/bISTRIBUTED FILE SYSTEMS IN AN AUTHENTICATION SYSTEy/
2]
by

John ¥W. Merritt
't

B. §. E. E., University of South Carolina, 1979

A Master'’'s Report
submitted in partial fulfillment of the
requirements for the degree
Master of Scilence
Department of Computer Science

Kansas State University
Manhattan, Kansas

1986

Approved by:

ey,

Major Professor

L
Abls§
. RY
19804
M
c. >

| A11202 bL38aY

Dedicated

To my wife Jan, who watched over the homestead while I was

away at school and to my two children, Trey and Emily. Also,

acknowledgement to my major professor Dr. Rich A. McBride

for his help and suggestions.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

1. INTRODUCTION
1 1 SYNOmls L L] L] L] L] L]

2.1 DEFINITIONS
2.2 OPTIMIZATIONS . . .
2.2.1 File Structures . .

2.2.2 File System Orga.mzatmn

2.2.3 Reliable Communication Network

2.3 DATA INTEGRITY . . .

2.3.1 Concurrency Control .

2.3.1.1 File Locks .

2.3.1.2 Time-Stamping
2.3.13 ConcutrencyControlmSecretMall

2.3.1.4 Atomic Transactions
2.3.1.5 Record Errors

24 FILESECURITY
2.4.1 Authentication . .
2.4.2 Permission Rights .

L]
L
-
L]

.
[
L]
L]

- . L] -

MAJOR CONCERNS IN A DISTRIBUTED FILE SYSTEM

= & & . " 8 ® & & & @

L]

L] L] - - L] L] . L] L] L]

- & ® & 8 @ s @& @ & & & & & s @

3. DETAIL DESIGN of the NAME SERVER and MESSAGE SERVER
3.1 SECRET MAIL SYSTEM OVERVIEW

3.2 DESIGN ASSUMPTIONS .

3.3 DETAILED DESIGN of the NAME SBRVER

3.3.1 Directory Structures
3.3.2 Name Server Module
3.3.3 E_Request Module .
3.3.4 P_Request Module .
3.3.5 C_Request Module
3.3.6 D_Request Module
3.3.7 ED_Request Module
3.3.8 H_Request Module

3.4 DETAIL DESIGN of the MESSAGE SERVER

3.5 DETAILED SCENARIO .
3.6 RENROLL and RDISCON

4. SYSTEM COMPARISON . .
4.1 OVERVIEW
4.26RAPEVM.....

402‘10vmiew....
422 Design «

43 CSNET . « + « = « -
43.1 Overview
432 Design . . . o .

4.4 UNIX SECURE MALL . .
4.4.1 Overview
442 Design . - . . .

5. CONCLUSION

.

L] L] L] L] [] L] L] L[] L[] L]

L] L] L] L] - L] - L L] L] - L] L] L]

L] L] L] L - L] - L] L] L] L] L] L] L

- . . L] - L L] - L] - L] L] L] .

. - [] L] L] L] - L] - . [(] L) .

. * & e & = & & @ @ . e =

. L] L] L] L] L] L]

. . L] L] L] L] - -

L] .

. L L] L] L] L . L * L] »

. L] . - L] - L] L] L] - L] L] L] L] L]

L] . L] L] L] . L] L] L] L] L]

- « & » = & & & & w = & & * ¢ . *® e & & ® @ & =& @ & & & * & »

* *® & & & & ® @8 @ @ @® & & & *

= & ® B @ & * * @ . . 2 e @

e e ® 8 ® ® & & = ° =

e
COOOWOL00 ~1~1~100 Wb bW =

ey
-

w W ISENSESESEIRSESE N N el adl el el el o
33330023334 SNALWWREROWIAAOO WL -

("
w

5.1 SUMMARY

5.2 PROBLEMS and ENHAN!

5.3 VALUE of SECRET MAIL

REFERENCES

.

L] - L] L]

e & @ .

* & o =

33
34
35
37

Figure 1.
Figure 2.a.
Figure 2.b.

LIST OF FIGURES

SENDX Data Flow Diagram For Remote Mail .
Definitions of StatusFlags
Example: User_a'sfile

"DISTRIBUTED FILE SYSTEMS IN AN AUTHENTICATION SYSTEM"

1. INTRODUCTION

With regard to distributed databases', the issues of how to provide: user
authentication for privacy and security, optimization of response times, and integrity of
data are of rising concern in the computer industry. As an example, an automatic-teller-
machine system provides authentication of the user and protection against illegal accesses to
any user’s bank account records. The proper user is verified by means of a personal card
and his special code or password. If the password is correct, the system permits protected
transactions on his account. The transactions are protected in that software mechanisms are
provided to ensure the integrity of the user's bank records. All transactions and possible
errors are recorded. Also, the transactions are carried to completion without an

inconvenience to the user.

The Electronic Transfer Act in 1980 was passed to protect users against various
losses from errors and unauthorized use [Fernandez 81]. However, even with governmental
protections, if the user was not confident that the system provided authentication, reliable

transactions, and fast response times, the system would not be useful.
1.1 SYNOPSIS

Using these ideas of authentication and a distributed file system, a secret mail
facility was designed and implemented on the UNIX? operating system by a two member

team. The implementation was written using the C-Programming Language [Kernighan 78].

1. Historically the terms distributed database and distributed file system have been used synonymously, though
this usage Is in error [Martin 81]. Throughout this paper the more appropriate phrase term file system will be
used, but I will use database terminology where applicable.

2. *UNIX is a Trademark of AT&T Bell Laboratories

All mail that may be of a sensitive nature should be protected from outside probing or
interception. Secret mail was designed to provide this protection with single encryption for
local messages and double encryption during the remote transfer of messages. The messages
remain encrypted until the intended receiver requests delivery. The user’s data file, which
contains information pertinent to the encrypting and decrypting of messages, is also
protected from outside scanning and corruption. Only the user has permission to access the
data file as long as the application program is executing on his behalf; outside the secret
mail environment the user cannot read the data file. Software mechanisms are provided
within the file system to ensure data integrity. The file system was organized so that the

user would experience minimum response times.
The project was broken into three functional areas:
1. The Authorization Server
2. The Name Server

3. The Message Server

The Authorization Server provides the user interface, the authentication of the user, and
message encryption and decryption. The Name Server provides the management of the file
system and the generation of a unique conversation key. The conversation key is used for
encrypting and decrypting messages. A conversation is when one user sends a encrypted
message to another user, who can decrypt the same message using the conversation key.
The Message Server provides retrieval and decryption of messages that have been sent. The
implementation of the Message Server was done jointly by both members of this project
team, while the Authorization Server and the Name Server were implemented by each team
member. The main emphasis of this paper is on the Name Server and the Message Server's

interactions with the file system.

