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Abstract

Given a quiver Q with/without potential, one can construct an algebra structure on the

cohomology of the moduli stacks of representations of Q. The algebra is called Cohomolog-

ical Hall algebra (COHA for short). One can also add a framed structure to quiver Q, and

discuss the moduli space of the stable framed representations of Q. Through these geomet-

ric constructions, one can construct two representations of Cohomological Hall algebra of Q

over the cohomology of moduli spaces of stable framed representations. One would get the

double of the representations of Cohomological Hall algebras by putting these two repre-

sentations together. This double construction implies that there are some relations between

Cohomological Hall algebras and some other algebras.

In this dissertation, we focus on the quiver without potential case. We first define Coho-

mological Hall algebras, and then the above construction is stated under some assumptions.

We computed two examples in detail: A1-quiver and Jordan quiver. It turns out that A1-

COHA and its double representations are related to the half infinite Clifford algebra, and

Jordan-COHA and its double representations are related to the infinite Heisenberg algebra.

Then by the fact that the underlying vector spaces of these two COHAs are isomorphic to

each other, we get a COHA version of Boson-Fermion correspondence.
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Chapter 1

Introduction

Cohomological Hall algebra (COHA for short) was first introduced in [38]. There are at

least two motivations for Cohomological Hall algebra: one from mathematics and one from

physics.

The Donaldson-Thomas invariants were introduced by R. Thomas in [68]. K. Behrend

later in [1] constructed the same invariants via integrating the Behrend function with respect

to a measure given by the Euler characteristic. The new point of view revealed the “motivic

nature” of the invariants, and many efforts are made to construct generalized Donaldson-

Thomas invariants in a more general setting.

There were several attempts made. One is due to D. Joyce and Y. Song, who developed a

framework to give a rigorous definition of Z-valued Donaldson-Thomas invariants in the case

of abelian category of coherent sheaves on CY 3-fold. See e.g. [28–33]. M. Kontsevich and

Y. Soibelman established two theories to produce Donaldson-Thomas invariants with values

in “motives” in the case of triangulated categories. One is stating in [36], and the other is

using Cohomological Hall algebra stated in [38]. Both theories produce Z-invariants as limits

of motivic Donaldson-Thomas invariants, and they are connected in the case of quivers with

potential. The theory of Donaldson-Thomas invariants for quivers with potential has also

been studied extensively recently due to B. Davison, S. Meinhardt and M. Reineke. See e.g.

[10, 11, 44, 46]. See also [45] for a review.
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It was conjectured that the generating series for Donaldson-Thomas invariants takes the

form of certain infinite products with exponents Ω(α) with values in Z or in a certain Motivic

ring ([36]). This conjecture is called the Integrality Conjecture. Although it is still open

in the most general case, it is proved in many speical cases. In fact, M. Kontsecvich and

Y. Soibelman proved it for an arbitrary Quillen-smooth algebra with potential which covers

most of 3CY categories. See e.g. [38], [36].

It would be nice if one can construct the categorification of the Donaldson-Thomas in-

variants. In other words, one can construct an algebraic structure on some space closely

related to the Donaldson-Thomas invariants. Once we have such an algebraic structure,

the Integrality conjecture is automatically true, as well as a bunch of other good proper-

ties. The algebra rising here is the Cohomological Hall algebra. Therefore it can be treated

as the categorification of the Donaldson-Thomas invariants from this point of view. This

direction is studied extensively for the categories coming from quiver with potentials. See

e.g. [57], [13], [8]. There are other attempts to categorify Donaldson-Thomas invariants. D.

Joyce with several collaborators proposed an approach to the categorification of Donaldson-

Thomas invariants based on the ideas of derived algebraic geometry. See [2] and references

within.

Another motivation is from Physics. In supersymmetric field theories and string theories,

there are special states called BPS states. These states are the states conserved by (some)

supercharges. For that reason (Hilbert) spaces of BPS states appear mathematically as

cohomology spaces of moduli spaces of geometrically defined objects (which correspond to

certain fields in physics). Spaces of BPS states are stable under deformations of QFTs which

connect mutually dual theories. For that reason physicists often check various dualities by

comparing spaces of BPS states for dual theories. See e.g. [25, 26, 47].

In the study of certain models, G. Moore and J. Harvey computed certain one-loop

integrals and found two interesting facts. First, these integrals were determined purely by

the spectrum of BPS states, and second that the answers involved denominator formulae for

Generalized Kac-Moody algebras of the type studied previously by R. Borcherds. Therefore

it was natural to think that there was an algebraic structure that one could define on the
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BPS states that would be related to the denominator formulae for a Generalized Kac-Moody

algebra. See e.g. [25, 26]. See also [15] for work in the same direction.

Although physicists think of BPS states as single-particle states, it is convenient math-

ematically to consider the space of multi-particle BPS states. It was a suggestion of M.

Kontsevich and Y. Soibelman to introduce an algebra structure on the latter space and

call it COHA. Single particle states correspond to a certain set of generators of COHA.

From this perspective Cohomological Hall algebras can be thought of as a mathematical

implementation of the idea of BPS algebra, or more precisely, algebra of closed BPS states.

However, as stated by G. Moore in [48], current methods and results have not been

carefully related to the actual properties of BPS wave functions of quiver quantum mechanics.

Thus, to explain in detail the relation of Cohomological Hall algebras to the BPS states of

quiver quantum mechanics is a very interesting question.

Besides the closed BPS states, there are also open BPS states. Conjecturally (see e.g.

[65] and [24]) this algebra acts on the “space of open BPS states” which are often described

in terms of cohomology of schemes. This is related to many physics models as well as

mathematical models. Hence representation theory of Cohomological Hall algebras (BPS

algebras) should lead to new results as well as new connections with geometric representation

theory. There are some work in this direction. see e.g. [67] and references within.

Previous work

As mentioned in the previous section, COHA coming from quivers with/without potentials

is of great interests. We would like to quickly go over the work on this topic.

Fix a quiver Q = (I,H). One considers the moduli stack [Md/Gd] of all the representa-

tions of Q of a fixed dimension vector d for all dimension vectors d ∈ Z|I|≥0. M. Kontsevich

and Y. Soibelman defines an associative algebraic structure on ⊕dH
∗([Md/Gd]) and call it

the Cohomological Hall algebra associated to the quiver Q. See Chapter 2 for details. It can

be generalized to the smooth algebra with potential case. See [38].

Starting from a quiver Q, one can construct another quiver Q by adding the reverse arrow

3



for each arrow of Q. There is an algebra called the preprojective algebra ΠQ associated

to the new quiver Q. It is interesting because the moduli stack of the representations

of ΠQ is equal to the cotangent bundle of the moduli stack of the representations of Q.

On the cohomology of the moduli stack of representations of ΠQ, one can construct an

associated algebra structure in a same manner of Cohomological Hall algebra. The resulted

algebra is called the preprojective COHA in [70] or just Cohomological Hall algebra in

[64]. For preprojective COHA, see also [71, 72]. Using the similar construction, but with

K-Theory instead of equivariant cohomology, Schiffmann and Vasserot defined K-theoretic

Hall algebras. See e.g. [63] for details.

One can add a loop to each vertex of Q, and get a “triple” quiver Q̂ of the original

quiver Q. There is a canonical way to define a potential W on Q̃, and there is an algebra

J(Q̃,W ) associated to the pair (Q̃,W ). Using the similar idea to define the multiplication,

one can construct an associated algebra called the critical Cohomological Hall algebra. It

is originally defined in [38]. The algebra itself as well as its relations to the preprojective

COHA is studied extensively. See e.g. [8–11, 59].

Following the above construction, some extra structures can be added to the quiver as

well as its representations, and some modified moduli stacks are obtained in this way. In

fact, these modified stacks are usually moduli spaces. Thus we are able to construct a

representations of COHA on the cohomology of these moduli spaces. Two types of the

constructions are generally studied. One is the Nakajima’s quiver varieties. The other one

is the moduli space of stable framed representations.

M. Reineke did a lot of work on the moduli space of stable framed representations. See

e.g. [14, 52, 54, 56–58]. Based on his work, H. Franzen studied the COHA module structures

on some of the moduli spaces. See [17, 18].

Current work

The focus of this dissertation is quivers without potential case. By analogy with conventional

Hall algebra of a quiver, which gives the “positive” part of a quantization of the corresponding
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Lie algebra, one may want to define the “double” COHA, for which the one defined in [38]

would be a “positive part”. See [65] for detailed discussions.

The aim of this dissertation is to define and study two representations of Cohomological

Hall algebras over some moduli spaces, and combine them into a single representation of

some algebra. The relation of this algebra to the “full” (or “double”) COHA in is discussed.

We focus on the A1-quiver case and the Jordan quiver case in this dissertation.

Contents of chapters

The dissertation is organized as below.

Chapter 2 is a brief introduction to quiver, representations and the smooth models of

quiver moduli.

Chapter 3 is the introduction to Cohomological Hall algebra. Two examples are computed

at the end. They are the main topics in this dissertation: A1-COHA and Jordan-COHA.

Chapter 4 is the general construction of the increasing operators and decreasing opera-

tors of COHA. Our construction is similar to Nakajima’s construction of representations of

Heisenberg algebras on the homology of Hilbert schemes.

Chapter 5 is the detailed computations in the case of A1 quiver. The main tool is Schubert

calculus of Grassmannians.

Chapter 6 consists of the detailed computations in the case of Jordan quiver. The com-

putation is based on the cellular decompositions of non-commutative Hilbert schemes.

Chapter 7 contains a version of Boson-Fermion correspondence which is a direct corollary

of the previous chapters, and some discussions about future work.

There are four appendices at the back of the dissertation.

Appendix A is about Chow ring, Borel-Moore homology and Poincaré duality. The result

would be used mainly in Chapter 6.

Appendix B is a review of equivariant cohomology.

Appendix C is a review of cohomology of quotient stacks. The aim of this appendix is

to provide background for a pullback formula when we compute the COHA action in both

5



Chapter 5 and 6.

Appendix D contains some results of Hilbert schemes. The results are mainly used in

Chapter 6 when we compare the non-commutative Hilbert schemes to the Hilbert schemes

in the N = 1 case.
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Chapter 2

Smooth models of quiver moduli

In the case of quivers without potential, when one studies representations of quivers, it

is useful to consider varieties or other geometric objects corresponding to representations.

Among all these different constructions, one can consider the stable framed moduli space

of quivers. We follow the definition given by Reineke to discuss the moduli space of stable

framed representations of quivers. See e.g. [14]. For stable framed objects in triangulated

categories, see [37] and [65]. For comparison to other constructions, see e.g. [50].

2.1 Moduli of quiver representations

The idea of stability conditions comes from the geometric invariant theory. A. King in [35] ap-

plied the geometric invariant theory to the quiver moduli problem, and defined (semi)stability

conditions purely algebraically. Our current form of stability conditions is due to A. Rudakov

which is just a reformulation of that of A. King. See [60]. The stability conditions can be

generalized to triangulated category. See [3] for details. In this dissertation, we would focus

on the stability conditions of the category of quiver representations.

2.1.1 Quivers and the stack of representations

We follow [6] in this section. See also [55] and [35].

7



Definition 2.1.1. A quiver is a quadruple Q = (I,H, s, t), where I and H are finite sets

(called the set of vertices, resp. arrows) and s, t : H → I are maps assigning to each arrow

its source, resp. target.

Remark 2.1.2. We shall denote the vertices by i, j, . . .. An arrow with source i and target j

will be denoted by α : i → j. In the rest of this dissertation, s and t would be omitted if

there are no confusions.

Definition 2.1.3. A representation (V, T ) of a quiver Q over field K consists of a family of

K-vector spaces {Vi}i∈I , together with a family of K-linear maps Tα:i→j : Vi → Vj indexed

by the arrows α ∈ H. If there are no confusions it would be denoted by V or T or (Tα)α for

simplicity.

Remark 2.1.4. We will focus on the complex field C in the dissertation.

Definition 2.1.5. A representation V of Q is finite-dimensional if all the vector spaces

{Vi}i∈I are finite-dimensional. In this case, the family dimV := (dimVi)i∈I is called the

dimension vector of V .

For a quiver Q = (I,H), denote each vertex by ei for i ∈ I and consider it as an edge

from vertex i to i. Define product of two arrows α : i→ j and β : k → l for α, β ∈ H by

αβ =


αβ, l = i,

0, otherwise,

(2.1.1)

and

e2
i = ei, epα = δp,jα, αep = δp,iα. (2.1.2)

Then there is an algebra KQ generated by {ei}i∈I , {α}α∈H using the product defined above

over field K. The algebra is called the path algebra of Q. KQ is an associative algebra.

Theorem 2.1.6. Fix an arbitrary quiver Q. The category of all representations of Q is

equivalent to the category of all left modules of KQ. Furthermore, the category of all repre-

sentations of Q is an abelian category.

8



Proof. This is a classical result. See e.g. [6] and the references within for details.

Fix a finite quiver Q and a dimension vector d = (di)i∈I . Fix the complex coordinate

vector spaces Vdi := Cdi for all i ∈ I. Let aij denote the number of arrows of quiver Q from

vertex i to j. Define

Md = Md(Q) :=
⊕
α:i→j

HomC(Cdi ,Cdj) '
∏
i,j

Caijd
idj . (2.1.3)

There is a reductive linear algebraic group

Gd :=
∏
i∈I

GL(di,C) (2.1.4)

acting on Md via the base change action

(gi)i · (Tα)α = (gjTαg
−1
i )α:i→j. (2.1.5)

Definition 2.1.7. Md defined above is called the space of representations of Q of dimen-

sion d. Gd is called the gauge group of Md. The quotient stack [Md/Gd] is the stack of

representations of Q with dimension vector d.

Example 2.1.8. The A1-quiver is the quiver with one vertex 1 and no loops. Since there

is only one vertex, the dimension lattice is just Z. The path algebra is K since there are

no nontrivial paths of A1-quiver. Thus the category of all representations of A1-quiver is

equivalent to the category of K-modules, which is the category of all vector spaces. When

d = d ∈ Z, Md of A1-quiver is isomorphic to pt, since the only linear map T : Vd → Vd is

trivial. We still have the gauge group Gd action given by base change. The resulted stack is

the quotient stack [pt/Gd].

Example 2.1.9. The Jordan quiver is the quiver with one vertex 1 and one loop l : 1→ 1.

The dimension lattice is Z. The path algebra is K[x], the polynomial algebra with one

generator x. Thus the category of representations of Jordan quiver is the category of K[x]-

9



modules. When d = d = 1 ∈ Z, M1 ' C. In fact, a representation of Jordan quiver of

dimension 1 is a linear map from C to C. If we choose a basis v0 ∈ C, we can get a 1 × 1

matrix representation of the map, which can be identified with a number λ : v0 7→ λv0 where

λ ∈ C. G1 = C∗ acts on M1 via the formula µ · λ = µλµ−1 = λ for all µ ∈ C∗. Therefore the

gauge group action in this case (d = 1) is trivial.

2.1.2 Stability conditions from Geometric invariant theory

Let V be a finite dimensional vector space with a linear action of a reductive algebraic group

G. Our goal is define a “good” quotient of this action. If the action is not free, we cannot

have a natural geometric quotient. That is why we need Geometric invariant theory to help

us construct different versions of the quotient.

A regular function f : V → K on V is called an invariant if f(gv) = f(v) for all g ∈ G

and v ∈ V . We denote by K[V ] the ring of rational functions on V , and by K[V ]G the

subring of invariant functions of the ring K[V ]. It’s obvious that Spec(K[V ]) = V . K[V ] has

a natural N-graded ring structure.

Definition 2.1.10. A character of G is a morphism of algebraic groups χ : G → K∗. A

regular function f is called χ-semi-invariant if f(gv) = χ(g)f(v) for all g ∈ G and v ∈ V .

We denote by K[V ]G,χ the subspace of χ-semi-invariants, and by K[V ]Gχ := ⊕n≥0K[V ]G,χ
n

the subring of semi-invariants for all powers of the character χ.

Remark 2.1.11. It is obvious that K[V ]Gχ is a N-graded ring. In fact it is a N-graded subring

of K[V ] with K[V ]G as the subring of degree 0 elements.

Definition 2.1.12. A vector v ∈ V is called χ-semistable if there exists a function f ∈

K[V ]G,χ for some n ≥ 1 such that f(v) 6= 0. Denote by V χ−sst the subset of χ-semistable

points. A vector v ∈ V is called χ-stable if v is χ-semistable, its orbit Gv is closed in V χ−sst,

and its stabilizer in G is zero-dimensional. Denote by V χ−st the subset of stable points.

Definition 2.1.13. V χ−sst//G := Proj(K[V ]Gχ ). There is a natural morphism π : V χ−sst →

V χ−sst//G.

10



The importance of the moduli space of stable points or semistable points lie in the

following propositions.

Theorem 2.1.14 ([55]). The variety V χ−sst//G parametrizes the closed orbits of G in

V χ−sst. The restriction of π to V χ−st has as fibres precisely the G-orbits in V χ−st. If the

G-action on V χ−st is free, the morphism V χ−st → V χ−st/G is a G-principal bundle. And we

have the following diagram:

V χ−st � � //

��

V χ−sst

π
��

V χ−st/G �
� // V χ−sst//G

. (2.1.6)

2.1.3 Stability conditions of quiver representations

Fix a quiver Q = (I,H).

Definition 2.1.15. A Z-linear form Θ : ZI → Z over the dimension lattice is called a

stability condition.

Definition 2.1.16. The slope of a dimension vector d = (di)i∈I is

µΘ(d) =
Θ(d)∑
i∈I d

i
. (2.1.7)

The slope of a representation V is defined to be µΘ(V ) := µΘ(dim(V )).

Definition 2.1.17. A representation V is called Θ-semistable if µΘ(V ) ≥ µΘ(V ′) for all

subrepresentation V ′ ⊂ V . It is called Θ-stable if µΘ(V ) > µΘ(V ′) for all nontrivial subrep-

resentation V ′ ⊂ V .

Remark 2.1.18. We usually drop Θ from the notation µΘ if there is no confusion.

Lemma 2.1.19 (The seesaw property). Let 0→ W → V → U → 0 be a short exact sequence

of representations of a quiver Q. Fix a stability condition Θ. Then either µ(W ) ≥ µ(V ) ≥

µ(U), or µ(W ) ≤ µ(V ) ≤ µ(U). Furthermore, considering the three equalities µ(W ) = µ(V ),

µ(W ) = µ(V/W ) and µ(V ) = µ(V/W ), any one implies the other two.
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Proof. Since the representations of quiver Q form an abelian group, and both Θ and dim are

linear forms over the dimension lattice, for a short exact sequence 0 → W → V → U → 0,

we have Θ(W ) + Θ(U) = Θ(V ), and dim(W ) + dim(U) = dim(V ). The results follow

immediately from an algebraic computation.

Remark 2.1.20. This seesaw property is the core feature of the theory the stability of abelian

category. In fact, this is the definition property of A. Rudakov’s stability condition. See [60]

for details.

Proposition 2.1.21. Let Θ be a stability condition. Let Ω = kΘ+a for a ∈ Z and k ∈ N be

another stability condition defined in the obvious way. A representation V is Θ-stable (resp.

Θ-semistable) if and only if V is Ω-stable (resp. Ω-semistable). In this case we call Θ and

Ω are equivalent.

Proof. For an arbitrary dimension vector d = (di)i∈I , we have

µΩ(d) =
kΘ(d) + a

∑
i∈I d

i∑
i∈I d

i
= kµΘ(d) + a. (2.1.8)

Then for any two dimension vectors d and n, and a ∈ Z and k ∈ N, µΘ(d) > µΘ(n) implies

µΩ(d) > µΩ(n).

The following Corollary follows immediately from Proposition 2.1.21.

Corollary 2.1.22. If |I| = 1, all stability conditions are equivalent to 0.

