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Abstract 

A major strategy in response to rapid degradation and loss of Louisiana’s coastal 

wetlands has been the construction of siphon diversion projects.  The diversions are designed to 

reintroduce nutrient enriched freshwater from the Mississippi River into wetland ecosystems to 

combat saltwater intrusion and stimulate marsh growth. The lack of consensus regarding the 

effects of river diversions on nutrient enrichment of wetland ecosystems is coupled with major 

concerns about eutrophication. Locating, assessing, and monitoring eutrophic marsh vegetation 

represent major challenges to understanding the impacts of freshwater diversions. As a result, 

this study was undertaken to investigate the feasibility of modeling eutrophication vulnerability 

of a coastal Louisiana marsh receiving turbid Mississippi River water. The major objective was 

to integrate remotely sensed data with field measurements of vegetation biophysical 

characteristics and historical ecosystem survey data to delineate landscape patterns suggestive of 

vulnerability to eutrophication.  The initial step in accomplishing this goal was to model the 

spatial distribution of freshwater impacts using satellite image-based turbidity frequency data 

associated with siphon diversion operation. Secondly, satellite and spectroradiometer band 

combinations and vegetation indices optimal for modeling marsh biophysical characteristics 

related to nutrient enrichment were identified.  Finally, satellite image data were successfully 

integrated with measures of historical and concurrent marsh biophysical characteristics to model 

the spatial distribution of eutrophication vulnerability and to elucidate the impacts of freshwater 

diversions. 
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Chapter 1 - Introduction 

Louisiana’s coastal wetlands are rapidly deteriorating and disappearing due to natural and 

anthropogenic causes.  Artificial flood control levees have effectively isolated the Mississippi 

River from its delta, exacerbating natural subsidence, erosion and storm effects (Lopez, 2009; 

Day et al., 2009a). The construction of extensive networks of canals for oil and gas exploration 

and the extraction of natural resources have also contributed to subsidence and erosion and 

promoted saltwater intrusion into freshwater marshes (Lopez, 2009; Day et al., 2009a).  Over the 

last half century a major strategy for reducing or reversing wetland loss in Louisiana has been the 

construction of river diversions designed to reintroduce freshwater from the Mississippi River 

into wetland ecosystems to combat saltwater intrusion and stimulate marsh growth (Day et al., 

2009a).  During this same period, runoff of fertilizers, pesticides and other pollutants from 

agricultural and urban areas has increased, adversely affecting water quality in the rivers and 

streams of the 3 million km2 Mississippi River Basin (Cloern, 2001; Mitsch, et al., 2005; 

Siciliano, et al., 2008).  Excess nitrogen, in the form of nitrate-nitrogen, is transported in the 

Mississippi River to coastal areas in Louisiana, where the subtropical climate, associated warm 

water temperatures, and long growing season facilitate high nutrient uptake and denitrification 

rates (Mitsch, et al., 2005). Since Louisiana’s diversions introduce nutrient enriched Mississippi 

River water and sediment into wetland areas, eutrophication is a major concern (Sklar and 

Browder 1998; Lissner et al., 2003; Lane and Day, 1999; Mitsch et al., 2005; Day et al., 2009a).   

Eutrophication generally refers to gradual nutrient enrichment in water bodies 

(Christropherson, 2009; Ferreira et al., 2011), but when loading rates are very high, nutrients 

also accumulate in soils and vegetation (Dettmann, 2001; Kamer et al., 2001).  In the presence of 
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excessive nutrient loadings, wetland ecosystem processes are altered, resulting in measurable 

changes in plant productivity, including increases in net primary productivity (U.S. EPA, 2002; 

Ferreira et al., 2011). Several studies have shown however, that despite increased above ground 

biomass, excess nutrient loading in salt marshes reduces below ground plant growth, root and 

rhizome biomass, and carbon accumulation, decreasing geomorphic stability and causing 

significant loss in marsh elevation (Darby and Turner, 2008a, 2008b; Turner et al., 2009; Turner, 

2010; Deegan et al., 2012).  In contrast, a study by Day et al. (2009b) reported finding high 

belowground biomass in marshes impacted by the river diversion at Caernarvon, Louisiana. 

Although high nutrient loading to coastal marshes remains a concern that should be monitored, 

studies of the effects of Louisiana’s river diversions have been limited (Day et al., 2009a; 

Boustany, 2010).  

Research to develop effective methods for assessing and monitoring nutrient enrichment 

of Louisiana’s coastal wetlands is needed.  This study was undertaken to investigate the 

feasibility of modeling eutrophication vulnerability of a coastal Louisiana marsh receiving turbid 

Mississippi River water. The major objective was to integrate remotely sensed data with field 

measurements of vegetation biophysical characteristics and historical ecosystem survey data to 

delineate landscape patterns suggestive of vulnerability to eutrophication.   

Chapter 2 describes the initial step in accomplishing the major objective of this study.  It 

outlines a remote sensing-based method for differentiating marsh areas experiencing high and 

low freshwater impacts as a result of the operation of the West Pointe a la Hache (WPH) siphon 

diversion. Water turbidity frequency datasets representing pre- and post-siphon turbidity 

conditions are used to derive an estimate of turbidity due to siphon operation.  Results are then 

classified based on level of turbidity, and adjacent vegetated areas are delineated and classified 
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by level of freshwater impact.  The resulting model is assessed for accuracy using corresponding 

historical salinity data and analyzed with regard to the spatial distribution of freshwater impacts 

relative to the location of the siphon diversion.  

Chapter 3 describes the development of a eutrophication vulnerability model based on the 

relationships between field measurements of vegetation parameters associated with wetland 

nutrient enrichment and data derived from field spectra and satellite imagery.  Measurements of 

Leaf Area Index (LAI), plant height, and chlorophyll concentration are collected across 

vegetation productivity and freshwater impact gradients and correlated with spectral data to 

identify which spectral bands and vegetation indices are most predictive of the vegetation 

parameters.  Based on the results, a model of predicted chlorophyll concentration is derived and 

assessed for accuracy and the spatial distribution of chlorophyll concentration relative to the 

location of the WPH siphon diversion is analyzed.   

Chapter 4 builds on the previous chapters by integrating satellite image data with 

measures of historical ecosystem survey data and concurrent marsh biophysical characteristics to 

model the spatial distribution of eutrophication vulnerability and to elucidate the impacts of 

freshwater diversions. Vegetation parameters collected across vegetation productivity and 

freshwater impact gradients are integrated with corresponding historical ecosystem survey data 

and analyzed using an agglomerative hierarchical clustering method.  The results are used to 

classify sample sites as exhibiting higher or lower vulnerability to eutrophication, after which 

spectral characteristics of the classified sites are used to develop the eutrophication vulnerability 

model. The model is assessed for accuracy and the results are analyzed relative to freshwater 

impacts. 
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Finally, Chapter 5 summarizes the findings of the previous chapters.  The broader 

impacts of the study are discussed including its potential to inform the ongoing debate 

surrounding both the impacts of existing freshwater diversions and the planning and 

implementation of future restoration projects affecting coastal Louisiana wetlands. 
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Chapter 2 - A Remote Sensing-Based Method for Mapping 

Freshwater Diversion Impacts in Coastal Louisiana Wetlands 

 Abstract 

This study was conducted to investigate the feasibility of using turbidity frequency data 

to identify areas of Louisiana coastal wetlands most impacted by the introduction of turbid 

Mississippi River water.  Siphon diversion projects operating in South Louisiana are designed to 

reintroduce freshwater into wetland ecosystems to combat saltwater intrusion and stimulate 

marsh growth.  The primary goal of this research was to test whether an accurate remote sensing-

based method could be developed for differentiating marsh areas experiencing high and low 

freshwater impacts associated with siphon operations.  In conjunction with the US Army Corps 

of Engineers, water turbidity frequency datasets were derived from time series Landsat 5 

Thematic Mapper (TM) satellite images to represent pre- and post-siphon turbidity conditions.  

Using turbidity frequency prior to commencement of siphon operation as a baseline, background 

turbidity was factored out to derive an estimate of water turbidity due to siphon operation.  

Turbidity estimates were then classified based on level of turbidity, and were assessed for 

accuracy using corresponding historical salinity data.  Results indicate that areas classified as 

high freshwater impact areas (i.e., highest turbidity due to siphon operation) were associated with 

significantly lower levels of salinity.  Areas classified as low freshwater impact areas (i.e., lowest 

turbidity during siphon operation) were associated with significantly higher levels of salinity.  

These results suggest that high and low freshwater impact areas were successfully delineated 

using this methodology. 
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 Introduction 

Like many wetland ecosystems throughout the world, Louisiana’s coastal wetlands are 

deteriorating and disappearing at an alarming rate, due to both natural and anthropogenic causes.  

Natural subsidence and erosion have been exacerbated by isolation of the Mississippi River from 

its delta through the construction of artificial flood control levees (Lopez, 2009; Day et al., 

2009a).  Petroleum extraction and the construction of extensive networks of canals for oil and 

gas exploration have also exacerbated natural subsidence and erosion and promoted saltwater 

intrusion into Louisiana’s freshwater marshes (Lopez, 2009; Day et al., 2009a). 

A number of restoration strategies have been devised in an attempt to reduce or reverse 

wetland losses.  Major projects implemented in Louisiana during the past half century include 

river diversions designed to reintroduce freshwater into wetland ecosystems to combat saltwater 

intrusion and stimulate marsh growth (Day et al., 2009a).  During this same period, runoff of 

fertilizers, pesticides, and other pollutants from agricultural and urban areas has increased, 

adversely affecting water quality in the rivers and streams of the 3 million km² Mississippi River 

Basin (Cloern, 2001; Mitsch, et al., 2005; Siciliano, et al., 2008). A major concern is that the 

diversions introduce nutrient enriched water and sediment from the Mississippi River into coastal 

ecosystems, potentially leading to wetland eutrophication (Sklar and Browder 1998; Lissner et 

al., 2003; Lane and Day, 1999; Mitsch et al., 2005; Day et al., 2009a).  Studies by Darby and 

Turner (2008a; 2008b) found that excess nutrient loading in marsh ecosystems reduces below 

ground plant growth and, therefore, root and rhizome biomass and carbon accumulation. 

Similarly, a 30-year study of Massachusetts salt marshes, found that eutrophication may be 

accompanied by a decrease in the accumulation of organic matter belowground, causing 

significant loss in marsh elevation (Turner et al., 2009).  The reduction in roots and rhizomes is 

likely to exacerbate the erosive effects of storms (Turner et al., 2009).  This is supported by 
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Howes, et al. (2010) who found that Louisiana marshes that received diverted freshwater for 18 

years prior to Hurricanes Katrina and Rita were preferentially eroded as a consequence of the 

storms.  In a synthesis of previous studies, however, Day et al. (2009a) reported that nitrogen 

loading rates in the outfall area of the river diversion at Caernarvon, Louisiana, as well as rates in 

the Atchafalaya River to marshes surrounding Fourleague Bay, were far less than loading rates 

used in the Darby and Turner (2008a; 2008b) studies.  Furthermore, another study by Day et al. 

(2009b) reported finding high belowground biomass in marshes impacted by the Caernarvon 

diversion. Still, high nutrient loading to coastal marshes remains a concern and should be 

monitored (Day et al., 2009a).  Further research is necessary to address this concern and the 

ongoing debate, yet studies of the effects of river diversions have been limited (Day et al., 

2009a; Boustany, 2010). 

Satellite remote sensing offers an underutilized approach to monitoring possible 

eutrophication from freshwater diversions.  Freshwater diverted from the Mississippi River 

contains high concentrations of suspended particulate matter (SPM) and appears cloudy as it 

enters the outfall area. In the presence of SPM the optical properties of water cause light to be 

scattered and absorbed by particles and molecules rather than transmitted through water in a 

straight line, thereby reducing water’s transparency and increasing turbidity (ASTM-

International, 2003; Guttler et al., 2013).  A clear water body is highly absorbent of light, acting 

as a dark object, especially in the near infrared wavelengths (700-800 nm).  With increases in 

SPM, a water body will act more like a bright object, especially in the visible red wavelengths 

(600-700 nm) (Lillisand, 2004; Lodhi, 1997; Allen et al., 2008).  Thus, clear and turbid waters 

differ in spectral response, with turbid water exhibiting significantly higher reflectance than clear 

water (Froidefond et al. 2002; Li, et al. 2003; Allen et al., 2008).  Reflectance differences in the 
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near infrared and red wavelengths can be leveraged for mapping turbidity in river diversion 

outfall areas (Harrington and Schiebe, 1992; Miller and McKee, 2004; Allen et al., 2008).  

Furthermore, sediment laden river water transports pollutants to coastal zones and affects 

nutrient dynamics and phytoplankton productivity (Doxaran et al., 2009; Volpe et al., 2011; 

Guttler et al., 2013).  As a result, in addition to being a relative measure of the amount of SPM in 

water, turbidity is an important water quality parameter that can also be used as an indicator of 

eutrophication (Fraser, 1998; Guttler et al., 2013). Observation networks for monitoring water 

quality parameters, including turbidity, typically provide data that has high temporal but low 

spatial resolution, requiring interpolation of the data across large areas (Volpe et al., 2011).  

Satellite imagery, although lower in temporal resolution, provides relatively high spatial 

resolution data useful for monitoring turbidity and freshwater diversion impacts. 

The primary goal of this study was to test whether an accurate remote sensing-based 

method could be developed for differentiating marsh areas experiencing high and low freshwater 

impacts associated with siphon operations.  Specific objectives were to use satellite imagery to 

identify wetland areas most frequently and least frequently exposed to turbid Mississippi River 

water as a result of the operation of the West Pointe a la Hache siphon diversion and to 

determine whether concurrent water salinity measurements within those areas support the 

resulting classification of high and low freshwater impacts. The ability to accurately model 

relatively high and low impact areas would allow for efficient sampling across a freshwater 

impact gradient, aiding in the monitoring of possible eutrophication due to freshwater 

introduction. 
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 Study Area 

The study area (Figure 2.1) is located within the Barataria Basin, an interdistributary 

estuarine wetland system of the Mississippi River Delta.  Wetland vegetation in the estuary is 

characterized by a progression of fresh, intermediate, brackish, and salt marshes, moving to open 

water (Conner and Day, 1987).  The study area is an approximately 138 km2 portion of the 

estuary located in Plaquemines Parish, Louisiana.  It has, like the larger Barataria Basin, been 

severely impacted by wetland degradation and loss, having experienced some of the highest rates 

of land loss in Louisiana’s coastal zone (Conner and Day, 1987; Barras et al., 2003; Barras, 

2009; Bethel et al., 2011).   

The study area extent includes highly degraded and fragmented marsh areas north and 

northeast of Bayou Grand Chenier Ridge, as well as relatively intact core marsh west and 

southwest of the ridge, a juxtaposition of conditions allowing compelling comparisons.  The 

West Pointe a la Hache (WPH) Siphon Diversion Project is located within the study area on the 

west bank of the Mississippi River at river kilometer 78.7 (mile 48.9) (Haywood and Boshart, 

1998).   

The diversion was designed to provide freshwater and sediment to the marshes for 

restoration and land building (OCPR, 2010; LaCoast, 2008).  It is a relatively low-flow diversion 

consisting of eight 1.8 m diameter steel siphon pipes that cross over the levee, run underground, 

then discharge river water into an outfall pond.  Four channels radiate southward from the pond 

to distribute freshwater to the surrounding marsh (Richardi, 2013).  Although maximum 

discharge for the siphons is estimated as 2144 ft3s-1 (61 m3s-1), based on high river stage and all 

siphons in full operation, freshwater flow at WPH typically ranges between 500-1000 ft3s-1 (14-

28 m3s-1) when the siphon is operational (Richardi, 2013).  It is estimated that the siphon has 

operated approximately 60% of the time since flow began in January, 1993 (Richardi, 2013).  
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Although the siphons at WPH have had some effect in reducing salinity, land loss is still 

occurring in the project area (Boshart and Van Cook, 2007; Richardi, 2013). 

 Methods 

 Water Turbidity Frequency Datasets 

Water turbidity frequency datasets were produced for this study by the U.S. Army Corps 

of Engineers (USACE) based on a technique developed by Allen et al. (2008) and outlined in 

Appendix A.  The datasets are based on time series cloud-free Landsat images captured between 

1984 and 2010 and corresponding to periods of pre- and post-siphon operation of the WPH 

diversion project.  For the post-siphon operation time period, optimal Landsat image dates were 

chosen to coincide with siphon freshwater flow based on records obtained from Louisiana 

Coastal Protection and Restoration Authority (CPRA) Strategic Online Natural Resources 

Information System (SONRIS, 2011).  Pre- and post-siphon operation satellite image dates and 

associated freshwater flows are provided in Table 2.1. 

The USACE datasets consist of two turbidity frequency maps, adapted versions of which 

are provided in Figures 2.2 and 2.3. The pre-1993 turbidity map (Figure 2.2) depicts the 

frequency of classification of water pixels as turbid during the pre-siphon time period between 

1984 and commencement of siphon operation in 1993.  This turbidity frequency dataset was used 

to estimate baseline turbidity. The post-1993 turbidity map (Figure 2.3) depicts the frequency of 

classification of water pixels as turbid for image dates captured during periods of siphon 

operation between 1993 and 2010.   

 Estimating Highest and Lowest Turbidity Post-Siphon Operation 

The USACE turbidity frequency datasets were used to derive an estimate of turbidity 

attributed to siphon operation.  This was accomplished by comparing pre- and post-1993 
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turbidity.  The USACE turbidity frequency datasets were reprojected to UTM, Zone 15, GRS 

1980, NAD 83 and checked for consistent alignment. For each turbidity frequency map, five 

classes of water turbidity were identified using natural breaks in ArcGIS, a geographic 

information system (GIS) software.  The highest turbidity classes in the pre- and post-siphon 

datasets were compared and areas of intersection were removed from the post-siphon turbidity 

data.  The resulting subset provides a map layer representing areas of highest turbidity associated 

with freshwater flow during siphon operation, thus indicating locations that consistently received 

distributions of sediment-laden freshwater (Allen et al., 2008). This procedure was repeated for 

the lowest turbidity classes in the pre- and post-siphon datasets to create a map layer delineating 

areas of lowest turbidity associated with siphon freshwater flow. 

 Mapping High and Low Freshwater Impacted Marsh Areas 

ArcGIS was used to identify marsh areas subject to relatively high and low freshwater 

impacts.  Landsat 5 TM imagery captured April 17, 2011 was reprojected to UTM, Zone 15, 

GRS 1980, NAD 83 and checked for consistent alignment with the turbidity frequency maps.  

The imagery was subset to the study area and a land-water map was developed using a hybrid 

classification method described by Bethel et al. (2011) and outlined in Appendix B. A 

vegetation-only layer was created from the land-water map by masking pixels representing water 

and developed land.  Restricting subsequent remote sensing and geographic information system 

processing to vegetation-only pixels minimized the influence of non-vegetation pixels and 

insured that final results were based solely on analysis of pixels classified as marsh vegetation. 

The vegetation layer was then included in a GIS with the map layers produced from the turbidity 

frequency data delineating highest and lowest turbidity associated with freshwater flow during 

siphon operation. 
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In the GIS environment 15 m buffers were created around areas of highest and lowest 

turbidity associated with siphon operation.  Those areas within the highest turbidity buffers were 

classified as high freshwater impact areas and those within the lowest turbidity buffers were 

classified as low freshwater impact areas.  Vegetated areas within the highest turbidity buffers 

were identified as marsh areas most consistently exposed to freshwater introduction, while 

vegetated areas within the lowest turbidity buffers were identified as marsh areas least impacted 

by freshwater introduction.  Figure 2.4 shows the resulting freshwater impacts map delineating 

vegetated marsh areas subject to high and low freshwater impacts.  

 Accuracy Assessment 

Hydrographic salinity data obtained from SONRIS were used to assess the accuracy of 

the freshwater impact map (SONRIS, 2012). Figure 2.5 shows the locations of salinity data 

collection sites within areas of high and low freshwater impacts. For salinity estimates during 

siphon operation, 12 salinity data dates were identified as dates of siphon operation nearest the 

Landsat image capture dates (Table 2.2).  For no flow salinity estimates, 71 salinity data dates 

were identified for periods in which the siphon had not operated for a minimum of 7 days (Table 

2.3).  Estimates of mean salinity (ppt) during siphon freshwater flow and no flow periods were 

calculated for the 9 salinity data collection sites in high freshwater impact areas and for the 6 

salinity data collection sites in low freshwater impact areas (Table 2.4).  All salinity estimates 

were based on hourly bottom and surface salinity readings. The Mann-Whitney statistical 

method was used to test for differences in mean salinity in high and low freshwater impact areas 

during both freshwater flow and no flow periods (VassarStats, 2014). 
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 Results 

The spatial distribution of high and low freshwater impact areas depicted on the 

freshwater impacts map (Figure 2.4) suggests a general reduction in impact with increasing 

distance from the siphon diversion along a north to south gradient. The location of the Texas 

Company Canal coincides with a relatively abrupt change from high freshwater impacts north of 

the canal to low freshwater impacts to the south.  In contrast to this general trend, relatively 

discontinuous and isolated areas of high turbidity were found distant from the siphon to the south 

and southwest between Bayou Grand Chenier Ridge and Bays Chene Fleur, Batiste, and 

Sansbois. 

Greater fluctuation in mean salinity was observed among high freshwater impact sites 

compared to low impact sites (Figure 2.6). With the exception of site BA04-12, both high and 

low freshwater impact sites exhibited greater variation in mean salinity during periods of siphon 

operation compared to siphon dormancy (Figure 2.7).  During siphon flow periods both high and 

low freshwater impact sites had significantly lower mean salinity (Z = -3.09, P = 0.001 and Z =   

-2.8, P = 0.003, respectively) compared to no-flow periods (Figure 2.8).  Although no significant 

difference was found between high and low freshwater impact sites during periods of siphon 

dormancy, mean salinity during siphon operation was significantly lower at high freshwater 

impact sites compared to low impact sites (Z = -2.65, P = 0.004).  The results suggest that siphon 

operation freshens water throughout the study area, but that water is freshened to a greater extent 

in areas classified as high freshwater impact areas as compared to areas classified as low impact 

areas.  Furthermore, when salinity data for all dates (freshwater flow and no flow periods) were 

tested, this finding was replicated.  That is, high impact sites were found to be statistically 

significantly lower in mean salinity than low freshwater impact sites (Z= -2.42, P = 0.008), 

suggesting that the overall effect of the siphon is to freshen the high impact areas significantly 
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more than the low impact areas and also suggesting that this effect may extend beyond siphon 

operation periods.  

 Discussion 

Level of turbidity derived from satellite image-based turbidity frequency data was 

effectively used as a proxy for freshwater impacts to delineate areas most and least impacted by 

operation of the WPH siphon diversion project. The resulting freshwater impacts map accurately 

identified high and low impact areas based on corresponding time series salinity data.  Analysis 

of salinity data showed that high impact areas were significantly fresher than low impact areas 

during siphon operation. Although there was no significant difference in mean salinity during 

siphon dormancy, high impact areas continued to show significantly lower mean salinity when 

all dates (during siphon flow and no flow periods) were tested, further supporting the results of 

the freshwater impacts classification.  The spatial distribution of high and low freshwater impact 

areas agrees with previous findings showing increases in mean salinity along a north to south 

gradient in the WPH outfall area during siphon operation (Richardi, 2013; Boshart and Van 

Cook, 2004).  The spatial distribution also suggests that siphon impacts generally decrease as 

distance to the siphon increases, in agreement with Day et al. (2009a), who found that suspended 

sediments in pulsed freshwater introduced by the Caernarvon diversion decreased with 

increasing distance from the diversion structure.   

Discontinuous and isolated areas of high turbidity south and southwest of Bayou Grand 

Chenier Ridge are exceptions to the general trend of decreasing impact with increasing distance 

from the siphon (Figure 3).  One possible explanation is that those areas may be undergoing 

increasing vegetation loss and soil erosion since commencement of siphon operation, thereby 

contributing to greater turbidity in adjacent waterways. Marsh fragmentation, degradation, and 
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loss in those areas are likely associated with marsh ponding, the perforation of once unbroken 

marsh with small ponds (Bethel et al., 2011).  Water in shallow marsh ponds may exhibit higher 

turbidity due to bank erosion as well as wind induced bottom sediment mixing.  

It should also be noted that during seasonal high river stage, freshening of the Barataria 

Basin by WPH siphon operation is augmented by Mississippi River waters that flow into the 

basin from the mouth of the river.  This introduction of freshwater from the south may also help 

to explain areas classified as high impact on the freshwater impacts map that are exceptions to 

the general trend.  Although the effects of seasonal freshening from the south are not quantified 

here, siphon flow and no flow dates used in this study are representative of all seasons. Based on 

the current results showing a north to south gradient of freshening effects, confirmed by Richardi 

(2013) and Boshart and Van Cook (2004), seasonal freshening effects from the south are 

assumed to have a minimal effect in terms of classifying high and low freshwater impact areas. 

