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Abstract 

Profile analysis has drawn attention in quality engineering applications due to the 

growing use of sensors and information technologies. Unlike the conventional quality 

characteristics of interest, a profile is formed functionally dependent on one or more explanatory 

variables. A single profile may contain hundred or thousand data points. The conventional 

charting tools cannot handle such high dimensional datasets. In this dissertation, six unsolved 

issues are investigated. First, Chang and Yadama’s method (2010) shows competitive results in 

nonlinear profile monitoring. However, the effectiveness of removing noise from given nonlinear 

profile by using B-splines fitting with and without wavelet transformation is unclear. Second, 

many researches dealt with profile analysis problem considering whether profile shape change 

only or variance change only. Those methods cannot identify whether the process is out-of-

control due to mean or variance shift. Third, methods dealing with detecting profile shape change 

always assume that a gold standard profile exists. The existing profile shape change detecting 

methods are hard to be implemented directly. Fourth, multiple nonlinear profiles situation may 

exist in real world applications, so that conventional single profile analysis methods may result 

in high false alarm rate when dealing multiple profile scenario. Fifth, Multiple nonlinear profiles 

situation may be also happened in designs of experiment. In a conventional experimental design, 

the response variable is usually considered a single value or a vector. The conventional approach 

cannot deal with when the format of the response factor as multiple nonlinear profiles. Finally, 

profile fault diagnosis is an important step after detecting out-of-control signal. However, current 

approaches will lead to large number of combinations if the number of sections is too large.  

The organization of this dissertation is as following. Chapter 1 introduces the profile 

analysis, current solutions, and challenges; Chapter 2 to Chapter 4 explore the unsolved 

challenges in single profile analysis; Chapter 5 and Chapter 6 investigate multiple profiles issues 

in profile monitoring analysis and experimental design method. Chapter 7 proposed a novel high-

dimensional diagnosis control chart to diagnose the cause of out-of-control signal via 

visualization aid. Finally, Chapter 8 summarizes the achievements and contributions of this 

research.   
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Chapter 1 Introduction 

1.1 Introduction of Quality Engineering Applications on Profile Analysis 

Quality engineering applications can be found in many fields, such as, organization 

strategy, manufacturing process, distribution, transportation, financial services, healthcare, 

government process (Montgomery 2009), bioinformatics (Zhang et al. 2004), or software 

developing (“ISO/IEC 9126-1:2001”, 2013). In each field, the quality characteristics of interest 

may vary. For example, quality characteristics may include: the percentage of reducing customer 

resolution cycle time in organization strategy; temperature data recording over time for each 

product in high pressure hose products manufacturing process; percentage of a product 

remaining in a store before next shipping in distribution field; statistics of shipment in 

transportation field; statistics of on-time payment of credit card in financial services field; or a 

particular disease incidence rate in healthcare field.  

Most quality characteristics of interest may consider only one measurement in a variable 

(univariate) or in several related variables (multivariate) during a process monitoring. However, 

with the growing use of sensors during a manufacturing process, a single measurement on a 

product may contain a set of hundred or thousand data points. Such a set of values is called a 

profile. Montgomery (2009) defines the profile monitoring as “Profiles occur when a critical-to-

quality characteristic is functionally dependent on one or more explanatory, or independent, 

variables. Thus, instead of observing a single measurement on each unit or product we observe a 

set of values over a range, when plotted, takes the shape of a curve. That is, there is a response 

variable y and one or more explanatory variables x1, x2, …, xk and the situation is like regression 

analysis”. Such profile monitoring analysis is called single profile monitoring analysis.      

Examples of single profile monitoring analysis can be found in the following 

applications: the stamping tonnage data over time within a cycle examined by Jin and Shi 

(1999); a calibration issue during the etch step of the semiconductor manufacturing process 

introduced by Kang and Albin (2000); the vertical density of wood board data over depth across 

the thickness of a section of the wood board studied by Walker and Wright (2002); the 

monitoring stability of a calibration process in order to assure its accuracy studied by Chang and 

Gan (2006); the pressing force profile signals in a valve seat assembly operation presented by 
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Paynabar and Jin (2011); the temperature data over time recording from a curing process for 

high-pressure hose products investigated by Chang et al. (2012).  

Considering Walker and Write’s (2002) study for example, they considered vertical 

density data collected by a laser device from the wood board manufacturing process. Each wood 

board was combined a particleboard and a medium density fiberboard. The data of measurement 

was the vertical density and its associated depth across the thickness of a section of the wood 

board (2×2 inch). The shape of the profile is like a bathtub. One of the vertical density profiles is 

shown in Figure 1.1. The x-axis is the depth while the y-axis records the density. Moreover, 

Figure 1.2 shows the schematic diagram of monitoring vertical density profiles of wood board 

manufacturing process. The objective of monitoring was to maintain the stability of the process, 

so that each vertical density profile would be statistically identical. The first four profiles can be 

deemed in-control profiles while the last two profiles are out-of-control.      

Figure 1.1 Vertical density profile (adapted from Walker and Write, 2002) 
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Figure 1.2 Schematic diagram of monitoring vertical density profiles of wood board 

manufacturing process. 

 

Other than the single profile monitoring analysis, multiple profiles monitoring analysis is 

also studied in this research. Unlike a single profile, monitoring a set of data points that collected 

from a process or system can be characterized by two or more profiles in a process monitoring is 

called multiple profiles monitoring analysis. In other words, each observation contains more than 

one type of profiles during the monitoring. Noorossana et al. (2010) showed an example of a 

multiple linear profiles: a calibration application between desired force and the real force 

produced by 1600-ton hydraulic press machine. The machine controlled by a programmable 

logic controller (PLC) consists of a set of cylinders, pistons and hydraulic pipe. The input 

variable of the machine known as the desired force or nominal force is given by a motor placed 

on the top of machine. The output variables (four real forces) collected from four cylinders of the 

press machine were measured by the PLC. One example of Noorossana et al.’s (2010) study is 

shown in Figure 1.3. Four response variables are considered as correlated linear profiles, and the 
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shapes of four profiles are highly similar. Note that, the ideal output force is expected to be 

identical to the input force.   

Figure 1.3 One example of Noorossana et al.’s study (adapted from Noorossana et al., 2010) 

 

Another example of multiple profiles can be found in a curing process of high-pressure hose 

products manufacturing. This kind of hose product is wrapped by layers of rubbers and metal 

wires, which is required to be loaded and cured in an autoclave or vulcanizer as its final step to 

activate cross-linking reaction (Hoster et al., 2009). In the vulcanizer, there are several sensors in 

different locations of the chamber for monitoring air temperature, condensation water 

temperature, and chamber pressure. More details of products’ manufacturing process refer to 

Chang et al. (2012). Figure 1.4 shows an example of air temperature and pressure profile of the 

curing process of high-pressure hose product. From the Figure 1.4, the temperature and pressure 

profile is highly correlated nonlinear multiple profiles. Unlike Noorossana et al.’s (2010) 

application, the temperature and pressure profile should be highly correlated instead of identical.  
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Figure 1.4 One air temperature and pressure profile of the curing process of high-pressure 

hose product. 

 

1.2 Current Process Monitoring Methods in Profile Analysis 

Methodologies that deal with single profile monitoring problem can be categorized into 

two aspects according to Woodall (2007), linear and nonlinear profile with regard to profile 

shape. To deal with linear profile problem, many studies monitored parameters of the linear 

regression model, such as, intercept or slope parameter. For example, Kang and Albin (2000) 

used the Hotelling’s T2 control chart as first method to detect abnormal profiles by monitoring 

slope and intercept parameters. They also monitored average residuals between sample profiles 

and reference profile followed by EWMA and R chart as their second proposed method.  Kim et 

al. (2003) monitored slope, intercept, and the variance of deviation between samples and 

regression line simultaneously by their proposed three univariate EWMA charts. Since this 

research is focus on nonlinear profile monitoring analysis, more details regarding linear profile 

analysis methods please refer to Noorossana et al. (2011).  

To deal with nonlinear profile analysis problem, Woodall (2007) categorized this 

problem into four types. (1) applying multiple and polynomial regression (Zou et al., 2007; 

Kazemzadeh et al. 2008; Mahmoud 2008); (2) applying nonlinear regression models (Ding et al., 
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2006; Williams et al., 2007; Shiau et al., 2009; Chang and Yadama 2010; Chen and Nembhard 

2011); (3) use of mixed models (Jensen et al., 2008; Jensen and Birch, 2009; Qiu et al., 2010; 

Paynabar and Jin, 2011); and (4) use of wavelets (Reis and Saraiva, 2006; Zhou et al., 2006; 

Chicken et al., 2009). This research will focus on Chang and Yadama’s (2010) method in the 

latter chapter because of the following reasons. First, their method can detect an out-of-control 

profile under the desirable false alarm rate; second, unlike parametric models, the method allow 

user to isolate the caused section within the out-of-control profile. Detail of other approaches to 

monitor the process stability can be found in Woodall (2007) and Noorossana et al. (2011).  

The methods introduced above focus on shape change only. In other words, those 

methods will deem a profile as an out-of-control profile when the profile shape is changed. 

However, it is possible that the variation of profiles is not stable. Paynabar and Jin (2011) 

investigated profiles’ variation in the application of a valve seat pressing operation, an engine 

head assembly process. They proposed a framework to detect the process variation between 

profiles. Their method first used the discrete wavelet transformation to reduce the dimensions, 

followed by estimating random-effect coefficients for profile variations. Then a likelihood ratio 

test (LRT)-based change-point model is used for clustering profiles, so that the model estimation 

may become more accurate. Finally, the log likelihood ratio is generated as the statistic to 

determine if variation change occurs or not. Although their method successfully detect the profile 

variation change, it is difficult for their method to isolate whether the shape and variance are 

changed at the same time. This research will discuss this challenge in the Chapter 3.   

With regard to dealing with multiple profiles, very few researches have worked on this 

problem. As mentioned in the 1.1 section of this chapter, Noorossana et al. (2010) investigated 

four multiple linear profiles simultaneously generated from a 1600-ton hydraulic press machine. 

They proposed a multivariate simple linear profile model to generate parameters, such as, 

intercept and slope. Then those parameters were used as plotting statistics in their three proposed 

approaches. The three approaches are: (1) the use of single multivariate exponentially weighted 

moving average (MEWMA) control chart to monitor all parameters ( መߚ ); (2) combining 

MEWMA and chi-square control chart to monitor the difference between observations and 

reference profiles as well as their variability, which very similar to X-bar and R chart in 

univariate case; (3) the use of three MEWMA control charts to monitor intercept, slope, and 

variability, simultaneously.   
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Although their proposed methods were promising of solving multiple linear profiles of 

the same type, their method cannot be applied to multiple correlated nonlinear profiles of 

different types. 

1.3 Challenges in Profile Analysis 

Methods dealing with profile analysis problems introduced above are promising in their 

problem domain. For example, assumption of mean or shape shifted only, variance shifted only, 

gold standard reference is existed, the application is formed a single profile, or formed linear 

profile. In real world, these assumptions may not be realistic. Furthermore, the models used may 

not be accurate. For example, the bathtub shape profile that generated from wood board 

manufacturing profile is a nonlinear profile. It is not suitable to apply a simple linear regression 

model to the profile. Therefore, those methods may not be adequate if the underlining 

assumptions no longer exist.  

A list of unsolved challenges or possible issues for improvement in profile analysis 

discussed above is summarized here:  

1. Chang and Yadama’s (2010) method showed competitive results to detect an out-of-

control profile under the desirable false alarm rate. Also, their method is adequate to 

detect the cause section of the out-of-control profile that contribute the out-of-control 

signal that deemed by the Hotelling’s T2 control chart. Their proposed method 

consists of three components, wavelet transformation, B-splines fitting, and the 

Hotelling’s T2 control chart. The role of the wavelet transformation is to decompose 

the original signal to mean and variance channel, so that the noise of the 

reconstructed signal along with all zero variance channel can be removed. However, 

the B-splines fitting may have the same capability of removing noise. In other words, 

the wavelet transformation maybe a redundant procedure for detecting profile shape 

change only situation.  

2. Many researches dealt with profile analysis problem considering whether profile 

shape change only or variance change only. However, in the real world, it may 

happen at the same time. Methods detecting profile shape only cannot deal with 

variance change problem, and vice versa. Also, those methods cannot identify 

whether the process is out-of-control due to mean or variance shift. 
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3. Methods dealing with detecting profile shape change always assume that a gold 

standard profile exists. However, some applications may not have this underline 

assumption. For example, the condensation water temperature profile that collected 

from a high-pressure hose products manufacturing profess shows that no gold 

standard profile exists. Therefore, the existing profile shape change detecting methods 

are hard to be implemented directly.  

4. Multiple nonlinear profiles situation may exist in real world applications, but very 

few researches dealt with this problem. Although Noorossana et al.’s (2010) method 

is a promising approach to handle the multiple linear profile problems, their method 

cannot be applied to the multiple nonlinear profiles situation. Other than Noorossana 

et al’s approach, it is possible to monitor multiple nonlinear profiles using multiple 

univariate control charts simultaneously. However, this approach may result in high 

false alarm rate.  

5. Multiple nonlinear profiles situation may be also happened in designs of experiment. 

In a conventional experimental design, the response variable is usually considered a 

single value or a vector. Very few studies considered the format of the response factor 

as multiple nonlinear profiles. In an application of cellulosic biomass pelleting 

process, the response factor is six temperature profiles recorded in six-location of 

each biomass pellet. Usually, the conventional approach is to use the highest 

temperature of each location as response factor results for experimental design 

analysis. However, the heat-up stage and steady-state of the temperature at each 

location is also important to the quality of biomass. The conventional approach can 

not quantify both heat-up stage and steady-state of temperature profiles.  

6. One of the advantages of Chang and Yadama’s (2010) method is that it can isolate the 

cause of section that contributed the out-of-control signal using Mason, Young and 

Tracy’s (1995) MYT decomposition. However, MYT decomposition will lead to a 

very large number of combinations if the number of sections is too large. For 

example, three segments’ profile will result 3!=6 combinations of decomposition of 

one T2 value. Moreover, their method cannot be visualized. With this among of data 

set after running the MYT decomposition, it will be difficult for on-line operators to 

identify the contributor of out-of-control signal.                 
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1.3 Objectives and Scope of this Research 

A research map of this dissertation is shown in Figure 1.5. In order to provide solutions 

for the challenges and difficulties presented in the previous section, this dissertation presents 

potential solutions and improvements in each chapter. The following objectives and scope of this 

research provide an organization of this dissertation.  

1. Chapter 2: To investigate the effectiveness of removing noise from given nonlinear 

profile by using B-splines fitting with and without wavelet transformation. 

2. Chapter 3: To solve the situation when there is no underline assumption of profile 

shape change or variance change only situation. The proposed method should be able 

to isolate the cause of out-of-control signal due to shape or variance change or both.  

3. Chapter 4: To deal with the situation when monitoring the process without the gold 

standard profile provided. And the proposed method should be able to monitor the 

real world case, condensation water temperature profiles generated from a curing 

process of high-pressure hose products manufacturing. 

4. Chapter 5: To monitor process when the quality characteristics of interest are multiple 

nonlinear profiles. And the proposed method should be capable of detecting abnormal 

profiles in the real world case where air temperature and pressure profiles are two 

correlated nonlinear profiles collected from a curing process of high-pressure hose 

products manufacturing. 

5. Chapter 6: To analyze the experimental design results when the response factor is no 

longer a single value or a vector, but a multiple nonlinear profiles.  

6. Chapter 7: To provide a method not only can help profile analysis methods to identify 

which section of the profile contributes triggering out-of-control signal detected from 

a multivariate control chart, but also allow users to diagnose the causes of out-of-

control signal through the visualization aid.    

7. Chapter 8: To summarize the achievements and contributions of this research.  
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1.4 The Contribution of this Research 

The contributions of this research can be listed as following: 

1. This research shows the scientific evidence that the effectiveness of removing noise 

from the given nonlinear profile by using B-splines fitting with and without wavelet 

transformation has no significant difference. This evidence confirms that one can use 

B-splines fitting without applying wavelet transformation to the profile first if the 

profile shape monitoring is the only consideration; otherwise the wavelet 

transformation should be considered first for extracting profile variation information.  

2. This research proposed a novel approach to isolate the cause of out-of-control signal 

due to shape or variance change or both. Specifically, the proposed method not only 

shows if the process is statistical stable but also indicates the contributor of out-of-

control signal with regard to shape or variance or both.  

3. This research succeeded in dealing with waveform profile with no gold standard 

profile exists. Moreover, the proposed method provides a competitive result of phase 

I process and the robust performance among other profile analysis methods.  

4. This research proposed a novel approach to monitor a process when its quality 

characteristics of interest are multiple nonlinear profiles. Also, the proposed method 

is capable of monitoring the real world case in which two nonlinear correlated 

profiles are of interest, i.e., temperature and pressure profiles recorded from curing 

process of high pressure hose products manufacturing. 

5. This research solved the problem of multiple nonlinear profiles as response factor in 

factorial design by using the proposed method. Also, this research showed the 

temperature profiles recorded from six-location of biomass pellet can be surrogate 

variables to the conventional ones, i.e., density and durability of the biomass pellets.  

6. This research proposed a novel visualization aid for multiple profiles analysis 

diagnosis using marginal CUSUM glyphs. Not only the proposed method can show 

the given dataset, but also it can decompose out-of-control signals over time. In other 

words, it is capable of indicating when and which variables contributing to the cause. 
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Abstract 

This research studies the effectiveness of wavelet transformation in nonlinear profiles 

monitoring. Wavelet filtering is applied to separate signals containing shape information from 

noise of a nonlinear profile. Then B-spline approximation is applied to the filtered profile to 

reduce dimensionality. In this study, we examine the performance of B-spline fitting with and 

without wavelet filtering. Two types of nonlinear profiles under three levels of noise were 

studied. Our preliminary simulation results show that there is no difference whether wavelet is 

used or not. In other words, B-spline approximation can be directly applied to a noisy profile 

without sacrificing detection power. 
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2.1 Introduction 

 Profile monitoring is a complicated topic in the Statistical Process Control.  In many 

industrial applications, quality characteristics of process or product involve observations 

collected as a set of data points that forms a profile, waveform, or signature. For example, Jin 

and Shi (2001) monitor the torque produced by engine against engine speed in RPM. Gardner et 

al. (1997) measure pressure for a mass flow controller against the set points for flow. Walker and 

Wright (2002) study the vertical density against depth produced by a springboard.  

Dealing with this high-dimensional data set (a profile data), researchers had been 

constructing control charts for either linear or nonlinear profiles. In linear profile cases, Kang 

and Albin (2000) combine the EWMA chart with R chart (EWMA-R chart) for Phase II linear 

profile monitoring. Kim et al. (2003) combine three EWMA charts for Phase II monitoring. They 

claim that their method could detect shifts faster than EWMA/R chart. Mahmoud and Woodall 

(2004) suggest an F-test approach using indicator (dummy) variables in a multiple regression 

model, and propose a likelihood ratio test for detecting changes in one or more regression 

parameters. 

For nonlinear profile cases, Brill (2001) applies a T2 monitoring approach by monitoring 

the estimated regression coefficients in the nonlinear regression model. Williams et al. (2007) fit 

a nonlinear regression to model the vertical density profiles (VDP) data. They compare three T2 

control charts using sample covariance matrix, successive differences, and intra-profile pooling 

as estimates of the covariance matrix to monitor the VDP data.  

To monitor nonlinear profiles is difficult. One of the main challenges is to find a proper 

model with a reasonable number of unknown parameter to fit a complex profile. Jin and Shi 

(2001) propose a feature-preserving method that first compresses the stamping tonnage 

information. Then, they recommend the monitoring of changes in wavelet coefficients instead of 

extracting features to represent some specific faults. Bernadette and Jonathan (2005) review 

three approaches for analyzing the results of experimental design when the response is a curve. 

Three methods studied are parametric nonlinear pre-processing, pointwise functional regression, 

and B-spline transformation pre-processing. They conclude that the B-spline approach provides 

the best result amount of those three methods studied.  

Chang and Yadama (2010) further combine wavelet transformation and B-spline for 

nonlinear profile monitoring. They apply discrete wavelet transformation to separate the original 
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profile into feature and noise signal. Then B-spline plays the role to define the shape of a profile. 

They also suggest that users divide a profile into multiple segments and then calculate the 

distance difference statistic for each segment. This statistic can be monitored by any multivariate 

control chart, e.g. a Hotelling T2 chart.  

In this study we are interested in finding out whether wavelet filtering improves B-Spline 

fitting. The performance criterion is the mean square error between the fitted and the true 

models. Both simple and complex nonlinear profiles under three levels of noise are studied. In 

both cases 1000 simulated profiles with random noise are compared. The organization of this 

paper is listed as follows. Background of wavelet and B-spline will be introduced in next section 

followed by the methodology and performance criterion. Finally, the experimental results will be 

discussed and the conclusion will be made. 

2.2 Background of Wavelet Transformation and B-Spline Approximations 

2.2.1 Wavelet Transformation  

Wavelet theory is a relatively new development in applied mathematics, although similar 

ideas and constructions took place as early as the nineteenth century. Much of early work on 

wavelets was closely tied to a particular application or traditional theoretical framework (Graps, 

1995). The signal processing community started to pay attention to wavelet decomposition in 

1989 when Daubechies and Mallat demonstrated the use of discrete signal processing instead of 

analog signal process via Fourier transformation (Daubechies, 1988; Mallat, 1989). Since then, a 

number of theoretical as well as practical contributions have been made on various aspects of 

wavelet decomposition. This subject is growing rapidly. The basic concept of the wavelet 

transformation is briefly summarized here base on Gilbert and Truong (1997). 

 

From the viewpoint of the nonlinear profile, a function f(t) can often be described as a linear 

combination function: 

݂ሺݐሻ ൌ ∑ ௝ܽ,௞߰௝,௞ሺݐሻ௝,௞                                                      (1) 

where aj,k is called filter coefficient at decomposition level j and location k; t represents time; ψj,k 

is the wavelet function which form an orthogonal basis, meaning , 

 

〈߰௞ሺݐሻ, ߰௟ሺݐሻ〉 ൌ ݐሻ݀ݐሻ߰௟ሺݐ௞ሺ߰׬ ൌ 0 , ݇ ് ݈                                          (2) 
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Typically, the wavelet function ψj,k can be expressed by the following equation: 

 

   ߰୨,௞ሺݐሻ ൌ ߰ሺ2௝ݐ െ ݇ሻ                                                               (3) 

Moreover, Mallat (1989) in his paper provided an algorithm to decompose a signal using discrete 

wavelet transform (DWT) by two channels, lowpass filter (moving average) and highpass filter 

(moving difference).  This process is called downsampling or decimation. Then the nonlinear 

profile f(t) can be form as: 

݂ሺݐሻ ൌ ∑ ܽ୨,௞߰୨,௞ሺݐሻ୨,௞ ൌ ∑ ௝ܽିଵ,௞߰௝ିଵ,௞ሺݐሻ ൅ ∑ ௝ܾିଵ,௞߶௝ିଵ,௞ሺݐሻ௞௞                    (4) 

where bj-1,k is the scaling coefficient and ߶௝ିଵ,௞ሺݐሻ is scaling function at decomposition level j-1 

and location k. In addition, the scaling function is also called approximation channel that catches 

the low frequency components, which also represent the shape of the given profile.  

In this study, haar is the primary mother wavelet used in the wavelet transformation. 

Also, for implementation, wavelets package of R is using in this study. The function dwt() is the 

discrete wavelet transformation, and dw.filter(“haar”) states that haar as the mother wavelet for 

the dwt() function. 

2.2.2 B-Spline Approximation  

De Boor (2001) shows a p-degree B-Spline curve is defined by  

Cሺݑሻ ൌ ∑ N௜,௣ሺݑሻ ௜ܲ
௡
௜ୀ଴ 			0 ൑ ݑ ൑ 1                                            (5) 

where Pi are the control points, and Ni,p(u) are the pth-degree B-spline basis functions. The i th 

basis function Ni,p(u ) is defined by 

௜ܰ,௣ሺݑሻ ൌ
௨ି௨೔

௨೔శ೛ି௨೔
௜ܰ,௣ିଵሺݑሻ ൅

௨೔శ೛శభି௨

௨೔శ೛శభି௨೔శభ
௜ܰାଵ,௣ିଵሺݑሻ                        (6) 

where  ௜ܰ,଴ሺݑሻ ൌ ቄ1						݂݅	ݑ௜ ൑ ݑ ൏ ௜ାଵݑ
݁ݏ݅ݓݎ݄݁ݐ݋																	0

  and knot vectors is  

U={0,…,0,up+1,…,uM+p-1, 1,…,1}                                              (7) 

 

where M=n+p+1  and number of control point =n+1. Then cubic B-Spline used in Chang and 

Yadama (2010) can be specified as following form: 

ሻݐ௜ሺܥ  ൌ ∑ ௜ܲିଷା௞ݑ௜ିଷା௞ሺݐሻ	; ݐ ∈ ሾ0,1ሿ
ଷ
௞ୀ଴ 	                                         (8) 

where Ci(t) is the ith B-Spline segment and P is the set of knots. When the distance of each knots 

(or control points) is equal, the B-Spline is uniform.  Then the uniform cubic B-Spline—the 

P+1 P+1
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cubic B-spline with uniform knot-vector can be expressed the following matrix form, which is 

the most commonly used from B-spline.  

 

ሻݐ௜ሺܥ ൌ ሾݐଷ	ݐଷ	ݐଷ	ݐሿభ	
ల
൦

ିଵ ଷ ିଷ ଵ
ଷ ି଺ ଷ ଴
ିଷ ଴ ଷ ଴
ଵ ସ ଵ ଴

൪			௧∈ሾ଴,ଵሿ                                    (9) 

2.2.3 Chang and Yadama’s Work 

Chang and Yadama (2010) propose a process to monitor nonlinear profiles for identifying 

mean shifts or shape changes in a profile. The main idea is, first, to use discrete wavelet 

transform to decompose a profile by lowpass and highpass filtering as described in section 2.2. 

Then, reconstruction step reverses the process of decomposition by setting all wavelet 

coefficients in the detailed channels to zero. The output of this step is the shape signals without 

noise. Then the reconstructed signal is partitioned into various segments according to 

engineering knowledge. Within each segment, users choose a fix number of control points to 

generate a B-Spline to fit model, and each segment is applied fitted by a B-Spline. Users then 

calculate the distance vector d using the control point matrix that stores control points by each 

profile. After that, mean difference distance vector of each segment is computed. The Hotelling’s 

T2 statistics is then adopted on the vector statistics for process monitoring.  Their simulation 

result shows the proposed method is capable of detecting and diagnosing shifts of profiles. In this 

study, we would like to explore the possibility of skipping the wavelet filtering stage. If the B-

spline fitting is the same without using the wavelet transformation, then we can skip this step for 

monitoring profile shape changes.  

2.3 Methodology 

This section introduces a simulation to test B-Spline fitting with and without the wavelet 

filtering. Two functions—a simple profile and a complex profile are studied. The simple profile 

is f(x)=൜
5, if	x ൑ 0.5
10, if	x ൐ 0.5

 while the complex profile is : y=sin3(2πx3). Each profile contains 512 data points. 

The error terms are assumed to be normally distributed. Three levels of signal-to-noise ratio to 

explored, SD(f)/ σ=2, 5, and 10, where SD(f) is max(f)-min(f) and σ is the standard deviation of 

the error term, such that, y=f(x)+ε, where ε~N(0,σ2). Figure 2.1 demonstrates the true functions 

of (a) the simple and (b) the complex profile, as well as their simulated profiles at low signal-to-
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noise ratio (SD(f)/σ=10) ((c) and (d)), respectively. Moreover, the statistic Mean Square Error 

(MSE) is chosen as the performance measure. Specifically, a two-sample t test will be applied to 

test the hypothesis that the performance of the B-Spline with the wavelet filtering is the same as 

that without the filtering. The MSE is defined in equation (10)  

തതതതതതܧܵܯ ൌ
∑ ெௌாೕ
೘
ೕసభ

௠
,                                                          (10) 

where ܧܵܯ௝ ൌ
∑ ሺ௬ො೔ ି௬೔ ሻ

మ೙
೔సభ

௡
 , m is the number of replications, (m=1000 in this study); yi is the 

value of ith data point from either simple or complex profile; ݕො௜ is the estimate of the ith profile 

yi; n is the number of data points in a profile. The simulation codes were written in R (2009) 

while the hypothesis tests were carried out in Minitab15 (2009).  