2.1.4 Moduli of quiver representations

Fix a quiver Q = (I,H) and a dimension vector d. Then we have a vector space Md

with a reductive algebraic group Gd-action. Recall that Md = ⊕i,j HomC(Cdi ,Cdj), and

Gd =
∏

i∈I GL(di,C). Now let us apply the construction from Section 2.1.2.

The characters of the general linear group are just integer powers of the determinant
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map. Thus for each character χ of Gd there exists a tuple of integers θ = (θi)i∈I , such that

χ((gi)i∈I) =
∏
i∈I

det(gi)
θi , ∀(gi)i∈I ∈ Gd. (2.1.9)

Note that since the gauge group acts by conjugation, the diagonally embedded scalar matrices

in Gd act trivially on Md. Therefore the action of the group factor through PGd = Gd/K∗.

Then the character should satisfy that
∑

i∈I θ
i = 0.

Now starting from a stability condition Θ : d 7→
∑

i∈I d
iθi where θi ∈ Z for i ∈ I, we can

construct a character

χΘ((gi)i∈I) :=
∏
i∈I

det(gi)
Θ(d)−(

∑
i∈I d

i)θi . (2.1.10)

On the other hand, if there is a character χ((gi)i∈I) =
∏

i∈I det(gi)
θi for a tuple of integers

(θi)i∈I which satisfy
∑

i∈I θ
i = 0, we can construct a stability condition Θ such that χ = χΘ

by solving a linear system.

The key is the following theorem by A. King.

Theorem 2.1.23 ([35]). A point in Md corresponding to a representation M is χΘ-semistable

(resp. χΘ-stable) in the sense of Geometric invariant theory if and only if M is Θ-semistable

(resp. Θ-stable) in the sense of quiver representations.

Then it is possible to construct the moduli space of stable representations or semistable

representations of a quiver Q. Denote by M sst
d = MΘ−sst

d (Q) (resp. M st
d = MΘ−st

d (Q)) the

subset of the variety Md(Q) corresponding to Θ-semistable (resp. Θ-stable) representations.

Applying the construction in Section 2.1.2 and we have the following definitions.

Definition 2.1.24. The moduli space Msst
d (Q) (resp. Mst

d (Q)) is defined to be M sst
d //Gd

(resp. M st
d /Gd).

Remark 2.1.25. Following Proposition 2.1.14, Mst
d (Q) parametrizes isomorphism classes of

Θ-stable representations of Q of dimension vector d. Msst
d (Q) parametrizes isomorphism

classes of µ-polystable representations of Q of dimension vector d.
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2.2 Stable framed representations

2.2.1 The extended quiver Q̂n and the extended stability condition

We follow [14] in this section.

Definition 2.2.1. Let Q = (I,H) be a quiver with r vertices. Fix a dimension vector d

and a stability condition Θ. Fix a non-trivial dimension vector n = (ni)i∈I ∈ ZI called the

framed structure. The extended quiver Q̂n and the extended stability condition Θ̂ are defined

by the following data:

1. A quiver Q̂n whose vertices are those of Q, together with one additional vertex ∞,

2. The arrows of Q̂n are those of Q, together with ni arrows from ∞ to i for i ∈ I,

3. An extended dimension vector d̂, with d̂i = di and d̂∞ = 1,

4. A new Θ̂, with θ̂i = θi ∀i ∈ I and θ∞ = µ(d) + ε for some sufficiently small ε ∈ Q>0.

The new slope µ̂ is defined through Θ̂ and d̂. The representation space of Q̂n of dimension

d̂, the moduli space of semistable framed representations and of stable framed representations

can be defined using the extended stability condition for the extended quiver.

Notation 2.2.2. We use ((V, T ), f) to denote a representation of Q̂n of dimension d̂, where

T is a representation of Q of dimension d on V , and f = (fi,j : C → Vi)1≤j≤ni,i∈I gives all

the information about new arrows coming from the ∞ vertex.

Notation 2.2.3. For two dimension vectors e = (ei)i∈I and d = (di)i∈I , we say e ≤ d (resp.

e < d) if ei ≤ di (resp, ei < di) for all i ∈ I.

Remark 2.2.4. We consider d as a dimension vector of the extended quiver by setting d∞ = 0.

Lemma 2.2.5 ([14]). For a quiver Q,

1. For all 0 6= e ≤ d, we have µ̂(e) < µ̂(d̂)⇔ µ̂(e) ≤ µ̂(d̂)⇔ µ(e) ≤ µ(d).

2. For all e < d, we have µ̂(ê) < µ̂(d̂)⇔ µ̂(ê) ≤ µ̂(d̂)⇔ µ(e) < µ(d).
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Proof. Denote µ(d) by µd and µ(e) by µe.

µ̂(d̂) =

∑
diθi + µd + ε∑

di + 1
=

(
∑
di)µd + µd + ε∑

di + 1
= µd +

ε∑
di + 1

. (2.2.1)

µ̂(e) =

∑
eiθi∑
ei

= µe. (2.2.2)

Then

µ̂(e) ≤ µ̂(d̂)⇔ µe ≤ µd +
ε∑
di + 1

. (2.2.3)

Since ε is a sufficiently small constant, µe ≤ µd+
ε∑
di+1

implies µe ≤ µd. Then µe < µd+
ε∑
di+1

because ε∑
di+1

> 0. µ̂(e) < µ̂(d̂) ⇒ µ̂(e) ≤ µ̂(d̂) is obvious. Thus the first statement is

proved.

For the second statement,

µ̂(ê) =

∑
eiθi + µd + ε∑

ei + 1
=

(
∑
ei)µe + µe + (µd − µe) + ε∑

ei + 1
= µe +

µd − µe∑
ei + 1

+
ε∑
ei + 1

.

(2.2.4)

Then

µ̂(d̂) ≥ µ̂(ê)⇔ µd +
ε∑
di + 1

≥ µe +
µd − µe∑
ei + 1

+
ε∑
ei + 1

⇔ µd − µe ≥ ε(
1∑
ei

)(

∑
di −

∑
ei∑

di + 1
).

(2.2.5)

Choose ε as small as possible. Since e < d, we have

µd − µe ≥ ε(
1∑
ei

)(

∑
di −

∑
ei∑

di + 1
)⇒ µd − µe > 0. (2.2.6)

Similarly we have µ̂(d̂) > µ̂(ê) ⇔ µd − µe > ε( 1∑
ei

)(
∑
di−

∑
ei∑

di+1
). If µe < µd, choose a

sufficiently small ε > 0, we have µd − µe > ε( 1∑
ei

)(
∑
di−

∑
ei∑

di+1
). Thus µ̂(d̂) > µ̂(ê). Since

µ̂(d̂) > µ̂(ê)⇒ µ̂(d̂) > µ̂(ê) is obvious, the second statement is proved.

Proposition 2.2.6 ([14]). For a representation ((V, T ), f) of Q̂n of dimension vector d̂, the
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following are equivalent:

1. ((V, T ), f) is µ̂-semistable;

2. ((V, T ), f) is µ̂-stable;

3. (V, T ) is a µ-semistable representation of Q, and µ(U) < µ(V ) for all proper subrep-

resentations U containing the image of f .

Proof. Let ((U, T ), f) be a subrepresentation of ((V, T ), f) as representations of Q̂n. Let

d := dimV . Then dim((V, T ), f) = d̂. There are two types of ((U, T ), f). Either U contains

the 1-dimensional space associated to ∞, or not.

In the first case, denote by W the subspace of U by removing the 1-dimensional space

associated to ∞. Then W is a subrepresentation of V as a representation of the original

quiver Q who contains the image of f . Let e := dimW . Then dim((U, T ), f) = ê. Since

dimW < dim((U, T ), f), e < d. Therefore, by Lemma 2.2.5, µ̂(d̂) ≥ µ̂(ê)⇔ µ̂(d̂) > µ̂(ê)⇔

µ(d) > µ(e). This implies the equivalence we need.

In the second case, U can be directly viewed as a representation of Q. Let e :=

dim((U, T ), f). Then e ≤ d. By Lemma 2.2.5, µ̂(d̂) > µ̂(e)⇔ µ̂(d̂) ≥ µ̂(e)⇔ µ(d) > µ(e).

This also implies the equivalence we need.

Definition 2.2.7. We denote Mst
d̂

(Q̂n) by Mst
d,n(Q) and call this variety a smooth model

for Msst
d (Q).

2.2.2 Example: Grassmannians

Consider the quvier A1 with one vertex and no arrows. By Corollary 2.1.22, we only need

to consider the trivial stability condition. The extended quiver is as below:

• •∞...kk
f

ss . (2.2.7)

Fix a dimension d and a framed structure N . A framed representation (Vd, f) is a family
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of maps {fi : C → Vd}Ni=1. It is equivalent to one map f : CN → Vd. By abusing notations,

we don’t distinguish the two meanings of f .

Proposition 2.2.8. The moduli spaceMst
d,N of stable framed representations of A1-quiver is

a quotient space [Epi(CN ,Cd)/GLd(C)] where Epi(CN ,Cd) is the space of all epimorphisms

from CN to Cd. This quotient space is isomorphic to the Grassmannian Gr(N − d,N).

Proof. By Proposition 2.2.6, a framed representation (V, f) is stable if each proper subspace

which contains Im(f) has a smaller slope than V . Since the stability condition is trivial, it

implies that a framed representation (V, f) is stable if and only if f : CN → V is surjective.

The gauge group in this case the GLd(C) which acts on V by the natural action.

Notation 2.2.9. In the rest of the dissertation, by abusing notations, we would use Gr(d, n) to

denote the Grassmannian Gr(n−d, n). In other words, all Grassmannians in this dissertation

refer to the “quotient” type Grassmannians.

2.2.3 Example: Noncommutative Hilbert schemes

Consider the quiver Q(m) with one vertex and m ≥ 0 loops. Fix a dimension d and a framed

structure N . We have the extended quiver:

•...{Ti}mi=1 99 •∞....kk
f

ss (2.2.8)

A framed representation of Q(m) is a pair ((V, T ), f), where (V, T ) = (V, Ti)
m
i=1 is the

representation of Q(m) and {fj : CN → V }Ni=1 represents the framed structure. Since there is

only one vertex in the original quiver Q(m), by Corollary 2.1.22, the only stability condition

is the trivial one. Then ((V, T ), f) is stable if and only if Im(f) can generate the whole V

under the actions of {Ti}mi=1. We denote the variety of all stable framed representations by

H
(m)
d,N . GL(d,C) acts freely on it. The quotient gives the smooth model, which is denoted by

H(m)
d,N .

Definition 2.2.10. The variety H(m)
d,N is called the noncommutative Hilbert schemes.
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Chapter 3

Cohomological Hall algebra

The definition of Cohomological Hall algebra is similar to the definition of conventional (con-

structible) Hall algebra (see e.g. [62]) or its motivic version (see e.g. [36]). The cohomology

of the moduli spaces provided by representations of quivers is studied at first. It is the

underlying vector space of the Cohomological Hall algebra. Then, the pullback-pushforward

construction is used to define the multiplication. Two examples are computed in details:

one for A1-quiver, the other for Jordan quiver. This chapter mainly follows [38].

3.1 Cohomological Hall algebras

3.1.1 Stacks of representations and their cohomologies

Fix a quiver Q = (I,H) and a dimension vector d = (di)i∈I . We have the stack [Md/Gd]

of representations of Q with dimension vector d. We will consider the cohomology of this

stack. By Appendix C.3, H∗([Md/Gd]) ' H∗Gd
(Md). Denote Hd := H∗Gd

(Md).

Since Md is a vector space, and Gd-action is linear, it is equivariantly homotopicly equiv-

alent to pt with Gd-action trivially. Then H∗Gd
(Md) ' H∗Gd

(pt). According to Example

B.4.3, H∗Gd
(Md) is the algebra of polynomials of

∑
i∈I d

i variables, where each group of di

variables are symmetric.
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We introduce a ZI≥0-graded abelian group

H := ⊕dHd. (3.1.1)

This is the underlying space of Cohomological Hall algebra.

3.1.2 Multiplication

Fix any d1, d2 two dimension vectors and denote d = d1 +d2. Denote by Md1,d the space of

representations of Q in coordinate spaces of dimensions (di1 + di2)i∈I such that the standard

coordinate subspaces of dimensions (di1)i∈I form a subrepresentation. The group Gd1,d ⊂ Gd

consisting of transformations preserving subspaces (Cdi1 ⊂ Cdi)i∈I , acts on Md1,d.

Consider the following diagram:

[Md1/Gd1 ]× [Md2/Gd2 ]
p1×p2←−−− [Md1,d/Gd1,d]

p−→ [Md/Gd]. (3.1.2)

Construct a morphism md1,d2 : Hd1 ⊗Hd2 → Hd by

p∗(p
∗
1(α) ∪ p∗2(β)), for α ∈ H∗Gd1

(Md1), β ∈ H∗Gd2
(Md2). (3.1.3)

Define m : H⊗H → H by

m :=
∑
d1,d2

md1,d2 . (3.1.4)

Theorem 3.1.1 ([38]). The product m on H is associative.

Remark 3.1.2. Note that the natural morphism of stacks p : [Md1,d/Gd1,d] → [Md/Gd]

is a proper morphism of smooth Artin stacks. Hence it induces the pushforward map on

cohomology. Therefore the above formula makes sense.

Theorem 3.1.3 ([38]). The product f1 · f2 of elements fi ∈ Hdi, i = 1, 2 is given by the

symmetric function g((xi,a)i∈I,a∈{1,...,di}), where d := d1 + d2, obtained from the following
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function in variables (x′i,a)i∈I,a∈{1,...,di1} and (x′′i,a)i∈I,a∈{1,...,di2}:

f1((x′i,a))f2((x′′i,a))

∏
i,j∈I

∏di1
a1=1

∏dj2
a2=1(x′′j,a2 − x

′
i,a1

)aij∏
i∈I
∏di1

a1=1

∏di2
a2=1(x′′i,a2 − x

′
i,a1

)
, (3.1.5)

by taking the sum over all shuffles for any given i ∈ I of the variables x′i,a, x
′′
i,a (the sum is

over
∏

i∈I
(
di

di1

)
shuffles).

Let Q = Q(m) be a quiver with just one vertex and m ≥ 0 loops. The product formula

(3.1.5) specializes to

(f1 · f2)(x1, . . . , xp+q) :=∑
i1<...<ip
j1<...<jq

{i1,...,ip,j1,...,jq}={1,...,p+q}

f1(xi1 , . . . , xip)f2(xj1 , . . . , xjq)(

p∏
k=1

q∏
l=1

(xjl − xik))m−1 (3.1.6)

for symmetric polynomials, where f1 has p variables and f2 has q variables. The product

f1 · f2 is a symmetric polynomial in p+ q variables.

3.2 Examples: A1-quiver

If m = 0, the quiver Q(0) is actually A1-quiver. In this case, the product formula is

(f1 · f2)(x1, . . . , xp+q) :=
∑

i1<...<ip
j1<...<jq

{i1,...,ip,j1,...,jq}={1,...,p+q}

f1(xi1 , . . . , xip)f2(xj1 , . . . , xjq)∏p
k=1

∏q
l=1(xjl − xik)

. (3.2.1)

Notice that H1 = H∗G1
(M1) ' Q[x1], where x1 is the first Chern class of the tautological

line bundle of the classifying space of G1. Denote xi1 by φi. Then H1 is the Q-span of

{φ0, φ1, . . .} as a vector space.

We want to make a connection between the A1-COHA and the Schur polynomials. We

define partitions first.
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Definition 3.2.1. An partition λ of n ∈ N is a sequence of integers (λ1, λ2, . . .) such that∑
i λi = n and λ1 ≥ λ2 ≥ . . . ≥ 0. The maximal index k such that λk 6= 0 is called the length

of the partition. An d-partition of n ∈ N is a d-tuple (λ1, . . . , λd) satisfying λ1 ≥ . . . ≥ λd ≥ 0

and
∑d

i=1 λi = n.

Notation 3.2.2. Let ki = λi+d− i for i = 1, . . . , d. k(λ) = (k1, . . . , kd) is an index associated

to λ.

Define a polynomial related to k(λ) by

ak(λ)(x1, . . . , xd) = det



xk11 xk12 . . . xk1d

xk21 xk22 . . . xk2d

. . . . . . . . . . . . . . . . . .

xkd1 xkd2 . . . xkdd


. (3.2.2)

A special case is when λ0 = (0, 0, . . . , 0) and in this case the polynomial is known for the

Vandermonde determinant :

ak(λ0)(x1, . . . , xd) = det



xd−1
1 xd−1

2 . . . xd−1
d

xd−2
1 xd−2

2 . . . xd−2
d

. . . . . . . . . . . . . . . . . . . . .

1 1 . . . 1


=

∏
1≤j<k≤d

(xj − xk). (3.2.3)

It is obvious that ak(λ) is alternating. Therefore ak(λ) is divisible by ak(λ0).

Definition 3.2.3. The Schur polynomial for λ is defined as the ratio:

sλ(x1, . . . , xd) =
ak(λ)(x1, . . . , xd)

ak(λ0)(x1, . . . , xd)
. (3.2.4)

Proposition 3.2.4. For a partition λ = (λ1, . . . , λd), λ1 ≥ . . . ≥ λd ≥ 0,

sλ = φk1 · . . . · φkd , (3.2.5)
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where sλ denotes the Schur symmetric function of λ = (k1 − d+ 1, k2 − d+ 2, . . . , kd).

Proof. Use induction on the length of λ. It is obvious when the length of the partition is

0. Now let us consider a length d + 1 partition τ = (τ1, τ2, . . . , τd+1). The associated index

k(τ) = (k1, k2, . . . , kd+1). Let τ0 = (0, . . . , 0) be the trivial (d + 1)-partition. Let λ be the

length d partition which satisfies λ = (τ2, . . . , τd+1), and λ0 be the trivial length d partition.

It is easy to see k(λ) = (k2, . . . , kd+1). Then we have

ak(τ)(x1, . . . , xd+1) = det



xk11 xk12 . . . xk1d+1

xk21 xk22 . . . xk2d+1

. . . . . . . . . . . . . . . . . . . . . . .

x
kd+1

1 x
kd+1

2 . . . x
kd+1

d+1



=xk11 det


xk22 . . . xk2d+1

. . . . . . . . . . . . . . . .

x
kd+1

2 . . . x
kd+1

d+1

− xk12 det


xk21 xk23 . . . xk2d+1

. . . . . . . . . . . . . . . . . . . . . . .

x
kd+1

1 x
kd+1

3 . . . x
kd+1

d+1

+ . . .

. . .+ (−1)dxk1d+1 det


xk21 . . . xk2d

. . . . . . . . . . . . . . . .

x
kd+1

1 . . . x
kd+1

d


=xk11 ak(λ)(x2, . . . , xd+1)− xk12 ak(λ)(x1, x3, . . . , xd+1) + . . .

. . .+ (−1)dxk1d+1ak(λ)(x1, . . . , xd),

(3.2.6)

and for any s = 1, . . . , d+ 1,

ak(τ0) =
∏

1≤j<k≤d+1

(xj − xk) = (−1)s−1(
∏

1≤j<k≤d+1
j,k 6=s

(xj − xk))(
∏

1≤l≤d+1
l 6=s

(xs − xl))

=(−1)s−1ak(λ0)(x1, . . . , x̂s, . . . , xd+1)(
∏

1≤l≤d+1
l 6=s

(xs − xl)).
(3.2.7)
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By definition, and the product formula (3.2.1),

sτ (x1, . . . , xd+1) =
ak(τ)(x1, . . . , xd+1)

ak(τ0)(x1, . . . , xd+1)

=
xk11 ak(λ)(x2, . . . , xd+1)

ak(λ0)(x2, . . . , xd+1)(
∏

2≤l≤d+1(x1 − xl))

+ (−1)
xk12 ak(λ)(x1, x3, . . . , xd+1)

(−1)ak(λ0)(x1, x3, . . . , xd+1)(
∏

1≤l≤d+1
l 6=2

(x2 − xl))
+ . . .