Also of interest is the relatively high degree of fluctuation in mean salinity related to 

siphon operation and observed throughout the study area, but especially in high freshwater 

impact areas. While disturbances are recognized as an intrinsic part of ecosystem dynamics and a 

source of heterogeneity (Sousa, 1984; Lee and Brown, 2011), studies suggest that thresholds 

exist, which when reached, usher in ecosystem regime changes representing alternative stable 

states (Scheffer et al., 2001; Carpenter et al., 2011).  The observed fluctuation in salinity 

throughout the study area suggests the possibility that ecosystem regime changes may be 

occurring based on a freshwater introduction threshold.  Intermittent operation of the siphon may 

be causing alternative stable states that disrupt and undermine the stability of the ecosystem and 

adversely affect flora and fauna within the study area.  Consistent, well informed management 

strategies for siphon operation are needed to avoid exacerbating ecosystem instability and 
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wetland degradation and to meet the intended goals of the siphon projects to combat saltwater 

intrusion and stimulate marsh growth. 

 Conclusions 

Satellite image-based turbidity frequency data can be used to accurately differentiate 

marsh areas experiencing high and low freshwater impacts associated with siphon operations in 

coastal Louisiana wetlands.  Turbidity reflectance levels can be effectively used as a proxy for 

freshwater impacts to identify wetland areas most frequently and least frequently exposed to 

turbid Mississippi River water due to siphon operation.  The ability to accurately model 

relatively high and low freshwater impact areas can aid in identifying optimal sample sites for 

closer monitoring of possible eutrophication related to freshwater siphon diversions. The results 

of this study suggest that effective monitoring of freshwater impacts and consistent management 

of siphon operation are needed to avoid exacerbating ecosystem instability and to aid in 

promoting the health and vitality of wetland ecosystems receiving introduced freshwater. 
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Figure 2.1 Location of the approximately 138 km² study area in the Barataria Basin 

(adapted from ArcGIS basemap with April 17, 2011 Landsat 5 TM image overlay). 
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Figure 2.2 Pre-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 2.3 Post-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 2.4 Map of study area delineating vegetated marsh areas subject to high and low 

freshwater impacts. 
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Figure 2.5 Map of study area showing salinity data collection sites in consistently high and 

low freshwater impact areas. 
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Figure 2.6 Distribution of mean salinity at high and low impact sites during siphon operation and siphon dormancy. 
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Figure 2.7 Standard deviation of mean salinity at high and low freshwater impact sites 

during siphon operation and dormancy. 
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Figure 2.8 Mean salinity at high and low freshwater impact sites during siphon operation 

and dormancy. 
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Table 2.1 Pre- and post-siphon operation satellite image dates and associated freshwater 

flows at WPH siphon diversion project. 

Pre-siphon operation (no flow)   Post-siphon operation 

Satellite image dates  Satellite image dates Freshwater flow (cfs) 

04/06/1984  04/02/1994 2023.82  

01/19/1985  09/25/1994 118.80  

10/08/1987  04/07/1996 1519.67  

01/28/1988  02/08/1998 787.01  

2/13/1988  02/24/1998 903.08  

11/01/1990  01/26/1999 1311.58  

11/17/1990  04/18/2000 721.22  

03/09/1991  09/17/2000 777.25  

02/08/1992  11/20/2000 783.88  

10/05/1992  02/27/2002 1327.31  

  10/20/2003 1057.15  

  02/25/2010 530.66  

 

 

 

 

 

 

Table 2.2 Twelve satellite image dates during siphon operation and nearest salinity data 

dates. 

Satellite image dates/ 

siphon operating 

Nearest salinity data dates 

 

04/02/1994 03/29/1994 

09/25/1994 09/13/1994 

04/07/1996 04/02/1996 

02/08/1998 02/17/1998 

02/24/1998 02/17/1998 

01/26/1999 01/25/1999 

04/18/2000 04/18/2000 

09/17/2000 09/28/2000 

11/20/2000 11/21/2000 

02/27/2002 03/07/2002 

10/20/2003 10/13/2003 

02/25/2010 03/03/2010 
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Table 2.3 Seventy-one salinity data dates corresponding to no flow periods (siphon not 

operating for at least 7 days prior to each salinity data date). 

No flow dates with available salinity data 

10/11/1994 

11/09/1994 

12/07/1994 

01/04/1995 

02/15/1995 

03/14/1995 

04/10/1995 

04/26/1995 

05/23/1995 

06/06/1995 

06/07/1995 

06/22/1995 

10/17/1995 

11/02/1995 

11/14/1995 

12/12/1995 

01/17/1996 

09/16/1997 

10/21/1997 

11/17/1997 

12/16/1997 

03/16/1999 

08/25/1999 

09/16/1999 

10/12/1999 

11/16/1999 

12/14/1999 

01/19/2000 

02/22/2000 

05/02/2001 

08/15/2001 

09/04/2001 

10/08/2001 

10/26/2001 

08/16/2002 

09/03/2002 

10/10/2002 

11/07/2002 

12/28/2002 

07/17/2003 

08/18/2003 

09/03/2003 

09/10/2004 

10/13/2004 

11/09/2004 

10/14/2005 

11/21/2005 

12/19/2005 

01/16/2006 

02/24/2006 

03/28/2006 

04/28/2006 

05/26/2006 

06/27/2006 

07/28/2006 

08/31/2006 

09/27/2006 

10/24/2006 

08/27/2007 

10/02/2007 

11/01/2007 

11/30/2007 

12/28/2007 

08/22/2008 

09/26/2008 

10/28/2008 

12/03/2008 

01/07/2009 

02/16/2009 

10/15/2009 

10/14/2010 
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Table 2.4 Mean salinity for high and low freshwater impact sites by siphon flow. 

High freshwater 

impact sites 

Low freshwater 

impact sites 

Mean salinity (ppt) 

(siphon flow) 
 Mean salinity 

(ppt) (no 

siphon flow) 

BA04-01 - 5.68 11.13  
BA04-02 - 5.59 11.89  
BA04-03 - 7.57 13.18  
BA04-05 - 6.13 11.38  
BA04-07 - 9.90 14.17  
BA04-11 - 8.11 11.64  
BA04-12  7.07 9.83  
BA04-16 - 8.13 10.64  
BA04-55 - 11.53 14.91  

- BA04-06 10.85 13.96  
- BA04-08 11.42 14.64  
- BA04-09 11.70 14.16  
- BA04-10 11.49 13.97  
- BA04-15 12.24 14.59  
- BA04-17 11.33 12.59  
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Chapter 3 - Optimal DigitalGlobe and Spectroradiometer Band 

Combinations and Vegetation Indices for Modeling Biophysical 

Characteristics Related to Nutrient Enrichment of a Coastal 

Louisiana Marsh 

 Abstract 

This study was conducted to evaluate the relationships between vegetation biophysical 

characteristics and spectral reflectance patterns associated with a coastal Louisiana marsh 

impacted by the introduction of turbid Mississippi River water. The primary goal was to use field 

spectra and DigitalGlobe WorldView 2 (DG-WV2) satellite image data to identify the bands and 

vegetation indices most highly correlated with field measurements of vegetation parameters 

associated with wetland nutrient enrichment. To accomplish this goal, measurements of Leaf 

Area Index (LAI), plant height, and chlorophyll concentration were collected across vegetation 

productivity and freshwater impact gradients and correlated with spectral data. The 

Atmospherically Resistant Vegetation Index (ARVI) using DG-WV2 near infrared image band 8 

(860-1040 nm) was optimal for estimating chlorophyll concentration, but no bands or indices 

correlated well with LAI or plant height.  The resulting spatial distribution of estimated 

chlorophyll concentration was related to proximity to the source of introduced freshwater, with 

chlorophyll concentration decreasing with increasing distance from the freshwater source. 

Additionally, areas most consistently impacted by freshwater introduction were associated with 

high chlorophyll concentration, while least impacted areas were associated with low chlorophyll 

concentration. These results suggest that remotely sensed imagery combined with field measured 

vegetation parameters hold promise for effectively identifying freshwater impacted marsh areas 

vulnerable to eutrophication. 
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 Introduction 

Louisiana’s coastal wetlands are rapidly degrading and disappearing due to natural and 

anthropogenic causes.  Artificial flood control levees have effectively isolated the Mississippi 

River from its delta, exacerbating natural subsidence, erosion and storm effects (Lopez, 2009; 

Day et al., 2009a). The construction of extensive networks of canals for oil and gas exploration 

and the extraction of natural resources have also contributed to subsidence and erosion and 

promoted saltwater intrusion into Louisiana’s freshwater marshes (Lopez, 2009; Day et al., 

2009a).  Over the last half century a major strategy for reducing or reversing wetland loss in 

Louisiana has been the construction of river diversions designed to reintroduce freshwater from 

the Mississippi River into wetland ecosystems to combat saltwater intrusion and stimulate marsh 

growth (Day et al., 2009a).  During this same period, runoff of fertilizers, pesticides and other 

pollutants from agricultural and urban areas has increased, adversely affecting water quality in 

the rivers and streams of the 3 million km2 Mississippi River Basin (Cloern, 2001; Mitsch, et al., 

2005; Siciliano, et al., 2008).  Excess nitrogen, in the form of nitrate-nitrogen, is transported in 

the Mississippi River to coastal areas in Louisiana, where the subtropical climate, associated 

warm water temperatures, and long growing season facilitate high nutrient uptake and 

denitrification rates (Mitsch, et al., 2005). Since Louisiana’s river diversions introduce nutrient 

enriched Mississippi River water and sediment into wetland areas, eutrophication is a major 

concern (Sklar and Browder 1998; Lissner et al., 2003; Lane and Day, 1999; Mitsch et al., 2005; 

Day et al., 2009a).  Eutrophication generally refers to gradual nutrient enrichment in water 

bodies (Christropherson, 2009; Ferreira et al., 2011), but when loading rates are very high, 

nutrients also accumulate in soils and vegetation (Dettmann, 2001; Kamer et al., 2001).  In the 
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presence of excessive nutrient loadings, wetland ecosystem processes are altered, resulting in 

measurable changes in plant productivity, including increases in net primary productivity (U.S. 

EPA, 2002; Ferreira et al., 2011). Functional indicators of eutrophication include increased 

biomass production and stem height, and increased leaf nitrogen and phosphorus content (U.S. 

EPA, 2002), all of which are associated with increased chlorophyll content. Additionally, 

Haboudane et al. (2002) found that estimates of chlorophyll concentration based on leaf and 

canopy spectra can provide a proxy measurement of N content.  Several studies have shown 

however, that despite increased above ground biomass, excess nutrient loading in salt marshes 

reduces below ground plant growth, root and rhizome biomass, and carbon accumulation, 

decreasing geomorphic stability and causing significant loss in marsh elevation (Darby and 

Turner, 2008a, 2008b; Turner et al., 2009; Turner, 2010; Deegan et al., 2012).  Day et al. 

(2009a) challenged Darby and Turner’s (2008a; 2008b) results based on a synthesis of previous 

studies showing that the loading rates they used far exceeded nutrient loading rates in the outfall 

area of the Caernarvon, Louisiana river diversion.  Day et al. (2009b) also reported finding high 

belowground biomass in marshes impacted by the river diversion at Caernarvon, Louisiana. Yet, 

Howes et al. (2010) reported preferential erosion in response to Hurricanes Katrina and Rita in 

Louisiana marshes that received diverted freshwater for 18 years prior to those storm events.  

Despite the lack of consensus, studies of the effects of river diversions on nutrient enrichment 

and eutrophication of Louisiana’s wetlands have been limited (Day et al., 2009a; Boustany, 

2010).   

One strategy for detecting and monitoring nutrient enrichment of wetland ecosystems is 

to characterize nutrient dynamics through periodic water sampling performed weekly or 

monthly, a strategy that may not fully capture the effects of nutrient pulsing (Siciliano, et al., 
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2008).  Since estuarine plant tissues integrate the nutrient regime over time, another approach is 

to harvest plant tissues seasonally to examine nutrient content as an indicator of eutrophication 

(Boyer and Fong, 2005; Cohen and Fong, 2006; Siciliano, et al., 2008).  When applied over large 

areas in wetland environments, both strategies are resource intensive and often impractical in 

terms of safety and accessibility (Siciliano, et al., 2008; Bethel, et al., 2011).  Since data are 

generally collected from the most easily accessible sites during a limited number of campaigns, 

the value of the data may be limited both spatially and temporally, often requiring interpolation 

over large areas and extended time periods (Siciliano, et al., 2008; Volpe et al., 2011).  

 Remote sensing offers a practical, but underutilized approach for monitoring nutrient 

enrichment and eutrophication of coastal Louisiana marshes. Analysis of spectral reflectance 

data has proven useful for assessing vegetation biophysical characteristics, including biomass 

and nutrient content (Hardisky et al., 1984; Hardisky et al., 1986; Guo and Price, 2000; 

Rundquist et al., 2001; Siciliano, et al., 2008).  Working in a wetland environment Hardisky et 

al. (1984) found that biomass estimates based on in situ indices were comparable to estimates 

from traditional harvest techniques. In a 1986 study of salt marsh vegetation, Hardisky et al. 

again used field spectroradiometer data to find that biomass and plant canopy height were 

significantly correlated with red and near infrared (NIR) spectral reflectance of salt marsh 

vegetation species, replicating earlier findings of high correlation between spectral data and 

green biomass.  A 1998 study by Jensen et al. found that non-intrusive in situ LAI measurements 

of salt marsh vegetation were significantly correlated with in situ above-ground biomass 

measurements, suggesting that field sampling of biomass can be obtained using non-destructive 

means.  Results of a 2002 study by Jensen et al. again found that the NIR band and selected 

vegetation indices, including the Normalized Difference Vegetation Index (NDVI), were highly 
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correlated with biomass, LAI, and chlorophyll concentration in an estuarine salt marsh. In 

support of these findings, strong correlations between NDVI and plant primary productivity, 

NDVI and biomass, and NDVI and LAI have been reported in the literature (Tucker and Sellers, 

1986; Justice et al., 1998, and Wang et al., 2004). 

The utility of NDVI is based on the difference between low red reflectance and high NIR 

reflectance of healthy vegetation (Gitelson et al., 1996; Gitelson 2004).  Once red reflectance 

saturates at its lowest level, however, there is little change in NDVI even as NIR reflectance 

increases (Gitelson et al., 1996; Gitelson, 2004).  The result is reduced sensitivity to changes in 

green biomass when vegetation density is moderate to high (Gitelson, 2004).  Other indices 

developed in response to the observed saturation of NDVI and of particular interest for wetland 

vegetation studies include the Green Normalized Difference Vegetation Index (GNDVI), 

developed by Gittelson et al. (1996), the Wide Dynamic Range Vegetation Index (WDRVI), 

developed by Gittelson (2004), and the Atmospherically Resistant Vegetation Index (ARVI), 

developed by Kaufman and Tanre (1992). The GNDVI, which replaces the green band for the 

red band in the NDVI, has been used to successfully assess biomass variation (Gittelson et al., 

1996; Vigier et al., 2004).  The WDRVI enhances the dynamic range of the NDVI using a 

weighting parameter based on vegetation density characteristics within a study area (Gittelson, 

2004).  The ARVI has been shown to be slightly more sensitive to vegetation changes and less 

sensitive to atmospheric and soil affects than other indices in the presence of moderate to high 

vegetation cover (Qi et al., 1994).  Each of these indices has been used to successfully 

characterize spatial patterns of salt marsh biomass (Gitelson et al., 1996; Zhang et al., 1997; 

Gitelson, 2004), suggesting their utility for delineating regions of high marsh biomass relative to 

introduced nutrient rich freshwater based on remotely sensed data. 
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Research to develop effective methods for assessing and monitoring nutrient enrichment 

of Louisiana’s coastal wetlands is needed.  This study was conducted to evaluate the 

relationships between vegetation biophysical characteristics and spectral reflectance patterns 

associated with a coastal Louisiana marsh receiving freshwater from the Mississippi River. The 

primary goal was to use field spectra and satellite image data to identify bands and vegetation 

indices most highly correlated with field measurements of vegetation parameters that respond 

rapidly to nutrient enrichment. The ability to accurately map potentially eutrophic and relatively 

unenriched wetland areas allows for more informed and efficient sample collection protocols and 

contributes to effective assessment and monitoring of eutrophication associated with freshwater 

introduction into Louisiana’s wetland ecosystems. 

 Study Area 

The study area (Figure 3.1) is an approximately 138 km2 portion of the Barataria Basin in 

Lower Plaquemines Parish, Louisiana.  The Barataria Basin is an interdistributary estuarine 

wetland system of the Mississippi Delta severely impacted by wetland degradation and loss, 

having experienced some of the highest rates of land loss in Louisiana’s coastal zone (Conner 

and Day, 1987; Bethel et al., 2011).  Within the Barataria Basin, wetland vegetation is 

characterized by a progression of fresh, brackish, intermediate and salt marshes, moving to open 

water (Conner and Day, 1987).  The study area within the basin is bordered by the Mississippi 

River to the east and stretches beyond the Bayou Grand Chenier ridge toward the open waters of 

Barataria Bay to the west.  It incorporates both highly degraded and fragmented marsh areas 

north and northeast of Bayou Grand Chenier Ridge, as well as relatively intact core marsh west 

and southwest of the ridge, a juxtaposition allowing compelling comparisons.  Land within the 

study area is generally characterized by high density marsh vegetation.  It is generally dominated 
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by salt tolerant species, such as Spartina alterniflora, Spartina patens, and Distichlis spicata, 

although fresher species, such as Ipomoea sagitatta, Vigna luteola, and Schoenoplectus pungens, 

are also found within the study area.   

The West Pointe a la Hache Siphon Diversion Project is located within the study area and 

has been operational since 1993.  The project was designed to introduce freshwater and sediment 

for marsh restoration and land building (OCPR, 2010; LaCoast, 2008). It is a relatively low-flow 

diversion consisting of eight 1.8 m diameter steel siphon pipes that cross over the levee, run 

underground, then discharge river water into an outfall pond.  Four channels radiate southward 

from the pond to distribute freshwater to the surrounding marsh (Richardi, 2013).  Although 

maximum discharge for the siphons is estimated as 2144 ft3s-1 (61 m3s-1), based on high river 

stage and all siphons in full operation, freshwater flow at WPH typically ranges between 500-

1000 ft3s-1 (14-28 m3s-1) when the siphon is operational (Richardi, 2013).  It is estimated that the 

siphon has operated approximately 60% of the time since flow began in January, 1993 (Richardi, 

2013).  Although the siphons at WPH have had some effect in reducing salinities, land loss is 

still occurring in the project area (Boshart and Van Cook, 2007; Richardi, 2013). 

 Methods 

 Landsat 5 Thematic Mapper Satellite Image Data 

 Water Turbidity Frequency Datasets 

Water turbidity frequency datasets were produced for this study by the U.S. Army Corps 

of Engineers (USACE) based on a technique developed by Allen et al. (2008) and outlined in 

Appendix A.  The datasets are based on time series cloud-free Landsat images captured between 

1984 and 2010 and corresponding to periods of pre- and post-siphon operation of the WPH 

diversion project.  Satellite image specifications are provided in Table 3.1.  For the post-siphon 
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operation time period, optimal Landsat image dates were chosen to coincide with siphon 

freshwater flow based on records obtained from Louisiana Coastal Protection and Restoration 

Authority (CPRA) Strategic Online Natural Resources Information System (SONRIS, 2011).  

Pre- and post-siphon operation satellite image dates and associated freshwater flows are provided 

in Table 3.2. 

The USACE datasets consist of two turbidity frequency maps, adapted versions of which 

are provided in Figures 3.2 and 3.3. The pre-1993 turbidity map (Figure 3.2) depicts the 

frequency of classification of water pixels as turbid during the pre-siphon time period between 

1984 and commencement of siphon operation in 1993.  This turbidity frequency dataset was used 

to estimate baseline turbidity. The post-1993 turbidity map (Figure 3.3) depicts the frequency of 

classification of water pixels as turbid for image dates captured during periods of siphon 

operation between 1993 and 2010.   

 Estimating Highest and Lowest Turbidity Post-Siphon Operation 

The USACE turbidity frequency datasets were used to derive an estimate of turbidity 

attributed to siphon operation.  This was accomplished by comparing pre- and post-1993 

turbidity.  The USACE turbidity frequency datasets were reprojected to UTM, Zone 15, GRS 

1980, NAD 83 and checked for consistent alignment. For each turbidity frequency map, five 

classes of water turbidity were identified using natural breaks in ArcGIS, a geographic 

information system (GIS) software.  The highest turbidity classes in the pre- and post-siphon 

datasets were compared and areas of intersection were removed from the post-siphon turbidity 

data.  The resulting subset provides a map layer representing areas of highest turbidity associated 

with freshwater flow during siphon operation, thus indicating locations that consistently received 

distributions of sediment-laden freshwater from the siphon (Allen et al., 2008).  This procedure 
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was repeated for the lowest turbidity classes in the pre- and post-siphon datasets to create a map 

layer delineating areas of lowest turbidity associated with siphon freshwater flow. 

 Mapping High and Low Freshwater Impacted Marsh Areas 

ArcGIS was used to identify marsh areas subject to relatively high and low freshwater 

impacts.  Landsat 5 TM imagery captured April 17, 2011 was reprojected to UTM, Zone 15, 

GRS 1980, NAD 83 and checked for consistent alignment with the turbidity frequency maps.  

The imagery was subset to the study area and a land-water map was developed using a hybrid 

classification method described by Bethel et al. (2011) and outlined in Appendix B. A 

vegetation-only layer was created from the land-water map by masking pixels representing water 

and developed land.  Restricting subsequent remote sensing and geographic information system 

processing to vegetation-only pixels minimized the influence of non-vegetation pixels and 

insured that final results were based solely on analysis of pixels classified as marsh vegetation. 

The vegetation layer was then included in a GIS with the map layers produced from the turbidity 

frequency data delineating highest and lowest turbidity associated with freshwater flow during 

siphon operation. 

In the GIS environment 15 m buffers were created around areas of highest and lowest 

turbidity associated with siphon operation.  Those areas within the highest turbidity buffers were 

classified as high freshwater impact areas and those within the lowest turbidity buffers were 

classified as low freshwater impact areas.  Vegetated areas within the highest turbidity buffers 

were identified as marsh areas most consistently exposed to freshwater introduction, while 

vegetated areas within the lowest turbidity buffers were identified as marsh areas least impacted 

by freshwater introduction.  Figure 3.4 shows the resulting freshwater impacts map delineating 

vegetated marsh areas subject to high and low freshwater impacts.   
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 Accuracy Assessment of Freshwater Impacts Map 

Hydrographic salinity data obtained from SONRIS were used to assess the accuracy of 

the freshwater impact map (SONRIS, 2012). Figure 3.5 shows the locations of salinity data 

collection sites within areas of high and low freshwater impacts. For salinity estimates during 

siphon operation, 12 salinity data dates were identified as dates of siphon operation nearest the 

Landsat image capture dates (Table 3.3).  For no flow salinity estimates, 71 salinity data dates 

were identified for periods in which the siphon had not operated for a minimum of 7 days (Table 

3.4).  Estimates of mean salinity (ppt) during siphon freshwater flow and no flow periods were 

calculated for the 9 salinity data collection sites in high freshwater impact areas and for the 6 

salinity data collection sites in low freshwater impact areas (Table 3.5).  All salinity estimates 

were based on hourly bottom and surface salinity readings. The Mann-Whitney statistical 

method was used to test for differences in mean salinity in high and low freshwater impact areas 

during both freshwater flow and no flow periods (VassarStats, 2014). 

 Mapping the Vegetation Productivity Gradient 

To aid in the identification of appropriate field data collection sites, a map of the study 

area’s vegetation productivity was created.  The map was based on an NDVI derived from the 

Landsat 5 Thematic Mapper (TM) image acquired over the study area on April 17, 2011 and 

classified into areas of high, medium, and low NDVI values (Figure 3.6). 