 
Figure 2.1 Two Functions of True Profile. 

 

2.4 Experimental Result and Analysis 

 We generate 1000 profiles for each function defined in the previous section. The average 

MSE values and their corresponding hypothesis testing results are provided in Table 2-1 and 

Table 2-2. A two sample t-test is conducted to test if there is a difference between the MSE of B-

spline fitting on wavelet filtered profiles and that of B-spline fitting with the noisy profile. 

 

2.4.1 Simple Profile Case 

In this case, the results, in term of MSE, of both B-Spline and B-Spline with Wavelet filtering 

approximation model are showing in Table 2-1. Although the average MSE of B-Spline with 

Wavelet is slightly smaller than that of only B-Spline fitting, the t-test results showing large p-

values suggests that we cannot reject the null hypothesis. In other words, there is no statistical 

difference between these two fitting approaches. The same conclusion can be made regardless of 

(a) (b) (c) (d) 
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the noise level. Figure 2.2 (a) provides further evidences that the spread of the MSE distributions 

from these two B-spline fitting approaches are very similar.  

Table 2-1 Average MSE of B-Spline and B-Spline with Wavelet for Simple Profile 

 B-Spline only B-Spline with Wavelet P-Value 

Low Noise Signal 0.2607128 0.2606352 0.235 

Medium Noise Signal 0.2795273 0.2792172 0.235 

High Noise Signal 0.4112292 0.4092905 0.235 

 

2.4.2 Complex Profile Case 

The simulated complex profile was generated by function f(x)=sin3(2πx3) with error term 

that follows the Normal Distribution under three noise magnitudes. The computational results of 

average MSE of using B-Spline only and B-Spline with Wavelet are showing in Table 2-2 as 

well as  two-sample t-test that examines the performance of these two approaches. Figure 2.2 (b) 

depicts three boxplots that show the dispersion of the MSE statistics. The conclusions that we 

made for the simple profile case can be extended to the complex profile case as well. 

 
Table 2-2 Average MSE of B-Spline and B-Spline with Wavelet for Complex Profile 

 B-Spline only B-Spline with Wavelet P-Value 

Low Noise Signal 0.003142120 0.003140324 0.541 

Medium Noise Signal 0.006152447 0.006113389 0.715 

High Noise Signal 0.02722474 0.02692501 0.757 

 

2.5 Conclusions and Future Study 

In this study, we examine the effectiveness of wavelet filtering when the B-Spline fitting is used 

to approximate nonlinear profiles. B-Spline is capable of providing an effective estimating 

smooth function while the wavelet transformation can be used to reduce noise from a profile. 

Chang and Yadama (2010) have proposed to combine these two methods to improve profile 

monitoring. However, according to the experimental results in this study, B-spline fitting is 

effective without the help of wavelet filtering when the monitoring of profile changes is the only 

consideration. Therefore, we suggest that one can just use B-Spline approximation without 

applying wavelet filtering first. If variance changes also need to be considered, the wavelet 

decomposition will still useful to extract the variation change information. For the future studies, 
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other situations such as variance shifts or mixture of both mean and variance shifts should be 

explored.  

Figure 2.2 (a) Boxplot of Simple Profile with Low, Medium, and High Signal-to-Noise 

Ratio; (b) Boxplot of Complex Profile with Low, Medium, and High Signal-to-Noise Ratio. 
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Abstract 

In profile analysis, a profile may contain a few hundred or thousand observations.  

Conventional multivariate statistical process control (SPC) tools cannot be applied directly 

without modifications due to high dimensions. Most existing methods for monitoring nonlinear 

profiles focus on detecting shape changes only. This study provides a framework for detecting 

shape as well as variation changes of a nonlinear profile. The proposed method first separates a 

given nonlinear profile into two channels using a discrete wavelet transformation (DWT). The 

first channel contains the information of overall contour of the profile while the second channel 

captures the noise around this contour. A Levene transformation is applied to signals in the 

variation (or noise) channel so that the problem of detecting variance changes is converted into 

the problem of detecting mean shifts. A B-spline approximation is then used on both the shape 

channel and the Levene transformed channel to generate knots or control points for dimension 

reduction. The proposed plotting statistic is defined as the average deviation between the actual 
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profiles and B-spline fitted profiles at the locations of the B-spline knots. Then a pair of 

univariate control charts, such as, EWMA charts, is used to monitor the process that produces the 

profile. Similar to X-bar and R charts, the proposed charting method aims to detect assignable 

causes of variation due to either mean or/and variance changes in profiles. A simulation study is 

conducted to evaluate the performance of the proposed method. 

 

Keywords: Statistic Process Control, Wavelet Transformation, B-spline Approximation, Profile 

Analysis. 

3.1 Introduction 

In many industrial applications, it is necessary to describe quality characteristics of 

process as a profile instead of a number. For example, Jin and Shi (2001) monitor the tonnage 

signal for a stamping process. Gardner et al. (1997) measure pressure for a mass flow controller 

against the set points for flow. Walker and Wright (2002) study the vertical density against depth 

of a springboard.  

A profile may contain a few hundred or thousand observations. As a consequence 

conventional multivariate statistical process control (SPC) tools cannot be applied directly 

without modifications due to high dimensions. Many studies of SPC techniques for profile 

analysis can be categorized according to the shape of a profile either linear or nonlinear. In linear 

profile cases, Kang and Albin (2000) combine the EWMA chart with R chart (EWMA-R chart) 

for Phase II linear profile monitoring. Kim et al. (2003) combine three EWMA charts for Phase 

II monitoring. They claim that their method could detect shifts faster than EWMA/R chart. 

Mahmoud and Woodall (2004) suggest an F-test approach using indicator (dummy) variables in 

a multiple regression model, and propose a likelihood ratio test for detecting changes in one or 

more regression parameters. Chang and Gan (2006) considered several Shewhart control charts 

to monitor the slopes of relationships between two or more measurement processes.  

When the shape of profiles cannot be easily represented by a linear model, for example, 

the use of linear regression is inappropriate to apply to those profiles, nonlinear models should be 

considered. Brill (2001) applies a T2 monitoring approach by monitoring the estimated regression 

coefficients in a nonlinear regression model. Williams et al. (2007) fit a nonlinear regression to 

model the vertical density profiles (VDP) data. They compare three T2 control charts using 



26 

 

sample covariance matrix, successive differences, and intra-profile pooling as estimates of the 

covariance matrix to monitor the VDP data.  

To monitor nonlinear profiles is difficult. One of the main challenges is to find a proper 

model with a reasonable number of unknown parameter to fit a complex profile. Jin and Shi 

(2001) propose the use of wavelet decomposition, a feature-preserving method that first 

compresses the stamping tonnage information. Then, they recommend the monitoring of changes 

in wavelet coefficients instead of extracting features to represent some specific faults. Bernadette 

and Jonathan (2005) review three approaches for analyzing the results of experimental design 

when the response is a curve. Three methods studied are parametric nonlinear pre-processing, 

point-wise functional regression, and B-spline transformation pre-processing. They conclude that 

the B-spline approach provides the best result among three methods studied.  

Chang and Yadama (2010) further combine wavelet transformation and B-spline for 

linear and nonlinear profile monitoring. They apply discrete wavelet transformation to separate 

the original profile into shape and noise signals. Then a B-spline model plays the role of defining 

the shape of a profile. Further, the mean square error (MSE) of the associated control point 

locations between observations and the target profile based on the B-spline model is then 

calculated. They also suggest that users divide a profile into multiple segments and then calculate 

the MSE statistic for each segment. This statistic can be monitored by any multivariate control 

chart, e.g. a Hotelling T2 chart. In this study, a profile is considered as a whole i.e. segmentation 

is not implemented.  

All of the above mentioned methods focus on detecting shape change only. In this study, 

we propose a framework of detecting and diagnosing shape as well as variance changes of a 

nonlinear profile. A profile during phase II monitoring is first applied to the DWT to be 

separated into two channels, i.e., shape and variance channels. Once the original profile is 

decomposed to certain level, both shape and variance channels will be reconstructed to the 

original domain. Note that the variance channel should be entered as all zeros when 

reconstructing the shape channel, while the shape channel is consisted of all zeros when 

reconstructing the variance channel. Then the Levene transformation is applied to the 

reconstructed variance channel, so that problem of detecting variance change becomes the one to 

detect shape changes. A B-spline fitting is then obtained to both the shape and Levene 

transformed variance channel, such that, the associated knots locations can be represented to 
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shape and variance channel. Finally, the MSE between an observed and the target profile is 

calculated as a plotting statistic for each profile. Those statistics are then plotting into a couple of 

EWMA charts to monitor both profile shape changes and variation simultaneously. The 

organization of this study is the following. The next section introduces the background of 

wavelet transformation B-spline approximation, and Chang and Yadama’s method, followed by 

the framework of the proposed method. Further, the experimental design is described, and then 

the simulation results are discussed. Finally, the conclusion and future work will be made in the 

study.  

3.2 Background of Wavelet Transformation and B-Spline Approximations 

3.2.1 Wavelet Transformation  

Much of early work on wavelets was closely tied to a particular application or traditional 

theoretical framework (Graps, 1995). The signal processing community started to pay attention 

to wavelet decomposition in 1989 when Daubechies and Mallat demonstrated the use of discrete 

signal processing instead of analog signal process via Fourier transformation (Daubechies, 1988; 

Mallat, 1989). Since then, a number of theoretical as well as practical contributions have been 

made on various aspects of wavelet decomposition. This subject has been growing rapidly. The 

basic concept of the wavelet transformation is briefly summarized here base on Gilbert and 

Truong (1997). 

From the viewpoint of the nonlinear profile, a function f(t) can often be described as a 

linear combination function: 

݂ሺݐሻ ൌ ∑ ௝ܽ,௞߰௝,௞ሺݐሻ௝,௞                                                       (1) 

where aj,k is called filter coefficient at decomposition level j and location k; t represents time; ψj,k 

is the wavelet function which forms an orthogonal basis, meaning , 

〈߰௞ሺݐሻ, ߰௟ሺݐሻ〉 ൌ ݐሻ݀ݐሻ߰௟ሺݐ௞ሺ߰׬ ൌ 0 , ݇ ് ݈                               (2) 

Typically, the wavelet function ψj,k can be expressed by the following equation: 

   ߰୨,௞ሺݐሻ ൌ ߰ሺ2௝ݐ െ ݇ሻ                                                      (3) 

Moreover, Mallat 1989 in his paper provided an algorithm to decompose a signal using 

discrete wavelet transform (DWT) by two channels, lowpass filter (moving average) and 
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highpass filter (moving difference).  This process is called downsampling or decimation. Then a 

nonlinear profile f(t) can be form as: 

݂ሺݐሻ ൌ ∑ ܽ୨,௞߰୨,௞ሺݐሻ୨,௞ ൌ ∑ ௝ܽିଵ,௞߰௝ିଵ,௞ሺݐሻ ൅ ∑ ௝ܾିଵ,௞߶௝ିଵ,௞ሺݐሻ௞௞            (4) 

where bj-1,k is the scaling coefficient and ߶௝ିଵ,௞ሺݐሻ is scaling function at decomposition level j-1 

and location k. In addition, the scaling function is also called approximation channel that catches 

the low frequency components, which also represent the shape of the given profile. In this study, 

Haar wavelet is used as the primary mother wavelet used in the wavelet transformation. 

3.2.2 B-Spline Approximation  

Mortenson [0] shows a (K-1) degree of B-Spline curve in general form as shown in 

equation (5). 

۱ሺ࢚ሻ ൌ෍ ሻ࢚ሺࡷ,࢏ۼ࢏ࡼ
࢔

ୀ૙࢏
(5)

where Pi are the control points, and Ni,K(t) are the (K-1)th degree of basis polynomials. The i th 

basis function Ni,k(t) is defined by 

௜ܰ,௞ሺݐሻ ൌ
ݐ െ ௜ݑ
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௜ା௞ݑ െ ݐ
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௜ܰାଵ,௞ିଵሺݐሻ 
(6)

௜ܰ,ଵሺݐሻ ൌ ቄ1 ݂݅ ௜ݑ ൑ ݐ ൏ ௜ାଵݑ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

(7)

where k is integers, i.e., k=2,…,K. In this study, we applied the cubic B-spline, such that K is 

equal to 4. The matrix form of cubic B-Spline for each curve segment used in Chang and 

Yadama (2010) can be specified as equation (8) 

ሻ࢚ሺ࢏࡯ ൌ
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శ૛࢏࢖

቏   ૛ሿି࢔,ሾ૚∋࢚ (8)

3.2.3 Chang and Yadama’s Work 

Chang and Yadama (2010) propose a process to monitor nonlinear profiles for identifying 

mean shifts or shape changes in a profile. The main idea is, first, to use discrete wavelet 

transform to decompose a profile by lowpass and highpass filtering according to equation (4). 

Then, reconstruction step reverses the process of decomposition by setting all wavelet 

coefficients in the detailed channels to zero. The output of this step is the shape signals without 

noise. Then the reconstructed signal is partitioned into various segments according to 
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engineering knowledge. Within each segment, users choose a fix number of control points in a 

B-Spline model to fit the profile. Users then calculate the distance vector d that contains the 

MSE using the control point matrix that stores control points by each profile. After that, mean 

difference distance vector of each segment is computed. The Hotelling’s T2 statistics is then 

adopted on the vector statistics for process monitoring.  Their simulation results show the 

proposed method is capable of detecting and diagnosing shifts in profile shape. In this study, we 

further extend the process monitoring to detect possible variation changes in a profile.  

3.2.4 Levene Transformation 

The Levene transformation is one component of the Levene test which is used to detect 

difference in variability among data sets in the field of analysis of variance when the normality 

assumption is not obtained. In Levene’s (1960) work, the original variable is subtracted from 

sample mean. The absolute value of this difference is then used in ANOVA for better 

performance in terms of higher detecting power and lower false alarm rate. Further, Brown and 

Forsythe (1974) compared 10% trimmed mean and median as the estimators of location in place 

of the sample mean. Their results show trimmed mean and median form have similar detecting 

power when a distribution is asymmetric (long-tail distribution) but are superior to the sample 

mean method. In this study, the modified Levene transformation with median is considered and 

shown in equation (9) 

࢐࢏ࢠ ൌ ห࢐࢏࢞ െ ห࢐,ࢊࢋ࢓ࣆ (9)

where i is the index of profiles, j is the jth  point in a profile, xij is the jth data point of ith profile, 

and ߤ௠௘ௗ,௝ is the median value at jth point among all phase I profiles.   

3.3 The Proposed Methodology 

The proposed method is described in this section. In this study, we assume the target profiles are 

known. Therefore, the procedure for phase II process monitoring is described as follows. 

3.3.1 Phase II Process 

Step 1. Initialize the number of level l for DWT to decompose profiles and the number of 

knots k for B-Spline.  

Step 2. Decompose each original profile of the process using DWT, such that, a series of 

scale coefficients represents the shape (or mean) channel while variance channel is a 
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series of wavelets coefficients. Note that the number of data points for each decomposed 

channel will be reduced to ݉ 2௟⁄ , where m is the number of data points of the original 

profile.  

Step 3a. Reconstruct each decomposed shape channel. The decomposed shape channels 

are reconstructed by setting wavelet coefficients to zero in each level, so that the number 

of data point of the reconstructed shape channel (denote as RS channel) will be identical 

to that of the original profile.  

Step 3b. Reconstruct each decomposed variance channel. The decomposed variance 

channels are reconstructed by setting scale coefficients to zero in each level, so that the 

number of data points of the reconstructed variance channel (denote as RV channel) will 

have the same number as that in the original profile.  

Step 3b.1 Apply the Levene transformation shown in equation (9) to each point at knot 

location in the RV channel. Denote the modified Levene transformed variance channel as 

LV channel.  

Step 4. Apply B-spline to fit through RV and LV channel for each profile, and then 

calculate the mean square error D from various knot locations. Note that the mean profile 

was target profile. The equation of D is shown in equation (10). 

ࡰ ൌ ∑ ሺ࢏ࣆି࢏ࡿሻ૛
࢑
స૚࢏

࢑
(10)

where i is the index of knot, k is the number of knots, and Si is the corresponding value of 

the channel at location of  knot. Denote the mean square error D of RS channel as DRS, 

and that of LV channel as DLV.  

Step 5. Plot DRS and DLV to its respective EWMA chart with its proper mean µ, standard 

deviation σ, upper control limit UCL, and lower control limit LCL.  In this study we 

assume these parameters are known but they can be easily established from a phase I 

analysis.  

3.4 Experimental Design 

To examine the performance of the proposed method in terms of correct classification 

rate and misclassification rate, three types of profile considered in this study are shape change 

only, variance change only, and mixture situations.  We first simulated 125 profiles of phase I 

process to establish EWMA chart parameters. Next, in the phase II process, the first 25 profiles 
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are generated from the in-control process followed by the next of 25 profiles that represent an 

out-of-control process. In other words, the simulated process always shifts at 26th profile in mean 

or variance, or both in each replication.  A total of 1000 replications are tallied. Specific details 

on the simulated profiles are shown in the next section. 
21
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3.4.1 Profile Function 

The simulated true profile was a simple gradient step profile, which the maximal value of the 

profile was 2, while the minimal value was 0. Each profile consists 512 points and was generated 

from equation (11) as shown in Figure 3.1 (a). The simulated phase I profile was generated by 

f(x)+e, where e~N(0, 0.12) as shown in Figure 3.1 (b).  

Figure 3.1 (a) Simple profile without noise; (b) Simple profile with noise which follows 

normal distribution with mean 0 and stand deviation 0.1; (c) Three different types of 

magnitude change; (c) Three types of phase shift. 
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(c) 

 

(d) 

3.4.2 Types of Shape Change 

There are two types of shape changes simulated in this study—magnitude change and 

phase shift change. Each type of these factors consists of three situations. In magnitude change, 

three different types of magnitude would be investigated in this study, i.e., δ=0.5σ, σ, and 2σ, 

where δ is the absolute value of maximum value subtract to minimum value of the true profile. 

Figure 3.1 (c) shows three different types of magnitude change for the simulated profile. In 

Figure 3.1 (c), solid line represents the true profile; dash line represents 0.5σ magnitude shape 

changed profile; dot line and dash-dot line are σ and 2σ magnitude shape changed profiles, 

respectively.  

The other type of shape change called phase shift change was investigated in this study, 

as well. Three different lengths of phase shift change were examined. In this experiment, all 

simulated profiles have the same shape but shifted backward in three different ratios. The ratio λ 

is defined as length of shift divided by overall length of the true profile. Figure 3.1 (d) shows 

three different phase-shifted profiles and the true profile, in which the solid line represents the 

true profile, the dash line represents λ=0.1, the dot line is λ=0.3, and the dash-dot line means 

λ=0.5 for the profile.  

3.4.3 Variance Change 

In this study, the proposed method is also designed to detect variance change during the 

process monitoring. It is necessary to examine the capability of the proposed method in detecting 

variance change in a process. Two types of variance change will be investigated in this 

experiment— variance changed in the entire profile and in the bottom half of a profile as shown 
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in Figure 3.2 (a) and (b), respectively. For variance changed in bottom half of a profile, the first 

25 profiles were simulated as in-control profiles, while the rest 25 profiles were out-of-control 

profiles which error term were generated from N(0, σ2), where σ=0.15, 0.5, and 1. As for 

variance changed in the overall profile, the simulated change magnitudes are similar to the 

bottom half of the previous case. 

3.4.4 Mixture 

The mixture of both shape and variance changes is aimed to test whether the proposed 

method is capable of identifying proper scenarios. In each profile, the combinations of two types 

of shape change and two types of variance change are considered. Since shape and variance 

change consists of three treatments, the mixture factor has 36 combinations, i.e., 2 types of shape 

as well as variance change in which each type of change consists 3 magnitudes. Figure 3.2 shows 

an example of magnitude shape change and variance change on half part of the profile, where the 

magnitude of shift is 0.2 while variation is shifted from 0.1 to 0.5. 

 

Figure 3.2 (a) Variance changed in the entire profile, (b) Variance changed in half of 

profile, and (c) An example of mixture change—magnitude shape change with variance 

changed on the half of a profile. 

     

3.5 Simulation Results and Discussion 

In this study, the performance statistics include correct classification rate and 

misclassification rate for shape change only, variation change only, and mixture situation. One 

thousand replications are used for each case. The higher the correct classification rates the better 

the proposed method works.  
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3.5.1 Case of Shape Change Only 

The simulation results for the case of shape change only are shown in Table 3-1. In this 

scenario, the simulated profiles were designed in shape change only starting at 26th profile in the 

process. The simulation results show that the proposed method successfully identified the shape 

change in shape channel with rate of 1, while the proposed method does not provide an out-of-

control signal from the variance channel 89.2%. In other words, the misclassification rate due to 

this additional EWMA chart for detecting variance changes is 0.108.   

Table 3-1 Simulation results for the case of shape change only. 

Case correct.shape correct.var 

Ph
as

e 
Sh

if
t 

on
ly

 

λ=0.1 1 0.9 

λ=0.3 1 0.889 

λ=0.5 1 0.901 

M
ag

ni
tu

de
 

sh
if

t o
nl

y 

0.5σ 1 0.885 

1σ 1 0.878 

2σ 1 0.897 

Avg. 1 0.892 

3.5.2 Case of Variation Change Only 

In this scenario, the process involved only variance change starting at 26th profile in the 

process. The proposed method was able to successfully identify variation change in the variance 

channel with 100% accuracy. However, the EWMA chart associated with the shape channel also 

indicate that the process is out of control. This situation is very similar to the practice of 

univairate control chart where X-bar and R chart are used simultaneously. When both X-bar and 

R chart indicates that the process is out of control, we should look into the causes of process 

variation first before concluding that the process mean shift has taken place, simultaneously.     

3.5.3 Case of Mixture Situations 

The mixture situations contained 36 combinations in which shape and variation change 

were occurred simultaneously.  The proposed method identified correctly in all 36 combinations, 

i.e., the proposed framework is capable to identify the mixture scenario, so that the process 

involved both shape and variation change can be detected simultaneously.   
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3.6 Conclusions and Future Study 

This study proposed a framework to monitor profile shape and variance changes 

simultaneously. According to the simulation results, the proposed two-channel monitoring 

framework are able to detect scenarios when profiles exhibit shape change only and both shape 

and variation changes. Similar to the classic univariate control charting monitoring, the proposed 

method would indicate that both shape and variance changes in a profile while in fact only 

variance changes exist. We suggest that the causes due to variation changes should be examined 

first. On the other hand, if the proposed system indicates that a process experiences shape change 

only. The performance statistics suggest that the shape change is the most likely cause for the 

out-of-control situation. For future study, we would like to (1) develop a plotting statistic(s) to 

distinguish shape changes from variation changes more effectively; (2) extend this study to 

multiple segments; and (3) extend this framework to multiple profile cases.  
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Abstract 

Problem: Condensation water temperature profiles are collected from a curing process for high-

pressure hose products. The shape of those profiles resembles sine waves with diminishing 

amplitudes. A gold standard wave profile does not exist. Instead some wave profiles with various 

frequency and amplitudes are deemed normal for the water release operation. To the best of our 

knowledge, the current practice and research on SPC do not provide a solution for monitoring 

wave profiles of this kind.   

Approach: The proposed SPC implementation framework first converts waveform profiles from 

the time domain to the frequency domain. Then a set of phase I IX control charts is constructed 

based on a Partition Around Medoids (PAM) clustering method. A Support Vector Machine 

(SVM) classifier is then used to label a new profile to its associated group for phase II 
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monitoring so that the IX chart associated with a homogeneous group can provide better process 

monitoring. 

Results: Comparing with other widely used profile analysis techniques, such as, wavelet 

transformation (WT), principle component analysis (PCA), and B-spline fitting (BS) in the time 

domain, the proposed SPC implementation in the frequency domain works well during phase I 

control charting with low false alarm rates. It also outperforms the other methods in phase II 

control charting in term of high detection rate of abnormal profiles.  

Keywords: Individual Control Chart; PAM clustering method; Support Vector Machine.  

4.1 Process Description 

High-pressure hoses are made out of rubber material with layers of metal wraps. Rubber 

products often require a curing process called vulcanization as the final step to activate cross-

linking reaction so that the tensile strength of finished rubber is stronger (Hoster et al., 2009). In 

a curing process, reels of un-vulcanized hose are loaded into a sealed autoclave or vulcanizer 

whose in-chamber temperature and various valves are controlled by a programmable logical 

controller (PLC). Once all reels are loaded, the heat-up stage of curing process is enabled. The 

PLC monitors the chamber temperature and controls the steam valve to heat up the chamber until 

the temperature is reaching to a fixed target temperature, says, 500 °F. Once the target 

temperature is reached, the PLC will activate the curing stage to maintain the target temperature 

for a fixed number of time units, e.g., 480. Due to the confidential agreement with the process 

owner, the curing recipe (i.e., 500 °F and 480 time units) is a process setting for illustration 

purpose only. The final stage of the curing process is called cool-down stage to decrease the 

chamber temperature. For more details of curing process please see Figure 4.1 and Chang et al. 

(2012).  

This study focuses on an additional control of water valve during the curing stage (the 

second stage shown in Figure 1) of a curing process. During the curing stage, condensation water 

accumulates at the bottom of the chamber.  A water valve is installed at the end of the water 

releasing pipe for releasing condensation water. If this valve fails to open, the water would keep 

accumulating at the bottom of a vulcanizer, and cause cosmetic or functional damage of hoses. 

On the other hand, if the water valve fails to close, the chamber temperature would be difficult to 

maintain and result in energy wastes.  



39 

 

Figure 4.2 shows a schematic diagram of a vulcanizer with accumulated condensation water and 

the location of valves. A thermocouple is mounted at the end of condensation water releasing 

pipe (before the condensation water valve) to read the condensation water temperature. One 

typical condensation water temperature profile is shown in Figure 4.3. Note that once the 

condensation water temperature is decreased to a certain degree, the PLC will open the 

condensation water valve for a period of time to release water, and then the water temperature is 

climbing rapidly until the condensation water valve is closed. This mechanism results in the 

waveform shape of the condensation water profile. Since the company produces different kind of 

high-pressure hose products, they load different reels of hose products into the vulcanizer at the 

same time according to production orders. Reels in the vulcanizer may contain different amount 

of rubber material or different layers of metal wraps on hoses. It is not a surprise that the 

condensation water temperature profiles do not have a gold standard.  

The condensation water temperature is recorded by a thermocouple located close to the 

water valve as shown in Figure 4.2. It is also a suitable indicator of the operation of condensation 

water valve because it can be used to detect abnormal situations, such as, malfunction 

condensation water valve or thermocouple. However, the current detection method relies on 

visual inspection, i.e., through a quick glance of the water-temperature print out. If a profile 

contains enough number of waves, it is deemed as a normal profile. For example, the 

condensation water temperature profile shown in Figure 4.3 is considered good because it 

contains 22 waves. It is a challenge to develop a non-subjective, systematic process control 

strategy for experienced and new engineers or operators.  Figure 4.4 shows three other examples 

of in-control waveform profiles. 
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Figure 4.1 Steps of curing process for high-pressure hose products. 

 

 

Figure 4.2 A schematic diagram of vulcanizer. 
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Figure 4.3 An example of condensation water temperature profile. 

 

 

Figure 4.4 Example of three in-control condensation water profiles. 

 

 

Current Profile analysis techniques can be simply characterized into two categories, 

linear and nonlinear profiles in regard to profile shape structure. Many studies monitored 
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parameters of the linear regression model, such as, intercept or slope parameter. For example, 

Kang and Albin (2000) monitored slope and intercept with the Hotelling’s T2 control chart as 

first method to detect abnormal profiles, and they also proposed the second method which 

monitored average residuals between sample  profiles and reference profile followed by EWMA 

and R chart.  Kim et al. (2003) proposed three univariate EWMA charts which monitoring slope, 

intercept, and the variance of deviation between samples and regression line simultaneously.   