The main chapters deal with concerns in distributed file systems, the detailed design
of the Name Server and the Message Server, a comparison of this project to similar systems,
and a conclusion. In particular, chapter two covers the concerns of a distributed file
system; the areas discussed are the optimization of user response times by using files similar
in structure to a relational database [Codd 70], the centralization and decentralization of a
file system. and the issue of file system security. As a foundation for a discussion of the
detailed design of the Name Server and the Message Server in chapter three, a step-by-step
analysis of the secret mail facility and user commands are provided. The Name Server and
Message Server are discussed in detail with emphasis on: the optimization of users’
response times, data integrity., and how the servers interact with the file system. Also
presented are user scenarios of file system accesses, and a discussion of how both the Name
Server and the Message Server maintain local and remote data integrity. In chapter four a

comparison is done against the following systems:

1. GRAPEVINE [Birrell 82]
2. CSNET [Solomon 82]

3. UNIX™ "Secure Mail" facility [UNIX 83]

These systems were selected due to their capabilities for transferring files between users.
The final chapter discusses how the implementation of this project could be of value to
others, and it also summarizes known problems and suggestions of future enhancements.

2. MAJOR CONCERNS IN A DISTRIBUTED FILE SYSTEM

2.1 DEFINITIONS

A distributed file system is a dispersion of files across many computers. A file

system should not be confused with a database. Databases use the concept of data/program
independence, whereas a file processing system is data dependent [Cardenas 79]. Each
application program in a file processing system contains the definition of data as used in a
file. In a file processing system any change in the attributes of a file, even minor changes,

involves recompiling the application program.

Individual application programs or file servers perform transactions on a file
system. A file server is a program that only accesses and transfers or stores portions of a
file and nothing else, whereas an application program will perform many functions outside
the accessing of files. Transactions are defined as a sequence of actions on data items in a
file which preserve the consistency of the data [Eswaran 76]. An action, in this context, is a

single event, such as, reading or writing a data item to a file.
22 OPTIMIZATIONS
2.2.] File Structures

A concern for the success of a distributed file system is in optimization. The
optimization or efficiency of a file system is measured in terms of response times that users
experience during transactions. Response times are generally dependent on the amount of
data accessed, but in a distributed file system, data communications between computers is
usually a more dominant factor [Ullman 82]. Transactions need to be handled promptly or
the system will be effectively unusable. One way of optimizing is by the organization of
the file structure. The organization of the data can significantly influence response times.
The data needs to be easily accessible and structured for quick file reads and writes. The
relational model is a structure designed for quick accesses of data [Codd 70]. The data
resides in what is called a flat file, where each record instance has a similar number of

fields. The other data structures’ hierarchical and network models are not limited to being

in a flat file structure [Cardenas 79]. The relational model provides a simple approach to
accessing data. The data in a relational model is stored in the form of tables called
relations. These relations are made up of fields called attributes. An attribute or a set of
attributes which when given values will uniquely determine a tuple in the relation is called
a key [Cardenas 79]. The key is used to access a particular row or tuple in the table. The
tabular structure of the secret mail project’s file system is similar to relations. Each
individual user will have a file that is associated only with him. The user’s file is
structured in the form of a table with columns and rows of data. Each row is one relation
of data attributes. In this approach, the Name Server is able with a key to find the proper
records, once the user’s identification is known. The UNIX™ operating system provides all
users with a unique identification [Ritchie 74]. In addition, the operating system provides a
file management system; therefore, the mechanisms used in ﬁnding- and accessing files are
quick and efficient [Ritchie 74].

2.2.2 File System Organization
Another means of optimization is through the distribution of the file system. There

are three basic types of file system organizations:

1. Centralized

2. Decentralized

3. Combination of both [Martin 81]
There has been much controversy over which is the optimum choice. In a centralized
system all computers communicate with a central computer that is responsible for

maintaining a master copy of the data files. In a decentralized system the data is fully

replicated, i.e. each system has a copy of all the data files. The third choice is to have a

partially replicated system. In this case, the system is said to be both centralized and
decentralized. There are some advantages and disadvantages to having a decentralized
system. A decentralized system is more reliable since a failure of one computer does not
bring down the total system. The storage of frequently used data in a decentralized system
can also be located at optimum places for fast accesses, which means quick user responses.
However, a disadvantage is that updates in a distributed system are more complicated due
to the need to keep the various file tables identical despite network delays, corrupted
messages, and system failures [Tanenbaum 81). Security in a decentralized file system is
also an issue, since multiple locations will need protection [Fernandez 81]. In a centralized

system only one location has to be concerned about security.

The secret mail file system structure is a combination of centralized and
decentralized. This organization worked well with the project’s application. There are
unique files on each computer (therefore, providing for a centralization of certain files), and
there are files that have to be decentralized, since the files need to be replicated on each
computer. Generally the replicated files are maintained by the Name Servers on each
computer. However, the file that contains the list of available computers within the secret

mail network can only be changed by an administrator.
2.2.3 Reliable Communication Network

Another means of optimizing a file system is by having a reliable and fast
communication link between computers. The Open Systems Interconnection(OSI) reference
model that was developed by the International Standerds Organization(ISO) is used in the
design of networks today [Tanenbaum 81]. The OSI reference model provides for seven

layers of protocol, namely:

1. The Physical Layer

2. The Data Link Layer
3. The Network Layer

4. The Transport Layer

5. The Session Layer

6. The Presentation Layer

7. The Application Layer

File system transactions are performed in the application layer. This is under the control of
the application programmer. The presentation layer performs any data transformation that
may be needed. Text compression, encryption, and any virtual-terminal protocol or file
transfer protocol are all handled in the presentation layer. Transactions that link to other
machines depend on the session and transport layers. The session layer provides process to
process connection. The transport layer provides the reliable host to host communication
link protocol that is needed [Tanenbaum 81]. The other three layers of the OSI model are
also of importance, but primarily deal with routing and data transmission in a

communication subnet.