 Field Data 

 Sample Site Selection 

A randomized opportunistic sampling approach was used for field data collection.  This 

allowed the use of preexisting sample sites maintained by Louisiana’s Coastal Protection and 

Restoration Authority (CPRA), many of which include infrastructure in the form of boardwalks 
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conducive to field sampling in the marsh.  Sample sites were selected to insure data collection 

across vegetation productivity and freshwater impact gradients within the study area. A GIS 

dataset of existing CPRA sample sites, the NDVI-based Vegetation Productivity Gradient map 

(Figure 3.6), and the Freshwater Impacts map (Figure 3.4) were co-registered in ArcGIS to 

derive 6 classes of potential sample sites: low freshwater impact/low NDVI; low freshwater 

impact/medium NDVI; low freshwater impact/high NDVI; high freshwater impact/low NDVI; 

high freshwater impact/medium NDVI; and high freshwater impact/high NDVI.  Based on the 

sample site classification a field investigation was conducted to determine the suitability of each 

potential site for data collection in terms of accessibility and sufficient area of contiguous 

emergent marsh vegetation.  Figure 3.7 shows the 24 sample sites identified with 4 sites 

representing each of the 6 classes described above. All but 3 of the sample sites chosen were 

preexisting CPRA sample sites.  

 Field Data Collection 

Field data collection was accomplished during peak growing season on August 2 and 

August 3, 2011, and included measuring vegetation-based indicators of marsh health and 

possible nutrient enrichment, including spectral reflectance as an indicator of overall health, 

chlorophyll concentration as a proxy for leaf nitrogen content, and leaf area index (LAI) and 

plant stem height as a proxy for above ground biomass (U.S. EPA, 2002; Bethel et al., 2011).  

All field data were collected within single, approximately 4.0 m2 plots located at each 

sample site.  The sites were GPS located using a Trimble Nomad 900GLC hand held computer 

and were accessed by boat.  An Ocean Optics USB4000 Field Spectroradiometer (~350-1045 nm 

at ~ 0.2 nm resolution), mounted on a pole to minimize interference with data collection, was 

used to simultaneously measure incoming solar radiation and top of canopy (TOC) reflectance at 
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each sample site. TOC reflectance was measured approximately 0.75 m above the canopy. 

Reflectance measurements were calibrated once at each site using a white (99% reflectance) 

Spectrolon calibration panel, after which three reflectance measurements distributed within the 

sample plot were collected and averaged.  A Li-Cor 2000 LAI meter was used to estimate foliage 

biomass at each of the sample sites.  Three sample sequences, each consisting of one above 

canopy for every four below canopy measurements, were taken at each site and averaged.  The 

above canopy measurements were taken to calibrate the LAI readings for atmospheric conditions 

(LAI-2000, 1992).  Average stem height at each sample site was calculated based on 

measurements of the five to ten tallest stems of dominant species within each sample plot 

according to procedures outlined by U.S. EPA (2002).  A Field Scout CM1000 chlorophyll meter 

was used to measure relative leaf chlorophyll concentration. Within each sample plot, average 

chlorophyll concentration was derived from five CM1000 measurements collected using 

standard procedures outlined by the CM1000’s manufacturer (FieldScout, 2009). The CM1000 

senses reflectance at 700 nm, the wavelength absorbed by chlorophyll a, and at 840 nm, a 

wavelength unaffected by leaf chlorophyll content that serves as an indicator of how much light 

is reflected due to leaf physical characteristics. The ratio of reflectance at 700 nm to reflectance 

at 840 nm is multiplied by a constant to derive an index value between 0 and 999, with higher 

values indicative of higher chlorophyll content (FieldScout, 2009). A study by Murdock, et al. 

(2004) found that the Field Scout, measuring reflectance, rather than transmittance and 

absorbance, and offering the advantage of canopy measurement rather than single leaf 

measurement, performed as well as the SPAD 502 chlorophyll meter for obtaining measurements 

in the field.  
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All field data were collected at ground level outside the boat whenever possible.  When 

necessary for reasons of safety or adequate access, the boat was positioned adjacent to the shore 

at the sample site and data were collected from floor level of the boat or from a specially 

designed platform and ladder apparatus within the boat (Figure 3.8). 

 Digital Globe WorldView 2 Image Data 

 Data acquisition, preprocessing, and accuracy assessment 

DG-WV2 satellite images were acquired over the study area on August 1 and August 6, 

2011 (within 4 days of field data collection).  Each image covered the aerial extent of the study 

area delivered as georeferenced and radiometrically corrected products scaled to absolute 

spectral reflectance (DigitalGlobe, 2010).  Satellite image specifications are provided in Table 

3.1. The raw digital numbers (DN) of each image were converted to top-of-atmosphere radiance 

and an empirical line method was used to relate radiance to band equivalent reflectance (BER) of 

field spectra as described by Staben, et al. (2011).  This was accomplished for each image band 

by extracting values for the brightest and darkest pixels and for pixels corresponding to a random 

selection of 12 of the field sample sites. The extracted pixel values were used to generate a 

regression equation for each image band to convert radiance values to reflectance values.  

Accuracy assessment was based on computing the root mean square error (RMSE) for each 

image band by comparing the pixel values of the reflectance image to the corresponding BER of 

field spectra at the sample sites not selected to generate the regression equations.  The RMSE 

represents the average magnitude of error, providing a measure of the spread of the data around 

the regression line. Analysis of the computed RMSE values revealed that sample site BA01-114 

contributed disproportionally to the total error for each band, suggesting that it was an outlier.  

Examination of field notes and photos taken at the site confirmed that the data point should be 
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excluded based on the extent of exposed dark soils unique to that sample site.  The data point 

was removed from further analysis and revised regression equations were developed.  The 

regression equations used to produce the final reflectance images and the associated RMSEs are 

provided in Table 3.6.  

 Removal of cloud contamination and creation of composite image 

Since the two satellite images covered the same areal extent and were captured within a 

six day period, cloud contamination was removed by creating a composite of the two images. 

Clouds and cloud shadows were masked from each image using the hybrid classification method 

described by Bethel et al. (2011) and outlined in Appendix B. This procedure was followed by 

digitization to remove remnant hazy areas.  Pixel values were extracted from both images at 400 

random points located within intersecting cloud-free areas of the images. The extracted pixel 

values were used to generate regression equations for each image band to predict the missing 

values in the cloud-masked August 1 image based on values from the August 6 image.  The 

resulting composite image retained the original reflectance values of the August 1 image at all 

field sample sites and in all other areas not contaminated by clouds. In areas where cloud 

contamination had been removed from the August 1 image the composite image incorporated 

values predicted by the regression equations.  Regression equations relating the two images are 

provided in Table 3.7. 

 Classification of composite image, classification accuracy assessment, and creation of 

vegetation indices 

The composite image was classified into three classes, water, vegetation, and developed 

land, using the hybrid classification method described by Bethel et al. (2011) and outlined in 

Appendix B.  Developed land consisted of an exceptionally small percentage of the total pixels 
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in the scene, making accuracy assessment of that class unfeasible. Following close visual 

inspection developed land was masked from the classification. Accuracy assessment of the 

resulting water/vegetation classification was performed using 150 stratified random points.  The 

water pixels were then masked from the classified image and vegetation indices were calculated 

using the vegetation-only data.  The indices calculated included the NDVI, GNDVI, WDRVI, 

and ARVI.  Based on vegetation density characteristics within the study area, including moderate 

to high LAI values, a weighting parameter of 0.2 was used to calculate WDRVI, as 

recommended by Gitelson (2004). Two of each of the indices were calculated, one using DG-

WV2 NIR band 7 (770-895 nm) and one using DG-WV2 NIR band 8 (860-1040 nm).  The 

formulas used to calculate the vegetation indices are provided in Table 3.8. 

 Statistical Analysis 

 Estimating biophysical characteristics 

Pearson product-moment correlation analysis was used to analyze the linear relationships 

between biophysical characteristics (LAI, chlorophyll concentration, and average stem height) 

and field spectra, image bands, and vegetation indices. The resulting correlation coefficients 

were tested using a two-tail test of significance at the p ≤ 0.05 level. To test the ability of the 

most highly significantly correlated spectral data to predict marsh biophysical characteristics, 

empirical models were developed using regression analysis.  The Jackknife Cross Validation 

approach was used to assess the accuracy of the resulting predictions.  This approach was 

implemented by withholding the data from one sample site and building a regression model 

using data from the remaining sites.  This process was repeated until all sites had been withheld.  

Each regression model was tested for its ability to predict the withheld value by comparing 
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actual and predicted values and computing the root mean square error (RMSE) values.  Based on 

correlation and regression results an estimated chlorophyll concentration map was generated. 

 Testing the correlation between estimated chlorophyll concentration and proximity to the 

siphon 

To investigate the relationship between estimated chlorophyll concentration and 

proximity to the source of introduced freshwater, an analysis of the spatial distribution of 

predicted chlorophyll values was conducted. The estimated chlorophyll map was classified into 5 

classes using a Jenks natural breaks classification in ArcGIS, after which 29 concentric, non-

overlapping buffers, each 500 m wide, were created around the siphon. Within each of the 

buffers, the percentages were calculated for pixels classified as highest chlorophyll 

concentration, pixels classified as highest chlorophyll concentration within high freshwater 

impact areas, and pixels classified as highest chlorophyll concentration within low freshwater 

impact areas. This procedure was repeated for pixels classified as lowest chlorophyll 

concentration.  The linear relationships between these percentages and distance to the siphon 

were investigated using Pearson product-moment correlation analysis. The resulting correlation 

coefficients were tested using a two-tail test of significance at the p ≤ 0.05 level. 

 Visual comparison of the estimated chlorophyll concentration map with ancillary data 

To further assess its accuracy, the chlorophyll concentration map was compared to two 

Jenks natural breaks 5 class colorized NDVI maps.  The visual comparison was intended to 

identify any conflicting patterns that might exist between estimated chlorophyll concentration 

and overall vegetation health. The first NDVI map was derived from the DG-WV2 composite 

image used to create the chlorophyll map. The second NDVI map was derived from an August 

23, 2011 Landsat 5 TM image, captured within 22 days of the images from which the DG-WV2 
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composite image and the chlorophyll concentration map were created. The estimated chlorophyll 

map was also compared to a Jenks natural breaks 5 class digital elevation model (DEM) adapted 

from a 2010 LiDAR-derived DEM (ArcGIS online; LOSCO, LSU, C4G, 2010).  Since 

differences in marsh elevation are known to affect species composition and overall health, thus 

affecting chlorophyll concentration, this visual comparison was intended to identify any 

chlorophyll concentration patterns that might be related to differences in elevation. Finally, 

available Google Earth imagery was examined for evidence of vegetation patterns that 

conformed or conflicted with the estimated chlorophyll concentration map. 

 Results 

 High and Low Freshwater Impacts 

The spatial distribution of high and low freshwater impact areas depicted on the 

freshwater impacts map (Figure 3.4) suggests a general reduction in impact with increasing 

distance from the siphon diversion along a north to south gradient. The location of the Texas 

Company Canal coincides with a relatively abrupt change from high freshwater impacts north of 

the canal to low freshwater impacts to the south.  In contrast to this general trend, relatively 

discontinuous and isolated areas of high turbidity were found distant from the siphon to the south 

and southwest between Bayou Grand Chenier Ridge and Bays Chene Fleur, Batiste, and 

Sansbois. 

Greater fluctuation in mean salinity was observed among high freshwater impact sites 

compared to low impact sites (Figure 3.9). With the exception of site BA04-12, both high and 

low freshwater impact sites exhibited greater variation in mean salinity during periods of siphon 

operation compared to siphon dormancy (Figure 3.10).  During siphon flow periods both high 

and low freshwater impact sites had significantly lower mean salinity (Z = -3.09, P = 0.001 and 
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Z = -2.8, P = 0.003, respectively) compared to no-flow periods (Figure 3.11).  Although no 

significant difference was found between high and low freshwater impact sites during periods of 

siphon dormancy, mean salinity during siphon operation was significantly lower at high 

freshwater impact sites compared to low impact sites (Z = -2.65, P = 0.004).  The results suggest 

that siphon operation freshens water throughout the study area, but that water is freshened to a 

greater extent in areas classified as high freshwater impact areas as compared to areas classified 

as low impact areas.  Furthermore, when salinity data for all dates (freshwater flow and no flow 

periods) were tested, this finding was replicated.  That is, high impact sites were found to be 

statistically significantly lower in mean salinity than low freshwater impact sites (Z= -2.42, P = 

0.008), suggesting that the overall effect of the siphon is to freshen the high impact areas 

significantly more than the low impact areas and also suggesting that this effect may extend 

beyond siphon operation periods.  

 Image processing, classification, and accuracy assessment 

Conversion of the satellite images to reflectance was judged acceptable based on the 

resulting RMSE values (Table 3.6) and guidelines outlined by Staben, et al. (2001).  The 

water/vegetation classification of the composite image yielded an overall accuracy of 98% with 

an overall Kappa statistic of 0.96.  For the water class, producer’s and user’s accuracies were 

98.65% and 97.33%, respectively.  For the vegetation class, producer’s and user’s accuracies 

were 97.37% and 98.67%, respectively. 

 Field spectra correlation analysis 

The strongest statistically significant correlations between field spectra and chlorophyll 

were positive correlations found in the near infrared (NIR) region of the spectrum, with the 

highest r value of 0.79 found at 749.9 nm. Regression using the first polynomial yielded an r² of 
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0.64.  Correlations between field spectra and LAI and between field spectra and stem height 

were weak.  The strongest correlation for LAI was found in the near infrared region (r = 0.49 at 

896 nm), while the strongest correlation for stem height was found in the red edge region (r = 

0.59 at 705.9 nm). Figure 3.12 provides a graph representing the resulting correlation 

coefficients. 

 Image bands and vegetation indices correlation analysis 

Figures 3.13 and 3.14 show the correlation plots depicting the strength and direction of 

the relationships between the tested vegetation indices and the biophysical variables and between 

the image bands and the biophysical variables, respectively.  Correlation values representing 

relationships between vegetation parameters and image bands and between vegetation 

parameters and vegetation indices are provided in Table 3.9.  As indicated in Figure 3.13, the 

strongest statistically significant correlation was a positive relationship between chlorophyll 

concentration and ARVI using DG-WV2 near infrared band 8 (860-1040 nm) (r = 0.88, p < 

0.05).   Figure 3.14 illustrates the positive correlation found between chlorophyll concentration 

and DG-WV2 near infrared band 8 (860-1040 nm) (r = 0.76, p < 0.05) and the negative 

correlation found between chlorophyll concentration and DG-WV2 red band 5 (630-690 nm) (r = 

-0.76, p < 0.05.)  No bands or indices correlated well with LAI or plant height and those 

parameters were removed from further analysis. 

 Regression analysis and predicted chlorophyll concentration 

The ARVI using NIR image band 8 was optimal for estimating chlorophyll concentration 

(r2 = 0.77), performing slightly better than the NDVI using DG-WV2 near infrared band 8 (860-

1040 nm) (r2 = 0.74) and the WDRVI using DG-WV2 near infrared band 8 (860-1040 nm) (r2 = 

0.74). Figures 3.15 (a) and (b) provide graphs of the regression model used to develop the 
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predicted chlorophyll concentration map and the associated 95% confidence intervals, 

respectively.  Based on an index of 0 to 999, the relative chlorophyll concentration values 

measured in the field ranged from 89 to 472, with a mean of 234.61.  Jackknife Cross Validation 

of the predictive equation yielded a root mean square error (RMSE) of 42.96 (Table 3.10). The 5 

class estimated chlorophyll map is provided in Figure 3.16 and a map classifying the level of 

confidence associated with predicted chlorophyll concentration is provided in Figure 3.17.  

 Spatial analysis of predicted chlorophyll concentration 

The chlorophyll concentration map with an overlay of 29 concentric, non-overlapping 

500 m buffers is provided in Figure 3.18.  The spatial distribution of predicted chlorophyll values 

indicates that estimated chlorophyll concentration is related to proximity to the siphon. A 

statistically significant negative correlation was found between the percentage of total vegetation 

pixels in the highest chlorophyll concentration class and distance to the siphon (r = -0.83; p < 

0.0001), indicating decreasing chlorophyll concentration with increasing distance to the siphon.  

Within areas most highly impacted by freshwater introduction an even stronger statistically 

significant negative correlation was found (r = -0.91; < 0.0001). No statistically significant 

correlation was found between the percentage of highest chlorophyll pixels and distance to the 

siphon within areas of low freshwater impact. 

In contrast, a statistically significant positive correlation was found between the 

percentage of total vegetation pixels in the lowest chlorophyll concentration class and distance to 

the siphon, indicating that low chlorophyll concentration and distance to siphon vary together. 

This relationship was evident throughout the study area (r = 0.87; p < 0.0001) and within low 

freshwater impact areas (r = 0.83; p < 0.0001), while a slightly weaker correlation was found 

within high freshwater impact areas (r = 0.71; p < 0.0001).  Graphs depicting the relationships 
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between predicted chlorophyll concentration and distance to the source of freshwater are 

provided in Figures 3.19, 3.20, and 3.21. Correlation coefficients (r-values) relating distance to 

siphon with percentage of pixels in highest and lowest chlorophyll classes by level of freshwater 

impact are provided in Table 3.11.   

 Visual comparison of the estimated chlorophyll concentration map with NDVI maps 

and LiDAR-based DEM 

Visual comparisons of the estimated chlorophyll map with the DG-WV2-based and 

Landsat 5 TM-based NDVI maps suggest a high level of agreement in their depiction of 

vegetation condition.  The chlorophyll map reveals areas of interest exhibiting high levels of 

chlorophyll concentration southwest of the siphon beyond the Bayou Grand Chenier Ridge that 

are also evident on both NDVI maps (Figures 3.22 b and c).  Although differences in marsh 

elevation are known to affect species composition and overall health, thus affecting chlorophyll 

concentration, there are no corresponding patterns evident in the LiDAR-based DEM (Figure 

3.22 d).  This suggests that high chlorophyll concentration in the areas of interest may not be 

explained by differential effects of elevation on marsh vegetation. Examination of Google Earth 

imagery from various dates did not reveal a discernible difference in the appearance of 

vegetation within the areas of interest compared to surrounding areas.  The patterns evident in 

the chlorophyll and NDVI maps, therefore, were not apparent in the Google Earth imagery, 

underscoring the need for further research to understand these areas of interest. 

 Discussion 

The lack of a statistically significant link between vegetation spectral response and LAI 

and stem height measurements respectively, prevented the use of those parameters for predicting 

vegetation productivity within the study area. The relative lack of variation among the sample 



55 

 

sites in LAI and in plant stem height, especially when compared to variation in chlorophyll, 

suggests a high degree of homogeneity of vegetation type throughout the study area (Table 3.12).  

In contrast, the relatively high degree of variation in chlorophyll content among the sample sites 

suggests a significant gradient exists for vegetation condition, allowing an acceptable degree of 

accuracy in predicting chlorophyll concentration throughout the study area. As indicated in 

Figure 3.15 (b), at the 95% level, confidence in the accuracy of predicted chlorophyll 

concentration is greatest for values in the mid-range. The map based on the 95% confidence 

interval for predicting chlorophyll concentration indicates that, with the exception of a very 

limited area of extremely high chlorophyll content nearest the siphon, the model can be used 

most confidently to assess chlorophyll concentrations closer to the WPH siphon. 

Measurable differences in plant productivity, as evidenced by differences in chlorophyll 

concentration, were found to be spatially related to the location of the Pointe a la Hache siphon 

diversion, the source of introduced freshwater.  Plant productivity appears to be greatest nearest 

the siphon and to decrease with increasing distance from the siphon, suggesting that introduced 

freshwater is positively impacting plant productivity.  This impact appears strongest in regions 

that have most consistently received introduced freshwater and weakest in areas that have least 

consistently received introduced freshwater, suggesting that plants within high freshwater impact 

areas are photosynthesizing at a rate different from vegetation within low freshwater impact 

areas.  Results of the chlorophyll concentration map are supported by the digital elevation model 

that suggests that nutrient enriched freshwater flows from the higher elevation siphon to lower 

elevation areas south and west of the siphon. Flow rate is assumed to decrease as introduced 

freshwater moves away from confined areas near the siphon and into more open areas south and 

west of the siphon, causing nutrient enriched sediment to settle out and potentially enrich 
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vegetation. The spatial distribution of predicted chlorophyll concentration suggests the higher 

elevation Bayou Grand Chenier Ridge then acts as a natural barrier to the flow of freshwater to 

areas south and west of the Chenier. The spoil banks created in the dredging of the Texas 

Company Canal may function similarly to slow or block the flow of freshwater, thereby helping 

to explain the spatial distribution of areas of highest and lowest freshwater impacts and the 

corresponding differences in chlorophyll concentration. 

Areas of unusually high chlorophyll concentration are apparent between 7500 and 9500 

m southwest of the siphon (Figures 3.16, 3.18, and 3.22 a).  Vegetation within those areas exhibit 

consistently higher NDVI values for both Landsat- and DG-WV2-derived NDVI maps (Figure 

3.22 b and c). Although this suggests possible differences in elevation or in vegetation species 

composition, close examination of the DEM (Figure 3.22 d), satellite imagery, and Google Earth 

imagery from various dates did not reveal visual clues to support either possibility. The patterns 

of natural streams near the regions in question suggest hydrological influences that may account 

for differences in chlorophyll concentration and NDVI values. Additional detailed analysis of 

vegetation and hydrology may be necessary to further understand the evident vegetation 

differences. 

 Conclusions 

Remotely sensed imagery and field measured vegetation parameters were used to 

successfully identify spectral bands and vegetation indices most highly correlated with 

vegetation characteristics suggestive of wetland nutrient enrichment. High correlation between 

ARVI using near infrared image band 8 and field measured chlorophyll content allowed the 

prediction of estimated chlorophyll content across the study area.  The resulting spatial 

distribution of estimated chlorophyll concentration was related to proximity to the source of 
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introduced freshwater, with chlorophyll concentration decreasing with increasing distance from 

the West Pointe a la Hache siphon diversion. Additionally, areas most consistently impacted by 

freshwater introduction were associated with the highest levels of chlorophyll concentration, 

while least impacted areas were associated with the lowest levels of chlorophyll concentration. 

These results suggest that remotely sensed imagery combined with field measured vegetation 

parameters can be used to accurately identify freshwater impacted marsh areas vulnerable to 

eutrophication.  
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Figure 3.1 Location of the approximately 138 km² study area in the Barataria Basin 

(adapted from ArcGIS basemap with April 17, 2011 Landsat 5 TM image overlay). 
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Figure 3.2 Pre-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 3.3 Post-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 3.4 Map of study area delineating vegetated marsh areas subject to high and low 

freshwater impacts. 
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Figure 3.5 Map of study area showing salinity data collection sites in consistently high and 

low freshwater impact areas. 
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Figure 3.6 Map of study area showing areas of high, medium, and low NDVI values. 
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Figure 3.7 Sample sites across vegetation productivity and freshwater impact gradients. 
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Figure 3.8 (a) Platform and ladder apparatus for data collection from the boat; (b) 

Computer for spectroradiometer data collection; (c) Improved vantage point for collection 

of vegetation survey data; (d) Data collection with the Ocean Optics USB4000 

spectroradiometer system; (e) Data collection with the LAI-2000 Plant Canopy Analyzer. 
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Figure 3.9 Distribution of mean salinity at high and low impact sites during siphon operation and siphon dormancy. 
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Figure 3.10 Standard deviation of mean salinity at high and low freshwater impact sites 

during siphon operation and dormancy. 
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Figure 3.11 Mean salinity at high and low freshwater impact sites during siphon operation 

and dormancy. 
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Figure 3.12 Correlation coefficients for relationships between field spectra (every 10th band between 400 and 900 nm) and 

vegetation biophysical parameters. 
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Figure 3.13 Correlation coefficients for relationships between vegetation indices and 

vegetation biophysical parameters. 
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Figure 3.14 Correlation coefficients for relationships between DG-WV2 image bands 

and vegetation biophysical parameters. 
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Figure 3.15  (a) Optimal regression model for predicting chlorophyll concentration.         

(b) 95% confidence intervals for predicted chlorophyll concentration 
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Figure 3.16 Estimated chlorophyll concentration based on ARVI using DG-WV2 near 

infrared band 8 (860-1040 nm). 
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Figure 3.17 Map depicting level of confidence in estimated chlorophyll concentration. 
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Figure 3.18 Estimated chlorophyll concentration map with 500 m buffers overlaid. 
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Figure 3.19 Graph depicting the relationship between highest and lowest chlorophyll 

concentration and distance to the siphon.  
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Figure 3.20 Graph depicting the relationship between highest and lowest chlorophyll 

concentration within high freshwater impact areas and distance to the siphon. 
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Figure 3.21 Graph depicting the relationship between highest and lowest chlorophyll 

concentration within low freshwater impact areas and distance to the siphon. 
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Figure 3.22 Areas of unusually high chlorophyll concentration evident in (a) the estimated chlorophyll concentration map, (b) 

the DG-WV2 composite NDVI map, and (c) the Landsat 5 TM NDVI map, are not evident in (d) the LiDAR-derived DEM. 
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Table 3.1 Satellite image data specifications. 