Many techniques in nonlinear profile analysis can be found in Woodall (2007) and 

Noorossana et al. (2011). Woodall (2007) classified nonlinear profile analysis into four 

categories—applying multiple and polynomial regression (Zou et al., 2007; Kazemzadeh et al. 

2008; Mahmoud 2008), applying nonlinear regression models (Ding et al., 2006; Williams et al., 

2007; Shiau et al., 2009; Chang and Yadama 2010; Chen and Nembhard 2011), the use of mixed 

models (Jensen et al., 2008; Jensen and Birch, 2009; Qiu et al., 2010; Paynabar and Jin, 2011 ), 

and the use of wavelets (Reis and Saraiva, 2006; Zhou et al., 2007; Chicken et al., 2009).  The 

wave profiles studied here cannot be easily classified into any one of these four categories of 

nonlinear profile analysis. 

Although the above-mentioned methods are successful in dealing with the situations in 

their problem domains, those techniques deal with profiles that contain specific shape with a 

standard or model profile that can be predefined or estimated. In addition, none of these methods 

are suitable for waveform shape profile. Since the quality engineers are interested in if water-

releasing cycle is under a statistical control, this study develops a general SPC implementation 

framework to monitor waveform shape profiles when no gold standard profile can be established. 

In the next section, we will describe how the wave profiles are collected.  

4.2 Data Collection 

In this case study, 146 condensation water temperature profiles were deemed good by the 

company’s quality engineers and our best judgments, i.e., in control because of their frequent 

temperature oscillations. Most importantly these profiles were collected from the production 

batches where high-pressure hose products, the condensation water valve, and the condensation 

water thermocouples were all in good conditions. No cosmetic or malfunction hose was found in 

those production batches. Each wave profile can be presented as a vector as shown in equation 
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(1) where n is number of profiles and pi is number of data points within ith profile. These profiles 

(n=146 in this case) will be used to construct the phase I control charts.   

  ௝ܹ௜ ൌ ,ଵଵݓൣ ,ଵଶݓ … , ,௝௜ݓ … , ,௣௜,௡൧ݓ ݅ ൌ 1,2,3, … , ݊, ݆ ൌ 1,2,3, … ,  ௜݌ (1)

 

The proposed framework is robust in that it strives to achieve the lowest false alarm rate 

and highest accuracy rate. The accuracy rate is a function of sensitivity and specificity defined in 

equation (19), (20), and (21) in the latter section. An experiment is also conducted to examine 

various well known clustering methods and dimension reduction methods that are often applied 

to profile analysis with promising results. Then, the best method is chosen based on the criteria 

of false alarm rates and accuracy rates. In this case study, thirty nine new condensation water 

temperature profiles were collected as phase II data to test the proposed framework.  

4.2.1 The Proposed Framework 

The proposed framework is shown in Figure 4.5 that demonstrates the monitoring the 

condensation water temperature profiles during the curing stage of vulcanization process. In 

phase I, the original waveform profiles in time domain is transformed to frequency domain using 

the Fast Fourier Transformation (FFT), which is a logical choice for dealing with wave signals. 

Then, a clustering method will be applied to the frequency domain profiles. This step will group 

frequency-domain signals into homogeneous clusters.  Once all profiles have been clustered to 

their associated group, the dimension reduction method will be applied to all profiles so that the 

number of dimension for each profile will be reduced to less than 10 dimensions for user to use 

univariate or multivariate control charts as Montgomery (2009) suggested. A control chart for 

each cluster is then to be constructed based on members of the cluster. Note that the information 

of the clusters and their associated membership will be utilized as a training dataset for training a 

classifier model in phase II. Once the classifier has been trained, it will be applied to the phase II 

process to determine which group a new profile in frequency domain belongs to. For example, if 

a new waveform profile is assigned to cluster k by the classifier, then the parameters constructed 

in phase I, such as, mean, standard deviation, and control limits, can be obtained for phase II 

process monitoring. If the control chart indicates that an out-of-control signal occurs, the profile 

which contributed to this out-of-control signal will be considered an abnormal profile. More 

detail of the FFT, clustering method, dimension reduction method, and the classifier component 

will be introduced in the latter section.  
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Figure 4.5 The proposed framework for condensation water temperature monitoring. 

 

There are many candidate methods that may be appropriate for the clustering and 

dimension reduction functions shown in Figure 4.5. We will not introduce the detailed 

mechanism of all techniques we examined in this study. Instead, we will only introduce the 

methods recommended in this study. We will also discuss why these methods are applied and 

how we expect the results to be. The proposed framework will be still valid when new or more 

advanced clustering techniques and dimension reduction methods are introduced in the future. 

Quality engineers may also choose the other methods that they are more familiar with due to the 

availability of the computational software and package available to them.  

4.2.2 Fast Fourier Transformation Component  

Fast Fourier Transformation (FFT) developed by Cooley and Tukey (1965) is the most well-

known algorithm to calculate discrete Fourier Transformation (DFT) for converting a signal from 

time domain to frequency.  Both R and Matlab software contain the FFT function called “fft” 

without having to import any package or toolbox loaded in advance. In this study, the fft function 

from Matlab is applied is because it can specify the number of output data points after 

I 
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transformation. Note that, since the FFT-transformed profile is a symmetric shape, i.e., the shape 

in the right hand side is mirrored from the left hand side shape, it is suggested to specify the number 

of output data points to be dyadic, i.e., the power of 2. Therefore, only half of the number of data 

points that converted by fft function of Matlab will be used to further analysis. Since a typical 

condensation water temperature profile consists of 480 data points, the next power of 2 is 512 

data points. Therefore, in each FFT-transformed condensation water temperature profile, the 

number of data points is 256. The output vector of fft function can be defined as equation (2) 

where pf is the size of the FFT-transformed vector which is specified to 256. For more detail of 

the usage of fft function, one can refer to Matlab’s online document at 

http://www.mathworks.com/help/matlab/ref/fft.html. For those who would like to develop their 

own FFT program, Smith (2002) provided a pseudocode.  

  ௝ܹ௜
௙ ൌ ቂݓଵଵ

௙ , ଵଶݓ
௙ , … , ௝௜ݓ

௙, … , ௣௙,௡ݓ
௙ ቃ, ݅ ൌ 1,2,3, … , ݊; ݆ ൌ 1,2,3, … ,  ௙݌ (2)

 

We convert the condensation water temperature profiles from the time domain to the 

frequency domain in that the original waveform profiles are too complicated to be directly 

applied to the existing SPC profile monitoring methods as reviewed earlier. Figure 4.6 shows an 

example of the in-control profile 15 and its Fourier transformed profile. Although we can 

observe that the majority frequency of the profile 15 is 0.00091 Hz, there are other frequencies 

between 0 Hz and 0.01 Hz that cannot be ignored. After the FFT transformation, we can now 

treat the FFT transformed profiles as the other regular profile analysis problems except that we 

still need to address the issue of diverse frequency domain profiles in the next section.  
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Figure 4.6 Condensation water temperature profile 15 in (a) time domain and (b) 

frequency domain. 

(a) 
(b) 

4.2.3 Clustering Component 

Even though the in-control FFT transformed profiles are potential representations of the original 

time domain profiles, they are not homogeneous. For example, the in-control profile 5 and 15 in 

frequency domain has different profile shape in frequency domain as shown in Figure 4.7. 

Profile 5 has two majority frequencies while profile 15 only has one peak with gradient decline 

between 0.0025 Hz and 0.01 Hz. Therefore, we proposed to cluster the in-control FFT 

transformed profiles into homogeneous groups.  
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Figure 4.7 Profile 5 and 15 in frequency domain. 

 

The purpose of a clustering method is to group a set of frequency domain members as 

similar as possible within a group, and those members can be distinguished from the other 

groups. In this study, we examine several widely used clustering analysis methods to the FFT 

transformed profiles such that members within the same group can be more homogeneous for 

subsequent profile analysis.   

Table 4-1 shows the selected clustering methods examined in this study. Those well-developed 

methods including hierarchical clustering, mclust, K-means, Partition Around Medoids, fuzzy 

clustering, and fuzzy C-means are candidates for performance comparison (Leisch and Gruen, 

2013). These clustering methods were used to group 146 in-control FFT transformed profiles as 

defined in equation (2). Then, the variance ratio criterion (VRC) is used as the clustering 

methods evaluation criterion (Mooi and Sarstedt, 2011) as shown in equation (3).  

  ܥܴܸ ൌ
ܵܵ஻/ሺܭ െ 1ሻ
ܵܵௐ/ሺ݊ െ ሻܭ

  (3)

where K is the number of clusters, n is total number of profiles to be clustered, SSB is the sum of 

the squares between clusters, and SSW is the sum of the squares within the clusters. Note that, the 

larger the value of VRC, the better the performance of the clustering method.  
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According to Table 4-1, the largest VRC among all clustering methods is PAM. Note that, PAM 

requires the prior knowledge of the number of clusters. Users can either determine the number of 

clusters by using Hierarchical Clustering (hclust) or using mclust method, in which the prior 

knowledge of the number of clusters is not required. For more information regarding to 

clustering analysis methods in R please refer to Leisch and Gruen (2013). 

Table 4-1 Clustering methods examined in this study. 

Clustering 
Method 

R Package  Function SSW SSB VRC 

Hierarchical 
Clustering 

stat or cluster hclust() 171.949 71.604  29.774 

mclust  mclust Mclust() 179.856 63.698  25.323 

K‐means  stats kmeans() 156.309 87.245  39.909 

PAM   cluster pam() 164.266 101.880  44.345 

Fuzzy clustering  cluster fanny() 166.989 76.564  32.782 

Fuzzy C‐Means  e1071 cmeans() 158.9717 37.172  16.719 

Partition Around Medoids (PAM) 

The Partition Around Medoids clustering algorithm proposed by Kaufman and 

Rousseeuw (2005) is the first known algorithm of k-medoids clustering method (Han and Pei, 

2006). Unlike a k-means algorithm that calculates the mean value of the cluster (centroid) as 

representative object of the cluster, a k-medoids algorithm uses the actual data point to represent 

the cluster. The objective of PAM is to minimize the cost function, i.e., sum of dissimilarities 

between given data points and the medoids as shown in equation (4). Note that, the measurement 

of dissimilarity between objects can be calculated by Euclidean distance or Manhattan distance 

as described in Kaufman and Rousseeuw (2005). A PAM cost function F is defined as:   

  ܨ ൌ෍ ෍ ݀ሺܹ௙, ௝݉ሻ
ௐ೑∈஼ೕ

௄

௝

  (4) 

where K is the number of clusters, Wf defined in equation (2) is a FFT-transformed profile 

assigned in cluster Cj, mj is the medoid of Cj, which is also a vector of size pf, and d(Wf,mj) is the 

function of dissimilarity between FFT-transformed profile Wf and medoid mj. The algorithm of 

PAM is shown in Figure 4.8. The output of PAM is the FFT-transformed profile with its class 

label.  
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Figure 4.8 PAM algorithm. 

Randomly select K FFT-Transformed profiles as medoids of the clusters 

Repeat 

Assign each non-medoid FFT-Transformed profile to the nearest 

medoid using the dissimilarity function 

     For each medoid m 

          For each non-medoid FFT-Transformed profile Wf 

               Swap m and Wf then calculate F 

     Determine the new set of K medoids with the lowest F 

Until no change in the medoid.  

4.2.4 Classifier Component 

In data mining, classification analysis constructs a model or classifier to predict the 

categorical labels. There are two steps in the classification analysis, training phase (or learning 

phase) and classification step. Training phase builds a classifier by learning from a given training 

dataset with class labels predetermined, while the classification step classifies the new data 

without a given class label to one of the associated classes (Han et al., 2006). In Figure 4.5, a 

classifier is needed to identify a new profile’s membership. However, it needs to be trained first 

during the phase I process. The training dataset is generated from a clustering method, whose 

output contains the attributes of FFT-transformed profiles along with class labels. Then, the 

proposed classifier is constructed by learning from the trained data. Once the classifier is trained, 

it assigns a profile to an appropriate cluster for phase II process monitoring. The classifier used 

in this study is the support vector machine (SVM) classifier.  

The SVM classification method has become an indispensable classifier in machine 

learning or pattern recognition field. SVM is adopted as the proposed phase II classifier in that it 

is one of the most competitive classification methods. Meyer et al (2003) confirmed that the 

SVM is the best classifier among 16 popular classifiers. Details of the theory and application of 

SVM may be found in Cortes and Vapnik (1995) and Campbell and Ying (2011).  

The main idea of SVM classifier is mapping input variables into higher dimensional 

space using a kernel function to distinguish non-linearly separable datasets. The choice of a 

kernel function may result in different accuracy rates in the same problem domain. Many kernel 

functions have been embedded in packages of R. For example, linear, polynomial, Gaussian 
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radial basis function kernel (RBF), and sigmoid kernel function. We will apply the svm() 

function in the e1071 R package to various training and test datasets. We will also examine the 

following kernel functions for the best performance in term of the accuracy rate in phase II 

process: 

Linear Kernel:  ,ݑሺܭ ሻݒ ൌ   ݒ′ݑ (5)

Polynomial Kernel of degree h:  ,ݑሺܭ ሻݒ ൌ ሺݑᇱݒ ൅ ߶ሻ௛   (6)

Gaussian Radial Basis Function Kernel (RBF):  ,ݑሺܭ ሻݒ ൌ ݁ି఑‖௨ି௩‖
మ
   (7)

Sigmoid Kernel:  ,ݑሺܭ ሻݒ ൌ tanhሺݑߢᇱݒ ൅ ܿሻ   (8)

 

Note that u and v are both p-dimensional frequency domain profiles, and φ, h, κ, and c are 

all parameters that determined by users. In this study, all parameters we used are all default 

values from the R function svm() in the package e1071, i.e., φ=0, h=3, κ=1/p, and c=0. For more 

details in adjusting kernel function, please refer to Karatzoglou et al. (2006).  

4.2.5 Dimension Reduction Component 

Montgomery (2009) suggested that the maximum number of dimensions for a 

multivariate control chart should be no larger than ten. When the quality characteristic is defined 

as all observations in a profile, the dimensions may be in hundreds or thousands. In this case 

study, the FFT-transformed profile still contains 256 data points. In other words, the number of 

dimensions for each profile is 256. No multivariate control chart can handle such a large 

dimension effectively. Therefore, various dimension reduction methods have been applied to 

profile analysis. They include: (1) wavelet transformation (Reis and Saraiva, 2006; Zhou et al., 

2007; Chicken et al., 2009); (2) Principal Component Analysis (Ding et al., 2006; Noorossana et 

al., 2008; Shiau et al., 2009); (3) B-Spline Fitting (Walker and Wright, 2002; Williams et al., 

2007; Chang and Yadama, 2010).   

Choosing an appropriate dimension reduction method, we need to consider the balance 

between computational cost and performance. The Euclidian distance method (ED) seems to be a 

good candidate. Not only this approach reduces the number of dimensions to one, but also the 

steps of calculating the Euclidian distance between two profiles are simpler than those of the 

other dimension reduction methods. In this study, we will compare the proposed method to the 

other methods. All methods studied and their associated R packages used in this study are listed 

as follows: (1) discrete wavelet transformation: dwt() in wavelets package; (2) principal 
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component analysis: prcomp() in stats package; (3) cubic B-spline: ns() in splines package; (4) 

Euclidian distance: dist() in stats package. Since a multivariate control chart, e.g., Hotelling’s T2 

or MEWMA, is only effective in handling the number of dimension of less than ten, the number 

of dimensions reduced by wavelet transformation is specified to eight (or less), while the 

maximum number of dimension that reduced by PCA is no larger than ten.  

4.2.6 Control Chart Component 

In the proposed SPC framework, a control chart plays the role of decision making.   Both 

multivariate and univariate control charts with individual observation can be used. If the 

dimensionality of profiles is reduced to one, individual X control chart (IX chart) can be 

obtained. On the other hand, when the number of dimensions is larger than one after running the 

dimensional reduction method, the Hotelling’s T2 control chart with individual observations can 

then be used. We can substitute the IX chart with either a EWMA or a CUSUM chart, and the 

Hotelling’s T2 control chart with a MEWMA chart depending on the magnitude of the expected 

shifts. Montgomery (2009) provides details of both control charts.   

To establish the individual control chart based on the independent observations ݔ௜, ݅ ൌ

1,2,⋯݊௞, ݊௞ is the number of observations in kth cluster. In this study, since the B-spline and 

Euclidian distance dimension reduction method will reduce the number of dimensions to one, the 

IX control chart is applied to the transformed datasets. The IX control chart parameters are 

formulated as follows: 

  UCL௞ ൌ ௞ݔ̅ ൅ 3MRതതതതത௞/݀ଶ,  (9)

  CL௞ ൌ  ௞ݔ̅ (10)

  LCL௞ ൌ ௞ݔ̅ െ 3MRതതതതത௞/݀ଶ,  (11)

 

where k represents kth cluster ̅ݔ௞  is the average of  individual observations while ܴܯതതതതത௞  is the 

average of moving ranges of consecutive observations of kth cluster, specifically, MRതതതതത௞ ൌ

∑ ௜௞ݔ| െ ሺ௜ିଵሻ௞|/ሺ݊௞ݔ െ 1ሻ௡ೖ
௜ୀଶ , and ݀ଶ ൌ 1.128. UCLk, CLk, and LCLk are represented upper 

control, central line, and lower control limit of kth cluster.  

Moreover, PCA and wavelet dimension reduction methods result larger than one 

dimension. Therefore, the Hotellng’s T2 control chart with individual observations is obtained. 

To construct the Hotelling’s T2 control chart with individual observations (Tracy et al., 1992), 

one can follow the formula:  
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  ௜ܶ௞
ଶ ൌ ሺݔ െ ሻ௜ݔ̅

ᇱܵ௞
ିଵሺݔ െ  ሻ௜ݔ̅ (12)

 
UCL௞ ൌ

ሺ݊௞݌ ൅ 1ሻሺ݊௞ െ 1ሻ

݊௞
ଶ െ ݊௞݌

 ఈ,௣,௡ೖି௣ܨ
(13)

 
UCL௞ ൌ

ሺ݊௞ െ 1ሻଶ

݊௞
 ఈ,௣/ଶ,ሺ௡ೖି௣ିଵሻ/ଶߚ

(14)

  LCLൌ0 (15)

 
S௞ ൌ

ܸᇱܸ
2ሺ݊௞ െ 1ሻ

(16)

  ௞ܸ ൌ ଵ௞ݒൣ
ᇱ ଶ௞ݒ

ᇱ ⋯ ሺ௡ೖିଵሻ௞ݒ
ᇱ ൧′  (17)

  ௜௞ݒ ൌ ሺ௜ାଵሻ௞ݔ െ ௜௞ݔ (18)

 

The statistics ௜ܶ௞
ଶ  of the ith observation in kth cluster is shown in equation (12), where Sk is 

calculated by using the equation (16). Moreover, Sk estimates the variance-covariance matrix 

better than that of using the conventional approach if there was no trend, cycle, etc., in the 

process. If the process was totally random, the variance-covariance structure determined by 

equation (16) and the conventional approach would have no difference (Holmes and Mergen, 

1993). The UCLk in equation (13) should be chosen when the control chart monitors phase II 

process, while equation (14) shows the UCL in the phase I process. Note that, nk is number of 

profiles in kth cluster, p is number of dimensions, and α is the confidence level in equation (13) 

and (14). LCL in both phase I and phase II is zero.  

4.3 Experimental Design 

In order to optimize the proposed SPC implementation framework, we conduct an 

experiment as shown in Figure 4.9. In this experiment, we use 146 in-control condensation water 

temperature profiles that were collected over two months in 2011 from the hose production 

manufacturing process to construct phase I process. Note that those 146 in-control data will be 

the training data for SVM classifier for phase II process if the clustering method is applied to the 

phase I process. We also collected extra 39 profiles in different months in 2011 in which 6 of 

those were abnormal profiles identified by quality engineers’ and our judgments. Those 

abnormal profiles are profile 16, 24, 26, 27, 37, and 39 as shown in Figure 4.10, which are 

superimposed on overall 146 in-control phase I profiles. According to Figure 4.10, the abnormal 

profile 16, 24, and 27 have unusual period of time that the condensation water valve was kept 

closed after 200 time units. Profile 26 indicated that the valve was kept closed between 200 and 

390 time units. The profile 37 is an obvious failure run of the hoses manufacturing process while 
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the profile 39 indicates that the water valve opened and closed too frequently comparing to a 

normal pattern.  

Moreover, since the proposed framework consists of a clustering/classification method, 

we investigate the performance in terms of accuracy rate with and without applying 

clustering/classification. The clustering method used in the proposed framework is PAM due to 

its highest VRC value based on the phase I data described in the above section. PAM is used to 

determine the clusters and their memberships which are then used as the training data for a SVM 

classifier. Because different kernel function in SVM classifier may result in different accuracy 

rates, therefore, four popular kernel functions specified in Figure 4.9 will be investigated in this 

experiment so that we can optimize the proposed framework. The performance criteria used in 

this experiment, false alarm rates and accuracy rate, are introduced in the next section. 

Figure 4.9 The experimental design of the proposed SPC implementation framework for 

the condensation water temperature profiles. 

Data 

 Phase I (training data) 146 in‐control waveform profiles 
 Phase II (testing data) 39 waveform profiles 

Domain 

 Frequency domain 
Clustering  

 Include clustering method (PAM) 
 Exclude clustering method 

SVM Classifier Kernel Function (if clustering method is applied) 

 Linear kernel function (LK) 
 Polynomial kernel function (PK) 
 Gaussian radial basis function kernel (RBF)  
 Sigmoid kernel (SK) 

Dimension Reduction 

 Discrete Wavelet Transformation (DWT) 
 Principle Component Analysis (PCA) 
 B‐spline (BS) 
 Euclidian Distance (ED) 

Control Chart 

 IX chart or Hotelling’s T2 control chart 
Performance Comparison 

 False alarm rate (in phase I process) 
 Accuracy rate (in phase II process) 
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Figure 4.10 Six abnormal condensation water temperature profiles in phase II process 

(thick solid line: abnormal profiles; thin dot lines: overall 146 in-control profiles). 

 

4.4 Performance Comparison 

We use false alarm rates to evaluate the proposed framework in a phase I process, and the 

accuracy rate in a phase II process in this study. The accuracy rate can be calculated from the 

information listed in a confusion matrix as shown in Figure 4.11 that is often used in the machine 

learning field. The true positives (TP) are the number of in-control observations assigned to the 

in-control group, while the true negatives (TN) are out-of-control observations classified as the 

out-of-control group. If in-control observations are assigned to the out-of-control group, they are 

called false negatives (FN). On the other hand, when out-of-control observations are classified to 

the in-control group, they are called false positives (FP). Moreover, according Han et al. (2006), 

the accuracy rate can be defined in equation (19). The accuracy is a function of sensitivity and 

specificity defined in equations (20) and (21), respectively. Sensitivity and specificity are known 

as true positive rate and true negative rate, i.e., the proportion of positive tuples and negative 

tuples are all correctly identified. The accuracy rate is a good indicator of optimizing the 

proposed framework because it provides overall performance criteria, such as, sensitivity and 

specificity, in one value.  
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Figure 4.11 A confusion matrix for positive and negative tuples (adapted from Han et al., 

2006). 

 

ݕܿܽݎݑܿܿܽ ൌ ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ
ሺܶܲ ൅ ሻܰܨ

ሺܶܲ ൅ ܰܨ ൅ ܲܨ ൅ ܶܰሻ
൅ ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ

ሺܲܨ ൅ ܶܰሻ
ሺܶܲ ൅ ܰܨ ൅ ܲܨ ൅ ܶܰሻ

  (19) 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൌ
ܶܲ

ሺܶܲ ൅ ሻܰܨ
  (20) 

ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ ൌ
ܶܰ

ሺܲܨ ൅ ܶܰሻ
  (21) 

4.5 Analyses and Interpretations 

In this section, the performance results of the experiment expressed in above section will 

be shown and discussed. We will discuss the results in the two phases of process monitoring, i.e., 

phase I process and phase II process.  

4.5.1 Phase I Process 

In the phase I process, we examined the performance of four dimension reduction 

methods on frequency domain with and without applying a clustering method based on 146 in-

control condensation water temperature profiles collected from the hoses manufacturing process. 

The performance results of the experiment for phase I process are shown in Table 4-2 in 

ascending order of the false alarm rate. From Table 4-2, the analysis in the frequency domain 

dominates the top three spots. Specifically, the cubic B-spline method shows the lowest false 

alarm rate as well as smallest number of false alarm with and without applying clustering method 

among all dimension reduction methods. Moreover, according to the bar chart of the four 
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dimension reduction methods shown in Figure 4.12, B-spline and Euclidian distance method 

performs better (i.e. with smaller average false alarm rates) than other methods in phase I 

process. In fact, both BS and ED methods show very competitive results in frequency domain 

with or without applying the clustering method to the waveform profiles in phase I process as 

shown in Table 4-2. We examine the top three methods that result the first three lowest false 

alarm rate in phase I data, i.e., FFT+BS, FFT+PAM+BS, and FFT+PAM+ED.  Note that, the BS 

method we used in the experiment is modified from one segment method of Chang and Yadama 

(2010). Specifically, the output of the BS is calculated by sum of absolute value of deviation 

between the cubic B-spline fitting curve of the FFT-transformed profile and the mean profile of 

the cluster. The mean profile of each cluster is also generated by cubic-B-spline fitting. 

Therefore, the dimensionality of the problem is reduced from 256 to one.    

Table 4-2 Performance results of the experiment for phase I data. 

clustering  dim. Reduction # of false alarm False alarm rate 

w/o  BS  0 0.0000 

w/  BS  1 0.0068 

w/  ED  2 0.0137 

w/o  ED  5 0.0342 

w/o  DWT 11 0.0753 

w/o  PCA  16 0.1096 

w/  DWT 19 0.1301 

w/  PCA  28 0.1918 

w/: with clustering method; w/o: without clustering method; WT: 

wavelet transformation; PCA: principle component analysis; BS: cubic 

b‐spline; ED: Euclidian distance.  

 

Figure 4.13, Figure 4.14, and Figure 4.15 show the IX charts for these three methods. 

Although Figure 4.14 and Figure 4.15 shows three out-of-control points in total in the IX chart, it 

is a reasonable step to remove those out-of-control points from the IX chart during constructing 

phase I process control chart. After those three points were removed from the cluster 1 in Figure 

4.14 and Figure 4.15, the results of IX charts of cluster 1 by using FFT+PAM+BS and 

FFT+PAM+ED show that both methods are ready for phase II monitoring since no point is 

outside the control limits as shown in Figure 4.16. Note that FFT+BS in Figure 4.13 only uses 

one control chart for phase II monitoring because no clustering method is used to assigned 

profiles into homogeneous groups. 
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Figure 4.12 Bar chart of the four dimension reduction methods and their average false 

alarm rates. 

 

 

Figure 4.13 The IX chart of 146 in-control waveform profiles in phase I process using 

FFT+BS method. 
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Figure 4.14 The IX charts of 146 in-control waveform profiles in phase I process for each 

cluster using FFT+PAM+BS method. 

 

Figure 4.15 The IX charts of 146 in-control waveform profiles in phase I process for each 

cluster using FFT+PAM+ED 

 

Figure 4.16 The IX charts of Cluster 1 using FFT+PAM+BS and FFT+PAM+ED with out-

of-control points removed in constructing phase I process. 
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4.5.2 Phase II Process 

Phase II data contains 39 condensation water temperature profiles, and 6 of which are 

recognized as abnormal waveform profiles by quality engineers and our judgments as shown in 

Figure 4.10. The performance results of the experiment for phase II data are shown in Table 4-3 

in the descending order of the accuracy rate defined in equation (19). In Table 4-3, the method 

that combines the SVM classifier with RBF kernel function and Euclidian distance has the best 

performance due to its largest accuracy rate among all methods studied. Moreover, the first two 

highest accuracy rates that were applied SVM classifier with Euclidian distance dimension 

reduction method on frequency domain to the phase II data provide sensitivity rate of 1. In other 

words, they can identify all in-control profiles correctly, that is, no profile has been falsely 

detected as out of control in the phase II process using those methods. Even though the 

specificity rates that provided by SVMRBF+ED and SVMsigmoid+ED are not the highest rate, their 

overall performance scores in terms of accuracy rates are higher than the other methods.  