2.3 DATA INTEGRITY

2.3.1 Concurrency Control

2.3.1.1 File Locks
In the design of a distributed file system, a sub-system for concurrency control is
needed to maintain data integrity. Two processes that try to write to the same file have the

potential for corrupting the data in the file. The file can be corrupted with writes

intermixed from both processes. There are several methods to control concurrency
problems. One method is the “wait" principle. If two processes both try to execute
transactions that conflict, one must wait for the other to finish before proceeding. The

mechanism used here is called locking [Bhargava 82].

A locking operation is when a process generates a flag or lock, such as, the creation
of a file, as a signal to all other processes that a another particular file is being updated. All
other processes before accessing the particular file for updates would first verify that a lock
has not been created. If the lock is detected, then the process waits until it is removed.
Once the lock is removed, then the second process would repeat the same scenario as the

first process in generating a lock.

One of the most widely used methods is called two-phase locking [Eswaran76]. The
requirement is that in any transaction, all lock operations must proceed all unlock
operations. One characteristic of having a locking mechanism of this type is that the
system makes the transactions visible as opposed to transparent. Therefore, on failures the
sub-system has to manage the removal of the locks that are left or the system can deadlock
[Tanenbaum 81). Deadlock can occur in this situation since no process will be able to access

the data, even though, there are no contentions.

2.3.1.2 Time-Stamping

Another method of concurrency control is called time-stamping. The time-stamp
determines the order in which transactions are executed. For instance, the transaction that
is the oldest would go first in a first come first serve scheduling of transactions [Lampson
78].

2.3.1.3 Concurrency Control in Secret Mail

The secret mail project uses the two-phase locking mechanism. All files that could

have conflicts in writing, are guarded by means of the locking mechanism. A lock file is
created in the same file directory as the file that needs to be accessed. The Name Server
checks to see if a file with the file name "file-name_lock" is found. For example, if the
Name Server needed to access the data file called "user”, it would first check to see if a file
called "user_lock" existed. If the lock file existed. the Name Server would wait until the
lock file was removed before accessing the file "user". However, if the lock file was not
removed after a fixed amount of time, the Name Server would record an error in the
ERRLOG directory. An administrator would have to remove the lock file before that
particular user's file could be used. Assuming the lock file was removed, the Name Server,
just before accessing the user’s file, would create another "user_lock" file to warn other
Name Servers processes the user's file is in use.
2.3.14 Atomic Transactions

Data integrity can also be controlled by having atomic transactions. Atomic means
that either the transaction is carried out to its completion or not at all. For example, a
transaction may have the need to do several disk accesses, there is alway danger that the
system will crash halfway through the transaction and leave data in an inconsistent state.

The central idea in an atomic transaction is in two phases [Lampson 78}:
1. Record the information necessary to do the writes in a set of intentions without

changing the data stored by the system. The last action taken in this phase is said to

commit the transaction.
2. Perform the writes, actually changing the stored data.

Theoretically, in an atomic transaction, if a crash occurs after the transaction commits ,but
before all changes are made, then the second phase is restarted. The restarts can happen as

many times as necessary, to make all the changes. The writing of the intentions set also

-10-

needs to be atomic.

2.3.15 Record Errors

As usual, there is no guaranteed protection from all types of data corruption. The
best that can be done is to provide the mechanism that best suits the application. Even
though the data can become inconsistent, from operating system errors or hardware
malfunctions, there are still methods to correct some of the problems. One way is to record
known errors that are seen by a file server into an err_log file. Using this information an
administrator of the system, if possible, can correct the problem. The administrator is the
supervisor of the file system, who provides services that requires human intervention to the
system, such as, rmoving lock files. Even if the inconsistences cannot be corrected, keeping
an err_log file is good software practice. Also, the err_log file may point to potential
software problems that could be corrected. It is clear that without some scheme of

concurrency control the file system could be corrupted.
24 FILE SECURITY

2.4.1 Authentication

An area of concern in security is the malicious or accidental corruption of a file. In
both cases the file needs to be protected. Protection applies to both distributed and
nondistributed systems. The main goal is to allow only authorized users the right to read
and write within file, unauthorized users should not be able to access the file or prevent an
authorized user from accessing it. One common method is to authenticate the user by
requiring a password before accessing a file [Davies 84]. In an authentication service the
password is stored and usually encrypted. A common encryption scheme used is the Data
Encryption Standard(DES) [NBS 77]. In the secret mail project, the password is verified by

the authorization server using DES before the Name Server is called to access the file.

-11-

24.2 Permission Rights

Another method of security is by having the permission rights set so that only a
privileged program is allowed access [Cardenas 79]. Generally this is a mechanism that can
be provided by the operating system. The UNIX™ operating system provides the owner of
a file with the control to set all permissions. In the secret mail software, the permission
rights are set so only the secret mail facility has permission to read and write. Permissions
are set so that a user can never access a file without going through the Name Server of the
secret mail system. The permission rights are set by using a facility in the UNIX™
operating system of setting the user’s process identification to the that of the owner during

the execution of the secret mail program.

3. DETAIL DESIGN of the NAME SERVER and MESSAGE SERVER

3.1 SECRET MAIL SYSTEM OVERVIEW

Appendix 3 contains functional block diagrams of the Name Server and the Message
Server modules, and the source code to the Name Server and the Messager Server. In this
chapter, the term user and sender will refer to the person who initiated the first sequence of
a command, and the receiver is the member toward whom the sender or user has directed

an action. The following list are the commands available in secret mail:
1. enrollx
2. connectx

3. sendx

-12 -

6. editx
7. helpx

If installed, the secret mail facility is available to anyone who has a login
identification. A user only has to enroll into the system to become a member. To enroll in
the system, the user types in the enrollx command. Before entrance into the system is
allowed, the potential member must provide a password that will be encrypted and
recorded in the file system. The password will be needed to use any of the other commands
available in secret mail.

A feature of secret mail is the connect command. The user must specify that a
software connection is to be created between himself and another member, the receiver.
The receiver can be either a local or a remote member. In either case, both the user and
receiver must be enrolled. If the receiver is not enrolled, then the Name Server will inform
the authorization server of an invalid request. In addition, the Name Server will display a
message onto the user's terminal of why the request cannot be honored. Assuming the
receiver is enrolled, the Name Server checks that an active connection does not already
exist. If an active connection does not exist, a connection is created and recorded in both

member's file system.