. . .+ (−1)d
xk1d+1ak(λ)(x1, . . . , xd)

(−1)dak(λ0)(x1, . . . , xd)(
∏

1≤l≤d(xd+1 − xl))

=
xk11 sλ(x2, . . . , xd+1)∏

2≤l≤d+1(x1 − xl)
+
xk12 sλ(x1, x3, . . . , xd+1)∏

1≤l≤d+1
l 6=2

(x2 − xl)
+ . . .

. . .+
xk1d+1sλ(x1, . . . , xd)∏

1≤l≤d(xd+1 − xl)

=(φk1 · sλ)(x1, . . . , xd+1).

(3.2.8)

By induction, sλ = φk2 · . . . · φkd+1
. Therefore we have

sτ (x1, . . . , xd+1) =(φk1 · sλ)(x1, . . . , xd+1)

=(φk1 · φk2 · . . . · φkd+1
)(x1, . . . , xd+1).

(3.2.9)

Proposition 3.2.5. H '
∧∗(H1) as algebras.

Proof. Since Hd = H∗Gd(Md) ' Q[x1, . . . , xd]
Sd , Hd (as vector spaces) is the algebra of

symmetric polynomials with d variables. Since Schur polynomials form a basis of algebra of

symmetric polynomials, (see e.g. [43]), by Proposition 3.2.4, Hd '
∧d(H1) as vector spaces.

The proposition follows immediately.

Remark 3.2.6. By the proposition, in A1-COHA case, we would also use wedge ∧ to denote

the COHA multiplication.
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3.3 Examples: Jordan-quiver

If m = 1, the quiver Q(1) is called the Jordan quiver. In this case, the product formula is

(f1 · f2)(x1, . . . , xp+q) :=
∑

i1<...<ip
j1<...<jq

{i1,...,ip,j1,...,jq}={1,...,p+q}

f1(xi1 , . . . , xip)f2(xj1 , . . . , xjq).
(3.3.1)

Using the notations introduced in the previous example. For a partition λ = (k1, . . . , kd),

k1 ≥ . . . ≥ kd ≥ 0, define m̃λ to be the polynomial:

m̃λ(x1, . . . , xd) =
∑
σ∈Sd

x
λσ(1)
1 x

λσ(2)
2 . . . x

λσ(d)
d . (3.3.2)

Remark 3.3.1. Let mλ denote the monomial symmetric function of λ. Then m̃λ = cλmλ for

some positive integer cλ. The number comes from the duplicate terms when permuting the

powers in the definition of m̃ in (3.3.2). See e.g. [43] for details.

Proposition 3.3.2. For a partition λ = (λ1, . . . , λd), λ1 ≥ . . . ≥ λd ≥ 0,

m̃λ = φλ1 · . . . · φλd . (3.3.3)

Proof. Use inductions on the length of λ. Length 0 case is obvious. Now let τ = (τ1, . . . , τd+1)

be a length d + 1 partition, and λ = (λ1, . . . , λd) be a length d partition where λi = τi for
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i = 1, . . . , d. Then

m̃τ (x1, . . . , xd+1) =
∑

σ∈Sd+1

x
λσ(1)
1 x

λσ(2)
2 . . . x

λσ(d+1)

d+1

=
∑

σ∈Sd+1

σ(1)=d+1

x
λd+1

1 x
λσ(2)
2 . . . x

λσ(d+1)

d+1 +
∑

σ∈Sd+1

σ(2)=d+1

x
λσ(1)
1 x

λd+1

2 . . . x
λσ(d+1)

d+1 + . . .

. . .+
∑

σ∈Sd+1

σ(d+1)=d+1

x
λd+1

1 x
λσ(2)
2 . . . x

λd+1

d+1

=(
∑
σ∈Sd

x
λσ(1)
2 . . . x

λσ(d)
d+1 )x

λd+1

1 + (
∑
σ∈Sd

x
λσ(1)
1 x

λσ(2)
3 . . . x

λσ(d)
d+1 )x

λd+1

2 + . . .

. . .+ (
∑
σ∈Sd

x
λσ(1)
1 . . . x

λσ(d)
d )x

λd+1

d+1

=m̃λ(x2, . . . , xd+1)φλd+1
(x1) + m̃λ(x1, x3, . . . , xd+1)φλd+1

(x2) + . . .

. . .+ m̃λ(x1, . . . , xd)φλd+1
(xd+1)

=(m̃λ · φλd+1
)(x1, . . . , xd+1).

(3.3.4)

By induction, m̃λ = φλ1 · . . . · φλd . Therefore m̃τ = φτ1 · . . . · φτd · φτd+1
.

Proposition 3.3.3. H ' Sym∗(H1) as algebras.

Proof. Similar to Proposition 3.2.5, the result follows immediately from the fact that the

monomial symmetric polynomials form a basis of the algebra of symmetric polynomials (see

e.g. [43]).
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Chapter 4

A COHA module structure over the

smooth model of quivers

4.1 Correspondences

4.1.1 Lusztig’s model

Lusztig gives a model to describe the correspondence (3.1.2) of quiver representations. We

would give a quick review about this model in this subsection. For details, see e.g. [40–42].

For d = d1 + d2, let Vd = ⊕i∈IVdi , Vd1 = ⊕i∈IVdi1
and Vd2 = ⊕i∈IVdi2

be the standard

coordinate spaces which serve as the standard underlying vector spaces of representations of

quiver Q. Let M2 be the variety of all pairs (W, (Vd, T )) where (Vd, T ) ∈Md and W ⊂ Vd is

a I-graded subspace of dimension d1 which is invariant under the action of T . Let M1 be the

variety of the quadruples (W, (Vd, T ), f1, f2) where (W, (Vd, T )) ∈M2, f1 is an isomorphism

f1 : Vd1 ' W , and f2 is an isomorphism f2 : Vd2 ' Vd/W .

For each (W, (Vd, T ), f1, f2), let T1 := f−1
1 T |Wf1 and T2 := f−1

2 T̄ f2, where T |W is the

map T restricted on W and T̄ is the endomorphism on Vd/W induced from T : Vd → Vd.

Then T1 : Vd1 → Vd1 (resp. T2 : Vd2 → Vd2) is a point in Md1 (resp. Md2).
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Both M1 and M2 carries Gd ×Gd1 ×Gd2-action by

(g, g1, g2) · (W, (Vd, T ), f1, f2) = (gW, (Vd, gTg
−1), gf1g

−1
1 , ḡf2g

−1
2 ), (4.1.1)

and

(g, g1, g2) · (W, (Vd, T )) = (gW, (Vd, gTg
−1)). (4.1.2)

Here ḡ is the action on Vd/W induced by g ∈ Gd on Vd. Equip Md and Md1 ×Md2 with

Gd×Gd1×Gd2-action structure by setting the other groups act on non-correspondent pieces

trivially.

Define q1 : M1 →Md1 ×Md2 by q1(W, (Vd, T ), f1, f2) = ((Vd1 , T1), (Vd2 , T2)). Define q2 :

M1 →M2 by q2(W, (Vd, T ), f1, f2) = (W, (Vd, T )). Define q3 : M2 →Md by q3(W, (Vd, T )) =

(Vd, T ). Then we have a Gd ×Gd1 ×Gd2-equivariant diagram:

Md1 ×Md2

q1←−M1
q2−→M2

q3−→Md. (4.1.3)

Theorem 4.1.1 ([40]). q1 is a locally trivial fibration with smooth connected fibres, q2 is a

Gd1 ×Gd2-principal bundle and q3 is proper.

There is another way to talk about these spaces. Consider the space indicated by the

first d1 coordinates of the standard coordinate space Vd. We denote it by Vd1 . Let Gd1,d be

the stabilizer of Vd1 ⊂ Vd in Gd. Denote by Ud1,d the unipotent radical of Gd1,d. We have

canonically Gd1,d/Ud1,d = Gd1 × Gd2 . Let Md1,d be the closed subvariety of Md consisting

of all (Vd, T ) such that the standard coordinate subspace Vd1 ⊂ Vd is invariant under T .

Denote the natural embedding Md1,d ↪→ Md by ı. Consider the Gd1,d-equivariant map

κ : Md1,d →Md1 ×Md2 . We have the diagram:

Md1 ×Md2

q1←− Gd ×Ud1,d
Md1,d

q2−→ Gd ×Gd1,d
Md1,d

q3−→Md, (4.1.4)

where q1(g, (Vd, T )) = κ(Vd, T ), q2(g, (Vd, T )) = (g, (Vd, T )), and q3(g, (Vd, T )) = g(ı((Vd, T ))).
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Theorem 4.1.2 ([42]). k : Md1,d →Md1×Md2 is a vector bundle, q2 is a Gd1×Gd2-principal

bundle and q3 is proper.

This two descriptions are equivalent to each other by the following proposition.

Proposition 4.1.3. Gd×Ud1,d
Md1,d is Gd×Gd1×Gd2-equivariant isomorphic to M1. Gd×Gd1,d

Md1,d is Gd-equivariant isomorphic to M2.

Proof. Recall that Md1,d is the variety of all representations of Q on Vd which keep the

standard coordinate subspace Wd1 ⊂ Vd invariant. Let i : Wd1 → Vd be the canonical

embedding. Let k : Vd2 → Vd/Wd1 be the canonical isomorphism. Define φ : Gd×Md1,d →

M1 by

φ : (g, T ) 7→ (gWd1 , gTg
−1, gi, ḡk), (4.1.5)

where ḡ is the action on Vd/Wd1 induced by g on Vd. This is a Gd×Gd1×Gd2-map, and the

kernel is Ud1,d. Thus we get the isomorphism we want. The other follows from the similar

argument.

Proposition 4.1.4. [Gd ×Pd1,d
Md1,d/Gd] is isomorphic to [Md1,d/Pd1,d] as CFGs.

This proposition let us to use Md1,d acted by Pd1,d as models to talk about correspon-

dences.

4.1.2 Correspondences for stable framed representations

Fix a quiver Q = (I,H). Fix a framed structure n = (ni)i∈I and a stability condition

Θ. Following Section 2.2, let MΘ−st
d,n be the variety of all stable framed representations of

dimension d on the standard coordinate space Vd with the framed structure n under the

stability condition Θ. We use M st
d,n for short. Gd acts on M st

d,n naturally. Then there exists

a moduli space Mst
d,n = M st

d,n/Gd.

Let ((V, T ), f) be a stable framed representation of dimension d = (di)i∈I . Assume that

we have a d1-dimensional subrepresentation W ⊂ V of Q. That is, W = (Wi)i∈I , Wi ⊂ Vi,

dimW = d1 and ⊕i∈IWi is invariant under the action of T . Then there is a natural framed

representation structure on V/W . We denote it by ((V/W, T ), f).
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Theorem 4.1.5. Assume the slopes of V , W and V/W are the same. If ((V, T ), f) is a

stable framed representation, so is ((V/W, T ), f).

Proof. Take any subspace U/W ⊂ V/W which contains Im(f). Denote the preimage of

U/W in V under the natural projection by U . Then U ⊂ V contains Im(f), and we have

the following diagram.

0 //W // V // V/W // 0

0 //W //

=

OO

U //
?�

OO

U/W //
?�

OO

0

. (4.1.6)

By Proposition 2.2.6, since ((V, T ), f) is stable, µ(U) < µ(V ). Due to the fact that µ(V ) =

µ(W ), by Lemma 2.1.19, µ(W ) > µ(U) > µ(U/W ). Thus by µ(W ) = µ(V/W ), we have

µ(U/W ) < µ(V/W ).

This Theorem enables us to define the correspondence for smooth models in the following

way. Fix a slope µ ∈ Q. Fix two dimension vectors d1 and d2 such that µΘ(d1) = µΘ(d2) = µ

and set d = d1 + d2. Then µΘ(d) = µ. We apply the Lusztig’s model to describe the

correspondences here. Recall that Vd is the standard coordinate space, and Vd1 ⊂ Vd is

the subspace consisting of the first d1 coordinates. Let M st
d1,d,n

be the subvariety of M st
d,n

which keeps Vd1 ⊂ Vd invariant, and the subgroup of the automorphism group of Vd which

preserves Vd1 is denoted by Pd1,d. By the construction similar to diagram (4.1.4), we have

the following diagram

Md1 ×M st
d2,n

q1←− Gd ×Ud1,d
M st

d1,d,n

q2−→ Gd ×Pd1,d
M st

d1,d,n

q3−→M st
d,n. (4.1.7)

After taking quotient by Gd ×Gd1 ×Gd2 , we have

[Md1/Gd1 ]×Mst
d2,n

q1←− [M st
d1,d,n

/Pd1,d]
q2−→ [M st

d1,d,n
/Pd1,d]

q3−→Mst
d,n. (4.1.8)

Proposition 4.1.6. [M st
d1,d,n

/Pd1,d] can be represented by a scheme. The scheme is denoted

by Mst
d1,d,n

.
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Proof. Let (W, ((Vd, T ), f)) be a point in M st
d1,d,n

. Let g ∈ Pd1,d. The action is

g · (W, ((Vd, T ), f)) = (gW, ((Vd, gTg
−1), gf)). (4.1.9)

Now let g · (W, ((Vd, T ), f)) = (W, ((Vd, T ), f)). That is,

(gW, ((Vd, gTg
−1), gf)) = (W, ((Vd, T ), f)). (4.1.10)

Since W is invariant under the action of Pd1,d, we have

gT = Tg, gfi = fi, i = 1, . . . , N. (4.1.11)

Fix a basis vector v ∈ W, and let vi = fi(v). Consider the subspace U generated by vi,

i = 1, . . . N under the action of T . It is possible to choose a basis vkj := T kvj of U for some

k ∈ Z≥0 and j = 1, . . . , N . Then we have

gvkj = gT kvj = T kgfj(v) = T kfj(v) = vkj . (4.1.12)

Therefore g = Id when restricting on U .

Assume g is not trivial. Then there is a one parameter subgroup gλ ⊂ Gd such that

gλ fix (W, ((Vd, T ), f)). Then we can decompose Vd into the direct sum of weight space

Vd = ⊕n≥0V (n) where t ∈ gλ acts on V (n) as tn. It is obvious that U ⊂ V (0). Thus V (0)

is not trivial.

Furthermore, since gT = Tg for any g ∈ gλ, V (i) is invariant under the action of T

for any i ∈ Z≥0. Therefore, each V (i) is a submodule of the original quiver Q. Since

Im(f) ⊂ U ⊂ V (0), Im(f) is not in V (i) for i > 0. Let V>0 := ⊕i>0V (i). V>0 is a submodule

of the original quiver which doesn’t contain the image of f . Then we have

Vd = V (0)⊕ V>0. (4.1.13)
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By Proposition 2.2.6, µ(V>0) ≤ µ(Vd), and µ(V (0)) < µ(Vd). By Lemma 2.1.19,

µ(V (0)) < µ(Vd) < µ(V>0). This a contradiction. Then g = Id on the whole Vd. This

shows that Pd1,d acts on Md1,d,n freely.

Then we build up the following correspondence diagram:

Mst
d2,n

Mst
d1,d,n

p2oo p //

p1

��

Mst
d,n

[Md1/Gd1 ]

. (4.1.14)

Here

p(W, ((Vd, T ), f)) = ((Vd, T ), f),

p1(W, ((Vd, T ), f)) = (W,T |W ),

p2(W, ((Vd, T ), f)) = ((Vd/W, T̄ ), f̄).

4.2 Increasing operators

The map

φ+(f) := p∗(p
∗
1(φ) ∪ p∗2(f)), for φ ∈ Hd1 , f ∈ H∗(Mst

d2,n
) (4.2.1)

defines a morphism from H∗(Mst
d2,n

) to H∗(Mst
d,n). Since p is proper, the operator is well-

defined.

Theorem 4.2.1. φ+
1 (φ+

2 (f)) = (φ1 · φ2)+(f) for φ1 ∈ Hd1, φ2 ∈ Hd2 and f ∈Mst
d3,n

.

Proof. Consider the correspondence C1 consisting of diagrams

Fd1+d2+d3

&& &&
Fd1+d3

## ##
Ed2

. �

==

Ed1

+ �

88

Fd3

(4.2.2)
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C2 consisting of diagrams

Fd1+d2+d3

!! !!

Ed1+d2

+ �

88

&& &&
Ed2

, �

;;

Ed1 Fd3

(4.2.3)

and C consisting of all the pieces {(E1 , Ed2 , Ed1+d2 , Fd3 , Fd1+d3 , Fd1+d2+d3)}. Here Ed ∈Md

and Fd ∈ Mst
d,n for any dimension vector d. The natural projections to each components

give the following diagram which is commutative.

C
q1 // C1

p12,123 //

p11,13
��

Mst
d2,d1+d2+d3,n

p2,123123 //

p2,12313

��

p2,1232

((

Mst
d1+d2+d3,n

Mst
d1,d1+d3,n

p1,1313 //

p1,133

��

p1,131

((

Mst
d1+d3,n

Md2

Mst
d3,n

Md1

. (4.2.4)

In the diagram, p1,13
13 and p1

2,123 are proper, and p1
1,13 and p2,123

13 are flat. Then by Proposition

A.1.8, we have

φ+
2 (φ+

1 (f)) = p2,123
123 ∗(p

2,123
2

∗
(φ2) ∪ p2,123

13

∗
(p1,13

13 ∗(p
1,13
1

∗
(φ1) ∪ p1,13

3

∗
(f))))

= p∗(p
∗
2(φ2) ∪ p∗1(φ1) ∪ p∗3(f)),

(4.2.5)

where p1 = p1,13
1 ◦p1

1,13◦q1, p2 = p2,123
2 ◦p1

2,123◦q1, p3 = p1,13
3 ◦p1

1,13◦q1 and p = p2,123
123 ◦p1

2,123◦q1.

Similarly, for C2 and related correspondences and moduli spaces, we have the following
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diagram

C
q2 // C2

p23,123 //

p21,12
��

Mst
d3,d1+d2+d3,n

p3,123123 //

p3,12312

��

p3,1233

((

Mst
d1+d2+d3,n

Md1,d1+d2

p1,1212 //

p1,121

��

p1,122

((

Md1+d2 Mst
d3,n

Md1 Md2

. (4.2.6)

and

(φ2 · φ1)+(f)) = p′∗(p
′∗
2(φ2) ∪ p′∗1(φ1) ∪ p′∗3(f)), (4.2.7)

where p′1, p′2, p′3 and p′ are the natural projections from C through C2 toMd1 , Md1 ,Mst
d3,n

and

Mst
d1+d2+d3,n

. Since in C1 and C2, by the universal properties of embeddings and projections,

C
q1−→ C1 and C

q2−→ C2 are isomorphisms. Therefore we arrive at the desired result.

The Theorem shows that Formula (4.2.1) defines a representation of H =
⊕

dHd on⊕
dH

∗(Mst
d,n). It is called the increasing representation of COHA of the quiver Q. The

operators related to the generators of the COHA are called the increasing operators.

4.3 Decreasing operators

Recall the diagram of correspondence

Mst
d2,n

[M st
d1,d,n

/Pd1,d,n]
p2oo p //

p1

��

Mst
d,n

[Md1/Gd1 ]

. (4.1.14)

Choose an approximation Un/Gd1 of [Md1/Gd1 ]. We have the diagram

Mst
d,n

p←−Mst
d1,d,n

p1,n×p2−−−−→Md1 ×Gd1
Un ×Mst

d2,n
. (4.3.1)

To construct decreasing operators, we introduce the following conditions.

33



Condition A. p1×p2 :Mst
d1,d,n

→Md1×Mst
d2,n

is a fibre bundle with fibers being projective

schemes. The fiber can be embedded into the classifying space BGd1 . Furthermore all pieces

has a cellular decomposition.

Assume the condition holds. Since all pieces has a cellular decomposition, the cohomology

of Mst
d1,d,n

is generated by the basis of the cohomology of the fibres as H∗(Md1 ×Mst
d2,n

)-

modules. Since the fibre can be embedded into BGd1 , there is a projection from H∗(BGd1)

to the cohomology of the fibre. This implies that we can use COHA generators from

H∗([Md1/Gd1 ]) to denote the elements in the cohomology of fibres under the projection.

