE designs and bounds on their

variances are investigated. From Chapter 3 through to 5, the three optimization

formulations along with their analysis and the results are presented. In Chapter 6,

we first present a comparison between the three formulations in terms of estimation

error achieved and the resources utilized to achieve that error. In the same chapter,

we discuss the optimal actions of sensors and their collaborative behavior observed

in each of the formulations. In Chapter 7, we propose a model for the two-stage

approach in detection and reduction of motion artifacts in photoplethysmographic

data. Chapters 8 and 9 details the PPG data analysis, motion artifact detection
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and its reduction. In Chapter 10, we present our key contributions, and plausible

future directions and extensions to our work in distributed estimation in WSNs.

Finally in Appendix A, we present a throughput analysis of a wireless ad hoc/sensor

network. We consider a network where nodes are connected via random channels and

information is transported in the network in a cooperative multihop fashion using

amplify and forward relay strategy.
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Chapter 2

Best Linear Unbiased Estimator

(BLUE)

In this chapter, we study the use of the best linear unbiased estimator

(BLUE) for distributed parameter estimation in wireless sensor networks. We in-

vestigate three types of BLUE - (1) Best Linear Unbiased Estimator (BLUE-1) that

accounts for the variance of noise in measurement, uniform quantization and chan-

nel; (2) Best Linear Unbiased Estimator (BLUE-2) that accounts for the variance

of noise in measurement and uniform quantization; (3) Best Linear Unbiased Esti-

mator (BLUE-3) that incorporates the effects of probabilistic quantization noise and

measurement noise. For all three estimators, we derive bounds for their variance

considering any modulation scheme in general, and specifically for BPSK and QAM

modulation schemes employed by the sensor nodes to communicate with each other

or the fusion center.

2.1 Definition - BLUE

In many practical scenarios related to parameter estimation, the design of an optimal

minimum variance estimator may not be possible more often, though not always,
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due to the lack of knowledge of the probability density function (pdf) of the data

set. Such cases san the use of CRLB or sufficient statistics making it reasonable to

consider suboptimal estimators [2]. One such consideration is treating the estimator

to be linear in data. i.e., if y1, y2, . . . , yN is the data set under consideration that has

a pdf denoted by p(y1, y2, . . . , yN , Θ) where, Θ is an unknown parameter, then the

estimator that is linear in the data is given as -

Θ̂ =
N∑

i=1

aiyi, (2.1)

where, ai,∀i ∈ {1, . . . , N} are determined such that the variance of Θ̂ is minimized. It

may be noted that the BLUE requires the knowledge of the first and second moments

of the pdf of the data set yi,∀i ∈ {1, . . . , N}. If the data set is uncorrelated and has

zero mean with variance σ2
i ,∀i ∈ {1, . . . , N}, then the BLUE Θ̂ is as follows -

Θ̂ =

(
N∑

i=1

1

σ2
i

)−1 N∑
i=1

yi

σ2
i

(2.2)

Apparently in (2.1), the samples with the smallest variances are weighted most heav-

ily. The variance of Θ̂ is given as -

V ar(Θ̂) =

(
N∑

i=1

1

σ2
i

)−1

(2.3)

Additionally, it may be highlighted that if the pdf of the data is Gaussian, then the

BLUE is also the minimum variance unbiased estimator (MVUE).

2.2 Distributed Best Linear Unbiased Estimator

Consider a WSN consisting of N distributed sensors (observers) that measure a source

signal θ and report the observations to a fusion center. The observation of the i−th

sensor, ∀i ∈ {1, . . . , N} is the following linear model -

xi = θ + ni, (2.4)
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where, ni is the i−th sensor’s measurement noise, with zero mean, and spatially

uncorrelated with variance σ2
i . The sensor measurement noise distribution is otherwise

considered to be unknown. After some local processing of these measurements at the

sensor nodes, they are transmitted to a central location or a fusion center without

distortion where they are fused to produce a final estimate of θ using a fusion function

f . If the fusion center has complete knowledge of the sensor measurement noise

variances, it suffices to linearly combine all sensor observations xi ∀i ∈ {1, . . . , N} to

form an unbiased estimate of θ with the minimum variance as follows -

f(x1, . . . , xN) = θ̂ =

(
N∑

i=1

1

E(xi − θ)2

)−1 N∑
i=1

xi

E(xi − θ)2

=

(
N∑

i=1

1

σ2
i

)−1 N∑
i=1

xi

σ2
i

, (2.5)

where, E(.) denotes the expectation operator. The estimate θ̂ has a mean-squared

error (MSE) denoted by D, that also gives a measure of the quality of the final

estimate generated, given as -

D = E




(
N∑

i=1

1

E(xi − θ)2

)−1 N∑
i=1

xi − θ

E(xi − θ)2




2

=

(
N∑

i=1

1

σ2
i

)−1

(2.6)

This is the notion of distributed best linear unbiased estimator or distributed BLUE.

It may be noted that if the sensor nodes communicate their real-valued measure-

ments to the fusion center without performing any local processing, then the model

under consideration is called centralized BLUE. In a realistic wireless sensor network,

transmission of real-valued measurements incur high communication cost in terms of

bandwidth and power expended for transmission. Moreover, the channel links be-

tween the fusion center and the sensor nodes are noisy and subject to loss due to

fade. Thus, it requires that the sensors locally process their measurements by means

of quantization and transmit digitized information over these noisy, fading channel
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links. This aspect essentially interlaces quantization and estimation in the context of

wireless sensor networks.

2.3 BLUE-1

In this section, we study a BLUE for distributed estimation that considers the effect

of observation noise, uniform quantization noise, and channel noise. By account-

ing for instantaneous channel knowledge, we derive the estimator variance and its

lower bound for any modulation scheme, and more specifically for BPSK and QAM

modulation schemes. We analyze the performance of the lower bound by drawing a

comparison with the actual variance of the estimator.

2.3.1 Problem Formulation

For the WSN model described earlier in the chapter, we assume that each sensor

locally performs uniform quantization of its observation xi, ∀i ∈ {1, . . . , N} as follows

-

xi,q = xi + ni,q, (2.7)

where, ni,q is the quantization noise of the i−th sensor, ∀i ∈ {1, . . . , N}. The quan-

tized information is transmitted by all N sensors to the fusion center over independent

AWGN channels (realized by means of orthogonal signaling). Information received

at the fusion center from the i−th sensor is given as -

xi,c = xi,q + ni,c, (2.8)

where, ni,c is the noise due to imperfect channel experienced by the i−th sensor,

∀i ∈ {1, . . . , N}. A detailed system model is illustrated in figure 2.1.

The fusion center linearly combines all sensor observations xi,c ∀i ∈ {1, . . . , N}
(laden with measurement, quantization, and channel noises) using the best unbiased
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Figure 2.1: Detailed System Model

linear estimator to form an estimate of θ. More specifically, the estimator at the

fusion center weighs the information from each sensor linearly with its variance that

depends on its measurement, quantization, and channel noises and is given as -

θ̂ =

(
N∑

i=1

1

E(xi,c − θ)2

)−1 N∑
i=1

xi,c

E(xi,c − θ)2
, (2.9)

We assume that the fusion center has complete knowledge of the variance associated
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with the information received from each sensor. The unbiased estimate θ̂ has a mean-

squared error (MSE) given by -

D = E




(
N∑

i=1

1

E(xi,c − θ)2

)−1 N∑
i=1

xi,c − θ

E(xi,c − θ)2




2

=

(
N∑

i=1

1

E(xi,c − θ)2

)−2 N∑
i=1

E(xi,c − θ)2

(E(xi,c − θ)2)2

=

(
N∑

i=1

1

E(xi,c − θ)2

)−1

(2.10)

Let Ri = E(n2
i ), Ri,q = E(n2

i,q), Ri,c = E(n2
i,c), ∀i ∈ {1, . . . , N}. It can be seen that

E(xi,c − θ)2 = Ri + Ri,q + Ri,c, ∀i ∈ {1, . . . , N}, since measurement, quantization,

and channel noises can be considered to be statistically independent of each other.

If [−W,W ] represents the dynamic range of the signal source, then Ri,q = W 2

3(2li−1)2
,

where li ∈ [1, BW ] is the number of quantization bits used in a transmission by the

i-th sensor and BW denotes the total rate constraint of the system.

If the i−th sensor communicates with the fusion center using a particular

modulation scheme that results in a bit error probability of P
{b}
i,k for the k−th bit

in the transmitted information, then the variance due to imperfect channel can be

derived as follows -

ni,c =




±2k ×∆i P

{b}
i,k

0 1−∑li−1
k=0 P

{b}
i,k ,

(2.11)

where, ∆i = 2W
2li−1

is the quantizer step size. (2.11) assumes that there is at most one

bit in error in each information transmission consisting of li bits. Also, we assume

that all the bits in the transmitted information have the same bit error probability

associated with it (i.e. P
{b}
i,k = P

{b}
i ). Under the assumption that channel noise

variance remains unchanged during a complete information transmission, the variance
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contribution from the channel is -

Ri,c =

li−1∑

k=0

(±2k ×∆i)
2P

{b}
i,k ,

= P
{b}
i ×∆2

i

li−1∑

k=0

4k

≈ 4W 2

3
P
{b}
i (2.12)

If the i−th sensor uses BPSK modulation scheme for transmission, then

equation (2.12) becomes -

4W 2

3
P
{b}
i =

4W 2

3
Q

√
SNRi, (2.13)

where, SNRi is the signal to noise ratio associated with each bit transmission. Sup-

pose that the i−th sensor chooses uncoded QAM modulation for transmission of li

bits such that bi is the size of each symbol transmitted. Let ci ∈ Z+,∀i ∈ {1, . . . , N}
denote the number of symbols transmitted. Then the variance due to imperfect chan-

nel associated with the complete information is given as -

4W 2

3
P
{b}
i =

4W 2P
{s}
i li

3b2
i

, (2.14)

where, P
{s}
i is the symbol error probability associated with the i−th sensor’s infor-

mation transmission.

2.3.2 Analytical Results

The BLUE variance in equation (3.5) corresponds to -

D =

(
N∑

i=1

1

(Ri + Ri,q + Ri,c)

)−1

(2.15)

Lemma 1: The variance of the best linear unbiased estimator in equation (2.15),

where the information is weighed by its measurement noise, quantization noise, and

channel noise variances, is lower bounded as follows -

D ≥ R
{min}
c

N
+

(
N∑

i=1

1

(Ri + Ri,q)

)−1

, (2.16)
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where, R
{min}
c corresponds to the minimum channel noise variance such that R

{min}
c =

min(R1,c, R2,c, . . . , RN,c).

Proof: Define function H(.) such that -

H(R1 + R1,q + R1,c, . . . , RN + RN,q + RN,c)

=

(
1

N

N∑
i=1

1

(Ri + Ri,q + Ri,c)

)−1

(2.17)

Then we have -

H(R1 + R1,q + R1,c, . . . , RN + RN,q + RN,c)

≥ H(R1 + R1,q + R{min}
c , . . . , RN + RN,q + R{min}

c )

For convenience we set R
{min}
c = K. Now we have -

NH−1 =
N∑

i=1

1

Ri + Ri,q + K

d(NH−1)

dK
= −NH−2 dH

dK

= −
N∑

i=1

1

(Ri + Ri,q + K)2

⇒ dH

dK
=

d(NH−1)

dK
/
(−NH−2

)
(2.18)

NH−2 can be written from (2.17) as -

NH−2 =
1

N

(
N∑

i=1

1

Ri + Ri,q + K

)2

(2.19)

We replace all the cross-product terms in the right hand side of equation (2.19)

by applying the Cauchy-Schwarz inequality 2. 1
Ri+Ri,q+K

. 1
Rj+Rj,q+K

≤ 1
(Ri+Ri,q+K)2

+

1
(Rj+Rj,q+K)2

. Therefore, we have-

N∑
i=1

1

(Ri + Ri,q + K)2 ≥
1

N

(
N∑

i=1

1

Ri + Ri,q + K

)2

(2.20)

Upon substituting (2.20) in (2.18), we can see that dH
dK

is always greater or equal to

unity. Now applying the mean value theorem in the interval [0, K] on the function
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H(.), we have -

H(R1 + R1,q + K, . . .)−H(R1 + R1,q, . . .)

K
=

dH

dK
(2.21)

From (2.21) and (2.18) we have H(R1 + R1,q + K, . . .) ≥ H(R1 + R1,q, . . .) + K. And

substituting from (2.18) we have -

D ≥ H(R1 + R1,q, . . . , RN + RN,q)

N
+

K

N

⇒ D ≥
(

N∑
i=1

1

(Ri + Ri,q)

)−1

+
K

N
=

(
N∑

i=1

1

(Ri + Ri,q)

)−1

+
R
{min}
c

N
(2.22)

Lemma 1.1: When the participating sensors use BPSK modulation scheme for

transmission, then estimation variance is lower bounded as follows -

D ≥
(

N∑
i=1

1

(Ri + Ri,q)

)−1

+
4W 2

3N
Q

√
SNRmax, (2.23)

where, SNRmax = max{SNRi}, ∀i ∈ {1, . . . , N}.
Lemma 1.2: When the participating sensors choose uncoded QAM for transmission

of information, the estimation variance is lower bounded as follows -

D ≥
(

N∑
i=1

1

(Ri + Ri,q)

)−1

+ (
4W 2P {s}l

3Nb2
)min, (2.24)

where, (4W 2P {s}l
3Nb2

)min = min(
4W 2P

{s}
1 l1

3Nb21
, . . . ,

4W 2P
{s}
N lN

3Nb2N
). It maybe noted that the lower

bound for the variance of this estimator differs from what is achievable with perfect

sensor channels by an additive factor.

2.3.3 Results and Discussion

We perform Monte-Carlo simulations for evaluating the performance of the best linear

unbiased estimator discussed in the previous section. We consider a wireless sensor
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Figure 2.2: Variation of Estimator Variance with Channel Noise Variance

network with N = 20 sensors. We set the dynamic range of the source signal as

W ∈ [−1, 1] and consider BPSK modulation scheme. By simulations, we draw a

comparison between the actual estimation error and the bounds derived. We plot

the estimation variance against the channel noise variance (with the channel noise

variance of only one of the sensors being varied). As expected from equation (2.18), we

observe that the lower bound depends on the sensor with the best channel conditions.

In figure 2.2, we see that the lower bound is tight when the channel noise variances

of the sensors are comparable, and the deviation becomes prominent as the noise

variances greatly vary from each other.

2.4 BLUE-2

Next, we consider a BLUE that accounts for variance of the noise in observation and

quantization for the design of the estimator. We assume that each of the participating

sensors uniformly quantizes its measurement and transmits over AWGN channels to

a fusion center where the final estimate is generated. We derive lower and upper
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bounds for the variance of this estimator for any modulation scheme in general. We

then analyze the performance of the bounds by drawing a comparison with the actual

estimation error.

2.4.1 Problem Formulation

Using the WSN model as before, we suppose that each sensor locally quantizes its

observation xi, ∀i ∈ {1, . . . , N} uniformly as follows -

xi,q = xi + ni,q, (2.25)

where, ni,q is the quantization noise of the i−th sensor, ∀i ∈ {1, . . . , N}. The quan-

tized information is transmitted by all N sensors to a fusion center over independent

AWGN channels that are realized by means of orthogonal signaling schemes like

TDMA, FDMA or CDMA. Information received at the fusion center from the i−th

sensor is given as -

xi,c = xi,q + ni,c, (2.26)

where, ni,c is the noise due to imperfect channel experienced by the i−th sensor,

∀i ∈ {1, . . . , N}. By weighing the information xi,c ∀i ∈ {1, . . . , N} from each sensor

with its variance that depends on its measurement, and quantization noises, the fusion

center forms the best unbiased linear estimate of θ. This is given as follows -

θ̂ =

(
N∑

i=1

1

E(xi,q − θ)2

)−1 N∑
i=1

xi,c

E(xi,q − θ)2
, (2.27)

The unbiased estimate θ̂ has a mean-squared error (MSE) given by -

D = E




(
N∑

i=1

1

E(xi,q − θ)2

)−1 N∑
i=1

xi,c − θ

E(xi,q − θ)2




2

=

(
N∑

i=1

1

E(xi,q − θ)2

)−2 N∑
i=1

E(xi,c − θ)2

(E(xi,q − θ)2)2
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Let Ri = E(ni)
2) = σ2

i , Ri,q = E(n2
i,q), Ri,c = E(n2

i,c), ∀i ∈ {1, . . . , N} and we consider

measurement, quantization, and channel noises to be statistically independent of each

other. Hence the variance of this estimator is given as -

D = E




(
N∑

i=1

1

Ri + Ri,q

)−1 N∑
i=1

xi,c − θ

Ri + Ri,q




2

=

(
N∑

i=1

1

(Ri + Ri,q)

)−2 N∑
i=1

E(xi,c − θ)2

(Ri + Ri,q)2

In this premise, we assume that the fusion center has complete knowledge of the

variance associated with the information received from each sensor. Let [−W,W ]

denote the dynamic range of the signal source. Then, the uniform quantization noise

variance is Ri,q = W 2

3(2li−1)2
, where li ∈ [1, BW ] represents the number of quantization

bits used by the i-th sensor in a transmission and BW denotes the bandwidth of the

system.

From [26], we know that when the i−th sensor communicates with the fusion

center using a particular modulation scheme that results in a bit error probability of

P
{b}
i,k for the k−th bit in the transmitted information, the variance due to imperfect

channel is -

E(n2
i,c) ≈ 4W 2

3
P
{b}
i (2.28)

In deriving (2.28), we assume that in each information transmission consisting of

li bits, there is at most one bit in error. Also, we assume that all the bits in the

transmitted information have the same bit error probability (i.e. P
{b}
i,k = P

{b}
i ) and

that during a complete information transmission, the channel condition experienced

by a sensor remains unchanged.

Thus, if BPSK modulation scheme for transmission is used by the i−th

sensor, then (2.28) becomes -

E(n2
i,c) ≈

4W 2

3
P
{b}
i =

4W 2

3
Q

√
SNRi, (2.29)
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where, SNRi is the signal to noise ratio associated with each bit transmission.

Now, consider uncoded QAM scheme to be used for the transmission of li

bits by the i−th sensor such that bi is the size of each symbol transmitted. Let

ci = li
bi

, ci ∈ Z+,∀i ∈ {1, . . . , N} denote the number of symbols transmitted. Then

the variance due to imperfect channel associated with complete information is given

as -

E((ni,c)
2) ≈ 4W 2

3
P
{b}
i =

4W 2P
{s}
i li

3b2
i

, (2.30)

where P
{s}
i is the symbol error probability associated with the i−th sensor’s informa-

tion transmission.

2.4.2 Analytical Results

We first derive a lower and upper bound for the variance of the estimator that uses

measurement and uniform quantization noise variance for weighing the information

from sensors that is transmitted over independent noisy AWGN channels.