At the time the connection is made a unique conversation key for message
encryption is created and recorded. If the connection is to a remote computer, the
conversation key and the remote computer's authorization key are passed back to the
Authorization Server. The Authorization Server then encrypts the conversation key using
the remote computer's authorization key. The encrypted conversation key is then sent to
the remote computer’'s Authorization Server. The remote computer’s Authorization Server

will make a request to its Name Server, where a connection is made in the receiver's file.

-13-

Either member can now send messages to one another by using the sendx command.

Refer to figure that follows:

|
l
|
|
|
|
|
I
)
I
|
i
|
I
|
1
|
|
|
|
|

Local UNIX Data Link Remote UNIX

User issues sendx command to send secret mail.

AS1(Authorization Server) request for Conversation Key and the remote’s
Authorization Key.

NS1(Name Server) passes back Keys or invalid request.
If an invalid request NS1 displays message to User.
Remote: send doubly encrypted message to remote AS2.
Remote AS2 calls local NS2 for Authorization key.

NS2 returns encryption key.

Figure 1. SENDX Data Flow Diagram For Remote Mail

S

B O oe

When the request to send a message is made, the Authorization Server prompts the user for

= 4=

his or her password to authenticate the request. The Authorization Server calls the Name
Server to return the encrypted password of the user making the request. The Authorization
Server will then verify the typed in password. If the password is valid, the Name Server is
called again for a request to send a message. The Name Server verifies that the receiver is
enrolled and that an active connection exists to the receiver. The Authorization Server will
either receive the conversation key and the computer’s authorization key (if remote), or an
invalid flag is set. For a local send request, the message is only encrypted with the
conversation key. The encrypted message is stored in the receiver’s secret mailbox. Remote
messages are doubly encrypted for security and protection across insecure communication
channels. The message is first encrypted with the conversation key, and then the encrypted
message is encrypted again with the remote computer’s authorization key. The local
Authorization Server sends the doubly encrypted message to the remote computer’s
Authorization Server. The remote computer’s Authorization Server receives the message,
and decrypts the message using its authorization key. The encrypted message is then stored
in the receiver's secret mailbox. The receiver is notified by the system mail facility that

someone has sent him or her secret mail.

The getx command provides the facility of retrieving secret mail. When the getx
command is requested, the Authorization Server prompts for the user's password for
authentication. If verification is correct then the Authorization Server goes to the user's
secret mailbox and retrieves the newest message first. Each message has a clear text header
on it. Parts of the header information are passed to the Name Server. The Name Server
searches through the user's file for the correct conversation key based on the header
information passed, and passes it back to the Authorization Server. Finally. the message is

decrypted and displayed on the user’s terminal.

<15

The disconnectx is another command in secret mail that is available. The command
provides the capability to deactivate an active connection if one exists. Once deactivated,
the connection with its unique conversation key is no longer available for use in sending
messages. The Message Server will remove the connection record when there are no more
messages that depend on that key. When a user requests a disconnect from another
member, the Authorization Server authenticates the user. The Authorization Server then
calls the Name Server for a disconnect request. The user's file is searched, and the
connection is deactivated. If the connection cannot be found, the Name Server will flag the
request as invalid. If the disconnect is to a member on a remote computer, the local Name
Server calls the remote computer's Name Server. In this case, the remote computer’s Name

Server receives the request and deactivates the connection.

The editx command is provided as a facility for the enrolled member who wants to

change his or her password.

The helpx command provides a short descriptions of the available commands and

how to use them.
3.2 DESIGN ASSUMPTIONS

To facilitate the implementation of the project. several design assumptions were
made. Several of the operating systems facilities were assumed to be sufficient for
providing the foundation for a first time implementation. For example, the "uux" command
is used as the mechanism for communicating to a remote computer. Also, the "mail"

command is considered acceptable in notifying receivers that they have secret mail.

The emphasis of the project was security, but no measure was taken toward
hardware security and protection . It was assumed that computer facilities are under close

supervision. Hardware crosstalk problems and wiretapping were assumed non-existant.

«1§=

3.3 DETAILED DESIGN of the NAME SERVER
3.3.1 Directory Structures

In appendix 2 are diagrams of the directory structure of the file system and the file
structure. The directory structure is flexible enough to be placed almost anywhere (which
is a characteristic of the UNIX™ operating system), but variable path names have to be set
within the "constant.h" file. The directory structure is designed to be flexible. There are
four directories. namely, a main directory called secretmail, and three subdirectories. The
three subdirectories are USERS, MACHINES, and ERRLOG. The ERRLOG directory is only
for recording errors. In the USERS directory are the individual user files. Each file is
owned by secret mail with the read and write permission rights set only for secret mail.
The same permission rights are on the MACHINES directory files. The MACHINES
directory consists of an available machines file and files that list all enrollees on each
computer in the network. The available machines file is a list of each computer’s system
name in the secret mail network and its associated authorization key. The authorization key

is used when the Authorization Server sends a message to a remote computer.
3.3.2 Name Server Module

The Name Server consists of a set of functional modules. The modules are:

1. NS_Request() (Name Server)

2. P_RequestQ (Password Request)
3. E_Request((Enroll Request)
4. C_Request() (Connect Request)

a

D_Request() (Disconnect Request)

L.

o

MS_Request() (Message Server is called through the Name Server)

7. H_Request() (Help Request)

8. ED_Request() (Edit Request)

9. renroll (the remote process during enrollment)
10. rdiscon (the remote process to disconnect)

The NS_Request Server or Name Server selects the proper module, based on the
Authorization Server's request, and opens the err_log file for recording errors. The
Authorization Server and the Name Server pass all information concerning a user’'s request
by means of a data structure. This structure can be seen in the appendix 1 with definitions
of each data element. The Name Server relies on the Autﬁorization Server to provide the
necessary information in the data structure so that the right information is retrieved. Once
the Name Server is called, it determines what request the Authorization Server is making
by means of one of the structure's data elements called "cmd". The Name Server then calls
the appropriate module and passes the data structure to it. All of the modules return the
data structure back to the Name Server, which returns it back to the Authorization Server.