Choose the H∗(Md1 × Mst
d2,n

)-basis of H∗(Mst
d1,d,n

) which are of forms p∗1(φi) where

φi ∈ H∗Gd1
(Md1) are COHA generators. We can define a H∗(Md1 ×Mst

d2,n
)-pairing

〈α, β〉 := (p1 × p2)∗(α ∪ β) (4.3.2)

for α, β ∈ H∗(Mst
d1,d,n

). Define the dual D(p∗1(φi)) of p∗1(φi) by the formula

〈D(p∗1(φi)), p
∗
1(φj)〉 = δi,j. (4.3.3)

By Pioncaré duality, and the fact that the fibre is projective, the pairing is non-degenerate.

Then the dual exists for any p∗1(φi) ∈ H∗(Mst
d1,d,n

). Again, since the basis elements in

H∗(Mst
d1,d,n

) are pullbacks from H∗([Md1/Gd1 ]), there exists φDi ∈ H∗([Md1/Gd1 ]) for φi ∈

H∗([Md1/Gd1 ]) such that D(p∗1(φi)) = p∗1(φDi )

The next piece we need is the pullback π∗2 : H∗(Mst
d2,n

) → H∗(Md1 × Mst
d1,n

). It is

an isomorphism due to the fact that the natural projection to the second component π2 :

Md1 ×Mst
d2,n
→Mst

d2,n
is a vector bundle of rank dimMd1 .

We need another condition to proceed.

Condition B. Let φi ∈ H∗([Md1/Gd1 ]), φ2 ∈ H∗([Md2/Gd2 ]). Then φDi φ
D
j = (φjφi)

D,

where the multiplication is the COHA multiplication.

Finally we come to the definition of decreasing operator. For f ∈ H∗(Mst
d,n), φi ∈
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H∗([Md1/Gd1 ]),

φ−i (f) := (π∗2)−1(p1 × p2)∗(p
∗
1(φDi ) ∪ p∗(f)) ∈ H∗(Mst

d2,n
). (4.3.4)

The isomorphism (π∗2)−1 is omitted from the formula for simplicity when there is no confusion.

Remark 4.3.1. Note that the decreasing operator constructed above depends on the choices

of basis. However, in the cases of A1-quiver and Jordan quiver and d1 = 1, the cohomology

of each degree is of dimension 1. Therefore there are no choices of basis in this dissertation.

Theorem 4.3.2. If both Condition A and Condition B hold, φ−1 (φ−2 (f)) = (φ1 ·φ2)−(f), for

any f ∈ H∗(Mst
d3,n

), φ1 ∈ H∗([Md1/Gd1 ]) and φ2 ∈ H∗([Md2/Gd2 ]).

Proof. Consider the same correspondence C1, C2 and C in Theorem 4.2.1. We have the

following diagram.

C
q1 // C1

p12,123 //

p11,13
��

Mst
d2,d1+d2+d3,n

p2,123123 //

p2,12313

��

p2,1232

((

Mst
d1+d2+d3,n

Mst
d1,d1+d3,n

p1,1313 //

p1,133

��

p1,131

((

Mst
d1+d3,n

Md2

Mst
d3,n

Md1

. (4.3.5)

By the diagram and the projection formula, we have

φ−1 (φ−2 (f)) = p1,13
3 ∗(p

1,13
1

∗
(φD1 ) ∪ p1,13

13

∗
(p2,123

13 ∗(p
2,123
2

∗
(φD2 ) ∪ p2,123

123

∗
(f))))

= p3∗(p
∗
1(φD1 ) ∪ p∗2(φD2 ) ∪ p∗(f)),

(4.3.6)

where p1 = p1,13
1 ◦p1

1,13◦q1, p2 = p2,123
2 ◦p1

2,123◦q1, p3 = p1,13
3 ◦p1

1,13◦q1 and p = p2,123
123 ◦p1

2,123◦q1,

φ1 ∈ H∗([Md1/Gd1 ]), φ2 ∈ H∗([Md2/Gd2 ]), f ∈ H∗(Mst
d1+d2+d3,n

). Similarly, for C2 and
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related correspondences and moduli spaces, we have the following diagram

C
q2 // C2

p23,123 //

p21,12
��

Mst
d3,d1+d2+d3,n

p3,123123 //

p3,12312

��

p3,1233

((

Mst
d1+d2+d3,n

Md1,d1+d2

p1,1212 //

p1,121

��

p1,122

((

Md1+d2 Mst
d3,n

Md1 Md2

. (4.3.7)

and

(φ1 · φ2)−(f)) = p′3∗(p
′∗
12((φ1φ2)D) ∪ p′∗(f)), (4.3.8)

where p′12 = p1,12
12 ◦p2

1,12 ◦ q2, p′3 = p3,123
3 ◦p2

3,123 ◦ q2 and p′ = p3,123
123 ◦p2

3,123 ◦ q2. Since Condition

B holds, we have

(φ1 · φ2)−(f)) = p′3∗(p
′∗
1(φD1 ) ∪ p′∗2(φD2 ) ∪ p′∗(f)), (4.3.9)

where p′1 = p1,12
1 ◦ p2

1,12 ◦ q2 and p′2 = p1,12
2 ◦ p2

1,12 ◦ q2. Then by the same argument as that in

the case of increasing operators, we prove the associativity.
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Chapter 5

A1-quiver case

In Section 2.2.2, the smooth models of A1-quiver is proved to be Grassmannians. Therefore

if we apply the constructions from Chapter 4, we would arrive at an A1-COHA module

structure on the cohomology of Grassmannians.

In this chapter, we are going to take these computations in details. We start from a

review on Grassmannians with an emphasis on the cohomology of Grassmannians. Then

we are going to show how A1-COHA acts, with both increasing operators and decreasing

operators. Finally we will show that these two operators can be combined to give a finite

Clifford algebra module structure.

5.1 Grassmannians

In this section, we mainly follow [21] and [5].

Definition 5.1.1. The Grassmannian Gr(d, n) is the variety of d-dimensional linear sub-

spaces of Cn.

Definition 5.1.2. Given a sequence (d1, . . . , dm) of positive integers with sum n, a flag of

type (d1, . . . , dm) in Cn is an increasing sequence of linear subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm = Cn (5.1.1)
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such that dim(Vj/Vj−1) = dj for j = 1, . . . ,m. The variety of all flags of type (d1, . . . , dm) is

called the partial flag variety of type (d1, . . . , dm). The partial flag variety of type (1, 1, . . . , 1)

is called the full flag variety (or flag variety for short), and is denoted by Fl(n).

Remark 5.1.3. From the definition, it is not hard to see that Grassmannian Gr(d, n) is the

partial flag variety of type (d, n− d).

Theorem 5.1.4 ([21], p.161). The cohomology of full flag variety Fl(n) is isomorphic to

R(n) = Q[x1, . . . , xn]/(e1(x1, . . . , xn), . . . , en(x1, . . . , xn)), where ei(x1, . . . , xn) represents the

i-th elementary symmetric polynomial.

There is a natural projection π : Fl(n) → Gr(d, n). By abuse of notations, we use the

same symbol xi to denote the classes in Gr(d, n) whose pullback π∗(xi) is xi ∈ H∗(Fl(n)).

Recall the definition of partitions and Schur polynomials from Section 3.2.

Corollary 5.1.5 ([21]). The cohomology of Grassmannian Gr(d, n) is a subalgebra of R(n)

which is generated by Schur polynomials in variables x1, . . . , xd indexed by d-partitions.

Therefore we can use sλ(x1, . . . , xd) to represent classes in H∗(Gr(d, n)).

Remark 5.1.6. The partition λ = (λ1, . . . , λd) representing a class in H∗(Gr(d, n)) has a

restriction: λ1 ≤ n− d. See e.g. [5] for details.

Definition 5.1.7. For a d-partition λ = (λ1, . . . , λd) of n with λ1 ≤ n− d, the transpose of

λ is a (n− d)-partition λ′ defined by λ′j = #{λi ≥ n− d+ 1− j} for 1 ≤ j ≤ n− d.

Let hr (resp. er) stand for the r-th complete symmetric polynomial (resp. elementary

symmetric polynomial). Let λ and λ′ are two partitions which are transpose to each other.

Theorem 5.1.8 (Jacobi-Trudi identity. See e.g. [43]).

sλ = det(hλi−i+j) = det(eλ′i−i+j).

Based on Jacobi-Trudi identity, classes in H∗(Gr(d, n)) have an alternative presentation.
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Lemma 5.1.9. In H∗(Gr(d, n)), sλ(x1, . . . , xd) = (−1)|λ|sλ′(xd+1, . . . , xn), where λ′ is the

transpose partition of λ.

Proof. We start from the identity in the ring R(n)[t]. (see e.g. [21], p.163.)

d∏
i=1

1

1− xit
=

n∏
i=d+1

(1− xit). (5.1.2)

Since
d∏
i=1

1

1− xit
=
∑
r≥0

hr(x1, . . . , xd)t
r (5.1.3)

and
n∏

i=d+1

(1− xit) =
∑
r≥0

er(xd+1, . . . , xn)(−t)r (5.1.4)

where hr (resp. er) stands for the r-th complete symmetric polynomial (resp. elementary

symmetric polynomial), we have

hr(x1, . . . , xd) = (−1)rer(xd+1, . . . , xn), r ≥ 0. (5.1.5)

By Jacobi-Trudi identity,

sλ′(x1, . . . , xd) = det(eλi−i+j(x1, . . . , xd)) = det((−1)λi−i+jhλi−i+j(xd+1, . . . , xn))

= (−1)|λ| det(hλi−i+j(xd+1, . . . , xn)) = (−1)|λ|sλ(xd+1, . . . , xn).

The third identity comes from the fact that

det(hλi−i+jt
λi−i+j) =

∑
ω

n∑
i=1

(−1)ωhλi−i+ω(i)t
λi−i+ω(i)

=
∑
ω

t
∑n
i=1 λi−i+ω(i)

n∑
i=1

(−1)ωhλi−i+ω(i)

=
∑
ω

t|λ|
n∑
i=1

(−1)ωhλi−i+ω(i)

= t|λ| det(hλi−i+j).
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In this section, we would also meet Grassmann bundle.

Definition 5.1.10. Let E be a vector bundle of rank n on a scheme X, and let d be a

positive integer less than n. The Grassmann bundle of d-plane in E is a scheme over X

p : Grd(E)→ X (5.1.6)

such that the fiber p−1(x) = Gr(d,Ex) is the Grassmannian of the d-dimensional subspaces

of Ex. p
∗E is a trivial bundle of rank n on Gr(d,E). There would be a tautological vector

bundle S on Gr(d,E). It is a subbundle of p∗E. Denote by Q the quotient bundle p∗E/S

on Gr(d,E).

Theorem 5.1.11 ([20], Example 14.6.6). If X is non-singular, E a vector bundle of rank n

on X, then A∗(Gr(d,E)) is the algebra over A∗X generated by elements a1, . . ., ad, b1, . . .,

bn−d, modulo the relations
k∑
i=0

aibk−i = ck(E) (5.1.7)

for k = 1, . . . , n. (Take ai = ci(S), bj = cj(Q).)

When d = 1, Gr(1, E) is called the projective bundle of E, and is denoted by P (E). Let

the first Chern class of the tautological line bundle over P (E) be denoted by ξ. In this case,

the above theorem is called the Projective bundle theorem.

Corollary 5.1.12 (Projective bundle theorem). H∗(P (E)) is generated by 1, ξ, . . ., ξn−1 as

H∗(X)-modules.

Then the cohomology of Grassmann Bundle can be described by Schur polynomials, in

which the generators are the Chern roots, and the coefficients are in H∗(X). The following

theorem is cited from [20, Proposition 14.6.3].
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Proposition 5.1.13 (Duality theorem). Let sλ and sµ be two Schur polynomials with respect

to partitions λ = (λ1, . . . , λd) and µ = (µ1, . . . , µd), then

p∗(sλ ∪ sµ) =


1, if λi + µd−i+1 = n− d for 1 ≤ i ≤ d,

0, otherwise.

(5.1.8)

5.2 Correspondence

In Section 4.1.1 we use Lusztig’s model to describe correspondences. In the case of stable

framed representations of A1-quiver, the model is stated in the following way.

Recall from Section 2.2.2, a stable framed representation ((Vd, T ), f) of A1-quiver with

framed structure n satisfies T = IdVd and f ∈ Epi(Cn,Cd). Since both Vd and T are fixed,

we could write the representation f for short.

From linear algebra, if we fix an epimorphism τ : Cn → Cd, it is known that any

epimorphism can be written in terms of τg−1 where g ∈ GL(n,C). Two epimorphisms

τg−1
1 and τg−1

2 are the same if and only if g1g
−1
2 acts on ker τ trivially, or equivalently

g1g
−1
2 ∈ Un−d,n oGd2 . Define a map from Gn to Epi(Cn,Cd) by ψ : g 7→ τg−1.

Lemma 5.2.1. ψ : Gn ×Pn−d,n Gd → Epi(Cn,Cd) is a Gd-equivariant isomorphism.

Let M st
d,n be the variety of all d-dimensional stable framed representations of A1-quiver

with n-framed structure. Then Gd = GL(d,C) acts on M st
d,n freely. The quotient is the

smooth model Mst
d,n = M st

d,n/Gd. It is obviously that Mst
d,n is Gr(d, n).

Fix three dimensions d1 + d2 = d. Consider the standard coordinate space Vd and the

standard coordinate subspace Vd1 ⊂ Vd consisting of the first d1 coordinates. Let Pd1,d be

the parabolic subgroup of Gd which acts on Vd1 ⊂ Vd. Let Ud1,d be the subgroup of Pd1,d

whose action on Vd1 and induced action on Vd/Vd1 are both trivial. It is not hard to see

that Ud1,d is the unipotent radical of Pd1,d. We have Pd1,d ' Ud1,d o (Gd1 ×Gd2).

Now consider M2 who is the variety of all pairs (W, f) where f ∈M st
d,n and W ⊂ Vd is a

d1-dimensional subspace who is invariant under the action of T . Since T = Id, W can be any

subspace. Using the above notation, f can be written in terms of τg−1 for some g ∈ GL(n,C).
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W ⊂ Vd is one-to-one correspondent to Vd � Vd/W by letting W = ker(Vd � Vd2). Then

by Lemma 5.2.1 the variety of subspaces W ⊂ Vd is Gd ×Pd1,d Gd2 .

Lemma 5.2.2. The variety M2 is Gd1 ×Gd2 ×Gd-equivariantly isomorphic to

Gn ×Pn−d,n Gd ×Pd1,d Gd2 ,

where Gd acts naturally and G1×G2 acts trivially. Furthermore, [M2/Gd2 ] is isomorphic to

the variety Fd2,d,n of two-step flags Vn � Vd � Vd2.

Similarly, recall that M1 is the variety of all tuples (T, V, f1, f2) where all notations are

defined in Section 4.1.1.

Lemma 5.2.3. The variety M1 is Gd1 ×Gd2 ×Gd-equivariantly isomorphic to

Gn ×Pn−d,n Gd ×Ud1,d (Gd1 ×Gd2).

To sum up, we have the following description of the correspondence as well as the relations

on the cohomology. Recall the diagram of correspondences in A1-quiver case:

Mst
d2,n

[M st
d1,d,n

/Pd1,d]
p2oo p //

p1

��

Mst
d,n

[Md1/Gd1 ]

. (4.1.14)

Proposition 5.2.4. The schemeMst
d2,d,n

= [M st
d2,d,n

/Pd2,d] in A1-quiver case is isomorphic as

varieties to the two-step flag variety Fd2,d,n, which is variety of the flags {Cn � Cd � Cd2}.

p is the obvious projection from Fd2,d,n to Gr(d, n) and p2 is the obvious projection from

Fd2,d,n to Gr(d2, n). p1 as a morphism of quotient stacks is described as following: For any

Pd1,d-bundle E → B and f : E → M st
d1,d,n

a Pd1,d-equivariant map, p1(B ←− E
f−→ M st

d1,d,n
) is

B ←− E
f ′−→Md1, where E → B is treated as a Gd1-bundle by the embedding Gd1 ⊂ Pd1,d and

f ′ = π1 ◦ q1 ◦ f , where q1 : Gd×Ud1,dM
st
d1,d,n

→Md1 ×M st
d2,n

is defined in the diagram (4.1.7),

and π1 is the natural projection.
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p∗1 : H∗([Md1/Gd1 ]) → H∗(Mst
d1,d,n

) is defined in the following way. Choose a class

x ∈ H∗([Md1/Gd1 ]). There is a correspondent Line bundle Lx whose first Chern class is

x. Gd1 acts on M st
d1,d,n

defined by the embedding Gd1 ⊂ Pd1,d. Then we have the following

lemma.

Corollary 5.2.5. p∗1(Lx) 'M st
d1,d,n

×Gd1 Lx, and thus p∗1(x) = c1(M st
d1,d,n

×Gd1 Lx).

Theorem 5.2.6. In A1-quiver case, Condition A holds.

Proof. It is obvious from the above descriptions about the correspondences.

Theorem 5.2.7. For fixed framed structure N , φi = xi ∈ H∗([M1/G1]), then φDi = φN−1−i

for i = 0, . . . , N − 1. In addition, Condition B holds.

Proof. For general d1,Mst
d1,d,n

→M1×Mst
d2,n

is a Grassmann bundle over the Grassmannian

Gr(d2, n), and the fibre is Grassmannian Gr(d1, N). By the Duality theorem of Grassmannian

bundles 5.1.13, the pairing (4.3.2) is computed. If d1 = 1, then sλ = φλ, sµ = φµ for λ and

µ are two intergers. The pairing in this case is

〈Φλ,Φµ〉 = δλ+µ=N−1. (5.2.1)

Thus φDi = φN−i−1. If d1 = 2, λ = (λ1, λ2) and µ = (µ1, µ2). The associated index

k(λ) = (k1, k2) = (λ1 + 1, λ2) and l(µ) = (l1, l2) = (µ1 + 1, µ2). The pairing in this case is

〈Φk(λ),Φl(µ)〉 = 〈φk1 ∧ φk2 , φl1 ∧ φl2〉 = δk1+l2=N−1δk2+l1=N−1. (5.2.2)

Then (φi ∧ φj)D = φN−j−1 ∧ φN−i−1 = φDj ∧ φDi .

Note that both p and p2 are proper morphisms of stacks (which are in fact schemes). Then

the increasing representation introduced in Section 4.2 is well-defined, and the definition of

the decreasing representations introduced in Section 4.3 can be simplified.

Corollary 5.2.8. Since p2 is proper, and M1 is this case is just a point,

φ−i (f) := p2∗((p
∗
1(φDi )) ∪ p∗(f)), for φi ∈ Hd1 , f ∈ H∗(Gr(d, n)). (5.2.3)
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5.3 Increasing and decreasing operators

5.3.1 Two representations of A1-COHA

Now we want to compute the increasing representation by the formula p∗(p
∗
1(φi) ∪ p∗2(sλ)).

Note that in this case, d1 = 1. Recall that φi represents the polynomial φi(x) = xi. Using

the geometric interpretation, xi is treated as the first Chern class of the tautological line

bundle over the classifying space of G1. By Corollary 5.2.5, the line bundle will be pulled

back through p1 to the line bundle over Fd2,d,n associated to the corresponding character of

Gd1 when treating Gd1 as a subquotient of Pd2,d,n. Hence p∗1(φi) will be the first Chern class

of the line bundle described above, which is φi(xd2+1) = xid2+1.

By the description in the last section, as homogeneous spaces, we have the follow-

ing isomorphisms: Gr(d, n) ≈ GLn(C)/Pd,n, Gr(d2, n) ≈ GLn(C)/Pd2,n and F (d2, d, n) ≈

GLn(C)/Pd2,d,n. We use the formula in [4] to compute the pushforward.