Lemma 2: Let D denote the variance associated with the best linear unbiased esti-

mator where the information from the sensors is weighed by weights that depends on

its measurement noise and uniform quantization noise variances at the fusion center.

Then D is bounded as follows -

(
N∑

i=1

1

(Ri + Ri,q)

)−1

+ R{min}
c ≤ D

≤
(

N∑
i=1

1

(Ri + Ri,q)

)−1

+ R{max}
c , (2.31)

where, R
{max}
c corresponds to the maximum channel noise variance, such that R

{max}
c =

max(R1,c, R2,c, . . . , RN,c), and R
{min}
c denotes the minimum channel noise variance,

such that R
{min}
c = min(R1,c, R2,c, . . . , RN,c).
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Proof: The variance of this estimator corresponds to -

D = E




(
N∑

i=1

1

Ri + Ri,q

)−1 N∑
i=1

xi,c − θ

Ri + Ri,q




2

=

(
N∑

i=1

1

(Ri + Ri,q)

)−2 N∑
i=1

E(xi,c − θ)2

(Ri + Ri,q)2

For convenience, we let D′ =
(∑N

i=1
1

(Ri+Ri,q)

)−1

, where D′ is the MSE of the esti-

mator at the fusion center in case of perfect sensor channels. After some algebraic

manipulations we have -

D = D′2
(

N∑
i=1

Ri + Ri,q + Ri,c

(Ri + Ri,q)2

)

= D′2
(

N∑
i=1

Ri,c

(Ri + Ri,q)2
+

Ri + Ri,q

(Ri + Ri,q)2

)

= D′2
(

N∑
i=1

Ri,c

(Ri + Ri,q)2
+

1

(Ri + Ri,q)

)

From the previous section, we have that Ri,c = 4W 2Pbi

3
. Let P

{b}
max =max{P {b}

i },∀i ∈
{1, . . . , N} denote the maximum probability of bit error among the N collaborating

sensors and R
{max}
c be the corresponding variance due to the channel. Then we have

-

D ≤ D′2
(

N∑
i=1

R
{max}
c

(Ri + Ri,q)2
+

1

(Ri + Ri,q)

)

= D′ + R{max}
c = D′ +

4W 2P
{b}
max

3

In the above treatment, Ri,c can be replaced by R
{min}
c that corresponds to the min-

imum channel variance (minimum bit error probability) among all sensors in order

to obtain a lower bound for the estimator variance. When the sensors use BPSK

modulation scheme for transmission of information, we have -

D ≤ D′ +
4W 2

3
Q

√
SNRmin,
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where, SNRmin =min{SNRi}, ∀i ∈ {1, . . . , N}. For uncoded QAM, we have -

D ≤ D′ + (
4W 2P {s}l

3b2
)max,

where, (4W 2P {s}l
3Nb2

)max = max(
4W 2P

{s}
1 l1

3Nb21
, . . . ,

4W 2P
{s}
N lN

3Nb2N
) It can be seen that both the

lower and upper bound for the variance of this estimator differs from what is achiev-

able with perfect sensor channels by an additive factor.

2.4.3 Results and Discussion
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Figure 2.3: Estimator Variance versus Channel Noise Variance for Uniform Quanti-

zation.

In this section, we present Monte-Carlo simulation results for the estimation

error associated with the best linear unbiased estimators discussed in the previous

sections. We draw a comparison between the actual estimation error and the bounds

derived as in figure 2.3. We consider a wireless sensor network with N = 20 sensors; fix

the dynamic range of the source signal as W ∈ [−1, 1], and consider BPSK modulation

scheme. We plot the estimation error against the channel noise variance (and the

channel noise variance of only one of the sensors is varied). From the figure, it can
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be seen that the lower bound depends on the sensor with the best channel condition

and the upper bound depends on the sensor with the worst channel condition.

2.5 BLUE-3

Finally, we investigate a BLUE that incorporates variance of the noise in observation

and quantization for the design of the estimator. We assume that the sensors per-

form uniform probabilistic quantization of its information that is then transmitted

over noisy wireless AWGN connections. This is similar to the BLUE in [15] that

incorporates the effects of noise in measurement and uniform random quantization.

We derive a new upper bound for the variance of this estimator and compare it with

the upper bound derived in [15].

2.5.1 Problem Formulation

Based on the same system model as detailed earlier in the chapter, we consider the

case where uniform probabilistic quantization as in [15] is performed locally at all

sensors. From [15] we have -

E(xi,q − θ)2 ≤ σ2
i +

W 2

(2li − 1)2

= σ2
i + δ2

i , (2.32)

where, δ2
i = W 2

(2li−1)2
. The BLUE at the fusion center in the case of perfect sensor

channels is given as -

θ̂q =

(
N∑

i=1

1

σ2
i + δ2

i

)−1 N∑
i=1

xi,q

σ2
i + δ2

i

(2.33)

From [15], the MSE of this estimator in the case of perfect sensor channels is upper

bounded by D1 =
(∑N

i=1
1

σ2
i +δ2

i

)−1

. However if the sensor channels are noisy, then

the BLUE is as follows -

θ̂c =

(
N∑

i=1

1

σ2
i + δ2

i

)−1 N∑
i=1

xi,c

σ2
i + δ2

i

, (2.34)
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and the estimation error D2 at the fusion center for this estimator is given as -

D2 = E




(
N∑

i=1

1

Ri + Ri,q

)−1 N∑
i=1

xi,c − θ

Ri + Ri,q




2

≤
(

N∑
i=1

1

σ2
i + δ2

i

)−2 N∑
i=1

E(xi,c − θ)2

(σ2
i + δ2

i )
2

2.5.2 Analytical Results

We derive an upper bound for the variance of the estimator used in [15] with the

underlying assumption that the sensor observation noise distribution is unknown.

Lemma 3: Let D2 denote the variance associated with the best linear un-

biased estimator where the information from the sensors is weighed by weights that

depends on its measurement noise and random quantization noise variances at the

fusion center. Then D2 is upper bounded as follows -

D2 ≤ (p0 + 1)2D1, (2.35)

where, p0 =

√
4W 2P

{b}
max, and P

{b}
max =max{P {b}

i },∀i ∈ {1, . . . , N}. D1 is the up-

per bound on the MSE of the BLUE at the fusion center incorporating effects of

observation and random quantization noises when the sensor channels are perfect.

Proof: The quantized information can be written as -

xi,q =

(
li∑

k=1

bi,k2
li−k − 2li−1

)
∆i, (2.36)

where, bi,1 to bi,li represents the MSB of the information to its LSB and ∆i = 2W
2li−1

.

Let {b̂i,1, . . . , b̂i,ci
} be the information bits received at the fusion center in each trans-

mission. Then the information received at the fusion center is as follows -

xi,c =

(
li∑

k=1

b̂i,k2
li−k − 2li−1

)
∆i (2.37)

Now let θ̂ch be the final estimate made at the fusion center after information is trans-
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mitted across noisy wireless channels. We have -

E|θ̂q − θ̂c|2 = E

∣∣∣∣∣∣

(
N∑

i=1

1

σ2
i + δ2

i

)−1 N∑
i=1

xi,q − xi,c

σ2
i + δ2

i

∣∣∣∣∣∣

2

=

(
N∑

i=1

1

σ2
i + δ2

i

)−2

E




N∑
i=1

∣∣∣∑li
k=1

(
bi,k − b̂i,k

)
2li−k∆i

∣∣∣
2

(σ2
i + δ2

i )
2




Now for any random variable Z bounded in [−U,U ] we have, E(|Z|2) =
∫ u

−u
|Z|2p(z)dz ≤

UE(|Z|). Hence we have -

D2
1E




N∑
i=1

∣∣∣∑li
k=1

(
bi,k − b̂i,k

)
2li−k∆i

∣∣∣
2

(σ2
i + δ2

i )
2




≤ 2WD2
1E




N∑
i=1

∣∣∣∑li
k=1

(
bi,k − b̂i,k

)
2li−k∆i

∣∣∣
(σ2

i + δ2
i )




≤ 2WD2
1




N∑
i=1

E
(∑li

k=1

∣∣∣bi,k − b̂i,k

∣∣∣ 2li−k∆i

)

(σ2
i + δ2

i )




It can be seen that
∣∣∣bi,k − b̂i,k

∣∣∣ is a bernoulli random variable that takes value 1 with

probability P
{b}
i and 0 with probability 1 − P

{b}
i .Thus we have E

∣∣∣bi,k − b̂i,k

∣∣∣ = P
{b}
i

and -

2WD2
1




N∑
i=1

E
(∑li

k=1

∣∣∣bi,k − b̂i,k

∣∣∣ 2li−k∆i

)

(σ2
i + δ2

i )




= 2WD2
1

N∑
i=1

P
{b}
i ∆i2

li
∑li

k=1 2−k

(σ2
i + δ2

i )

= 2WD2
1

N∑
i=1

P
{b}
i ∆i2

li(2li − 1)

2li(σ2
i + δ2

i )

= D2
1

(
N∑

i=1

4W 2P
{b}
i

(σ2
i + δ2

i )

)
≤ 4W 2P {b}

maxD
2
1

(
N∑

i=1

1

(σ2
i + δ2

i )

)
,

where, P
{b}
max =max{P {b}

i },∀i ∈ {1, . . . , N}. We set p0 =

√
4W 2P

{b}
max. Hence we have

-

E|θ̂q − θ̂c|2 ≤ p2
0D1
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Now the overall estimation error upper bound can be evaluated as follows -

E
(
|θ − θ̂c|2

)
= E

(
|θ − θ̂q + θ̂q − θ̂c|2

)

≤ E
(
|θ − θ̂q|2

)
+ E

(
|θ̂q − θ̂c|2

)

+2

√
E

(
|θ̂q − θ̂c|2

)
.E

(
|θ − θ̂q|2

)

≤ (p2
0 + 2p0 + 1)D1

≤ (p0 + 1)2D1, (2.38)

where the term 2

√
E

(
|θ̂q − θ̂c|2

)
.E

(
|θ − θ̂q|2

)
is bounded by the Cauchy-Schwarz

inequality.

2.5.3 Results and Discussion
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Figure 2.4: Estimator Variance versus Channel Noise Variance for Random Quanti-

zation (*Upper Bound 1 refers to the upper bound derived in [15]).

We perform Monte-Carlo simulations for evaluating the performance of the

best linear unbiased estimator discussed in the previous section. We consider a wire-

less sensor network with N = 20 sensors. We set the dynamic range of the source

signal as W ∈ [−1, 1] and consider BPSK modulation scheme. Figure 2.4 compares
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the performance of the new bound derived in this paper with the result in [15], and

actual variance of the estimator that accounts for noise in measurement and uniform

random quantization in noisy AWGN channels. We can see that the new bound

is tighter than the one in [15] for low values of measurement noise variance of the

participating sensors. For both the estimators, it can be seen that the upper and

lower bounds derived are tight when the channel noise variance of the participating

sensors are similar, and the deviation becomes more pronounced as the channel noise

variances vary greatly from each other.

2.6 Summary

We consider three estimators - BLUE-1, BLUE-2, and BLUE-3 for distributed estima-

tion in wireless sensor networks and derive bounds on their variance. We observe for

BLUE-1 that the lower bound is an additive factor away from the estimator variance

in the case of perfect sensor channels and depends on the sensor with the best channel

condition. For BLUE-2, the upper and lower bound for the variance are an additive

factor away from the BLUE variance evaluated for perfect sensor channels and can

be seen to depend on the sensors with the worst and best channels respectively. For

BLUE-3, the upper bound is a multiplicative factor away from the BLUE variance

in the case of ideal sensor channels and depends on the sensor with the worst chan-

nel condition. We observe that the new upper bound is tighter than the bound in

[15] for lower values of measurement noise. Finally, for all the estimators considered,

deviation of the bound is observed to be more pronounced when the channel noise

variances of the participating sensors vary from each other.
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Chapter 3

Estimation Error Minimization

In this chapter, we consider the problem of distributed estimation and re-

source optimization in an energy and rate-constrained wireless sensor network. To

this end, we consider the best linear unbiased estimator (BLUE-1) from chapter 2 that

accounts for variance of noise in measurement, uniform quantization and channel.

We analyze the tradeoff between estimation error (BLUE variance) at the

fusion center and the total amount of resources utilized (power and rate), and de-

termine optimal sensor actions (power and rate) using three different system design

approaches or optimization formulations.In all three formulations, the original op-

timization problem is observed to be intricately non-convex that is transformed to

a Difference of Convex functions (D.C.) problem. Further, using Taylor expansion

we present the convex approximated version of all three problems whose solutions

(the global minimizers) are verified to be the same as that of the original optimiza-

tion problem and its D.C. version. For all the formulations, we determine optimum

quantization bits and transmission power per bit (or optimum actions) for all sensors

jointly. Unlike prior efforts, we incorporate the operating state (characterized by the

amount of residual battery power) of the sensors in the optimization framework. We

study the effect of channel quality, local measurement noise, and operating states of

the sensors on their optimum choice for quantization bits and transmit power per bit.
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First, we present the system model in section 3.1. Then we present the first

optimization formulation for Scheme 1 (BPSK) and Scheme 2 (QAM) - Formulation

A in section 3.2, where, we seek to minimize BLUE variance at the fusion center

subject to total resource constraint in the network. This is then ensued by KKT

analysis, results and discussion.

3.1 System Model

Consider a scenario where a wireless sensor network consisting of N spatially dis-

tributed sensors are actively estimating a deterministic source signal θ related to an

underlying physical phenomenon of interest. Considering a linear observation model,

measurement made by the i−th sensor, ∀i ∈ {1, . . . , N} is -

xi = θ + ni, (3.1)

where, ni is the i−th sensor’s measurement noise, with zero mean, and spatially

uncorrelated with variance σ2
i . Each sensor uniformly quantizes its observation xi,

∀i ∈ {1, . . . , N} locally as follows -

xi,q = xi + ni,q, (3.2)

where, ni,q is the quantization noise of the i−th sensor, ∀i ∈ {1, . . . , N}. The quan-

tized information is then mapped to bi bits and transmitted over independent (realized

by orthogonal signalling schemes like TDMA, FDMA, or CDMA) noisy wireless chan-

nels to a data fusion center. We consider two cases of modulation schemes employed

by the active sensor nodes to transmit the quantized information to the fusion center

namely: BPSK modulation and uncoded QAM modulation. We refer to the cases as

Scheme 1 and Scheme 2 respectively. It is quite straight-forward to extend this to

other modulation schemes as well. At the fusion center, a linear combination of the

information received from the active sensors is performed thereby generating the final

estimate of θ.
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For both schemes considered, information received from the i−th sensor at

the fusion center is given as -

xi,c = xi,q + ni,c, (3.3)

where, ni,c is the additive white gaussian noise due to imperfect channel with channel

noise power spectral density of N0/2, ∀i ∈ {1, . . . , N}.
At the fusion center, observations received from the sensors xi,c ∀i ∈ {1, . . . , N},

that are laden with measurement, quantization, and channel noises, are combined lin-

early to form the best linear unbiased estimate or the centralized BLUE of θ. More

specifically, we consider a generalized version of the BLUE at the fusion center that

weighs each information or observation received with its total variance that depends

on its measurement, quantization, and channel noises. This is given as -

θ̂ =

(
N∑

i=1

1

E(xi,c − θ)2

)−1 N∑
i=1

xi,c

E(xi,c − θ)2
, (3.4)

where, E(.) denotes the expectation operator. We assume that the data fusion center

has complete knowledge of the variance associated with the observations received from

each sensor. We use the mean squared error associated with this estimator, denoted

by D, as a measure of the quality of the final estimate generated and is given as [?] -

D = E




(
N∑

i=1

1

E(xi,c − θ)2

)−1 N∑
i=1

xi,c − θ

E(xi,c − θ)2




2

=

(
N∑

i=1

1

E(xi,c − θ)2

)−1

=

(
N∑

i=1

1

(Ri + Ri,q + Ri,c)

)−1

(3.5)

Let Ri = E(n2
i ), Ri,q = E(n2

i,q), Ri,c = E(n2
i,c), ∀i ∈ {1, . . . , N}. Considering mea-

surement, quantization, and channel noises to be statistically independent of each

other, it can be seen that E(xi,c − θ)2 = Ri + Ri,q + Ri,c, ∀i ∈ {1, . . . , N}. Let

θ ∈ [−W,W ], where [−W,W ] represents the dynamic range of the signal source.

Then Ri,q = W 2

3(2li−1)2
is the uniform quantization noise variance. Here li ∈ [1, BW ] is
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the number of quantization bits used in a transmission by the i-th sensor and BW

denotes the total rate constraint of the system.

We know from the previous chapter that when a particular modulation

scheme that results in a bit error probability of P
{b}
i,k for the k−th bit in the trans-

mitted information is used by the i−th sensor for reporting to the fusion center, the

variance due to imperfect channel is -

Ri,c = E(n2
i,c) ≈

4W 2

3
P
{b}
i (3.6)

We assume that each information transmission consists of li bits, and that there

is at most only one bit in error in the transmitted information. Also, we assume

that all the bits in the transmitted information have the same bit error probability

(i.e. P
{b}
i,k = P

{b}
i ) and that the channel condition experienced by a sensor remains

unchanged during a complete information transmission.

Thus, in Scheme 1 when the i−th sensor uses BPSK modulation scheme for

transmission in noisy Rayleigh fading channels, equation (3.6) becomes -

Ri,c =
4W 2

3
P
{b}
i =

4W 2

3

(
1−

√
0.5Γi

1 + 0.5Γi

)
, (3.7)

where, Γi = 2pi|hi|2
ni

represents the average received signal to noise ratio, pi ∈ (p
(i)
min, p

(i)
max)

is the power level per bit used in a transmission. p
(i)
min is the minimum power level per

bit in a transmission based on channel conditions so as to achieve a minimum SNR

requirement of the system. p
(i)
max is the maximum power per bit in an RF transmission

of information. pi does not account for the electronics circuit power as we assume that

the RF transmission power for all sensors is significantly larger than circuit power

consumption. |hi|2 is the average power of the Rayleigh fading channel coefficient

that is assumed to be constant during a single information transmission, but varies

across multiple transmissions. ni is the channel noise power experienced by the i-th

sensor. Suppose the i−th sensor chooses Scheme 2 where uncoded QAM modulation

37



is used for transmission of li bits such that bi is the size of each symbol transmitted.

Let ci ∈ Z+,∀i ∈ {1, . . . , N} denote the number of symbols transmitted. Then the

variance due to imperfect channel associated with the complete information is given

as -

Ri,c =
4W 2

3
P
{b}
i =

4W 2P
{s}
i li

3b2
i

, (3.8)

where, P
{s}
i is the symbol error probability associated with the i−th sensor’s infor-

mation transmission.

3.2 Formulation A - Minimize D Subject to Total Resource

Constraint.