 Band Wavelength 

(nm) 

Nominal Spectral 

Location 

DigitalGlobe WorldView2 

     Bands 1-8, 2 m    

     Panchromatic 0.5 m  

1 

2 

3 

4 

5 

6 

7 

8 

pan 

400-450 

450-510 

510-580 

585-625 

630-690 

705-745 

770-895 

860-1040 

450-800 

 Coastal 

Blue 

Green 

Yellow 

Red 

Red Edge 

NIR1 

NIR2 

Panchromatic 

 

Landsat 5 TM 1 450-520  Blue 

    Bands 1-5 and 7, 30 m     2 520-600  Green 

    Band 6, 120 m 3 630-690  Red 

 4 760-900  NIR 

 5 1550-1750  MIR 

 6 10400-12500  Thermal 

 7 2080-2350  MIR 

(Adapted from DigitalGlobe, 2009 and USGS, 2011) 

 

 

 

Table 3.2 Pre- and post-siphon operation satellite image dates and associated freshwater 

flows at WPH siphon diversion project. 

Pre-siphon operation (no flow)   Post-siphon operation 

Satellite image dates  Satellite image dates Freshwater flow (cfs) 

04/06/1984  04/02/1994 2023.82  

01/19/1985  09/25/1994 118.80  

10/08/1987  04/07/1996 1519.67  

01/28/1988  02/08/1998 787.01  

2/13/1988  02/24/1998 903.08  

11/01/1990  01/26/1999 1311.58  

11/17/1990  04/18/2000 721.22  

03/09/1991  09/17/2000 777.25  

02/08/1992  11/20/2000 783.88  

10/05/1992  02/27/2002 1327.31  

  10/20/2003 1057.15  

  02/25/2010 530.66  
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Table 3.3 Twelve satellite image dates during siphon operation and nearest salinity data 

dates. 

Satellite image dates/ 

siphon operating 

Nearest salinity data dates 

 

04/02/1994 03/29/1994 

09/25/1994 09/13/1994 

04/07/1996 04/02/1996 

02/08/1998 02/17/1998 

02/24/1998 02/17/1998 

01/26/1999 01/25/1999 

04/18/2000 04/18/2000 

09/17/2000 09/28/2000 

11/20/2000 11/21/2000 

02/27/2002 03/07/2002 

10/20/2003 10/13/2003 

02/25/2010 03/03/2010 

 

 

 

Table 3.4 Seventy-one salinity data dates corresponding to no flow periods (siphon not 

operating for at least 7 days prior to each salinity data date). 

No flow dates with available salinity data 

10/11/1994 

11/09/1994 

12/07/1994 

01/04/1995 

02/15/1995 

03/14/1995 

04/10/1995 

04/26/1995 

05/23/1995 

06/06/1995 

06/07/1995 

06/22/1995 

10/17/1995 

11/02/1995 

11/14/1995 

12/12/1995 

01/17/1996 

09/16/1997 

10/21/1997 

11/17/1997 

12/16/1997 

03/16/1999 

08/25/1999 

09/16/1999 

10/12/1999 

11/16/1999 

12/14/1999 

01/19/2000 

02/22/2000 

05/02/2001 

08/15/2001 

09/04/2001 

10/08/2001 

10/26/2001 

08/16/2002 

09/03/2002 

10/10/2002 

11/07/2002 

12/28/2002 

07/17/2003 

08/18/2003 

09/03/2003 

09/10/2004 

10/13/2004 

11/09/2004 

10/14/2005 

11/21/2005 

12/19/2005 

01/16/2006 

02/24/2006 

03/28/2006 

04/28/2006 

05/26/2006 

06/27/2006 

07/28/2006 

08/31/2006 

09/27/2006 

10/24/2006 

08/27/2007 

10/02/2007 

11/01/2007 

11/30/2007 

12/28/2007 

08/22/2008 

09/26/2008 

10/28/2008 

12/03/2008 

01/07/2009 

02/16/2009 

10/15/2009 

10/14/2010 
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Table 3.5 Mean salinity for high and low freshwater impact sites by siphon flow. 

High freshwater 

impact sites 

Low freshwater 

impact sites 

Mean salinity (ppt) 

(siphon flow) 
 Mean salinity 

(ppt) (no 

siphon flow) 

BA04-01 - 5.68 11.13  
BA04-02 - 5.59 11.89  
BA04-03 - 7.57 13.18  
BA04-05 - 6.13 11.38  
BA04-07 - 9.90 14.17  
BA04-11 - 8.11 11.64  
BA04-12  7.07 9.83  
BA04-16 - 8.13 10.64  
BA04-55 - 11.53 14.91  

- BA04-06 10.85 13.96  
- BA04-08 11.42 14.64  
- BA04-09 11.70 14.16  
- BA04-10 11.49 13.97  
- BA04-15 12.24 14.59  
- BA04-17 11.33 12.59  
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Table 3.6 Regression equations and resulting r2 and RMSE values by DigitalGlobe 

WorldView2 (DG-WV2) image band. 

08/01/11 Image 

Band r2 Equation RMSE 

1 (Coastal) .99 Band1 = (0.381859*$n1_080111_radiance(1)) - 32.6621 0.78 

2 (Blue) .99 Band2 = (0.269234723*$n1_080111_radiance(2)) - 

21.4367225 

0.81 

3 (Green) .99 Band3 = (0.268849236*$n1_080111_radiance(3)) - 

13.51864027 

0.82 

4 (Yellow) .99 Band4 = (0.316101915*$n1_080111_radiance(4)) - 

12.32399846 

1.05 

5 (Red) .99 Band5 = (0.298159806*$n1_080111_radiance(5)) - 

8.4834054 

0.96 

6 (Red Edge) .96 Band6 = (0.371882565*$n1_080111_radiance(6)) - 

1.80636633 

2.20 

7 (NIR1) .90 Band7 = (-0.0009*($n1_080111_radiance(7)**2) + 

0.6552*$n1_080111_radiance(7)) - 7.6661 

4.84 

8 (NIR2) .88 Band8 = (-0.002*($n1_080111_radiance(8)**2) + 

0.9774*$n1_080111_radiance(8)) - 1.2164 

4.40 

08/06/11 Image 

Band r2 Equation RMSE 

1 (Coastal) .99 Band1 = (0.330643144*$n1_080611radiance(1)) - 

23.19931939 

0.73 

2 (Blue) .99 Band2 = (0.234535754*$n1_080611 _radiance(2)) - 

14.34778922 

0.34 

3 (Green) .99 Band3 = (0.254956446*$n1_080611 _radiance(3)) - 

8.98327148 

0.68 

4 (Yellow) .99 Band4 = (0.294879488*$n1_080611 _radiance(4)) - 

7.432270408 

0.95 

5 (Red) .99 Band5 = (0.261416983*$n1_080611 _radiance(5)) - 

3.773811245 

1.07 

6 (Red Edge) .97 Band6 = (-0.0004*($n1_080611_radiance(6)**2) + 

0.4568*$n1_080611_ radiance(6)) - 3.949 

3.27 

7 (NIR1) .90 Band7 = (-0.0008*($n1_080611 _radiance(7)**2) + 

0.597*$n1_080611_radiance(7)) - 4.775 

5.73 

8 (NIR2) .91 Band8 = (-0.0018*($n1_080611_ radiance(8)**2) + 

0.8807*$n1_080611_ radiance(8)) + 1.625 

6.97 
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Table 3.7 Regression equations and resulting r2 values for composite image predicted 

values. 

Band r2 Equation 

1 (Coastal) 0.05 Band 1 = 2.295 + 0.187 x 

2 (Blue) 0.24 Band 2 = 1.393 + 0.477 x 

3 (Green) 0.65 Band 3 = 1.086 + 0.762 x 

4 (Yellow) 0.70   Band 4 = 0.943 + 0.785 x 

5 (Red) 0.72 Band 5 = 0.657 + 0.834 x 

6 (Red Edge) 0.89 Band 6 = 6.373 + 0.675 x 

7 (NIR1) 0.89 Band 7 = 5.938 + 0.811 x 

8 (NIR2) 0.90 Band 8 = 7.663 + 0.799 x 

 

 

Table 3.8  Vegetation indices and equations 

Vegetation Index  Equation 

Normalized Difference Vegetation Index  NDVI = (NIR-red)/(NIR+red) 

 

Green NDVI  GNDVI = (NIR-green)/(NIR+green) 

 

Wide Dynamic Range Vegetation Index  WDRVI = (a*NIR-red)/(a*NIR+red) 

(where a = a weighting parameter based on 

vegetation density characteristics*) 

 

Atmospherically Resistant Vegetation Index ARVI = [NIR-(2.0*red-blue)]/ 

              [NIR-(2.0*red+blue)] 

* Based on vegetation density characteristics within the study area, a weighting parameter of 

0.2 was used to calculate WDRVI, as recommended by Gitelson (2004). 

 

  



90 

 

Table 3.9 Correlation coefficients (r-values) relating satellite image bands and vegetation 

indices with vegetation parameters (*P < 0.05, **P < 0.01). 

 LAI Chlorophyll Stem Height 

DG1      0.413      0.426*      0.521* 

DG2      0.115      0.075      0.421* 

DG3      0.391      0.414*      0.294 

DG4     -0.045       -0.251      0.198 

DG5     -0.405     -0.763**     -0.048 

DG6      0.489*      0.733**      0.287 

DG7      0.482*      0.749**      0.251 

DG8      0.450*      0.755**      0.234 

ARVI (band 7)      0.437*      0.862**      0.117 

ARVI (band 8)      0.407      0.877**      0.144 

GNDVI (band 7)      0.252      0.780**      0.032 

GNDVI (band 8)      0.127      0.748**      0.038 

NDVI (band 7)      0.386      0.851**      0.049 

NDVI (band 8)      0.343      0.862**      0.070 

WDRVI (band 7)      0.386      0.851**      0.049 

WDRVI (band 8)      0.343      0.862**      0.070 
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Table 3.10 Predictive value of chlorophyll model. 

Site Chlorophyll Difference (Difference)² Absolute 

Value of 

Difference 
Actual Predicted 

1 174 189.58 -15.58 242.76 15.58 

2 171 163.49 7.51 56.36 7.51 

3 143 134.81 8.19 67.07 8.19 

BA04-103 188 251.38 -63.38 4017.13 63.38 

BA04-104 216 278.77 -62.77 3940.13 62.77 

BA04-108 242 263.40 -21.40 458.16 21.40 

BA04-112 328 352.95 -24.95 622.30 24.95 

BA04-116 259 240.16 18.84 355.04 18.84 

BA04-119 258 279.61 -21.61 467.04 21.61 

BA04-120 89 108.82 -19.82 392.79 19.82 

BA04-123 283 232.90 50.10 2509.84 50.10 

BA04-124 233 219.04 13.96 195.01 13.96 

BA04-125 191 199.13 -8.13 66.17 8.13 

BA04-126 231 222.87 8.13 66.15 8.13 

BA04-128 193 162.74 30.26 915.77 30.26 

BA04-132 472 344.58 127.42 16235.69 127.42 

BA04-133 251 335.95 -84.95 7215.84 84.95 

BA04-134 353 328.65 24.35 592.78 24.35 

BA04-136 279 251.26 27.74 769.71 27.74 

CRMS0258 201 241.33 -40.33 1626.73 40.33 

CRMS0260 213 206.68 6.32 39.91 6.32 

CRMS0282 275 242.57 32.43 1051.68 32.43 

CRMS3680 153 129.33 23.67 560.23 23.67 

Minimum value 89    

Maximum value 472    

Mean 234.61    

Standard deviation 79.27    

Mean absolute error (MAE) 32.25    

Root mean square error (RMSE) 42.96    
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Table 3.11 Correlation coefficients (r-values) relating distance to siphon with percentage of 

pixels in highest and lowest chlorophyll classes by freshwater impact. 

Relationship between  

distance to siphon and: 

Correlation      

coefficient (r) Significance (P) 

% of pixels in highest chlorophyll class 

 

-0.83 

 

<0.0001 

 

% of pixels in highest chlorophyll class in highest 

freshwater impact areas 

 

-0.91 

 

<0.0001 

 

% of pixels in highest chlorophyll class in lowest 

freshwater impact areas 

 

-0.19 

 

(not significant) 

 

% of pixels in lowest chlorophyll class 

 

0.87 

 

<0.0001 

 

% of pixels in lowest chlorophyll class in highest 

freshwater impact areas 

 

0.71 

 

<0.0001 

 

% of pixels in lowest chlorophyll class in lowest 

freshwater impact areas 

 

0.83 

 

<0.0001 
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Table 3.12 Summary of field data measurements for vegetation parameters. 

Sample site 

Average stem 

height (cm) 

Average chlorophyll 

concentration LAI 

1 181 174 4.12 

2  155 171 3.54 

3 188 143 3.79 

BA04-103 151 188 4.03 

BA04-104 166 216 3.73 

BA04-108 173 242 5.1 

BA04-112 167 328 6.97 

BA04-116 169 259 3.45 

BA04-119 170 258 2.89 

BA04-120 197 89 2.18 

BA04-123 174 283 2.29 

BA04-124 166 233 4.38 

BA04-125 176 191 4.45 

BA04-126 183 231 3.72 

BA04-128 200 193 5.41 

BA04-132 216 472 6.25 

BA04-133 167 251 4.52 

BA04-134 215 353 4.31 

BA04-136 167 279 5.63 

CRMS 0258 163 201 3.44 

CRMS 0260 146 213 2.69 

CRMS 0282 171 275 4.3 

CRMS 3680 163 153 5.68 

Mean 174.96 234.61 4.21 

Standard Deviation 18.09 79.27 1.22 
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Chapter 4 - Modeling Vulnerability to Eutrophication in a Coastal 

Louisiana Marsh Using Satellite Imagery and Measures of 

Historical and Concurrent Marsh Biophysical Characteristics 

 Abstract 

This study was undertaken to investigate the feasibility of modeling eutrophication 

vulnerability of a coastal Louisiana marsh receiving turbid Mississippi River water. The major 

objective was to integrate remotely sensed data with field measurements of vegetation 

biophysical characteristics and historical ecosystem survey data to delineate landscape patterns 

suggestive of vulnerability to eutrophication. To accomplish this goal, satellite image data were 

used in conjunction with measurements of field spectra and vegetation biophysical 

characteristics.  Leaf Area Index (LAI), chlorophyll concentration, average stem height, and 

vegetation species composition, including percent cover and the presence or absence of nutrient 

and/or salinity tolerant species, were collected across vegetation productivity and freshwater 

impact gradients.  Historical ecosystem survey data including marsh community type, vegetation 

species composition, percent cover of herbaceous layer, and average herbaceous plant height 

were incorporated into the analysis.  Image data and vegetation dynamics were analyzed using an 

agglomerative hierarchical clustering method to classify sample sites as exhibiting higher or 

lower vulnerability to eutrophication.  Pixels associated with the classified sample sites were 

used as training data in a supervised Maximum Likelihood classification to produce a 

eutrophication vulnerability map.  Assessment of the resulting map using a Jackknife Cross 

Validation approach yielded an accuracy of 88% for the higher eutrophication vulnerability class 

and 91% for the lower vulnerability class, with an overall accuracy of 89%. These results suggest 

that marsh areas within this ecosystem that exhibit relatively higher susceptibility to 
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eutrophication can be delineated using satellite imagery, marsh vegetation parameters, and 

historical ecosystem survey data. 

 Introduction 

Louisiana’s coastal wetlands, like many throughout the world, are deteriorating and 

disappearing at an alarming rate due to natural and anthropogenic stressors.  Natural subsidence, 

erosion, and storm effects are exacerbated by artificial flood control levees that have effectively 

isolated the Mississippi River from its delta, (Lopez, 2009; Day et al., 2009a). Extensive 

networks of canals constructed for oil and gas exploration and the extraction of natural resources 

have contributed to subsidence and erosion and promoted saltwater intrusion into Louisiana’s 

freshwater marshes (Lopez, 2009; Day et al., 2009a).  During the past half century, one major 

strategy for combating saltwater intrusion and stimulating marsh growth has been the 

construction of Mississippi River diversions designed to reintroduce freshwater into wetland 

ecosystems (Day et al., 2009a).  During this same period, an increase in runoff of fertilizers, 

pesticides and other pollutants from agricultural and urban areas has adversely affected water 

quality in the rivers and streams of the 3 million km2 Mississippi River Basin (Cloern, 2001; 

Mitsch, et al., 2005; Siciliano, et al., 2008).  Pollutants transported to coastal zones by sediment 

laden river water affect nutrient dynamics and phytoplankton productivity (Doxaran et al., 2009; 

Volpe et al., 2011; Guttler et al., 2013).  The Mississippi River transports excess nitrogen, in the 

form of nitrate-nitrogen, to coastal areas in Louisiana, where the subtropical climate, warm water 

temperatures, and long growing season facilitate high nutrient uptake and denitrification rates 

(Mitsch, et al., 2005). The potential for eutrophication is a major concern, since the diversions 

introduce nutrient enriched Mississippi River water and sediment into wetland areas (Sklar and 

Browder 1998; Lissner et al., 2003; Lane and Day, 1999; Mitsch et al., 2005; Day et al., 2009a).  
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Although eutrophication generally refers to gradual nutrient enrichment in water bodies 

(Christropherson, 2009; Ferreira et al., 2011), in the presence of very high loading rates, 

nutrients also accumulate in soils and vegetation (Dettmann, 2001; Kamer et al., 2001).  Excess 

nutrient loadings alter wetland ecosystem processes and produce measurable changes in plant 

productivity, including increases in net primary productivity (U.S. EPA, 2002; Ferreira et al., 

2011).  Despite increased above ground biomass, several studies have linked excess nutrient 

loading in salt marshes to reductions in below ground plant growth, root and rhizome biomass, 

and carbon accumulation, as well as decreases in geomorphic stability and marsh elevation 

(Darby and Turner, 2008a, 2008b; Turner et al., 2009; Turner, 2010; Deegan et al., 2012).  In 

contrast to those findings, Day et al. (2009b) reported high belowground biomass in marshes 

impacted by the river diversion at Caernarvon, Louisiana. Based on a synthesis of  previous 

studies Day et al. (2009a) also challenged Darby and Turner’s (2008a; 2008b) results showing 

that the nutrient loading rates they used far exceeded rates found in the outfall area of the 

Caernarvon, Louisiana river diversion.  Yet, Howes et al. (2010) found storm-related preferential 

erosion in Louisiana marshes that received diverted freshwater for 18 years prior to Hurricanes 

Katrina and Rita. This lack of consensus underscores the need to better understand the effects of 

river diversions on nutrient enrichment of Louisiana’s wetlands (Day et al., 2009a; Boustany, 

2010). 

One strategy for detecting and monitoring nutrient enrichment of wetland ecosystems is 

to characterize nutrient dynamics through periodic water sampling performed weekly or 

monthly, a strategy that may not fully capture the effects of nutrient pulsing (Siciliano, et al., 

2008).  Since estuarine plant tissues integrate the nutrient regime over time another approach is 

to harvest plant tissues seasonally to examine nutrient content as an indicator of eutrophication 
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(Boyer and Fong, 2005; Cohen and Fong, 2006; Siciliano, et al., 2008).  When applied over large 

areas in wetland environments, both strategies are resource intensive and often impractical in 

terms of safety and accessibility (Siciliano, et al., 2008; Bethel, et al., 2011).  Since data are 

generally collected from the most easily accessible sites during a limited number of campaigns, 

the value of the data may be limited both spatially and temporally, often requiring interpolation 

over large areas and extended time periods (Siciliano, et al., 2008; Volpe et al., 2011).  

Another strategy is to examine functional and/or structural indicators of eutrophication to 

determine whether an ecosystem is eutrophic or unenriched (U.S. EPA, 2002).  Functional 

indicators are associated with high chlorophyll content and include increased biomass production 

and stem height, and increased leaf nitrogen and phosphorus content (U.S. EPA, 2002). 

Functional indicators become evident once the ecosystem’s threshold of assimilative capacity is 

exceeded, leading to increased nutrient uptake and increased growth (U.S. EPA, 2002). 

Ecosystem processes such as decomposition and accumulation of soil organic matter are altered, 

sometimes resulting in structural indicators of eutrophication, including changes in plant 

community composition and shifts from nutrient-intolerant to nutrient-tolerant species (U.S. 

EPA, 2002). 

A fourth approach, satellite remote sensing, offers an underutilized tool that can be 

integrated with more traditional approaches to monitor possible eutrophication from freshwater 

diversions. Water diverted from the Mississippi River contains high concentrations of suspended 

particulate matter (SPM) and exhibits significantly higher reflectance than clear water 

(Froidefond et al. 2002; Li et al. 2003; Allen et al., 2008).  Reflectance differences in the near 

infrared and red wavelengths can be leveraged to map turbidity in river diversion outfall areas, 

while turbidity frequency mapping can facilitate analysis over time (Harrington and Schiebe, 
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1992; Miller and McKee, 2004; Allen et al., 2008).  Furthermore, in addition to being a relative 

measure of the amount of suspended particulate matter (SPM) in water, turbidity is an important 

water quality parameter that can also be used as an indicator of eutrophication (Fraser, 1998; 

Guttler et al., 2013).  

Remote sensing offers a practical approach for monitoring functional and structural 

indicators of eutrophication in coastal marshes. Spectral reflectance data are useful for assessing 

vegetation biophysical characteristics, including biomass and nutrient content (Hardisky et al., 

1984; Hardisky et al., 1986; Guo and Price, 2000; Rundquist et al., 2001; Siciliano et al., 2008). 

Wetland biomass estimates based on in situ indices were reported by Hardisky et al. (1984) to be 

comparable to estimates from traditional harvest techniques. A subsequent study of salt marsh 

vegetation found biomass and plant canopy height significantly correlated with red and near 

infrared (NIR) spectral reflectance (Hardisky et al., 1986).  Jensen et al. (1998) found that non-

intrusive in situ LAI measurements of salt marsh vegetation were significantly correlated with in 

situ above-ground biomass measurements. Results of a 2002 study by Jensen et al. again found 

that the NIR band and selected vegetation indices, including the Normalized Difference 

Vegetation Index (NDVI), were highly correlated with biomass, LAI, and chlorophyll 

concentration in an estuarine salt marsh. In support of these findings, strong correlations between 

NDVI and plant primary productivity, NDVI and biomass, and NDVI and LAI have been 

reported in the literature (Tucker and Sellers, 1986; Justice et al., 1998, and Wang et al., 2004). 

The utility of NDVI is based on the difference between low red reflectance and high NIR 

reflectance of healthy vegetation (Gitelson et al., 1996; Gitelson 2004).  In the presence of 

moderate to high vegetation density, however, there is a reduction in the sensitivity of NDVI to 

changes in green biomass due to the saturation of red reflectance at its lowest level (Gitelson et 
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al., 1996; Gitelson, 2004). Other indices developed in response to the observed saturation of 

NDVI and of particular interest for wetland vegetation studies include the Green Normalized 

Vegetation Index (GNDVI) (Gittelson et al., 1996), the Wide Dynamic Range Vegetation Index 

(WDRVI) (Gittelson, 2004), and the Atmospherically Resistant Vegetation Index (ARVI), 

(Kaufman and Tanre, 1992). The GNDVI replaces the green band for the red band in the NDVI 

and has been used to successfully assess biomass variation (Gittelson et al., 1996; Vigier et al., 

2004).  The WDRVI enhances the dynamic range of the NDVI using a weighting parameter 

based on vegetation density characteristics within a study area (Gittelson, 2004).  The ARVI has 

been shown to be slightly more sensitive to vegetation changes and less sensitive to atmospheric 

and soil affects than other indices in the presence of moderate to high vegetation cover (Qi et al., 

1994).  Each of these indices has been used to successfully estimate spatial patterns of salt marsh 

biomass (Gitelson et al., 1996; Zhang et al., 1997; Gitelson, 2004), suggesting their utility for 

delineating regions of high marsh biomass relative to introduced nutrient rich freshwater. 

Research to develop effective methods for assessing and monitoring nutrient enrichment 

of Louisiana’s coastal wetlands is needed.  This study integrates satellite image data, field 

measurements of vegetation biophysical data, and historical ecosystem survey data in order to 

identify functional and structural indicators of eutrophication and to map vulnerability to nutrient 

enrichment in the West Pointe a la Hache siphon diversion outfall area. The ability to accurately 

model potentially eutrophic and relatively unenriched wetland areas allows for sound sample 

collection protocols and contributes to effective assessment and monitoring of eutrophication 

risks associated with freshwater introduction into Louisiana’s wetland ecosystems. 
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 Study Area 

The study area (Figure 4.1) is an approximately 138 km2 portion of the Barataria Basin, 

an interdistributary estuarine wetland system of the Mississippi Delta located in Plaquemines 

Parish, Louisiana.  Like the larger Barataria Basin, the study area has been severely impacted by 

wetland degradation and loss, having experienced some of the highest rates of land loss in 

Louisiana’s coastal zone (Conner and Day, 1987; Barras et al., 2003; Barras, 2009; Bethel et al., 

2011). Vegetation within the estuary is characterized by a progression of fresh, intermediate, 

brackish, and salt marshes, moving to open water (Conner and Day, 1987). Land areas generally 

support high density marsh vegetation dominated by salt tolerant species, including Spartina 

alterniflora and Distichlis spicata. Bordered by the Mississippi River to the east, the study area 

incorporates both highly degraded and fragmented marsh areas north and northeast of Bayou 

Grand Chenier Ridge, as well as relatively intact core marsh west and southwest of the ridge, a 

juxtaposition allowing compelling comparisons. 