Theorem 5.3.1 ([4]). Let G be a connected reductive algebraic group over C and B a Borel

subgroup. Choose a maximal torus T ⊂ B with Weyl group W . The set of all positive roots of

the root system of (G, T ) is denoted by ∆+. Let P ⊃ B be a parabolic subgroup of G, with the

set of positive roots ∆+(P ) and Weyl group WP . Let Lα be the complex line bundle over G/B

which is associated to the root α. The Gysin homomorphism f∗ : H∗(G/B) → H∗(G/P ) is

given by

f∗(p) =
∑

w∈W/WP

w · p∏
α∈∆+\∆+(P ) c1(Lα)

. (5.3.1)

Applying Theorem 5.3.1, for sλ ∈ H∗(Gr(d2, n)),

(φ+
i · sλ)(x1, . . . , xd2+1) =

∑
i1<...<id2

sλ(xi1 , . . . , xid2 )p∗1(φi(xid2+1
))∏d2

j=1(xij − xid2+1
)

. (5.3.2)
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Similarly, the formula of the decreasing actions is

(φ−i · sλ)(x1, . . . , xd2−1) =
∑

i1<...<id2

sλ(xi1 , . . . , xid2 )p∗1(φDi (xid2 ))∏n
j=d2+1(xid2 − xj)

=
∑

i1<...<id2

sλ(xi1 , . . . , xid2 )p∗1(φn−1−i(xid2 ))∏n
j=d2+1(xid2 − xj)

.

(5.3.3)

Remark 5.3.2. In Formula (5.3.3), variables xi for i > d2 − 1 appear on the right side,

which do not belong to the variables on the left side. This is not a contradiction because of

the formula sλ(x1, . . . , xd) = (−1)|λ|sλ′(xd+1, . . . , xn) by Lemma 5.1.9. More details will be

discussed in the following section.

Remark 5.3.3. The construction above actually only defines an incrasing operator φ+
i,d from

H∗(Gr(d, n)) to H∗(Gr(d + 1, n)) and an decreasing operator φ−i,d from H∗(Gr(d, n)) to

H∗(Gr(d − 1, n)). The increasing operator we need is φ+
i =

∑n
d=0 φ

+
i,d. The decreasing

operator we need is φ−i =
∑n

d=0(−1)d−1φ−i,d.

5.3.2 Increasing operators

The key result is a generalization of a result from [17].

Proposition 5.3.4. The increasing representation structure is induced by the open embed-

ding j : M st
d,n → Md × Cn. The induced map j∗ : H → R+

n is H-linear and surjective. The

kernel of j∗ equals
∑

p≥0,q>0Hp ∧ (enq ∪Hq), where eq =
∏d

i=1 xi.

Proof. In [17], the similar result for n = 1 is proved. It can be easily generalized to n > 1

case for A1-quiver.

The next lemma follows immediately from the definition of Schur polynomials.

Lemma 5.3.5. s(λd+1,λd−1+1,...,λ1+1) = edsλ for sλ ∈ Q[x1, . . . , xd]
Sd and ed =

∏d
i=1 xi. Thus

end ∪ Φk = Φk+n for Φk ∈ Hd, and n = (n, n, . . . , n).

Finally, we come to the result, whose proof is straightforward.
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Proposition 5.3.6. The increasing representation R+
n is a quotient of H =

∧∗(H1) whose

kernel is the submodule generated by {φi}i≥n. Thus R+
n is isomorphic to

∧∗(V (n)) where

V (n) is the linear space spanned by φ0, . . . , φn−1 and the action is given by wedge product

from left. Then {φk1 ∧ . . . ∧ φkd}k1>...>kd , 0 ≤ d ≤ n− 1 form a basis of R+
n .

5.3.3 Two presentations of classes in the cohomology of Grass-

mannian

Proposition 5.3.6 implies that we can use the notations introduced in section 5.1 to represent

cohomology classes of Grassmannians, as well as those in COHA, since they share the same

product structure. Thus in H∗(Gr(d, n)), Φk = φk1 ∧ . . . ∧ φkd(x1, . . . , xd) with index k =

(k1, . . . , kd) can represent the Schur polynomial sλ(k)(x1,d, . . . , xd,d), where 0 ≤ kd < . . . <

k1 ≤ n− 1 and λ = (λ1, . . . , λd) = (k1 − d+ 1, k2 − d+ 2, . . . , kd) is a d-partition.

Let λ′ be the transpose partition of λ, and k′ = k(λ′). By Lemma 5.1.9, Φk(x1, . . . , xd) =

(−1)|λ|Φk′(xd+1, . . . , xn). Φk is called the ordinary presentation of the correspondent class

sλ, and (−1)|λ|Φk′ is called the transpose presentation.

5.3.4 Decreasing operators

Our goal is to understand the decreasing representation using the basis {Φk}k of R+
n . From

Section 5.3.3, the equation (5.3.3) can be rewritten as

(φ−i · Φk)(x1, . . . , xd2−1) =
∑

i1<...<id2

Φk(xi1 , . . . , xid2 )φn−1−i(xid2 )∏n
j=d2+1(xid2 − xj)

= (−1)|λ(k)|
∑

id2+1<...<in

Φk′(xid2+1
, . . . , xin)φn−1−i(xid2 )∏n

j=d2+1(xid2 − xij)

= (−1)|λ|+n−d2(φ+
n−1−i · Φk′)(xd2 , . . . , xn).

(5.3.4)

This formula suggests an algorithm. Start from an ordinary presentation of a class Φk =

φk1 ∧ . . . ∧ φkd in H∗(Gr(d, n)), where k = (k1, . . . , kd), and 0 ≤ kd < . . . < k1 ≤ n − 1.

First we change Φk(x1, . . . , xd) to (−1)|λ(k)|Φk′(xd+1, . . . , xn) by Lemma 5.1.9. Then apply
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φ−i to Φk′ using formula (5.3.4) and Proposition 5.3.6. Finally change the result back to the

ordinary presentation.

Definition 5.3.7. The partial derivative operator ∂i :
∧∗(V (n))→

∧∗(V (n)) is defined by

∂i(Φk) =


(−1)s−1φk1 ∧ . . . ∧ φ̂i ∧ . . . ∧ φkd , if φi appears in Φk such that i = ks,

0, if φi does not appear in Φk.

(5.3.5)

We need the following lemma to help us to do these transformations.

Lemma 5.3.8. If φr appears in Φk′, φn−r−1 will not appear in Φk. On the other hand, if φr

doesn’t appear in Φk′, φn−r−1 will appear in Φk.

Proof. From Section 5.3.6, λ = (λ1, . . . , λd) is a d-partition. The transpose partition is

defined by λ′j = #{λi ≥ j} for 1 ≤ j ≤ n− d. Thus we have

λi =


n− d, if 1 ≤ i ≤ λ′n−d,

n− d− j, if λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j for 1 ≤ j ≤ n− d− 1,

0, if λ′1 + 1 ≤ i ≤ d.

(5.3.6)

From λi = ki − d+ i and λ′i = k′i − (n− d) + i, it immediately implies

ki =


n− i, if 1 ≤ i ≤ λ′n−d,

n− i− j, if λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j for 1 ≤ j ≤ n− d− 1,

d− i, if λ′1 + 1 ≤ i ≤ d.

(5.3.7)

If 1 ≤ j ≤ n− d− 1, ki = n− i− j for λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j. Thus

n− j − λ′n−d−j ≤ n− j − i = ki ≤ n− j − λ′n−d−j+1 − 1, (5.3.8)
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and we immediately have

n− k′n−d−j ≤ ki ≤ n− k′n−d−j+1 − 2, for λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j. (5.3.9)

Similarly,

n− k′n−d ≤ ki ≤ n− 1, if 1 ≤ i ≤ λ′n−d, (5.3.10)

and

0 ≤ ki ≤ n− k′1 − 2, if λ′1 + 1 ≤ i ≤ d. (5.3.11)

Therefore ki would run over all integers between 0 and n−k′1−2, or between n−k′n−d−j and

n − k′n−d−j+1 − 2, or between n − k′n−d and n − 1. In other words, the only indexes appear

in k(λ) would be in these ranges.

If φr doesn’t appear in Φk′(λ), there are three cases. Assume k′s+1 < r < k′s for 1 ≤ s ≤

n− d− 1. Then n− k′s − 1 < n− r − 1 < n− k′s+1 − 1, and it implies

n− k′s ≤ n− r − 1 ≤ n− k′s+1 − 2. (5.3.12)

Similarly, we have

0 ≤ n− r − 1 ≤ n− k′1 − 2, if k′1 < r ≤ n− 1, (5.3.13)

and

n− k′n−d ≤ n− r − 1 ≤ n− 1, if 0 ≤ r < k′n−d. (5.3.14)

In either case there exists some 1 ≤ i ≤ d such that ki = n− r − 1.

On the other hand, assume φr appear in Φk′(λ) = φk′1 ∧ . . .∧φk′n−d . Let r = k′s. Using the

range introduced above, there is always a gap between n − k′n−d−j+1 − 2 and n − k′n−d−j+1,

which is n − k′n−d−j+1 − 1. This means that n − r − 1 = n − k′s − 1 would never appear in

k(λ).
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Proposition 5.3.9. The decreasing operators are the partial derivative operators:

φ−r · Φk = ∂r(Φk). (5.3.15)

Proof. What we want is to compute φ−r · Φk. Based on formula (5.3.4), we have

(φ−r,d · Φk)(x1, . . . , xd−1) = (−1)|λ|+n−d(φ+
n−1−r,d · Φk′)(xd, . . . , xn)

= (−1)|λ|+n−d(φn−1−r,d ∧ φk′1 ∧ . . . ∧ φk′n−d)(xd, . . . , xn).

(5.3.16)

To simplify the computation, we now first compute (φr ∧ φk′1 ∧ . . . ∧ φk′n−d)(xd, . . . , xn).

By Lemma 5.3.8, if φn−1−r is not in the Φk, φr will appear in Φk′ . Thus

(φr ∧ φk′1 ∧ . . . ∧ φr ∧ . . . ∧ φk′n−d)(xd, . . . , xn) = 0. (5.3.17)

If φn−1−r appears in Φk = φk1 ∧ . . . ∧ φkd , φr won’t be in Φk′ = φk′1 ∧ . . . ∧ φk′n−d . Assume

k′s+1 < r < k′s. We have

φr ∧ φk′1 ∧ . . . ∧ φk′n−d = (−1)sφk′1 ∧ . . . ∧ φk′s ∧ φr ∧ φk′s+1
∧ . . . ∧ φk′n−d . (5.3.18)

We have to change this back to the ordinary presentation. First, let’s find the partition

associated to this polynomial. The index l′ = (l′1, . . . , l
′
n−d+1) is given by

l′i =


k′i−1, s+ 2 ≤ i ≤ n− d+ 1,

r, i = s+ 1,

k′i, 1 ≤ i ≤ s.

(5.3.19)
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Then the new partition µ′ = (µ′1, . . . , µ
′
n−d+1) is given by

µ′i =


λ′i−1, s+ 2 ≤ i ≤ n− d+ 1,

r + s− n+ d, i = s+ 1,

λ′i − 1, 1 ≤ i ≤ s.

(5.3.20)

Next step is to recover the partition µ from its transpose µ′. From the definition of

transpose partition, µ′j = #{µi ≥ j} for 1 ≤ j ≤ n− d+ 1. Then

µi =



n− d+ 1, if 1 ≤ i ≤ λ′n−d,

n− d+ 1− j, if λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j and 1 ≤ j ≤ n− d− s− 1,

s+ 1, if λ′s+1 + 1 ≤ i ≤ r + s− n+ d,

s, if r + s− n+ d+ 1 ≤ i ≤ λ′s − 1,

n− d+ 1− j, if λ′n−d+2−j ≤ i ≤ λ′n−d+1−j − 1 and n− d− s+ 2 ≤ j ≤ n− d,

0, if λ′1 ≤ i ≤ d− 1.

(5.3.21)

By comparing it with

λi =


n− d, if 1 ≤ i ≤ λ′n−d,

n− d− j, if λ′n−d−j+1 + 1 ≤ i ≤ λ′n−d−j for 1 ≤ j ≤ n− d− 1,

0, if λ′1 + 1 ≤ i ≤ d.

(5.3.22)

we notice that µi = λi+1 for 1 ≤ i ≤ r+s−n+d and µi = λi+1 for r+s−n+d+1 ≤ i ≤ d−1.

Therefore, since li = µi + (d− 1)− i for 1 ≤ i ≤ d− 1 and kj = λj + d− j for 1 ≤ j ≤ d, it is

easy to see that li = ki+1 for r+s−n+d+1 ≤ i ≤ d−1 and li = ki for 1 ≤ i ≤ r+s−n+d.
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Thus the resulted presentation is

(−1)n−d+s+|λ|+|µ|φk1 ∧ . . .∧ φ̂n−r−1∧ . . .∧φkd = (−1)r+sφk1 ∧ . . .∧ φ̂n−r−1∧ . . .∧φkd , (5.3.23)

which is Φk applied by the partial derivative of φn−r−1 from the right hand side. If r > k′1

or r < k′n−d, the similar process will lead to the same result.

Then go back to the operator φ−r,d, it is obvious that it acts on Φk by taking the partial

derivative of φr from the right hand side.

Finally, by definition φ−r =
∑n

d=0(−1)d−1φ−i,d. It can be realized as the partial derivative

operators ∂r.

5.4 The double of representations

Use the notations from the previous subsection. Let {φ+
i }n−1

i=0 be the creation operators

and {φ−i }n−1
i=0 be the annihilation operators. These two set of operators satisfy the following

relations.

Theorem 5.4.1. Operators {φ+
i }n−1

i=0 and {φ−i }n−1
i=0 satisfy the following relations:

1. φ+
i φ

+
j + φ+

j φ
+
i = 0,

2. φ−i φ
−
j + φ−j φ

−
i = 0,

3. φ+
i φ
−
j + φ−j φ

+
i = δi,j.

Proof. The proof is straightforward by applying the formula in the definitions of the operators

to the basis vectors of
∧∗(V (n)).

Definition 5.4.2. The finite Clifford algebra denoted by Cln is the C-algebra with generators

{φ+
i , φ

−
i }n−1

i=0 with a central element c modulo relations for all i, j = 0, . . . , n− 1:

φ+
i φ
−
j + φ−j φ

+
i = δijc, φ+

i φ
+
j + φ+

j φ
+
i = 0, φ−i φ

−
j + φ−j φ

−
i = 0. (5.4.1)
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From Theorem 5.4.1, it is clear that
∧∗(V (n)) carries a Cln-module structure.

Lemma 5.4.3. There is a canonical projection from
∧∗(V (n + 1)) to

∧∗(V (n)) as Clr-

modules for r = 1, . . . , n.

Proof. Recall that
∧∗(V (n)) = ⊕nd=0H

∗(Gr(d, n)) as A1-COHA modules. There is a canon-

ical morphism from Gr(d, n) to Gr(d, n + 1) by embedding into the subspace of the first d

coordinates. Then there is a canonical projection hn : H∗(Gr(d, n + 1)) → H∗(Gr(d, n)).

Furthermore, the diagram commutes:

H∗(Gr(d, n+ 1))
hn //

φ±i
��

H∗(Gr(d, n))

φ±i
��

H∗(Gr(d± 1, n+ 1))
hn

// H∗(Gr(d± 1, n))

. (5.4.2)

Thus the canonical projection h =
∑
hn is a COHA module morphism.

The lemma enables us to consider lim←−n
∧∗(V (n)) as Cln-modules. Denote by

∧
the

subspace of lim←−n
∧∗(V (n)) which consists of finite sum of wedge monomials. Recall that H

denotes the underlying vector space of A1-COHA.

Lemma 5.4.4. H is isomorphic to
∧

as vector spaces.

Proof. By Proposition 5.3.6, lim←−n
∧∗(V (n)) ' lim←−n⊕

n
d=0H

∗(Gr(d, n)) =
∐∞

d=0H
∗(Gr(d,∞)).

Thus
∧
' ⊕∞d=0H

∗(Gr(d,∞)). Then the theorem follows from the fact that the classifying

space of GL(d,C) is Gr(d,∞).

Definition 5.4.5. The half infinite Clifford algebra denoted by Cl∞
2

is the C-algebra with

generators {φ+
i , φ

−
i }i∈Z≥0

and a central element c modulo relations for all i, j ∈ Z≥0:

φ+
i φ
−
j + φ−j φ

+
i = δijc, φ+

i φ
+
j + φ+

j φ
+
i = 0, φ−i φ

−
j + φ−j φ

−
i = 0. (5.4.3)

Theorem 5.4.6. H carries a Cl∞
2

-module structure.
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Proof. By Lemma 5.4.3 and Lemma 5.4.4, H carries a Cln-module structure for any n. The

natural embedding Cln → Cln+1 makes {Cln}n∈Z≥1
a direct system. The limit is Cl∞

2
. Then

the limit induces a Cl∞
2

-module structure on H.

Remark 5.4.7. This corollary nearly shows that there is a Clifford module structure on H.

However, we still miss half of the operators since in the definition of infinite Clifford algebra,

we need operators φ+
i and φ−i for all i ∈ Z while we only construct operators φ+

i and φ−i for

i ∈ Z≥0. See Section 7.3 for more discussions.

Note that Cl∞
2

does not act on
∧∗(V (n)). The reason is that when r ≥ n, φ+

r φ
−
r +φ−r φ

+
r =

0, instead of a nontrivial c. Therefore the double of A1-COHA cannot be Cl∞
2

. A possible

solution is to add a series of central elements {ci}i∈Z≥0
, and introduce an algebra Clc∞

2

generated by {φ+
i , φ

−
i , ci}i∈Z≥0

with relations:

φ+
i φ
−
j + φ−j φ

+
i = δijci, φ+

i φ
+
j + φ+

j φ
+
i = 0, φ−i φ

−
j + φ−j φ

−
i = 0. (5.4.4)

This algebra acts on
∧∗(V (n)) by ci = 1 for i = 0, . . . , n− 1 and ci = 0 for i ≥ n. Following

[65], we have the following conjecture.

Conjecture 5.4.8. Clc∞
2

is the double of A1-COHA.
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Chapter 6

Jordan quiver case

6.1 Noncommutative Hilbert schemes

Recall the definition of noncommutative Hilbert schemes from Section 2.2.3.

Definition 6.1.1. The smooth model H(m)
d,N of Q(m) with framed structure N is called the

non-commutative Hilbert scheme.

In this section we will focus on the Jordan quiver case, which means m = 1. To proceed

we need the concept of compositions.

Definition 6.1.2. A composition of d is a sequence π = (d1, d2 . . .) with finite many nonzero

terms whose sum
∑

i d
i = d. The maximal index k such that dk 6= 0 is called the length of the

composition. An N-composition of d is a N -tuple π = (d1, . . . , dN) such that
∑N

i=1 d
i = d.

Remark 6.1.3. In the rest part of this dissertation we make a shift on the index of N -

compositions and denote it by π = (d0, d1, . . . , dN−1). This is for the convenience of some

statements.

Remark 6.1.4. In the cellular decomposition in [53], the cell of H(m)
d,N is indexed by m-ary

forests with N roots. In the case of Jordan quiver, m = 1. A 1-ary forest with N roots and

d nodes is the same thing as an N -composition of d. We are going to use the language of

N -compositions instead of forests for simplicity.

54



6.1.1 Cellular decompositions and cohomology

Reineke found a cellular decomposition of noncommutative Hilbert schemes in [53]. The

extended quiver of the Jordan quiver is pictured here.

•T 99 •∞...kk
f

ss (6.1.1)

Following [53], we can describe the moduli space of stable framed representations of

Jordan quiver with framed structure N in the following way. Let Vd be the standard d-

dimensional vector space Cd and W be the standard 1-dimensional vector space C. Denote

a stable framed representation of dimension d and framed structure N by ((Vd, T ), f) where

T : Vd → Vd is the map associated to the loop of Jordan quiver and f = (fi)
N
i=1 with

fi : W→ Vd for i = 1, . . . , N are the maps associated to the framed structure.