We first consider the problem of minimizing variance D of the estimator described

in the previous section subject to a total system resource constraint. We address the

following question -

(Q1) What is the optimal power level per bit and the optimal number of quantization

bits in an information transmission for every active sensor such that the variance of

the best linear unbiased estimator D at the fusion center is minimized subject to a

total resource constraint?

In other words, we seek to determine the optimal sensor actions (in terms of

power level per bit and number of quantization bits in an information transmission)

that renders the best linear estimator given the maximum amount of resources per-

mitted to be expended by the active sensors in the system. Formally, this problem is
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expressed in the standard form as -

Minimize D

Subject to

J − E{max}
sys ≤ 0; - Resource constraint

N∑
i=1

bi −BW ≤ 0; - Rate constraint

−bi + blow ≤ 0;

pi − p(i)
max ≤ 0,−pi + p

(i)
min ≤ 0;

∀i ∈ {1, . . . , N}

or equivalently -

Maximize D−1

Subject to
N∑

i=1

Λipibi − E{max}
sys ≤ 0;

N∑
i=1

bi −BW ≤ 0,−bi + blow ≤ 0;

pi − p(i)
max ≤ 0,−pi + p

(i)
min ≤ 0;

∀i ∈ {1, . . . , N},

where, the BLUE variance D =
(∑N

i=1
1

(Ri+Ri,q+Ri,c)

)−1

is as from previous section.

For Scheme 1 (BPSK), variance due to imperfect channel links Ri,c is given as follows

-

Ri,c =
4W 2

3
P
{b}
i =

4W 2

3

(
1−

√
0.5Γi

1 + 0.5Γi

)
,

In this scheme, the total resource expended by the active sensors in the system is

defined as -

J =
N∑

i=1

Λipibi, (3.9)
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where, pi denotes the power associated with each bit in the information, bi refers to the

total number of bits constituting the information that is transmitted, and Λi ∈ [0, 1]

is a weighing parameter. It may be noted that in Scheme 1 (BPSK), the number of

bits used for quantization is equal to the number of bits used for transmission (i.e.

one information transmission), i.e. li = bi and blow = 1. In equation (3.9), the total

amount of resources expended by all sensors in the system is expressed as a weighted

sum of the total power pibi used by each sensor in an information transmission. Λi

can be treated as a parameter that reflects the resource policy of each sensor based

on its operating state: If a sensor is operating on low residual battery power, it would

choose a high Λi value (close to unity) thereby showing greater affinity for resource

economical actions that help in conserving its battery power. A smaller value for Λi

(close to zero) indicating higher residual battery power would imply that the sensor

is ready to expend as much as resource possible in order to minimize the estimator

variance at the fusion center. E
{max}
sys is the maximum amount of resources that could

be used by all the active sensors in the system for an information transmission.

For Scheme 2 (QAM), Ri,c is as follows -

Ri,c =
4W 2P

{s}
i li

3b2
i

≤ 16W 2

3bi

exp




√
3γ

{s}
i

2(2bi − 1)


 , (3.10)

where, γ
{s}
i is the average SNR per symbol. The total resource consumption by the

active sensors in the system is defined as -

J =
N∑

i=1

Λipici, (3.11)

where, ci is the number of symbols transmitted as a part of one information trans-

mission, pi = BsKiai log
(

2
pb

)
(2bi − 1) is the average power associated with each

symbol, Ki = 2NfN0Gd, Bs is the sampling rate of the observed/measured signal

by the i−th sensor, Nf is the receiver noise figure. Gd is a power gain factor de-

fined as Gd = G1d
{κ}Ml, , ai = dκ,where, d{κ} is the κ-power path-loss model at
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distance d for the i−th sensor. G1 is the gain factor at d = 1 (depends on antenna

gain, carrier frequency and other system parameters). Ml is the link margin that

compensates for variations in hardware processes and other background noise or in-

terference. We set all these values as in [15]. We also assume that all the sensors

have the same target symbol error probability. Λi ∈ [0, 1] is a weighing parame-

ter and has the same implications as in Scheme 1 (BPSK). We consider the case of

li = bi ⇒ ci = 1; ∀i ∈ {1, . . . , N} and blow = 2, implying that the only variable to

optimize for Scheme 2 is bi that in turn determines the power per transmission.

All the problem variables for both schemes are constrained to be non-

negative by the constraints bi ≥ 1 and p
(i)
min ≤ pi ≤ p

(i)
max. We shall henceforth

refer to these constraints as box constraints.

In general, call the formulation as OR-A referring it as the original formu-

lation of the problem. The above formulation is intricately non-convex in its vari-

ables pi and bi, ∀i ∈ {1, . . . , N}. More specifically, it is essentially a mixed-integer

nonlinear programming (MINLP) optimization problem as bits are discrete valued

while power levels are continuous valued. However relaxing the bits to be contin-

uous valued, the formulation transforms to a nonlinear optimization problem. We

set xi = 1

(Ri+
W2

3(2bi−1)2
+Ri,c)

and then reformulate the above optimization problem as

follows -

Minimize
N∑

i=1

−xi

Subject to

xi − 1

(Ri + W 2

3(2bi−1)2
+ Ri,c)

= 0

J − E{max}
sys ≤ 0;

N∑
i=1

bi −BW ≤ 0,

where, the box constraints are implicit. Call the above reformulation as MOD-A

referring it as the modified version of the original problem. For both schemes, it can be
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seen that the objective function is decreasing in xi, the equality constraint is increasing

in xi but decreasing in pi, bi, and the resource constraint is increasing in pi, bi,∀i ∈
{1, . . . , N}. Thus the equality in the above formulation can be transformed to an

inequality to form an equivalent problem. This is because the inequality introduced

is strictly active at the minima. Hence the reformulated problem is of the form -

Minimize
N∑

i=1

−xi

Subject to

Ri +
W 2

3(2bi − 1)2
+ Ri,c − 1

xi

≤ 0

J − E{max}
sys ≤ 0;

N∑
i=1

bi −BW ≤ 0,

with the box constraints being implicit. In the above reformulation for both schemes,

it can be seen that Ri + W 2

3(2bi−1)2
+ Ri,c is a sum of convex functions and hence con-

vex in its variables for both the schemes under consideration, while − 1
xi

is concave

in xi. Hence the expression in the inequality is a difference of convex functions and

the above problem assumes a typical form of difference of convex programming (D.C.

programming). We refer to the above formulation as DC-A referring it as the D.C

formulation of the modified problem. Global optimizers of such problems can be

determined using branch and bound techniques and outer approximation methods.

However the complexity of D.C. programming is NP hard and the convergence time

of any algorithm to determine global minimizer is long - a feature that is undesirable

in the context of wireless sensor networks. It may be noted that by making a convex

approximation of the difference of convex functions constraint in the above reformula-

tion, we can pose the optimization problem as a convex optimization problem. Thus
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the approximated problem is as follows -

Minimize
N∑

i=1

−xi

Subject to

Ri +
W 2

3(2bi − 1)2
+ Ri,c −

(
1

x
{m}
i

+
xi − x

{m}
i

(x
{m}
i )2

)
≤ 0

J − E{max}
sys ≤ 0;

N∑
i=1

bi −BW ≤ 0,

where, the box constraints are implicit and the 1
xi

,∀i ∈ {1, . . . , N} term in the D.C.

constraint has been expressed via first-order Taylor expansion about x
{m}
i . We refer

to this convex approximated form as CA-A.

3.2.1 Analysis

By applying KKT conditions, we determine the conditions satisfied by the minima

for the formulation in DC-A for Scheme 1 (BPSK). The Lagrangian G1.a is given as -

G1.a =
N∑

i=1

−xi +
N∑

i=1

ηi

(
Ri +

W 2

3(2bi − 1)2
+

4W 2

3

(
1−

√
pi|hi|2

pi|hi|2 + ni

)
− 1

xi

)
+ ηN+1

(
N∑

i=1

∆ipibi

−E(max)
sys

)
+ ηN+2

(
N∑

i=1

bi −BW

)
+

N∑
i=1

ηN+2+i(−bi + 1) +

N∑
i=1

η2N+2+i(pi − p
(max)
i ) +

N∑
i=1

η3N+2+i(−pi + p
(min)
i ),
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where, η = [η1, . . . , η4N+2]
T are the Lagrange multipliers that necessarily exist such

that -

∂G1.a

∂pk

= −ηk


4W 2

3

nk

√
|hk|2

(p∗k|hk|2 + nk)3/2p
∗1/2
k




+ηN+1Λkb
∗
k + η2N+2+k − η3N+2+k = 0

∂G1.a

∂bk

= −ηk
W 2 ln 2

3(2b∗k − 1)2
+ ηN+1Λkp

∗
k

+ηN+2 − ηN+2+k = 0

∂G1.a

∂xk

= −1 +
ηk

x∗2k

= 0 (3.12)

Similarly for Scheme 2 (QAM) in DC-A, the Lagrangian G1.b is as follows -

G2.a =
N∑

i=1

−xi +
N∑

i=1

ηi

(
Ri +

W 2

3(2bi − 1)2
+

16W 2

3
exp

√√√√3BsKiai log
(

2
pb

)

2N0

− 1

xi




+ηN+1

(
N∑

i=1

∆iBsKiai log

(
2

pb

)
(2bi − 1)

−E(max)
sys

)
+ ηN+2

(
N∑

i=1

bi −BW

)

+
N∑

i=1

ηN+2+i(−bi + 2), (3.13)

where, η = [η1, . . . , η3N+2]
T are the Lagrange multipliers that necessarily exist such

that -

∂G2.a

∂bk

= −ηk




W 2 ln 2

3(2b∗k − 1)2
+

16W 2

3b∗2k

exp

√√√√3BsKiai log
(

2
pb

)

2N0




+ηN+1∆kBsKkak log

(
2

pb

)
2b∗k ln 2 + ηN+2 − ηN+2+k = 0

∂G1.a

∂xk

= −1 +
ηk

x∗2k

= 0 (3.14)

44



3.2.2 Results

It may be noted that the discussion in the sequel for Formulation A applies to both

schemes unless otherwise explicitly specified. For both Scheme 1 (BPSK) and Scheme

2 (QAM), we perform numerical simulations for the formulation in DC-A, CA-A and

an exhaustive search for the global minimizers x∗i , p
∗
i , b

∗
i ,∀i ∈ {1, . . . , N} of the original

problem OR-A. We set N = 5, BW = 20, minimum system SNR requirement as 5dB,

p
(i)
max = 50 units,∀i ∈ {1, . . . , N} and E

{max}
sys = 100. First, we observe that the points

of minima obtained from simulations for DC-A, CA-A and the exhaustive search are

the same. This implies that the intricately non-convex problem in OR-A and DC-

A can be approximated as a convex problem CA-A whose minima is guaranteed to

be global minimizer of the problem. This is further bolstered by results from the

exhaustive search for global minimizers of the problem.

Optimal Actions and Operating State - We first analyze the variation of op-

timal sensor actions with operating states (for different values of Λi,∀i ∈ {1, . . . , N}).
Λi values close to zero indicate that the active sensors are healthy; Λi values around

0.5 indicate mid-range healthy operating state and unhealthy operating state is indi-

cated by Λi value close to unity. The Λi value is varied for i = 1 and the dependency

of optimal actions of all the sensors is observed. In all the three cases of operating

states of the active sensors, we observe that the optimal actions p∗i , b
∗
i relate to the

operating states Λi, ∀i ∈ {1, . . . , N} inversely. This is illustrated in figures 3.1 for

Scheme 1 (BPSK) and figures in 3.2 for Scheme 2 (QAM), where, Λi, i = 1 is varied

from zero to one and the collaborating sensors are in mid-range healthy operating

state. In general ∀i ∈ {1, . . . , N}, we observe that for larger values of Λi, the cor-

responding sensor show greater tendency to conserve its battery power resulting in

lower values of p∗i , b
∗
i . This comes at the cost of higher estimator variance at the fusion

center. Conversely for the same channel conditions and measurement noise variances,

smaller Λi values result in higher values of p∗i , b
∗
i , consequently reducing the amount
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of variance due to imperfect communication. Hence, the overall amount of error at

the fusion center does not depend on the quality of observation alone, but also the

operating state or the residual battery power of the active sensors in the system.
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Figure 3.1: Scheme 1 (BPSK) - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 3.2: Scheme 2 (QAM) - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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We also make other interesting observations as follows -

1. The value of ηN+1, Lagrange multiplier for the system resource constraint, in-

creases with increase in Λi∀i ∈ {1, . . . , N} (or deteriorating operating states

of the collaborating sensors). Intuitively, this means that the cost of resource

utilization in the system increases in with deteriorating operating states of the

active sensors.

2. We observe in figure 3.1 that the optimal pi, bi values of the collaborating sensors

decrease with increase in Λi value of any one of the active sensors. i.e., the

collaborating sensors do not compensate for the deterioration of operating state

of any of the active sensors by using more resources to minimize system variance.

This is because of the system resource expenditure constraint that is modeled

as J ≤ E
(max)
sys where any deteriorating operating states cause the corresponding

Λi to increase.

3. The Lagrange multiplier associated with the total rate constraint for Scheme

1 (BPSK), η2N+2, is significantly low in magnitude compared to the Lagrange

associated with resource constraint. This implies that changing the total rate

constraint of the system does not alter the optimal actions of the active sen-

sors significantly. However for Scheme 2 (QAM), the lagrange associated with

the total rate constraint is comparable in magnitude with that of the resource

constraint.

Optimal Actions and Channel Conditions - We vary channel condition metricized as

ni

|hi|2
(|hi|2 = 1) for Scheme 1 (BPSK) and as ni for Scheme 2 (QAM) for i = 1, and

observe the variation of optimal actions for different operating states of the active

sensors. Figures 3.3 and 3.4 illustrate the dependency of p∗i , b
∗
i ,∀i ∈ {1, . . . , N} on

channel condition for Λi = 0.5,∀i ∈ {1, . . . , N} (implying that all the active sensors

are in mid-range health condition) for Scheme 1 and Scheme 2 respectively.
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Figure 3.3: Scheme 1 (BPSK) - (a) Variation of ni

|hi|2
with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of ni

|hi|2
with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 3.4: Scheme 2 (QAM) - (a) Variation of ni with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of ni with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

We observe that p∗i ,∀i ∈ {1, . . . , N} relates to ni directly. If the channel

quality (low ni) of a sensor is high, then it uses lesser amount of power for transmission

of its information. The converse is observed for degraded channel quality or high ni
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values. This is similar to a reverse water-filling process where the total amount of

power used for transmission in a channel is inversely related to the channel gain and

directly related to channel noise. However it can be seen that b∗i ,∀i ∈ {1, . . . , N}
or the optimal information length relates inversely to the channel condition metric.

For high ni, lower values of b∗i ensues and the converse is observed for low ni values.

Similar variations in p∗i , b
∗
i are observed for all the three cases of operating states of

the active sensors. Other interesting observations are summarized as follows -

1. The system resource cost ηN+1 increases with channel noise. This causes the

sensors collaborating with the active sensor with bad channel quality to decrease

their resources expenditure.

2. It can be deduced that sensors with poor channel quality are severely disadvan-

taged due to increased utilization of power for transmission of information in

order to minimize the estimator variance at the fusion center.

Optimal Actions and Measurement Noise Variance - The measurement noise variance

Ri for i = 1 is varied for different operating states of the active sensors. Figures 3.5

and 3.6 show variation of the optimal actions pi, bi with measurement noise R1 for sen-

sors in mid-range health Λi = 0.5,∀i ∈ {1, . . . , N} for Scheme 1 (BPSK) and Scheme

2 (QAM) respectively. We observe that for all operating states of the active sensors

considered, p∗1, b
∗
1 decreases with increase in R1, while p∗i , b

∗
i ,∀i ∈ {2, . . . , N}, i.e., the

total power expended by all the other sensors increases correspondingly increases.

Some of the other inferences are -

1. In this formulation, active sensors with relatively low measurement noise vari-

ance are disadvantaged from a resource utilization perspective when they col-

laborate with sensors with relatively higher measurement noise variance.

2. The Lagrange associated with the resource constraint ηN+1 significantly de-

creases with increase in measurement noise variance of any of the active sensors.
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Figure 3.5: Scheme 1 (BPSK) - (a)Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors (b) Variation of R1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 3.6: Scheme 2 (QAM) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors (b) Variation of R1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

A Note on the Integer Relaxation of Bits : All the formulations are solved

by first treating bi,∀i ∈ {1, . . . , N} as continuous. Upon obtaining optimal bis, we

search exhaustively for the values in [b∗i ] and [b∗i ] + 1 ∀i ∈ {1, . . . , N} subject to the
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total rate constraint BW . It is straight-forward to see that the optimal values would

lie in the immediate integer neighborhood of bi for the convex approximated version

of all formulations. Since the solutions of the convex approximated version of all

formulations match that of the original formulations and the D.C. versions, we are

assured that a similar exhaustive search yields optimal solutions for bi in all cases.

This is verified by the exhaustive search performed to find the global minimizers for all

the formulations. Note that determining the optimal bis is NP hard (can be reduced

to a knapsack problem) and complexity of the search increases exponentially with the

number of active sensor nodes.

3.3 Summary

In this chapter, we presented an optimization formulation that minimizes BLUE

variance at the fusion center subject to a total resource constraint in the network

for Scheme 1 (BPSK) and Scheme 2 (QAM). We analyzed the tradeoff between the

estimation error and the total resource utilized and determined optimal sensor ac-

tions. We also studied the effect of operating state, channel conditions, and the

measurement noise variance on the optimum choice of power and rate per transmis-

sion. Observing that the minimizer for DC-A, CA-A, and the original problem are

the same, it appears the original non-convex problem in OR-A can be approximated

as a convex optimization problem CA-A for both Schemes without compromising on

the optimality of the solutions attained.
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Chapter 4

Resource Utilization Minimization

In this chapter, we consider the second optimization formulation - Formu-

lation B, for Scheme 1 (BPSK) and Scheme 2 (QAM), using the same system model

presented in chapter 3. Here we seek to minimize the total resource utilization of the

active sensors in the network subject to a BLUE variance constraint at the fusion cen-

ter. In section 4.1, we present the optimization formulation and its modified versions

(D.C. and convex approximation), followed by KKT analysis, results and discussion.

4.1 Formulation B - Minimize J Subject to BLUE Variance

Constraint.

We seek to minimize the total resource expenditure in the system subject to a con-

straint on the BLUE variance at the fusion center. We ask -

(Q2) What is the minimum resource (optimal pi and bi,∀i ∈ {1, . . . , N}) that needs to

be expended in an information transmission by all active sensors given the maximum

tolerable variance of the best linear unbiased estimator at the fusion center?