Located within the study area on the west bank of the Mississippi River at river kilometer 

78.7 (mile 48.9) is the West Pointe a la Hache (WPH) Siphon Diversion Project (Haywood and 

Boshart, 1998). The project is a relatively low-flow diversion designed to provide freshwater and 

sediment to the marshes for restoration and land building (OCPR, 2010; LaCoast, 2008).  The 

diversion consists of eight 1.8 m diameter steel siphon pipes that cross over the levee, run 

underground, and then discharge river water into an outfall pond.  Four channels radiate 

southward from the pond to distribute freshwater to the surrounding marsh (Richardi, 2013). 

Freshwater flow at WPH typically ranges between 500-1000 ft3s-1 (14-28 m3s-1) when the siphon 

is operational, although maximum discharge for the siphons is estimated as 2144 ft3s-1 (61 m3s-1), 

based on high river stage and all siphons in full operation, (Richardi, 2013).  The siphon is 

estimated to have operated approximately 60% of the time since flow began in January, 1993 
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(Richardi, 2013).  Although WPH siphon has had some effect in reducing salinity in the outfall 

area, land loss continues in the project area (Boshart and Van Cook, 2007; Richardi, 2013). 

 Methods 

 Landsat 5 Thematic Mapper Satellite Image Data 

 Water Turbidity Frequency Datasets 

Water turbidity frequency datasets were produced for this study by the U.S. Army Corps 

of Engineers (USACE) based on a technique developed by Allen et al. (2008) and outlined in 

Appendix A.  The datasets are based on time series cloud-free Landsat images captured between 

1984 and 2010 and corresponding to periods of pre- and post-siphon operation of the WPH 

diversion project.  Satellite image specifications are provided in Table 4.1. For the post-siphon 

operation time period, optimal Landsat image dates were chosen to coincide with siphon 

freshwater flow based on records obtained from Louisiana Coastal Protection and Restoration 

Authority (CPRA) Strategic Online Natural Resources Information System (SONRIS, 2011).  

Pre- and post-siphon operation satellite image dates and associated freshwater flows are provided 

in Table 4.2. 

The USACE datasets consist of two turbidity frequency maps, adapted versions of which 

are provided in Figures 4.2 and 4.3. The pre-1993 turbidity map (Figure 4.2) depicts the 

frequency of classification of water pixels as turbid during the pre-siphon time period between 

1984 and commencement of siphon operation in 1993.  This turbidity frequency dataset was used 

to estimate baseline turbidity. The post-1993 turbidity map (Figure 4.3) depicts the frequency of 

classification of water pixels as turbid for image dates captured during periods of siphon 

operation between 1993 and 2010.   
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 Estimating Highest and Lowest Turbidity Post-Siphon Operation 

The USACE turbidity frequency datasets were used to derive an estimate of turbidity 

attributed to siphon operation.  This was accomplished by comparing pre- and post-1993 

turbidity.  The USACE turbidity frequency datasets were reprojected to UTM, Zone 15, GRS 

1980, NAD 83 and checked for consistent alignment. For each turbidity frequency map, five 

classes of water turbidity were identified using natural breaks in ArcGIS, a geographic 

information system (GIS) software.  The highest turbidity classes in the pre- and post-siphon 

datasets were compared and areas of intersection were removed from the post-siphon turbidity 

data.  The resulting subset provides a map layer representing areas of highest turbidity associated 

with freshwater flow during siphon operation, thus indicating locations that consistently received 

distributions of sediment-laden freshwater from the siphon (Allen et al., 2008).  This procedure 

was repeated for the lowest turbidity classes in the pre- and post-siphon datasets to create a map 

layer delineating areas of lowest turbidity associated with siphon freshwater flow. 

 Mapping High and Low Freshwater Impacted Marsh Areas 

ArcGIS was used to identify marsh areas subject to relatively high and low freshwater 

impacts.  Landsat 5 TM imagery captured April 17, 2011 was reprojected to UTM, Zone 15, 

GRS 1980, NAD 83 and checked for consistent alignment with the turbidity frequency maps.  

The imagery was subset to the study area and a land-water map was developed using a hybrid 

classification method described by Bethel et al. (2011) and outlined in Appendix B. A 

vegetation-only layer was created from the land-water map by masking pixels representing water 

and developed land.  Restricting subsequent remote sensing and geographic information system 

processing to vegetation-only pixels minimized the influence of non-vegetation pixels and 

insured that final results were based solely on analysis of pixels classified as marsh vegetation. 

The vegetation layer was then included in a GIS with the map layers produced from the turbidity 
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frequency data delineating highest and lowest turbidity associated with freshwater flow during 

siphon operation. 

In the GIS environment 15 m buffers were created around areas of highest and lowest 

turbidity associated with siphon operation.  Those areas within the highest turbidity buffers were 

classified as high freshwater impact areas and those within the lowest turbidity buffers were 

classified as low freshwater impact areas.  Vegetated areas within the highest turbidity buffers 

were identified as marsh areas most consistently exposed to freshwater introduction, while 

vegetated areas within the lowest turbidity buffers were identified as marsh areas least impacted 

by freshwater introduction.  Figure 4.4 shows the resulting freshwater impacts map delineating 

vegetated marsh areas subject to high and low freshwater impacts.   

 Accuracy Assessment of Freshwater Impacts Map 

Hydrographic salinity data obtained from SONRIS were used to assess the accuracy of 

the freshwater impact map (SONRIS, 2012). Figure 4.5 shows the locations of salinity data 

collection sites within areas of high and low freshwater impacts. For salinity estimates during 

siphon operation, 12 salinity data dates were identified as dates of siphon operation nearest the 

Landsat image capture dates (Table 4.3).  For no flow salinity estimates, 71 salinity data dates 

were identified for periods in which the siphon had not operated for a minimum of 7 days (Table 

4.4).  Estimates of mean salinity (ppt) during siphon freshwater flow and no flow periods were 

calculated for the 9 salinity data collection sites in high freshwater impact areas and for the 6 

salinity data collection sites in low freshwater impact areas (Table 4.5).  All salinity estimates 

were based on hourly bottom and surface salinity readings. The Mann-Whitney statistical 

method was used to test for differences in mean salinity in high and low freshwater impact areas 

during both freshwater flow and no flow periods (VassarStats, 2014). 



104 

 

 Mapping the Vegetation Productivity Gradient 

To aid in the identification of appropriate field data collection sites, a map of the study 

area’s vegetation productivity was created.  The map was based on an NDVI derived from the 

Landsat 5 Thematic Mapper (TM) image acquired over the study area on April 17, 2011 and 

classified into areas of high, medium, and low NDVI values (Figure 4.6). 

 Field Data 

 Sample Site Selection 

A randomized opportunistic sampling approach was used for field data collection.  This 

allowed the use of preexisting sample sites maintained by Louisiana’s Coastal Protection and 

Restoration Authority (CPRA), many of which include infrastructure in the form of boardwalks 

conducive to field sampling in the marsh.  Sample sites were selected to insure data collection 

across vegetation productivity and freshwater impact gradients within the study area. A GIS 

dataset of existing CPRA sample sites, the NDVI-based Vegetation Productivity Gradient map 

(Figure 4.6), and the Freshwater Impacts map (Figure 4.4) were co-registered in ArcGIS to 

derive 6 classes of potential sample sites: low freshwater impact/low NDVI; low freshwater 

impact/medium NDVI; low freshwater impact/high NDVI; high freshwater impact/low NDVI; 

high freshwater impact/medium NDVI; and high freshwater impact/high NDVI.  Based on the 

sample site classification a field investigation was conducted to determine the suitability of each 

potential site for data collection in terms of accessibility and sufficient area of contiguous 

emergent marsh vegetation.  Figure 4.7 shows the 24 sample sites identified with 4 sites 

representing each of the 6 classes described above. All but 3 of the sample sites chosen were 

preexisting CPRA sample sites.  
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 Field Data Collection 

Field data collection was accomplished during peak growing season on August 2 and 

August 3, 2011, and included measuring vegetation-based indicators of marsh health and 

possible nutrient enrichment, including spectral reflectance as an indicator of overall health, 

chlorophyll concentration as a proxy for leaf nitrogen content, and leaf area index (LAI) and 

plant stem height as a proxy for above ground biomass (U.S. EPA, 2002; Bethel et al., 2011). 

Ocular estimates of vegetation cover were also collected using a modified Daubenmire quadrat 

technique (Daubenmire, 1959).  To insure accurate identification of species, digital images and 

vegetation samples were collected at each site for subsequent species verification by Louisiana 

Department of Natural Resources (LDNR) personnel (Boshart, 2011). The resulting survey of 

vegetation species and associated percent cover were used to assess the presence or absence of 

nutrient and/or salinity tolerant species and to assign marsh community types.  

All field data were collected within single, approximately 4.0 m2 plots located at each 

sample site.  The sites were GPS located using a Trimble Nomad 900GLC hand held computer 

and were accessed by boat.  An Ocean Optics USB4000 Field Spectroradiometer (~350-1045 nm 

at ~ 0.2 nm resolution), mounted on a pole to minimize interference with data collection, was 

used to simultaneously measure incoming solar radiation and top of canopy (TOC) reflectance at 

each sample site. TOC reflectance was measured approximately 0.75 m above the canopy. 

Reflectance measurements were calibrated once at each site using a white (99% reflectance) 

Spectrolon calibration panel, after which three reflectance measurements distributed within the 

sample plot were collected and averaged.  A Li-Cor 2000 LAI meter was used to estimate foliage 

biomass at each of the sample sites.  Three sample sequences, each consisting of one above 

canopy for every four below canopy measurements, were taken at each site and averaged.  The 

above canopy measurements were taken to calibrate the LAI readings for atmospheric conditions 
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(LAI-2000, 1992).  Average stem height at each sample site was calculated based on 

measurements of the five to ten tallest stems of dominant species within each sample plot 

according to procedures outlined by U.S. EPA (2002).  A Field Scout CM1000 chlorophyll meter 

was used to measure relative leaf chlorophyll concentration. Within each sample plot, average 

chlorophyll concentration was derived from five CM1000 measurements collected using 

standard procedures outlined by the CM1000’s manufacturer (FieldScout, 2009). The CM1000 

senses reflectance at 700 nm, the wavelength absorbed by chlorophyll a, and at 840 nm, a 

wavelength unaffected by leaf chlorophyll content that serves as an indicator of how much light 

is reflected due to leaf physical characteristics. The ratio of reflectance at 700 nm to reflectance 

at 840 nm is multiplied by a constant to derive an index value between 0 and 999, with higher 

values indicative of higher chlorophyll content (FieldScout, 2009). A study by Murdock, et al. 

(2004) found that the Field Scout, measuring reflectance, rather than transmittance and 

absorbance, and offering the advantage of canopy measurement rather than single leaf 

measurement, performed as well as the SPAD 502 chlorophyll meter for obtaining measurements 

in the field.  

All field data were collected at ground level outside the boat whenever possible.  When 

necessary for reasons of safety or adequate access, the boat was positioned adjacent to the shore 

at the sample site and data were collected from floor level of the boat or from a specially 

designed platform and ladder apparatus within the boat (Figure 4.8). 

 Assignment of Marsh Community Type Based on Field Data Collection 

To determine marsh community type at the time of field data collection, the marsh 

assignment algorithm used by CPRA to derive community salinity scores and assign marsh types 

was applied to the field data.  Based on the algorithm, marsh at a vegetation cover plot is 
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classified as fresh, intermediate, brackish, or saline using a community salinity score derived 

from species composition (Visser and Sasser, 2002; Sasser and Visser, 2008; Sasser, et al, 2008; 

Cretini, et al, 2009). To apply the algorithm, the percent cover for each vegetation species found 

within a plot is multiplied by a predefined value assigned to the species based on the marsh type 

where the species is most commonly found (Table 4.6).  The sum of the resulting products is 

divided by the total cover to calculate the community salinity score and determine the marsh 

community type (Visser and Sasser, 2002). Table 4.7 provides the salinity scores for common 

marsh vegetation species.  Table 4.8 lists marsh community assignments by community salinity 

score and Table 4.9 provides an example of the calculation of community salinity score and 

assignment of marsh community type. Marsh community scores and community assignments for 

each sample site for the time period of field data collection are provided in Table 4.10. 

 Digital Globe WorldView 2 Image Data 

 Data acquisition, preprocessing, and accuracy assessment 

DG-WV2 satellite images were acquired over the study area on August 1 and August 6, 

2011 (within 4 days of field data collection).  Each image covered the aerial extent of the study 

area delivered as georeferenced and radiometrically corrected products scaled to absolute 

spectral reflectance (DigitalGlobe, 2010).  Satellite image specifications are provided in Table 

4.1. The raw digital numbers (DN) of each image were converted to top-of-atmosphere radiance 

and an empirical line method was used to relate radiance to band equivalent reflectance (BER) of 

field spectra as described by Staben, et al. (2011).  This was accomplished for each image band 

by extracting values for the brightest and darkest pixels and for pixels corresponding to a random 

selection of 12 of the field sample sites. The extracted pixel values were used to generate a 

regression equation for each image band to convert radiance values to reflectance values.  
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Accuracy assessment was based on computing the root mean square error (RMSE) for each 

image band by comparing the pixel values of the reflectance image to the corresponding BER of 

field spectra at the sample sites not selected to generate the regression equations.  The RMSE 

represents the average magnitude of error, providing a measure of the spread of the data around 

the regression line. Analysis of the computed RMSE values revealed that sample site BA01-114 

contributed disproportionally to the total error for each band, suggesting that it was an outlier.  

Examination of field notes and photos taken at the site confirmed that the data point should be 

excluded based on the extent of exposed dark soils unique to that sample site.  The data point 

was removed from further analysis and revised regression equations were developed.  The 

regression equations used to produce the final reflectance images and the associated RMSEs are 

provided in Table 4.11.  

 Removal of cloud contamination and creation of composite image 

Since the two satellite images covered the same areal extent and were captured within a 

six day period, cloud contamination was removed by creating a composite of the two images. 

Clouds and cloud shadows were masked from each image using the hybrid classification method 

described by Bethel et al. (2011) and outlined in Appendix B. This procedure was followed by 

digitization to remove remnant hazy areas.  Pixel values were extracted from both images at 400 

random points located within intersecting cloud-free areas of the images. The extracted pixel 

values were used to generate regression equations for each image band to predict the missing 

values in the cloud-masked August 1 image based on values from the August 6 image.  The 

resulting composite image retained the original reflectance values of the August 1 image at all 

field sample sites and in all other areas not contaminated by clouds. In areas where cloud 

contamination had been removed from the August 1 image the composite image incorporated 
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values predicted by the regression equations.  Regression equations relating the two images are 

provided in Table 4.12. 

 Classification of composite image, classification accuracy assessment, and creation of 

vegetation indices 

The composite image was classified into three classes, water, vegetation, and developed 

land, using the hybrid classification method described by Bethel et al. (2011) and outlined in 

Appendix B.  Developed land consisted of an exceptionally small percentage of the total pixels 

in the scene, making accuracy assessment of that class unfeasible. Following close visual 

inspection developed land was masked from the classification. Accuracy assessment of the 

resulting water/vegetation classification was performed using 150 stratified random points.  The 

water pixels were then masked from the classified image and vegetation indices were calculated 

using the vegetation-only data.  The indices calculated included the NDVI, GNDVI, WDRVI, 

and ARVI.  Based on vegetation density characteristics within the study area, including moderate 

to high LAI values, a weighting parameter of 0.2 was used to calculate WDRVI, as 

recommended by Gitelson (2004). Two of each of the indices were calculated, one using DG-

WV2 NIR band 7 (770-895 nm) and one using DG-WV2 NIR band 8 (860-1040 nm).  The 

formulas used to calculate the vegetation indices are provided in Table 4.13. 

 Historical Data 

To analyze vegetation dynamics, including changes in species composition and plant 

communities over time, historical vegetation data were obtained from SONRIS (CPRA) for the 

20 sample sites corresponding to existing vegetation and Coastwide Reference Monitoring 

System (CRMS) stations.  Data for five historical data collection periods between 1997 and 2009 

were available for sample sites corresponding to vegetation stations.  For sample sites associated 
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with CRMS stations, data were available for four historical data collection periods between 2007 

and 2010.  Historical data corresponding to the period prior to commencement of siphon 

operation were not available. Data for each CPRA vegetation station were collected at a single 

location, while CPRA CRMS data were collected along transects.  Analysis of CRMS historical 

data was limited to data collected at the latitudinal and longitudinal transect location nearest each 

GPS-located field sample.  Table 4.14 summarizes the data collection periods, associated data 

collection locations, and types of historical vegetation data analyzed for this study. Table 4.15 

lists the marsh community types for each sample site by data collection period.  A list of species 

found at each sample site is provided in Table 4.16. 

 Estimating Vegetation Nutrient and Salinity Tolerance 

The US EPA’s National Database of Wetland Plant Sensitivities to Enrichment and 

Hydrologic Alteration was used to estimate the sensitivity to nutrient and salinity increases of all 

vegetation species catalogued during field data collection and/or in the historical data for each 

sample site (US EPA, 2012).  The database lists wetland species and their known sensitivities 

and allows access to peer-reviewed published studies relating to the tolerances of specific species 

to nutrient enrichment and hydrologic modification, including salinity increases (US EPA, 2012). 

Two indices were derived using the database classification system, one for sensitivity to nutrient 

increases and one for sensitivity to salinity increases.  For each index,  intolerant (IT) species 

were assigned a value of 1, somewhat tolerant (ST) species a value of 2, moderately tolerant 

(MT) species a value of 3, tolerant species (T) a value of 4, and very tolerant (VT) species a 

value of 5. Index values were assigned to vegetation species found at each sample site during 

field data collection, as well as to species found during each historical data collection period. 
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Table 4.17 lists the index values representing known nutrient and salinity sensitivities of 

vegetation species found at the sample sites historically and/or during field data collection.  

 Quantifying Change in Vegetation Characteristics 

 Changes in Vegetation Species Number and Average Herb Height 

To estimate the increase or decrease in species number at each sample site, the difference 

between the number of species present at the initial historical data collection period and the 

number present at field data collection was calculated. The absolute value of the difference 

provides a measure of the net change in species number over time at that location. To estimate 

the degree of fluctuation at each sample site, the number of times species number changed 

between sample periods was divided by the total number of possible fluctuations (i.e. by the total 

number of sample periods minus 1). Data related to changes in species number are provided in 

Table 4.18. 

The historical data provide the average herb height at each sample site.  In contrast, field 

data collection measured the average height of the 5 to 10 tallest stems within each sample plot.  

For this reason only historical data were included in the assessment of change in average herb 

height over time.  To estimate the increase or decrease in average herb height at each sample site, 

the difference between average herb height at the initial historical data collection period and 

average herb height at the last historical data collection period was calculated. The absolute 

value of the difference provides a measure of the net change in average herb height at that 

location. To estimate the degree of fluctuation in average herb height at each sample site, the 

number of times average herb height changed between sample periods was divided by the total 

number of possible fluctuations (i.e. by the total number of sample periods minus 1). Data related 

to changes in average herb height are provided in Table 4.19. 
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 Changes in Nutrient and Salinity Tolerance and in Marsh Community Type 

For each sample site, a nutrient tolerance score was calculated for each historical data 

collection period and for the field data. The scores were calculated by averaging the tolerance 

index values of species present at the site at the time of data collection.  To estimate the increase 

or decrease in nutrient tolerance, the difference between the score for the initial historical data 

collection period and the score for field data collection was calculated. The absolute value of the 

difference provides a measure of the net change in nutrient tolerance over time at that location.  

To estimate the degree of fluctuation in nutrient tolerance at each sample site, the number of 

times the nutrient tolerance score changed between sample periods was divided by the total 

number of possible fluctuations (i.e. by the total number of sample periods minus 1). For each 

sample site the same procedures were used to derive salinity tolerance scores, to estimate the 

increase or decrease in salinity tolerance and the net change in salinity tolerance over time, and 

to estimate the degree of fluctuation in salinity tolerance. Data related to changes in nutrient and 

salinity tolerance are provided in Tables 4.20 and 4.21, respectively.  

Values indicative of relative salinity level were assigned to marsh community types, with 

freshwater marsh assigned a value of 1, intermediate marsh a value of 2, brackish marsh a value 

of 3, and saline marsh a value of 4.  To provide a measure of the net change in marsh community 

type at each sample site, the absolute value of the difference between the value for community 

type at the initial historical data collection period and the value at field data collection was 

calculated.  To estimate the degree of fluctuation in marsh community type at each sample site, 

the number of times marsh community type changed between sample periods was divided by the 

total number of possible fluctuations (i.e. by the total number of sample periods minus 1). Data 

related to changes in marsh community type are provided in Table 4.22. 
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 Quantifying Overall Vegetation Dynamics 

To summarize and quantify vegetation dynamics within the study area with regard to 

functional and structural indicators of nutrient enrichment, a series of questions were formulated 

to transform qualitative observations of vegetation characteristics to binary data (Table 4.23).  

The questions were designed to determine whether vegetation dynamics associated with a sample 

site were suggestive of possible eutrophication. Positive responses to the questions were assigned 

a value of 1 and negative responses were assigned a value of 0. 

 Classifying Sample Sites by Vulnerability to Nutrient Enrichment using Cluster 

Analyses 

A series of cluster analyses were performed to group sample sites based on characteristics 

related to structural and functional indicators of nutrient enrichment. The variables included in 

the cluster analyses are listed in Table 4.24. Several clustering methods were investigated, with 

Ward’s Minimum Variance method judged most appropriate for analyses of the vegetation 

parameters and the DG-WV2 satellite image data.  Ward’s method, which has been shown in 

standard problems to outperform other hierarchical methods, is an agglomerative hierarchical 

clustering method that calculates the squared Euclidean distance to the cluster means, then sums 

the distances and joins the clusters in an order that minimizes the overall sum of the squared 

distances (Khattree and Naik, 2000).  Prior to application of the Ward’s method, variables 

measured on different scales were standardized and correlation analysis was performed to rule 

out multicolinearity among the variables. In the case of the binary data representing the 

qualitative assessment of vegetation dynamics, the Flexible-Beta method, was judged most 

appropriate (Khattree and Naik, 2000).  This method defines measures of dissimilarity between 

sample sites by counting the number of agreements and disagreements in the binary data 

associated with the sites. Clustering of sites is based on application of a beta coefficient 
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recommended to be negative yet close to 0 (Khattree and Naik, 2000).  All clustering analyses 

were performed using the statistical software, SAS, and the default value of the beta coefficient,  

-0.25, was applied for the Flexible-Beta method (SAS Institute Inc., 2013).  

To aid in the interpretation of clustering results, several statistical measures were 

calculated for the vegetation parameter clustering and for the satellite image data clustering. One 

measure of the homogeneity of a cluster is the root means squared standard deviation 

(RMSSTD), calculated by pooling the standard deviation of all the variables forming a cluster. 

The semi-partial R-squared (SPRSQ) is also calculated to measure the loss of homogeneity that 

results as clusters are combined. Low values for RMSSTD and SPRSQ imply that homogenous 

groups are being clustered. The R-squared (RSQ) measures the extent to which clusters differ 

from each other, as does the Between Cluster Sum of Squares (BSS) when used in the Ward’s 

method.  For both the RSQ and BSS, higher values signify greater differences between clusters. 

Results of the clustering analyses were compared to identify consistencies among the 

groupings.  Based on these consistencies, sample sites were classified as exhibiting higher or 

lower vulnerability to nutrient enrichment or as non-determinant. Sites considered non-

determinant were eliminated from further analysis. 

 Statistical Analyses of Clustering Results 

Summary statistics, including mean and standard deviation, were calculated for sites 

within each vulnerability class for comparison to overall statistics for the study area. The Mann-

Whitney statistical method was applied to the vegetation parameters, the DG-WV2 image data, 

and the vegetation dynamics binary data to test for significant differences between the 

vulnerability classes (VassarStats, 2014).  The Mann-Whitney method was also used to test for 
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statistically significant differences between conditions measured at initial sampling compared to 

conditions measured at final sampling for each vulnerability class (VassarStats, 2014).  