Fix a basis vector v ∈W. Let vi1 = fi(v) ∈ Vd for i = 0, . . . , N − 1 and vkj = T j−1vk1 for

j ∈ Z>0 and k ∈ Z≥0. Then we have a set of vectors ST,f = {vki }i,k. We call vki < vlj if either

k < l, or k = l and i < j. Then we have an order structure on ST,f .

Definition 6.1.5. For each N -composition π = (d0, d1, . . . , dN−1) of d, define Zπ as the set

of all points ((Vd, T ), f) ∈ H(1)
d,N such that Tvk

dk
is contained in the span of the vectors vlj

where vlj < vk
dk

for any k = 0, . . . , N − 1.

Theorem 6.1.6 ([53]). {Zπ} for π running over all N-compositions of d gives a cellular

decomposition of H(1)
d,N that

H(1)
d,N =

⋃
π

Zπ. (6.1.2)

Notation 6.1.7. For a stable framed representation ((Vd, T ), f) ∈ H(1)
d,N of dimension d, there

exists a unique composition π = (d0, . . . , dN−1) of d such that ((Vd, T ), f) ∈ Zπ. This

composition π is called the type of ((Vd, T ), f).
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6.1.2 Representations in matrices

A representation in Zπ where π = (d0, . . . , dN−1) can be written in terms of matrices in the

following way. Let vki = T i−1vk1 for i = 1, . . . , dk for k = 0, . . . , N−1. Since Tvk
dk

is contained

in the span of the vectors vlj where vlj < vk
dk

for any k = 0, . . . , N − 1, we have

Tvkdk =
k∑
i=0

di∑
j=1

ai,kj v
i
j, (6.1.3)

where {ai,kj } are coefficients in C.

Since the representation is stable, all these vectors {vki }
k=0,...,N−1
i=1,...,dk

can generate the whole

space Vd. Thus {vki }
k=0,...,N−1
i=1,...,dk

form a basis of Vd. Under this basis, the action T can be

written as a matrix. In the case of N = 1, the only parition is π = (d), and the matrix is



0 . . . 0 a0,0
1

1 . . . 0 a0,0
2

...
. . .

...
...

0 . . . 1 a0,0
d


. (6.1.4)

In the case of N > 1, the matrix is block diagonalized and the diagonal blocks should be

the same as the matrix (6.1.4). The following is an example for N = 2.



0 . . . 0 a0,0
1 0 . . . 0 a0,1

1

1 . . . 0 a0,0
2 0 . . . 0 a0,1

2

...
. . .

...
...

... . . .
...

...

0 . . . 1 a0,0
d0 0 . . . 0 a0,1

d0

0 . . . 0 a1,1
1

1 . . . 0 a1,1
2

...
. . .

...
...

0 . . . 1 a1,1
d1



. (6.1.5)
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6.2 Correspondences

The construction in Section 4.1.2 is applied to the Jordan quiver case in this section. Recall

from Corollary 2.1.22 that if there is only one vertex, all stability conditions are equiva-

lent to the trivial stability 0. Denote by H1,d,N the set of (λ, ((Vd+1, Td+1), fd+1)) where

((Vd+1, Td+1), fd+1) ∈ H(1)
d+1,N is a stable framed representations in the standard coordinate

space Vd+1 ' Cd+1 of dimension d+ 1 such that the first coordinate subspace V1 ⊂ Vd+1 of

dimension 1 is invariant under the action of Td+1 by λ : v 7→ λv for some λ ∈ C. Note that

H1,d,N is the same as M st
1,d,N introduced in Section 4.1.2. By Proposition 4.1.6, [H1,d,N/P1,d]

can be represented by a scheme. Denote it by H1,d,N .

The following theorem is the rephrase of Theorem 4.1.5.

Proposition 6.2.1. The quotient framed representation ((Vd+1/V1, Td+1), fd+1) is stable.

Before looking into the general case, we consider N = 1 case first to get some basic

knowledge of the correspondences.

6.2.1 Extensions in N = 1 case

If N = 1, H(1)
d,1 ' Cd by Theorem 6.1.6. By the celluar decomposition introduced in Section

6.1.1, for a point ((Vd, Td), fd) ∈ H(1)
d,1 , Td could be written in the form



0 . . . 0 a0

1 . . . 0 a1

...
. . .

...
...

0 . . . 1 ad−1


. (6.2.1)

Proposition 6.2.2. There is a 1-1 bijection of sets between the set of monic polynomials of

degree d and H
(1)
d,1 .

Proof. The character polynomial of the matrix (6.2.1) is

xd − ad−1x
d−1 − ad−2x

d−2 − . . .− a1x− a0. (6.2.2)
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Since ((Vd, Td), fd) has a cyclic vector, the character polynomial is minimal. Then the

character polynomial can determine ((Vd, Td), fd) uniquely.

Proposition 6.2.3. H1,d,1 = [H1,d,1/P1,d] is the set of pairs (λ,mpd+1) where mpd+1 is a

monic polynomials of degree d+ 1 and (x− λ) is a factor of mpd+1.

Proof. For (λ, ((Vd+1, Td+1), fd+1)) ∈ H1,d,1, the quotient framed representation is stable.

Assume the character polynomial of the quotient representation is as (6.2.2). Then the

character polynomial of ((Vd+1, Td+1), fd+1) should be

(x− λ)(xd − ad−1x
d−1 − ad−2x

d−2 − . . .− a1x− a0). (6.2.3)

Since in Vd+1 there exists a cyclic vector, the character polynomial is minimal. Then the

extension is unique.

The proposition suggests the following description of H1,d,1 = [H1,d,1/P1,d]. Recall the

correspondence diagram (4.1.14) in N = 1 case is as follows.

[M1/G1]×H(1)
d,1

p1×p2←−−− H1,d,1
p−→ H(1)

d+1,1. (6.2.4)

It follows from Proposition 6.2.3 immediately that the maps in diagram (6.2.4) are de-

scribed by

p :(λ,mpd+1) 7→ mpd+1,

p1 :(λ,mpd+1) 7→ λ,

p2 :(λ,mpd+1) 7→ mpd+1/(x− λ).

(6.2.5)

It shows that the map M1×H(1)
d,1 ← H1,d,1 is an isomorphism, and the fiber of p is generically

d+ 1 isolated points since generically there are d+ 1 different factors of a d+ 1-degree monic

polynomial.
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6.2.2 Relations with Hilbert schemes

To compute the pushforward of the Chow ring/cohomolgy/Borel-Moore homolgy, we need

some results from Hilbert schemes. We start from the following observation.

Proposition 6.2.4. H(1)
d,1 is the Hilbert scheme of points on X = A1.

Proof. By Theorem D.2.6 the Hilbert scheme of points on A1 has a description that is exact

the same as the definition of H(1)
d,1.

Then we apply the Hilbert-Chow morphisms and the related stratification. For the fiber

of p, let us pick a composition ν = (ν1, ν2, . . .) of d + 1. Composing with the Hilbert-

Chow morphism ρ, p ◦ ρ maps H1,d,1 to Symd+1 C. Since the extension is determined by the

characteristic polynomial, the fiber of points in Sd+1
ν C is l(ν) isolated points. We have

A∗(H(1)
d+1,1) = A∗(Cd+1) = Q[Cd+1]. (6.2.6)

Thus p∗ restricted on ∪l(ν)<d+1S
d+1
ν C would not contribute in the pushforward A∗(H1,d,1)→

A∗(H(1)
d+1,1). The same argument applies to (p1 × p2)∗.

6.2.3 Extensions in general case

The goal of this section is to study diagram (4.1.14) in details.

[M1/G1]×H(1)
d,N

p1×p2←−−− H1,d,N
p−→ H(1)

d+1,N . (6.2.7)

Pick a stable framed representation ((Vd, Td), fd) ∈ H(1)
d,N and a representation λ ∈ M1

by λ : v 7→ λv. Then we can construct an extension (λ, ((Vd+1, Td+1), fd+1)) ∈ H1,d,N

who has a subrepresentation on V1 ⊂ Vd+1 is λ and the associated quotient representation

((Vd+1/V1, Td+1), fd+1) ' ((Vd, Td), fd).

Without loss of generosity, we assume the type of ((Vd, Td), fd) is π = (d0, . . . , dN−1). Let

vk1 be the image in Vd of the k-th arrow. Using the method from Section 6.1.1, we get a base
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of Vd by generating under the action of Td. Denote it by {vki }
k=0,...,N−1
i=1,...,dk

⊂ Vd. Assume

Tdv
k
i = vki+1, for i = 1, . . . , dk − 1, (6.2.8)

Tdv
k
dk =

k∑
j=1

dk∑
i=1

aj,ki v
j
i , (6.2.9)

for k = 0, . . . , N − 1 and some coefficients {aj,ki } ∈ C.

Take an identification of Vd+1/V1 ' Vd ⊂ Vd+1 as vector spaces. Then all these vectors

{vki }
k=0,...,N−1
i=1,...,dk

can also be treated as vectors in Vd+1. Use the same method to get the set

{v̂ki } of vectors generated by {v̂k1}k=0,...,N−1 under Td+1 who are the images of the arrows in

Vd+1. Choose a basis vector of V1 ⊂ Vd+1 and denote it by v0.

Since Td+1 = Td, for k = 0, . . . , N − 1, we have

v̂k1 = vk1 + bk0v0, , (6.2.10)

Td+1v
k
i = vki+1 + bki v0, for i = 1, . . . , dk − 1, (6.2.11)

Td+1v
k
dk =

k∑
j=1

dk∑
i=1

aj,ki v
j
i + bkdkv0, (6.2.12)

for some coefficients {bki } ∈ C.

We can then write down the matrix of Td+1 under the base of Vd and v0. The following
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is an example in N = 2 case:



λ b0
1 . . . b0

d0−1 b0
d0 b1

1 . . . b1
d1−1 b1

d1

0 0 . . . 0 a0,0
1 0 . . . 0 a0,1

1

0 1 . . . 0 a0,0
2 0 . . . 0 a0,1

2

...
...

. . .
...

...
... . . .

...
...

0 0 . . . 1 a0,0
d0 0 . . . 0 a0,1

d0

0 . . . 0 a1,1
1

1 . . . 0 a1,1
2

...
. . .

...
...

0 . . . 1 a1,1
d1



. (6.2.13)

Denote by H1,π ⊂ H1,d,N the set of all pairs whose quotient representation is of type

π = (d0, . . . , dN−1). Recall P1,d denote the subgroup of GL(d+ 1) which keeps V1 invariant.

H1,π carries a P1,d-action automatically since the gauge group action comes from basis change

and it does not change the type of a stable framed representation. The action is free. Then

the quotient is a scheme. We denote it by Z1,π.

Proposition 6.2.5. H1,d,N can be decomposed into the union of Z1,π, for π running through

all N-compositions of d.

To find the canonical form of the matrix under the automorphism group P1,d is the same

thing as to find a good basis for the matrix the first basis vector of which has to be the basis

of W. Let v̂0 = µv0. Since v̂0 should be a basis vector of V1, µ ∈ C∗.

Lemma 6.2.6. If a 1-dimensional representation λ on V1 and a d-dimensional stable framed

representation ((Vd, Td), fd) of type π = (d0, . . . , dN−1) are fixed, the extension can be de-

scribed by [h0, . . . , hN−1] ∈ CPN−1.

Proof. Set v̂ki = T i−1
d+1v̂

k
1 . By induction, we have

v̂ki = vki + bki−1(λ)v̂0/µ, (6.2.14)
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where bki (λ) = bki + bki−1λ+ . . .+ bk0λ
i. Then

Td+1v̂
k
dk =

k∑
j=1

dk∑
i=1

aj,ki v
j
i + bkdk v̂0/µ+ bkdk−1(λ)λv̂0/µ

=
k∑
j=1

dk∑
i=1

aj,ki v̂
j
i + bkdk(λ)v̂0/µ−

k∑
j=1

dk∑
i=1

aj,ki b
j
i−1(λ)v̂0/µ

=
k∑
j=1

dk∑
i=1

aj,ki v̂
j
i + hkv̂0/µ,

(6.2.15)

where hk = bk
dk

(λ) −
∑k

j=1

∑dk

i=1 a
j,k
i b

j
i−1(λ) is a number algebraically depending on aj,ki , bki

and λ, and is not affected by µ. Then the extension can be described by (h0, . . . , hN−1) ∈

CN . There is a C∗ action on it induced from the group action on M1. It is defined by

C∗ 3 µ · (h1, . . . , hN) = (h1/µ, . . . , hN/µ).

The next proposition follows immediately from Lemma 6.2.6.

Proposition 6.2.7. Z1,π → M1 × Zπ is the projective bundle of the trivial vector bundle

M1 × Zπ × CN , i.e., Z1,π 'M1 × Zπ × CPN−1.

Corollary 6.2.8. Z1,π has a cellular decomposition
∐N−1

k=0 M1 × Zπ × Xk, where Xk is the

N − k − 1-dimensional cell of CPN−1.

Proof. By Lemma 6.2.6, the fiber at point λ × ((Vd, Td), fd) can be described by a point

[h0, . . . , hN−1] ∈ CPN−1. Let Xk = {[h0, . . . , hN−1], h0 = . . . = hk−1 = 0, hk 6= 0}. Then

Xk ' AN−k−1 and
∐N−1

k=0 Xk gives a cellular decomposition of CPN−1.

Notation 6.2.9. Denote the cell M1 × Zπ ×Xk by Fπ,k. Denote the restriction of p1 and p2

to Z1,π by p1,π and p2,π.

Corollary 6.2.10. Consider the case when the subrepresentation is of dimension 2 (d1 = 2).

The fiber of Z2,π →M2 × Zπ is generically CPN−1 × CPN−1.

Proof. Using notations introduced in the case of d1 = 1. In the case of arbitrary d1, in the

k-th block, we can apply Td+1 to v̂k1 . The sequence v̂k1 , . . . , v̂
k
dk

are linear independent and the
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subspace spanned by these vectors intersects with Vd1 only at {0}. However, Td+1v̂
k
dk

would

have a component in Vd1 and the component is denoted by uk. The extension is stable if and

only if {uk}N−1
k=0 can generate Vd1 under the action of T . Note that in d1 = 1 case, choosing

a basis v̂0 in V1, uk = hkv̂0 for some coefficient hk and hk is computed in Lemma 6.2.6.

In d1 = 2 case, generically Td+1 restricting on V2 has a weight decomposition V2 =

Cw1⊕Cw2, where Td+1wi = αiwi gives the weight vector. Then we can choose w1 and w2 as

basis of V2, and denote uk = h1
kw1 + h2

kw2. Then an extension can be denoted by a pair of

N -tuples ({h1
k}N−1

k=0 , {h2
k}N−1

k=0 ). It is stable if and only if both N -tuples {h1
k}N−1

k=0 and {h2
k}N−1

k=0

are non-zero. Similar to d1 = 1 case, rescaling w1 (resp. w2) is the same as rescaling {h1
k}N−1

k=0

(resp. {h2
k}N−1

k=0 ). This shows that the equivalent classes of {hik}N−1
k=0 form CPN−1 for both

i = 1 and 2.

Remark 6.2.11. Here we didn’t consider the non-generic case. However, those parts form a

subscheme of M2 with lower dimension. Since A∗(M2) contains only dimension 2 cycles, the

non-generic parts won’t contribute to the pushforward.

Now we want to consider the map Z1,π → H
(1)
d+1,N . Let ek := (0, . . . , 0, 1, 0, . . . , 0) denote

the composition of 1 whose only nontrivial component is the k-th entry for k = 0, . . . , N −1.

The set of all N -compositions carries a natural semigroup structure. It is obvious that the

image of p : Z1,π → H
(1)
d+1,N has to be contained in

∐N−1
i=0 Zπ+ei

Lemma 6.2.12. The representation in the cell Fπ,k is mapped into Zπ+ek .

Proof. Let (λ, ((Vd+1, Td+1), fd+1) be a representation in Z1,π indexed by [h1, . . . , hN ]). As-

sume that it is in the cell M1 × Zπ × Xk. Then h0 = . . . = hk−1 = 0 and hk 6= 0. Then

Td+1v̂
k
dk

is not in the span of {v̂1
1, . . . , v̂

k
dk
}. In addition, if we set v̂k

dk+1
:= T̂ v̂k

dk
, we have

T̂ v̂k
dk+1

is in the span of {v̂1
1, . . . , v̂

k
dk+1
}. Therefore it is a representation of type π + ek.

Notation 6.2.13. Denote the restriction of p to Fπ,k by pπ,k.

Lemma 6.2.14. pπ,k(p
−1
1,π(M1) ∩ p−1

2,π(Zπ) ∩ (Fπ,k)) = Zπ+ek .

Proof. By Corollary 6.2.8, p−1
1,π(M1)∩p−1

2,π(Zπ) ⊂
∐N−1

k=0 Fπ,k. Then this corollary follows from

Lemma 6.2.12.
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Proposition 6.2.15. The fiber of Fπ,k → Zπ+ek is generically the set of dk + 1 isolated

points.

Proof. Choose the first k where hk 6= 0. Choose an appropriate v0 to change hk to be 1.

Now let v̂k
dk+1

= Td+1v̂
k
dk

. Use v̂k1 , . . . , v̂
k
dk+1

as a basis. Once λ and ak,ki are determined, ak,li

are determined for any l > k. Thus the fiber is determined by the k-th block. Using the

result from N = 1 case, the fiber is dk + 1 isolated points generically.

Remark 6.2.16. It is similar to Section 6.2.2 that it is only necessary to consider the open

dense subset consisting of representations with different eigenvalues in the block considered

when computing the pushforward p∗ and (p1 × p2)∗. The complement don’t contribute.

The above propositions can be summarised into the following theorem.

Theorem 6.2.17. The diagram

[M1/G1]×H(1)
d,N

p1×p2←−−− H1,d,N
p−→ H(1)

d+1,N . (6.2.7)

can be decomposed into the following pieces

M1 × Zπ
p1,π×p2,π←−−−−− Z1,π =

N−1∐
k=0

Fπ,k (6.2.16)

and

Fπ,k
pπ,k−−→ Zπ+ek (6.2.17)

where π runs through all N-compositions of d and k = 0, . . . , N − 1. Here, (6.2.16) is the

projective bundle of the rank N trivial vector bundle over M1 ×Zπ, and the fiber of (6.2.17)

is is generically dk + 1 isolated points.
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6.3 The construction of increasing operators

Now we are going to compute the cohomology of each piece of

[M1/G1]×H(1)
d,N

p1×p2←−−− H1,d,N
p−→ H(1)

d+1,N . (6.2.7)

6.3.1 The cohomology of [M1/G1]

By Example 2.1.9, the stack of [M1/G1] is defined by a trivial G1 = C∗-action on M1 = C.

The cohomology of [M1/G1] is the equivariant cohomology H∗G1
(M1). Since the action is

trivial,

H∗([M1/G1]) ' H∗G1
(M1) ' H∗(EG1 ×G1 M1) ' H∗(BG1)⊗H∗(M1). (6.3.1)

Let x denote the generator of H∗(BG1) and [M1] the fundamental class of M1. Then the

generator of the cohomology (6.3.1) is x ⊗ [M1]. Since H∗(M1) ' Q[M1], we also denoted

x⊗ [M1] by x for simplicity.

H∗([M1/G1]) can be considered as H1 of the Jordan-COHA. Using notations introduced

in Section 3.3, φk = xk for k = 0, 1, 2, . . .. The degree of φk is 2k.

6.3.2 The cohomology of H(1)
d,N and H(1)

d+1,N

The cellular decomposition of H(1)
d,N and H(1)

d+1,N are stated in Theorem 6.1.6. By Theorem

A.1.10 we have the following theorem.