Each module in the Name Server will be discussed separately.
3.3.3 E_ Request Module

During an enroll request the Authorization Server passes the data structure to the
Name Server. The Name Server checks the data element "cmd" in the structure to
determine the type of request. Assuming the request is for enrolling, the Name Server calls
the E_Request module or enroll module, and the data structure is passed in the call. The
E_Request module retrieves the user's name, which is the user’s "login" name from the data

structure,

-18 -

The E_Request module then checks in the USERS directory to see if the user has a
file. If the user’s file does exists, then the user is already enrolled, and the data structure
element "FLAG" set to "INVALID". The data structure is passed back to the Name Server
who passes it back to the Authorization Server, who checks the data element "FLAG". In
addition, the E_Request module displays the message "User Already Enrolled” to the user’s
terminal. If the user was not enrolled, the request is considered valid. The enroll module
creates a file in the USERS directory using the user’s "login" name as the file name. The
E_Request module takes the encrypted password from the data structure and writes it to

the user’s file. The user’s file is then closed, where closed is the writing of the file to disk.

Next, the file with the enrollee’s names under the MACHINES directory is opened,
where open is 10 access a file. The enrollee file uses the computer system name as the file
name: this file contains a list of all users for that computer. The system name being the
address name that UNIX™ computers use in remote communications. Before opening the
enrollee’s file, a lock file is created using the computer’s system address as the prefix to the
file name. If a lock file already exists with the same name, the E_Request module goes to
"sleep”. "Sleep" is a UNIX™ system call that removes a process from the run state and
places it into a dormant state. In the secret mail project, the process sleeps for a two second
period. The lock mechanism tries for up to a total of twenty seconds to create a lock file.
If it cannot create a lock file in that period of time, an error is recorded. and the data
element "FLAG" is set to "INVALID". The E_Request module would return back to the
Name Server, which returns back to the Authorization Server. The user’s "login" name is
appended to the bottom of the file and closed, and the lock file "user_lock" is removed. The
E_Request module then opens the available machines file under the MACHINES directory.
The available machines file has two columns, the computer addresses that are in the secret

mail network and the authorization key. The first field, "computer-address”, in the

=19

available machines file is read to find the name of each remote computer that needs an
updated copy of the list of enrollees. While reading the available machines file, a UNIX™
system "popen"” function is used to write to the system "uux" command. The "popen” creates
a software communication path between two processes called a pipe. The enrollee file is
read and written to the pipe. The "uux" command creates a pipe to a communication
channel based on the remote computer’s address and executes the process "renroll” to read
data from the communication channel. As the E_Request module writes the data from the
enrollee file to the pipe, the "uux" function reads the pipe and writes the data to the
communication channel pipe, which is read by the "renroll" process on the remote computer.
The "renroll” takes the data read from the communication channel and writes it to the
sending computer’s file name. Each remote computer goes through the same process. The
user is unaware of all the activity that transpires. The method used to prevent the user
from being aware of the remote communications was to create a "child” process of the enroll
process. Where a "child” is a separate process created by a "parent” process, in this case the
enroll process. Therefore, the user is not inconvenienced by the transporting of files from
one computer to another. If errors occur during the opening of files, a record is made in the

ERRLOG directory in the err_logMMDD file. The "MMDD" signifies the month and day.
3.3.4 P_Request Module

The password request or P_Request module takes the data structure that is passed
from the Name Server and retrieves the user’s "login" name. The user name is used to first
verify enrollment. This is done by checking to see if the user’s file exists in the USERS
directory. If the user’s file does exists, then the file is opened and the first string of data in
the file is read. This string is the encrypted password that was created during the
enrollment session. The retrieved password is stored in the structure under the data

element "usr_pswd". The structure is passed back to the Name Server, which, in turn,

passes it back to the Authorization Server. The Authorization Server then compares the

password in the structure to the password the user typed in.
3.3.5 C_Request Module

As in the previous modules, the Name Server passes the data structure to the
C_Request or connect module using the same procedures that were described in the
E_Request module. The data structure which is passed, contains the user’s data
information. The C_Request module first checks that the sending user is enrolled, using
the E_Request module's scheme of verification. If the receiving user is also enrolled, then
the C_Request module determines if that user’s computer address indicates a local or a
remote computer. If local, the C_Request module verifies that the receiver is enrolled.
Suppose the receiver is enrolled, then the C_Request module checks to see if an active
connection exists. Assuming that such a connection does not exist, the C__Request module
creates a conversation key based upon the UNIX™ system time. The conversation key is a
nine digit number acts as the encryption key used in sending messages between the two

A lock file is created before the user’s file is opened. The user’s file is then opened
and a record is created for the connection to the receiver. .The record consists of: a status
flag (two characters) that signifies either an active or inactive connection, the receiver's
computer address, and the conversation key. The receiver’s file is also updated with the
new connection record. The receiver's record consists of: the status flag, the sender’s name,
the same conversation key, and the address of the sending computer (in this case the

sending and local computer are the same).

If the receiver had been on a remote computer, the local Name Server would not

directly be able to add the connection record to the receiver’s file. The C_Request module

-21-

determines if the receiver is on a remote computer. After the sender’s connection record has
been created, the data structure is passed back to the Name Server with the following
additional data elements: the conversation key and the authorization key of the remote

computer.

There is a unique authorization key for each computer in the secret mail network.
The key is used for encrypting messages that are for remote computers. The data structure
is passed back to the Name Server, which, passes it to the Authorization Server. The
Authorization Server takes the conversation key from the data structure and encrypts it
using the authorization key of the remote computer. The encrypted conversation key is
sent to the remote computer's address using the "uux" command. The remote Authorization
Server receives the encrypted conversation key and calls its local Name Server with the
request for its authorization key. The data structure is passed to the C_Request module,
where the request is honored. The Authorization Server receives back the data structure
and uses the authorization key to decrypt the encrypted conversation key. The decrypted
conversation key is placed into the data structure with the sender’s name and the sender’s
computer address. The C_Request module receives the data structure and writes the

connect record into the receiver's file. Now, the sender and the receiver files are consistent.
3.3.6 D_ Request Module

The D_Request or disconnect module has the function of deactivating an active
connection between two members. The Name Server passes the data structure to the
D_Request module. The module retrieves the user's name, the user's computer address,
and the receiver's name, and then it verifies that both members are enrolled. If verified, the
D_Request module creates a lock file and opens the user’s file in the USERS directory.