 Creating a Eutrophication Vulnerability Map and Assessing Accuracy 

The DG-WV2 composite image was combined with the WDRVI (NIR band 8; 860-1040 

nm) and the GNDVI (NIR band 8; 860-1040 nm) images to create a 10 band image.  The 

normality of the image data was verified, after which a supervised Maximum Likelihood 

classification was performed. Training data for the classification consisted of pixels associated 

with the sample sites classified through the cluster analyses as having higher or lower 

vulnerability to eutrophication. The Jackknife Cross Validation approach was used to assess the 

accuracy of the resulting binary eutrophication vulnerability map.  This approach was 

implemented by withholding the training data from one sample site, performing the supervised 

classification using the remaining training data, then checking the accuracy of the classification 

at the withheld sample site based on the percentage of correctly classified pixels at the site. This 

process was repeated until all sites had been withheld. An estimation of the accuracy of the 

classified eutrophication vulnerability map was derived by calculating the total percentage of 

correctly classified pixels associated with the iteratively withheld sample sites.  Additionally, as 

a means of identifying patterns related to elevation differences within the study area, a Jenks 

natural breaks 5 class digital elevation model (DEM) was adapted from a 2010 LiDAR-derived 

DEM (ArcGIS online; LOSCO, LSU, C4G, 2010) for visual comparison to the eutrophication 

vulnerability map.  
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 Results 

 High and Low Freshwater Impacts 

The spatial distribution of high and low freshwater impact areas depicted on the 

freshwater impacts map (Figure 4.4) suggests a general reduction in impact with increasing 

distance from the siphon diversion along a north to south gradient. The location of the Texas 

Company Canal coincides with a relatively abrupt change from high freshwater impacts north of 

the canal to low freshwater impacts to the south.  In contrast to this general trend, relatively 

discontinuous and isolated areas of high turbidity were found distant from the siphon to the south 

and southwest between Bayou Grand Chenier Ridge and Bays Chene Fleur, Batiste, and 

Sansbois. 

Greater fluctuation in mean salinity was observed among high freshwater impact sites 

compared to low impact sites (Figure 4.9). With the exception of site BA04-12, both high and 

low freshwater impact sites exhibited greater variation in mean salinity during periods of siphon 

operation compared to siphon dormancy (Figure 4.10).  During siphon flow periods both high 

and low freshwater impact sites had significantly lower mean salinity (Z = -3.09, P = 0.001 and 

Z = -2.8, P = 0.003, respectively) compared to no-flow periods (Figure 4.11).  Although no 

significant difference was found between high and low freshwater impact sites during periods of 

siphon dormancy, mean salinity during siphon operation was significantly lower at high 

freshwater impact sites compared to low impact sites (Z = -2.65, P = 0.004).  The results suggest 

that siphon operation freshens water throughout the study area, but that water is freshened to a 

greater extent in areas classified as high freshwater impact areas as compared to areas classified 

as low impact areas.  Furthermore, when salinity data for all dates (freshwater flow and no flow 

periods) were tested, this finding was replicated.  That is, high impact sites were found to be 
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statistically significantly lower in mean salinity than low freshwater impact sites (Z= -2.42, P = 

0.008), suggesting that the overall effect of the siphon is to freshen the high impact areas 

significantly more than the low impact areas and also suggesting that this effect may extend 

beyond siphon operation periods.  

 Image processing, classification, and accuracy assessment 

Conversion of the DG-WV2 satellite images to reflectance was judged acceptable based 

on the resulting RMSE values (Table 4.11) and guidelines outlined by Staben, et al. (2001).  The 

water/vegetation classification of the composite image yielded an overall accuracy of 98% with 

an overall Kappa statistic of 0.96.  For the water class, producer’s and user’s accuracies were 

98.65% and 97.33%, respectively.  For the vegetation class, producer’s and user’s accuracies 

were 97.37% and 98.67%, respectively. Summary statistics for the pixel values extracted from 

the DG-WV2 composite image and vegetation indices at eutrophication vulnerability-classified 

sample sites are provided in Table 4.24. 

 Cluster Analyses 

 Eutrophication Vulnerability Class Assignments 

Cluster analyses of the vegetation biophysical data, the DG-WV2 image data, and the 

vegetation dynamics binary data, each resulted in a two cluster solution that grouped 12 of the 20 

sample sites consistently (Table 4.25). It should be noted that although the cluster statistics 

supported a 3-cluster solution for the DG-WV2 image data, one of those clusters consisted of just 

two sample sites, making the 2-cluster solution the better option.  

For the vegetation biophysical data analysis, the cluster dendrogram, the summary 

statistics graphs, and the table of summary statistics are provided in Figure 4.12, Figure 4.13, and 

Table 4.26, respectively. The cluster dendrogram, the summary statistics graphs, and the table of 
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summary statistics for the DG-WV2 data are provided in Figure 4.14, Figure 4.15, and Table 

4.27, respectively. The cluster dendrogram for the vegetation dynamics binary data is provided in 

Figure 4.16.  Based on shared characteristics suggestive of possible eutrophication, the seven 

sample sites consistently assigned to cluster one were classified as having higher vulnerability to 

eutrophication.  The five sample sites consistently assigned to cluster two were classified as 

having lower vulnerability to eutrophication.  The remaining eight sites were considered 

indeterminate and eliminated from further analysis.  

 Differences between Nutrient Enrichment Vulnerability Classes 

Summary statistics for the study area and for each vulnerability class, as well as results of 

the Mann-Whitney tests for significant differences between the vulnerability classes are provided 

in Table 4.24. 

 Vegetation species number and average herb height 

The mean number of vegetation species was statistically significantly greater for the 

higher eutrophication vulnerability class at both initial (Z = 2.6; P = 0.005) and final sampling (Z 

= 2.68; P = 0.004). Thirteen species were recorded among the higher vulnerability sites at initial 

sampling and 12 were recorded at final sampling.  This contrasts with 6 species found among 

lower vulnerability sites at initial sampling and 3 found at final sampling.  Still, both the higher 

and lower vulnerability classes experienced on average a statistically significant decrease in the 

number of vegetation species from initial to final sampling (Z = 2.6; P = 0.005 and Z = 2.68; P = 

0.004, respectively). Average net change and average degree of fluctuation were not significantly 

different for the two classes.  

At initial sampling, statistically significantly greater average herb height was recorded for 

the lower eutrophication vulnerability class (Z = -1.95; P = 0.026), a difference that was not 
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evident at final sampling of average herb height. Average net change from initial to final 

sampling and average fluctuation between sample periods were not significantly different for the 

two vulnerability classes. Although average herb height did not change significantly from initial 

to final sampling for the higher vulnerability class, for the lower vulnerability class, a statistically 

significant loss in average herb height was recorded (Z = 1.67; P = 0.05).   

 Nutrient and salinity tolerance and marsh community type 

At both initial and final sampling the higher eutrophication vulnerability class exhibited a 

statistically significantly higher level of average nutrient tolerance than the lower vulnerability 

class (Z = 2.35; P = 0.009).  Average net change and average degree of fluctuation did not differ 

significantly between the vulnerability classes. Additionally, neither the higher nor the lower 

vulnerability class changed significantly in terms of average nutrient tolerance between initial 

and final sampling. 

Initial mean salinity tolerance was statistically significantly lower for the higher 

eutrophication vulnerability class (Z = -2.76; P = 0.0029), although no significant difference was 

evident at final sampling.  The vulnerability classes did not differ significantly in terms of 

change in mean salinity tolerance from initial to final sampling. The degree of average 

fluctuation, however, was statistically significantly greater for the higher vulnerability class (Z = 

0.003; P = 0.006). For the higher vulnerability class final mean salinity tolerance was statistically 

significantly greater than initial salinity tolerance (Z = -2.11; P = 0.017), while no difference was 

observed between initial and final mean salinity tolerance for the lower vulnerability class. 

Marsh community scores and community assignments for each sample site for the time 

period of field data collection are provided in Table 4.15. At initial sampling there was no 

significant difference in average marsh community type between higher and lower 



120 

 

eutrophication vulnerability classes.  Also, the average change in marsh community type from 

initial to final sampling was not significant for either vulnerability class. At final sampling, 

however, the higher vulnerability class exhibited statistically significantly fresher average marsh 

community type than the lower vulnerability class (Z = -2.76; P = 0.003).  Additionally, the 

average fluctuation in marsh community type between sample periods was statistically 

significantly higher for the higher vulnerability class (Z = 2.03; P = 0.021). 

 LAI, chlorophyll content, average stem height, and vegetation dynamics binary data scores 

No statistically significant differences were found between the higher and lower 

eutrophication vulnerability classes with regard to mean values of LAI, chlorophyll content, and 

average stem height measured at final sampling. 

The mean scores for qualitative measures of vegetation dynamics were statistically 

significantly greater for the higher eutrophication vulnerability class compared to the lower 

vulnerability class (Z = 2.76; P = 0.003).  Higher scores suggest a greater risk of eutrophication. 

 DG-WV2 image data and vegetation indices 

Mean reflectance values for DG-WV2 green band (510-580 nm), red edge band (705-745 

nm), NIR1 band (770-895 nm), and NIR2 band (860-1040 nm) were statistically significantly 

greater for the higher eutrophication vulnerability class compared to the lower vulnerability class 

(Z = 2.67; P = 0.003 in all cases).   No other bands showed significant differences. For each of 

the vegetation indices derived from the DG-WV2 image data, mean index values were 

statistically significantly greater for the higher vulnerability class compared to the lower 

vulnerability class.  This finding suggests that higher vulnerability sites are likely characterized 

by higher above-ground biomass, chlorophyll content, and plant primary productivity than lower 

vulnerability sites. 
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 Eutrophication Vulnerability Map and Map Accuracy 

The eutrophication vulnerability map resulting from the supervised classification of the 

10-band composite image is provided in Figure 4.17.  Based on Jackknife Cross Validation, the 

accuracy is estimated at 88% for the higher vulnerability class and 91% for the lower 

vulnerability class, with overall accuracy estimated at 89%.  Areas of higher eutrophication 

vulnerability tend to be closer in proximity to the source of introduced freshwater, as well as 

west and southwest of the siphon.  Additionally, visual comparison of the eutrophication 

vulnerability map and the DEM (Figure 4.18) revealed relatively consistent spatial patterns 

suggesting that areas of higher vulnerability tend to coincide with lower elevation areas within 

the study area. 

 Discussion 

Consistent clustering of the sample sites based on DG-WV2 image data, historical 

ecosystem survey data, and vegetation dynamics binary data was followed by findings of 

statistically significant differences between several eutrophication vulnerability class parameters.  

Accurate supervised classification of the DG-WV2 image data using the eutrophication 

vulnerability classified sites for training suggests that potentially eutrophic vegetated areas 

within this marsh ecosystem were delineated using the outlined methodology.  Of particular 

interest are significant differences in the spectral reflectance characteristics of the eutrophication 

vulnerability classes, indicating separability with regard to spectral bands important for 

vegetation studies, including the DG-WV2 green (510-580 nm), red edge (705-745 nm), NIR1 

(770-895 nm), and NIR2 (860-1040 nm) bands.  Additionally, statistically significant differences 

between the vulnerability classes with regard to each of the indices tested (NDVI, GNDVI, 

WDRVI, and ARVI) suggests that the classes differ in characteristics known to be highly 
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correlated with red reflectance, near infrared reflectance and vegetation indices, including above-

ground biomass and plant primary productivity (Hardisky et al., 1984; Hardisky et al., 1986; 

Tucker and Sellers, 1986; Justice et al., 1998; Wang et al., 2004; Guo and Price, 2000; 

Rundquist et al., 2001; Jensen et al., 2002; Siciliano et al., 2008). 

 Significant differences in the mean number of vegetation species at both initial and final 

sampling also support the separation of the vulnerability classes, with higher vulnerability sites 

exhibiting greater species diversity. Greater species diversity at higher vulnerability sites at 

initial and final sampling, although contrary to the expectation of a loss of biodiversity in 

eutrophic ecosystems, is not unexpected. Within the high freshwater impact regions of this 

ecosystem, introduced nutrient enriched water allows the survival of less salt tolerant species, 

thereby supporting biodiversity and counteracting loss of species due to saltwater intrusion. Still, 

both higher and lower vulnerability sites experienced a statistically significant decline in the 

mean number of vegetation species, likely due to continuing saltwater intrusion, ecosystem 

degradation, and loss of land to open water. It must be noted, however, that for each historical 

data collection period, field data collection may have been performed by different personnel with 

varying levels of expertise in plant identification, introducing the possibility of species 

misidentification. 

At initial sampling there was no significant difference between the vulnerability classes 

with regard to average marsh community type.  At final sampling, however, the average marsh 

community type was significantly fresher for the higher vulnerability class. This suggests shifts 

in vegetation communities and possible structural indicators of eutrophication.  This 

interpretation however, is complicated by noteworthy differences between the vulnerability 

classes with regard to ecosystem stability.  Since a significantly greater degree of fluctuation in 
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average marsh community type occurred in the higher vulnerability class, the question arises as 

to whether the differences documented at final sampling are of a relatively permanent nature or if 

they instead represent cyclical changes within the ecosystem.  This question is pertinent also 

with regard to results showing a lack of significant difference in final mean salinity tolerance and 

final mean nutrient tolerance, despite significant differences at initial sampling. The relatively 

greater degree of fluctuation in average marsh community, mean salinity tolerance, and mean 

nutrient tolerance within the higher vulnerability class suggests that changes may relate to 

intermittent siphon operation. While disturbances are recognized as an intrinsic part of 

ecosystem dynamics and a source of heterogeneity (Sousa, 1984; Lee and Brown, 2011), studies 

suggest that thresholds exist, which when reached, usher in ecosystem regime changes 

representing alternative stable states (Scheffer et al., 2001; Carpenter et al., 2011).  The observed 

greater fluctuations associated with the higher vulnerability class suggest that ecosystem regime 

changes may be occurring based on a freshwater introduction threshold, possibly leading to 

alternative stable states that affect flora and fauna within the study area. 

The lack of significant differences between the eutrophication vulnerability classes with 

regard to LAI and chlorophyll content may be due to the relatively uniform abundance of healthy 

green vegetation across the study sites at the height of growing season.  The lack of significant 

difference in average stem height may be explained by the method of measurement and the 

species composition of the sample sites.  All 3 species found at the lower vulnerability sites were 

also found at the higher vulnerability sites, raising the possibility that stem height, based on the 

average of the 5 tallest stems at each site, frequently represented the same species at each site, 

thereby accounting for a lack of variation. Spartina alterniflora, generally one of the tallest 

herbaceous plants encountered within the sample plots, was found at 9 of the 12 classified 
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sample sites, supporting this possibility.  Additionally, although a significant difference was 

found at initial sampling, no difference between the vulnerability classes was found at final 

sampling. This finding, as well as the significant loss in average herb height for the lower 

vulnerability class from initial to final sampling, may be attributable to differences in species 

composition and to loss of species over time. 

Finally, the significant difference between the vulnerability classes with regard to the 

vegetation dynamics binary data scores supports the separation of the classes. On average the 

scores associated with higher vulnerability sites were significantly greater indicating that the 

vegetation dynamics associated with those sites showed consistencies with functional and 

structural indicators of nutrient enrichment. 

 Conclusions 

High resolution remotely sensed image data, field measurements of vegetation 

biophysical characteristics and historical ecosystem survey data were used to model 

eutrophication vulnerability of a coastal Louisiana marsh impacted by the introduction of turbid 

Mississippi River water.  Cluster analysis of the data resulted in the classification of field sample 

sites as having higher or lower vulnerability to eutrophication.  Statistical analysis of the 

clustering results revealed significant differences between the vulnerability classes in a majority 

of the parameters.  The eutrophication vulnerability map derived from supervised classification 

of satellite imagery based on the cluster analysis results had an estimated overall accuracy of 

89%. Areas of higher eutrophication vulnerability were generally closer in proximity to the 

source of introduced freshwater (Figure 4.17).  Additionally, visual comparison of the 

eutrophication vulnerability map and a LiDAR-derived DEM (Figure 4.18) revealed relatively 
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consistent spatial patterns suggesting that areas of higher vulnerability tend to coincide with 

lower elevation areas within the study area. 

Significantly higher fluctuations in average marsh community type, and in nutrient and 

salinity tolerance associated with the higher eutrophication vulnerability class suggest that 

intermittent operation of the siphon diversion may be causing ecosystem regime changes based 

on a freshwater introduction threshold.  As a result, alternative stable states may be disrupting 

ecosystem stability and adversely affecting flora and fauna especially within higher 

eutrophication vulnerability regions of the study area.  

The results of this study suggest that potentially eutrophic and relatively unenriched 

wetland areas can be successfully delineated using the described methodology. The ability to 

accurately model vulnerability to eutrophication allows for sound sample collection protocols 

and contributes to effective assessment and monitoring of eutrophication risks associated with 

freshwater introduction into Louisiana’s wetland ecosystems. 
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Figure 4.1 Location of the approximately 138 km² study area in the Barataria Basin 

(adapted from ArcGIS basemap with April 17, 2011 Landsat 5 TM image overlay). 
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Figure 4.2 Pre-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 4.3 Post-1993 turbidity map adapted from USACE turbidity frequency data. 
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Figure 4.4 Map of study area delineating vegetated marsh areas subject to high and low 

freshwater impacts. 
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Figure 4.5 Map of study area showing salinity data collection sites in consistently high and 

low freshwater impact areas. 
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Figure 4.6 Map of study area showing areas of high, medium, and low NDVI values. 
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Figure 4.7 Sample sites across vegetation productivity and freshwater impact gradients. 
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Figure 4.8 (a) Platform and ladder apparatus for data collection from the boat; (b) 

Computer for spectroradiometer data collection; (c) Improved vantage point for collection 

of vegetation survey data; (d) Data collection with the Ocean Optics USB4000 

spectroradiometer system; (e) Data collection with the LAI-2000 Plant Canopy Analyzer. 
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Figure 4.9 Distribution of mean salinity at high and low impact sites during siphon operation and siphon dormancy. 
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Figure 4.10 Standard deviation of mean salinity at high and low freshwater impact sites 

during siphon operation and dormancy. 
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Figure 4.11 Mean salinity at high and low freshwater impact sites during siphon operation 

and dormancy. 
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Figure 4.12 Dendrogram results of cluster analysis of vegetation biophysical data. 

 

 

Figure 4.13 Graphs of summary statistics for cluster analysis of vegetation biophysical 

characteristics. 
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Figure 4.14 Dendrogram results of cluster analysis of DG-WV2 image data. 

 
 

 

Figure 4.15 Graphs of summary statistics for cluster analysis of DG-WV2 image data. 

 
 



146 

 

Figure 4.16 Dendrogram results of cluster analysis of vegetation dynamics binary data. 
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Figure 4.17 Map showing areas of higher and lower vulnerability to eutrophication. 
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Figure 4.18 Digital elevation model of the study area adapted from a 2010 LiDAR-derived 

DEM (ArcGIS online; LOSCO, LSU, C4G, 2010). 
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Table 4.1 Satellite image data specifications. 

 Band Wavelength (nm) Nominal Spectral Location 

DigitalGlobe WorldView2 

     Bands 1-8, 2 m    

     Panchromatic 0.5 m  

1 

2 

3 

4 

5 

6 

7 

8 

pan 

400-450 

450-510 

510-580 

585-625 

630-690 

705-745 

770-895 

860-1040 

450-800 

 Coastal 

Blue 

Green 

Yellow 

Red 

Red Edge 

NIR1 

NIR2 

Panchromatic 

 

Landsat 5 TM 1 450-520  Blue 

    Bands 1-5 and 7, 30 m     2 520-600  Green 

    Band 6, 120 m 3 630-690  Red 

 4 760-900  NIR 

 5 1550-1750  MIR 

 6 10400-12500  Thermal 

 7 2080-2350  MIR 

(Adapted from DigitalGlobe, 2009 and USGS, 2011) 

 

 

 

 

Table 4.2 Pre- and post-siphon operation satellite image dates and associated freshwater 

flows at WPH siphon diversion project. 

Pre-siphon operation (no flow)   Post-siphon operation 

Satellite image dates  Satellite image dates Freshwater flow (cfs) 

04/06/1984  04/02/1994 2023.82  

01/19/1985  09/25/1994 118.80  

10/08/1987  04/07/1996 1519.67  

01/28/1988  02/08/1998 787.01  

2/13/1988  02/24/1998 903.08  

11/01/1990  01/26/1999 1311.58  

11/17/1990  04/18/2000 721.22  

03/09/1991  09/17/2000 777.25  

02/08/1992  11/20/2000 783.88  

10/05/1992  02/27/2002 1327.31  

  10/20/2003 1057.15  

  02/25/2010 530.66  

 

 

 

 

 

 



150 

 

Table 4.3 Twelve satellite image dates during siphon operation and nearest salinity data 

dates. 

Satellite image dates/ 

siphon operating 

Nearest salinity data dates 

 

04/02/1994 03/29/1994 

09/25/1994 09/13/1994 

04/07/1996 04/02/1996 

02/08/1998 02/17/1998 

02/24/1998 02/17/1998 

01/26/1999 01/25/1999 

04/18/2000 04/18/2000 

09/17/2000 09/28/2000 

11/20/2000 11/21/2000 

02/27/2002 03/07/2002 

10/20/2003 10/13/2003 

02/25/2010 03/03/2010 

 

 

 

Table 4.4 Seventy-one salinity data dates corresponding to no flow periods (siphon not 

operating for at least 7 days prior to each salinity data date). 

No flow dates with available salinity data 

10/11/1994 

11/09/1994 

12/07/1994 

01/04/1995 

02/15/1995 

03/14/1995 

04/10/1995 

04/26/1995 

05/23/1995 

06/06/1995 

06/07/1995 

06/22/1995 

10/17/1995 

11/02/1995 

11/14/1995 

12/12/1995 

01/17/1996 

09/16/1997 

10/21/1997 

11/17/1997 

12/16/1997 

03/16/1999 

08/25/1999 

09/16/1999 

10/12/1999 

11/16/1999 

12/14/1999 

01/19/2000 

02/22/2000 

05/02/2001 

08/15/2001 

09/04/2001 

10/08/2001 

10/26/2001 

08/16/2002 

09/03/2002 

10/10/2002 

11/07/2002 

12/28/2002 

07/17/2003 

08/18/2003 

09/03/2003 

09/10/2004 

10/13/2004 

11/09/2004 

10/14/2005 

11/21/2005 

12/19/2005 

01/16/2006 

02/24/2006 

03/28/2006 

04/28/2006 

05/26/2006 

06/27/2006 

07/28/2006 

08/31/2006 

09/27/2006 

10/24/2006 

08/27/2007 

10/02/2007 

11/01/2007 

11/30/2007 

12/28/2007 

08/22/2008 

09/26/2008 

10/28/2008 

12/03/2008 

01/07/2009 

02/16/2009 

10/15/2009 

10/14/2010 
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Table 4.5 Mean salinity for high and low freshwater impact sites by siphon flow. 

High freshwater 

impact sites 

Low freshwater 

impact sites 

Mean salinity (ppt) 

(siphon flow) 

Mean salinity (ppt) 

(no siphon flow) 

BA04-01 - 5.68 11.13 

BA04-02 - 5.59 11.89 

BA04-03 - 7.57 13.18 

BA04-05 - 6.13 11.38 

BA04-07 - 9.90 14.17 

BA04-11 - 8.11 11.64 

BA04-12  7.07 9.83 

BA04-16 - 8.13 10.64 

BA04-55 - 11.53 14.91 

- BA04-06 10.85 13.96 

- BA04-08 11.42 14.64 

- BA04-09 11.70 14.16 

- BA04-10 11.49 13.97 

- BA04-15 12.24 14.59 

- BA04-17 11.33 12.59 

    

 

 

  

 

 

Table 4.6 Species salinity score assignments based on marsh zones of peak occurrence (i.e. 

where the species is most commonly found) for application of CPRA Marsh Assignment 

Algorithm. 

Zone of peak occurrence Salinity score 

Fresh 0.25 

Fresh to intermediate 1.50 

Intermediate 2.75 

Intermediate to brackish 7.15 

Brackish 11.50 

Brackish to saline 17.50 

Saline 24.00 

(Adapted from Visser and Sasser, 2002.) 
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Table 4.7 Salinity scores of common marsh vegetation species used in CPRA Marsh 

Assignment Algorithm to calculate marsh community salinity score and assign marsh 

community type. 