Although the FFT+BS shows the lowest false alarm rate in phase I process, its specificity 

rate is 0.33 and the overall performance in terms of accuracy rate is 0.87, which is ranked in the 

6th place. In other words, the proposed SPC implementation framework that applies FFT and 

clustering/classification to the waveform profile analysis can not only provide a solid phase I 

process control chart but also construct competitive phase II process control chart than other 

methods examined in this study. Therefore, based on the sensitivity rate of 1, specificity rate of 

0.83, and the overall performance in terms of accuracy rate of 0.97, we recommend the 

combination of the FFT, the clustering (PAM)/classification (SVM with RBF kernel function) 

method, and the dimension reduction approach (ED).   
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Table 4-3 Performance results of the experiment for phase II data 

Classifier  Dim. Reduct.  kernel  TP  TN  FP  FN  Sensitivity  Specificity  Accuracy 

w/  ED  RBF  33  5  1  0  1.0000  0.8333  0.9744 

w/  ED  sigmoid  33  4  2  0  1.0000  0.6667  0.9487 

w/o  WT  NaN  31  5  1  2  0.9394  0.8333  0.9231 

w/  PCA  RBF  30  5  1  3  0.9091  0.8333  0.8974 

w/  PCA  sigmoid  30  5  1  3  0.9091  0.8333  0.8974 

w/  ED  linear  33  2  4  0  1.0000  0.3333  0.8974 

w/o  BS  NaN  32  2  4  1  0.9697  0.3333  0.8718 

w/  PCA  linear  30  3  3  3  0.9091  0.5000  0.8462 

w/  PCA  poly  30  3  3  3  0.9091  0.5000  0.8462 

w/o  PCA  NaN  32  1  5  1  0.9697  0.1667  0.8462 

w/o  ED  NaN  33  0  6  0  1.0000  0.0000  0.8462 

w/  BS  linear  26  6  0  7  0.7879  1.0000  0.8205 

w/  BS  RBF  26  6  0  7  0.7879  1.0000  0.8205 

w/  BS  sigmoid  26  6  0  7  0.7879  1.0000  0.8205 

w/  BS  poly  24  6  0  9  0.7273  1.0000  0.7692 

w/  ED  poly  25  5  1  8  0.7576  0.8333  0.7692 

w/  WT  poly  24  1  5  9  0.7273  0.1667  0.6410 

w/  WT  RBF  23  1  5  10  0.6970  0.1667  0.6154 

w/  WT  sigmoid  23  1  5  10  0.6970  0.1667  0.6154 

w/  WT  linear  23  0  6  10  0.6970  0.0000  0.5897 

w/: with clustering method; w/o: without clustering method; WT: wavelet transformation; PCA: principle 

component analysis; BS: cubic b‐spline; ED: Euclidian distance; linear: linear kernel function; RBF: RBF kernel 

function; poly: Polynomial kernel function; sigmoid: sigmoid kernel function.  

4.6 Conclusions and Recommendations 

Profile monitoring using SPC has been studied in manufacturing process in recent years. 

Many researches provided successful approaches in their problem domain. However, no study 

has been found in the monitoring of process stability when the profile shape is a waveform 

without a gold standard. Since waveform profiles generated from a manufacturing process may 

consist of various magnitudes and frequencies, the process monitoring problem becomes more 

challenging due to the homogeneity issue. In this study, we propose a SPC implementation 

framework that consists of FFT and the clustering/classification method as well as the dimension 

reduction approach to monitor waveform profiles. The proposed framework is capable of 

identifying abnormal wave profiles with minimal false alarms based on both phase I and phase II 

data sets. 
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We compared the proposed method to a few widely used dimension reduction techniques 

in profile analysis, such as, wavelet transformation, principle component analysis, and B-spline 

transformation. We also considered applying clustering/classification method on frequency 

domain. The phase I and phase II datasets in the experiment are from the condensation water 

temperature profiles that collected from the curing process of the high-pressure hoses. According 

to Table 4-2, the proposed framework in phase I (FFT+PAM+ED) constructs a solid phase I 

process control chart with competitive performance in terms of false alarm rates after removing 

abnormal data points. In addition, as shown in Table 4-3, the proposed framework in phase II 

(FFT+PAM+SVMRBF+ED) dominates other famous profile analysis techniques with respect to 

the accuracy rate. In summary, we recommend the use of FFT+PAM+ED in constructing phase I 

process, and FFT+SVMRBF+ED in phase II.  

Although the proposed method provides robust results than the other profile analysis 

techniques in this problem domain, we are interested in online monitoring of these condensation 

water temperature profiles because operators can examine the condensation water valve during 

the process rather than wait until the entire process is finished.    
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Abstract 

Most state-of-the-art profile monitoring methods involve studies of one profile. However, 

a process may contain several sensors or probes that generate multiple profiles over time. Quality 

characteristics presented in multiple profiles may be related multiple aspects of product or 

process quality. Existing charting methods for simultaneous monitoring of each multiple profile 

may result in higher false alarm rates. Or worse, they cannot correctly detect potential profile 

relationship changes. In this study, we propose two approaches to detect process shifts in 

multiple nonlinear profiles. A simulation study was conducted to evaluate the performance of the 

proposed approaches in terms of average run length under different process shift scenarios. Pros 

and cons of the proposed methods are discussed. A guideline for choosing the proposed methods 

is introduced. In addition, a hybrid method combining the salient points of both approaches is 

explored. Finally, a real-world data set from a vulcanization process is used to demonstrate the 

implementation of the proposed methods. 
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5.1 Introduction 

Quality characteristics represented as profiles have been studied in recent quality 

monitoring literature in recent years. For examples, Jin and Shi (1999) examined the stamping 

tonnage data over time within a cycle. Kang and Albin (2000) introduced a calibration issue 

during the etch step of a semiconductor manufacturing process. Walker and Wright (2002) 

studied the density of wood board over a section. Chang and Gan (2006) showed the monitoring 

stability of a calibration process in order to assure its accuracy. Paynabar and Jin (2011) 

presented pressing force profile signals in a valve seat assembly operation.  Chang et al. (2012) 

investigated the temperature profile from a curing process for high-pressure hose products. These 

studies only consider one profile type in their respective applications.  

Taking the advantage of information technology, engineers no longer measure the quality 

characteristics by hands but through automatic data sensors. This paradigm shift has resulted in a 

tremendous amount of data. For example, Jin and Shi (1999) reported that one tonnage sensor 

within a sampling interval could collect 1500 data points for each part, and the database would 

store 2.88×106 data points for 30 presses in 16 hours of production. Although modern database 

management systems can handle and store those huge datasets, it is very difficult for 

conventional multivariate statistical process control techniques, such as, Multivariate Hotelling’s 

T2 control chart, to deal with big data and multiple types of profiles simultaneously.  

Profile analysis can be simply characterized into two categories, linear and nonlinear 

profiles according to the shape complexity of a profile of interest. With respect to linear profile 

applications, model parameters are the subjects of monitoring because linear profiles are easy to 

be presented by, for example, a simple linear regression model. Many studies monitored either 

intercept or slope parameter of the calculated simple linear regression model or monitoring both. 

For example, Kang and Albin (2000) proposed two approaches, the first one monitored slope and 

intercept with the Hotelling’s T2 control chart, while the second one monitored average residuals 

between sample profiles and reference profile followed by exponentially weighted moving 

average (EWMA) chart and R chart.  Kim et al. (2003) showed their method of three univariate 
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EWMA charts monitoring slope, intercept, and the variance of deviation between samples and 

regression line performs better than EWMA/R chart in terms of average run length (ARL).  

Studies in nonlinear profile analysis can be categorized into four types— applying 

multiple and polynomial regression (Zou et al., 2007; Kazemzadeh et al. 2008; Mahmoud 2008), 

applying nonlinear regression models (Ding et al., 2006; Williams et al., 2007; Shiau et al., 2009; 

Chang and Yadama 2010; Chen and Nembhard 2011;), use of mixed models (Jensen et al., 2008; 

Jensen and Birch, 2009; Qiu et al., 2010; Paynabar and Jin, 2011 ), and use of wavelets (Reis and 

Saraiva, 2006; Zhou et al., 2007; Chicken et al., 2009).  For more detail of those methods to 

monitor the process stability can be found in Woodall (2007) and Noorossana et al. (2011). 

The studies mentioned above only consider one profile type for process monitoring. 

However, data points that collected in a process or system may be characterized by two or more 

profiles. Noorossana et al. (2010) investigated a calibration application between desired force 

and the real force produced by 1600-ton hydraulic press machine. The machine consists of a set 

of cylinders, pistons and hydraulic pipe controlled by a programmable logic controller (PLC) for 

input and output factors adjustment. The input variable known as the desired force or nominal 

force is given by a motor placed on the top of machine so that four real forces or the response 

variables collected from four cylinders of the press can be measured by a PLC. Since four 

response variables can be considered as correlated linear profiles, Noorossana et al. (2010) 

proposed a multivariate simple linear profile method to deal with this problem. Specifically, all 

linear profiles are of the same type but for each press cylinder. Their method cannot monitor 

multiple correlated nonlinear profiles of different types that measure different process 

characteristics.  

An example of multiple correlated nonlinear profiles can be found in a curing process of 

high-pressure hose products. According to Chang et al.’s (2012) study, the high-pressure hose 

products are covered layers of rubber and metal wires, which are loaded and cured in a heated 

chamber called an autoclave or vulcanizer, equipped with several sensors in different locations 

for monitoring air temperature, condensation water temperature, and chamber pressure. Although 

the key factor of curing process is the air temperature, the other profiles, such as, chamber 

pressure profiles, monitored simultaneously also play important roles in the curing process. Note 

that, high chamber pressure will increase the speed of reaching target air temperature. Also, a 

sealed chamber helps air temperature climb quickly and stably to the setup temperature point. On 
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the other hand, a leaking vulcanizer requires more energy consumption to maintain the same 

temperature during the curing stage. Therefore, it is easier for quality engineers to monitor the 

pressure profile using statistical process control (SPC) tool for saving energy.  

Chang et al. (2012) only investigated the air temperature profile of the curing process. 

When this process is out of control, it is very difficult for quality engineers to pinpoint the root 

cause. It is possible that the chamber is not airtight but both temperature and pressure maintain 

their target values. However, the relationship between the temperature and pressure profiles may 

have changed. In this study, both air temperature and pressure profiles are considered 

simultaneously. This example provides an illustration of how the proposed framework addresses 

multiple profile process monitoring in general. This paradigm motivates us to develop a novel 

approach for simultaneous monitoring of multiple correlated nonlinear profiles. A two-profile 

simulation study is conducted to evaluate the performance of the proposed charting methods. 

Figure 5.1 shows overall air temperature and pressure profiles that generated from a 

typical curing process. It may be possible to construct an underlining physics equation between 

the air temperature and pressure so that the quality characteristics can then be transformed from 

profiles to parameters as variables used in multivariate control chart. However, this underlining 

equation is not easy to be formulated, and it cannot be generalized for all applications. In other 

words, this equation (if it can be formulated) can only be used in this curing process application. 

In addition, according to Figure 5.1, it is obvious that the temperature and pressure profile are 

correlated, and yet, it is hard to define such a correlation between profiles in general. Although 

monitoring those profile types using multiple multivariate control charts independently provides 

a solution, high false alarm rate and low detecting power is the major concern given that profiles 

are correlated to each other. This study provides a general SPC framework for multiple 

correlated linear or nonlinear profiles.   

The focus of this study is the development of a proper process monitoring strategy for 

monitoring multiple correlated nonlinear profiles. This study examines two alternative solutions, 

in which profiles are first fitted by B-splines according to Chang and Yadama’s method (2010). 

Then the deviations of the observed profile from the fitted profile are recorded to generate a 

vector of plotting statistics. A multivariate EWMA (MEWMA) control chart is then used for 

process monitoring. The first proposed method converts absolute deviations at each profile into a 

summary statistic. The second proposed method contains several numbers for each profile 
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because a profile is segmented into p sections where p>1, where p is a constant to be determined 

from engineering knowledge or the complexity of a profile. Each section is represented by a 

summary absolute deviation statistic. A two-profile simulation study is conducted to characterize 

property of the proposed approaches in terms of ARL. We will also discuss the pros and cons of 

both approaches, and how we combine the salient features of both methods into a hybrid 

approach. The proposed hybrid method combines method I and method II, which monitors each 

section or segment by a MEWMA control chart.  Multiple (p) MEWMA charts need to be 

maintained for the proposed hybrid method. A real-world data set from a curing process is used 

to demonstrate the implementation of the proposed methods. 

The organization of this study is the following. First, the modified Chang and Yadama’s 

(2010) method is briefly summarized, as well as the MEWMA procedure, followed by the 

proposed methods. Second, the experimental design of the simulation is introduced for testing 

the robustness of the proposed methods. Third, the ARL property for all proposed methods is 

introduced. Finally, the discussion and conclusion will be drawn in this section.  

Figure 5.1 Overall air temperature and pressure profiles from the curing process of high-pressure 

hose products. 
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5.2 The Proposed Methods 

In this study, two methods, method I and method II, are proposed to monitor the stability 

of the process whose quality characteristics are multiple profiles. Both methods consist of one 

multivariate control chart for all profiles and share the common modelling treatment, i.e., the 

modified Chang and Yadama’s method (see Chang and Yadama’s, 2010). Therefore, this section 

summarizes the original Chang and Yadama’s method followed by the modified version. Then, 

the MEWMA procedure is presented. Finally, the proposed method I and II are shown in the last 

part of this section.   

5.2.1 Modified Chang and Yadama’s Method  

Chang and Yadama (2010) proposed a control charting framework to monitor non-linear 

profiles in detecting shape changes. They proposed single segment and multiple segments 

approach for monitoring one profile. We will only introduce their multiple segments approach in 

this study because this approach provides more details of fault location for diagnosis purposes. 

The procedure of their proposed multiple segments approach is shown in Figure 5.2. Note that 

 ഥ݆݇ is the mean profile of segment k that canݔ in Step 5 can be presented as equation (1) where ݆݅ܦ

be calculated by using B-spline fitting. Moreover, the MTY decomposition method shown in 

Step 7 can be found in Mason, Tracy, and Young’s (2001) study for interpreting T2 control chart 

signals. 

  ݆݅ܦ ൌ
∑ ห݆݇݅ݔ െ ഥ݆݇หܿݔ
݇ൌ1

ܿ
, ݅ ൌ 1,2,… , ݊; ݆ ൌ 1,2,… ,  ,݌ (1) 

where |·| represents absolute value; n is the number of profiles and i is the index of profile; p is 

the number of segments of a profile and j is index of the segment; c is the number of control 

points within each segment so that a B-spline can be fit to each segment, and k is the index of 

control point. All numbers of n, p and c are known or well defined according to the 

manufacturing process and the complexity of a profile. The default c is equal to 16 according to 

Chang and Yadama’s study (2010). 
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Figure 5.2 Procedure of Chang and Yadama’s Method. 

Procedure of Chang and Yadama’s Method
Step 1: Apply Discrete Wavelet Transformation (DWT) to the given profile to the 

desired level, so that the DWT coefficients can be obtained. 
Step 2: Reconstruct the DWT coefficients to original domain in two sets, signal of 

mean and signal of variance.  
Step 3: Partition the mean signal into p segments.  
Step 4: Apply B‐spline with c control points to each segment, so that a control point 

matrix of order n×cp is constructed, where n is the profile replicates. 
Step 5: The mean distance difference vector  ௜ܻ ൌ ሾܦ௜ଵ, ,௜ଶܦ … ,  ௜௣ሿ is calculated, inܦ

which is associated with the control point matrix.  
Step 6: To monitor the profile stability, the Hotelling’s T2 statistics on Yi are 

calculated using the mean distance difference vectors.  
Step 7: If process is in‐control, go to Step 5; otherwise the MTY decomposition 

method is used for identifying the responsible T2 components.   

 

For the curing example in this study, since the curing process is control by the PLC, the 

within profile variance is very small. In other words, noises in each profile are very small. 

Therefore, we do not consider the use of the discrete wavelet transformation (or DWT) method 

for modeling the variance profiles as originally proposed in steps 1 and 2 in Chang and Yadama 

(2010). Moreover, according to Chang and Chou’s (2009) study, the B-spline fitting is sufficient 

without applying the DWT to the Chang and Yadama’s method when the monitoring of the 

profile shape change is the only consideration. Therefore, the B-spline fitting technique is 

applied to construct the proposed control charts. In addition to these changes, a MEWMA control 

chart is selected to be the charting tool due to its sensitivity and flexibility. In addition, the MTY 

decomposition method can be replaced by Chang and Chou’s (2010) marginal cumulative sum 

(or CUSUM) glyphs because of its benefits of visualization and capability of dealing with high 

dimensional dataset of up to 20. The procedure of modified Chang and Yadama’s method is 

shown in Figure 5.3. The MEWMA control chart is introduced in the next section.  

Figure 5.3 Procedure of Modified Chang and Yadama’s Method 

Procedure of the Modified Chang and Yadama’s Method
Step 1: Partition the mean signal into p segments.  
Step 2: Apply B‐spline with c control points to each segment, so that a 

control point matrix of order n×cp is constructed, where n is the 
number of profiles. 

Step 3: The mean distance difference vector  ௜ܻ ൌ ሾܦ௜ଵ, ,௜ଶܦ … ,  ௜௣ሿ isܦ
calculated, in which is associated with the control point matrix.  

Step 4 To monitor the profile stability, the MEWMA statistics are calculated 
using the mean distance difference vectors.  

Step 5: If process is in‐control, go to Step 3; otherwise marginal CUSUM 
glyphs method is used for identifying the responsible T2 
components.   
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5.2.2 Multivariate EWMA Control Chart 

The charting technique based on MEWMA is introduced in this section. The MEWMA 

was first developed by Lowry et al. (1992). It is the extension version of the EWMA for solving 

multivariate quality control problem. The procedure of MEWMA is presented as follows. The 

MEWMA statistics T2 of the ith observation is shown in equation (2), where Zi is the extension 

form of univariate EWMA as shown in equation (3). Note that 0 ൑ ߣ ൑ 1  and Z0=0. The 

selection of chart parameters, ߣ  and H, can be found in Prabhu and Runger’s (1997). The 

variance-covariance matrix of Z’s, Σܼ݅ , can be calculated using equation (4), where Σ  is a 

variance-covariance matrix, which is either known or can be estimated from a phase I control 

charting procedure with m individual observations according to equations (5), (6), and (7). 

Moreover, Σ, shown in the equation (5) performs better than that of using the conventional 

approach if there was no trend, cycle, etc., in the process. If the process was totally random, the 

variance-covariance structure determined by equation (5) and the conventional approach would 

have no difference (Holmes and Mergen, 1993).  

  ܶ݅
2 ൌ ܼ݅

′
Σܼ݅
െ1ܼ݅  (2) 

  Zi=ߣ(xi)+(1-ߣ)Zi-1 (3) 

  Σܼ݅ ൌ
ߣ

2 െ ߣ
ൣ1 െ ሺ1 െ  ሻ2݅൧Σߣ (4) 

  Σ ൌ
ܸᇱܸ

2ሺ݉ െ 1ሻ
  (5) 

  ܸ ൌ ሾݒଵ
ᇱ ݒ ⋯ ௠ିଵݒ

ᇱ ሿ′  (6) 

  ݅ݒ ൌ ൅1݅ݔ െ  ݅ݔ (7) 

 

Method I: One Chart for All Profiles and One Segment per Profile 

The first method proposed in this study is straightforward. We first apply the Step 1 to 

Step 5 of the modified Chang and Yadama’s method in Figure 3 with one segment to each 

profile so that multiple profiles become a vector with each element representing one profile. As 

shown in equation (8), given a set of profiles, Xi is the ith observation and m is the number of 

types of profile and Dj can be calculated by using equation (1) with the number of segment of 1. 

For example, if the number of multiple profiles is two types with 512 data points in a profile, 
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such as, temperature and pressure profiles of curing process of high-pressure hose products in 

this study, the number of types of profile m is equal to two. Therefore, the Xi is transformed from 

a matrix of size 2×512 into a 2×1 matrix. After Step 1 to Step 5 in Figure 3 is applied, the input 

variables expressed as equation (8) will be input into the MEWMA. Then a process will be 

stopped if any out-of-control signal takes place.  

 
ܺ݅ ൌ 2ܦ	1ܦൣ ൧݆݅ܦ…

′
,  

where i is the index of observations and j=1,2,…,m 
(8) 

Method II: One Chart for All Profiles and Multiple Segments per Profile	

The second approach in this study is similar to the method I except that the number of 

segments of each type of profile p is greater than 1. The number of segments p is defined by 

users’ pre-knowledge about the process of interest. In our real world case, the curing process of 

high-pressure hose product, and the p is equal to three because the quality engineers in the PH 

cooperate specified the process consists of three stages. Users can also segment the profile based 

on the section of interests. The choice of p is a balance of diagnostic need and computational 

resources. Once the number of the segments is determined by quality engineers, the procedure of 

the method II and method I are identical. The input variables are specified in equation (9), where 

Xi represents the ith observation, k is the index of segment, and j is the index of profile. The 

advantage of using segmentation is that the quality engineers can gain more details of fault 

locations when a diagnosis is needed. In other words, the segmentation method is sensitive to 

partial profile shape changes. The main drawback of method II is that the type I error of the 

MEWMA will increase when the number of segments increases. For example, if the process 

consists of 5 profiles with 4 segments each, the vector Xi will contain 20 elements while the one 

segment approach only has 5 elements in the vector.  

 
 ܺ݅ ൌ …,12ܦ,11ܦൣ ൧݆݅݇ܦ,

′
  

where k=1,2,…,p; j=1,2,…,m; i is the index of observations. 
(9) 

5.3 A Simulation Study	

In order to study the performance of the proposed methods, all charts are established with 

in-control ARL approximately 200, denoted by ARL0=200. Moreover, the out-of-control ARL is 

denoted by ARL1 in the simulation study. ARL1 is used to evaluate the charting performance of 
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the proposed approaches at the same false alarm rate. The simulation study conducts two 

correlated four-parameter logistic curves.  The curve equation is adapted from Jensen and Birch 

(2009). They used this curve in their simulation study for generating ARL property and then 

applied this property to the real world case. Note that, their study only consider one type of 

profile. In this study, the curve equation will be extended to multiple profiles case. Specifically, 

in each sample, two correlated profiles are studied simultaneously. Equation (10) shows the 

operated function in this simulation study. Note that the coefficients in the equation (10), A=5, 

B=8, C=0.6, and D=0, are as same as the setup in Jensen and Birch’s (2009) study. Further, to 

simulate the correlated multiple non-linear profiles, it is assumed that the parameters between 

profiles are generated from independently and identically multivariate normal distribution from 

one observation to another. If the parameters a and b are said to be generated from independently 

and identically multivariate normal distribution with mean vector µ and variance-covariance 

matrix Σ, it is denoted as (a,b)'~NM(µ, Σ)'. The equation of simulated multiple correlated non-

linear profiles is shown in equation (11) of which coefficients follow the following distribution: 

(a0i, b0i)'～MN(µ0, Σ0)', (a1i, b1i)'～MN(µ1, Σ1)', and (e1i, e1i)'～MN(µe, Σe)'. Specific setup for the 

parameters of multivariate normal distribution is given in equation (12). Note that equation (10) 

determines the shape of two multiple correlated profiles in the simulation study. Following the 

profile property of the high-pressure hose products in the curing example, in which the noises 

within each profile are very small, and the variance-covariance matrix of error terms in equation 

(11) is denoted as Σe specified by equation (12). An example of 25-pair in-control multiple 

correlated nonlinear profiles generated by equation (11) is shown in Figure 5.4.  

  ݆݅ݕ ൌ ܣ ൅ ܣെܦ

1൅൬
݆݅ݔ
݅ܥ
൰
݅ܤ
	

൅ ݆߳݅  for ݅ ൌ 1,2,3,… ,݉; ݆ ൌ 1,2,3, … , ݊௜  (10) 

  ൝
݂݆݅ ൌ ܽ0݅ ൅ ݆݅ݕ1݅ܽ ൅ ݁1݅
݆݃݅ ൌ ܾ0݅ ൅ ݆݅ݕ1ܾ݅ ൅ ݁2݅

  (11) 

 

0ߤ ൌ ሺ10,െ5ሻ′, 1ߤ ൌ ሺ10, 3ሻ′, Σ0 ൌ ൬
1 ߩ
ߩ 1൰ , Σ1 ൌ ቆ

0.12 ߩ0.01
ߩ0.01 0.12

ቇ,	and 

݁ߤ ൌ ሺ0,0ሻ′, Σ݁ ൌ ቆ
0.12 ߩ0.01
ߩ0.01 0.12

ቇ where ߩ is correlation parameter. 

(12) 
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Figure 5.4 An example of 25-pair in-control profiles. 

 

5.4 Experimental Design 

To test the robustness of the proposed methods, profiles shifted in shape is considered in 

this simulation study with various testing factors. Figure 5.5 shows the experimental design of 

the simulation study. In this research, only shape changes are considered due to the shape change 

could be caused by a number of factor combinations. Given two types of profiles, Profile A and 

Profile B, possible factor combinations include two categories and five scenarios for the profile 

shapes changes are given according the scheme in Figure 5.5 for the simulation study.  

In addition to shifted types, correlations between profiles and shift sizes are also 

considered in this simulation study. For the factor of correlation between profiles, there are three 

attributes to be tested, i.e., low (ρ=0.3), moderate (ρ=0.5), and high correlated (ρ=0.9). As for 

shift sizes, three magnitudes: small, medium, and large shift, are considered in this simulation 
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study. The in-control ARL is fixed at approximately 200 for method I and method II. Therefore, 

there are total 45 cases to be tested for the proposed methods.  Detailed parameter settings for the 

simulation study are discussed as follows: 

Figure 5.5 Design of experiment of simulation study 

Methods:  

– Method I and II. 
Shifted Types: 

– Only one type of profiles changed: 
 Entire profile changed: only profile A changed (Scenario 1). 
 Partial profile changed: only profile B changed (Scenario 2). 

– Both type of profiles changed: 
 Entire profile changed: both profile A and profile B changed 

(Scenario 3). 
 Partial profile changed: both profile A and profile B changed 

(Scenario 4). 
 Mixture changed: entire profile changed on profile A and 

partial profile changed on profile B (Scenario 5). 
Correlation between profiles: 

 and 0.9 ,0.5 ,0.3=ߩ –
Shift size: 

– Small, Medium, and Large shift 
Performance: 

– Average Run Length with in-control ARL of approximately 200.  

5.4.1 Only the shape of either profile A or B is shifted 

Scenario 1: The shape of profile A shifts entirely and the shape of profile B unchanged  

In this scenario, the shape of profile A is vertically shifted away from the reference 

profile. With respect to the real world case, the curing process for high-pressure hose products, it 

is possible that the temperature profiles are shifted and go above the reference profile if the PLC 

or a thermocouple malfunctions, but the chamber is still airtight so that the pressure profiles are 

in control. This scenario may result in defective hose products due to overheating in the chamber. 

In this simulation study, we consider whether the shape of profile A is shifted entirely and go 

above the reference profile or not. Note that coefficient a0 in equation (11) controls the vertical 

magnitudes change of profile A. Small shift is defined as the magnitude of a0 from 10 to 12; 

medium shift is magnitude of a0 from 10 to 14; and the large shift scenario is magnitude of a0 

from 10 to 16. Figure 5.6 (a) shows the profiles in scenario 1 where the shape of profile A 

exhibits a large shift. Twenty-five in-control profiles and another 25 shifted profiles with 

correlation 0.5=ߩ are superimposed on top of each other.  
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Scenario 2: The shape of profile B shifts partially and the shape of profile A unchanged 

In this scenario, we alter b1 in equation (11) to change the partial shape of profile B. 