Theorem 6.3.1 ([53]). The Borel-Moore homology HBM
∗ (H(1)

d,N) is a Q-vector space with a

basis given by the classes of the closures Zπ for π running through N-compositions of d.

Let π = (d0, . . . , dN−1). Denote [Zπ] ∈ HBM
∗ (H(1)

d,N) by
φd

0

0 φd
1

1 ·...·φd
N−1

N−1

d0!d1!...dN−1!
.

Proposition 6.3.2. HBM
∗ (H(1)

d,N) ' Q[φ0, . . . , φN−1]d as vector spaces.
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6.3.3 The cohomology of H1,d,N

By Proposition 6.2.5, HBM
∗ (H1,d,N) is determined by classes [Z1,π]. By Corollary 6.2.8

and Theorem A.1.10, HBM
∗ (Z1,π) is generated by classes {[Fπ,k]}N−1

k=0 . On the other hand,

by Proposition 6.2.7 and the Projective Bundle Theorem (Corollary 5.1.12), H∗(Z1,π) '

Q[ξπ]/(ξNπ ), where ξπ is the first Chern class of the tautological line bundle on Z1,π '

M1 × Zπ × CPN−1. The two presentations are connected by the Poincaré duality (see e.g.

Theorem A.2.3): [Fπ,k] = ξkπ ∩ [Z1,π].

6.3.4 The construction of increasing operators

Recall from Section 4.1.2, the increasing operator is defined by

φ+
i (f) := p∗(p

∗
1(φi) ∪ p∗2(f)) (6.3.2)

for f ∈ H∗(H(1)
d,N).

Lemma 6.3.3. p∗1,π(xk) = ξkπ.

Proof. C∗ ⊂ P1,d acts on H1,π. The action is induced from the C∗-action on M1. Since C∗

acts on M1 trivially, and Z1,π = M1 × Zπ × CPN−1, the result follows immediately from

Proposition C.3.8.

Lemma 6.3.4. φ+
k ([Zπ]) = (dk + 1)[Zπ+ek ].

Proof. It follows from the description of the correspondence in Theorem 6.2.17:

φ+
k ([Zπ]) = p∗(p

∗
1,π(φk) ∩ p∗2,π([Zπ])) = p∗(p

∗
1,π(φk) ∩ [p−1

2,π(Zπ)] ∩ [Z1,π])

= p∗(ξ
k
π ∩ [Z1,π]) = p∗([Fπ,k]) = (dk + 1)[Zπ+ek ].

(6.3.3)

Proposition 6.3.5. φ+
k (φd

0

0 · . . . · φd
k

k · . . . · φd
N−1

N−1 ) = φd
0

0 · . . . · φd
k+1
k · . . . · φdN−1

N−1 .

Proof. It is a translation of Lemma 6.3.4 to the notation introduced in Section 6.3.2.
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Theorem 6.3.6. ⊕dH∗(H(1)
d,N) ' Q[φ0, φ1, . . . , φN−1] as a Jordan-COHA left module.

Proof. It follows immediately from Proposition 6.3.2 and Proposition 6.3.5.

6.4 The construction of decreasing operators

The construction from Section 4.3 is applied here. First, we need to check Condition A. For

the same reason as Remark D.2.5, Section 6.2.2 and Remark 6.2.16, we can only focus on

the part where all points are distinct.

Proposition 6.4.1. In Jordan-quiver case, Condition A holds.

Proof. The base has a cell decomposition. On each piece the projection is a fibre bundle

with the fibre CPN−1 due to Proposition 6.2.7. Therefore if you put all pieces together you

would get a fibre bundle with fibres CPN−1.

Recall that diagram (4.1.14) can be decomposed into pieces

M1 × Zπ
p1,π×p2,π←−−−−− Z1,π =

N−1∐
k=0

Fπ,k (6.2.16)

and

Fπ,k
pπ,k−−→ Zπ+ek . (6.2.17)

Lemma 6.4.2. Let τ be a composition of d+ 1. Then p∗([Zτ ]) =
∑N−1

k=0 [Fτ−ek,k].

Lemma 6.4.3. φDi = φN−1−i.

Proof. It follows from the fact that the fibre is CPN−1 and Proposition 5.1.13 (Duality

theorem).

Corollary 6.4.4. In Jordan-quiver case, Condition B holds.

Proof. We need to study extension by 2-dimensional subrepresentations, following Corollary

6.2.10. The fibre is generically CPN−1 × CPN−1. The it carries a cellular decomposition
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based on the cellular decomposition of CPN−1. Let Xk denote the cell whose codimension

is k. Then the cell of CPN−1 × CPN−1 is of the form Xk × Xl for 0 ≤ k, l ≤ N − 1. The

pairing is

〈[Xi]× [Xj], [Xk]× [Xl]〉 = 〈[Xi], [Xk]〉〈[Xj], [Xl]〉 = δi+k=N−1δj+l=N−1. (6.4.1)

Let ξ1 (resp. ξ2) be the first Chern class of the tautological bundle with respect to the first

copy (resp. the second copy) of CPN−1 of the fibre. By Poincaré duality, ξi1ξ
j
2 ∩ [CPN−1 ×

CPN−1] = [Xi]× [Xj]. Then we have

〈ξi1ξ
j
2, ξ

k
1ξ

l
2〉 = δi+k=N−1δj+l=N−1. (6.4.2)

Thus D(ξi1ξ
j
2) = ξN−i−1

1 ξN−j−1
2 .

Similarly to dimW = 1 case, the COHA generators from H∗([M2/G2]) can be pullbacked

to the Chern class of the line bundle on the fibres. In H∗([M2/G2]) the class φiφj represents

the class

φi · φj(x1, x2) = xi1x
j
2 + xj1x

i
2. (6.4.3)

It would be pullbacked to ξi1ξ
j
2 + ξj1ξ

i
2. Then

D(p∗1(φi · φj)) = D(ξi1ξ
j
2 + ξi2ξ

j
1) = ξN−i−1

1 ξN−j−1
2 + ξN−j−1

1 ξN−i−1
2

= p∗1(φN−i−1 · φN−j−1) = p∗1(φDi · φDj ).

(6.4.4)

Here all the product ξi1ξ
j
2 is the cup product. Then (φi · φj)D = φDi · φDj .

Lemma 6.4.5. φ−k ([Zτ ]) = [Zτ−ek ].

Proof. Take a generator xk = φk ∈ H∗(M1/G1). Recall that x can be represented by the

first Chern class of tautological line bundle L over the classifying space BG1. We can

construct a line bundle Lk on BG1 whose first Chern class is xk = φk. Then we have

p∗1,π(xk) = p∗1,π(c1(Lk)) = c1(p∗1,π(Lk)).
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Recall that Z1,π is generically a fibre bundle whose fibre is CPN−1, and the fibre can be

realized as CN\{0} quotient by G1 = C∗. Thus Z1,π is generically isomorphic to M1 × Zπ ×

(CN\{0})/G1. By the Projection bundle theorem (Corollary 5.1.12), H∗(Z1,π) is generated

by 1, ξ, . . . , ξN−1 as H∗(M1×Zπ)-modules, where ξ is the first Chern class of the tautological

line bundle on the fibres. Furthermore, this suggests that p∗1,π(Lk) = M1×Zπ×(CN\{0})×G1

Lk. Thus p∗1,π(xk) = ξk. Since the fibre is a projective space, Dξk = ξN−1−k.

Now consider the pushforward. Since Z1,π is a fibre bundle over M1×Zπ, the pushforward

(p1 × p2)∗ is integration over fibres, and only the top classes can be mapped to non-trivial

classes. Thus, we have

(p1 × p2)∗(ξ
N−1−k ∪ [Fπ,j]) = δk,j[M1 × Zπ]. (6.4.5)

It implies that

(π∗2)−1(p1 × p2)∗(Dξ
k ∪

N−1∑
j=0

[Fτ−ej ,j]) = (π∗2)−1[M1 × Zτ−ek ] = [Zτ−ek ]. (6.4.6)

Proposition 6.4.6. φ−k (f) = ∂k(f) for f ∈ H∗(H(1)
d,N).

Proof. The formula follow from Lemma 6.4.5 and Proposition 6.4.6, and then translate it to

the notations introduced in Section 6.3.2. We have

φ−k (φd
0

0 · . . . · φd
k

k · . . . · φd
N−1

N−1 ) =
1

dk
φd

0

0 · . . . · φd
k−1
k · . . . · φdN−1

N−1 . (6.4.7)
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6.5 The combination of the increasing and decreasing

operators

Finally, we come to the main result of this chapter. This section is parallel to Section 5.4.

Definition 6.5.1. The finite Heisenberg algebra Heisn is an associative unital algebra over

C generated by {x+
i , x

−
i }n−1

i=0 with a central element c modulo relations

x+
i x

+
j = x+

j x
+
i , x−i x

−
j = x−j x

−
i , x−i x

+
j − x+

j x
−
i = δi,jc. (6.5.1)

Definition 6.5.2. The infinite Heisenberg algebra Heis is an associative unital algebra over

C generated by {x+
i , x

−
i }i∈Z≥0

with a central element c modulo relations

x+
i x

+
j = x+

j x
+
i , x−i x

−
j = x−j x

−
i , x−i x

+
j − x+

j x
−
i = δi,jc. (6.5.2)

Theorem 6.5.3. The two set of operators of the Jordan-COHA defines a representation of

HeisN on ⊕d≥0H
∗(H(1)

d,N) ' Q[φ0, . . . , φN−1].

Proof. It follows immediately from Proposition 6.3.5 and Proposition 6.4.6.

Notation 6.5.4. Let HN := ⊕d≥0H
∗(H(1)

d,N).

Lemma 6.5.5. There is a canonical projection from HN+1 to HN .

Proof. Let ((Vd, T ), f) ∈ H(1)
d,N . Let the type of it be π = (d0, . . . , dN−1). We can add one

more framed arrow by setting f̃ = (fi)
N
i=0 where f̃i = fi for i = 0, . . . , N − 1 and f̃N = 0.

Then we get a new representation ((Vd, T ), f̃). It is obvious that ((Vd, T ), f̃) ∈ H
(1)
d,N+1

and the type of it is π̃ = (d0, . . . , dN−1, 0). This map induces an embedding H(1)
d,N ↪→

H(1)
d,N , and the embedding induces a projection H∗(H(1)

d,N+1) → H∗(H(1)
d,N). The projection is

Q[φ0, . . . , φN ]d → Q[φ0, . . . , φN−1]d via φi 7→ φi for i = 0, . . . , N − 1 and φN 7→ 0. Then after

taking direct sum over d, we have HN+1 → HN .
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The lemma enables us to consider the lim←−N HN . Denote by H the subspace of the limit

which consists of finite sum. By the same construction as Section 5.4, we have the following

theorem.

Theorem 6.5.6. H is isomorphic to H as vector spaces. Thus H carries a Heis-module

structure.

Proof. The proof is parallel to the proof of Theorem 5.4.6.

Similar to the A1-case, we can define the modified infinite Heisenberg algebra Heisc by

generators {x+
i , x

−
i }i∈Z≥0

and a series of central elements {ci}i∈Z≥0
modulo relations

x+
i x

+
j = x+

j x
+
i , x−i x

−
j = x−j x

−
i , x−i x

+
j − x+

j x
−
i = δi,jci. (6.5.3)

Conjecture 6.5.7. Heisc is the double of the Jordan-COHA

See [65] for more discussions.
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Chapter 7

Application and future discussion

In this chapter, we first review the simplest version of the classic Boson-Fermion correspon-

dence. Then we states the main theorem of this dissertation which is a similar relation

between our constructions of A1-quiver and Jordan quiver. Finally we give a conjectures

regarding these relations which shows some future directions of this topic.

7.1 Boson-Fermion correspondence: classic version

The origin of the Boson-Fermion correspondence can be traced back to the Jacobi triple

product identiy ∑
n∈Z

tnq
n2

2 =
∏
n≥1

(1− qn)(1 + tqn−
1
2 )(1 + t−1qn−

1
2 ), (7.1.1)

which one should consider as an equality of two generating functions

∑
n∈Z,m∈Z≥0

bn,mt
nq

m
2 =

∑
n∈Z,m∈Z≥0

fn,mt
nq

m
2 (7.1.2)

with nonnegative integral coefficients. The boson-fermion correspondence can be viewed as

a cateogrification of this identity. It is an isomorphism of two double graded vector spaces,

bosonic Fock space and fermionic Fock space. For classical references on this topic, see [34].

See also [19, 61].
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7.1.1 Fermionic Fock spaces

Definition 7.1.1. An infinite expression of the form

i0 ∧ i1 ∧ . . .

is called semi-infinite monomial if i0, i1, . . . are integers and

i0 > i1 > . . . , in = in−1 − 1 for n� 0. (7.1.3)

Let F be the complex vector space with a basis consisting of all semi-infinite monomials.

This F is called the full fermionic Fock space.

Define the charge decomposition

F =
⊕
m∈Z

F (m) (7.1.4)

by letting

|m〉 = m ∧m− 1 ∧m− 2 ∧ . . . (7.1.5)

denote the vacuum vector of charge m and F (m) denote the linear span of all semi-infinite

monomials of charge m. It is not hard to see that, for a monomial i0 ∧ i1 ∧ . . . ∈ F (m),

ik = m− k for k � 0.

For j ∈ Z define the wedging and contracting operators ψj and ψ∗j on F by:

ψj(i0 ∧ i1 ∧ . . .) =


0, if j = is for some s,

(−1)s+1i0 ∧ . . . ∧ is ∧ j ∧ is+1 ∧ . . . , if is > j > is+1.

(7.1.6)

ψ∗j (i0 ∧ i1 ∧ . . .) =


0, if j 6= is for all s,

(−1)si0 ∧ i1 ∧ . . . ∧ is ∧ is+1 ∧ . . . , if j = is.

(7.1.7)
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Note that

ψj(F
(m)) ⊂ F (m+1), ψ∗j (F

(m)) ⊂ F (m−1). (7.1.8)

These operators ψj and ψ∗j are called free fermions. They satisfy the following relations:

ψiψ
∗
j + ψ∗jψi = δij, ψiψj + ψjψi = 0, ψ∗iψ

∗
j + ψ∗jψ

∗
i = 0. (7.1.9)

Definition 7.1.2. The infinite Clifford algebra denoted by Cl∞ is the C-algebra with basis

{ψi, ψ∗i }i∈Z and relations for all i, j ∈ Z.

ψiψ
∗
j + ψ∗jψi = δij, ψiψj + ψjψi = 0, ψ∗iψ

∗
j + ψ∗jψ

∗
i = 0. (7.1.10)

Therefore the operators ψj and ψ∗j generate the infinite Clifford algebra Cl∞. It is obvious

that F is a Cl∞-module.

7.1.2 Bosonic Fock spaces

Definition 7.1.3. Define the full bosonic Fock space to be the polynomial algebra on inde-

terminates p1, p2, . . . and q, q−1.

B = C[p1, p2, . . . ; q, q
−1]. (7.1.11)

The full bosonic Fock space carries a natural representation of the oscillator algebra by

the following formula

rB(sm) = m
∂

∂pm
, rB(s−m) = pm for m > 0,

rB(s0) = q
∂

∂q
, rB(K) = 1.

B has a charge decomposition

B =
⊕
m∈Z

B(m), (7.1.12)
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where B(m) := qmC[p1, p2, . . .].

7.1.3 Boson-Fermion correspondence

Theorem 7.1.4 ([34]). There is an isomorphism of vector spaces σ : F → B. Furthermore,

the isomorphism induces isomorphisms on each charge subspaces: σm : F (m) → B(m) for all

m ∈ Z.

7.2 Boson-Fermion correspondence: COHA version

Theorem 7.2.1. There is an isomorphism of vector spaces σ :
∧
→ H.

Proof. By Theorem 5.4.6, the underlying vector space H of A1-COHA carries a Cl∞
2

-module

structure. By Theorem 6.5.6, the underlying vector spaceH of Jordan-COHA carries a Heis-

module structure. However, by Section 3.1.1 both A1-COHA and Jordan-COHA share the

same underlying vector spaces, which is ⊕dH∗Gd(Md) ' ⊕dH∗Gd(pt). Then we can immedi-

ately get a correspondence between these two representations.

7.3 Generalization

The A1-COHA is related to the infinite Clifford algebra since it contains free fermions with

positive energies. The Jordan-COHA is related to the infinite Heisenberg algebra, and thus it

is related to the oscillator algebras. Therefore, there should be a relation between the COHA

version Boson-Fermion correspondence (Theorem 7.2.1) and the classic Boson-Fermion cor-

respondence (Theorem 7.1.4).

Conjecture 7.3.1. There is a construction to double the double of A1-COHA and realize it

as the infinite Clifford algebra Cl∞.

In other words, we want to construct the Fermion Fock space geometrically. There

are some other work in this direction. See e.g. [19, 61]. We would like to find a COHA

construction.
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Appendix A

Review of Intersection Theory

A.1 Chow ring

A.1.1 Definitions

Definition A.1.1. Let X be an algebraic scheme. A k-cycle on X is a finite formal sum∑
ni[Vi] where Vi are k-dimensional subvarieties of X and ni are integers. The group

of k-cycles modulo rational equivalence is denoted by Ak(X). The direct sum A∗(X) =

⊕k∈Z≥0
Ak(X) is called the Chow group.

Definition A.1.2. Let X be an n-dimensional non-singular variety. Set Ap(X) := An−p(X),

and A∗(X) = ⊕kAk(X). There is a ring structure on A∗(X) which represents the intersection

of two cycles. The group with the ring structure is called the Chow ring.

Remark A.1.3. See [20] for more details about the definitions of the product.

A.1.2 Functorial properties

Definition A.1.4. Let f : X → Y be a proper morphism of varieties. Let V be a subvariety

of X of dimension k. Set W = f(V ). The rational functions over V (resp. W) is denoted

by R(V ) (resp. R(W )). f induce an embedding of R(W ) into R(V ) and we can compute
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[R(V ) : R(W )] if W has the same dimension as V . Define

f∗[V ] =


[R(V ) : R(W )][W ], if dim(W ) = dim(V ),

0, if dim(W ) < dim(V ).

(A.1.1)

Proposition A.1.5 (See e.g.[20]). The push-forward map f∗ is a morphism of abelian groups

AkX → AkY . It makes A∗ a covariant functor for proper morphisms.

Definition A.1.6. Let f : X → Y be a flat morphism of varieties. Let V be a k-dimensional

subvariety of X. Define the map by

f ∗[V ] = [f−1(V )]. (A.1.2)

Proposition A.1.7 (See e.g.[20]). The pull-back map f ∗ is a morphism of abelian groups

AkY → Ak+nX where n = dim(Y ) − dim(X). It makes A∗ a contravariant functor for flat

morphisms.

Proposition A.1.8 ([20]). Let

X ′
g′ //

f ′

��

X

f
��

Y ′ g
// Y

(A.1.3)

be a fibre square, with g flat and f proper. Then g′ is flat, f ′ is proper, and f ′∗g
′∗ = g∗f∗.

A.1.3 Cellular decomposition

Definition A.1.9. X is a scheme with a cellular decomposition if X has a filtration X =

Xn ⊃ Xn−1 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅ by closed subschemes, with each Xi − Xi−1 a disjoint

union of schemes Uij isomorphic to affine spaces Anij .

Theorem A.1.10 ([20]). Let X be a scheme with a cellular decomposition with notations

described above. Then A∗(X) is Q-span of {[Ui,j]}.
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A.2 Borel-Moore homology

Let X be a complex scheme.

Definition A.2.1. Let X be an arbitrary compactification of X such that (X,X\X) is a

CW -pair. The Borel-Moore homology is defined as HBM
∗ (X) := H∗(X,X\X), where H∗ is

ordinary relative homology of the pair (X,X\X).

We need Borel-Moore homology because we need fundamental classes.

Proposition A.2.2 ([7]). For any complex algebraic variety X, there exists a fundamental

class [X]. If X is irreducible of real dimension m, [X] ∈ HBM
m (X).