In order to address this question, we consider both Scheme 1 (BPSK) and

Scheme 2 (QAM), and use the resource expenditure and the BLUE variance model
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from Formulation A. The problem is modeled as follows -

Minimize J

Subject to

D ≤ D{max}
sys ; - BLUE Variance Constraint

N∑
i=1

bi −BW ≤ 0; - Rate Constraint

where the box constraints from Formulation A follow implicitly, and D
{max}
sys is the

maximum tolerable variance of the BLUE at the fusion center. Λi ∈ [0, 1], ∀i ∈
{1, . . . , N} is a weighing parameter that reflects the relative operating states (as in

residual battery powers) of the sensors. When any of the Λi values is much higher

compared to the rest, it implies that the corresponding sensor has comparatively much

lesser residual battery power and hence would be conservative in resource expenditure.

The converse applies to any of the sensors whose Λi is much lesser than the rest.

We refer to the formulation in (4.1) as OR-B that has a convex objective function

in pi, bi,∀i ∈ {1, . . . , N} and the BLUE variance constraint being non-convex. By

setting xi = 1

(Ri+
W2

3(2bi−1)2
+Ri,c)

, we reformulate the above optimization problem as

follows -

Minimize J

Subject to

xi − 1

(Ri + W 2

3(2bi−1)2
+ Ri,c)

= 0

D{max}
sys

−1 −
N∑

i=1

xi ≤ 0;

N∑
i=1

bi −BW ≤ 0, (4.1)

We refer to this problem as MOD-B. It can be seen that the objective function is

increasing in pi, bi,∀i ∈ {1, . . . , N}, the equality constraint is increasing in xi but
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decreasing in ,pi, bi, and the BLUE variance constraint is decreasing in xi,∀i ∈
{1, . . . , N}. Thus the equality in (4.1) can be treated as an inequality to formu-

late an equivalent problem since it is guaranteed to be always active at all points of

minima. We reformulate MOD-B as a difference of convex functions problem DC-B

as below -

Minimize
N∑

i=1

Λipibi

Subject to

Ri +
W 2

3(2bi − 1)2
+ Ri,c − 1

xi

≤ 0

D{max}
sys

−1 −
N∑

i=1

xi ≤ 0;

N∑
i=1

bi −BW ≤ 0,

Motivated by reasons mentioned earlier, we perform a convex approximation of the

D.C. constraint in DC-B by using its first-order Taylor expansion. We denote this

formulation as CA-B -

Minimize
N∑

i=1

Λipibi

Subject to

Ri +
W 2

3(2bi − 1)2
+ Ri,c −

(
1

x
{m}
i

+
xi − x

{m}
i

(x
{m}
i )2

)
≤ 0

D{max}
sys

−1 −
N∑

i=1

xi ≤ 0;

N∑
i=1

bi −BW ≤ 0,

where, the first-order Taylor approximation of − 1
xi

,∀i ∈ {1, . . . , N}, about x
{m}
i is

used.
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4.1.1 Analysis

We determine the conditions satisfied by the minima for the formulation in DC-B

by applying KKT conditions. The Lagrangian G1.b for Scheme 1 (BPSK) in the

formulation DC-B is as follows -

G1.b =
N∑

i=1

∆ipibi + η1(D
{max}
sys

−1 −
N∑

i=1

xi) +
N∑

i=1

ηi+1 (Ri

+
W 2

3(2bi − 1)2
+

4W 2

3

(
1−

√
pi|hi|2

pi|hi|2 + ni

)
− 1

xi

)
+

ηN+2

(
N∑

i=1

bi −BW

)
+

N∑
i=1

ηN+2+i(−bi + 1) +

N∑
i=1

η2N+2+i(pi − p
(max)
i ) +

N∑
i=1

η3N+2+i(−pi + p
(min)
i ),

where, η = [η1, . . . , η4N+2]
T are the Lagrange multipliers that necessarily exist such

that -

∂G1.b

∂pk

= Λkb
∗
k − ηk+1


4W 2

3

nk

√
|hk|2

(p∗k|hk|2 + nk)3/2p
∗1/2
k




+η2N+2+k − η3N+2+k = 0

∂G1.b

∂bk

= Λkp
∗
k − ηk+1

W 2 ln 2

3(2b∗k − 1)2

+ηN+2 + ηN+2+k = 0

∂G1.b

∂xk

= −η1 +
ηk+1

x∗2k

= 0 (4.2)

Similarly for Scheme 2 (QAM) in DC-A, the Lagrangian G2.b is as follows -

G2.b =
N∑

i=1

∆iBsKiai log

(
2

pb

)
(2bi − 1) + η1(D

{max}
sys

−1 −
N∑

i=1

xi)

+
N∑

i=1

ηi+1(Ri +
W 2

3(2bi − 1)2
+

16W 2

3
exp

√√√√3BsKiai log
(

2
pb

)

2N0

− 1

xi

)

+ ηN+2

(
N∑

i=1

bi −BW

)
+

N∑
i=1

ηN+2+i(−bi + 2), (4.3)
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where, η = [η1, . . . , η3N+2]
T are the Lagrange multipliers that necessarily exist such

that -

∂G2.a

∂bk

= ∆kBsKkak log

(
2

pb

)
2b∗k ln 2

−ηk+1




W 2 ln 2

3(2b∗k − 1)2
+

16W 2

3b2
k

exp

√√√√3BsKiai log
(

2
pb

)

2N0


 + ηN+2 − ηN+2+k = 0

∂G1.a

∂xk

= −1 +
ηk

x∗2k

= 0 (4.4)

4.1.2 Results

We consider a network with system parameters similar to that described in the pre-

vious chapter and set D
{max}
sys = 0.35. Numerical simulations are performed for both

the schemes using formulations DC-B and CA-B, followed by an exhaustive search

for the global minimizers p∗i , b
∗
i , x

∗
i ,∀i ∈ {1, . . . , N} of the original problem OR-B. We

observe that the points of minima are the same in all the cases of simulations implying

that the non-convex problem in OR-B and DC-B can be reduced to the approximated

formulation in CA-B without compromising on the quality of the solutions.

Optimal Actions and Operating States - We first set the value of Λi for i = 1

significantly low compared to the other Λi values in order to study the case of a

healthy active sensor amongst unhealthy active sensors. The variation of p∗i , b
∗
i ,∀i ∈

{1, . . . , N} with Λi, i = 1, are presented in figures 4.1 and 4.2 for Scheme 1 (BPSK)

and Scheme 2 (QAM) respectively. As before, we observe that p∗i , b
∗
i , i = 1, depends

on Λ1 inversely. In general, we note that as Λ1 increases, there is an increase in the

resource spending of the collaborating sensors i = {2, . . . , N}. This is because as the

healthy sensor’s (i = 1) state deteriorates (increasing Λ1), there is a decrease in its

power spending that results in a corresponding increase in the total power spending of

the collaborating sensors in order to satisfy the BLUE variance constraint at the fusion

center. A similar trend is observed when all Λi,∀i ∈ {1, . . . , N} are comparable (i.e.
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comparable operating states) and when Λ1 > Λi,∀i ∈ {2, . . . , N} (i.e. when sensor

i = 1 is much unhealthier compared to the other collaborating sensors).
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Figure 4.1: Scheme 1 (BPSK) - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 4.2: Scheme 2 (QAM) - - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

We also observe that -
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1. The Lagrange multiplier associated with the BLUE variance constraint η1 in-

creases with increase in the magnitude of Λ1. The large magnitude of this

multiplier coupled with its sharp increase with Λ1 explains why other collab-

orating sensors strongly pitch in to compensate for the deteriorating state of

sensor i = 1.

2. η1 is significantly larger than the Lagrange associated with total rate constraint

ηN+2 for Scheme 1 (BPSK). Thus changing the value of D
{max}
sys significantly

alters optimal operation of the active sensors while the rate constraint can be

changed without incurring any pronounced shift in optimality. However for

Scheme 2 (QAM), the Lagrange ηN+2 for the rate constraint is comparable in

magnitude to η1.

Optimal Actions and Channel Conditions - We vary channel condition n1

|h1|2 , (|h1|2 = 1)

for i = 1 and study the variation of p∗i , b
∗
i ,∀i ∈ {1, . . . , N} for (Λ1 < Λi, ∀i ∈

{2, . . . , N}; comparable

Λi, ∀i ∈ {1, . . . , N}; Λ1 > Λi,∀i ∈ {2, . . . , N}). The figures in 4.3 and 4.4 are plotted

for comparable values of Λi,∀i ∈ {1, . . . , N} for Scheme 1 (BPSK) and Scheme 2

(QAM) respectively. Optimal Power per bit follows reverse water-filling in general

for all cases of Λi,∀i ∈ {1, . . . , N} as the sensor with poor channel condition expends

more power to satisfy the BLUE variance constraint at the fusion center. Another

interesting aspect is that with deterioration in channel quality, the collaborating sen-

sors step up their total power usage for information transmission unlike in the case of

OR-A. This trend ensures that the BLUE variance constraint at the fusion center is

satisfied even in the face of bad channel conditions experienced by any of the active

sensors. Optimal information length b∗i is seen to inversely depend on the channel

condition metric ni,∀i ∈ {1, . . . , N}.
Other relevant observations deductions are as follows -
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Figure 4.3: Scheme 1 (BPSK) - (a) Variation of n1

|h1|2 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b)Variation of n1

|h1|2 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 4.4: Scheme 2 (QAM) - (a) Variation of n1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b)Variation of n1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

1. The Lagrange multiplier η1 associated with the BLUE variance constraint is

significantly large, which in turn forces a collaboration behavior as discussed.

η1 is seen to increase with increase in the magnitude of ni, for any i ∈ {1, . . . , N}.
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2. It can be deduced that if any of the active sensors have a poor channel, then

there is an increase in the total amount of power expended by all active sensors

in the system to meet the BLUE variance requirement at the fusion center.

Optimal Actions and Measurement Noise Variance - The measurement noise Ri, i = 1

is varied for different operating states of the active sensors (Λ1 < Λi,∀i ∈ {2, . . . , N};
comparable Λi,∀i ∈ {1, . . . , N}; Λ1 > Λi,∀i ∈ {2, . . . , N}). We observe that for Λ1 <

Λi, ∀i ∈ {2, . . . , N}; comparable Λi, the optimal actions of sensor i = 1 increases

while that of the collaborating sensors remain constant as in figures 4.5 and 4.6 for

Scheme 1 (BPSK) and Scheme 2 (QAM) respectively. This reflects the attempt of

sensor i = 1 to satisfy the BLUE variance constraint by increasing its total amount of

power for information transmission given its degrading measurement noise variance

R1.
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Figure 4.5: Scheme 1 (BPSK) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Unhealthy Sensors. (b) Variation of R1 with the Bits used

by Sensor (i=1) and Collaborating Unhealthy Sensors.

However, for the case Λ1 > Λi,∀i ∈ {2, . . . , N}) in Scheme 1 (BPSK),

we observe that this behavior reverses where the collaborating sensors begin using

more resources causing the resource expenditure of sensor i = 1 to decrease. This is
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Figure 4.6: Scheme 2 (QAM) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Unhealthy Sensors. (b) Variation of R1 with the Bits used

by Sensor (i=1) and Collaborating Unhealthy Sensors.

illustrated with the figures in 4.7 for Scheme 1.
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Figure 4.7: Scheme 1 (BPSK) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Unhealthy Sensors. (b) Variation of R1 with the Bits used

by Sensor (i=1) and Collaborating Unhealthy Sensors.

Unlike for Scheme 2 (QAM), in Scheme 1 (BPSK), we note that η1 is sig-

nificant in magnitude compared to ηN+2. Also for both schemes the magnitude of η1
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increases sharply with increase in the measurement noise variance of any of the active

sensors.

4.2 Summary

In this chapter, we presented an optimization formulation where we minimized the

total resource expenditure of all active sensors in the network subject to a BLUE

variance constraint at the fusion center. We analyzed the tradeoff between estimation

error and resource utilization, and also optimal sensor actions. We investigated the

dependency of optimal sensor actions on channel conditions, operating state, and

measurement noise. From simulations, we inferred that the nonconvex problem in the

original formulation can be approximated as the convex problem in CA-B without

affecting optimality.
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Chapter 5

Joint Estimation Error and

Resource Utilization Minimization

In this chapter, we consider the third optimization formulation for Scheme

1 (BPSK) and Scheme 2 (QAM) - Formulation C. Here we seek to minimize the

estimation error at the fusion center and the total amount of resources utilized si-

multaneously, and determine optimal sensor actions. We adopt the system model

presented in chapter 3. We present the problem in section 5.1 followed by KKT

analysis, results and discussion.

5.1 Formulation C - Minimize D and J Simultaneously.

We consider the problem of simultaneously minimizing the BLUE variance at the

fusion center and the total resources expended by all active sensors in the system.

The question that we address is as follows -

(Q3) What are the optimal sensor actions (power per bit and the number of bits) in

an information transmission that jointly minimizes the total resource utilization of

all active sensors and the variance of the best linear unbiased estimator at the fusion

center?
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The ensuing formulation is a generalization of N = 2 sensor case that is

considered in [25] for both Scheme 1 (BPSK) and Scheme 2 (QAM). We use a similar

expression for BLUE variance as previously and model resource utilization as J =

∑N
i=1

Λipibi

p
(i)
maxBW

for Scheme 1, and J =
∑N

i=1
Λipici

p
(i)
maxBW

for Scheme 2, where, Λi,∀i ∈
{1, , . . . , N} are the scalarization parameters in the multi-objective utility function.

It can be treated as a parameter that reflects the resource policy of each sensor based

on their operating state: If a sensor is operating on low residual battery power, it

can choose a high Λi value thereby showing greater affinity for resource economical

actions that help in conserving its battery power. Smaller values of Λi indicating

higher residual battery power imply that the sensors weigh the objective of estimation

error reduction over resource optimization. We express the problem in its standard

form as -

Minimize J + D

Subject to
N∑

i=1

bi −BW ≤ 0, - Rate Constraint

and, the box constraints from Formulation A follow implicitly. We refer to the above

formulation in (5.1) as OR-C. We set xi = 1

(Ri+
W2

3(2bi−1)2
+Ri,c)

, and we have the modified

formulation written in the D.C. form (DC-C ) as -

Minimize −
N∑

i=1

xi +
N∑

i=1

Λipibi,

subject to Ri + Ri,q + Ri,c − 1

xi

≤ 0

N∑
i=1

bi −BW ≤ 0,
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The convex approximated version CA-C of DC-C can be written as follows -

Minimize −
N∑

i=1

xi +
N∑

i=1

Λipibi,

subject to

Ri + Ri,q + Ri,c −
(

1

x
{m}
i

+
xi − x

{m}
i

(x
{m}
i )2

)
≤ 0

N∑
i=1

bi −BW ≤ 0,

where, the first-order Taylor expansion of the function − 1
xi
∀i ∈ {1, . . . , N} about

x
{m}
i has been used.

5.1.1 Analysis

We first determine the KKT conditions satisfied by the minima for the formulation

in DC-C for both schemes. The Lagrangian G1.c for Scheme 1 (BPSK) in this for-

mulation is as follows -

G1.c =
N∑

i=1

∆ipibi −
N∑

i=1

xi +
N∑

i=1

ηi (Ri

+
W 2

3(2bi − 1)2
+

4W 2

3

(
1−

√
pi|hi|2

pi|hi|2 + ni

)
− 1

xi

)
+

ηN+1

(
N∑

i=1

bi −BW

)
+

N∑
i=1

ηN+2+i(−bi + 1) +

N∑
i=1

η2N+1+i(pi − p
(max)
i ) +

N∑
i=1

η3N+1+i(−pi + p
(min)
i ),
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where, η = [η1, . . . , η4N+1]
T are the Lagrange multipliers that necessarily exist such

that -

∂G1.c

∂pk

= Λkb
∗
k −


4W 2

3

nk

√
|hk|2

(p∗k|hk|2 + nk)3/2p
∗1/2
k




+η2N+1+k − η3N+1+k = 0

∂G1.c

∂bk

= Λkp
∗
k −

W 2 ln 2

3(2b∗k − 1)2

+ηN+1 + ηN+1+k = 0

∂G1.c

∂xk

= −1 +
ηk

x∗2k

= 0 (5.1)

Similarly for Scheme 2 in DC-A, the Lagrangian G2.c is as follows -

G2.c =
N∑

i=1

∆iBsKiai ln 2pb(2
bi − 1)−

N∑
i=1

xi

+
N∑

i=1

ηi(Ri +
W 2

3(2bi − 1)2
+

16W 2

3
exp

√√√√3BsKiai log
(

2
pb

)

2N0

− 1

xi

) +

ηN+1

(
N∑

i=1

bi −BW

)
+

N∑
i=1

ηN+1+i(−bi + 2), (5.2)

where, η = [η1, . . . , η2N+1]
T are the Lagrange multipliers that necessarily exist such

that -

∂G2.c

∂bk

= ∆kBsKkak log

(
2

pb

)
2b∗k ln 2

−ηk




W 2 ln 2

3(2b∗k − 1)2
+

16W 2

3b∗2k

exp

√√√√3BsKiai log
(

2
pb

)

2N0


 + ηN+1 − ηN+1+k = 0

∂G1.a

∂xk

= −1 +
ηk

x∗2k

= 0 (5.3)

5.1.2 Results

We consider a network with system parameters similar to that described in the previ-

ous chapter and perform numerical simulations for both schemes in formulations DC-

C, CA-C and an exhaustive search for the global minimizers of the problem in OR-C.
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The minimizers found in all three cases for each scheme are seen to be the same imply-

ing that the non-convex formulation in OR-C and DC-C can be reduced to its convex

formulation in CA-C. We study the variation of optimal pi, bi, xi,∀i ∈ {1, . . . , N} for

different values of Λi,∀i ∈ {1, . . . , N}. In general, we observe the following -

Optimal Actions and Operating State - The optimal actions pi, bi,∀i ∈ {1, . . . , N}
relates to the operating state Λi,∀i ∈ {1, . . . , N} inversely as in figures 5.1 and 5.2

for Scheme 1 (BPSK) and Scheme 2 (QAM) respectively. Note that the figures

present the results for mid-range healthy sensors collaborating with sensor i = 1; i.e.

Λi, ∀i ∈ {2, . . . , N} around 0.5.
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Figure 5.1: Scheme 1 (BPSK) - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

As Λi increases, the corresponding sensor shows greater affinity for reducing

resource expenditure by significantly reducing the information length b∗i and the power

associated with each bit in the information p∗i . Such actions results in increase in

variance in the information transmitted due to imperfect channel and quantization

thereby increasing the BLUE variance at the fusion center. The converse is observed

for lower values of Λi when the corresponding sensor prefer actions that minimize the
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Figure 5.2: Scheme 2 (QAM) - (a) Variation of Λ1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of Λ1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

variance of the information at the fusion center. In general, there is no collaboration

observed for Scheme 1. But for Scheme 2, a decrease in the resource expended by an

active sensor (due to its deteriorating operating state) is compensated by an increase

in the resource spending of the collaborating sensors only if they are healthy.