Scenario 2 examines whether the proposed method is capable of detecting a leaking chamber 

during the operation process. As described in scenario 1, scenario 2 also considers three different 

correlations between profiles. Figure 5.6 (b) shows the graphics of scenario 2 profiles with large 

shift magnitudes along with 0.5=ߩ. From Figure 5.6 (b), profile B changes at the middle of the 

profile. The magnitude of small shift in the simulation model is b1 changed from 3 to 3.5. For 

medium shift, b1 is changed from 3 to 4, while b1 changed from 3 to 4.5 represents large shift in 

this simulation study.  

 5.4.2 Shapes of both profiles are shifted 

Scenario 3: Shapes of both profiles A and B are shifted entirely 

This scenario simulates the case both shapes of profiles A and B are changed entirely. 

Since the parameters a0 and b0 control vertical shifts in equation (11), a0 is altered to change the 

shape of profile A higher than the reference profile, and b0 is manipulated to make the entire 

profile B shift below the reference profile. The setting of correlations for scenario 3 is the same 

as that in the scenario 1 and 2, but the magnitudes of shift sizes are different from the former 

settings and given as follows: (1) small shift: a0 shifted from 10 to 12 and b0 shifted from -5 to -

3; (2) medium shift: a0 shifted from 10 to 14 and b0 shifted from -5 to -1; and (3) large shift: a0 

shifted from 10 to 16 and b0 shifted from -5 to 1. The superimposed profiles A and B with large 

shifted for scenario 3 is shown in Figure 5.6 6 (c). Scenario 3 intends to simulate the case where 

both temperature and pressure profiles are changed, especially when malfunctions take place in 

both thermocouples and pressure sensors or the door of vulcanizer is not sealed.   

Scenario 4: Shapes of both profiles A and B are partially changed  

Scenario 4 examines the case when shapes of both profiles are partially changed. In this 

case, profiles A and B are all in control before the middle point of the process, but both profile A 

and profile B are shifted after the middle point. Figure 5.6 6 (d) shows the overall profiles of A 

and B including shifted profiles with large shifted magnitude. The shift size in this scenario is as 

the follows: (1) small magnitude size of shift is simulated by altering a1 from 10 to 10.5 and b1 

from 3 to 3.5; (2) medium shift is generated by changing a1 from 10 to 11 and b1 from 3 to 4; (3) 
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large shift is created by changing the parameters a1 and b1 from 10 to 11.5 and 3 to 4.5, 

respectively. The correlations setting for each profiles in this scenario is the same as scenario 1 

as well.   

Scenario 5: Shape of profile A is shifted entirely and the shape of profile B is shifted partially 

The parameter settings for the profiles in scenario 5 are given as following: (1) small 

shift: a0 shifted from 10 to 12 and b1 shifted from 3 to 3.5; (2) medium shift: a0 shifted from 10 

to 14 and b1 shifted from 3 to 4; (3) large shift: a0 shifted from 10 to 16 and b1 shifted from 3 to 

4.5. Specifically, we examine if the proposed method is capable of detecting changes when the 

shape of temperature profile A is shifted entirely but the pressure profile B is changed after half 

of the process. Figure 5.6 (e) shows the superimposed profile A and profile B with large shift 

magnitude. 

Figure 5.6 Scenarios of simulation study, (a) entire Profile A shifted only; (b) partial Profile B 
shifted only; (c) both Profile A and Profile B shifted entirely; (d) both Profile A and Profile B 
changed partially; (e) entire Profile A changed and partial Profile B changed. 
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5.5 Simulation Results and Discussion 

Simulations according to the scenarios 1 to 5 described in the previous section are 

conducted. The property of method I and method II is characterized by both in-control and out-

of-control ARL values. We fixed the in-control ARL0=200 for both methods. The out-of-control 

ARL, denoted by ARL1, is the smaller the better. The smallest ARL1 of both methods for all 

scenarios are shown in Table 5-1, which can also be used for MEWMA design since  ߣ and H are 

readily available. In Table 5-1, the values of ARL1 of both methods are close to each other when 

the correlation coefficient, ߩ , is low or moderate. However, once ߩ  is high, the ARL1 is 

dramatically decreased in all scenarios. For example, the ARL1 for the case of small shift of 

scenario 2 is 36.349 when ρ=0.3, but it decreases to 19.901 when ρ=0.9. This crucial result 

confirms the research hypothesis that highly correlated profiles enhance detection power.  This 

result also justifies the merit of the use of multivariate control charts to monitor all profiles 

simultaneously rather than monitoring one profile at a time.  

Table 5-1 The smallest ARL1 method I method II under different correlation structures in all 

scenarios. 

  ρ=0.3 ρ=0.5 ρ=0.9 

Method I Method II Method I Method II Method I Method II 

Scenario Shift Size 
 0.1=ߣ

H=14.03 
 0.1=ߣ

H=25.90 
 0.1=ߣ

H=14.49 
 0.1=ߣ

H=28.28 
 0.1=ߣ

H=14.49 
 0.1=ߣ

H=33.01 
1 Small 2.981 3.994 2.922 4.140 1.695 2.103 

Medium 1.480 1.827 1.468 1.873 1.205 1.259 
Large 1.101 1.233 1.107 1.253 1.061 1.081 

2 Small 36.349 2.477 37.816 2.562 19.901 1.706 
Medium 18.203 1.480 18.407 1.555 9.160 1.069 
Large 10.474 1.136 10.470 1.171 5.333 1.018 

3 Small 1.753 2.369 1.753 2.604 1.513 1.914 
Medium 1.070 1.195 1.055 1.244 1.006 1.260 
Large 1.001 1.006 1.000 1.006 1.000 1.001 

4 Small 18.390 1.385 20.123 1.552 25.526 2.181 
Medium 9.389 1.054 10.341 1.131 13.240 1.471 
Large 5.696 1.003 6.339 1.015 8.163 1.173 

5 Small 2.907 1.730 2.968 1.791 2.048 1.151 
Medium 1.476 1.101 1.497 1.120 1.208 1.039 
Large 1.103 1.004 1.110 1.006 1.044 1.006 

 

Moreover, method I performs better (i.e. smaller ARL1 values) in scenario 1 and scenario 

3 comparing to method II, while the method II has lower ARL1 in scenario 2, 4 and 5 than 

method I. In summary, when the shape of a profile change entirely, such as, scenario 1 and 3, 

method I is recommended.  Otherwise, method II is recommended for the other cases, such as, 
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scenarios 2, 4, and 5, where profiles shift partially. In practice, one may not know whether a 

profile may shift entirely or partially. It is up to the quality engineers to collect process data and 

identify the majority of the scenarios during a phase I study. Details of the proposed methods 

property, ARL0 and ARL1, for all five scenarios in the simulation study are shown in Table 

A5.1and Table A5.2 in the Appendix.  

We suggest the following strategy for users to implement the proposed methods. First, 

users should determine whether segmentations of profiles are appropriate or not. Second, they 

should also examine whether a linear model or nonlinear model can be used to fit the entire 

profile or a segment of a profile. For example, the shape of temperature profiles in the curing 

process consists of three stages the heat-up stage, the curing stage and the cool-down stage. If 

users need to know at what stage a profile may be out of control, then profiles need to be divided 

into three segments. A linear model is adequate for the curing stage since the profile shape in this 

stage is a straight line. However, nonlinear models are needed to fit the warm-up stage and the 

cool-down stage. If users are confident in their process is stable and they only intent to know 

whether the process is in-control or not, method I is capable of fulfilling this need with its 

simplicity. Nonlinear models should be used to fit the entire temperature and pressure profiles. 

If the number of segments times the number of profile types is larger than 10, the conventional 

multivariate control chart may lose its effectiveness (Montgomery, 2009) such that the proposed 

methods work worse than the nominal performance. To deal with this issue, users can combine 

method I and method II together. In other words, users can apply the hybrid method to separate 

process monitoring into stages if the process stages are well defined. Each stage can be treated as 

one complete profile period and method I can be applied to each stage. For instance, if the 

process can be divided into three segments, users can construct three multivariate control charts 

for the process. Note that each multivariate control chart is associated to each stage. The 

advantage of this method is that users can monitor the process and diagnose a potential problem 

at the end of a stage instead of the end of a process. This hybrid method maintains the 

effectiveness of the multivariate control chart.  

In summary, the charting frameworks of method I, method II, and the hybrid method are 

summarized here for any general multiple profiles problem with p profiles and m segments.  We 

assume that all profiles can be segmented at the same locations. For method I, one MEWMA 

chart is maintained with the plotting statistics of a p × 1 vector. Each element of this vector 



81 

 

represents an average sum of deviations of a profile from its nominal profile. Method II also 

maintains one MEWMA chart but with the plotting statistics of a mp × 1vector. Each element of 

this vector is the average sum of deviation of a segment instead of a profile. Finally, the hybrid 

method maintains m EWMA charts with the plotting statistics of a p × 1vector. Each element of 

this vector is the average sum of deviation of a segment. All segments are from their respective 

profiles. Each MEWMA is used during a particular segment only. 

5.6 A Case Study: a Curing Process of High-Pressure Hose Products 

In this section, the proposed charting framework for monitoring multiple nonlinear 

correlated profiles is applied to a curing process that consists of temperature and pressure 

profiles for high-pressure hose products. PH Corporation seeking opportunities for improvement 

provides 154 air temperature and pressure profiles of phase I data. All 154 profiles are 

superimposed in Figure 5.1. Also, based on the PLC setting for temperature, each profile was 

divided into three segments, the heat-up stage, curing stage, and cool-down stage. Therefore, p=3 

is given for method II in the process. Since two kinds of profiles are involved, m=2 in equation 

(9). 

Those 154 profiles are prepared for phase I control charting. In Figure 5.1, it is easy to 

visually identify some out-of-control profiles due to their shapes are significantly different from 

the major group. Figure 5.7 shows all abnormal profiles, characterized by solid lines, as well as 

in-control profiles, shown in shadow. Note that the abnormal profiles are excluded from the 

phase I control charting. Figure 5.8 shows the MEWMA control charts on the cleaned data set 

using (a) method I and (b) method II. From these figures, we observe that all data points are in 

control with its associated control limit H. Therefore, the control limit H, mean vector, and 

variance-covariance matrix generated from method I and method II are used in phase II process 

for further process monitoring.   

The issue of losing effectiveness using the multivariate control chart caused by the 

number of input variables larger than 10 may happen when the number of segments and number 

of profile types are large. To deal with this problem, the hybrid method is used to constructs 

three MEWMA charts for heat-up, curing, and cool-down stage, respectively.  Figure 5.9 shows 

the phase I MEWMA control charts for these three stages using the hybrid methods. Note that, 

since the number of profile types in each control chart is two, users can use the same control 
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limit H as in method I, i.e., H=14.03. By using this hybrid method, users can not only diagnose 

which stage is responsible for the out-of-control signal, but also examine the stability at the end 

of the stage instead of at end of the entire process. For example, if the MEWMA control chart in 

the heat-up stage signal for out-of-control, operators can determine to stop the curing process or 

not, and start to diagnose potential causes at the end of that heat-up stage rather than at the end of 

the curing process. Early detection of process faults provides energy savings and assures product 

quality. 

Figure 5.7 Abnormal (a) temperature profiles and (b) pressure profiles superimposed on in-

control profiles. 
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Figure 5.8 The phase I process MEWMA control charts of curing process of high-pressure hose 

products using (a) method I and (b) method II. 

 

(a) 

 

(b) 
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Figure 5.9 Phase I control charts of the curing process using the hybrid method. 

 

5.7 Conclusion and Future Study 

Most profile analysis research up to date deals with the monitoring of single profile, but 

applications, such as, the hydraulic press machine and the curing process of high-pressure hose 

products, contain multiple correlated profiles for process monitoring. Although the monitoring of 

each type of profiles independently may be considered as an approach for detecting abnormal 

ones, high false alarm and low detecting power may be a consequence when given profiles are 

highly correlated. This study aims to tackle this problem by providing a framework for the 

process monitoring when the process consists of multiple linear or nonlinear correlated profiles. 

The proposed method I applies the modified Chang and Yadama’s method that extends one 

profile process monitoring method (with m segments) to a multiple profile solution (each profile 
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representing a segment). The proposed method II divides each profile into p segments first, and 

then applies the modified Chang and Yadama’s method to each segment. Therefore, the 

multiple-profile problem can be considered as a multivariate statistical process control problem 

with the number of input variables m×p. According to the simulation study, the method I has 

better performance in terms of out-of-control ARL values when the shape of profiles is changed 

entirely in the process, and method II is more sensitive when the process experiences partial 

profiles changes.  

Additionally, the simulation results show that when profiles are highly correlated, the 

detecting power of the proposed method is much better than those cases with lower correlations. 

In a real-world case study, both method I and method II are capable of constructing the phase I 

process control chart if the product of the number of segments and the number of profile types is 

smaller than 10. The hybrid method that combines method I and method II are also investigated 

to provide quality engineers a broader view of diagnosis and maintains the effectiveness of 

detecting power. Moreover, since the proposed methods are sharing the common treatment of 

Chang and Yadama’s (2010) method, they can handle the different shapes from other 

applications as long as profiles in the process have their own desired shapes with gold reference 

profiles existed. For example, the shape of temperature and pressure profiles generated from a 

curing process of high-pressure hose products follow their respective shapes, and the proposed 

methods all construct the phase I control chart without generating any false alarm signals. 

Although the proposed methods show capability of dealing with multiple nonlinear 

profiles on monitoring products’ quality perspective, they have some limitations. First, although 

the method I is capable of detecting entire shape shifted scenario, it lack of diagnosis ability 

when the process goes out-of-control. Second, even though the method II provides quality 

engineers more information in regards to diagnostic purpose, it will be less efficient if the 

number of segments times the profile types is over 10. Finally, the hybrid method takes care of 

those disadvantages that provided by the method I and method II, but it will be distract if there 

are too many segments have been defined. The future study of profile analysis should be 

extended to cover all the disadvantages of the proposed methods and to be applied for more 

complicated data sets, such as, the data sets of images and spatial surface.     
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Appendix 

Table A5.1 The average run length of method I with three different correlation structures. 

Method I 
 0.3=࣋

 ߣ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H  14.03 15.81 16.97 17.86 18.61 19.13 19.55 19.87 19.98

ARL0  200.170 199.925 199.809 200.167 199.617 199.829 199.840 200.167 199.809

Scen.  1 (small)  2.981 3.203 3.400 3.614 3.896 4.242 4.705 5.275 5.987

Scen. 1 (medium)  1.480 1.554 1.608 1.665 1.717 1.760 1.821 1.897 2.014

Scen. 1 (large)  1.101 1.125 1.142 1.162 1.174 1.184 1.195 1.205 1.214

Scen. 2 (small)  36.349 49.035 59.258 68.725 76.818 83.557 88.074 94.022 99.801

Scen. 2 (medium)  18.203 24.604 30.988 37.398 43.991 49.290 55.851 62.033 66.700

Scen. 2 (large)  10.474 13.208 16.867 21.015 23.316 29.945 34.551 39.603 44.195

Scen. 3 (small)  1.753 1.886 1.976 2.053 2.163 2.277 2.432 2.662 2.886

Scen. 3 (medium)  1.070 1.091 1.107 1.122 1.135 1.144 1.155 1.164 1.173

Scen. 3 (large)  1.001 1.001 1.002 1.002 1.003 1.004 1.004 1.004 1.004

Scen. 4  (samll)  18.390 23.135 27.833 32.099 36.519 40.005 43.883 47.784 51.197

Scen. 4 (medium)  9.389 11.178 13.228 15.711 18.580 21.055 23.962 27.048 29.549

Scen. 4 (large)  5.696 6.504 7.522 8.668 10.082 11.653 13.457 15.642 18.002

Scen. 5 (small)  2.907 3.135 3.301 3.493 3.743 4.047 4.386 4.935 5.499

Scen. 5 (medium)  1.476 1.545 1.594 1.641 1.696 1.732 1.785 1.864 1.953

Scen. 5 (large)  1.103 1.128 1.145 1.163 1.175 1.186 1.194 1.205 1.217

 0.5=࣋

 ߣ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H  14.49 16.26 17.55 18.52 19.28 19.83 20.3 20.57 20.72

ARL0  199.870 199.829 200.106 200.249 199.916 199.809 200.152 200.166 199.870

Scen. 1 (small)  2.922 3.163 3.369 3.571 3.834 4.165 4.638 5.218 5.852

Scen. 1 (medium)  1.468 1.541 1.592 1.646 1.701 1.748 1.811 1.886 1.983

Scen. 1 (large)  1.107 1.132 1.155 1.172 1.185 1.198 1.210 1.221 1.238

Scen. 2 (small)  37.816 49.977 61.750 71.478 80.470 86.518 92.114 96.633 102.777

Scen. 2 (medium)  18.407 24.791 32.102 39.083 45.808 51.963 58.493 64.189 69.712

Scen. 2 (large)  10.470 13.175 17.043 21.470 26.123 31.187 36.361 41.304 46.366

Scen. 3 (small)  1.753 1.891 2.002 2.115 2.255 2.419 2.654 2.930 3.265

Scen. 3 (medium)  1.055 1.079 1.096 1.111 1.125 1.134 1.148 1.160 1.171

Scen. 3 (large)  1.000 1.000 1.001 1.001 1.001 1.001 1.001 1.001 1.001

Scen. 4  (samll)  20.123 25.168 30.797 35.059 40.091 43.785 47.510 51.021 55.109

Scen. 4 (medium)  10.341 12.377 14.897 17.851 20.570 23.577 26.695 29.542 32.576

Scen. 4 (large)  6.339 7.271 8.485 9.909 11.521 13.280 15.450 17.942 20.349

Scen. 5 (small)  2.968 3.192 3.398 3.596 3.857 4.185 4.604 5.130 5.797

Scen. 5 (medium)  1.497 1.569 1.623 1.677 1.727 1.770 1.837 1.913 2.026
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Scen. 5 (large)  1.110 1.135 1.154 1.174 1.186 1.194 1.210 1.220 1.236

 0.9=࣋
lambda  0.1  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H  14.49  15.95 16.99 17.81 18.4 18.9 19.16 19.38 19.43

ARL0  199.995  199.809 199.743 199.731 199.840 200.167 200.167 200.152 200.098

Scen. 1 (small)  1.695  1.741 1.767 1.792 1.814 1.825 1.843 1.869 1.881

Scen. 1 (medium)  1.205  1.219 1.229 1.236 1.244 1.250 1.253 1.259 1.261

Scen. 1 (large)  1.061  1.067 1.073 1.076 1.078 1.082 1.084 1.085 1.085

Scen. 2 (small)  19.901  24.360 29.931 35.278 41.769 48.012 53.213 58.377 62.349

Scen. 2 (medium)  9.160  10.493 12.289 14.643 17.444 20.958 24.490 28.552 32.204

Scen. 2 (large)  5.333  5.852 6.479 7.379 8.526 10.127 11.763 13.906 16.345

Scen. 3 (small)  1.513  1.590 1.652 1.713 1.762 1.827 1.888 1.941 1.972

Scen. 3 (medium)  1.006  1.020 1.038 1.049 1.062 1.073 1.081 1.088 1.091

Scen. 3 (large)  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Scen. 4  (samll)  25.526  31.831 37.762 43.219 48.015 52.195 55.907 59.355 62.502

Scen. 4 (medium)  13.240  16.166 19.269 22.902 26.093 29.443 32.566 35.929 39.076

Scen. 4 (large)  8.163  9.380 10.997 12.814 14.774 17.386 19.817 22.445 25.021

Scen. 5 (small)  2.048  2.136 2.196 2.258 2.326 2.405 2.481 2.603 2.747

Scen. 5 (medium)  1.208  1.233 1.246 1.258 1.269 1.275 1.283 1.294 1.300

Scen. 5 (large)  1.044  1.051 1.054 1.058 1.060 1.062 1.062 1.064 1.064

 

Table A5.2 The average run length of method II with three different correlation structures. 

Method II 
 0.3=࣋

 ߣ 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 

H  25.9  30.85  35.68  40.12  44.13  47.45  50.14  52.09  53.3 

ARL0  199.958 199.829 199.809 199.967 200.173 199.989 199.905 199.910 200.157

Scen. 1 (small)  3.994 4.754 5.920 7.896 11.420 17.129 26.333 39.057 55.486

Scen. 1 (medium)  1.827 2.076 2.350 2.655 3.075 3.673 4.565 6.151 8.515

Scen. 1 (large)  1.233 1.323 1.426 1.538 1.668 1.789 1.966 2.217 2.549

Scen. 2 (small)  2.477 2.812 3.152 3.583 4.008 4.425 4.776 5.004 5.128

Scen. 2 (medium)  1.480 1.659 1.828 1.995 2.169 2.378 2.592 2.823 3.011

Scen. 2 (large)  1.136 1.229 1.331 1.431 1.524 1.619 1.726 1.873 2.035

Scen. 3 (small)  2.369 2.807 3.319 4.021 5.273 7.464 11.209 17.554 27.241

Scen. 3 (medium)  1.195 1.297 1.417 1.552 1.696 1.848 2.044 2.332 2.833

Scen. 3 (large)  1.006 1.015 1.031 1.057 1.083 1.105 1.132 1.153 1.175

Scen. 4  (samll)  1.385 1.544 1.672 1.821 1.964 2.101 2.241 2.368 2.470

Scen. 4 (medium)  1.054 1.099 1.155 1.209 1.262 1.319 1.371 1.416 1.463

Scen. 4 (large)  1.003 1.009 1.016 1.029 1.044 1.063 1.083 1.107 1.111

Scen. 5 (small)  1.730 1.964 2.198 2.440 2.740 3.050 3.459 3.829 4.169



91 

 

Scen. 5 (medium)  1.101 1.166 1.247 1.323 1.403 1.476 1.560 1.648 1.752

Scen. 5 (large)  1.004 1.010 1.021 1.037 1.053 1.068 1.085 1.100 1.113

 0.5=࣋
 ߣ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H  28.28 34.4 40.14 45.58 50.21 54.05 56.94 59.14 60.46

ARL0  200.002 199.826 199.918 199.918 200.157 199.890 200.026 200.261 200.009

Scen. 1 (small)  4.140 5.068 6.520 9.160 13.793 22.487 36.628 55.881 78.656

Scen. 1 (medium)  1.873 2.185 2.487 2.860 3.376 4.108 5.312 7.541 10.969

Scen. 1 (large)  1.253 1.363 1.477 1.615 1.760 1.917 2.143 2.431 2.876

Scen. 2 (small)  2.562 2.946 3.353 3.806 4.288 4.704 5.004 5.217 5.377

Scen. 2 (medium)  1.555 1.753 1.937 2.134 2.326 2.542 2.799 3.039 3.189

Scen. 2 (large)  1.171 1.296 1.421 1.524 1.632 1.751 1.894 2.062 2.246

Scen. 3 (small)  2.604 3.188 3.963 5.355 8.145 13.603 23.815 39.324 60.158

Scen. 3 (medium)  1.244 1.412 1.593 1.786 2.009 2.284 2.727 3.555 5.149

Scen. 3 (large)  1.006 1.020 1.051 1.092 1.140 1.194 1.242 1.294 1.352

Scen. 4  (samll)  1.552 1.727 1.910 2.078 2.243 2.385 2.536 2.684 2.778

Scen. 4 (medium)  1.131 1.206 1.280 1.371 1.438 1.505 1.577 1.644 1.710

Scen. 4 (large)  1.015 1.033 1.061 1.102 1.141 1.177 1.204 1.231 1.263

Scen. 5 (small)  1.791 2.059 2.315 2.584 2.927 3.329 3.785 4.211 4.630

Scen. 5 (medium)  1.120 1.204 1.296 1.384 1.481 1.567 1.661 1.774 1.910

Scen. 5 (large)  1.006 1.016 1.030 1.050 1.070 1.093 1.113 1.133 1.151

 0.9=࣋
lambda  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H  33.01 42.39 51.24 58.85 65.58 71.08 75.29 78.35 79.98

ARL0  199.989 199.850 200.026 200.289 199.826 199.936 200.164 199.826 199.826

Scen. 1 (small)  2.103 2.590 3.096 3.683 4.451 5.813 8.575 13.740 23.184

Scen. 1 (medium)  1.259 1.352 1.463 1.582 1.705 1.825 1.968 2.143 2.359

Scen. 1 (large)  1.081 1.118 1.157 1.188 1.214 1.234 1.261 1.286 1.303

Scen. 2 (small)  1.706 2.172 2.520 2.906 3.377 4.022 4.677 5.181 5.428

Scen. 2 (medium)  1.069 1.187 1.377 1.567 1.749 1.891 2.056 2.335 2.686

Scen. 2 (large)  1.018 1.029 1.049 1.081 1.133 1.193 1.259 1.308 1.350

Scen. 3 (small)  1.914 2.386 2.934 3.507 4.032 4.585 5.046 5.445 5.723

Scen. 3 (medium)  1.260 1.453 1.673 1.897 2.208 2.610 3.038 3.462 3.849

Scen. 3 (large)  1.001 1.035 1.151 1.297 1.409 1.500 1.617 1.826 2.137

Scen. 4  (samll)  2.181 2.479 2.773 3.091 3.366 3.569 3.665 3.737 3.777

Scen. 4 (medium)  1.471 1.660 1.842 1.998 2.151 2.312 2.433 2.520 2.556

Scen. 4 (large)  1.173 1.308 1.436 1.538 1.640 1.751 1.881 2.010 2.116

Scen. 5 (small)  1.151 1.269 1.459 1.643 1.808 1.984 2.187 2.464 2.876

Scen. 5 (medium)  1.039 1.052 1.065 1.075 1.084 1.093 1.099 1.104 1.109

Scen. 5 (large)  1.006 1.012 1.015 1.018 1.022 1.025 1.026 1.028 1.029
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Abstract 

Cellulosic biomass pelleting using ultrasonic vibration-assisted machine is an alternative 

to manufacturing biomass pellets. Both density and durability of the biomass pellets are critical 

quality characteristics. However, measurement of those characteristics requires destructive tests, 

which means pellets have to be destroyed for measurement. This study investigates an alternative 

for nondestructive test. Specifically, multiple temperature profiles recorded from six locations of 

a biomass pellets are used as surrogate response variables to density and durability. The 

proposed analysis method adopts the use of both the principal component analysis and 

desirability functions. The experimental results show that the multiple temperature profiles can 

be used as surrogate response factors to replace the density and durability. In addition, this study 

provides a predictive modeling approach for users to forecast biomass pellets’ density and 

durability given a multiple temperature profiles.  
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6.1 Introduction 

Biomass-based fuel ethanol has been used as an alternative to the petroleum based liquid 

fuels in recent years. Petroleum not only is a finite and non-renewable resource but also 

contributes to the greenhouse gas (GHG). Cellulosic ethanol is one of the biomass-based fuel 

ethanol produced by cellulosic biomass. Rubin (2008) pointed out that cellulosic biomass is often 

made from fibrous, woody, or wheat straw particles. The use of cellulosic-based biomass as a 

source to produce biofuel is beneficial in that it will not affect food and feed sources like sugar- 

or starch-based feedstock. In addition, Lynd (2003) reported that producing cellulosic biomass 

from crops may use less energy, fertilizer, and pesticide so that the soil fertility may be 

improved.  

To produce the cellulosic ethanol, Rubin (2008) introduced the major steps in biofuel 

manufacturing: (1) harvest and collection; (2) transportation and handling; (3) storage; (4) 

pretreatment; (5) hydrolysis; and (6) fermentation. Note that the pretreatment process contributes 

to the lignin and crystalline destruction of cellulose so that it is easier for hydrolysis process to 

degrade the cellulose into its component sugars using enzyme preparations. Then, the 

fermentation process uses microbes to convert sugars into ethanol.   

In order to produce cellulosic ethanol more efficiently, transportation, handling, and 

storage may play an important role in mass production of manufacturing cellulosic ethanol. Two 

factors has significant effects on those processes: density and durability of biomass pellets 

(Zhang, 2011; Zhang, 2013; Zhang et al., 2013). Both Zhang (2011) and Zhang (2013) indicated 

that the density will increase cellulosic ethanol yields and the durability of biomass pellets will 

enhance the efficiency in transportation. To increase the density and durability of the biomass 

pellets, pelleting methods have been considered in many studies, for example, screw extruder, a 

briquetting press, or a rolling machine, but extra manufacturing aids are required, such as, high-

temperature steam, high pressure, and binder materials (Mani et al., 2003; Sokhansanj et al., 

2005). Moreover, many researchers (Reece, 1966; Faborode, 1990; Van Dam et al., 2004, and 

Kaliyan et al., 2009) have provided evidence that providing high temperature during the 

manufacturing may result in good quality biomass pellets. However, producing high temperature 

steam requires more energy.  