Scientific Name Common Name Salinity 

score 

Alternanthera philoxeroides (Mart.) Griseb. alligatorweed 1.50 

Amaranthus australis (A. Gray) Saur southern amaranth 7.15 

Amaranthus cannabinus (L.) Sauer tidalmarsh amaranth 7.15 

Cuscuta indecora Choisy big seed alfalfa dodder 2.75 

Cuscuta L. dodder 1.50 

Cynanchum angustifolium Pers. gulf coast swallow-wort 17.50 

Distichlis spicata (L.) Greene saltgrass 17.50 

Ipomoea sagittata Poir. saltmarsh morning-glory 1.50 

Iva frutescens L. Jesuit’s bark 2.75 

Juncus roemerianus Scheele needlegrass rush 17.50 

Schoenoplectus pungens (Vahl) Palla common threesquare 0.25 

Spartina alterniflora Loisel. smooth cordgrass 24.00 

Spartina cynosuroides (L.) Roth big cordgrass 11.50 

Spartina patens (Aiton) Muhl. saltmeadow cordgrass 7.15 

Symphyotrichum subulatum (Michx.) G.L. Nesom eastern annual saltmarsh aster 2.75 

Vigna luteola (Jacq.) Benth. hairypod cowpea 2.75 

(Adapted from the Excel file, “CCscore_Salinities_Update.June.2011,” provided by William M. 

Boshart and Danielle Richardi, Louisiana Department of Natural Resources, for use with Marsh 

Assignment Algorithm developed by Jenneke M. Visser and Charles E. Sasser).   

 

 

 

 

 

Table 4.8 Marsh community assignments by community salinity score resulting from 

CPRA Marsh Assignment Algorithm. 

Marsh community assignment Community salinity score 

Fresh ≤ 1.50 

Intermediate >1.50 and ≤ 7.15 

Brackish >7.15 and ≤ 15.00 

Saline >15.00 

(Adapted from Visser and, 2002.) 
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Table 4.9 Example calculation of community salinity score and assignment of community 

type. 

Vegetation Type Percent 

cover 

(a) 

Species 

salinity score 

(b) 

Percent cover 

 * species  

salinity score 

(ab) 

Community score 

= 

Σ(ab)/ Σ(a) 

Distichlis spicata (L.) Greene 

  

40 17.5 700  

Juncus roemerianus Scheele 

 

10 17.5 175 

Spartina alterniflora Loisel. 

 

50 24 1200 

Totals 

 

100  2075 

Community salinity score 

 

   2075/100 = 20.75 

 

Marsh community assignment          Saline marsh 

          community 

 

 

 

 

Table 4.10 Calculated community salinity scores and marsh community types assigned for 

field data collection period. 

Site Community salinity score      Marsh community type 

BA04-103 10.25 Brackish 

BA04-104 11.25 Brackish 

BA04-108 10.31 Brackish 

BA04-112 5.20 Intermediate 

BA04-116 20.75 Saline 

BA04-119 16.22 Saline 

BA04-120 24.00 Saline 

BA04-123 20.75 Saline 

BA04-124 18.06 Saline 

BA04-125 20.75 Saline 

BA04-126 20.75 Saline 

BA04-128 20.75 Saline 

BA04-132 5.82 Intermediate 

BA04-133 12.23 Brackish 

BA04-134 12.23 Brackish 

BA04-136 16.54 Saline 

CRMS-0258 20.58 Saline 

CRMS-0260 15.71 Saline 

CRMS-0282 20.26 Saline 

CRMS-3680 20.53 Saline 
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Table 4.11 Regression equations and resulting r2 and RMSE values by DigitalGlobe 

WorldView2 (DG-WV2) image band. 

08/01/11 Image 

Band r2 Equation RMSE 

1 (Coastal) .99 Band1 = (0.381859*$n1_080111_radiance(1)) - 32.6621 0.78 

2 (Blue) .99 Band2 = (0.269234723*$n1_080111_radiance(2)) - 

21.4367225 

0.81 

3 (Green) .99 Band3 = (0.268849236*$n1_080111_radiance(3)) - 

13.51864027 

0.82 

4 (Yellow) .99 Band4 = (0.316101915*$n1_080111_radiance(4)) - 

12.32399846 

1.05 

5 (Red) .99 Band5 = (0.298159806*$n1_080111_radiance(5)) - 

8.4834054 

0.96 

6 (Red Edge) .96 Band6 = (0.371882565*$n1_080111_radiance(6)) - 

1.80636633 

2.20 

7 (NIR1) .90 Band7 = (-0.0009*($n1_080111_radiance(7)**2) + 

0.6552*$n1_080111_radiance(7)) - 7.6661 

4.84 

8 (NIR2) .88 Band8 = (-0.002*($n1_080111_radiance(8)**2) + 

0.9774*$n1_080111_radiance(8)) - 1.2164 

4.40 

08/06/11 Image 

Band r2 Equation RMSE 

1 (Coastal) .99 Band1 = (0.330643144*$n1_080611radiance(1)) - 

23.19931939 

0.73 

2 (Blue) .99 Band2 = (0.234535754*$n1_080611 _radiance(2)) - 

14.34778922 

0.34 

3 (Green) .99 Band3 = (0.254956446*$n1_080611 _radiance(3)) - 

8.98327148 

0.68 

4 (Yellow) .99 Band4 = (0.294879488*$n1_080611 _radiance(4)) - 

7.432270408 

0.95 

5 (Red) .99 Band5 = (0.261416983*$n1_080611 _radiance(5)) - 

3.773811245 

1.07 

6 (Red Edge) .97 Band6 = (-0.0004*($n1_080611_radiance(6)**2) + 

0.4568*$n1_080611_ radiance(6)) - 3.949 

3.27 

7 (NIR1) .90 Band7 = (-0.0008*($n1_080611 _radiance(7)**2) + 

0.597*$n1_080611_radiance(7)) - 4.775 

5.73 

8 (NIR2) .91 Band8 = (-0.0018*($n1_080611_ radiance(8)**2) + 

0.8807*$n1_080611_ radiance(8)) + 1.625 

6.97 
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Table 4.12 Regression equations and resulting r2 values for composite image predicted 

values. 

Band r2 Equation 

1 (Coastal) 0.05 Band 1 = 2.295 + 0.187 x 

2 (Blue) 0.24 Band 2 = 1.393 + 0.477 x 

3 (Green) 0.65 Band 3 = 1.086 + 0.762 x 

4 (Yellow) 0.70   Band 4 = 0.943 + 0.785 x 

5 (Red) 0.72 Band 5 = 0.657 + 0.834 x 

6 (Red Edge) 0.89 Band 6 = 6.373 + 0.675 x 

7 (NIR1) 0.89 Band 7 = 5.938 + 0.811 x 

8 (NIR2) 0.90 Band 8 = 7.663 + 0.799 x 

 

 

 

 

 

Table 4.13 Vegetation indices and equations. 

Vegetation Index  Equation 

Normalized Difference Vegetation Index  NDVI = (NIR-red)/(NIR+red) 

 

Green NDVI  GNDVI = (NIR-green)/(NIR+green) 

 

Wide Dynamic Range Vegetation Index  WDRVI = (a*NIR-red)/(a*NIR+red) 

(where a = a weighting parameter based on 

vegetation density characteristics*) 

 

Atmospherically Resistant Vegetation Index ARVI = [NIR-(2.0*red-blue)]/ 

              [NIR-(2.0*red+blue)] 

* Based on vegetation density characteristics within the study area, a weighting parameter of 

0.2 was used to calculate WDRVI, as recommended by Gitelson (2004). 
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Table 4.14 SONRIS historical vegetation data. 

Data collection 

period 

Data collection location  

(CPRA vegetation station  

or CRMS transect locations) 

Historical data 

1997, 2001, 

2003, 2006, and 

2009 

BA04-103, BA04-104, BA04-108, 

BA04-112, BA04-116, BA04-119, 

BA04-120, BA04-123, BA04-124, 

BA04-125, BA04-126, BA04-128, 

BA04-132, BA04-133, BA04-134, 

BA04-136 

 

Marsh community type, average 

height of herbaceous layer in 

cm, and scientific and common 

names of vegetation species 

found at each station 

 

2007, 2008, 

2009, and 2010 

CRMS0258-V27, CRMS0260-V49, 

CRMS0282-V28, CRMS3680-V28 

Marsh community type, average 

height of herbaceous layer in 

cm, and scientific and common 

names of vegetation species 

found at each station 

Source:  SONRIS (2012) 
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Table 4.15 Marsh community types by sample site and data collection period. 

Marsh community type 

Fresh = 1; Intermediate = 2; Brackish = 3; Saline = 4 

 

Site 

Data collection period 

1997 2001 2003 2006 2007 2008 2009 2010 *2011 

BA04-103 3 2 3 3 - - 3 - 3 

BA04-104 3 3 3 3 - - 3 - 3 

BA04-108 1 2 4 4 - - 4 - 3 

BA04-112 2 3 2 3 - - 3 - 2 

BA04-116 4 4 4 4 - - 4 - 4 

BA04-119 3 4 4 4 - - 4 - 4 

BA04-120 4 4 4 4 - - 4 - 4 

BA04-123 4 4 4 4 - - 4 - 4 

BA04-124 4 4 4 4 - - 4 - 4 

BA04-125 4 4 3 4 - - 4 - 4 

BA04-126 4 4 4 4 - - 4 - 4 

BA04-128 4 4 4 4 - - 4 - 4 

BA04-132 4 1 2 4 - - 4 - 2 

BA04-133 3 1 3 4 - - 2 - 3 

BA04-134 4 1 1 4 - - 2 - 3 

BA04-136 3 4 3 3 - - 4 - 4 

CRMS-0258 - - - - 2 3 4 3 4 

CRMS-0260 - - - - 2 3 3 3 4 

CRMS-0282 - - - - 4 3 4 4 4 

CRMS-3680 - - - - 4 3 2 3 4 

- Historical data unavailable 

*Field data collection 
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Table 4.16 Vegetation species found historically and during field data collection by sample 

site. 

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 

Species site 

locations, field 

data collection 

Alternanthera 

philoxeroides (Mart.) 

Griseb. 

 

alligatorweed BA04-104, BA04-134 

 

 

 

Amaranthus L. 

 

 

 

pigweed BA04-112, BA04-132, 

BA04-133, BA04-134, 

BA04-136  

 

 

 

 

Amaranthus australis 

(A. Gray) Sauer 

 

 

southern amaranth BA04-103, BA04-104, 

BA04-132, BA04-133, 

BA04-134, CRMS-3680 

 

BA04-103, BA04-

133, BA04-134 

 

 

Amaranthus 

cannabinus (L.) Sauer 

 

 

 

tidalmarsh 

amaranth 

BA04-104, BA04-108, 

BA04-112, BA04-125, 

BA04-132, BA04-133, 

BA04-134 

 

BA04-104, BA04-

112, BA04-132 

Ammannia coccinea 

Rottb. 

 

valley redstem BA04-136 

 

 

 

Ammannia latifolia L. 

 

pink redstem BA04-133 

 

 

Baccharis halimifolia 

L. 

 

eastern baccharis BA04-103, BA04-104, 

BA04-112, BA04-124 

 

 

Cephalanthus 

occidentalis L. 

 

common 

buttonbush 

BA04-132 

 

 

 

Colocasia esculenta 

(L.) Schott 

 

coco yam BA04-132 

 

 

 

Cuscuta L.  

 

dodder BA04-112  

 

BA04-114 

 

Cuscuta indecora 

Choisy 

 

bigseed alfalfa 

dodder 

BA04-108 

 

 

 

Cynanchum 

angustifolium Pers. 

 

 

Continued 

gulf coast swallow-

wart 

 CRMS-0260 
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Table 4.16 Continued    

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 
Species site 

locations, field 

data collection 

Cyperus compressus L. poorland flatsedge BA04-108 

 

 

    
Cyperus odoratus L. 

 

 

 

 

fragrant flatsedge BA04-103, BA04-108, 

BA04-112, BA04-116, 

BA04-132, BA04-133, 

BA04-134, BA04-136 

 

 

Cyperus polystachyos 

Rottb. 

 

manyspike 

flatsedge 

BA04-108 

 

 

 

Cyperus virens Michx. 

 

green flatsedge BA04-108, BA04-123 

 

 

Distichlis spicata (L.)  

Greene 

 

 

 

 

 

 

 

 

 

 

 

Saltgrass 

(seashore 

saltgrass, spike 

grass, alkali grass, 

paille sale) 

BA04-103, BA04-104, 

BA04-108, BA04-112, 

BA04-114, BA04-116, 

BA04-119, BA04-120, 

BA04-123, BA04-124, 

BA04-125, BA04-126, 

BA04-128, BA04-132, 

BA04-133, BA04-134, 

BA04-136, CRMS-0258, 

CRMS-0260, CRMS-0282, 

CRMS-3680 

 

BA04-103, BA04-

104, BA04-108, 

BA04-112, BA04-

114, BA04-116, 

BA04-119, BA04-

123, BA04-124, 

BA04-125, BA04-

126, BA04-128, 

BA04-133, BA04-

134, BA04-136, 

CRMS-0258, 

CRMS-0260, 

CRMS-3680, 1, 2, 

3 

 

Echinochloa walteri 

(Pursh) A. Heller  

 

 

coast cockspur 

grass 

BA04-104, BA04-108, 

BA04-116, BA04-132, 

BA04-133, BA04-134 

 

 

Eleocharis cellulosa 

Torr. 

 

gulf coast 

spikerush 

BA04-104 

 

 

 

Hibiscus moscheutos L. 

 

 

crimsoneyed 

rosemallow 

 

BA04-134 

 

 

 

Ipomoea L. 

 

 

 

 

Continued 

morning glory BA04-104 
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Table 4.16 Continued 

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 

Species site 

locations, field 

data collection 

Ipomoea sagittata Poir. 

 

saltmarsh morning 

glory 

BA04-103, BA04-104, 

BA04-108, BA04-112 

BA04-104, BA04-

108 

    

Iva frutescens L. 

 

 

 

 

Jesuit’s bark BA04-108, BA04-112, 

BA04-114, BA04-119, 

BA04-132, BA04-133, 

BA04-134, CRMS-0260 

 

BA04-103, 

BA04-114, 

CRMS-0260 

 

 

 

Juncus effusus L. 

 

 

common rush BA04-103, BA04-124, 

BA04-125 

 

 

Juncus roemerianus 

Scheele 

 

 

 

 

black rush (needle 

rush, needlegrass 

rush, black needle 

rush, paille chat tigre) 

BA04-103, BA04-112, 

BA04- BA04-119, BA04-

120, BA04- BA04-124, 

BA04-125, BA04-126, 

CRMS-3680 

 

BA04-104, 

BA04-108, 

BA04-124, 

BA04-125, 

CRMS-0260, 

CRMS-3680 

 

 

Kosteletzkya virginica 

(L.) C. Presl ex A. Gray 

 

Virginia salmarsh 

mallow 

BA04-108, BA04-133 

 

 

 

Leptochloa P. Beauv. 

 

sprangletop BA04-108 

 
 

Ludwigia leptocarpa 

(Nutt.) H. Hara 

 

anglestem primrose-

willow 

BA04-133 

 

 

 

Lythrum lineare L. 

 

wand lythrum BA04-103, BA04-104 

 

 

Mikania Willd. 

 

hempvine BA04-132, BA04-133 

 

 

Panicum hemitomon 

Schult. 

 

maidencane BA04-132 

 

 

 

Panicum repens L. 

 

torpedo grass BA04-133, BA04-134 

 

 

Phragmites australis 

(Cav.) Trin. Ex Steud.  

 

 

 

 

Continued 

roseau cane (common 

reed, giant reed, giant 

reedgrass, roseau, 

yellow cane, cane) 

 

BA04-125 
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Table 4.16 Continued    

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 

Species site 

locations, field 

data collection 

Phytolacca americana 

L. 

 

American 

pokeweed 

BA04-104 

 

 

Pluchea camphorata 

(L.) DC. 

camphor pluchea BA04-104, BA04-133 

 

 

    

Polygonum 

hydropiperoides Michx. 

 

swamp smartgrass BA04-133, BA04-134 

 

 

 

Polygonum 

pensylvanicum L. 

 

 

pennsylvania 

smartweed 

BA04-132, BA04-133, 

BA04-134 

 

 

 

Polygonum punctatum 

Elliot 

 

 

dotted smartweed BA04-104, BA04-108, 

BA04-112, BA04-132, 

BA04-133, BA04-134 

 

 

Schoenoplectus 

americanus (Pers.) 

Volkart ex Schinz & R. 

Keller 

 

chairmaker’s 

bulrush 

BA04-104 

 

 

 

Schoenoplectus 

pungens (Vahl) Palla 

 

common three-

square 

BA04-103, BA04-104 

 

 

BA04-133, BA04-

134 

 

Schoenoplectus 

robustus (Pursh) M.T. 

Strong 

 

 

 

leafy three-square  

(three-square, salt 

marsh bulrush, 

coco doux, paille 

d’oie) 

 

BA04-104, BA04-114, 

BA04-126, CRMS-3680 

 

 

 

 

 

Sesbania Scop. 

 

riverhemp BA04-104 

 

 

Setaria magna Griseb. 

 

giant bristlegrass BA04-108 

 

 

Solidago sempervirens 

L. 

 

 

 

 

Continued 

Seaside goldenrod BA04-103, BA04-108, 

BA04-112, BA04-134 
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Continued 
Table 4.16 Continued 

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 

Species site 

locations, field 

data collection 

Sorghum halepense (L.) 

Pers. 

johnsongrass BA04-132, BA04-133, 

BA04-134 

 

 

Spartina alterniflora 

Loisel. 

 

 

 

 

 

 

 

 

 

 

 

 

smooth cordgrass 

(oystergrass, salt 

water cordgrass, 

paille des huitres) 

BA04-104, BA04-108, 

BA04-112, BA04-114, 

BA04-116, BA04-119, 

BA04-120, BA04-123, 

BA04-124, BA04-125, 

BA04-126, BA04-128, 

BA04-132, BA04-133, 

BA04-134, BA04-136, 

CRMS-0258, CRMS-0260, 

CRMS-0282, CRMS-3680 

 

 

 

BA04-104, BA04-

108, BA04-114, 

BA04-116, BA04-

119, BA04-120, 

BA04-123, BA04-

124, BA04-125, 

BA04-126, BA04-

128, BA04-133, 

BA04-134, BA04-

136, CRMS-0258, 

CRMS-0260, 

CRMS-0282, 

CRMS-3680, 1, 2, 

3 

 

Spartina cynosuroides 

(L.) Roth  

 

big cordgrass BA04-114, BA04-119 

 

 

BA04-103, BA04-

112, BA04-132 

 

Spartina patens (Aiton) 

Muhl. 

 

 

 

 

 

 

 

 

 

 

marshhay cordgrass 

(wiregrass, salt 

meadow cordgrass, 

paille a chat tigre) 

BA04-103, BA04-104, 

BA04-108, BA04-112, 

BA04-114, BA04-116, 119, 

BA04-120, BA04-123, 

BA04-124, BA04-125, 

BA04-128, BA04-132, 

BA04-133, BA04-134, 

BA04-136, CRMS-0258, 

CRMS-0260, CRMS-0282, 

CRMS-3680 

BA04-103, BA04-

104, BA04-108, 

BA04-112, BA04-

114, BA04-119, 

BA04-124, 1 

BA04-136, 

CRMS-0260, 

CRMS-0282 

 

 

 

 

Sphenoclea zeylanica 

Gaertn. 

 

chickenspike BA04-133 

 

 

 

Symphyotrichum 

subulatum (Michx.) 

G.L. Nesom 

eastern annual 

saltmarsh aster 

BA04-103, BA04-119, 

BA04-120, BA04-125, 

BA04-126, BA04-133, 

BA04-136 

BA04-104 

 

 

 

 

 

Continued 
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Table 4.16 Continued 

Scientific name as 

originally observed 

Common name 

(followed by 

colloquial names) 

*Species site locations, 

historical data 

Species site 

locations, field 

data collection 

Symphyotrichum 

tenuifolium (L.) G.L. 

Nesom 

 

 

 

perennial saltmarsh 

aster 

BA04-103, BA04-108, 

BA04-119, BA04-125, 

BA04-133, BA04-134, 

CRMS-0260, CRMS-

3680 

 

 

Triadica sebifera (L.) 

Small 

 

Chinese tallow BA04-132 

 

 

 

Typha latifolia L. 

 

broadleaf cattail BA04-104 

 

 

Vigna luteola (Jacq.) 

Benth. 

 

 

 

 

 

hairypod cowpea BA04-103, BA04-104, 

BA04-108, BA04-112, 

BA04-114, BA04-116, 

BA04-124, BA04-125, 

BA04-132, BA04-133, 

BA04-134, BA04-136 

 

BA04-104, BA04-

108, BA04-112, 

BA04-114, BA04-

132, CRMS-0258, 

CRMS-0260 

 

 

Vitis L. 

 

grape BA04-108 

 

 

*Historical species data were not available for sample sites 1, 2, and 3  
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Table 4.17 Known nutrient and salinity sensitivities of vegetation species found at study 

sample sites historically and/or during field sampling. 

 

 

Vegetation species 

Sensitivity to nutrient and salinity increases 

intolerant = 1; somewhat tolerant = 2; 

moderately tolerant = 3; tolerant = 4; very tolerant = 5 

 Nutrient Sensitivity Salinity Sensitivity 

Baccharis halimifolia L. 2 4 

Cephalanthus occidentalis L. 2 1 

Distichlis spicata (L.) Greene 2 5 

Hibiscus moscheutos L. 2 1 

Iva frutescens L. 2 4 

Juncus effusus L. 2 3 

Juncus roemerianus Scheele 4 * 

Phragmites australis (Cav.) Trin. Ex Steud.  5 3 

Phytolacca americana L. 3 1 

Polygonum hydropiperoides Michx. 2 1 

Polygonum pensylvanicum L. - 1 

Polygonum punctatum Elliot 3 3 

Solidago sempervirens L. 2 4 

Spartina alterniflora Loisel. 2 5 

Spartina cynosuroides (L.) Roth - 5 

Spartina patens (Aiton) Muhl. 2 5 

Typha latifolia L. 3 1 

*Data unavailable   
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Table 4.18 Changes in number of species. 

Site 

Initial 

number of 

species 

Number of 

species at 

field data 

collection 

Change in 

number of 

species 

(final-initial) 

Transitions in 

species number 

Fluctuations 

in species 

number 

Number of 

possible 

fluctuations 

Fluctuation index 

(fluctuations/ 

possible  

fluctuations) *100 

BA04-103 8 5 -3 8-5-4-5-5-5 3 5 0.60 

BA04-104 12 9 -3 12-4-7-2-8-9 5 5 1.00 

BA04-108 9 7 -2 9-10-7-5-8-7 5 5 1.00 

BA04-112 10 8 -2 10-5-5-5-4-7 3 5 0.60 

BA04-116 4 2 -2 4-4-2-3-3-2 3 5 0.60 

BA04-119 5 3 -2 5-3-3-3-4-3 3 5 0.60 

BA04-120 4 1 -3 4-3-2-3-2-1 5 5 1.00 

BA04-123 3 2 -1 3-2-2-3-3-2 3 5 0.60 

BA04-124 6 4 -2 6-3-3-3-4-4 2 5 0.40 

BA04-125 5 3 -2 5-5-2-4-6-3 4 5 0.80 

BA04-126 3 2 -1 3-3-3-2-3-2 3 5 0.60 

BA04-128 2 2 0 2-3-2-3-3-2 4 5 0.80 

BA04-132 9 3 -6 9-5-3-4-3-3 4 5 0.80 

BA04-133 13 6 -7 13-5-6-6-6-6 2 5 0.40 

BA04-134 5 5 0 5-5-7-6-5-5 3 5 0.60 

BA04-136 6 3 -3 6-3-5-3-4-3 5 5 1.00 

CMRS-0258 3 3 0 3-3-3-3-3 0 5 0.00 

CMRS-0260 5 7 -2 5-6-4-4-7 3 5 0.60 

CMRS-0282 2 2 0 2-2-3-3-2 2 4 0.50 

CMRS-3680 4 3 -1 4-7-6-6-3 3 4 0.75 
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Table 4.19 Changes in average herb height. 