Optimal Actions and Channel Conditions - As expected for Scheme 1 (BPSK),

p∗i , ∀i ∈ {1, . . . , N} relates to the channel condition metric ni

|hi|2
(|hi|2 = 1) directly

indicating a reverse-water filling tendency as in figure 5.3. The information length

b∗i ,∀i ∈ {1, . . . , N} is seen to depend inversely on the channel condition as in figure

5.3. Similar trends in the variation of p∗i , b
∗
i , with ni,∀i ∈ {1, . . . , N} are observed

for Scheme 2 (QAM) in figure 5.4. In general, there is no collaboration observed for

Scheme 1. But for Scheme 2, when an active sensor’s channel condition deteriorates,

the collaborating sensors increase their resource spending in case they are healthy or

Λi, i ∈ {2, . . . , N} is close to zero.

Optimal Actions and Measurement Noise Variance - We observe that pi, bi,∀i ∈
{1, . . . , N} depends on Ri,∀i ∈ {1, . . . , N} inversely implying that an increase in the
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Figure 5.3: Scheme 1 (BPSK) - (a) Variation of n1

|h1|2 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of n1

|h1|2 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.
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Figure 5.4: Scheme 2 (QAM) - (a) Variation of n1 with the Power used by Sensor

(i=1) and Collaborating Mid-Range Healthy Sensors. (b) Variation of n1 with the

Bits used by Sensor (i=1) and Collaborating Mid-Range Healthy Sensors.

measurement noise variance prompts the corresponding sensor to utilize lesser amount

of resources for transmission of information to the fusion center. This is illustrated in

figures 5.5 and 5.6 for Scheme 1 (BPSK) and Scheme 2 (QAM) respectively. When

69



the measurement noise of any of the active sensor increases, we observe no collabora-

tion for Scheme 1; but for Scheme 2, there is an increase in resource expenditure for

the collaborating sensors if they are in good health.
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Figure 5.5: Scheme 1 (BPSK) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Unhealthy Sensors. (b) Variation of R1 with the Bits used

by Sensor (i=1) and Collaborating Unhealthy Sensors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30
Measurement Noise v/s Power

Measurement Noise

P
ow

er

 

 
Sensor 1
Other Sensors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5
Measurement Noise v/s Rate

Measurement Noise

R
at

e

 

 
Sensor 1
Other Sensors

(a) (b)

Figure 5.6: Scheme 2 (QAM) - (a) Variation of R1 with the Power used by Sensor

(i=1) and Collaborating Unhealthy Sensors. (b) Variation of R1 with the Bits used

by Sensor (i=1) and Collaborating Unhealthy Sensors.
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For Scheme 1 (BPSK), we observe that the magnitude of the Lagrange asso-

ciated with the total rate constraint ηN+1 is significantly low implying that BW can in-

creased or decreased without changing the optimal values of pi, bi, xi,∀i ∈ {1, . . . , N}.
As a result, we observe that collaborative behavior among the active sensors is al-

most absent. This directly motivates the idea of decoupling the problem in CA-C for

Scheme 1 using dual decomposition and formulating a system with purely distributed

autonomous operation -

Minimize
N∑

i=1

∆ipibi −
N∑

i=1

xi +
N∑

i=1

ηi (Ri

+
W 2

3(2bi − 1)2
+

4W 2

3

(
1−

√
pi|hi|2

pi|hi|2 + ni

)
−

(
1

x
{m}
i

+
xi − x

{m}
i

(x
{m}
i )2

))
+

ηN+1

(
N∑

i=1

bi −BW

)
,

subject to

−bi + 1 ≤ 0

pi − p(i)
max ≤ 0; − pi + p

(i)
min ≤ 0;∀i ∈ {1, . . . , N},

We set ηN+1 = 0 and let fi(pi, bi, xi) = ∆ipibi−
∑N

i=1 xi+ηi

(
Ri + W 2

3(2bi−1)2
+ 4W 2

3
P

(i)
b −(

1

x
{m}
i

+
xi−x

{m}
i

(x
{m}
i )2

))
. This enables to achieve purely autonomous operation of the

sensors in the network where each sensor i ∈ {1, . . . , N} performs local convex opti-

mization as follows -

Minimize fi(pi, bi, xi)

subject to

−bi + 1 ≤ 0

pi − p(i)
max ≤ 0; − pi + p

(i)
min ≤ 0;

Since the total rate constraint of the system has been removed, the above formulation

does not involve a master problem (problem solved at the fusion center in this case)
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that updates ηN+1 and signals the updated ηN+1 value to the distributed sensors.

The problem in CA1.c is convex and hence we have that the decomposed problem

above in its dual form must has zero duality gap and hence give the same solution as

the primal problem. However for Scheme 2 (QAM), the significant magnitude of the

lagrange multiplier associated with the total rate constraint sans pure decoupling.

5.2 Summary

In this chapter, we presented an optimization formulation where we minimized the

BLUE variance at the fusion center and the total resource expenditure of all active

sensors in the network. We analyzed the tradeoff between estimation error and re-

source utilization, and also optimal sensor actions. We investigated the dependency

of optimal sensor actions on channel conditions, operating state, and measurement

noise. From simulations, we inferred that the non-convex problem in the original

formulation can be approximated as the convex problem in CA-C without affecting

optimality. We finally presented the notion of achieving perfectly autonomous opera-

tion of the sensors in the network in the case of Scheme 1 (BPSK) since the Lagrange

multiplier associated with the total rate constraint is very small in magnitude.
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Chapter 6

Comparative Analysis

In this chapter, we comment on the total amount of resources utilized and

the BLUE variance in each of the formulations for both Scheme 1 (BPSK) and Scheme

2 (QAM). In section 6.1, we compare the formulations in terms of estimation error

achieved and the resources utilized to achieve that error. In section 6.2, we compare

the optimal sensor actions, and collaborative behavior among sensors for each of the

formulations.

6.1 General Comparison - Formulations

We set N = 5, BW = 20, minimum system SNR requirement as 5dB, p
(i)
max =

20 units, ∀i ∈ {1, . . . , N} and E
{max}
sys = 20 for Formulation A, and D

{max}
sys = 0.35

for Formulation B. We analyze the BLUE variance achieved at the fusion center

and the corresponding amount of resources utilized by first varying the operating

state Λi of sensor i = 1, given that the collaborating sensors are healthy and that

the channel conditions and measurement noise are maintained constant. This is

illustrated in figures 6.1, 6.2, and 6.3 for Scheme 1 (BPSK) using Formulations A,

B, and C respectively. It can be seen that Formulation B is the most economical

approach in terms of resource consumed for a target BLUE variance. Formulation A
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enables achieve high quality estimator but at the cost of excess amount of resources.

Formulation C is apparently the least favorable in resources consumed and BLUE

variance achieved. For e.g., - It can be seen that for the system under consideration,

the minimum variance achieved by Formulation A is D = 0.359 corresponding to

J = 20 (amount of resource used), while in the worst case D = .404 is attained

for J = 20. Formulation B achieves a variance of D = 0.35 for J = 14 in the

best case and D = .35 for J = 19.1 in the worst case. In Formulation C, Pareto

optimality is observed, with the curve ranging from the best case variance of D = 0.36

for J = 24 to the worst case variance of D = .393 for J = 23. i.e., in effect,

Formulation B uses 42% lesser amount of resources than Formulation A, and 71%

lesser amount of resources than Formulation C to achieve the same BLUE variance

in the best case scenario. However Formulation C may be suitable for achieving a

completely autonomous distributed estimation process as discussed in the previous

chapter. We make similar observations when the channel quality of sensor i = 1 is

varied, keeping the operating state and measurement noise of all sensors a constant;

and when measurement noise of sensor i = 1 is varied, keeping operating states and

channel quality of all sensors a constant.

Using the same system parameters, we analyze all formulations using Scheme

2 (QAM) along the same lines as that of Scheme 1. Figures 6.4, 6.5, and 6.6 are plotted

for Formulations A, B, and C respectively, by varying the operating state Λi of sensor

i = 1, given that the collaborating sensors are healthy and that the channel conditions

and measurement noise are maintained constant. We make similar conclusions as in

Scheme 1. However for Scheme 2, pure decoupling of formulation C is not possible

because of the significant magnitude of Lagrange multiplier associated with the total

rate constraint.
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Figure 6.1: Scheme 1 (BPSK) Formulation A - BLUE Variance vs Total Power used

by Active Healthy Sensors.
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Figure 6.2: Scheme 1 (BPSK) Formulation B - BLUE Variance vs Total Power used

by Active Healthy Sensors.

6.2 Comparison - Optimal Actions and Collaboration

Effect of Operating State on Optimal Actions and Collaboration - For both Scheme 1

(BPSK) and Scheme 2 (QAM) in all formulations, the optimal power per transmis-

sion and rate of any sensor i depends inversely on its operating state (characterizing
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Figure 6.3: Scheme 1 (BPSK) Formulation C - BLUE Variance vs Total Power used

by Active Healthy Sensors.
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Figure 6.4: Scheme 2 (QAM) Formulation A - BLUE Variance vs Total Power used

by Active Healthy Sensors.

its residual battery power) Λi, ∀i ∈ {1, . . . , N}. In Formulation A, when an active

sensor’s operating state deteriorates, the collaborating sensors (irrespective of their

operating states) decrease their optimal power and rate and hence do not collaborate

to minimize BLUE variance at the fusion center. However in Formulation B, when

a sensor’s operating state deteriorates, the other collaborating sensors collaborate by
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Figure 6.5: Scheme 2 (QAM) Formulation B - BLUE Variance vs Total Power used

by Active Healthy Sensors.
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Figure 6.6: Scheme 2 (QAM) Formulation C - BLUE Variance vs Total Power used

by Active Healthy Sensors.

expending more resources to minimize the BLUE variance at the fusion center. In

Formulation C, there is no collaboration observed for Scheme 1 since the Lagrange

multiplier associated with the rate constraint is very small in magnitude. However,

for Scheme 2, when the operating state of any of the active sensors deteriorates, we

observe an increase in resource expenditure for the collaborating sensors if they are
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in good health.

Effect of Channel Condition on Optimal Actions and Collaboration - In all

formulations for both schemes, the optimal power per transmission depends directly

on channel noise power; i.e. a reverse water-filling trend is observed. However the

optimal length of information transmitted (also the rate) depends inversely on chan-

nel noise power. In Formulation A, if any of the active sensors experience degraded

channel condition, then the collaborating sensors step down their resource utilization.

This is unlike in Formulation B, where collaborating sensors increase their resource

consumption in order to minimize the BLUE variance at the fusion center. In Formu-

lation C for Scheme 1, no collaboration is observed. But for Scheme 2 in Formulation

C, an increase in resource spending of the collaborating sensors is observed when they

are healthy and if the channel quality of any of the active sensors degrades.

Effect of Measurement Noise on Optimal Actions and Collaboration - For

both schemes in Formulation A, when the measurement noise of an active sensor in-

creases, there is a decrease in its resource spending and an increase in the resources

utilization for the collaborating sensors. In Formulation B, when the measurement

noise of an active sensor increases, its resource spending increases only if it is healthy

while the optimal actions of the collaborating sensors remain unchanged. But if any

of the active sensor is unhealthy, then its resource spending decreases coupled with

an increase in the resource spending of other collaborating sensors. In Formulation C

for Scheme 1, there is a decrease in the resource expended by an active sensor when

its measurement noise increases, but there is no change in the actions of the collab-

orating sensors. However for Scheme 2, there is an increase in the resource spending

of the collaborating sensors only if they are healthy.

The optimal actions of the active sensors in the networks for both schemes are sum-

marized in tables 6.1, 6.2, and 6.3 (where ↑ indicates an increase and ↓ implies a

decrease in value).
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Table 6.1: Formulation A - Results

Operating State Λ1 ↑ Channel Condition n1 ↑ Measurement Noise R1 ↑
S-1 Power 1 ↓ ↑ ↓

S-1 Bits ↓ ↓ ↓
C-S Power 2 ↓ ↓ ↑

C-S Bits ↓ ↓ ↑
Resource 3 ↑ ↑ ↓

Rate 4 ↑ ↑ ↓

Table 6.2: Formulation B - Results

Operating State Λ1 ↑ Channel Condition n1 ↑ Measurement Noise R1 ↑
S-1 Power ↓ ↑ ↑
S-1 Bits ↓ ↓ ↑

C-S Power ↑ ↑ ↓
C-S Bits ↑ ↑ ↓

Variance Cost 5 ↑ ↑ ↑
Rate Cost ↑ ↑ ↑

6.3 Summary

In this chapter, we presented a comparative analysis of the estimation error and re-

source utilization achieved in the three formulations for both Scheme 1 (BPSK) and

Scheme 2 (QAM). We also compared optimal sensor actions and collaborative behav-

ior that resulted from the three optimization formulations. In the next chapter, we

1Sensor 1
2Collaborating Sensors
3Lagrange Multiplier associated with the Resource Constraint
4Lagrange Multiplier associated with the Rate Constraint
5Lagrange Multiplier associated with the BLUE Variance Constraint
6Refers to Scheme 2 (QAM), as collaboration is absent in Scheme 1 (BPSK)

Table 6.3: Formulation C - Results.

Operating State Λ1 ↑ Channel Condition n1 ↑ Measurement Noise R1 ↑
S-1 Power ↓ ↑ ↓
S-1 Bits ↓ ↓ ↓

C-S Power ↓ ↓ ↑
C-S Bits 6 ↓ ↓ ↑
Rate Cost ↑ ↑ ↓
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present a problem in distributed detection and signal processing in wireless biomedical

sensors.
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Chapter 7

Distributed Detection Application

Corruption of photopleythsmograms (PPGs) by motion artifacts has been

a serious obstacle to the reliable use of pulse oximeters for real-time, continuous

state-of-health monitoring. In this chapter, we illustrate an application of distributed

detection and signal processing by proposing an automated, two-stage PPG data pro-

cessing system to minimize the effects of motion artifacts. The technique is based

on our prior work related to motion artifact detection (stage one) [30] and motion

artifact reduction (stage two) [31]. These two steps are fundamental to the realization

of a completely automated PPG processing system that would enable reliable contin-

uous state-of-health monitoring of subjects. We introduce the area to the readers in

section 7.1 and describe the proposed model in section 7.2.

7.1 Introduction

Photoplethysmography is a noninvasive, optical means to obtain relative blood vol-

ume in tissue as a function of time. Since hemoglobin is an optical absorber, light

passing through tissue is modulated by each cardiac cycle of the subject and also by

other processes like respiration and subject motion. The resulting photoplethysmo-

grams can be acquired with reflectance- or transmittance-mode sensors, and multiple
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excitation wavelengths allow waveform features from time-domain PPGs to be con-

verted into values of heart rate and blood oxygen saturation. Corruption of PPGs

by motion artifacts has been a significant obstruction to efficient and reliable use of

pulse oximeters for continuous real-time health monitoring, especially in ambulatory

settings [41]. If PPG data are to be reliably obtained from wearable sensors used for

real-time, continuous state-of-health monitoring, then effective algorithms for motion

artifact reduction must be employed.

7.1.1 Prior Works

Over the years, most of the PPG enhancement research has focused on motion arti-

fact removal techniques. Various signal processing techniques have been investigated

to address the problem of recovering quasiperiodic PPGs from data corrupted with

motion artifacts. These include wavelet analysis and decomposition techniques [34]

and adaptive filters [35]. However, the study in [36] indicates that both wavelet-

transform and adaptive filter techniques introduce phase distortions in PPG data.

Work involving analog filters and moving average techniques is presented in [37]. The

artifact extraction problem has also been viewed as a blind source separation problem

in [38], [41] and [39]. In [38], an enhanced preprocessing unit preceded the Indepen-

dent Component Analysis (ICA) block. The preprocessing unit consisted of signal

period detection using an autocorrelation method followed by a block-interleaving op-

eration. However, this technique relies on the ability of the autocorrelation technique

to correctly detect the waveform period and hence provides erroneous results in the

presence of extreme motion artifacts. In [39], an improved preprocessing technique

is described that employs extrapolation/truncation of each cardiac cycle to the mean

of the measured cardiac cycle followed by ICA. This method is highly prone to errors

and inconsistencies, since accurate cardiac cycle measurements become difficult in the

presence of extreme motion. While removing motion artifact from PPGs is critical,
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detecting its presence is a key task that needs to be addressed first. A reliable motion

artifact detection technique lays the foundation for a completely automated PPG

data processing system that can identify PPG data frames contaminated with arti-

facts and further process them for motion artifact removal. Some work has addressed

the detection issue by correlating a PPG data frame with a clean reference signal

to detect motion artifact [39]. However, such techniques are unsuitable for robust

continuous monitoring where clean PPG signals and motion-corrupted signals are to

be identified automatically in real-time implementation.

7.2 System Model

Figure 7.1: PPG Data Processing - System Model

The model for PPG data processing system is illustrated in figure 7.1 and is

based on motion artifact detection (stage one), and motion artifact reduction (stage

two).

Motion Artifact Detection - Stage One : Both clean and corrupt PPG data are an-

alyzed in the time and frequency domains. In the time domain, skew and kurtosis

measures of the signal are used as distinguishing metrics between clean and motion-

corrupted data. In the frequency domain, the presence of random components due
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to motion artifact is analyzed using a frequency domain kurtosis measure. Addi-

tionally, bispectral analysis of PPG data indicates the presence of strong quadratic

phase coupling (QPC) and more specifically self coupling in the case of clean PPG

data. Though quadratic phase coupling is found in data corrupted by motion artifact,

the self coupling feature is absent. Then, a Neyman-Pearson (NP) detection rule is

formulated for each of the measures. Additionally, treating each of the measures as

observations from independent sensors, soft decision fusion from [33] and hard-fusion

(Varshney-Chair rule) from [32] are used to fuse individual decisions to form a global

system decision.

Motion Artifact Reduction - Stage Two : This stage involves an enhanced prepro-

cessing unit consisting of a motion detection unit (MDU, based on stage one and

developed in chapter 8), period estimation unit, and a Fourier series reconstruction

unit. The MDU aids in identifying clean data frames versus those corrupted with

motion artifacts. The period detection unit is used to determine the fundamental

frequency of a corrupt frame. The Fourier series reconstruction unit reconstructs the

final preprocessed signal. The reconstruction process primarily utilizes the spectrum

variability of the pulse waveform. Preprocessed data are then fed to a magnitude-

based frequency domain Independent Component Analysis (FD-ICA) unit. This helps

reduce motion artifacts present at the frequency components chosen for reconstruc-

tion.