Ultrasonic vibration-assisted (UVA) pelleting is an alternative to traditional pelleting 

methods. It has been proven that this pelleting method can increase the density and durability of 
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the biomass pellets significantly (Zhang, 2013 and Zhang et al., 2013). However, measurement 

the density and durability of the biomass pellets requires operation stoppages. Intervention from 

the quality engineers may slow down the production speed. Furthermore, the durability test of 

biomass pellets involves a destructive test.  

This study explores the feasibility of a nondestructive measurement of pellet density and 

durability via temperature profiles recorded from six locations within a biomass pellet mold. 

These temperature profiles can be measured on a real-time basis so that a production line is not 

interrupted due to sampling.  

The goal of this study is to verify that the temperature profiles collected from six 

locations of a pellet can be used as surrogate response variables to density and durability to 

reflect pellet quality. This study involves the use of two-level full factorial design within the 

feasible region. Further, desirability functions, developed by Derringer and Suich’s (1980), are 

constructed based on the data collected from both experiments.  

The applications of full factorial designs and desirability functions for multiple response 

surface methodology (Myers et al., 2009) often deal with response variables in a vector rather 

than profiles. In this study, the temperature profiles collected from six-locations of a biomass 

pellet are recorded over time in a matrix form. For example, if 180 data points are recorded every 

second, this matrix has a dimension of 180 x 6. Note that the conventional full factorial design 

and desirability functions cannot handle this problem directly. Therefore, this study applies the 

principal component analysis (PCA) method as a dimension reduction method to reduce the 

dimension from the form of a matrix to a vector so that the conventional multiple-response 

methods can be applied.  

The organization of this paper is as follows. First, the experiment details including the 

setup of machine, the experimental design, and the input and output variables will be presented. 

After that, the proposed methodology of this study will be introduced, followed by the 

experimental results and discussions. At the end of this paper, conclusions will be drawn and the 

future study will be discussed.     

6.2 Experiment Details 

The main hypothesis of this study is that the temperature profiles collected from a 

biomass pellet can be used to measure the quality of pellets instead of using density and 
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durability of the biomass pellet. Experiment details are presented in this section. First, the 

experiment setup including the components of UV-A machine and its specifications is 

introduced. Then, the procedure of finding the optimized input variable setting using the 

responses variables of density and durability is presented. After that, the optimal setting using 

multiple temperature profiles as responses is given. Finally, the details of input variables and 

measurement of response variables are introduced.          

6.2.1 Experiment Setup 

The UV-A biomass pelleting process has been proven to increase cellulosic ethanol yield, 

density of biomass pellet, and durability of pellet during transportation (Zhang and Pei, 2010; 

Zhang et al., 2010; Zhang, 2013). In this study, the identical UV-A biomass pelleting machine 

and setup from Zhang and Pei’s (2010) study is applied to produce biomass pellets with the 

factors of pelleting pressure, ultrasonic power, and biomass weight. The schematic UV-A 

machine setup is shown in Figure 6.1. The UV-A can be presented in three parts, pneumatic 

loading system, ultrasonic generation system, and temperature measurement system. In 

pneumatic loading system, air pressure is generated from a 1.2 kW, 125 liter air compressor and 

passed through a pressure regulator to the pneumatic cylinder. The compressed air provides 

energy to the pneumatic cylinder to push down the pelleting tool to press the biomass in the 

mold. In ultrasonic generation system, the power supply converts electrical power of 60 Hz to 20 

kHz providing mechanical motion energy so that the converter can generate high frequency for 

UV-A machine. The titanium-made pelleting tool is connected to the ultrasonic spindle to press 

biomass material. At the bottom of the UV-A machine are the mold and its holding system along 

with temperature measurement system. The mold is filled with biomass material and is setup on 

a fixture platform on a machine table. This setup can prevent the pelleting tool from 

nonalignment to the hold in the mold. Finally, in the temperature measurement system contains 

thermocouples, a thermometer, and a computer with data acquisition software package. Six 

thermocouples are inserted into the mold at six different locations as presented in Figure 6.2. 

Specifically, in the center axis of the pellet, temperatures at three locations will be recorded: the 

location of top center (TC), middle center (MC), and bottom center (BC). Meanwhile, top side 

(TS), middle side (MS), and bottom side (BS) are the other thermocouples for recording 

temperatures in the pellet. The temperature data will be collected from a thermometer and 
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recorded by a data acquisition software package called Temp Monitor S2 (OMEGA Engineering 

Inc.). The ultrasonic power is turned on for 180 seconds. 

Figure 6.1 The schematic UV-A machine setup. 

 

Figure 6.2 Six locations of placing thermocouples in the (a) side view and (b) top view of the 

mold. 

 

6.2.2 Design of Experiments 

There are three input variables investigated in this study: pelleting pressure, ultrasonic 

power, and biomass pellet weight. Those input variables are deemed as the key process variables 

TC TS

MC

BC 

MS

BS
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in producing cellulosic biomass pellets (Zhang and Pei, 2010; Zhang et al., 2010; Zhang et al., 

2013, Zhang, 2013). Moreover, the response variables in the experiments are pellet density, 

pellet durability and temperature profiles. In this study, a two-level full factorial design with four 

replicates of center points is used. The ranges and physical settings of the input variables in this 

studyare shown in Table 6-1. All the setting of input variables are identical to Zhang’s study 

(2013). The description of the input variables and response variables are presented in following 

sections. 

Table 6-1 Scheme of the input variables studied in the experiment. 

Input Variables Unit Levels 
-1(Low) 0 1(High) 

Pelleting Pressure psi 20 35 50 
Ultrasonic Power % 20 40 60 
Biomass Pellet 
Weight 

gram 1.5 2.0 2.5 

6.2.3 Input Variables of the Experiment 

The general format of the input variables of the experiment can be specified as equation (1): 

  ܺ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ … , ′௣ሿݔ (1)

where p is the number of input variables that will be examined in the experiment. In this study, 

since there are three input variables to be investigated, i.e., p=3. These three variables are: 

pelleting pressure, ultrasonic power, and pellet weight.  They will be discussed in the following 

sub-section. 

Pelleting Pressure (PSI) 

The source of the pelleting pressure (denoted as PSI) is generated by air compressor, 

which can be adjusted by the pressure regulator as shown in Figure 6.1. The higher pelleting 

pressure, the higher air pressure in the pneumatic cylinder pushes the pelleting tool. The air 

compressor is capable of generating the air pressure from 0 psi to 50 psi. The setting of pelleting 

pressure in this experiment is from 20 psi to 50 psi. The pelleting pressure is an important factor 

because it determines whether the pellet can be constructed or not. If the pelleting pressure is 

lower than 20 psi, the wheat particles cannot be formed of a pellet according to Zhang’s study 

(2013). 

Ultrasonic Power (%UVA) 
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The ultrasonic power (%UVA) indicates how much the electricity the power supply 

converting to ultrasonic vibration on biomass during the pelleting. The larger the ultrasonic 

power is set, the bigger vibration amplitude the converter can generate. The unit displayed on the 

power supply is in percentage (%). The minimum of ultrasonic power is 0% while the maximum 

of which is 100%. The ultrasonic power of 0% means that there is no electricity being 

transmitted to the converter at all. On the other hands, the ultrasonic power of 100% provides 

maximum power (20 kHz) to the converter. The setting of the ultrasonic power in this study is 

from 20% to 60%. The reason of not using 100% of ultrasonic power is because the ultrasonic 

machine will generate charring biomass (Feng et al., 2011 and Zhang, 2013). 

Biomass Pellet Weight 

The biomass pellet weight is measured by a scale from the wheat straw particles. Before 

running the experiment, the wheat straw particles will be weighted and inserted to the mold for 

making a biomass pellet. Zhang (2013) specifies the lowest value of biomass pellet weight is 1.5 

gram because it was the smallest size of pellet to insert six thermocouples, while the largest 

value of 2.5 is due to the size of the mold.   

6.2.4 Measurements of Response Variables 

The response variables are outputs of evaluating the experiment. The generalization form 

of the response variables of experiment can be characterized as equation (2).  

  ௜ܻ ൌ ሾݕଵ௜, ,ଶ௜ݕ ,ଷ௜ݕ … , ௠௜ሿ௜ݕ
ᇱ, i=1,2,3,…,n  (2)

where m is the number of response variables in the experiment, i is the index of the run of 

experiment, and n is the number of runs of the experiment. In this study, the conventional output 

variables of the experiment are pellet density and durability, i.e., m=2, for assessing the quality 

of biomass pellets. In other words, for each run of the experiment the output is two single values 

that calculated by given equations that will be introduced in latter sub-sections. Moreover, Since 

this study applies one-block-2-level full factorial design with 4 replicates center and corner 

points to the experiment, the number of runs of the experiment can be determined to be 36, i.e., 

p=(23+1)×4=36. In addition to those two response variables, this study obtains a surrogate 

response variable, multiple temperature profiles recorded from six locations of a pellet, to 

replace density and durability of biomass pellets. The surrogate variable that is characterized as 
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multiple profiles data can be found in the latter sub-section as well. The general format of each 

run of an experiment is described as equation (3): 

 
௜ܻ ൌ ൦

ଵଵ௜ݐ ଵଶ௜ݐ
ଶଵ௜ݐ ଶଶ௜ݐ

⋯
ଵ௚௜ݐ
ଶ௚௜ݐ

⋮ ⋱ ⋮
௟ଵ௜ݐ ௟ଶ௜ݐ ⋯ ௟௚௜ݐ

൪, i=1,2,3,…,n  (3)

where g is the number of data points within a profile and l is the number of profiles in each run. 

In this study, there are six profiles will be recorded in each run of the experiment, and a 

thermocouple will record the temperature every second until 180 seconds. Therefore, l and g is 

equal to 6 and 180 in this study, respectively.  

Measurement of Pellet Density 

The first measurement of response variable is the in-mold density of a biomass pellet. The 

equation of pellet density is as equation (4):  

  ݐ݈݈݁݁ܲ ݕݐ݅ݏ݊݁ܦ ൌ
ܹ

ߨܪ ቀ2ܦቁ
ଶ  (4)

where W is a biomass pellet weight that measured before running UV-A machine; H is the pellet 

height measured when the pelleting process is finished using a digital quill; D is the pellet 

diameter which equals to the diameter of the mold cavity (18.6 mm), and π is a mathematical 

constant (3.14).  

Measurement of Pellet Durability 

ASAE standards S269.4 (ASAE, 2003) defines the measurement of pellet durability, which tests 

the ability of pellet to withstand impact from forces encountered during handling and 

transportation. A pellet durability tester (Seedburo Equipment, Des Plaines, IL, USA) is designed 

for testing the pellet durability based on ASAE standards S296.4. Biomass pellets weighted in 50 

grams are loaded in the pellet durability tester tumbling for 10 minutes and followed by sieved 

with a U.S. No. 6 sieve. Equation (5) shows the measurement of pellet durability.  

  ݕݐ݈ܾ݅݅ܽݎݑܦ	ݐ݈݈݁݁ܲ ൌ
ݐ݄ܹ݃݅݁ ݂݋ ݃݊݅݊݅ܽ݉݁ݎ ݏݐ݈݈݁݁݌ ݎ݁ݐ݂ܽ ݃݊݅ݒ݁݅ݏ

ݐ݄ܹ݃݅݁ ݂݋ ݏݐ݈݈݁݁݌ ݁ݎ݋݂ܾ݁ ݈ܾ݃݊݅݉ݑݐ
  (5)
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Measurement of Temperature Profiles 

Temperatures within a pellet are recorded over time at six locations of the pellet as shown 

in Figure 6.2. The thermocouples start to record the temperatures when the pelleting process is 

starting. The total recording time is 180 seconds for each run of the experiment. Figure 6.3 

shows the recorded temperature profiles collected from six-location of the mold with various 

input setting. In this study, these six temperature profiles are expected to be the surrogate 

response variable of the experiment to replace the density and durability of pellets during the 

mass production of the biomass pelleting manufacturing using the UV-A machine.  

Figure 6.3 Temperature profiles recorded from six-location of the mold during the 

pelleting process with various input setting. 

 

6.3 Methodology  

The methodology details will be presented in this section. Most researches of full 

factorial design and multi-response optimization deal with the experiment results in the form of a 

vector as shown in equation (2). There is very little research considers the response variables of 
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the matrix form, i.e. equation (3). As the description above, the surrogate response variables 

contains six profiles, so that the conventional full factorial design and multi-response 

optimization method cannot handle this kind of data format directly. Therefore, this study 

proposes the PCA as a role of dimension reduction method to dealing with high dimensionality 

issue in the conventional multiple-response optimization method. Note that, the PCA is well-

known dimension reduction approach utilized in profile analysis (Shiau et al, 2009). Also, 

desirability functions method is a widely used multi-response optimization method that has been 

embedded in most software, such as, R, Minitab, Matlab, SAS, or JMP. Both methods will be 

introduced in the following section.   

6.3.1 Principal Component Analysis (PCA) 

The main goal of PCA is to reduce the dimensionality of the given datasets. Essentially, a 

principal component (PC) in this study is a particular set of linear combinations of variables. 

Suppose the variables are t1, t2, …, tg, the PCs will be formed as equation (6): 

 

ଵܥܲ ൌ ߬ଵଵݐଵ ൅ ߬ଵଶݐଶ ൅ ⋯൅ ߬ଵ௚ݐ௚
ଶܥܲ ൌ ߬ଶଵݐଵ ൅ ߬ଶଶݐଶ ൅ ⋯൅ ߬ଶ௚ݐ௚

⋮
௚ܥܲ ൌ ߬௚ଵݐଵ ൅ ߬௚ଶݐଶ ൅ ⋯൅ ߬௚௚ݐ௚

  (6)

Note that τij is the ith eigenvector of variance-covariance matrix of the given dataset, which can 

be described in equation (7): 

    ܥᇱΣܥ ൌ Λ  (7)

where Σ is the variance-covariance of the given dataset that will be input to the PCA, C is the 

g×g matrix consisting of eigenvectors of Σ, and Λ is g×g diagonal matrix whose diagonal 

elements are eigenvalues of Σ. In this study, there are 36 runs of the experiment, and 6 profiles 

were collected in each run. Also, for each profile, there are 180 data points were recorded, i.e., 

g=180. Therefore, the size of the input dataset for the PCA is 180 ×216, and the size of the Σ, C, 

and Λ are all 180×180. Note that, since the conventional multi-response optimization method can 

only handle vector format of the given dataset as shown in equation (2), we select the first PC 

score to represent the temperature profiles. Therefore, the problem of multiple profiles (form of 

equation (3) ) is simplified so that the regular multi-response optimizer can deal with the reduced 

form directly. Many software, such as, R, SAS, Minitab, matlab, JMP, etc., will calculate 

eigenvalues and eigenvectors and implement the PCA. To perform the PCA in this study, we use 
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R function, prcomp(), to calculate PCs of given dataset. Table 6-2 shows the summary of first 

five PC scores after implementing the PCA from R. From the table, the PC1 shows the 

proportion of variance is 0.9633, so that the PC1 can explain 96.33% of variability. Therefore, 

the first PC is valid representation of the entire dataset. For more detail of mathematical and 

statistical properties of the PCA, please refer to Jolliffe (2002).  

Table 6-2 Summary of first five PC scores 

  PC1  PC2  PC3  PC4  PC5 

Standard Deviation  369.165 66.7852 21.5357 12.2971 7.90605 

Proportion of Variance  0.9633 0.03153 0.00328 0.00107 0.00044 

Cumulative Proportion  0.9633 0.99485 0.99813 0.9992 0.99964 

6.3.2 Desirability Functions 

 The desirability functions approach developed by Derringer and Suich (1980) is one of 

the multi-response optimization methods. The general idea of the desirability functions approach 

is to maximize the overall desirability D as shown in equation (8):   

    ܦ ൌ ሺ݀ଵ݀ଶ …݀௠ሻଵ/௠  (8)

where m is the number of responses and di is the ith desirability function of response yi. Note that, 

di is updated by using the equation (9) to (11), where L is the lower limit, U is the upper limit, T 

is the target, and r, r1 and r2 are the weights. If the objective is to maximize the target T, the 

equation (9) is used; otherwise equation (10) is then obtained. Note that, if the target T is 

allocated between L and U, the equation (11) should be considered. In this study, since all 

responses are all the larger, the better, the equation (9) is the one to be applied to determine the 

optimized input variables.  

    ݀ ൌ ൞

0 ݕ ൏ ܮ

൬
ݕ െ ܮ
ܶ െ ܮ

൰
௥

ܮ ൑ ݕ ൑ ܶ

1 ݕ ൐ ܶ

  (9)

    ݀ ൌ ൞

1 ݕ ൏ ܶ

൬
ݕ െ ܮ
ܶ െ ܮ

൰
௥

					ܶ ൑ ݕ ൑ ܷ

0 ݕ ൐ ܷ

  (10)
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6.4 Experimental Results and Discussion  

There are two goals in this study. The major objective is to investigate whether the temperature 

profiles of a biomass pellet can be the surrogate response variables to the conventional quality 

characteristics of interest, density and durability of biomass pellets. The second goal of this study 

is to find the predictive model of density and durability using the six-location temperature 

profiles of the biomass pellet if those profiles can be the surrogate response variables to the 

conventional ones.   

In order to achieve the first objective of this study, a 23 full factorial design and the 

desirability functions are applied to both conventional and surrogate response factor. Figure 6.4 

shows all response factors’ contour plots with all the combinations of input variables. Also, the 

Minitab 16 output of analysis of variance for density, durability, TC, TS, MC, MS, BC, and BS 

versus the input variables is shown in Figure A 6-1 in the Appendix. Note that, although density, 

TC, TS, MC, BC, and BS shows curvature effect is existed as shown in Figure A 6-1, contour 

plots in Figure 6.4 show the maximum values of all response variables are allocated in the corner 

points of all input variables rather than in the curvature region. Therefore, extra experiments used 

in central composite design (CCD) is not necessary to apply to this study.  

 Our second goal is to further determine the optimized setting of input variables based on 

the given response variables, the results of desirability functions are shown in Figure 6.5 and 

Figure 6.6. Note that, both figures show the global solutions of the input variables’ settings are 

PSI=50, %UVA=60, and Weight=1.5. In other words, those settings of input variables may not 

only result the maximum density and durability, but also maximize temperatures of biomass 

pellets without damaging them. Therefore, the temperature profiles of a biomass pellet can be 

used as the surrogate response variables to the conventional response variables, density and 

durability since both optimization approaches achieve the same goal.      
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Figure 6.4 Contour plot of density, durability, BC, BS, MC, MS, TC, and TS. 
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Figure 6.5 The desirability functions result for density and durability of biomass pellets. 

Response Optimization  
 
Parameters 
 
            Goal     Lower  Target  Upper  Weight  Import 
Density     Maximum    500    1200   1200       1       1 
Durability  Maximum      0       1      1       1       1 
 
 
Global Solution 
 
PSI      =    50 
%UVA     =    60 
Weight   =   1.5 
 
Predicted Responses 
 
Density      =   1151.72  ,   desirability =   0.931030 
Durability   =      0.86  ,   desirability =   0.864732 
 
Composite Desirability = 0.897269 

 

Figure 6.6 The desirability functions result for the temperature profiles 

Response Optimization  
 
Parameters 
 
    Goal     Lower  Target  Upper  Weight  Import 
TC  Maximum   -400     500    500       1       1 
TS  Maximum   -300     400    400       1       1 
MC  Maximum   -300     900    900       1       1 
MS  Maximum   -400     700    700       1       1 
BC  Maximum   -500     600    600       1       1 
BS  Maximum   -600       5      5       1       1 
 
Global Solution 
 
PSI      =    50 
%UVA     =    60 
Weight   =   1.5 
 
Predicted Responses 
 
TC   =   435.330  ,   desirability =   0.928144 
TS   =   378.352  ,   desirability =   0.969074 
MC   =   813.033  ,   desirability =   0.927527 
MS   =   471.276  ,   desirability =   0.792069 
BC   =   477.608  ,   desirability =   0.888734 
BS   =    -6.996  ,   desirability =   0.980172 
 
Composite Desirability = 0.912059 

 

Since the temperature profiles can replace the density and durability as surrogate 

response variables, the predicting model of density and durability using the six temperature 

profiles is developed in this study. In this case, the first PCA values of the temperature profiles 

become the input variables. The simple linear regression model is used to forecasting the density 

and durability when the six locations temperature profiles of the biomass pellet are recorded. 

Equation (12) and (13) shows the simple linear regression model of density and durability. 
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According to the results of regression analysis using the Minitab 16 shown in Figure 6.7 and 

Figure 6.8, both linear models are adequate to predict density and durability. Therefore, those 

two models can be used to predict the density and durability of the biomass pellets when the 

temperature profiles are recorded from the six-location of a biomass pellet are given. This 

implies that a non-destructive test is feasible and the critical quality characteristics can be 

estimated.  

    ݕݐ݅ݏ݊݁ܦ ൌ ௗ଴ߚ ൅ ܥௗଵܶߙ ൅ ௗଶܶܵߙ ൅ ܥܯௗଷߙ ൅ ܵܯௗସߙ ൅ ܥܤௗହߙ ൅  ܵܤௗ଺ߙ (12)

  ݕݐ݈ܾ݅݅ܽݎݑܦ ൌ ௨଴ߚ ൅ ܥ௨ଵܶߙ ൅ ௨ଶܶܵߙ ൅ ܥܯ௨ଷߙ ൅ ܵܯ௨ସߙ ൅ ܥܤ௨ହߙ ൅  ܵܤ௨଺ߙ (13)

 

Figure 6.7 Regression analysis of density versus six-location temperature profiles. 

Regression Analysis: Density versus TC, TS, MC, MS, BC, BS 
 
The regression equation is 
Density = 1273 + 1.31 TC + 0.655 TS - 0.679 MC - 0.597 MS - 0.273 BC + 0.383 BS 
 
Predictor     Coef  SE Coef      T      P 
Constant    1272.8    132.8   9.58  0.000 
TC          1.3114   0.4382   2.99  0.010 
TS          0.6551   0.2401   2.73  0.017 
MC         -0.6788   0.3352  -2.02  0.064 
MS         -0.5975   0.2647  -2.26  0.042 
BC         -0.2729   0.4673  -0.58  0.569 
BS          0.3825   0.5009   0.76  0.459 
 
S = 63.4781   R-Sq = 90.4%   R-Sq(adj) = 85.9% 
 
Analysis of Variance 
 
Source          DF      SS     MS      F      P 
Regression       6  491094  81849  20.31  0.000 
Residual Error  13   52383   4029 
Total           19  543477 
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Figure 6.8 Regression analysis of durability versus six-location temperature profiles. 

Regression Analysis: Durability versus TC, TS, MC, MS, BC, BS 
 
The regression equation is 
Durability = 0.834 + 0.00202 TC + 0.00170 TS - 0.00117 MC - 0.000965 MS 
             - 0.000270 BC + 0.000243 BS 
 
Predictor        Coef    SE Coef      T      P 
Constant       0.8339     0.2095   3.98  0.002 
TC          0.0020177  0.0006914   2.92  0.012 
TS          0.0017021  0.0003789   4.49  0.001 
MC         -0.0011686  0.0005289  -2.21  0.046 
MS         -0.0009652  0.0004176  -2.31  0.038 
BC         -0.0002702  0.0007374  -0.37  0.720 
BS          0.0002434  0.0007903   0.31  0.763 
 
 
S = 0.100164   R-Sq = 92.0%   R-Sq(adj) = 88.3% 
 
Analysis of Variance 
 
Source          DF       SS       MS      F      P 
Regression       6  1.49320  0.24887  24.81  0.000 
Residual Error  13  0.13043  0.01003 
Total           19  1.62362 

6.5 Conclusion and Future Study 

Density and durability of the biomass pellets are major quality characteristics of interests 

for determining the quality of pellets during the manufacturing. However, quality engineers have 

to intervene the manufacturing process of pelleting for destructive testing. This study 

investigates whether the temperature profiles recorded from the six-location of a pellet can be the 

surrogate response variables for density and durability. We have shown that temperature profiles 

are capable of replacing density and durability.  However, conventional multi-response 

optimization methods cannot handle profiles as response variables. This study applies a PCA 

approach to transform the profile response variables into a vector form.    

The experimental results show that the optimal input variable solutions from the 

density/durability responses and temperature-profile responses are identical. That is, when the 

pelleting pressure is set to 50 psi, ultrasonic power is set to 60%, and the pellet weight is 1.5 

gram, the density/durability responses and the temperature-profile responses are all maximized 

using the desirability functions. Therefore, the temperature profiles collected from the six-

location of a pellet can be used as the surrogate variables to the density and durability of the 

biomass pellets during the pelleting process of cellulosic manufacturing. Moreover, this study 

also contains a predicting model of density and durability so that users can use the six-location 

temperature profiles to forecast the density and durability. The regression analysis results show 



108 

 

that the linear models are adequate to predict the density and durability when the temperature 

profiles are given.  

For future studies, other dimension reduction methods should be explored since this study 

applies the PCA to reduce the dimensionality of the response variables and only the first 

principal component is used to represent the entire dataset.  This method may not be adequate if 

the first PC’s cumulative proportion variance is not high enough, e.g. lower than 90% of entire 

variability. Moreover, the proposed method cannot be applied to other responses such as, surface 

or images.   Much more research is needed in these areas.    
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Appendix 

Figure A 6-1 Analysis of variance for density, durability, TC, TS, MC, MS, BC, and BS. 