The relation of Borel-Moore homology and cohomology is stated in the following theorem.

Theorem A.2.3 (Poincaré duality, see e.g. [7]). Let M be a smooth algebraic variety of

R-dimension 2n. Then

PD : H∗(M)→ HBM
2n−∗(M)

ψ 7→ ψ ∩ [M ]

(A.2.1)

is an isomorphism.

Theorem A.2.4 ([20]). If X has a cellular decomposition, then the cycle map

cl : A∗(X)→ HBM
2∗ (X) (A.2.2)

is an isomorphism which doubles the degree.

Corollary A.2.5. If X has a cellular decomposition, using the notations introduced in the

previous section, HBM
∗ (X) is Q-span of {[Ui,j]}. Here by abuse of notations, we use [Ui,j] to

denote the Borel-Moore homology class which is correspondent to the cycle [Ui,j].

Remark A.2.6. We would use the notations of cohomology, Borel-Moore homology and al-

gebraic cycles freely.
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Remark A.2.7. For any complex algebraic variety X, there exists a fundamental class 1[X] ∈

H0(X) by Proposition A.2.2 and Theorem A.2.3.

Example A.2.8. HBM
∗ (R2n) ' Q[R2n], where [R2n] is the fundamental class in HBM

2n (R2n) '

H0(R2n).
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Appendix B

Equivariant Cohomology

B.1 Classifying spaces

Definition B.1.1. Let G be a topological group. Let EG be a contractible space on which

G acts freely. EG is called the universal bundle of G, and the quotient space BG := EG/G

is called the classifying space of G.

The importance of EG→ BG lays in the following theorem.

Theorem B.1.2 (Classification Theorem, see e.g.[66]). Let π : E → B be a principal

G-bundle. There exists a map f : B → BG and an isomorphism of principal G-bundles

Φ : E ' f ∗(EG). Moreover, The map f and Φ are unique up to homotopy.

Example B.1.3. Let T = C∗ be a 1-dimensional torus. Then BT = CP∞ and ET =

C∞\{0}. ET → BT is the tautological bundle on CP∞.

Example B.1.4. Let T = (C∗)n be a n-dimensional torus. BT = (CP∞)n, and ET =

π∗1O(−1) ⊗ . . . ⊗ π∗nO(−1), where πi : BT → CP∞ is the i-th projection and O(−1) is the

tautological bundle on CP∞.
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B.2 Equivariant cohomology

Definition B.2.1. Let G be a complex linear algebraic group, and let X be a complex

algebraic variety with a left G-action. Find a contractible space EG with a free right G-

action. Now form the quotient space

EG×G X := EG×X/(e · g, x) ∼ (e, g · x). (B.2.1)

Then the equivariant cohomology ring H∗G(X) is defined to be the cohomology of the quotient

space

H∗G(X) := H∗(EG×G X) (B.2.2)

where the cohomology on the right hand side is the singular cohomology with Q coefficients.

Remark B.2.2. Equivariant cohomology is a generalized cohomology theories. Thus for each

G-space X, since each projection map X → pt is G-equivariant, there is a natural map

H∗G(pt) → H∗G(X) which equips H∗G(X) a H∗G(pt)-module structure. Denote EG×G pt by

BG. Then each H∗G(X) is a H∗(BG)-module.

Remark B.2.3. The space EG in the Borel construction is actually the universal bundle

of G due to the uniqueness of the universal bundle. Similarly, the space BG in the Borel

construction is the classifying space of G.

Example B.2.4. Let T := C∗. Then as stated in Example B.1.3, BC∗ = CP∞. Then

H∗C∗(pt) = H∗(EC∗ ×C∗ pt) = H∗(BC∗) = Q[t], (B.2.3)

where t is the first Chern class of the tautological line bundle on BC∗.

Example B.2.5. Let T = (C∗)n. As stated in Example B.1.4, BT = (CP∞)n. Then

H∗(C∗)n(pt) = H∗(E(C∗)n ×(C∗)n pt) = H∗(B(C∗)n) = Q[t1, . . . , tn], (B.2.4)
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where ti is the first Chern class of pullback of the tautological line bundle on CP∞ corre-

sponding to the i-th projection πi.

B.3 Approximation

The spaces EG and BG are typically infinite-dimensional, so they are not algebraic varieties.

However there are finite-dimensional, non-singular algebraic varieties Em → Bm which serve

as “approximations” to EG → BG. The approximation we use here was introduced by

Totaro in [69].

Let G be a linear algebraic group and let n be a non negative integer. Choose a G-module

Vn and a G-invariant open subset Un ⊂ Vn satisfying the following conditions:

1. The quotient Un → Un/G exists and is a principal G-bundle.

2. The codimension of Vn\Un in Vn is larger than n.

Un → Un/G is an approximation of the universal G-bundle EG → BG in the sense of

the following proposition.

Proposition B.3.1 ([12]). Let X be a complex variety and G be an algebraic group acting

on X. Un is constructed as above. Then Hk(X ×G EG) ' Hk(X ×G Un) for k ≤ 2n.

Example B.3.2. Let T := C∗ be the 1-dimensional torus. We can take Vn := Cn+1 to be

the natural T -module via multiplication, and Un := Vn\{0}. Un/T is CP n. {CP n}n is an

approximation of BC∗. H∗(CP n) = Q[t]/〈tn+1〉. Thus when k ≤ 2n, Hk(BC∗) ' Hk(CP n).

Furthermore, we have

H∗(BC∗) ' lim←−
n

H∗(CP n). (B.3.1)

Using these approximation, we are able to put everything in the context of algebraic

geometry.
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B.4 Some bundle structure

Let G be a compact, connected Lie group, T a maximal torus, and W := NG(T )/T the Weyl

group of T in G. Suppose G acts on X freely on the right such that X → X/G is a principal

G-bundle. Then the natural projection X/T → X/G is a fiber bundle with fiber G/T .

Lemma B.4.1 ([27]). The cohomology of X/G is the subspace of W -invariants of the coho-

mology of X/T : H∗(X/G) ' H∗(X/T )W .

Example B.4.2. Let G = GL(n,C) and T be the maximal torus which consists of all

diagonal matrices. Then T ' (C∗)n. The Weyl group W in this case is the symmetric group

of n elements. By Example B.2.5, H∗(C∗)n(pt) = Q[t1, . . . , tn]. The Weyl group acts on the

space by permuting ti’s. Then by Lemma B.4.1, we have

H∗GL(n,C∗)(pt) = Q[t1, . . . , tn]W , (B.4.1)

which is the space of all symmetric polynomials with n variables.

Example B.4.3. Let G =
∏

i∈I GL(di,C). Let T be the maximal torus which consists of

all diagonal matrices of each piece. Then H∗T (pt) is the polynomial algebra generated by

{ti,j}i∈I,j=1,...,di . The variables are grouped according to the index i ∈ I. The Weyl group

W = ×i∈ISdi and it acts on H∗T (pt) by permuting variables in each group. Thus H∗G(pt) is

the algebra of polynomials of
∑

i∈I d
i variables, where each group of variables are symmetric.
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Appendix C

Cohomology of Categories Fibred in

Groupoids

This appendix follows [12]. See also e.g. [22].

C.1 Category fibred in groupoids

Fix a base scheme S. Let S be the category of S-schemes.

Definition C.1.1. A category fibred in groupoids (CFG) over S is a category X together

with a functor ρ : X → S satisfying the following conditions.

1. Given an object b ∈ X , let B = ρ(b). If f : B′ → B in S there exists a pullback object

f ∗b and a morphism f ∗b → b in X whose image under the functor ρ is the morphism

B′ → B. Moreover, f ∗b is unique up to canonical isomorphism.

2. If α : b1 → b2 is a map in X such that ρ(α) = B
Id−→ B for some S-scheme B then α is

an isomorphism.

Remark C.1.2. Given a CFG X and a scheme B, denote by X (B) the subcategory consisting

of objects mapping to B and morphisms mapping to the identity.
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Remark C.1.3. The category satisfying the first condition is called a fibred category. The

second condition implies that X (B) is a groupoid, that is, a category whose all morphisms

are isomorphisms.

Example C.1.4. Let X be a S-scheme. We can associate to its functor of points a CFG X.

It is the category of X-schemes viewed as fibred category over the category of S-schemes,

that is, a category whose objects are S-morphisms B → X for B ∈ S and morphisms are

the natural morphisms.

Definition C.1.5. A CFG X is representable if X is equivalent to a CFG X for some

S-scheme X.

C.2 Quotient CFGs

Definition C.2.1. Let B be a scheme. A G-torsor over B is a smooth morphism p : E → B

where G acts freely on E, p is G-invariant and there is an isomorphism of G-spaces E×BE →

G× E.

Definition C.2.2. If X is a scheme and G is an algebraic group acting on X. Define a

CFG [X/G] to be the category whose objects are pairs (E → B,E
f−→ X) where E → B is

a G-torsor and f : E → X is a G-equivariant map. A morphism (E ′ → B′, E ′
f ′−→ X ′) →

(E → B,E
f−→ X) in [X/G] is a Cartesian diagram of G-torsors

E ′
h //

��

E

��
B′ // B

(C.2.1)

such that f ′ = f ◦ h.

Definition C.2.3. A CFG X is a quotient CFG if X is equivalent to a CFG [X/G] for some

scheme X with G-actions.
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Example C.2.4. Let Un := Cn+1\{0}. C∗ acts on Un by left multiplication. The action is

free. Then we can have the geometric quotient CP n as well as the quotient CFG [Un/C∗].

It’s not hard to see [Un/C∗] ' CP n.

Example C.2.5. Let G be a linear algebraic group over C. Let BG be the CFG whose

objects are G-torsors E → T and whose morphism are cartesian diagrams

E ′ //

��

E

��
T ′ // T

(C.2.2)

with the added condition that the map E ′ → E is G-invariant. The definition above implies

that BG is the quotient stack [pt/G]. When talking about objects in [pt/G], we usually

omit the morphism from E to the point pt from the pair (E → B,E → pt) .

C.3 Cohomology of CFGs

Definition C.3.1. Let X be a CFG defined over C. A cohomology class c on X is the

data of a cohomology class c(b) ∈ H∗(B) for every scheme B and every object b of X (B),

with the following compatibility condition: Given schemes B′ and B and objects b′ ∈ X (B′),

b ∈ X (B) and a morphism b′ → b whose image in S is a morphism f : B′ → B then

f ∗c(b) = c(b′) ∈ H∗(B′).

Definition C.3.2. The cup product on cohomology of spaces guarantees that the collection

of all cohomology classes on X forms a graded skew-commutative ring. We denote this ring

by H∗(X )

Definition C.3.3. If f : Y → X is a map of CFGs over S then there is a pullback homo-

morphism f ∗ : H∗(X ) → H∗(Y). For c ∈ H∗(X ), f ∗c is defined by f ∗c(b) = c(f(b)) for any

b ∈ Y(B).

The main results about the cohomology of quotient stacks is the relations to the equiv-

ariant cohomology stated below.
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Theorem C.3.4 ([12].). Using the approximation introduced in Section B.1. Let X be a

complex variety and G an algebraic group acting on X. Then the pullback map Hk(X ) →

Hk(X ×G Un) is an isomorphism for k ≤ 2n.

Corollary C.3.5 ([12]). The cohomology of quotient CFGs H∗([X/G]) is isomorphic to the

equivariant cohomology H∗G(X).

Let X be a scheme, and X = X. Fix c ∈ H∗(X). A correspondent c ∈ H∗(X ) is

constructed as follows. Let c(X
Id−→ X) = c. For each object B

b−→ X, we have the diagram

B
b //

b   

X

Id~~
X

. (C.3.1)

Then c(B
b−→ X) = b∗(c(X

Id−→ X)) = b∗(c) ∈ H∗(B). This implies that c encodes all the

data needed for c. On the other side, fix c ∈ H∗(X ), we have H∗(X) 3 c = Id∗(c(X
Id−→ X)).

This correspondence suggests that H∗(X ) ' H∗(X).

Example C.3.6. Following Example C.2.4, H∗([Un/C∗]) = H∗(CP n) ' H∗(CP n). It is

well known that H∗(CP n) ' Z[ξ]/〈ξn+1〉 where ξ ∈ H2(CP n) is the first Chern class of the

tautological line bundle L on CP n. As a class of stack [Un/C∗], it is correspondent to the

class b∗ξ ∈ H2(B) of the pullback bundle b∗L for any diagram

E //

��

Un

��
B

b // Cn

. (C.3.2)

Example C.3.7. Let G = C∗. Consider H∗([pt/C∗]) = H∗(BC∗) ' H∗(BC∗). H∗(BC∗) '

Z[x] where x ∈ H2(BC∗) is the first Chern class of the tautological line bundle L on BC∗.

For each C∗-torsor E → B, by the universal property, there is a map b : B → BC∗ such that

E → B is the pullback of EC∗ → BC∗. Then as a class of stack BC∗, x is correspondent to

c1(b∗(L)) ∈ H2(B) for E → B.
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Finally we want to compute the pullback in a special case. Let G acts on X freely. Then

B = X/G is a scheme. Let f : [X/G]→ [pt/G] defined by the natural projection X → pt.

For any t = (E → T,E
t−→ X), there exist a commutative diagram

E
t //

��

X //

��

EG

��
T // B

b // BG

. (C.3.3)

For any c ∈ H∗([pt/G]), f ∗c(t) ∈ H∗(T ) is gotten from the pullback following the above

diagram. This implies that f ∗c can be gotten by b∗c where c ∈ H∗(BG) correspondent to c.

It is also true for the approximations of EG→ BG in the following sense.

Proposition C.3.8. Let {Un/G}n be an approximation of EG → BG. Let f : [X/G] →

[pt/G] be the map induced from the projection X → pt. For c ∈ Hk(BG), f ∗c ∈ Hk([X/G])

consists of data coming from the diagram

E t //

��

X //

��

Un

��
T // B

b // Un/G

(C.3.4)

for k < 2n.
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Appendix D

Hilbert Schemes

The standard reference is [51]. We follow the presentation of [39].

D.1 General concepts

D.1.1 Definitions

Let X be a quasiprojective scheme over C.

Definition D.1.1. Let S be a scheme. A flat family of proper subschemes in X over S is a

closed subscheme Z ⊂ S ×X such that the projection Z → S is flat and proper. If s ∈ S is

a closed point, we denote the fibre of Z over s by Zs.

Lemma D.1.2. Let S and S ′ be two schemes. Given a flat family Z ⊂ S × X of proper

subschemes in X and a morphism f : S ′ → S, the family Z ′ := (f × IdX)−1(Z) ⊂ S ′ ×X is

again flat and proper over S ′.

Let Z ⊂ X be a zero-dimensional subscheme. H0(Z,OZ) is an artinian C-algebra. Define

the length l(Z) of Z by l(Z) = dimCH
0(OZ).

We are able to define a contravariant functor for each n ∈ N as follows:
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HilbnX : S 7→


Z ⊂ S ×X : Z is proper and flat over S, and

Zs is a zero-dimensional subscheme of length n, for all s ∈ S

 . (D.1.1)

Theorem D.1.3 ([23]). The functor HilbnX is represented by a quasiprojective scheme X [n].

If X is projective then X [n] is also projective.

Note that the set of closed points of X [n] is

X [n](SpecC) = {Z ⊂ X : Z is a zero-dimensional subscheme with l(Z) = n} . (D.1.2)

This is our usual understanding of Hilbert scheme of points on X.

D.1.2 Hilbert-Chow morphism

Assume X is reduced. If x ∈ Z is a closed point, the multiplicity of x in Z is defined as

l(Zx) := dimC(OZ,x).

Proposition D.1.4 ([49], Section 5.4). There exists a morphism called Hilbert-Chow mor-

phism

ρ : X
[n]
red → SnX (D.1.3)

defined by

ρ(Z) =
∑
x∈X

l(Zx)[x]. (D.1.4)

Let ν = (ν1, ν2, . . .) be a composition of d. Recall that a composition is a tuple of integers

ν1 ≥ ν2 ≥ . . . with
∑
νi = d. Then maximal number k such that νk 6= 0 is called the length

for the composition, and is denoted by l(ν). For each composition ν of d, we define

SnνX =

{
k∑
i=1

νi[xi] ∈ SnX

∣∣∣∣∣ xi 6= xj for i 6= j

}
. (D.1.5)
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Then SnνX has dimension l(ν) dimCX. Note that Sn(1,1,...,1)X is an open dense subset. It is

the nonsingular locus of Sn(X).

Proposition D.1.5 ([51]). We have the stratification of Sn(X)

SnX =
⋃
ν

SnνX. (D.1.6)

Corollary D.1.6. We have a stratification of X [n]

X [n] =
⋃
ν

ρ−1(SnνX). (D.1.7)

The dimension of ρ−1(SnνX) = l(ν) dimCX.

D.2 X = A1-case

We would go through the case X = A1 in this section. In this case, the set of closed points

of X [n] is
Z ⊂ X : Z is a zero-dimensional

subscheme with l(Z) = n

 =


I ⊂ C[x] : I is an ideal of C[x]

and dimC[x]/I = n

 . (D.2.1)

Since C[x] is a prime ideal domain, each idea is generated by a polynomial in C[x]. Then

the above set is the same as

{monic polynomials in C[x] whose degree is n} . (D.2.2)

To justify these statements, any 0-dimensional subscheme in A1 can be described by

a monic polynomial f(T ) = T n + an−1T
n−1 + . . . + a0 of degree n. The coefficients a =

(a0, a1, . . . , an−1) define a point a ∈ Cn and conversely any point a defines a polynomial and

thus a subscheme.
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Now consider Hilbert-Chow morphism. We start from a general statement.

Proposition D.2.1. Let X be an irreducible, smooth, quasiprojective curve. Then for all

n ≥ 0, X [n] is smooth and irreducible of dimension n

Proof. There is a version of this proposition for dimCX = 2 case. The proof can be found

in [16]. The proof of this proposition is similar.

Lemma D.2.2. Hilbert-Chow morphism ρ induces an isomorphism

X
[n]
0 → Sn(1,1,...,1)X (D.2.3)

and Sn(1,1,...,1)X is dense in SnX.

Proposition D.2.3. Let X be a nonsingular quasiprojective curve, the Hilbert-Chow mor-

phism ρ : X [n] → SnX is an isomorphism.

Proposition D.2.4. X [n] = Sn(C1) ' Cn.

Proof. The first is by Proposition D.2.3. The second can be seen from the following formulas:

Sn(X) = Spec(C[x1, . . . , xn]Sn) ' Spec(C[e1, . . . , en]) = An, (D.2.4)

where ei is the i-th elementary polynomial for each i.

Remark D.2.5. Note that dimC S
n
νX = l(ν), and l(ν) < n for any ν other than (1, 1, . . . , 1).

Since A∗(Cn) is generated by [Cn], it implies that the strata other than Sd(1,...,1)X don’t

contribute to its Chow ring. Therefore when we do computations Chow ring of cohomology,

we could only focus on the Sd(1,...,1)X part, which is the subset on which all points are different.

D.2.1 Alternative description

There is an alternate way to talk about X [n].
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Theorem D.2.6. Let X = A1.

X [n] '


(B, i) : There exists no subspace S ( Cn

such that B(S) ⊂ S and Im(i) ⊂ S


/

GL(n,C), (D.2.5)

where B ∈ End(Cn) and i ∈ Hom(C,Cn) with the action given by

g · (B, i) = (gBg−1, gi), for g ∈ GL(d,C). (D.2.6)

By Proposition D.1.5 and its corollary, we know that X [n] has a stratification. The open

stratum Sn(1,1,...,1)X is the nonsingular locus of Sn(X).
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[22] Tomás L. Gómez. Algebraic stacks. Proc. Indian Acad. Sci. Math. Sci., 111(1):1–31,

2001. ISSN 0253-4142. doi: 10.1007/BF02829538. URL http://dx.doi.org/10.1007/

BF02829538.

[23] Alexander Grothendieck. Techniques de construction et théorèmes d’existence en
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