Next, the connection records are scanned, starting at the bottom of the file. While scanning

=99 5

the records, a comparison is made between the receiver's name and the third field of the
record, and the receiver’s computer address and the second field of the record. If a match in
both fields is found, the status flag, first field, of the record is checked to see if the record is
active. If the record is active, then the status flag character string is changed to be
deactivated using "DL" as the indicators. The characters "DL" stand for disconnect local.

The user’s file is closed and the lock file is removed.

The D__Request module then checks to see whether the computer’s address is a local
or remote computer. If local, the receiver's file is changed. In this case, the comparison of
the second and third fields of each connection record is made against the user’s name and
the computer's address. If the computer’s address is a remote computer, then the
D__Request module does a "popen” to the "uux" command, similar to the enroll module, and
executes a process on the remote computer called "rdiscon”. The process "rdiscon” is passed
the data elements of the receiver's "login" name, the sender’s "login" name, and the sender’s
computer address. Before the local D__Request module passes the data elements of the
structure, the data elements of the receiver's name and the user’s name are swapped around
because the software is designed to act as if the "rdiscon” process is a local disconnect
request. Then the same scenario as with the local disconnect request is performed. The
connection record in the receiver’s file is deactivated. Now, both member’s files are
consistent with one another. As before, the sender is unaware of all the transactions that
took place. The remote processing, again is done as a "child" process similar to the

E__Request module. The design is such that either member can request a disconnect.
3.37 ED_Request Module

The edit request or ED_Request module provides the capability of changing a user’s

password. Like the previous modules, the data structure is passed to the edit module. The

-23 -

user is authenicated, and if valid a lock file is created in the USERS directory and the user's
file is opened. The first string of characters in the user’s file is the encrypted password. The
data element of the new ﬁassword is written over the old password. The user’s file is closed
and the lock file removed.

3.3.8 H_Request Module

The H_Request or help module provides the user with a short description of the

secret mail facility. The user does not have to be enrolled in order to invoke the module.

3.4 DETAIL DESIGN of the MESSAGE SERVER

The MS_Request module or Message Server is considered as a separate server from
the Name Server, even though the Name Server treats the Message Server as a module. The
assumption, since the Message Server provides a large service of cleaning up deactivated
connections and retrieving the proper conversation key, is that it should be classified as a

Server.

The Message Server only comes into service when a gefx command is issued from
the user. When the Authorization Server has a request from the user to see his or her secret
mail, the user's mailbox is opened and the newest message is retrieved. Each message has
associated with it a cleartext header at the beginning of the message. The header contains
the sender’s name and computer address and the time that the message was sent. The
header information is retrieved by the Authorization Server and stored in the user’s data
structure. The Authorization Server passes the structure to the Name Server. The Name
Server determines from the data structure element "cmd” that the request is for the Message

Server and passes the data structure to it.

When the Message Server is called the following data structure elements are

included:

-24 -

1. The Sender’'s Name
2. The Address of the Sender’s Computer
3. The Receiver's Name (the issuer of the getx command)

4. The Time the message was sent.

The time is a nine digit number that depicts the time in seconds based from a reference date
on January 1. 1970 [UNIX™ 83).

Before opening the user’s file in the USERS directory, a lock file is created in the
directory to prevent the Name Server from trying to write to it. The same rules as before,
concerning the locking mechanism, apply here. If the lock cannot be created, an error is
recorded in the err__log file, and the Message Server returns back to the Name Server with
the data element "FLAG" set to "INVALID".

Assuming the lock file is created, the Message Server opens the receiver’s file in the
USERS directory. Going toward the bottom of the file, the Message Server scans each row
or record of data. While scanning, the Message Server looks for a match on the second and
third fields of the record with the sender’s computer address and sender's name,
respectively. When a match is found, the time of the message is compared against the
fourth field, the conversation key. If the time (numerically) is greater than or equal to the
conversation key, then the proper conversation key has been found and it is placed in the
data structure and passed back to the Name Server who passes it back to the Authorization
Server. The lock file is removed before the data structure is passed to the Name Server.
The Authorization Server then takes the conversation key from the data structure and uses

it to decrypt the mail message.

If, for instance, the above match was found and the time of the message was less

than the conversation key, then that record in the user’s file is not the right one. When this

-25 -

happens the Message Server looks at the first field of the record, i.e., status flag. The status
flag may indicate that the record has been deactivated at some previous disconnect session.
If the status flag indicates deactivation, the Message Server changes the status flag to the
characters "XX" which marks the record for later deletion. The Message Server continues to
search until the proper conversation key has been found. Once the conversation key has
been found it is passed back to the Authorization Server. If the user has deleted all mail in
his mail box the Authorization Server calls the Message Server, again. The Message Server
would then search for all records that have been marked for deletion and delete them by
copying the user’s file to a temporary file minus the records with the status flag as "XX" and

then copying the temporary file back. The user's lock file is then removed.
3.5 DETAILED SCENARIO

The Name Server only permits one active connection between any two members at
any time. However, there could be several deactivated connections records between the
same members. For example, two users are enrolled and user A creates a connection to user
B for the first time. User A sends a message to user B and then issues a disconnect to user
B, deactivating the first conversation key. Even though user B has not read his mail
messages, user A can still request another connection to user B. This is valid since no active
connection exists. An active connection would be created then for user A and user B. Such
a sequence of events could continue repeatly. When user B does read his mailbox, the
Messages Server will select the proper conversation key for each message. Each time the
Message Server finds a match in the record against the sender’s name and computer address,
and the time is less than the conversation key and the status of that connection is
deactivated, then the record containing that key in the user’s file is marked for deletion.

This can be done because messages are read in last-in-first-out order.