Analysis of Variance for Density (coded units)
 
Source              DF   Seq SS   Adj SS  Adj MS        F      P 
Main Effects         3  1116149  1116149  372050  3278.50  0.000 
  PSI                1   799578   799578  799578  7045.88  0.000 
  %UVA               1   311440   311440  311440  2744.41  0.000 
  Weight             1     5131     5131    5131    45.21  0.000 
2-Way Interactions   3    33460    33460   11153    98.28  0.000 
  PSI*%UVA           1    10000    10000   10000    88.12  0.000 
  PSI*Weight         1    21787    21787   21787   191.99  0.000 
  %UVA*Weight        1     1673     1673    1673    14.74  0.001 
3-Way Interactions   1    10156    10156   10156    89.49  0.000 
  PSI*%UVA*Weight    1    10156    10156   10156    89.49  0.000 
  Curvature          1     5811     5811    5811    51.21  0.000 
Residual Error      27     3064     3064     113 
  Pure Error        27     3064     3064     113 
Total               35  1168640 
 
Analysis of Variance for Durability (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS         F      P 
Main Effects         3  2.63180  2.63180  0.87727   6106.37  0.000 
  PSI                1  0.65399  0.65399  0.65399   4552.24  0.000 
  %UVA               1  1.97742  1.97742  1.97742  13764.16  0.000 
  Weight             1  0.00039  0.00039  0.00039      2.70  0.112 
2-Way Interactions   3  0.71720  0.71720  0.23907   1664.06  0.000 
  PSI*%UVA           1  0.65399  0.65399  0.65399   4552.24  0.000 
  PSI*Weight         1  0.06281  0.06281  0.06281    437.23  0.000 
  %UVA*Weight        1  0.00039  0.00039  0.00039      2.70  0.112 
3-Way Interactions   1  0.06281  0.06281  0.06281    437.23  0.000 
  PSI*%UVA*Weight    1  0.06281  0.06281  0.06281    437.23  0.000 
  Curvature          1  0.00022  0.00022  0.00022      1.55  0.224 
Residual Error      27  0.00388  0.00388  0.00014 
  Pure Error        27  0.00388  0.00388  0.00014 
Total               35  3.41591 
 
Analysis of Variance for TC (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         3  2656388  2656388   885463  1254.04  0.000 
  PSI                1   103634   103634   103634   146.77  0.000 
  %UVA               1  2488071  2488071  2488071  3523.75  0.000 
  Weight             1    64683    64683    64683    91.61  0.000 
2-Way Interactions   3   118278   118278    39426    55.84  0.000 
  PSI*%UVA           1    16181    16181    16181    22.92  0.000 
  PSI*Weight         1      487      487      487     0.69  0.414 
  %UVA*Weight        1   101610   101610   101610   143.91  0.000 
3-Way Interactions   1     2640     2640     2640     3.74  0.064 
  PSI*%UVA*Weight    1     2640     2640     2640     3.74  0.064 
  Curvature          1    24056    24056    24056    34.07  0.000 
Residual Error      27    19064    19064      706 
  Pure Error        27    19064    19064      706 
Total               35  2820425 
 
Analysis of Variance for TS (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
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Main Effects         3  2497152  2497152   832384  2838.57  0.000 
  PSI                1     1059     1059     1059     3.61  0.068 
  %UVA               1  2496090  2496090  2496090  8512.10  0.000 
  Weight             1        3        3        3     0.01  0.922 
2-Way Interactions   3    19523    19523     6508    22.19  0.000 
  PSI*%UVA           1      195      195      195     0.67  0.422 
  PSI*Weight         1    15631    15631    15631    53.30  0.000 
  %UVA*Weight        1     3697     3697     3697    12.61  0.001 
3-Way Interactions   1     6365     6365     6365    21.71  0.000 
  PSI*%UVA*Weight    1     6365     6365     6365    21.71  0.000 
  Curvature          1    23406    23406    23406    79.82  0.000 
Residual Error      27     7917     7917      293 
  Pure Error        27     7917     7917      293 
Total               35  2554364 
 
Analysis of Variance for MC (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         3  6657115  6657115  2219038  2083.16  0.000 
  PSI                1    13848    13848    13848    13.00  0.001 
  %UVA               1  6276526  6276526  6276526  5892.20  0.000 
  Weight             1   366741   366741   366741   344.28  0.000 
2-Way Interactions   3    34616    34616    11539    10.83  0.000 
  PSI*%UVA           1     1489     1489     1489     1.40  0.247 
  PSI*Weight         1     1861     1861     1861     1.75  0.197 
  %UVA*Weight        1    31267    31267    31267    29.35  0.000 
3-Way Interactions   1    29711    29711    29711    27.89  0.000 
  PSI*%UVA*Weight    1    29711    29711    29711    27.89  0.000 
  Curvature          1    98627    98627    98627    92.59  0.000 
Residual Error      27    28761    28761     1065 
  Pure Error        27    28761    28761     1065 
Total               35  6848831 

 

Analysis of Variance for MS (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         3  4360681  4360681  1453560   747.48  0.000 
  PSI                1   176865   176865   176865    90.95  0.000 
  %UVA               1  3894756  3894756  3894756  2002.84  0.000 
  Weight             1   289060   289060   289060   148.65  0.000 
2-Way Interactions   3   158389   158389    52796    27.15  0.000 
  PSI*%UVA           1    98094    98094    98094    50.44  0.000 
  PSI*Weight         1     3981     3981     3981     2.05  0.164 
  %UVA*Weight        1    56314    56314    56314    28.96  0.000 
3-Way Interactions   1    23670    23670    23670    12.17  0.002 
  PSI*%UVA*Weight    1    23670    23670    23670    12.17  0.002 
  Curvature          1     3039     3039     3039     1.56  0.222 
Residual Error      27    52505    52505     1945 
  Pure Error        27    52505    52505     1945 
Total               35  4598285 

 

Analysis of Variance for BC (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         3  3883653  3883653  1294551  2508.39  0.000 
  PSI                1     8240     8240     8240    15.97  0.000 
  %UVA               1  3234453  3234453  3234453  6267.23  0.000 
  Weight             1   640961   640961   640961  1241.96  0.000 
2-Way Interactions   3    46599    46599    15533    30.10  0.000 
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  PSI*%UVA           1     3380     3380     3380     6.55  0.016 
  PSI*Weight         1     1475     1475     1475     2.86  0.102 
  %UVA*Weight        1    41744    41744    41744    80.89  0.000 
3-Way Interactions   1      499      499      499     0.97  0.334 
  PSI*%UVA*Weight    1      499      499      499     0.97  0.334 
  Curvature          1    53198    53198    53198   103.08  0.000 
Residual Error      27    13934    13934      516 
  Pure Error        27    13934    13934      516 
Total               35  3997884 

 

Analysis of Variance for BS (coded units) 
 
Source              DF   Seq SS   Adj SS  Adj MS        F      P 
Main Effects         3  1012837  1012837  337612   615.92  0.000 
  PSI                1    15272    15272   15272    27.86  0.000 
  %UVA               1   647771   647771  647771  1181.76  0.000 
  Weight             1   349794   349794  349794   638.14  0.000 
2-Way Interactions   3   107441   107441   35814    65.34  0.000 
  PSI*%UVA           1      386      386     386     0.70  0.409 
  PSI*Weight         1       43       43      43     0.08  0.781 
  %UVA*Weight        1   107011   107011  107011   195.22  0.000 
3-Way Interactions   1    33440    33440   33440    61.01  0.000 
  PSI*%UVA*Weight    1    33440    33440   33440    61.01  0.000 
  Curvature          1    19058    19058   19058    34.77  0.000 
Residual Error      27    14800    14800     548 
  Pure Error        27    14800    14800     548 
Total               35  1187575 
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Abstract 

 A marginal CUSUM glyph is proposed to visualize and decompose out-of-control signals 

over time. The proposed visualization tool, consisting of a two-sided CUSUM and star glyphs, is 

capable of indicating when and which variables contributing to the cause. Complementing 

traditional multivariate control charts after indicating that the process under monitoring is out of 

control, the proposed method provides a visualization tool with additional diagnostic 

information. In addition, the proposed tool is capable of handling responses with high 

dimensions. Extensive simulation results conducted for up to 20 dimensions provide a user 

guideline of how to implement the proposed methodology.  

 

Keywords: Visualization, Multivariate SPC, CUSUM, Multivariate CUSUM 
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7.1  Introduction 

Multivariate control charts such as Hotelling T2 are often used for a process of multiple 

quality characteristics. The look of a multivariate control chart often mimics that of a univariate 

control chart such as തܺ chart consisting of three horizontal lines enclosing dots connected by 

straight line segments. Unlike a univariate process, an out-of-control point on a multivariate 

control chart does not reveal which quality characteristics contribute to the problem without 

further analysis.  A visualization tool is needed for users to make diagnostic related decisions 

such as when the out-of-control conditions start to take place as well as which quality 

characteristics are responsible. Although multiple univariate control charts, one for each quality 

characteristic, can be implemented as additional visual aids, this approach does not work when 

the number of quality characteristics is large. Not only is it difficult to control the overall type I 

error but scanning many univariate control charts simultaneously won’t provide effective visual 

aid.  

Many high-dimensional data visualization techniques have been developed to explore or 

to present datasets with multiple dimensions. Chen et al. (2008) summarized five tools 

visualizing high-dimensional datasets; they are the mosaic plots, scatter plot matrix, parallel 

coordinate plot, trellis displays, and star glyphs. The Mosaic Plots, proposed by Hartigan and 

Kleiner (1984), provide contingency tables used to display the relationship among two or more 

categorical variables. Mosaic plots consist of groups of rectangles whose sizes are corresponding 

to values in contingency tables. Users can interpret the mosaic plot by looking at its sizes and the 

positions of the rectangles. Figure 7.1 (a) shows an example of the mosaic plot for a 2009 

automobile dataset (collected from Automotive.com http://www.automotive.com/index.html). 

The mosaic plot displays the number of cars by country and prices under the aspects of horse 

power (hp) and miles per gallon (mpg). Although the mosaic plot is a well-known visualization 

tool to multivariate datasets, it can only cope with categorical datasets, meaning that data has to 

be put into categories. It is difficult to apply a mosaic-plot approach to monitor a statistic process 

when quality characteristics are quantitative. In the car example, horse power is categorized into 

two classes – 0-350 and 350-850. In addition, a mosaic plot can only handle a small number of 

factors, e.g. four factors are considered in the car example in Figure 7.1 (a). A mosaic plot will 

not be able to handle problems with much larger number of factors. 
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A Scatter Plot Matrix is another visualization tool to view all the pair-wise scatter plots 

into a matrix. Each scatter diagram displays the relationship between any two-variable pairs. The 

scatter plot matrix can be potentially used for process monitoring. Figure 7.1 (b) displays an 

example of scatter plot for a three-dimensional dataset. The dataset was generated from the 

multivariate normal distribution with one-step mean shifted, i.e. µ=(5,10,20) change to 

µ=(7,12,22) and ∑=൥
1 0 0.3
0 1 0
0.3 0 1

൩, where µ is a vector of mean and ∑ is a variance-covariance matrix. 

Examining Figure 7.1 (b), users can easily identify that var1 and var3 are corrected, but it is very 

difficult to distinguish there is a mean shift by looking at this plot. Montgomery (2008) gave an 

example of using principal component analysis and scatter plot with 95% confidence ellipse to 

show out-of-control points. Although the scatter plot matrix is a good visualization tool to 

display the pair-wise relationships in a snap shot, it has some limitations. First, a scatter plot 

presents all data points in a snapshot.  Users only can see some points plot outside an ellipse but 

the time sequence of the plotting points is lost. Second, a scatter plot cannot handle hyper-

dimensional data, such as a 50-dimensional or 100-dimensional data set. In fact, 20 dimensions 

will post a challenge for pair-wise displays. There will be 20 x 20 boxes needed to be displayed 

simultaneously.  

Figure 7.1 (a) The Example of the Mosaicplot for 2009 Automobile Dataset; (b) The 

Example of the Scatter Plot Matrix for the Three-Dimensional Dataset. 

 

The third multivariate visualization tool is the Parallel Coordinate Plot. A parallel 

coordinate plot contains coordinate axes (vertical or horizontal) in parallel that can accommodate 

many variables at a time in the same plant. The number of parallel axes is corresponding to the 
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number of variables. For each parallel axes, the bottom of line is the minimum value of the 

variable, while the maximum value of the variable is at the end of the line. A particular 

observation is represented by a line that connects the vertical line at the specific height, which is 

the proportion of value of the observation to length of vertical line. Figure 7.2 (a) is a simple 

example of the parallel coordinate plot. The dataset consists of a three-dimensional data with five 

observations generated from the multivariate normal distribution. Although a parallel coordinate 

plot can handle high-dimensional data, too many observations on the same plot tends to lose its 

effectiveness. As shown in Figure 7.2 (b), it is difficult to make out the changes made on an 

individual response among 100 observations with 20 dimensions each. Therefore, it is hard to tell 

if any out-of-control signal occurs.  

Figure 7.2 (a) An Simple Example of 5 observations, 3-dimensional dataset; (b) Example of 
100 observations, 20-dimensional dataset with one step mean shift. 

      

 Although there were many techniques to visualize the multivariate data about its 

quantities or relationship, it is difficult to apply these techniques to visualize data for the purpose 

of statistical process control for multivariate processes. On the other hand, multivariate control 

charts based on Hotelling’s T2 statistic (Jackson, 1985), multivariate cumulative sum 

(MCUSUM; Woodall and Ncube, 1985; Crosier, 1988; Pignatiello and Runger, 1990), 

multivariate exponentially weighted moving average (MEWMA; Lowry, et al., 1992) cannot 

effectively indicate which variable(s) contribute to an out-of-control signal.  

Hawkins (1991) proposed a procedure called regression adjustment. Essentially, the 

regression adjustment is a set of univariate control charts of the residuals from the regression of 

each variable on all others. He further used regression adjustment to each variable to analyze out-
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of-control-caused variables. Since each variable contains at least one chart, it needs a large 

number of charts as many as the number of variables for high-dimensional datasets. Another 

method is based on decomposition of the Hotelling’s T2 statistic which indicates caused out-of-

control variables. Mason, Tracy and Young (1995) decomposed T2 to interpret signals called 

MYT decomposition. Suppose p=3, there are 3!=6 combinations of decompositions of one T2 

value. For example T2= 2 2 2
1 2 1 31,2T T T   . It would lead to a very large number of combinations 

when p is large. Examples shown in Mason and Young (2002) demonstrated the use of the 

decomposed terms, first, to confirm the data structure based on a historical data set and, second, 

to identify the causes of an out-of-control signal.   Furthermore, Runger, Alt, and Montgomery 

(1996) used a similar concept to decompose an out-of-control signal. They used di=T2- 2
( )iT as an 

indicator to show the contribution of the ith variable. T2 is the current value of statistic and Tሺ୧ሻ
ଶ  is 

the value of the statistic for all process variables except the ith one. Then, di is a major contributor 

to T2 if di is large.  Note that decomposition is usually applied to the latest T2 value when the 

process is deemed out of control. 

These methods introduced above can help diagnose which variables contribute to an out-

of-control signal based on the latest point that causes this out-of-control signal. In order to 

discover the information where or when the responsible variables went out of control, additional 

procedures are required. As pointed out by one reviewer, the conditional terms in MYT 

decomposition can be viewed as squared standardized residuals from a regression. Control charts 

can be established on the squared root of the signaling decomposition terms so that one can track 

where or when the problem began. 	 In this study, we introduce a novel technique that combines 

CUSUM control charts and glyphs to provide a visualization decision support tool to indicate 

when and which variable(s) are out of control.  As shown in Figure 7.3 and Figure 7.4, a trellis 

displays and star glyphs are very effective visualization tool for multivariate datasets. Features of 

these visualization approaches are applied to the proposed method in this study.  

The rest of this paper is organized as follows. Section 2 introduces backgrounds of the 

trellis displays and star glyphs as well as the standardized two-side CUSUM and the multivariate 

CUSUM. Section 3 is the proposed method using marginal CUSUM Glyphs followed by the 

experimental design of the proposed simulation study. Next, the computational results of 

simulations are showing in section 4. Section 5 consists of conclusions and future studies.  
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7.2 Background 

 This section summarizes the trellis displays and star glyphs. In addition, the multivariate 

control charts adopted in the proposed visualization tool are also introduced in this section. 

Although both Exponential Weighted Moving Average (EWMA) and Cumulative Sum 

(CUSUM) control charts are effective detection and diagnosis tools for univariate processes, 

Hawkins (1993) stated that the CUSUM chart is a little better. In addition, Lowry et al. (1992) 

and Lowry and Montgomery (1995) both concluded that the multivariate EWMA can be as good 

as a multivariate CUSUM chart to detect small mean shifts. Thus, the proposed method will 

adopt two CUSUM charts: standardized two-side CUSUM (SD2CUSUM) and Multivariate 

CUSUM (MCUSUM). To investigate if any out-of-control signal occurred, users first run 

MCUSUM as a preliminary step of process monitoring so that the overall type I error is under 

control. If the MCUSUM provide an out-of-control signal, users can show all observations that 

are before the out-of-control signal in marginal CUSUM glyphs on the trellis display. 

7.2.1 Trellis Displays 

 A trellis display is a lattice-like arrangement to lay out plots into rows, columns, and 

pages on multiple panels. The plots on the panels can be histogram, kernel density plot, 

theoretical quantile plot, two-sample quantile plot, stripchart, bar plot, scatter plot, parallel 

coordinate plot, etc (Sarkar, 2008). Each panel contains a subset of the data graphed by plots. For 

example, Yates (1935) studied a split-plot experiment. The structure of the oats data set is 

including 72 rows and 4 columns, and its attributes are including six blocks (I, II, III, IV, V, and 

VI), three varieties (Victory, Golden Rain, and Marvellous), four concentrations of nitrogen, and 

yield. Figure 7.3 shows the trellis display of the Oats data with block I and II. The yield of oats is 

plotted against concentration of nitrogen for three varieties of oats and two blocks. In this paper, 

the idea of lattice-like arrangement of the trellis display is applying to the proposed multivariate 

visualization tool. The block assignment will be replaced by the time sequence while the star 

glyphs will be adopted to represent each multivariate observation on panels. The star glyphs are 

introduced in next section.  

 

 

 



119 

 

Figure 7.3  A Trellis displays of the Oats data. 

 

7.2.2 Star Glyphs 

 Star glyphs (also called star plot) display a multivariate data set in a geometrical shape 

such as hexagon for six dimensional data. In a star glyph, each individual graphic represents an 

observation. A star contains n spikes that radiate from the center with even space. The angle 

between each spike is equal to 360/n degree. Each spike has a value on it with the same 

proportion of the variable for that observation, which means observations must be standardized 

before stars are constructed. At the end of the point of each spike is usually connected to each 

other by line segments. To demonstrate the star glyph, five cars with seven attributes are used as 

an example. The seven attributes are: miles per gallon (mpg), weight of lbs (weight), horsepower 

(hp), engine displacement in cubic inches (disp.), number of cylinders (cyl.), torque of Newton-

Meter (Torque), and price in US dollar (Price). 

Figure 7.4 shows five examples of star glyphs. The graphic (a) to (e) are five different 

sedan vehicles with seven attributes for star glyphs demonstration, while graphic (f) shows the 

basis of variable assignment in which each spike represents one attribute. The longer the spike 

the large the values for that attribute. The car “Saab 9-3 2.0T” shown in Figure 7.4 (b) has high 

mpg, less weight, low horse power, small engine displacement, four cylinders, small torque, and 

lowest price compared to the other cars. A side-by-side comparison with Bentley demonstrates 

why the mpg of Bentley seems to disappear. The Saab has 29 mpg while the Bentley only has 14 

mpg. However, the sticker prices are the opposite: Saab $30,360 vs. Bentley $224,990. The 

function of star glyphs called “stars” in the R language (http://www.r-project.org/) in its graphics 

package was used to generate these star glyphs in Figure 7.4.  
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Figure 7.4. Examples of Star glyphs where (f) Represents the Legend 

 

 

7.2.3 Standardized Two-Side Univariate CUSUM (SD2CUSUM) 

 The standardized two-side univariate CUSUM (SD2CUSUM) essentially is a tabular 

CUSUM with the standardized observations. This control chart is mainly designed for a process 

with only one quality characteristic. To run this procedure, it is necessary to obtain a phase I data 

set, so that mean µ0 and standard deviation σ can be estimated. The data collected during a phase 

I process is often deemed a nominal representation of the underlying process for future 

observations to follow. Basically, the tabular CUSUM accumulates the differences between 

observations and the target. Two types of tabular CUSUM statistics are one for positive mean 

shifts and the other for negative mean shifts. Specifically, the positive part deals with the 

observations that are above the target, while the negative part copes with those below the target. 

Let xi be the one dimensional ith observation on the process. Note that the statistic of the negative 

part is a positive number as well.  However, when these two statistics are plotted on the same 

chart, the CUSUM statistic for the negative shifts are plotted below the center line as showed in 

Figure 7.5. The statistics of the tabular CUSUM is showing below (Hawkins, 1993).  

0 1max[0, ( ) ]i i iC x K C 
                                                      (1) 

 0 1max[0,( ) ]i i iC K x C 
                                                      (2) 

where the C+ and C- represent the positive and negative parts of tabular CUSUM. The starting 

values are 0 0 0C C   . K is called the reference value (or called the allowance or slack value). 

Usually, K is about half of the absolute difference between the target value µ0 and the out-of-

control value of mean µ1 to be detected, i.e.,  

Toyota Camry SE Saab  9-3 2.0T Bentley Arnage R

Mercedes-Benz  CLS550 Cadillac CTS
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hp
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cyl.
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1 0

2
K

 
                                                               (3) 

K can also be expressed in standard deviation form in terms of δ=| µ1- µ0|/σ, which provides the 

magnitude of the shift to be detected. And K then becomes 2
 σ or K=k σ, k= 2

 .  

Figure 7.5. An Example of the CUSUM Chart. The first 25 dataset was generated from 
N(10,12), while the rest 5 dataset was from N(12,12). 
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The following steps in equations (4) to (6) are taken to standardize the original data set. 

Specifically, the ith observation is standardized as 

0i
i

x
y






(4)

where ߪ is from the phase I estimate or known, and the equation (5) and (6) become 

, , 1max[0, ]p i i p iC y k C     (5)

, , 1max[0, ]n i i n iC k y C       

(6)

where Cp,i is the ith observation statistic of standardized two-side CUSUM for positive mean 

shifts, while Cn,i is the ith observation statistic for negative mean shifts.  

To decide whether the observation is out-of-control or not, H is the critical value for an out-of-

control signal. If either iC  or iC is larger than H, it is considered that the process is out of 

control. Montgomery (2008) suggested that H be 5 times the process standard deviation σ, i.e, 



122 

 

H=hσ, where h=5. Since the process has been standardized, the detection criterion can be revised 

to whether Cp,i or Cn, i is larger than h or not. 

Furthermore, since the CUSUM procedure is based on the accumulated difference 

between observations and the target, a delay phenomenon will affect when an out-of-control 

signal is detected. For example, if a process has a mean shift at xi, the system will not give an 

alarm until xj, i<j because of this phenomenon. Montgomery (2008) provided an example of 

finding the last-in-control observation, and in this paper, a pseudocode of tabular CUSUM is 

implemented in Figure 7.6, where N+ is the counter that records the number of consecutive 

periods that the upper-side CUSUM Cp,i values are larger than zero, while N- is the counter for 

the lower-side CUSUM Cn,i. And the last-in-control position l is equal to o-N+ or o-N-, where o 

is the stopping counter number when the first out-of-control signal takes place during the phase 

II monitoring. 

 

 

  7.2.4 The Multivariate CUSUM Chart 

 For processes with multiple quality characteristics, a multivariate CUSUM should be 

implemented. Multivariate control charts are often recommended over running multiple 

univariate control charts simultaneously because the overall type I error can be controlled to a 

desired level. Crosier (1988) proposed one of the better multivariate CUSUM schemes in term of 

the average run length (ARL) performance called vector-valued CUSUM. The main idea of this 

multivariate CUSUM (MCUSUM) is similar to that of the univariate CUSUM, except that 

MCUSUM multiples the statistic by a weight.  

Procedure of Tabular CUSUM 
set i=1, Cp,0 and Cn,0 
while Cp,i and Cn,i smaller than h do 
     calculate Cp,i and Cn,i by using (5) and (6). 
     if Cp,i > 0  then N+= N++1 
     else N+==0 
     if Cn,i > 0 then N－= N＿+1 
     else N－==0 
     i++ 
end while 
out-of-control o=i 
last-in-control l =o- N+ or o- N＿ 
print Cp,i, Cn,i, o, and l for all i. 

Figure 7.6 Pseudocode of Procedure of Tabular CUSUM 
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Let Xi be ith observation on the process. Xi is from a multivariate normal distribution with 

mean T and variance-covariance ∑ which are known or can be estimated from a phase I data set. 

The statistics of MCUSUM is as below.  

1 1/2
1 1[( ) ' ( )]i i i i iC S X T S X T
                                                 (7) 

then 

1

0                                     if 

( )(1 )    if 

i i

i i i i
i

S C k

k
S S X T C k

C

 

     

                                       (8) 

where S0=0 and k>0 

An out-of-control signal is generated when  

' 1 1/2[ ]i i iy S S h                                                                (9) 

where k is a reference value and h is a decision interval for the process.  

The chosen value of k and h values for in-control ARL of 200 and 500 can be found in Crosier’s 

study (1988). In this study, we reorganize their result in Table 7-1.  

 

Table 7-1 Chosen value of k and h with different kinds of dimension p under two in-control 

ARLs. 

 In-Control ARL’s of 200 In-Control ARL’s of 500 

p h k h k 

2 5.50 0.5 6.65 0.5 

5 9.46 0.5 10.9 0.5 

10 14.9 0.5 17.2 0.5 
20 24.7 0.5 28.0 0.5 

7.3 The Proposed Marginal CUSUM Glyphs 

The proposed framework first relies on the MCUSUM described in the previous section 

to detect any process shift so that the overall type I error is desirable. If the type I error is 

excessive, too many false alarms will be triggered. Operators may become placid and ignore a 

true process shift that may prove to be costly in the future. Therefore, in this study, the proposed 

method uses the multivariate control chart as the primary detection method, while the marginal 

univariate control chart described in section 7.2.3 is used as the diagnostic tool once the 

multivariate control chart signals an out-of-control observation.     
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The proposed diagnostic tool, the marginal CUSUM glyphs, is presented in this section. The 

proposed method, integrating marginal CUSUM into one glyph, is a visualization tool for a 

decision support system dealing with multivariate quality characteristics. Specifically, glyphs 

plotted over time are organized in panels of trellis. Every row contains two time series glyphs, 

i.e., Cpi and Cni. Cpi is a glyph of ith observation for the upper (positive)-side CUSUM statistic, 

while Cni is a glyph of the same observation for the lower (negative)-side CUSUM statistic. Each 

vertex in the glyph represents a response that shares equal space around 360 degrees. When a 

CUSUM statistic becomes large, the corresponding vertex would grow in length. On the other 

hand, an in-control process would have all vertices close to the center “dot.” Finally, a circle 

with the radius h encircles the center dot, and this circle represents a control limit for each glyph. 

If a few responses are responsible for an out-of-control MCUSUM signal, their marginal 

CUSUM would show abnormality in the glyph over time leading to the out-of-control moment, 

and those spikes would excess the circle. The following steps describe the main procedure of the 

proposed marginal CUSUM glyphs. 

Step 1: Run MCUSUM until it provides an out-of-control signal at location or time τ 

assuming one sample is taken for each sample period. 

Step 2: Run SD2CUSUM procedure to generate Cp,i , Cn,i  and record any out-of-control 

o, and last-in-control location l for each dimension. The out-of-control position for the ith 

dimension oi is the location that excesses the control limit h, while the last-in-control 

location li is equal to io N   or io N  for dimension i where N+ and N- are defined in 

section 2.3. 

Step 3: Construct star glyphs staring from sample periods 1 to τ for both positive and 

negative glyphs. Each glyph consists of a circle with radius of h and spikes with length of 

Cp,i or Cn,i radiating from the center of a circle. We choose to start the spikes from 3 

o’clock position and move the spikes in counterclockwise direction with identical angle 

between any adjacent spikes. 

Step 4: Print out out-of-control o and last-in-control l for each dimension, and display the 

marginal CUSUM glyphs. Out-of-control signals indicate which variables contribute 

statistics of MCUSUM, while last-in-control locations show when these variables become 

out-of-control. 
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 With a stable and in-control process, a glyph on the trellis panel should present a “dot” 

with some tiny spike inside of a circle. However, users might not see some small change by 

looking at a “dot”, for a tiny spike might be difficult to distinguish. Instead of a “dot”, users can 

add a constant c on both Cp,i and Cn,i to expend a “dot” into a polygon shape. The new statistics 

showing in equation (10) and (11) denoted CCp,i and CCn,i would replace the original Cp,i and Cn,i. 

Also the same c is required to be added to the radius h to maintain the same scale of threshold as 

shown in equation (12). This new limit is denoted as H. 

, , 1max[0, ]p i i p iCC c y k C                                                         (10)

, , 1max[0, ]n i i n iCC c k y C                                                        (11)

H=c+h                                                                                             (12)

 

7.3.1 An Example to Demonstrate the Use of the Proposed Method 

 An example of 5-dimensional, 20 observations with one sigma mean shift example is 

presented in this section. The dataset is shown in column of x1 to x5 in Table 2. It was generated 

from the multivariate normal distribution. The first 10 observations was simulated as in-control 

data from a multinormal distribution with mean vector μ0=(5,10,15,20,25) and variance-

covariance matrix shown in equation (13), while the last 10 observations represented out-of-

control data from µ1=(6,10,16,20,26), i.e. a small mean shift at the first, third and fifth variables, 

and its variance-covariance structure same as that of the first 10 observations.   

1 0.3 0.3 0.3 0.3

0.3 1 0.3 0.3 0.3

0.3 0.3 1 0.3 0.3

0.3 0.3 0.3 1 0.3

0.3 0.3 0.3 0.3 1

 
 
 
  
 
 
  

                                                      (13) 

A Scatter plot of this example is shown in Figure 7.7, in which the dots represent the first 10 

observations, while the squares are for the last ten. The ellipses are 95% confidence contours 

based on the normal assumption. The solid-line ellipses are for the first 10 observations, while 

the dash-line ellipses are for the last 10.  Note that, in reality, one would not know in advance 

when such a shift takes place or if it takes place at all. Even with dots and squares it is difficult to 

identify the process status. 
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At the beginning of the proposed method, the MCUSUM is applied. After using the 

equations (7), (8), and (9) with h=9.46 and k=0.5, the statistic of MCUSUM is showing in the 

column of C in Table 2 and its control chart is showing in Figure 7.8. The out-of-control signal 

occurred starting at 15th observation.  