System Operation : PPG data obtained from a pulse oximeter are first filtered and

detrended, which is fed as input to an enhanced preprocessing unit consisting of a

motion detection unit (MDU, presented in chapter 8), period estimation unit, and

Fourier series reconstruction unit. The MDU identifies clean PPG data frames versus

those corrupted with motion artifacts. If the data are found to be clean, no further

cleansing operations are imposed. If the data are corrupt, they are fed into the period

estimation unit that determines the fundamental frequency of the corrupt frame. The
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Fourier series reconstruction unit then reconstructs the final preprocessed signal by

utilizing the spectrum variability of the pulse waveform yielding a signal composed

primarily of its fundamental frequency component and harmonics. We then use the

MDU to determine whether the reconstructed PPG signal is stained with motion

artifacts. If the data are not free of motion artifacts, the magnitude-based frequency

domain Independent Component Analysis (FD-ICA) routine is applied to estimate

the blood volume pulsation and motion artifact components as described in chapter

9. This helps reduce motion artifacts present at the frequencies of the reconstruction

components.
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Chapter 8

Stage One - Motion Detection

In this chapter, we present methods for detecting the presence of motion

artifact in photoplethysmographic (PPG) measurements based on higher order sta-

tistical information present in the data. The theory of HOS measures considered in

this work is briefly discussed in 8.1. The results of PPG data analyses (with and

without motion artifact) based on the above measures are presented in section 8.2.

Based on these results, a Neyman-Pearson detection (NP) rule is formulated for each

of the measures and discussed in section 8.3. Section 8.3.2 addresses the combination

of all of these measures to formulate overall system decision.

8.1 Theory

The following subsections review the HOS measures applied to these PPG data [43]-

[47]:

1. Skew and Kurtosis - Skew is a measure of the symmetry (or the lack of it) of a

probability distribution, while the kurtosis measure indicates a heavy tail and

peakedness OR a light tail and flatness of a distribution relative to the normal

distribution. This measure captures the random variations of data from the
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mean. The skew and kurtosis of a random variable x are given by

C3x(0, 0) =
µ3

σ3/2
(skew)

C4x(0, 0, 0) =
µ4

σ4
− 3 (kurtosis) (8.1)

where σ is the standard deviation; µ3 and µ4 are the third and fourth moments.

2. Bispectrum - The third-order polyspectrum of a random variable x is defined

as the Fourier transform of its third cumulant sequence :

S3x(f1, f2) =
∞∑

k=−∞

∞∑

l=−∞
[C3x(k, l) exp(−j2π(f1k + f2l))] (8.2)

where C3x(k, l) is the third cumulant sequence of x. The third-order polyspec-

trum, or the power spectrum, suppresses all phase information in a random

process, while the bispectrum does not. When the harmonic components of a

process interact, definitive phase relations also exist, in addition to the contri-

bution of power at their sum and difference frequencies; this is called Quadratic

Phase Coupling (QPC). For example, consider the following process:

X1(k) = cos(λ1k + φ1) + cos(λ2k + φ2) + cos(λ3k + φ3) (8.3)

where λ3 = λ1 + λ2, indicating that λ1, λ2 and λ3 are harmonically related. If

φ1, φ2 and φ3 in (8.3) are independent random variables uniformly distributed in

the range [0,2π], then (λ3, φ3) is an independent harmonic component. However,

if φ3 = φ1 +φ2 in (8.3), then (λ3, φ3) is the result of quadratic coupling between

(λ1, φ1) and (λ2, φ2).

8.2 PPG Data Analysis

PPG data analysis is performed to understand and extract features that can be used

as distinguishing metrics between clean and motion-corrupted data. Initially, frames
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of data are collected from healthy subjects in the age group of 22-24 years using

a reflectance pulse oximeter [41]. The subjects follow the same motion patterns as

in [41]:

1. Stationary Position: The subjects remain still with no wrist, finger or elbow

movement.

2. Finger movements (three cases): left-right (swinging), up-down (bending), and

arbitrary finger movements while keeping the wrist and elbow stationary.

3. Wrist movements: The wrist is rotated and arbitrarily moved, keeping the elbow

and fingers stationary.

4. Elbow movements: The elbow is bent and extended, keeping the wrist and

fingers stationary.

Data are fed into a MATLAB script that partitions the entire data segment into short

frames of equal length. First, each frame is passed through a bandpass filter (0.3-12

Hz). Here, the design of the filter is critical, as the phase information in the data

needs to be preserved to retain the shape of the PPG waveform. For this purpose,

a zero-phase forward-reverse filter of order four in both directions is chosen. After

filtering, the baseline trend associated with each data frame is removed by extracting

an appropriately fitted polynomial curve. Each data frame is then inspected in the

time and frequency domains, and the HOS properties are characterized.

8.2.1 Time Domain Analysis

In the time domain, we analyze the skew and kurtosis measure of the time variation of

the amplitude of the PPG signal in each frame considered. This is done by evaluating

equation (8.1) for each data frame. It is important to note that these measures will

vary with age and health condition. It is observed that the skew and kurtosis measured
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for the case of motion-corrupted data are much higher in magnitude when compared

to the skew and kurtosis for clean data. Therefore, these measures could serve as

candidate features for motion detection.

8.2.2 Frequency Domain Analysis

In the frequency domain, the kurtosis measure is computed for the magnitude of the

Fourier spectrum for each data frame. This measure considers the magnitude of the

components present at each frequency sampled by the Discrete Fourier Transform

(DFT) operation. It is seen that kurtosis is lesser in magnitude for frames corrupted

with motion artifact versus frames with clean data. This means that a Fourier spec-

trum of clean data has a lower number of significant frequency components (since

only the harmonic components are prominent) compared to a spectrum of motion

corrupted data (that consists of harmonic and random spectral components).

8.2.3 Bispectral Analysis and Quadratic Phase Coupling

The bispectrum and the bicoherence of each data frame are analyzed using the MAT-

LAB Higher-Order Spectral Analysis Toolbox [45]. Significant peaks at non-zero

frequencies are observed in the bispectrum diagonal slice plots for clean PPG data,

thereby confirming the presence of strong quadratic phase coupling. In the case

of clean PPG data from the initial subjects, Table 8.1 indicates peaks at tf0 Hz,

t = 1, 2, 3, where f0 = 1.54 Hz is the most dominant frequency being coupled, indi-

cating the presence of self coupling between frequencies (we have f0 + f0 = 2f0 and

f0 + 2f0 = 3f0 and so on, indicating equally-spaced peaks in the diagonal slice plot).

However, in the case of corrupt PPG data, QPC is observed to occur between random

frequency components, and the phenomenon of self coupling is absent, as illustrated

in Table 8.2. The features used for motion detection are summarized below:

1. Time-Domain Features : Skew and kurtosis measures that provide information
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on the distribution of data. They contain information regarding amplitude

variation of the PPG waveform.

2. Frequency-Domain Feature: Frequency domain kurtosis measure that indicates

the presence of random components in the Fourier spectrum which are not

present in the spectrum of a clean signal that contains only the main harmonics.

3. Bispectral Feature and Quadratic Phase Coupling : Clean PPG data are charac-

terized by the presence of strong self coupling between the fundamental compo-

nents of the frequency spectrum. This is absent in artifact-corrupted measure-

ments where quadratic phase coupling between random frequency components

is observed.

8.3 Motion Detection Unit (MDU)

8.3.1 Methods for Motion Artifact Detection

Neyman-Pearson (NP) Detection Rule Formulation: PPG data were collected from

10 healthy male and female subjects, in the age group of 22-30 years (different subjects

from those considered for preliminary analyses and feature extractions in section 8.2),

Table 8.1: Bispectrum Plot Results - Clean Data
Coupling Frequency (f) Hz Coupling Magnitude

1.54 0.1565

3.08 0.0211

4.62 0.0037

Table 8.2: Bispectrum Plot Results - Corrupt Data
Coupling Frequency (f) Hz Coupling Magnitude

0.74 0.2839

2.74 0.0081

4.41 0.0009
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Figure 8.1: Receiver Operating Characteristic (ROC) curves for the (a) time-domain

kurtosis measure, (b) time-domain skew measure, and (c) frequency-domain kurtosis

measure.

in order to formulate the hypotheses for the NP detection rule. The subjects followed

the same motion routines as detailed in section 8.2. Based on the resulting data,

distinguishing measures were computed for each data frame as described in section

8.2. For each of the measures, let H0 denote the null hypothesis corresponding to the

region for clean data and H1 denote the alternative hypothesis corresponding to the

region for corrupt data. Under the hypotheses H0 and H1 the time-domain kurtosis,

skew and frequency-domain kurtosis measures are distributed as

H0 : yi ∼ N (µ0i, σ
2
0i)

H1 : yi ∼ N (µ1i, σ
2
1i) ∀i ∈ {1, 2, 3} , (8.4)

where, N (µ, σ2) is a Gaussian distribution with mean µ and variance σ2, and i cor-

responds to each of the distinguishing metrics. yi is the observation corresponding to

the time-domain kurtosis (i = 1), skew (i = 2) and frequency-domain kurtosis (i = 3)

measures. Based on values of the time-domain kurtosis and skew for each frame, local

decisions δi ∈ {−1, 1} are made according to

δi =





1 if yi ≥ ηi

−1 if yi < ηi for i ∈ {1, 2}
(8.5)
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where ηi = σ0iQ−1(1−PFi
)+µ0i, δi = −1 corresponds to the null hypothesis, and δi =

1 corresponds to the alternative hypothesis. Here PFi
is the false-alarm probability.

For frequency-domain kurtosis, a decision is made according to

δi =





1 if yi ≤ ηi

−1 if yi > ηi for i = 3
(8.6)

where ηi = σ0iQ−1(PFi
) + µ0i. It can be easily shown for the time-domain kurtosis

and skew measures that

PFi
= 1−Q

(
ηi − µ0i

σ0i

)
and

PDi
= 1−Q

(
ηi − µ1i

σ1i

)
, (8.7)

where PDi
is the corresponding probability of detection for each measure, and Q−1 is

the inverse Q-function. For the frequency-domain kurtosis measure, the correspond-

ing PFi
and PDi

are given by

PFi
= Q

(
ηi − µ0i

σ0i

)
and

PDi
= Q

(
ηi − µ1i

σ1i

)
. (8.8)

The tests in (8.5) and (8.6) are applied to data obtained from three healthy test

subjects of 22-30 years of age (different subjects from those considered for formulating

the hypotheses in (8.4)). The performance of the motion detectors on test data and

theoretical receiver operating characteristic (ROC) curves for the tests are displayed in

figure 8.1. It is important to note that the performance on test data conforms to that

expected in theory, assuming a Gaussian distribution for yi. The kurtosis measures

in the time and frequency domains perform better than the skew measure in the time

domain. This is because the skew measure indicates the symmetry (or the lack of

it) of the distribution of the data about the mean and is thus more characteristic

of the PPG waveform (or the subject), while the kurtosis measure captures random

variations from the mean.
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Self Coupling Detection Rule: As concluded earlier, clean PPG data are

characterized by self coupling, which is absent from data containing motion arti-

fact (though QPC between random frequency components is present). That is, self

coupling implies that the data are clean or contain insignificant amount of motion

artifacts. Hence, to determine the presence/absence of self coupling, the frequencies

being coupled are noted for each data frame and a decision is made as follows:

δi =





1 Self coupling ⇒ clean data

−1 No self coupling ⇒ corrupt data
(8.9)

The PD and PF measures related to the self coupling measure are directly

computed from the initial training set. The PF value is found to be 0.0420, while the

PD value is found to be 0.8932 for this training set.

8.3.2 Decision Fusion

The time-domain measures (kurtosis, skew) and the frequency-domain measures (QPC,

kurtosis) are modeled as four individual sensors whose independent decisions can be

fused to detect the presence of motion artifact in a given data frame. To implement

this sensor decision fusion, we employ two methods: hard-decision fusion presented

in [32] and soft-decision fusion developed in [33].

The hard-decision fusion technique fuses individual sensor decisions while

minimizing the probability of error for the overall detection system. Weights or

reliability measures that are a function of individual PFi
and PDi

values are associated

with the decisions made by the individual sensors, and the fused global decision is

given as follows:

f(δ1, . . . , δn) =





+1 if a0 +
∑4

i=1 aiδi > 0

−1 otherwise,
. (8.10)

where δi = +1 and δi = −1 ∀i ∈ {1, 2, 3, 4} are the decisions made by the individual

sensors corresponding to the presence/absence respective of motion artifact based on
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the detection rules developed in section 8.3. The weights ai are defined as

a0 = 0

ai = log

(
PDi

PFi

)
if δi = +1

ai = log

(
1− PFi

1− PDi

)
if δi = −1 (8.11)

assuming uniform cost assignment and equal prior probabilities for both hypotheses

in (8.4).

The tests in (8.5), (8.6) and (8.9) are applied to data obtained from three

test subjects as described in the previous section to obtain δi ∀i ∈ {1, 2, 3, 4}. We

select thresholds in (8.5) and (8.6) to yield PFi
= 0.2. We then evaluate the individual

PDi
and their respective probability of error, Perrori

. The weights are computed as in

(8.11) and the fused decision is formed using (8.10). This is repeated for PFi
= 0.4.

Under the same assumption of uniform costs and equal prior probabilities,

we employ the soft-fusion technique as in [33]. In this technique, we partition each of

the hypothesis regions H0 and H1 into mutually exclusive sub-regions and associate a

level of confidence with each of them. The level of confidence depends on the distance

of the local decision statistic from the decision threshold and hence is also a function

of the probability of false alarm and the probability of detection associated with the

sub-region. Optimal partitioning of the local decision space is achieved by partitioning

the probability of false alarm and the probability of detection based on a J-divergence

maximization criterion. For the time-domain kurtosis and skew measures, PFi
and

PDi
have a functional relationship from (8.7) of

PDi
= 1−Q

(
σ0iQ−1(1− PFi

) + µ0i − µ1i

σ1i

)
for i ∈ {1, 2} (8.12)

For the frequency-domain kurtosis measure, the relationship between PFi
and PDi

from

(8.8) is as follows-

PDi
= Q

(
σ0iQ−1(PFi

) + µ0i − µ1i

σ1i

)
for i = 3 (8.13)
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The soft-decision-fusion technique is performed for PFi
= 0.2 and PFi

= 0.4 for

i ∈ {1, 2, 3}. We refer the readers to [33] for a detailed qualitative treatment.

The results are summarized in Table 8.3. It can be easily seen that for both

values of PFi
, the fused decision, and in particular the soft fusion technique, provides

a better probability of detection of motion artifact than the individual sensors.

Table 8.3: Sensor Decision Fusion Results
Sensor PF PD Perror PF PD Perror

Kurtosis 0.2 0.78 0.16 0.4 0.85 0.19

Skew 0.2 0.42 0.40 0.4 0.58 0.47

QPC 0.04 0.89 0.08 0.04 0.89 0.08

FDK 0.2 0.9 0.2 0.4 0.92 0.25

Fused Decision (hard) 0.07 0.91 0.07 0.2 0.94 0.11

Fused Decision (soft) 0.06 0.92 0.06 0.22 0.96 0.14

8.4 Summary

In this chapter, we formulated an HOS-based motion detection algorithm that is a

consistent and reliable method to identify corrupt data frames that can be further pro-

cessed for motion artifact removal. In the time domain, we observe that the skew and

kurtosis measures associated with the motion-corrupted PPG data are much higher

in magnitude than the same measures for clean PPG data. The frequency-domain

kurtosis measure is much smaller for the corrupt data frames than for the clean

frames. Bispectral analyses of PPG data indicate the presence of strong quadratic

phase coupling (QPC) and, more specifically, self-coupling in the case of clean PPG

data. Though quadratic phase coupling is found in data corrupted by motion arti-

facts, the self coupling feature for the desired PPG is absent. Based on all of these

observations, Neyman-Pearson (NP) rules are formulated for each of the measures. It

is understood that kurtosis-based detection is more reliable than the skew measure.
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It is seen that soft decision fusion based on individual measures further enhances the

overall detection capability.
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Chapter 9

Stage Two - Motion Reduction

In this chapter, we present a motion artifact reduction methodology that is

effective even in the case of severe subject movement. The enhanced preprocessing

unit and the frequency domain ICA routine are detailed in section 9.1. The efficacy

of the proposed methodolgy is demonstrated in section 9.3 by applying the proposed

technique to real PPG data corrupted by significant motion artifacts.

9.1 Motion Artifact Reduction Method

The proposed motion artifact reduction method consists of a preprocessing unit and

an FD-ICA unit. The preprocessing unit employs a Fourier series reconstruction, and

its output is fed into the FD-ICA unit. The FD-ICA unit separates out the motion

artifacts present at the frequency components chosen for reconstruction.

9.1.1 Preprocessing Unit

The preprocessing unit consists of the MDU, period estimator, and Fourier series

reconstructor as in figure 9.1. The detrending and MDU are similar to those imple-

mented in Sections 8.2 and 8.3 respectively.

Period Estimation: The period of the PPG signal can be estimated by an
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Figure 9.1: Preprocessing Unit.

autocorrelation operation. However, accurate and consistent prediction of the period

is not possible by this method in the presence of extreme motion artifacts, where

the PPG data are completely buried in noise. Hence, an indirect method for the

computation of the period is considered (using the MDU from Section ??). When a

frame with motion artifact is identified as corrupt, the most recent frame with clean

data is identified. The most significant frequency component from the clean frame is

identified from its Fourier spectrum and also used as the fundamental period for the

corrupt frame. This is a reasonable assumption, since moment-to-moment changes in

heart rate should be minor.

Fourier Series Reconstruction: Upon obtaining the fundamental frequency

and its harmonics for a corrupt frame, a Fourier series reconstruction of the signal

is performed. In this reconstruction process, frequencies in the neighborhood of the

harmonics are also used to account for the spectral variability of the PPG data.

This is motivated by the inherent quasiperiodic nature of PPG signals. Additionally,

in the presence of motion artifact, we expect a possible doppler spread around the

fundamental frequency and its harmonics. Hence, we must account for that frequency-

dependent spread of energy. The technique is illustrated in figure 9.2.

9.1.2 Frequency Domain ICA Unit

In this work, we assume that motion artifacts and PPG signal sources mix linearly

with a mixing matrix in the time domain to form the observables (measurements).

The observables, denoted by x1(t) and x2(t), are the preprocessed measurements due

to the near-infrared and red excitation sources, respectively. For a measurement time
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Figure 9.2: Fourier series reconstruction of a motion-corrupted frame.

frame, τ , this instantaneous mixing is given by

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t) (9.1)

where sources s1(t) and s2(t) denote the time-domain PPGs and motion artifacts,

respectively. The mixing matrix A is assumed to be constant over the time frame τ .

Hence, the frequency domain representation of (9.1) is

X1(f) = a11S1(f) + a12S2(f)

X2(f) = a21S1(f) + a22S2(f) (9.2)

where Xi(f) and Si(f) are the Fourier transforms of xi(t) and si(t) for i = 1 and 2.