Site 

Initial 

average 

herb height 

(cm) 

Final 

average 

herb height 

(cm) 

Change in 

average herb 

height (cm) 

(initial-final) 

Herb height 

transitions 

Number of 

fluctuations 

in average 

herb height 

Number of 

possible 

fluctuations 

Fluctuation index 

(fluctuations/ 

possible 

fluctuations) * 100 

BA04-103 122 61 -61 loss-gain-loss-loss 2 4 0.50 

BA04-104 91 56 -35 * -loss-gain-loss 2 4 0.50 

BA04-108 46 61 15 loss-gain-loss-gain 3 4 0.75 

BA04-112 61 64 3 gain-gain-loss-gain 2 4 0.50 

BA04-116 122 74 -48 loss-gain-loss-gain 3 4 0.75 

BA04-119 91 76 -15 gain-loss-loss-gain 2 4 0.50 

BA04-120 107 122 15 gain-loss-loss-gain 2 4 0.50 

BA04-123 91 89 -2 same-gain-loss-gain 3 4 0.75 

BA04-124 107 76 -31 same-gain-loss-gain 3 4 0.75 

BA04-125 76 71 -5 gain-loss-same-loss 3 4 0.75 

BA04-126 91 71 -20 gain-loss-loss-gain 2 4 0.50 

BA04-128 107 33 -74 same-loss-loss-loss 1 4 0.25 

BA04-132 61 97 36 gain-loss-gain-loss 3 4 0.75 

BA04-133 91 66 -25 loss-gain-loss-loss 2 4 0.50 

BA04-134 46 46 0 same-gain-loss-loss 2 4 0.50 

BA04-136 122 81 -41 loss-gain-loss-loss 2 4 0.50 

CMRS-0258 107 74 -33 loss-loss-gain 1 4 0.25 

CMRS-0260 107 82 -25 loss-loss-loss  4 0.00 

CMRS-0282 107 97 -10 loss-loss-gain 1 3 0.33 

CMRS-3680 122 116 -6 loss-gain-gain 1 3 0.33 

*Data unavailable       
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Table 4.20 Changes in sensitivity to nutrient increases. 

Sensitivity to nutrient increases: intolerant = 1; somewhat tolerant = 2; moderately tolerant = 3; tolerant = 4; very tolerant = 5 

 

Site 

Initial 

average 

nutrient 

tolerance 

Average 

nutrient 

tolerance at 

field data 

collection 

Change in 

nutrient 

tolerance 

(final-initial) 

Transitions in 

nutrient tolerance 

Number of 

fluctuations 

in nutrient 

tolerance 

Number of 

possible 

fluctuations 

Fluctuation 

index 

(fluctuations/ 

possible 

fluctuations) 

*100 

BA04-103 3 2 -1 3-2-3-3-3-2 3 5 0.60 

BA04-104 2.5 3 0.5 2.5-2-2-2-2-3 2 5 0.40 

BA04-108 2.5 3 0.5 2.5-2.5-2-2-2-3 2 5 0.40 

BA04-112 3 2 -1 3-2.5-2.5-2-2-2 2 5 0.40 

BA04-116 2 2 0 2-2-2-2-2-2 0 5 0.00 

BA04-119 3 2 -1 3-2-2-2-2-2 1 5 0.20 

BA04-120 2 2 0 2-2-2-2-2-2 0 5 0.00 

BA04-123 2 2 0 2-2-2-2-2-2 0 5 0.00 

BA04-124 3 3 0 3-2-3-3-3-3 2 5 0.40 

BA04-125 3.67 3 -0.67 3.67-2-2-3-3-3 2 5 0.40 

BA04-126 3 2 -1 3-2-2-2-2-2 1 5 0.20 

BA04-128 2 2 0 2-2-2-2-2-2 0 5 0.00 

BA04-132 2.5 * * 2.5-3-3-2-2-* 2 5 0.40 

BA04-133 2 2 0 2-3-2-2-2-2 2 5 0.40 

BA04-134 2.5 2 -0.5 2.5-2.5-2-2-2-2 1 5 0.20 

BA04-136 2 2 0 2-2-2-2-2-2 0 5 0.00 

CMRS-0258 2 2 0 2-2-2-2-2-2 0 5 0.00 

CMRS-0260 2 3 1 2-2-2-2-2-3 1 5 0.20 

CMRS-0282 2 2 0 2-2-2-2-2-2 0 4 0.00 

CMRS-3680 2 3 1 2-3-3-3-3-3 1 4 0.25 

*Species sensitivity data unavailable 
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Table 4.21 Changes in sensitivity to salinity increases. 

Sensitivity to salinity increases: intolerant = 1; somewhat tolerant = 2; moderately tolerant = 3; tolerant = 4; very tolerant = 5 

 

Site 

Initial 

average 

salinity 

tolerance 

Average 

salinity 

tolerance at 

field data 

collection 

Change in 

salinity 

tolerance 

(final-

initial) 

Transitions in 

salinity tolerance 

Number of 

fluctuations in 

salinity 

tolerance 

Number of 

possible 

fluctuations 

Fluctuation 

index 

(fluctuations/ 

possible 

fluctuations) 

*100 

BA04-103 4.5 4.5 0 4.5-4-5-5-5-4.5 3 5 0.60 

BA04-104 3.25 5 1.75 3.25-5-5-5-5-5 1 5 0.20 

BA04-108 4 5 1 4-4-5-4.5-4.5-5 3 5 0.60 

BA04-112 4 5 1 4-4-4-4.5-5-5 2 5 0.40 

BA04-116 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-119 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-120 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-123 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-124 4.5 5 0.5 4.5-4-5-5-5-5 2 5 0.40 

BA04-125 4 5 1 4-4-5-5-5-5 1 5 0.20 

BA04-126 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-128 5 5 0 5-5-5-5-5-5 0 5 0.00 

BA04-132 3 5 2 3-3-3-4.5-5 2 5 0.40 

BA04-133 3.33 5 1.67 3.33-3-5-4.5-1-5 5 5 1.00 

BA04-134 3.33 5 1.67 3.33-3-4-4.5-3-5 5 5 1.00 

BA04-136 5 5 0 5-5-5-5-5-5 0 5 0.00 

CMRS-0258 5 5 0 5-5-5-5-5-5 0 5 0.00 

CMRS-0260 4.5 4.5 0 4.5-4.5-4.5-4.5-5-4.5 2 5 0.40 

CMRS-0282 5 5 0 5-5-5-5-5-5 0 4 0.00 

CMRS-3680 5 5 0 5-5-5-5-5-5 0 4 0.00 
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Table 4.22 Changes in marsh community type. 

Marsh community types:  Fresh = 1; Intermediate = 2; Brackish = 3; Saline = 4 

 

Site 

Initial 

vegetation 

community 

Vegetation 

community 

at field data 

collection 

Change in 

vegetation 

community 

(final-initial) 

Transitions in 

community 

type 

Number of 

fluctuations in 

community 

type 

Number of 

possible 

fluctuations 

Fluctuation index 

(fluctuations/ 

possible 

fluctuations) *100 

BA04-103 3 3 0 3-2-3-3-3-3 2 5 0.40 

BA04-104 3 3 0 3-3-3-3-3-3 0 5 0.00 

BA04-108 1 3 2 1-2-4-4-4-3 3 5 0.60 

BA04-112 2 2 0 2-3-2-3-3-2 4 5 0.80 

BA04-116 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-119 3 4 1 3-4-4-4-4-4 1 5 0.20 

BA04-120 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-123 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-124 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-125 4 4 0 4-4-3-4-4-4 2 5 0.40 

BA04-126 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-128 4 4 0 4-4-4-4-4-4 0 5 0.00 

BA04-132 4 2 -2 4-1-2-4-4-2 4 5 0.80 

BA04-133 3 3 0 3-1-3-4-2-3 5 5 1.00 

BA04-134 4 3 -1 4-1-1-4-2-3 4 5 0.80 

BA04-136 3 4 1 3-4-3-3-4-4 3 5 0.60 

CMRS-0258 2 4 2 2-3-4-3-4 4 5 0.80 

CMRS-0260 2 4 2 2-3-3-3-4 2 5 0.40 

CMRS-0282 4 4 0 4-3-4-4-4 2 4 0.50 

CMRS-3680 4 4 0 4-3-2-3-4 4 4 1.00 
 

 



170 

 

Table 4.23 Conversion of observations of vegetation dynamics to binary format data. 

Questions Responses by Sample Site (Yes = 1; No = 0) 

 BA04- CRMS- 

 103 104 108 112 116 119 120 123 124 125 126 128 132 133 134 136 0258 0260 0282 3680 

Did marsh community 

type change from the 

initial sample period to 

the final sample 

period? 

 

0 

 

0 

 

 

 

1 0 

 

 

0 1 0 0 0 0 0 0 1 

 

0 1 

 

1 1 1 0 0 

Did Marsh community 

type fluctuate between 

sample periods? 1 0 1 1 0 1 0 0 0 

 

1 

 

 

0 0 1 1 1 1 1 1 1 1 

Was marsh community 

type fresher at the final 

sample period than at 

the initial sample 

period? 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 

Did the number of 

species decline from 

the initial sample 

period to the final 

sample period? 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 

 

1 

Did the number of 

species fluctuate 

between sample 

periods? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

1 

 

0 

 

1 1 1 

Did the average herb 

height change from the 

initial sample period to 

the final sample? 

 

 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

Did the average herb 

height fluctuate 

between sample 

periods? 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

0 

 

1 

 

1 
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Table 4.23 Continued 

Questions Responses by Sample Site (Yes = 1; No = 0) 

 BA04- CRMS- 

 103 104 108 112 116 119 120 123 124 125 126 128 132 133 134 136 0258 0260 0282 3680 

Did the average herb 

height increase from 

the initial sample 

period to the final 

sample period? 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Did nutrient tolerance 

change from the initial 

sample period to the 

final sample period?  1 1 

 

1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 

Did nutrient tolerance 

fluctuate between 

sample periods? 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 

Did nutrient tolerance 

increase from the 

initial sample period to 

the final sample 

period? 0 1 1 0 0 0 0 0 0 0 0 

 

0 0 0 0 0 0 1 0 1 

Did salinity tolerance 

change from the initial 

sample period to the 

final sample period? 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 

Did salinity tolerance 

fluctuate between 

sample periods? 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 

 

Total score 8 9 12 10 4 8 5 4 7 9 6 3 12 8 9 6 4 9 4 8 
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Table 4.24 Study site and nutrient enrichment vulnerability class summary statistics and results of tests for significant 

difference between vulnerability classes based on cluster analysis variables. 

 All sites 

Lower eutrophication 

vulnerability sites 

Higher 

eutrophication 

vulnerability 

sites 

Mann-Whitney test for 

significant difference 

between vulnerability 

classes 

Vegetation biophysical data Mean 

Standard 

deviation Mean 

Standard 

deviation Mean 

Standard 

deviation 
Z value 

 

P value 

(α = 0.05) 

Initial marsh community 3.30 0.92 3.80 0.45 2.86 1.07 -1.54 0.062 

Final marsh community 3.55 0.69 4.00 0.00 2.71 0.49 -2.76 0.003 

Change in marsh community 0.25 0.97 0.20 0.45 -0.14 1.21 -0.65 0.258 

Fluctuation in marsh community 0.42 0.37 0.12 0.27 0.63 0.34 2.03 0.021 

Initial number of species 5.90 3.23 3.80 1.48 9.43 2.64 2.6 0.005 

Final number of species 4.00 2.29 2.00 0.71 6.14 2.04 2.68 0.004 

Change in number of species -2.10 1.83 -1.80 1.30 -3.29 2.43 -0.89 0.187 

Fluctuation in number of species 0.66 0.25 0.80 0.20 0.71 0.23 -0.57 0.284 

Initial average herb height 93.75 24.39 109.80 12.91 74.00 28.25 -1.95 0.026 

Final average herb height 75.65 21.43 79.80 31.98 64.43 15.80 -1.14 0.127 

Change in average herb height -18.10 26.85 -30.00 36.02 -9.57 32.81 1.06 0.145 

Fluctuation in average herb height 0.51 0.21 0.55 0.21 0.57 0.12 0 0.500 

Initial nutrient tolerance 2.43 0.51 2.00 0.00 2.57 0.35 2.35 0.009 

Final nutrient tolerance 2.30 0.47 2.00 0.00 2.29 0.49 0.73 0.233 

Change in nutrient tolerance -0.13 0.61 0.00 0.00 -0.29 0.64 -0.73 0.232 

Fluctuation in nutrient tolerance 0.23 0.20 0.00 0.00 0.41 0.12 2.76 0.003 

Initial salinity tolerance 4.42 0.71 5.00 0.00 3.63 0.54 -2.76 0.003 

Final salinity tolerance 4.80 0.68 5.00 0.00 4.50 1.12 -0.73 0.233 

Change in salinity tolerance 0.38 0.73 0.00 0.00 0.87 1.03 1.54 0.062 

Fluctuation in salinity tolerance 0.27 0.34 0.00 0.00 0.63 0.29 2.76 0.003 

Leaf area index 4.27 1.29 3.79 1.66 4.99 1.21 1.14 0.127 

 

 

 

Continued 
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Table 4.24 Continued     

 All sites 

Low nutrient 

enrichment 

vulnerability sites 

High nutrient 

enrichment 

vulnerability sites 

Mann-Whitney test for 

significant difference 

between vulnerability 

classes 

 Mean 

Standard 

deviation Mean 

Standard 

deviation Mean 

Standard 

deviation 
Z value 

 

P value 

(α = 0.05) 

Chlorophyll concentration 245.40 79.41 220.60 81.94 292.86 98.48 0.65 0.258 

Stem height 175.00 18.63 181.40 15.85 179.29 25.63 -0.65 0.258 

         
DG-WV2 image data         
Coastal Band 1 (400-450 nm) 3.37 0.71 3.20 0.71 3.97 0.64 1.54 0.062 

Blue Band 2 (450-510 nm) 3.40 0.57 3.22 0.85 3.68 0.47 0.97 0.166 

Green Band 3 (510-580 nm) 6.48 0.83 5.83 0.80 7.20 0.61 2.76 0.003 

Yellow Band 4 (585-625 nm) 5.91 0.74 5.68 1.40 6.02 0.23 0.49 0.312 

Red Band 5 (630-690 nm) 5.27 0.92 5.43 1.48 4.80 0.67 -0.65 0.258 

Red Edge Band 6 (705-745 nm) 21.43 4.14 17.73 1.47 25.40 4.04 2.76 0.003 

NIR Band 7 (770-895 nm) 38.26 10.71 28.34 3.12 49.12 9.51 2.76 0.003 

NIR Band 8 (860-1040 nm) 41.11 9.20 32.65 3.45 50.22 7.94 2.76 0.003 

NDVI (NIR Band 7) 0.74 0.08 0.68 0.08 0.81 0.05 2.76 0.003 

NDVI (NIR Band 8) 0.76 0.07 0.71 0.07 0.82 0.04 2.76 0.003 

GNDVI (NIR Band 7) 0.70 0.05 0.66 0.04 0.74 0.03 2.60 0.005 

GNDVI (NIR Band 8) 0.72 0.04 0.70 0.04 0.75 0.02 1.95 0.026 

WDRVI (NIR Band 7) 0.74 0.08 0.68 0.08 0.81 0.05 2.76 0.003 

WDRVI (NIR Band 8) 0.76 0.07 0.71 0.07 0.82 0.04 2.76 0.003 

ARVI  (NIR Band 7) 0.66 0.11 0.58 0.10 0.78 0.08 2.76 0.003 

ARVI (NIR Band 8) 0.69 0.10 0.62 0.09 0.78 0.07 2.60 0.005 

Vegetation dynamics  

binary data scores 8.05 

 

2.87 

 

4.40 

 

1.14 

 

9.71 

 

1.70 

 

2.76 

 

0.003 
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Table 4.25 Cluster analyses results. 

 DG-WV2  

 image data 

Vegetation 

parameters 

Vegetation dynamics 

binary data 

Site Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 

BA04-103 1  1  1  

BA04-104 1  1  1  

BA04-108 1  1  1  

BA04-112 1  1  1  

BA04-116  2  2  2 

BA04-119 1   2 1  

BA04-120  2  2  2 

BA04-123  2  2  2 

BA04-124  2 1  1  

BA04-125  2 1  1  

BA04-126  2  2 1  

BA04-128  2  2  2 

BA04-132 1  1  1  

BA04-133 1  1  1  

BA04-134 1  1  1  

BA04-136  2  2  2 

CRMS 0258 1   2  2 

CRMS 0260 1   2 1  

CRMS 0282 1   2  2 

CRMS 3680  2  2 1  
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Table 4.26 Summary statistics for cluster analysis of vegetation biophysical data. 

No. of 

Clusters RMSSTD SPRSQ RSQ BSS 

19 2.84 0.0012 1.00 184.98 

18 3.17 0.0014 1.00 231.74 

17 3.35 0.0016 1.00 257.67 

16 3.58 0.0018 0.99 294.42 

15 3.93 0.0022 0.99 356.12 

14 4.55 0.0037 0.99 594.42 

13 4.92 0.0068 0.98 1094.20 

12 5.88 0.0081 0.97 1295.00 

11 8.77 0.011 0.96 1769.90 

10 9.39 0.0126 0.95 2029.70 

9 6.45 0.0148 0.94 2384.40 

8 11.40 0.0186 0.92 2988.70 

7 7.53 0.0222 0.89 3569.50 

6 8.81 0.0234 0.87 3765.10 

5 8.84 0.0452 0.83 7251.80 

4 10.26 0.066 0.76 10593.00 

3 18.51 0.0871 0.67 13991.00 

2 13.39 0.1812 0.49 29096.00 

1 19.17 0.491 0.00 78866.00 
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Table 4.27 Summary statistics for cluster analysis of DG-WV2 image data. 

No. of 

Clusters RMSSTD SPRSQ RSQ BSS 

19 0.26 0.0001 1.00 0.52 

18 0.37 0.0003 1.00 1.11 

17 0.41 0.0003 1.00 1.32 

16 0.45 0.0005 1.00 2.16 

15 0.41 0.0005 1.00 2.21 

14 0.53 0.0008 1.00 3.19 

13 0.73 0.001 1.00 4.24 

12 0.78 0.0012 1.00 4.89 

11 0.86 0.0014 0.99 5.95 

10 0.66 0.0017 0.99 7.19 

9 1.24 0.0045 0.99 18.67 

8 1.31 0.0055 0.98 23.11 

7 1.04 0.0067 0.98 27.92 

6 1.30 0.0145 0.96 60.68 

5 3.47 0.0231 0.94 96.25 

4 1.83 0.035 0.90 145.96 

3 2.22 0.0527 0.85 219.87 

2 4.35 0.2651 0.59 1105.70 

1 5.24 0.5850 0.00 2440.30 
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Chapter 5 - Conclusions 

This study was undertaken to investigate the feasibility of modeling eutrophication 

vulnerability of a coastal Louisiana marsh receiving turbid Mississippi River water. The major 

objective was to integrate remotely sensed data with field measurements of vegetation 

biophysical characteristics and historical ecosystem survey data to delineate landscape patterns 

suggestive of vulnerability to eutrophication.  The initial step in accomplishing this goal was to 

use turbidity frequency data to model high and low freshwater impacts associated with the 

operation of the West Pointe a la Hache siphon diversion. Turbidity reflectance levels were 

effectively used as a proxy for freshwater impacts to identify wetland areas most frequently and 

least frequently exposed to turbid Mississippi River water due to siphon operation.  The resulting 

freshwater impacts model accurately identified high and low impact areas based on 

corresponding time series salinity data.  A general reduction in freshwater impacts with 

increasing distance from the siphon diversion was observed, as was greater freshening of high 

impact areas compared to low impact areas during siphon operation. A high degree of fluctuation 

in mean salinity related to siphon operation was also observed throughout the study area, 

especially in high freshwater impact areas, suggesting the possibility that ecosystem regime 

changes may be occurring based on a freshwater introduction threshold.  

The second step in completing this research was the development of a eutrophication 

vulnerability model using spectral data that were highly correlated with vegetation characteristics 

suggestive of nutrient enrichment. High correlation between ARVI using DG-WV2 NIR band 8 

(860-1040 nm) and field measured chlorophyll content allowed accurate prediction of estimated 

chlorophyll concentration across the study area.  Since functional indicators of eutrophication, 

such as increased biomass production, are closely associated with high chlorophyll content, the 
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observed spatial patterns suggest that vulnerability to eutrophication, like chlorophyll 

concentration, decreases with increasing distance from the siphon.  Additionally, areas most 

consistently impacted by freshwater introduction are associated with the highest vulnerability, 

while least impacted areas are associated with the lowest vulnerability. This methodology allows 

clear identification of optimal sample sites for future studies related to identification and 

monitoring of eutrophication risks associated with the WPH siphon diversion.   

The final step in accomplishing the major research objective was the development of a 

methodology that integrates remotely sensed image data, field measurements of vegetation 

biophysical characteristics, and historical ecosystem survey data to model eutrophication 

vulnerability. Higher and lower eutrophication vulnerability classes were identified based on 

agglomerative hierarchical clustering of the data, after which statistical analyses confirmed the 

separability of the classes in a majority of parameters. Results indicated significant differences 

between the vulnerability classes in key spectral bands and vegetation indices known to be 

highly correlated with functional indicators of eutrophication, such as increased biomass 

production.  An accurate eutrophication vulnerability model was derived from classification of 

satellite image data based on cluster analyses results.  Resulting spatial patterns suggest that 

eutrophication vulnerability tends to be higher near the source of introduced freshwater, as well 

as west and southwest of the siphon. Additionally, visual comparison of the eutrophication 

vulnerability map and a LiDAR-derived DEM revealed relatively consistent spatial patterns, 

suggesting that regions of higher vulnerability tend to coincide with lower elevation areas within 

the study area. Analysis of the data used in this eutrophication model also revealed that sites 

classified as having higher eutrophication vulnerability exhibited a greater degree of fluctuation 

in marsh community type and in nutrient and salinity tolerance.  These results once again suggest 
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that ecosystem regime changes based on a freshwater introduction threshold may be occurring 

within the study area. This supports the evidence that intermittent siphon operation may be 

causing alternative stable states that can further disrupt and undermine the fragile stability of the 

ecosystem, adversely affecting flora and fauna within the study area. This finding underscores 

the need for well informed and consistent siphon operation management practices for existing 

and future river diversions.   

The results of this study suggest that potentially eutrophic and relatively unenriched 

wetland areas can be successfully delineated using the remote sensing-based methodologies 

described in this dissertation. The methods described here can form the basis of sound sample 

collection protocols, aiding in future research and facilitating effective assessment and 

monitoring of eutrophication risks. Furthermore, this research has the potential to inform the 

current debate surrounding existing and future restoration projects, while contributing to the 

understanding of the impacts of river diversions on Louisiana’s coastal wetlands. 
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Appendix A - Turbidity Frequency Datasets 

The water turbidity frequency datasets were produced for this study by the U.S. Army 

Corps of Engineers (USACE) based on a method developed by Allen et al., 2008.  Allen et al.’s 

method includes subsetting the time-series images to the study area boundary and radiometrically 

adjusting each image to minimize atmospheric effects.  A land-water classification is then 

created for each image based on the Kauth-Thomas Tasselled Cap Transformation (TCAP).  The 

TCAP technique transforms the image data to 3 bands representing brightness, greenness, and 

wetness (Kauth and Thomas, 1976).  Discrimination between land and water is based on a 

threshold value chosen at a clear inflection point in the histogram of the wetness band.  A 

turbidity classification is performed on the water extent of each image based on turbid water’s 

relatively higher reflectance in the red wavelengths compared to clear water.  The turbidity 

classification of each pixel is then compared across all image dates and the frequency of 

classification as turbid water is evaluated and mapped, providing an indication of areas that are 

consistently turbid (Allen et al., 2008). 
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Kauth, R.J., and Thomas, G.S., 1976. The tasselled cap-a graphic description of the spectral-

temporal development of agricultural crops as seen by Landsat. LARS Symposia, Paper 

159. 

  

https://cas.uno.edu/owa/redir.aspx?C=987439d029d64c3a8c5e73ec71501455&URL=http%3a%2f%2fpubs.usgs.gov%2fof%2f2008%2f1320%2f


181 

 

Appendix B - Hybrid Classification Methodology  

The hybrid classification method described by Bethel et al. (2011) incorporates 

Maximum Likelihood supervised classification and Iterative Self-Organizing Data Analysis 

Technique (ISODATA) unsupervised classification. First, a supervised classification is applied 

to the image data using a minimum of 10 areas of interest (AOIs) representing each class as 

training clusters.  A low spectral Euclidean distance is maintained during AOI selection, with the 

goal of obtaining training clusters that include at least 25 pixels and that have a low standard 

deviation of ~3. Results of the supervised classification include a distance file and threshold 

image representing classified and unclassified pixels.  

Second, an ISODATA unsupervised classification, specifying between 25 and 75 classes, 

is applied to the image data.  The resulting classified image is linked geographically to the 

threshold image created during supervised classification, then the unsupervised image is used to 

guide classification of any remaining unclassified pixels in the threshold image. Once all pixels 

in the threshold image have been assigned to classes, the image is recoded and a smoothing 

technique based on neighborhood analysis is applied to reduce classification error related to 

noise inherent in the data. 

 References 
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Giordino, M.J., and Maurice A. Phillips, 2011. Blending Geospatial Technology and 

Traditional Ecological Knowledge to Enhance Coastal Restoration Decision-Support 

Processes in Coastal Louisiana.  Journal of Coastal Research, 27(3), 555-571. 
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