 At this point, the diagnostic process begins. The first step is to standardize every 

dimension by using equation (4) where σ=1 and μ0=(5,10,15,20,25). Next, the procedure of two-

side CUSUM is applied via equations (5) and (6) with h=5 and k=0.5. The marginal CUSUM 

statistics are shown in Table 7-3. 

To Determine Which Variables Contribute to the Out-of-control Signal 

The data of Cp,i and Cn,i where i=1 to 15 in Table 7-3 are used to construct the proposed 

glyphs. After applying the traditional star glyphs described in section 7.2.2 for each Cp,i and Cn,i, 

the soild-line circle with radius=h is also added on each of glyph. In Figure 7.9, the proposed 

glyphs are shown. The graph of “basic” is an elementary glyph of a scale. Note that the star 

glyphs are not visible when the process is in control, where the values of Cp,i and Cn,i are close to 

zero. Therefore, a constant c is added to Cp,i ,Cn,i and h according to equations (10) to (12). In this 

case, the glyphs with c=3 are shown in Figure 7.10. There are three spikes exceeding the circle, 

between CCp14 and CCp20 indicating that the means of variables x1, x3, and x5 have shifted.  In 

addition, there is no spike exceeding the circle in any of Cn or CCn. One can conclude that no 

negative mean shift occurred.  

To Determine When Shifts Took Place 

In Table 7-3, the 14th observation of Cp statistic in the first dimension is 5.83, which is 

larger than h=5. Thus, it is deemed that the first dimension has shift at 14th observation on 

positive-side CUSUM. Moreover, since the correspond Np,1 of 14th observation is 6, the last-in-

control observation is 14-6=8th observation according to the definition of last-in-control in 

section 7.2.3. Using the same philosophy, the third and the fifth dimensions are found to shift at 

16th and 17th, respectively. And their last-in-control locations are at 10th observation for the third 

dimension, and 11th observation for the fifth dimension. And there is no shift indicated in 

negative-side CUSUM. The proposed method indicates that variables x1, x3, and x5 make 

contribution to the out-of-control signal at location 8th, 10th, and 11th, respectively. 
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Table 7-2. 5-dimensional, 20 observations dataset. 

	 x1	 x2	 x3	 x4	 x5	 C	

1 4.79858 10.0034 15.0335 19.2843 25.0273 0.463891 

2 4.85333 9.1170 14.8924 18.3470 21.8418 2.607937 

3 4.32499 8.9170 16.2335 19.6594 25.6710 1.775256 

4 5.23184 10.2377 14.3568 18.8797 25.0120 2.239928 

5 6.76232 8.4736 14.8295 18.7632 25.3518 3.221392 

6 3.93670 10.0544 14.8085 18.3438 26.4359 2.147643 

7 4.98181 8.9128 12.3676 20.7162 24.5627 2.440458 

8 4.57178 12.2499 15.3191 20.6362 26.2305 2.130893 

9 5.85859 9.7962 14.5142 20.2430 24.0448 0.772875 

10 6.95341 9.3181 15.1976 20.6888 24.6941 1.788469 

11 7.15771 8.9142 15.6287 19.4212 25.4814 3.296222 

12 6.23149 9.7179 16.4945 19.4940 26.2335 5.596017 

13 6.16967 9.5291 17.2668 19.7801 26.9197 7.212117 

14 6.45825 10.9076 15.4995 19.0572 25.7781 8.722549 

15 7.39763 10.4058 15.5910 21.2973 25.9004 11.45267 

16 5.26227 10.2907 17.4474 21.4488 25.6842 13.99988 

17 5.42656 12.8401 18.6317 19.5853 25.1729 15.96414 

18 7.06759 10.2345 16.2082 19.4704 26.4889 15.93851 

19 7.20849 10.2192 13.8677 19.0505 26.8322 16.17303 

20 6.00803 10.2438 15.9425 20.9734 26.3481 18.32671 

 

Figure 7.7. The scatter plot of the given 

example.  

 
 

Figure 7.8. MCUSUM control chart of the 

given example. 
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Table 7-3. The result of two-side standardized CUSUM for the given example. 

(a) SD2CUSUM for Positive Mean Shifts 

i , ,1p iC  
, ,1p iN  

, ,2p iC , ,2p iN , ,3p iC , ,3p iN , ,4p iC , ,4p iN , ,5p iC , ,5p iN  

1 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

3 0.00 0 0.00 0 0.73 1 0.00 0 0.17 1 

4 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

5 1.26 1 0.00 0 0.00 0 0.00 0 0.00 0 

6 0.00 0 0.00 0 0.00 0 0.00 0 0.94 1 

7 0.00 0 0.00 0 0.00 0 0.22 1 0.00 0 

8 0.00 0 1.75 1 0.00 0 0.35 2 0.73 1 

9 0.36 1 1.05 2 0.00 0 0.10 3 0.00 0 

10 1.81 2 0.00 0 0.00 0 0.28 4 0.00 0 

11 3.47 3 0.00 0 0.13 1 0.00 0 0.00 0 

12 4.20 4 0.00 0 1.12 2 0.00 0 0.73 1 

13 4.87 5 0.00 0 2.89 3 0.00 0 2.15 2 

14 5.83 6 0.41 1 2.89 4 0.00 0 2.43 3 

15 7.73 7 0.31 2 2.98 5 0.80 1 2.83 4 

16 8.90 8 0.00 0 4.81 6 0.78 2 5.53 5 

17 9.06 9 0.00 0 6.64 7 0.19 3 6.75 6 

18 9.35 10 0.00 0 7.00 8 0.00 0 6.44 7 

19 8.93 11 0.00 0 6.12 9 0.00 0 7.75 8 

20 11.18 12 0.87 1 7.04 10 0.16 1 9.56 9 

(b) SD2CUSUM for Negative Mean Shifts 

i , ,1n iC  
, ,1n iN  

, ,2n iC , ,2n iN , ,3n iC , ,3n iN , ,4n iC , ,4n iN , ,5n iC , ,5n iN  

1 0.00 0 0.00 0 0.00 0 0.22 1 0.00 0 

2 0.00 0 0.38 1 0.00 0 1.37 2 2.66 1 

3 0.18 1 0.97 2 0.00 0 1.21 3 1.49 2 

4 0.00 0 0.23 3 0.14 1 1.83 4 0.98 3 

5 0.00 0 1.25 4 0.00 0 2.57 5 0.12 4 

6 0.56 1 0.70 5 0.00 0 3.72 6 0.00 0 

7 0.08 2 1.29 6 2.13 1 2.51 7 0.00 0 

8 0.01 3 0.00 0 1.31 2 1.37 8 0.00 0 

9 0.00 0 0.00 0 1.30 3 0.63 9 0.46 1 

10 0.00 0 0.18 1 0.60 4 0.00 0 0.26 2 

11 0.00 0 0.77 2 0.00 0 0.08 1 0.00 0 

12 0.00 0 0.55 3 0.00 0 0.08 2 0.00 0 

13 0.00 0 0.52 4 0.00 0 0.00 0 0.00 0 

14 0.00 0 0.00 0 0.00 0 0.44 1 0.00 0 

15 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

16 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

17 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

18 0.00 0 0.00 0 0.00 0 0.01 1 0.00 0 

19 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 

20 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 
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Figure 7.9. The CMCUSUM glyphs of the given example with c=0. 

 

Figure 7.10. The CMCUSUM glyphs of the given example with c=3. 
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7.4 A Simulation Study 

 To examine the capability of the proposed method, a simulation study is planned to 

explore magnitude of h, number of dimensions, number of dimensions shifted, and type of 

correlation-coefficient structures. Figure 7.11 shows the detailed experimental plan of the 

proposed study. The design is to test the capability of the proposed method at different types of 

value of h in terms of absolute value of deviation between true shift location and calculated shift 

location. Each factor combination is repeated 1000 times.  Each run contains 100 observations 

with 1σ mean shifts taking place at 31st observation for all planned dimensions. For example, 

considering a five-dimensional, 100 observations dataset with three of five dimensions having a 

step mean shift, the simulation data set would have the first 30 observations generated from the 

multivariate normal distribution with µ0, while the last 70 observations are from μ1. The means 

of the non-shifted dimensions stay at the same magnitudes. The variance shift is not considered 

in this study.   

Figure 7.11. Experimental design of the proposed method at different types of h. 

 

Magnitude of h 

 Since h is the major criterion of setting the control limit of CUSUM, it is necessary to test 

the proposed method under different magnitudes of h. The smaller the value of h the more 

quickly the SD2CUSUM detects a shift. However, the type I error would increase. On the other 

hand, if h has been increased, the type II error would increase. In this paper, six types of value of 

h are applied to, i.e., h=3, 4, 5, 6, 7, and 8.  

Magnitude of h: 
 h=3, 4, 5, 6, 7, 8 
 
Number of Dimension:  

dim=3, 5, 10, 20 
 
Number of Dimensions Shifted:  

1. Small: 1/3 of number of dimensions shifted—3(1); 5(2); 10(3); 20(5) 
2. Medium: half of number of dimensions shifted—3(2); 5(3); 10(5); 20(10) 
3. Large: All of number of dimensions shifted—3(3); 5(5); 10(10); 20(20) 

Note: 3(2) means two out of three dimensions are shifted. 
 
Types of Correlation-Coefficient Structure: 
 ρ=0, 0.5, 0.9 
 
Input Data Series Type: 
 Multivariate Normal Distribution 
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Number of Dimensions 

 The number of dimensions is one of the factors considered in implementing multivariate 

control charts, especially in visualization of multivariate dataset. In this study, four dimensions 

are considered. They are 3, 5, 10, and 20. This factor allows us to study how effective the 

proposed method is when the dimension increases. 

Number of Dimensions Shifted 

 There are three different levels of number of dimensions shifted in this study: small, 

medium, and large. For small level, 1/3 of number of dimensions shifted. For example, if one 

dimension has 1σ mean shift in a three-dimensional dataset, this case is in the small level 

category. That is, the first 30 observations follow multivariate normal distribution with μ0=(5, 10, 

15), while the last 70 observations are generated from multivariate normal distribution with 

µ1=(6, 10, 15). The notation of this case is 3(1). In addition, the other small number of dimension 

shifted cases has 2, 3, and 5 dimensions shifted for 5, 10, and 20 dimensions, respectively. For 

the medium level, half of number of dimensions shifted, while all of number of dimensions has 

shifted for large number of dimensions shifted cases.  Note that the goal of this factor is to study 

the effect of how wide-spread mean shifts are to the responses rather than the magnitude of the 

shifts. 

Types of Correlation-Coefficient Structure 

 Different types of variance-covariance structures are also considered in this simulation. 

Without the loss of generality, three types of correlation-coefficient matrices are used to study 

no, medium and high correlations among the responses. The correlation-coefficient structure for 

the simulated data that generated from multivariate normal distribution is the following.  

1

1





 
    
  



  



, where ρ=0, 0.5, and 0.9                                  (14) 

7.4.1 Simulation Results and Discussions 

 This section shows the computational results of the proposed simulation study using 

1,000 runs for each combination – 216,000 runs in total. The performance of the proposed 

method is measured by four statistics: the correct identification percentage, the average 
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absolute value of deviation, type I error rate (false alarm rate), and type II error rate. 

These four statistics will be applied to the last-in-control signals. The first one is the bigger the 

better, while the rest of which are the smaller the better. The correct identification percentage 

indicates how accurate the system is to identify which responses are responsible for the out-of-

control signal. The average absolute value of deviation measures the distance between true 

location of a mean shift and its calculated location among all dimensions that exhibit mean shifts. 

Specifically, it is calculated the follows: 

Average absolute value of deviation = 1

-
m

i i
i

l t

m



                                              (15) 

where li is the calculated location of ith dimension of dataset, ti is the true location of ith 

dimension, and m is the number of dimensions that are identified correct out of control. Under 

the measure of those out-of-control dimensions, the type I error rate, or the false alarm rate, is the 

probability when the proposed method indicates a dimension is out of control while, in truth, it is 

not. The type II error rate, on the other hand, is the probability when it fails to identify a shifted 

dimension. The desired result for the correct identification percentage is 100%, while that of the 

other three statistics is the closer to zero the better.  

The suggestion of h for the proposed method provides a guideline for implementing the 

proposed method and will be discussed. The simulation results are shown in Figure 7.12 to 

Figure 7.14, and their corresponding tables are available from the authors upon request. For 

example, Figure 7.12(a) indicates the simulation results of small number of dimensions shifted 

with ρ=0. Each sub-chart consists of four performance measures – correct identification 

percentages (correctness), average absolute value of deviation(dev), type I error rate (in %) (type 

I), and type II error rate (in %)(type II). Specifically Figure 7.12 (a) summarizes the simulation 

result of small number of dimensions shifted under different h with ρ=0, while Figure 7.12 (b) 

and 12(c) are for ρ=0.5 and ρ=0.9 respectively. Next level down, Figure 7.12 (a-1) to (a-4) depict 

four performance criteria respectively.  For example in Figure 7.12 (a-1), correct identification 

percentage plots against the dimension. Although h=3 and 4 have the highest correct 

identification percentages, they also have high deviation and type I error rate. Therefore, h=5 is a 

more balanced control limit for this case because it has larger correct identification percentages 
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and lower type II error rate than those of h=6, 7, and 8. Although values of deviation and type I 

error rate at h=6, 7, and 8 are lower than those of h=5, they are close to each other.  

In the case of small number of dimensions shifted with ρ=0.5 as shown in Figure 7.12(b), h=4, 5, 

and 6 have the top three highest percentages of correct identification. The control limit h=4, 

however, have higher values of deviation and type I error rate than those of h=5 and h=6. The 

differences between h=5 and 6 for all criteria and dimensions are small. Thus, h= 5 or 6 is the 

recommended control limit for this case if the correct identification percentage and accuracy of 

where a process shift takes place are important.  Note that h=7 and 8 are chosen due to their poor 

correct identification percentages 88.3% and 78.1% as oppose to those( 98.3% and 95.9%) of h= 

5 and 6.  

Finally the case of ρ=0.9 with small number of dimensions shifted is considered, h=5, 6, 

7, and 8 have larger correct identification percentages than that of h=3 and 4. Moreover, h=7 and 

8 have very small value of deviation and type I error rate shown in Figure 7.12 (c-3). However, 

Figure 7.12 (c-4) indicates high type II error rate in 3 and 5 dimensional datasets of h=7 or 8 may 

not be acceptable. Therefore, it is suggested that h=5 or 6 is used as the control limit in this case. 

In summary, h=5 is a good choice for all dimensions and covariance structure when the number 

of dimensions exhibiting shifts is small. 

 In the case of the medium number of dimensions shifted, half of response variables 

contain mean shifted. The simulation results are shown in Figure 7.13. In Figure 7.13 (a-1), h=5 

performs a better result than any others for all ρ because it has high correctness rate, small 

deviation, type I error rate, and type II error rate for last-in-control signal. 

 The final situation is when all dimensions shift. Since all mean levels of dimensions have 

shifted, there is no type I error occurred in this case.  The computational results are shown in 

Figure 7.14 (a-1) to (c-4). All of them show that h=5 has the best choice among h because of its 

balanced performance in terms of acceptable correct identification percentages, small deviation 

and type II error rate. Thus, h=5 is a recommended control limit for the proposed method when 

large number of dimensions shifted happened. From the above analysis, h=5 seems to provide 

the best balanced performance for all dimensions, covariance structure, and number of 

dimensions exhibiting shifts. 
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Figure 7.12.Performance statistics for small level of number of dimensions shifted with (a) ρ=0, (b) 
ρ=0.5, and (c) ρ=0.9 under different h.  

The y axes of plots (1) to (4) are correct classification percentage, average absolute value of deviation, type I error 
rate in percentage, and type II error rate in percentage, respectively. The x axis represents the numbers dimension for 

last-in-control location. 
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Figure 7.13. Performance statistics for medium level of number of dimensions shifted with (a) ρ=0, 
(b) ρ=0.5, and (c) ρ=0.9 under different h.  

The y axes of plots (1) to (4) are correct classification percentage, average absolute value of deviation, type I error 
rate in percentage, and type II error rate in percentage, respectively. The x axis represents the numbers dimension for 

last-in-control location. 
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Figure 7.14. Performance statistics for large level of number of dimensions shifted with (a) ρ=0, (b) 
ρ=0.5, and (c) ρ=0.9 under different h.  

The y axes of plots (1) to (3) are correct classification percentage, average absolute value of deviation, and type II 
error rate in percentage, respectively. The x axis represents the numbers dimension for last-in-control location. 
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Figure 7.15. Simulation results of small 

number of dimensions shifted. 
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Table 7-4. Simulation results of small number 
of dimensions shifted. 

h 
Correct 
ident. % 

Type I Err. 
Rate (%) 

Type II Err. 
Rate (%) 

Avg.  
abs. 
value of 
Deviation 

3 83.733% 13.698% 2.569% 7.328 

4 91.650% 4.127% 4.223% 4.645 

5 92.446% 1.145% 6.409% 3.620 

6 90.725% 0.349% 8.926% 3.238 

7 88.421% 0.099% 11.480% 3.056 

8 85.760% 0.030% 14.210% 2.943 

Figure 7.16. Simulation results of medium 

number of dimensions shifted. 
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Table 7-5. Simulation results of medium number of 
dimensions shifted. 

h Correct ident. % 

Type I 
Err. 
Rate 
(%) 

Type II Err. 
Rate (%) 

Avg.  
abs. 
value of 
Deviation 

3 85.394% 9.323% 5.282% 6.082 

4 89.114% 2.811% 8.075% 4.164 

5 87.591% 0.788% 11.620% 3.469 

6 83.887% 0.223% 15.890% 3.202 

7 79.725% 0.064% 20.211% 3.084 

8 75.119% 0.020% 24.861% 3.046 

Figure 7.17. Simulation results of large 

number of dimensions shifted. 
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Table 7-6. Simulation results of large number of 
dimensions shifted. 

h Correct ident. % Type II Err. Rate (%) 

Avg.  
abs. 
value of 
Deviation 

3 94.884% 5.116% 5.332 

4 91.264% 8.736% 3.832 

5 86.474% 13.526% 3.336 

6 80.167% 19.833% 3.159 

7 73.063% 26.937% 3.080 

8 65.346% 34.654% 3.010 
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Table 7-4 to 7.6 present the simulation results in another perspective by averaging performance 

statistics over all covariance structures and dimensions. For example, the correct identification 

percentages of h=3 is an average value of different types of ρ and different numbers of 

dimensions when h=3. Figure 7.15 to 7.17 correspond to Table 7-4 to 7.6. An h should be chosen 

so that the correct identification percentage is as large as possible while the rest of the 

performance statistics are as small as possible. Note that y axis on the left in Figure 7.15 to 7.17 

are percentages for criteria correct identification percentage, type I error rate in percentage, and 

type II error rate in percentage while that on the right-hand side is for the deviation from the true 

change point. 

Figure 7.15 to 7.17 provide an overall guideline for choosing h that is determined by 

three criteria – correct identification percentage, type II error rate, and average absolution 

deviation. An ideal choice of h provides a high correct identification percentage, a low type II 

error rate, and a small deviation from the true out-of-control location.  However, users may not 

know what kind of underlying covariance structure among responses or number of responses that 

may have shifted in practice. These three figures suggest that h=5 and 6 provide the best overall 

balanced performance because the line segments of these three h values are very close together. 

Note that h=5 was recommended earlier from the analyses based on Figure 7.12 to 14. The 

overall comparisons here provide further confirmation. For example, if a user chooses h=5 to a 

situation where medium number of dimensions may be likely to shift, it will provide 87.6% 

correct identification percentage, 0.79% type I error rate, 11.6% type II error rate, and 3.5 of its 

average deviation from the true spot. This user should contemplate whether h=6 is a better choice 

because the criterion values of this new choice are 83.9% correct identification percentage, 

0.22% type I error, 15.9% type II error, and 3.2 as its average deviation. Do the gains in type I 

error (-0.57%) and average deviation (-0.3) outweigh the loss in correct identification (-3.7%) 

and type II error rate (+4.3%)? 

Because there are multiple criteria present in this problem, a solution is generally reached 

by considering the trade off of all criteria. Eventually a compromised solution is generated. This 

type of problems often referred to as the multi-criteria decision making is beyond the scope of 

this work. Please refer to Triantaphyllou (2000) for more details. 
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7.5 Conclusions and Future Study 

 This study provides a visualization tool for making quality-related decision when the 

number of dimensions is large such as 20. The proposed method, the marginal CUSUM glyphs, 

can help users not only decompose the traditional multivariate control chart, such as, Hotelling’s 

T2, multivariate EWMA, or multivariate CUSUM, but also visualize the original dataset. The 

proposed method provides the information which variable are responsible as well as where or 

when a variable is out of control. From the simulation results, the proposed method is capable of 

detecting mean shifts. In this study, according to the simulation results, h=5 and 6 are 

recommended to be applied to all situations regardless of the covariance structure among 

responses or how many of them exhibiting shifts. The tables and figures based on the simulation 

results also provide a user guideline for choosing other values of h via the correct classification 

percentage, magnitude of deviation, and false alarm rate and type II error rate. 

 For future research, the following issues can be studied. First, the effect of outliers should 

be considered. Outliers can make the statistics of SD2CUSUM increase dramatically to cause 

unnecessary out-of-control signals. To deal with this issue, filtering the dataset may be 

necessary. Techniques of outlier identification for high dimensional dataset include MVE/MCD 

(Rousseeuw, 1985; Rousseeuw and van Driessen, 1999), OGK estimator (Maronna and zamar, 

2002), and PCOut (Filzmoser et al., 2008).  

In this study, the highest number of dimension is 20. It is not a trivia task to expand the 

proposed method to response dimension over 100 or more. The angles between spikes for 50 and 

100 dimensions are 7.2 and 3.6 respectively. The more spikes are within a circle in a star glyph 

the more clutter they cause. When a process is in control, cluttering is not an issue because all 

spikes are within the circles of control limits. Users do not need distinguish individual 

dimension. However, when there are many spikes that exceed control limit circles, it depends on 

how close these spikes are located. If they are equally spaced or far apart, the results of display 

are usually satisfactory. On the other hand, if all out-of-control spikes are adjacent to each other, 

users need to consult with the corresponding diagnostic report to make out which spikes exceed 

the circles. Another way to address high dimension problem is to reduce the number of 

dimensions, such as using principle component analysis (PCA). However, once PCA is applied 

to the original dataset, the original domain is transferred to a much reduced domain. It is hard to 

identify which original dimensions contribute to an out-of-control signal.  
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The proposed glyphs are competent in demonstrating out-of-control responses due to 

mean shifts. However, this version does not consider the changes due to data structure changes 

among responses. One possible solution is to consider the use of colors and angles in addition to 

the expansion of the current visualization from two dimensional to three dimensional space. It 

would be a major undertaking. Finally, the situation in which the number of dimensions is larger 

than the number of observation is challenging.  Neither can the proposed method nor traditional 

multivariate control charts cope with this situation because the estimate of the variance-

covariance structure becomes a nontrivial task. Boyles (1996) and Chang and Ho (2001) have 

provided some ground work in this area. 
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Chapter 8 Conclusions 

In this chapter, the summaries and conclusions of each chapter will be presented, as well as the 

contribution and future study.  

8.1 Summaries and Conclusions of this Research 

The summaries and conclusions of this research are presented as following: 

1. In Chapter 2, this research examined the effectiveness of removing noise using the B-

Splines fitting with and without the help of wavelet transformation in nonlinear profiles. 

Chang and Yadama (2010) proposed a method that combines wavelet transformation and 

B-splines to improve profile monitoring. However, B-spline fitting is effective without 

the help of wavelet transformation when the monitoring of profile shape change is the 

only consideration, according to the experimental results in this research. Therefore, this 

research suggests that B-Splines fitting can be used without applying wavelet 

transformation first, if variance change is not considered. Otherwise, the wavelet 

decomposition will be useful to extract the variation change information.  

2. In Chapter 3, the proposed framework monitors profile shape and variance changes 

simultaneously. The simulation results show that the proposed two-channel monitoring 

framework are capable of detecting scenarios of shape change only and both shape and 

variation changes. However, the proposed method would give false alarm of indication 

that both shape and variance changes in a profile but in fact only variance change exist. 

This research suggests that the causes due to variation changes should be examined first 

by using Paynaba and Jin’s (2011) method.  

3. In Chapter 4, the proposed framework that consists of FFT and the 

clustering/classification method as well as the dimension reduction approach is capable 

of monitoring waveform profiles without gold standard profile. The numerical results 

show that the proposed framework is capable of identifying abnormal wave profiles with 

minimal false alarm. The results of using the proposed method to the real world case 

study from the condensation water temperature profiles that collected from the curing 

process of the high-pressure hose products are also presented. According to the numerical  

results, the proposed framework in phase I (FFT+PAM+ED) constructs a solid phase I 
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process control chart with competitive performance in terms of false alarm rates after 

removing abnormal data points. In addition, the proposed framework in phase II 

(FFT+PAM+SVMRBF+ED) dominates other famous profile analysis techniques with 

respect to the accuracy rate.    

4. In Chapter 5, this research provides two approaches to detect process shifts in multiple 

nonlinear profiles, along with a simulation study for evaluating the performance of the 

proposed approaches in terms of average run length. According to the simulation study, 

the method I has better performance when the shape of profiles is changed entirely in the 

process, while the method II is more sensitive when the process contains partial profiles 

changes. Moreover, when profiles are highly correlated, the detecting power of the 

proposed method is much better than those cases with lower correlations. The hybrid 

method that combines method I and method II are also investigated so that quality 

engineers can diagnose each section before the process is finish without losing detecting 

power.     

5. In Chapter 6, this research applies the PCA to the factorial experimental design when the 

response factor is the format of multiple nonlinear profiles. The numerical result shows 

the proposed method succeeded to convert the multiple nonlinear temperature profiles 

collected from six-location of a biomass pellet to a vector. Therefore, the conventional 

factorial experimental design method can be obtained directly. Also, the numerical results 

show the multiple temperature profiles can be used as the surrogate factors to replace the 

density and durability using desirability function. Finally, this research provides the 

predicting model for user to forecast the density and durability once the multiple 

temperature profiles dataset is given.  

6. In Chapter 7, the proposed marginal CUSUM glyphs provide users a visualization aid to 

decompose the out-of-control signal of a multivariate control chart, and to diagnose the 

cause of out-of-control signal. Also, the proposed method gives the information of which 

variables are responsible as well as where or when a variable is out of control. Moreover, 

this research provides a guideline for choosing the parameters of the proposed method 

according to simulation results.  
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8.2 Future Study 

This research explored the profile analysis in various aspects, single profile analysis, multiple 

profiles analysis, and profile diagnosis along with a visualization aid. However, there are still 

some studies that are not in the scope of this research. The following challenges can be 

considered in future studies.  

1.  Although this research provides a novel approach to monitor a process when the quality 

characteristics of interest are multiple nonlinear profiles, the research was conducted 

when shape change was the only consideration. There are remaining research subjects 

that when the process of interest is profile variance change only or both profiles shapes 

and variance are changed in the multiple profile scenrio.  

2. The quality characteristics of interest in this research are profiles. In reality, it is possible 

the quality characteristics of interest may be a spatial dataset, an image, or a video. To 

develop a process monitoring tool to deal with such data formats is a potential future 

study.  

3. The proposed visualization and diagnosis tool, marginal CUSUM glyphs, only works for 

the number of dimensions up to 20. It will be a challenge when the number of dimensions 

is over 1000 or more. A potential future study can be to investigate how large the number 

of dimensions the proposed method can handle, or explore other new methods to deal 

with the high-dimensional problem.  

4. The methods proposed in this research monitored the profiles at the end of process or 

stage. A possible future study is to monitor the profiles on a real-time base. The possible 

application of real-time monitoring will help the quality engineers  improve the process 

stability during the process rather than wait until the entire process is finished.  
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