-26 -

The design of the system is such that the file should always be in a sequential order.
Since all connect records are appended to a user's file, the conversation key, which
represents the system time at creation, will always be increasing in order from the top to
the bottom of the user’s file. Therefore, the active user’s file record will always be below

all the deactivated records in the file for the same set of similar members. See the

following figures.
MODE Description
CL: connection was made on local computer
CR: connection was made from remote computer
DL: disconnection was made on local computer
DR: disconnection was made from remote computer

Figure 2.a. Definitions of Status Flags

[Top of File]
Status Flag Machine Receiver Conversation Key
CL ksuvaxl User_e 598789876
DL ksu832 User_c 498789475
DL ksu832 User_c 498789675
CR ksuvaxl User_c 598789990
DL ksu832 User_c 498789878
CL ksuvaxl User_d 598789991
DL ksu832 User_c 498789975
CL ksuvaxl User_b 598789876
CL ksu832 User_c 498789999

Figure 2.b. Example: User_a’s file

Figure 2.b is an example of a user’s file. Especially note that User__a has one active
connection to the member (ksu832, User_c) and several deactivated connections. If User_a

has been neglecting his or her secret mail, then the example file figure 2.b is possible. Once

-27 -

the mail has been completely read the deactivated connections will be cleaned up. Also,
note that the conversation keys are in increasing order from the top of the file to the
bottom. Another point that can be made here is as long as the conversation keys for a
particular computer stay increasing in order, it does not matter if the conversation keys in
general are not. As long as the conversation keys in the user’s file are increasing in order,

the Message Server will find the proper key.
3.6 RENROLL and RDISCON
Renroll and rdiscon are the processes that read data from a communication channel
that is connec*.ted to another computer. Both processes are executed by the UNIX™ "uucp"
package using the "uux" command. These processes are special functions in the Name Server
for remote communication. They do not communicate back to the Authorization Server.
4. SYSTEM COMPARISON
4.1 OVERVIEW
For a comparison to the secret mail project three systems were selected:
1. GRAPEVINE [Birrell 82]
2. CSNET [Solomon 82]
3. UNIX™ "Secure-Channel” Mail Facility [UNIX 83]
The three systems above were selected on their common facility for transferring

computer mail between computers. The database and file structures are areas stressed in

the sections which follow.

-28 -

4.2 GRAPEVINE

4.2.1 Overview

GRAPEVINE provides for authentication, message delivery, determining a
resource's location, and access control services. The database is distributed and replicated;
it took two to three people three years to implement. It is used within the XEROX™

Corporation research and development community.

4.2.2 Design

There is a registration database with information about the users, the computers,
the services, the distribution lists, and the access control lists of the system. There are two
types of entries in the registration database: group and individual. An entry in this
database is referred to as an RNAME. Group entries contain a set of RNAMESs, while an
individual entry consists of a password, a list of computer mailboxes, and a user connect
site.

The philosophy of GRAPEVINE is different than that of the secret mail project.
GRAPEVINE is designed to communicate with different types of computers on an Ethernet
network [Metcalf 76]. The design consists of having each user computer communicate to a
dedicated GRAPEVINE computer, called a server. Servers share copies of a particular
registration database. The intent is that if one server is down then another server can be
used. Each user’s computer runs what is called the GRAPEVINE-USER package. This
package provides the capability to communicate with different servers. If the first server
the computer tries is down, then the next one on the list of available servers to the user’'s
computer is tried. This provides for a high probability that users will be able to

communicate to at least one server.

-29 -

Once a server is contacted, it then processes the.request to see where to route the
message. A server does not necessarily know the final destination of the message but does
know of a server that would. All servers share a common directory registry called the GV
registry. This registry provides servers with information about all of the servers in the
system. In this scheme, each server, which the user’s computer knows about, is capable of
providing a mailbox. As a result of this, there is a good chance that mail can be sent to at

least one of the servers the user’s computer knows about.

The secret mail project is not as complex as the GRAPEVINE system. Secret mail is
only valid between computers that are running the UNIX™ operating system.
GRAPEVINE is flexible enough to communicate to a variety of computer operating systems.
Since the secret mail project did not have the requirement of communicating with different
types of computers, the design was simpler. Secret mail only communicates directly to the
recipient’s host computer, there are no servers in between. If the recipient’s computer is
down, then communication is tried later. As in the GRAPEVINE system, if the user's
computer is down the message cannot be retrieved, either. However, in the GRAPEVINE

system the sending host computer is no longer concerned with trying to submit the message.

The GRAPEVINE database is similar to secret mail's file system in having
individual entries, a password and an address entry. In particular, the GV registry is
similar to the secret mail’s file of available machines. Secret mail's files that contain all
enrollees for a particular computer are also synonymous to the GRAPEVINE servers
replication of individual registration databases.

GRAPEVINE and secret mail are similar in the methods of updates and deletion to
the database and files. In GRAPEVINE, once a registration server has been requested to

change a registry, it ensures that the other servers update their particular copy. Secret mail

-30-

provides the same type of feature in updating and deleting the connection record in the
user’s file. This method, however, is not without problems in either system. If two
conflicting updates occur simultaneously then, data becomes corrupted. The GRAPEVINE
designers planned a partial remedy of prolonged database inconsistencies. The remedy is
that during the night, servers with common registries would compare their copies with one
another and do merges on the copies to resolve any inconsistencies. Since GRAPEVINE
makes use of time-stamping data, the comparison is reliable. Secret mail could have a
similar scheme, since time-stamping (the conversation key) is also associated with each

record and file.

Both systems require an administrator to supervise the systems, to correct
inconsistencies, and to initiate new installations.

One problem, that GRAPEVINE experiences, occurs as a result of a malformed
registration database. This situation takes place if the original server creates the error and
passes the error to all the other servers that contain the regisiry. Secret mail has not seen
this particular problem, but it is assumed that no matter how well a system is designed. it

probably will not be immune to all possible software catastrophes.
43 CSNET
4.3.1 Overview

The CSNET project like Grapevine is designed to facilitate computer mail. CSNET
is installed among academic computer science departments and other groups doing

computer-science research in the United States. It uses the following networks:
1. ARPANET.

2. Telenet,

=%

3. PhonelNet.

4.3.2 Design

CSNET uses a database called the central directory database. The database is
located at the University of Wisconsin on the Service Host computer. Communication to
the central database can be from remote CSNET member hosts which run CSNET software,
other hosts that have the capability of exchanging mail with CSNET member hosts, or
directly to the Service Host by phone lines. Normally, the user communicates to the central
database through an agent name server on a host member computer. The agent name server
fomatsmdsmdstherequeststﬁthsmtnldatabase. CSNET depends on the sender and
receiver host computer mail transport system for the mechanism of transporting messages
from source to destination. A user-interface program on the user’s computer interacts with
the mail transport system. On each CSNET member host resides a set of host tables and on
the user’s computer a set of local users tables that provide directory information to the

central database.