Now, considering the magnitude of Xi(f) and using the triangle inequality, we can
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write (9.2) as

|X1(f)| ≤ a11|S1(f)|+ a12|S2(f)|

|X2(f)| ≤ a21|S1(f)|+ a22|S2(f)| (9.3)

Both heart activity and motion artifacts affect the blood vessel volume at the tip of the

finger, the acquisition point for PPG data in this study. Variations in blood volume

due to source interference are observed to result in corrupt PPG data. However,

interference between the two source signals is maximal when they are aligned in the

same direction in the signal space. That is, for the case of maximal interference,

S1(f) and S2(f) exhibit linear dependence, thus equality in (9.3) can be considered.

Therefore,

|X1(f)| ≈ a11|S1(f)|+ a12|S2(f)|

|X2(f)| ≈ a21|S1(f)|+ a22|S2(f)| (9.4)

Hence, the Fourier magnitude spectrum of the corrupt PPG data can be modeled as

motion artifacts and pulsatile blood volume components linearly mixing with an un-

known mixing matrix. Since these pulsatile signals and motion artifacts are assumed

to be statistically independent, we can employ ICA in either the time or frequency

domain. From (9.4), ICA can be performed on the magnitude spectrum of x1(t) and

x2(t) using the fastICA MATLAB package based on the fast ICA algorithm [51]. Af-

ter applying the ICA routine to these magnitude spectra, we obtain an estimate of

Ŝ1(f) and Ŝ2(f) that represents blood volume pulsation and motion artifact magni-

tude information, respectively. Utilizing the phase information of the original PPG

data, we then reconstruct the clean PPG data and the motion artifacts.

In traditional frequency domain ICA approaches [50], ICA is performed on

complex data under the assumption that the mixing matrix is different for each fre-

quency bin. In another frequency domain approach applied to speech recognition [52],
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Table 9.1: Correlation Coefficient (CC) for quantitative comparison of different tech-

niques

Wrist Finger Finger Elbow Random

Movement (left/right) (up/down) Movement Movement

Time 0.6910 0.6681 0.6301 0.6557 0.6583

Domain ICA

Magnitude-based 0.7642 0.7238 0.6916 0.7119 0.7378

FD-ICA

Complex ICA 0.6141 0.5731 0.4297 0.5707 0.5924

Fourier 0.5220 0.5040 0.4116 0.4976 0.5193

Preprocessing

the energy of the observables in the frequency domain is considered, but the unmixing

matrix varies for different frequency bins. As a result, conventional approaches suffer

from permutation problems and gain issues as discussed in [50]. However these issues

do not exist in our approach since all of the frequencies selected by the preprocessing

unit are treated as a single bin for which an unmixing matrix is computed; that is,

the mixing/unmixing matrix is treated as frequency non-selective (constant for all

frequencies). The gain issue is tackled by normalizing the determinant of the unmix-

ing matrix to unity as discussed in [50], then the power of the recovered PPG source

signal (obtained after the FD-ICA process) is scaled to the original PPG measurement

data.

9.2 Methods

Data were collected from ten healthy subjects in the age group of 22-30 years who

were subjected to the same motion routine as mentioned in Section 8.2. Data from

each subject were fed to a MATLAB script that dissects the entire segment into
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Figure 9.3: Separation results using the new technique

short equal-length frames. These frames were fed to the MDU to detect the presence

of motion artifact. The frames identified as corrupt were then processed using the

technique described in Section 9.1.
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Figure 9.4: Comparison of the FD-ICA techniques with the time domain ICA and

complex ICA approaches.

9.3 Results and Discussion

The results of the separation process for a single subject are presented in figure

9.3. Each recovered signal segment is visually compared (shape and peak-to-peak

amplitude) with the most recent clean frame (the Reference). The proposed technique
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(magnitude-based FD-ICA) is effective even in the presence of significant motion

artifacts.

A quantitative comparison between various techniques as applied to different

types of motion artifacts is presented in Table 9.1. A correlation coefficient (normal-

ized to unity) is obtained by identifying the maximum of all peaks that appear in the

normalized cross-correlation plot between the chosen reference signals and the output

signals recovered by each of the techniques.

The same separation routine, when applied to data obtained from the rest of

the ten subjects, effectively recovers the clean PPG data from the corrupt frames in

all cases. However, the efficacy of the whole routine depends primarily on the prepro-

cessing phase, in particular the accuracy in determining the fundamental frequency

of the corrupt frame. This can be seen from Table 9.1, where the correlation coef-

ficients between the recovered signals and their corresponding references drop when

recovery from the Fourier preprocessing phase is not effective enough. Hence it can be

understood that the clean signal are recoverable if the fundamental frequency, deter-

mined from the most recent clean frame (reference), matches the actual fundamental

frequency of the corrupt frame.

9.3.1 Comparison Between FD-ICA and Time Domain ICA Methods

Assuming the independence of source signals and their linear mixing with an unknown

mixing matrix in the time domain as in (9.1), the preprocessed observables were sent

to a time domain ICA routine. The results obtained from the time domain ICA

routine were then visually compared with those from the FD-ICA technique and

the reference signal (shape and peak-to-valley height) as in figure 9.4. The FD-ICA

technique outperforms the time domain ICA process. This is also apparent from Table

9.1: the correlation coefficient associated with the FD-ICA routine is much higher

than its time domain counterpart for all cases of movement. It may be noted that
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when performing an ICA based on the assumption of a constant mixing/unmixing

matrix, the duration of the data frame should be short enough for the assumption to

hold. Using long data frames would imply that the mixing/unmixing matrix is not a

constant and hence leads to inaccurate estimation of the sources.

9.3.2 Comparison Between FD-ICA and Complex ICA Methods

In the complex ICA formulation of the problem, it is assumed that the sources mix

with the unknown mixing matrix in a convolutive manner in the time domain. This

directly translates to the instantaneous mixing of the sources with the mixing matrix

in the frequency domain as in [50]. Here, the assumption of independence between

the sources in the frequency domain is considered. For fairness in comparison, all

frequencies selected by the preprocessing unit are treated as a single frequency bin.

The mixing matrix is assumed to be frequency non-selective, and hence only one

mixing matrix is computed for all the frequencies selected during preprocessing, unlike

the traditional practice adopted in the complex frequency domain ICA approach. The

complex ICA routine described in [53] was implemented for the complex data obtained

by the Fourier transform of each preprocessed signal. The results obtained from the

complex frequency domain ICA routine were visually compared with those from the

FD-ICA technique and the reference signal (shape and peak-to-valley height) in figure

9.4. It can be easily seen that the newly proposed FD-ICA routine outperforms the

complex ICA routine. The superiority of the proposed technique is quantified in

Table 9.1: the correlation coefficient for the FD-ICA method is consistently higher

than that of the complex ICA approach for all cases of movement.
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9.4 Summary

In this chapter, we presented a motion artifact reduction methodology that consists of

an enhanced PPG preprocessing routine and magnitude-based frequency domain ICA

routine. We readily observe that this processing routine effectively reduces motion

artifacts in corrupt data frames even in the event of significant motion. The FD-ICA

routine proposed in this paper is compared with time domain ICA and complex ICA

routines and is shown to be more effective in recovering clean PPG data. The efficacy

of the method depends heavily on the ability of the MDU to identify corrupt/clean

data segments and estimate the period of the waveform. More accuracy in the fun-

damental period estimation of the corrupt frame helps the FD-ICA routine to more

effectively separate motion artifacts from desired data.
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Chapter 10

Conclusions and Future Work

In this chapter, we present a summary of key contributions from our work in

distributed estimation in WSNs in section 10.1. In section 10.2, we discuss plausible

directions for future work and extensions.

10.1 Summary of Key Contributions

We derived the variance and its lower bound for BLUE-1 for any modulation scheme

in general, and specifically for BPSK and uncoded QAM schemes. We observed

that the bound is an additive factor away from the estimator variance in the case

of perfect sensor channels. From simulations, we deduced that the bound is tight

when the channel variances of the participating sensors are comparable. The upper

and lower bound for variance of BLUE-2 were observed to be an additive factor away

from the BLUE variance evaluated for perfect sensor channels was found to depend

on the sensors with the worst and best channels respectively. For BLUE-3, the upper

bound was a multiplicative factor away from the BLUE variance in the case of ideal

sensor channels. We observed that the new upper bound is tighter than the bound in

[15] for lower values of measurement noise. Finally, for all the estimators considered,

deviation of the bound was observed to be more pronounced when the channel noise
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variances of the participating sensors vary from each other.

Using three optimization formulations or system design approaches, we in-

vestigated and developed distributed estimation techniques in WSNs using BLUE-1.

We analyzed the tradeoff between estimation error at the fusion center, resource uti-

lization of the sensors to achieve that accuracy and implementation complexity to

achieve that accuracy. We saw that the original formulation that is intricately non-

convex can be transformed to the more well studied D.C. form. Further, the convex

approximation of all the three formulations yielded the same solutions as in the orig-

inal problem and its D.C. version. This assures that all the original problems can be

solved in its convex approximated form without compromising the optimality of the

solutions attained.

We introduced the notion of determining optimal sensor actions that depend

on their operating states or residual battery power. For each of the formulations, we

showed that optimal sensor actions depend on the operating state, channel conditions

and measurement noise. In effect, we saw that the amount of error regarding target

state introduced in the system not only depended on the nodes’ knowledge about the

parameter, but also its operating state and channel condition. We also studied the

collaborative behavior achieved between the active sensors for each of the formula-

tions. We highlighted the drawback in all the approaches related to the handling of

the integer relaxation of bis, in that determining the optimal bi involves a brute-force

exhaustive search in the immediate integer neighborhood.

We observed that the approach in Formulation B is most economical in terms

of resource consumed for a target BLUE variance. Though Formulation A rendered a

high quality estimator, the amount of resources utilized to realize the same depends

on the constraint set on total resource expenditure. Formulation C was apparently

the least favorable in resources consumed and BLUE variance achieved but was found

desirable in case a completely autonomous distributed estimation process is desired
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for BPSK modulation scheme.

10.2 Future Directions

Plausible future directions and extensions of our work in distributed estimation in

WSNs are as follows -

10.2.1 Extensions

The immediate extensions of our work in distributed estimation in WSN are as follows

-

• All the formulations for Scheme 2 (QAM) involved optimization of only one

variable bi,∀i ∈ {1, . . . , N}. However from the resource model for Scheme 2, we

have J =
∑N

i=1 Λipi
li
bi

; pi = BsKiai log
(

2
pb

)
(2bi − 1). It is desirable to solve the

formulations for Scheme 2 considering bi, pi, li as problem variables.

• Finding optimal bi first involved a continuous relaxation followed by an exhaus-

tive search in the neighborhood. It is reasonable to find the conditions on the

continuous variable bi as in [19], which can be used to determine its optimal

integer value.

10.2.2 Analysis based on Dynamical WSN Model

As a next step, it becomes imperative to investigate the tradeoff between WSN system

performance and resource efficiency (or estimation error control algorithms) based on

analytical models that capture the dynamics of each sensor node’s operating state

or health (characterized by residual battery), the wireless channel, and measurement

noise. It may be noted that the seminal work of [54] inspired optimization techniques

as a method to design fair and efficient resource allocation algorithms in general

networks. More specifically, [54] considered the problem of dynamically allocating
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available bandwidth to competing users with the help of rate control algorithms. It

was proved that the complex dynamical system defined by the rate control algorithms

and its stability can be achieved by appropriate optimization formulation (in its

primal or dual form) that in turn provides the Lyapunov function for the dynamical

system. It is of theoretical interest to examine conditions of stability, fairness, and

optimality of estimation error control algorithms for such models and their mapping

to the optimization framework.

10.2.3 Optimization Decomposition and Autonomy

Another interesting direction is to explore optimization decomposition for the for-

mulations considered. We noted in 5 that applying decomposition to Formulation

C for Scheme 1 (BPSK) renders system operation that is almost autonomous (with

minimum signalling between fusion center and the sensor nodes). Achieving au-

tonomous operation and performing only local optimization at each sensor node is

desirable given that WSNs are generally resource constrained and delay-sensitive. In

this context, it is required to analyze the conditions for optimality, and stability of

local optimization given that each sensor has partial, or incomplete knowledge of the

parameters (Lagrange Multipliers and the other coupling variables) that need to be

signalled from the fusion center.
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Appendix A - Throughput in

Cooperative Wireless Relay

Network

In this chapter, we analyze a wireless ad hoc/sensor network where nodes

are connected via random channels and information is transported in the network in a

cooperative multihop fashion using amplify and forward relay strategy. We character-

ize the network by studying important parameters such as: (1) SNR degradation with

hop, (2) outage probability, (3) maximum permissible number of hops, and (4) max-

imum permissible number of simultaneous transmissions. We then devise a method

for node selection and transmission of information across the network over disjoint

routes between source and destination nodes by employing standard constructs from

graph theory. Based on the above results, we investigate the throughput achievable

in the network and its asymptotic scaling as function of the number of nodes in the

network for a given channel distribution.

A-1 Introduction

Capacity and throughput analysis of wireless ad hoc networks have received consider-

able attention in recent times, primarily triggered by the pioneering work in [56]. The

work in [56] essentially spurred research in the direction of determining theoretical
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bounds on the capacity of wireless networks as a function of the number of nodes

for umpteen variants of the wireless network model. Protocol and physical model

[56, 57], different traffic (random, symmetric, asymmetric patterns) models [58, 59],

dense and extended network models [61, 60] are a few of the many instances that

have been looked upon in the past.

In parallel, it has been understood that the use of multiple-input-multiple-

output (MIMO) systems for wireless communication enhances spectral efficiency and

link dependability significantly by virtue of spatial diversity and space-time coding.

However, the direct application of MIMO systems to wireless nodes that operate

in ad hoc environments has been an unattractive choice due to their inherent size

and processing requirements. Instead, spatially distributed configuration of nodes

has been shown to mimic a MIMO system [67]. This has been demonstrated to be

possible by the formation of virtual antenna arrays through distributed transmission

and signal processing, thus resulting in a form of spatial diversity, formally referred

to as cooperative diversity in [62]. In [62], the performance of classical relay systems

as distributed antenna arrays, using different relaying strategies and protocols, is

investigated. Capacity analysis for wireless networks employing cooperative diversity

(more specifically amplify-and-forward) have been analyzed exhaustively from the

perspective of [56] in [63, 64].

In this work, we consider a cooperative amplify-and-forward multihop net-

work where the constituting nodes are connected to each other by channel strengths

that are identical and independent random variables drawn from an arbitrary prob-

ability density. We base our study on the supposition that the strength of a signal

received at any node in a small network is governed by random fluctuations that are

not captured in the deterministic geometric models. We characterize such a random

network by analyzing and evaluating important parameters like: (1) SNR degradation

with hop, (2) outage probability, (3) maximum permissible number of hops and (4)
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source-destination node pairs that communicate with each other simultaneously. We

formulate the basic operation of the network by demonstrating a scheme for choosing

appropriate nodes for relaying information over disjoint routes between all source-

destination node pairs. We investigate the condition of existence of such disjoint

paths between all source and destination nodes in the network and their characteris-

tics. Based on all of the above, we evaluate the achievable throughput of the network

and its asymptotic scaling for channel strengths drawn from an exponential density.

To the best of our knowledge, the premise adopted in this paper follows the model

in [58], where a traditional multihop scheme using decode and forward relaying in a

random network is considered. However, our work considers a cooperative amplify-

and-forward multihop mode of communication as will be detailed in the next section.

Capacity analysis for such multi-level amplify-and-forward system has been analyzed

in [66] for a fixed set of relay levels. Also in [65], the optimality of amplify-and-

forward relaying strategy and the interplay between network rate, diversity and size

under high SNR condition for a multi-level AF network is presented.

A-2 System Model

Consider a wireless ad hoc network consisting of n nodes, each equipped with single

transmit-receive antenna communicating with each other in a wideband regime em-

ploying DS-CDMA. Let xi denote the encoded message that a source node i wishes to

transmit to a specific destination node j, where xi ∼ CN (0, 1) ∀ i, j ∈ {1, . . . , n}, i 6= j

and all xi’s are independent and identically distributed (i.i.d). All nodes in the net-

work are constrained to transmit their message to any other node with a maximum

power of P watts. Also, all nodes operate in a half-duplex mode where they can only

either transmit or receive message at any instant of time.

Channel and Noise Model : Every pair of nodes {i, j},∀i, j ∈ {1, . . . , n}, i 6=
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Figure A-1: System Model

j, is connected by a symmetric frequency fading channel, denoted by hi,j = hj,i = hij,

which is an i.i.d random variable. Let the channel strength |hij|2 be drawn from an ar-

bitrary probability density f(h) with zero mean and variance µ. Let ni ∼ CN (0, σ2
wn)

denote the temporally and spatially white noise at the terminal of node i. If k source

nodes, randomly chosen from {1, . . . , n} and denoted by set T simultaneously trans-

mit k distinct message xi, i ∈ T at maximum power P , then the instantaneous signal

received at the receiver of a randomly chosen destination node j ∈ D = {1, . . . , n}\T

is given by

yj =
k∑

i=1,i∈T

√
Phi,jxi + nj, j ∈ D (A-1)

Here, all the signals received at j from undesirable source nodes constitute the instan-

taneous interference noise. Note that the interfering signals and nj are statistically

independent of the desired signal received at j.

A-2.1 Network Operation

Cooperative Multihop Communication: Consider k source nodes denoted by si, i ∈ T

that attempt to communicate k distinct messages xi, i ∈ T with k destination nodes
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di, i ∈ D. We assume that for a source-destination pair {si, di}, si communicates

with di through L cooperative multihop stages denoted by Hi,1, . . . , Hi,l, . . . , Hi,L as

shown in figure A-1. Then in the first multihop stage Hi,1, si communicates with

an intermediate destination di,1 with the aid of a relay node ri,1. In the second

multihop stage, di,1(intermediate source) communicates with the next intermediate

destination di,2 assisted by a relay node ri,2 and so on, till the final destination di

is reached after L multihop stages. Hereafter, in general we would be addressing

all (intermediate and otherwise) source, relay and destination nodes as S, R, and D

respectively, unless explicitly specified. We naturally impose that each cooperative

multihop stage Hi,l, l ∈ {1, . . . , L}, L > 1 occurs in discrete time slots t ∈ {1, . . . , L},
implying that each multihop stage indexed by l is synonymous to being indexed by

time slots t. Hence si conveys its message to the desired destination di in L time

slots.

Protocol and Relay Strategy : In each multihop stage or time slot, S first

transmits a message to R with power P . Then, both S and R simultaneously transmit

to D with power P , thereby creating a virtual MISO [67]. The nodes involved in all

the cooperative multihop stages for any source-destination (si, di), ∀i ∈ T pair employ

an amplify and forward relay strategy to carry message from S to D. A condition we

impose on each node in the network is that it can assist only one source-destination

pair communication in all the L multihop stages or time slots; i.e., we require k

disjoint paths between all the k source-destination pairs for transporting information

between them. For convenience, in general for any of the disjoint paths between

source-destination pairs, we denote the channel strength between S and D, R an

D, and S and R in the l−th stage as |hsdl|2, |hrdl|2 and |hsrl|2, respectively. This is

illustrated in figure A-1.

Successful Communication and Throughput : Suppose S wishes to communi-

cate with D with the assistance of R; then the communication is regarded as successful
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if and only if the SNR received at D is equal to or greater than a threshold SNR value

ρ0. That is, communication between any source-destination pair is successful if and

only if all the constituting cooperative multihop sequences produce an SNR of at least

ρ0 at all intermediate destination nodes and the final destination node. The message

is dropped in the event of unsuccessful communication in any of the multihop stages

and let ε denote the fraction of messages dropped.

The total aggregate throughput considering k source-destination pairs is

defined as [58]:

C = (1− ε)
k

L
log(1 + ρ0) (A-2)

Thus, we seek to evaluate ε, maximum permissible value of k, L, and ρ0 to obtain an

achievability result for the throughput of the system.

A-3 Main Result

Theorem 1 : Consider a network consisting of n nodes, where any pair of nodes {i, j}
is connected by a channel strength |hi,j|2 that is drawn i.i.d. from an arbitrary

probability density f(h). Let there be k source-destination pairs communicating

simultaneously with each other over k disjoint paths via L cooperative multi-hops

using amplify and forward relay strategy. For any source-destination pair (si, di),

∀i ∈ T , let any S choose R and D in the l-th stage, ∀l ∈ {1, . . . , L}, based on the

rule:

(
|hsdl|2 +

P |hrdlhsrl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

≥ hs

⋂ (
1 +

P |hrdl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

≤ hn, (A-3)

where, Nl denotes the sum of variance due to noisy channel and total interference

noise received at D in the l−th stage. If pi,l be the probability that the condition in
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(A-3) is satisfied, then for pn = pi,lpi,l−1 ≥ ln n+ωn

n
,∀i ∈ T, ∀l ∈ {1, . . . , L}, ωn → ∞

as n →∞, ∃α > 0, such that a throughput of

C = (1− ε)× k

L
× log


1 +

hs

hn

(
2µρ2(k − 1) + σ2

wn

P

)

 (A-4)

is achievable where

ε =
L∑

l=1

Pr

{
k′ <

(
(Phs)

l(1− Phs)

Pµρ2hnµρ0(1− (Phs)l)
− σ2

wn

Pµρ2

)}
→ 0 (A-5)

k − 1 ≤ k′ ≤ 2(k − 1); k ≤ αn ln npn

ln n
(A-6)

L ≤ min





log
(

1−(Phs)
Nhnρ0

+ 1
)

log
(

1
Phs

) ,
ln n

α ln npn



 (A-7)

and, ρ ∈ {0, 1} is the orthogonality factor. It may be noted here that the max-

imum attainable throughput sup {C} for the network considered is attained upon

determining optimal values of pn, hs, and hn (that in turn decides k and L).

Proof Summary - In the ensuing section, we first derive the condition in

(A-3). Then using graph transformation techniques, the maximum number of simul-

taneous transmissions permissible (A-6) is derived. Further, we derive the maximum

value of the minimum number of hops, and the outage probability (A-5) based on

which the maximum allowable value of ρ0 is obtained. Putting all these results to-

gether, we have the main result presented in (A-4).

A-4 Analysis

SNR Analysis : Based on the relaying protocol and strategy discussed in the previous

section, we seek to investigate as to how the received signal and hence the SNR at

D evolves with each cooperative multihop stage or time slot. Consider a source-

destination pair (si, di). For analysis, we assume that, based on some node selection

rule and routing strategy, the nodes that participate in all the cooperative multihop
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stages or time slots Hi,1, . . . , Hi,l, . . . , Hi,L have been identified. In the first cooperative

multihop stage, si communicates its encoded message xi with relay node ri,1. If hsr1

denotes the channel connection between si and ri,1, nr1 being the noise at ri,1, and

hsrj1, j ∈ T\{i} represents the channel between the interfering sources and ri,1, then

the signal received at the relay is -

y
(r1)
i =

√
Phsr1xi + nr1 +

√
ρ2

k∑

j=1,j 6=i

√
Phsrj1xj, (A-8)

The signal in (A-8) is normalized to unit average energy as -

y
(r1)
i,nor =

y
(r1)
i√

P |hsr1|2 + σ2
wn + ρ2

∑k
j=1,j 6=i P |hsrj1|2

(A-9)

This is followed by a simultaneous transmission by si and ri,1 to the intermediate

destination di,1 (all with power P). If hsd1 and hrd1 denote the channel connections

between si and di,1, and ri,1 and di,1 respectively, nd1 be the noise at di,1, and h
(j)
sd1

represents the channel connection between all other sources and relays transmitting

in the first stage (j indexes all other interfering sources and relays) then the signal

received at di,1 is -

y
(d1)
i =

√
Phsd1xi +

√
Phrd1y

(r1)
i,nor +

nd1 +
√

ρ2

k,j 6=i∑
j=1

√
Ph

(j)
sd1xj (A-10)

Assuming that di,1 performs an equal gain combining (EGC) of the signals received

from si and ri,1, the amount of desired signal power Si,1 and unwanted noise power

Ni,1 at di,1 are as follows -

Si,1 = P |hsd1|2 +
P 2|hrd1hsr1|2

P |hsr1|2 + σ2
wn + ρ2

∑k
j=1,j 6=i P |hjr1|2

Ni,1 =
P |hrd1|2(σ2

wn +
∑k

j=1,j 6=i P |hjr1|2)
P |hsr1|2 + σ2

wn + ρ2
∑k

j=1,j 6=i P |hjr1|2
+

σ2
wn + ρ2

k′,j 6=i∑
j=1

P |hjd1|2 (A-11)
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Instead of accounting for the instantaneous interference power at each receiver, we

consider the expected value of the instantaneous interference noise power at each

receiver terminal conditioned on the total number of simultaneous transmissions that

occur in the stage -

I1 = E

[
ρ2

k′,j 6=i∑
j=1

P |hjr1|2 |k′ = K

]

= E

[
ρ2

k′,j 6=i∑
j=1

P |hjd1|2 |k′ = K

]
(A-12)

We regard the number of simultaneous transmissions that occur in each stage as a

random variable denoted by k′ that varies between K = (k − 1) and K = 2(k − 1).

By using conditionally averaged interference noise, equation (A-13) simplifies to -

S ′i,1 = P |hsd1|2 +
P 2|hrd1hsr1|2

P |hsr1|2 + σ2
wn + I1

= S0

(
|hsd1|2 +

P |hrd1hsr1|2
P |hsr1|2 + N1

)

N ′
i,1 = σ2

wn + I1 +
P |hrd1|2(σ2

wn + I1)

P |hsr1|2 + σ2
wn + I1

= N1

(
1 +

P |hrd1|2
P |hsr1|2 + N1

)
(A-13)

Where S0 = P and N1 = I1 + σ2
wn. Using EGC, the SNR at di,1 after the first

cooperative multihop is -

SNRi,1 =
S0

(
|hsd1|2 + P |hrd1hsr1|2

P |hsr1|2+N1

)

N1

(
1 + P |hrd1|2

P |hsr1|2+N1

) (A-14)

Node di,1 normalizes the received signal to unit energy and then scales it by power

P following which the second cooperative multihop stage Hi,2 happens as discussed

in the previous section. The desired signal power and noise power at di,1 before

transmission (after normalization and scaling to power level P) in the second time
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slot are as follows -

Si,1 = S ′i,1 ×
P

P |hrd1|2 + P |hsd1|2 + N1

Ni,1 = N ′
i,1 ×

P

P |hrd1|2 + P |hsd1|2 + N1

(A-15)

Similarly, the signal and noise power received at di,2 following stage Hi,2 (after nor-

malization and scaling) is -

Si,2 = Si,1

(
|hsd2|2 +

P |hrd2hsr2|2
P |hsr2|2 + N2

)

× P

P |hrd2|2 + P |hsd2|2 + N2

N ′
i,2 = N2

(
1 +

P |hrd2|2
P |hsr2|2 + N2

)

+Ni,1

(
|hsd2|2 +

P |hrd2hsr2|2
P |hsr2|2 + N2

)

Ni,2 = N ′
i,2 ×

P

P |hrd2|2 + P |hsd2|2 + N2

, (A-16)

where, N2 = I2 + σ2
wn. By proceeding in the same fashion, we readily observe that

after l cooperative multihop stages, the signal and noise power (after normalizing and

scaling) are as follows -

Si,l = S0

l∏
x=1

(
|hsdx|2 +

P |hrdxhsrx|2
P |hsrx|2 + Nx

)

× P

P |hrdx|2 + P |hsdx|2 + Nx

,

N ′
i,l = Nl

(
1 +

P |hrdl|2
P |hsrl|2 + Nl

)
+

l−1∑
x=1

l−1∏
x=1(

|hsdx|2 +
P |hrdxhsrx|2

P |hsrx|2 + Nx

)
PNi,x

P |hrdx|2 + P |hsdx|2 + Nx

,

Ni,l = N ′
i,l ×

P

P |hrdl|2 + P |hsdl|2 + Nl

, (A-17)

where, S0 = P and Nl = Il + σ2
wn. Hence the SNR at D after l hops is given as

SNRi,l =
Si,l

Ni,l

.

Link Formation: For any source-destination pairs (si, di), all the constitut-

ing cooperative multihop sequences must produce a minimum target SNR ρ0 at all
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intermediate nodes and the final destination node. In order to meet this requirement,

we require that any S selects R and D in the l−th stage ∀ l ∈ {1, . . . , L} based on

the following rule:

(
|hsdl|2 +

P |hrdlhsrl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

≥ hs

⋂ (
1 +

P |hrdl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

≤ hn, (A-18)

where, hs and hn (both with units (watt)−1) are design parameters that determine

the level of connectivity and quality of connections between the nodes in the network.

Note that index i has been dropped from equation (A-18) for convenience. Intuitively

hs gives a measure of the minimum acceptable signal power that reaches D from S

in any stage; whereas hn gives a measure of the maximum permissible noise power

added in each stage. Let pi,l denote the probability of link formation in the l-th stage,

∀i ∈ T, ∀l ∈ {1, . . . , L} and hence also the probability that (A-18) is satisfied. Here,

a link implicitly refers to a favorable S-R-D connection (a triangle in the graphical

sense). Since there are k source-destination pairs communicating with each other

simultaneously in any stage l, ∀l ∈ {1, . . . , L}, we consider the formation of k non-

overlapping favorable S-R-D connections with probability pi,l, ∀i ∈ T in each stage.

Maximum Number of Source-Destination Pairs : We define our network of

n nodes as a random graph G(n, p′n), where p′n is the probability of link formation

between any two nodes in the network. In the l-th stage of operation, ∀l ∈ {1, . . . , L},
we reduce each of the S-R-D connections (triangles) participating in the i−th source-

destination communication path to a super-node (represented by black squares) as in

figure A-2. Effecting the same transformation for every favorable S-R-D connections

∀i ∈ T in all stages ∀l ∈ {1, . . . , L}, we obtain a reduced graph G′(n′, pn), where,

n′ = k.L and pn is obtained as pn = pi,l.pi,l−1, ∀i ∈ T, ∀l ∈ {1, . . . , L}. In order to

achieve the network operation detailed in the previous section, it is required that we
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l-th Multihop stage

di, l

di, l + 1

di, l + 2

ri, l + 1 ri, l + 2

ri, l + 3

di, l + 3

Figure A-2: Transformed Network Graph

establish vertex-disjoint paths between all source-destination nodes in the transformed

graph. The conditions for existence of such paths for k disjoint pairs of vertices (si, di)

is proved in [68]. Applying the result of the paper to the transformed graph G′(n′, pn),

we have -

Lemma 1: Suppose that G′(n, pn) and pn ≥ ln n+ωn

n
, where ωn → ∞ as

n → ∞, then ∃ a constant α > 0 such that, with high probability, there are vertex-

disjoint paths connecting (si, di) for ∀i ∈ T , such that the cardinality of set T , |T | =
k ≤ αn ln npn

ln n
. Also the length of almost all k vertex-disjoint paths are at most ln n

α ln npn
.

Thus we have the result in (A-6).

Maximum value of the minimum number of hops : We seek to evaluate an

upper bound for the number of hops permissible in the system under worst case

noise scenario (N) that would ensure an SNR of at least ρ0 at D for any stage

l, ∀ l ∈ {1, . . . , L}. Here, the worst case noise scenario corresponds to each node in

the system experiencing maximum interference noise due to 2(k − 1) simultaneous
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transmissions. First, we set -

(
|hsdl|2 +

P |hrdlhsrl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

= hs

(
1 +

P |hrdl|2
P |hsrl|2 + Nl

)
1

P |hrdl|2 + P |hsdl|2 + Nl

= hn (A-19)

∀l ∈ {1, . . . , L}. Then the signal power terms in (A-15), (A-16), (A-14) and (A-17)

simplifies after algebraic manipulations as follows -

S0 = P

Si,1 = S0(Phs)
1

Si,2 = Si,1Phs = S0(Phs)
2

...

Si,l = Si,0(Phs)
l (A-20)

Similarly, the noise power terms simplify as -

Ni,1 = NhnP

Ni,2 = NhnP (1 + (Phs))

...

Ni,l = NhnP (1 + Phs + (Phs)
2 + . . . + (Phs)

l−1)

= NhnP

(
1− (Phs)

l

1− (Phs)

)
(A-21)

From the generalized signal and noise power expressions above, we can write the SNR

after l cooperative multihop stages, ∀l ∈ {1, . . . , L}, as -

SNRi,l =
S0(Phs)

l(1− (Phs))

NhnP (1− (Phs)l)

=
(Phs)

l(1− (Phs))

Nhn(1− (Phs)l)
(A-22)

Note that (A-22) corresponds to the minimum achievable SNR at D in any stage

l, ∀ l ∈ {1, . . . , L} for chosen values of hs and hn. In order to obtain an upper bound

123



on the minimum number of hops that guarantees an SNR of at least ρ0, we have -

(Phs)
L(1− (Phs))

Nhn(1− (Phs)L)
≥ ρ0 ⇒ L ≤

log

(
1− (Phs)

Nhnρ0

+ 1

)

log

(
1

Phs

) (A-23)

The bound on L gives the maximum number of hops permissible in the system in

the worst case noise scenario beyond which the SNR drops below ρ0 and the com-

munication is regarded unsuccessful. It can be seen that the maximum minimum

number of hops directly depends upon hs and inversely on hn. This implies that

with greater amount of noise added to the system, only smaller number of hops can

ensure that the SNR at the destination is greater than ρ0. Thus, we finally have

L ≤ min

{
log

(
1−(Phs)
Nhnρ0

+1
)

log ( 1
Phs

)
, ln n

α ln npn

}
and hence the result in (A-7). Setting the value of

L in this manner ensures that vertex-disjoint paths are established between k source-

destination pairs and the threshold SNR condition is satisfied at all Ds.

Probability of Outage or Unsuccessful Communication: Communication be-

tween any source-destination pair (si, di) is regarded unsuccessful if the SNR at D

in any of the L cooperative multihop sequences falls below ρ0. If Pr{faili,l} =

Pr{SNRl < ρ0}, ∀ l ∈ {1, . . . , L}, then the maximum probability of erroneous

communication between is given as -

Pr{Faili} =
L⋃

l=1

Pr{faili,l}

≤
L∑

l=1

Pr{faili,l}

=
L∑

l=1

Pr

{
(Phs)

l(1− (Phs))

Nhn(1− (Phs)l)
< ρ0

}
,

where, the probability of erroneous communication in each stage is considered to be
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independent of each other. Replacing N with Nl, we get -

Pr{Faili} ≥
L∑

l=1

Pr

{
(Phs)

l(1− Phs)

Nlhn(1− (Phs)l)
< ρ0

}

=
L∑

l=1

Pr

{
Il <

(Phs)
l(1− Phs)

hnρ0(1− (Phs)l)
− σ2

wn

}

=
L∑

l=1

Pr

{
k′ <

(
(Phs)

l(1− Phs)

Pµρ2hnµρ0(1− (Phs)l)
− σ2

wn

Pµρ2

)}

Hence, for successful communication, we obtain an upper bound for the maximum

number of simultaneous transmissions (that determines the noise floor due to in-

terference) in any stage l,∀l ∈ {1, . . . , L} that depends on the orthogonality factor

µ, ρ0, P, hs and hn and this proves the result in (A-5). By setting k′ to its maximum

value 2(k − 1) and l = 1, we readily obtain a supremum of the permissible value of

ρ0 as

ρ0 ≤ hs

hn

(
2µρ2(k − 1) +

σ2
wn

P

) (A-24)

Equation (A-24) shows the tradeoff between connectivity and the throughput of the

network. Setting high value for hs and low value for hn clearly enhances network

throughput, as communication happens over good links resulting in relatively higher

SNR at the destination nodes. However, such a configuration reduces the probability

of link formation thereby resulting in a sparsely connected network.

A-5 Simulations and Discussion

We draw |hi,j|2 from an exponential probability density with zero mean and variance

µ = .5. We set P = 100, σ2
wn = 1 and perform simulations for the evaluation of

throughput of the system.We first fix pn = 5 ln n
n

, and set k = n ln npn

ln n
, L = ln n

ln npn
. We
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Figure A-3: Throughput of the network for different ρ2 values.
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Figure A-4: Simulated and Theoretical values for maximum minimum number of hops

in the network.

then find the optimal hs and hn values that maximize the throughput expression in (A-

4). These values are used to perform monte carlo simulations to statistically evaluate

the throughput of the system for n = 30 to 900 nodes and ρ = 1/
√

5000, 1/
√

10000.

The results from simulation of the achievable throughput of the network are presented

in figure A-3. We observe that the throughput of the system appears to scale asymp-

totically as O(log n). It may be noted that the throughput presented in the figure
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cannot be claimed to be the maximum achievable value as the value of pn has been set

to its minimum permissible value, which may not be the optimal pn that maximizes

throughput. We verify the result pertaining to maximum minimum number of hops

in equation (A-23) through simulations for n = 30 to 900 nodes in figure A-4. As

predicted from the analytical result, we observe that the number of hops that help

satisfy the SNR requirement at the destination decreases as noise increases in the

system.

A-6 Summary

In this chapter, we characterized a cooperative amplify and forward multihop wire-

less network with random connections by studying parameters like SNR degradation,

maximum permissible number of hops and source-destination pairs, outage probabil-

ity, and finally the throughput achievable in the system. In order to realize the basic

operation of the network, we demonstrated a scheme for node selection for trans-

porting information over disjoint routes between any source-destination node pair in

the system. Also presented are the existence condition and the characterization of

disjoint routes between source and destination nodes in the network. Considering the

channel strengths to be drawn from exponential density, the achievable throughput

appears to scale asymptotically as O(log n). From simulations, we also see that the

theoretical value of the maximum value of the minimum number of hops is exact.
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