CSNET uses the same style request format for sending mail to another computer as
secret mail. Both depend on unique computer names and user names. The mailing address
consists of "user-name@host-name”. CSNET also provides for a type of "wild-card"
addressing on the user’'s name. An example, if someone was not sure about the spelling of a
person’s name, then the insertion of the "*" character signifies to match any combination of
characters. The system returns with a list, if there is one, of all combinations of the name.
The user would then select the proper correct spelling. This capability is not incorporated

into the secret mail name server, but it is considered to be a desirable future feature.

The CSNET database is centralized, whereas the secret mail file system is both
centralized and decentralized. Like the GRAPEVINE system, CSNET also caters to a

.

variety of computer types which adds a flexibility that secret mail does not have. CSNET
uses a monitor program to control concurrency problems. The database structure consists
of records that are fixed length, one per entry, with a separate overflow area for long
entries. It uses inverted indices, one for each word appearing in the database. A hash table
structure is used to speed accesses to the index. On the other hand, secret mail uses a

tabular structure of variable length records.
44 UNIX SECURE MAIL
44.1 Overview

Berkeley's secure mail facility is a simple design which provides for the security of
mail on a UNIX environment computer [UNIX 83). This facility does not provide for
remote computer mail. A person has to enroll to participate, and the user unique "login"
identification is used in the enrollment. The enrollment service requests for a key to be
used in future user authentication. The key is encrypted and maintained in a file using the
user's identification as part of the file name. There are commands to retrieve the messages
and send messages called xget and xsend, respectively. All commands require that the user
type in the key. The key authenticates the users. A public key is used for encrypting and
decrypting.

4.4.2 Design

Secure mail and secret mail are similar. The same type of commands are used, also

the use of individual files to store the password information and the use of the users name

as a prefix to the file name are similar.

However, in secure mail the method of storing only the encrypted password in a file
and the creation of individual files for each mail message is not efficient. Also, secure mail

does not provide any user authentication beyond requiring the user’s password. A public

w3

key is used for encrypting and decrypting all users’ messages. Further, secure mail makes

use of a conversation connection between two users.

Secure mail provides minimum authentication and does not make use of the
standard mail facility. If secure mail had made use of the standard mail transport

mechanisms, the capability of remote mail could have been implemented.

5. CONCLUSION

5.1 SUMMARY

The secret mail project is an implementation of a computer mail service that
provides authentication and data security. The UNIX™ operating system was chosen for
the project’s environment because of the existing mail transportfacilities and the project
team's familiarity with UNIX. The project was designed to be user friendly and not to

inconvenience the user with services that were time consuming.

By providing encryption and special unique keys between two users. the project
provides security that is not avnﬂable with the present UNIX™ mail system. Although the
encrypted messages could be deciphered by an experienced cryptographer, it would require
a large amount of effort to generate the encryption key. Considering the typical user on a
UNIX computer, the encryption method using the Data Encryption Standard is satisfactory.
The use of a special conversation key between two users provides additional protection,

since a new unique key can be created for each message sent.

The capability of remote message transfer is a major feature of secret mail.
Basically, any UNIX™ environment computer can connect to the secret mail network with
minimum effort. As with most systems, there are always problems and the need for

improvements, and secret mail is no exception.

=3 =

5.2 PROBLEMS and ENHANCEMENTS

An enhancement that is considered to be a good future endeavor is encrypting the
file system, which would provide an additional security measure. The file system’s present
method of protection lies in the access permissions of the files: outside of the secret mail
programs, only the owner has permission to do anything to his files The file’s owner is
considered to be the administrator of secret mail. The administrator’s position is not
intended to be a full time job, but instead someone who supervises the system periodically

and answers questions that users may have.

Generally, a user can do only what the software programs allow. The method for
controlling permission rights is done by using the UNIX™ facility of setting a user’s process
identification (uid) to that of the owner during the execution of the secret mail program. In
general, the setting of the user-id-bit on a file works, but there is the possibility that the
user of secret mail, through a system error or intentionally, may end up with the "uid” bit
still set for the user after the completion of the secret mail program. Therefore, the user
would have the same permission rights as the owner. This is an infrequent problem and is
not considered serious enough to warrant the current correction. The setting of the user-id-
bit is used extensively in the UNIX™ operating system.

An administrative tool would be a useful feature. At present, the administrator has
to edit the available machines file for changes, due mainly to the installations of new
computers in the secret mail network. These changes would have to be done on each
computer in the network. A tool that would perform changes on the local and remote
computers would provide a convenience and a less error prone system. For instance, if
there are several administrators because of distances between computers, maintaining

replicated files in a distributed system can be a potential problem.

I L

Another problem in the project’s file system is the need of more mutual consistency
and atomicity of a transaction. Mutual consistency and atomicity are goals of secret mail,
but the mechanisms used are weak. As in the GRAPEVINE system, the idea of performing
a comparison on files at night, during low usage of the system, could help prevent long term
inconsistency among the remote computers in the network. This comparison feature is
considered as an item to be implemented in a possible future development of secret mail.
The main problem with inconsistencies in secret mail is a situation where two members do a
connect simultaneously to each other, especially, if the members are on different computers.
Since the file system remote mechanism is not as instantaneous as one would like, the above
situation could cause multiple active conversation keys to the same member. Due to time

constraints on the project’s implementation a preventative mechanism was not designed.

The "uux" command is used in remote communications. A more efficient method
could be implemented, either by modifying the present use of "wux" or by using a
completely new communication link package to be developed. Modifying the present use of
the "uux" command would provide a better system that is less error prone and could help

maintain the mutual inconsistency of the file system.

There are probably other problems that have yet to surface and enhancements to be
considered, but the present implementation is sufficient to use without any major
difficulties.

5.3 VALUE of SECRET MAIL

The secret mail facility can be of service to those users that require the need of
secure and authenticated message protection. An application might be a situation where a
letter that contains sensitive material is being transmitted from one location to another.

Normally, the U.S. Postal Service provides this type of letter service through registered

- 36 -

mail. The postal service requires the signature of the receiving party on delivery. The only
authentication is the mailing address. A questionable procedure with the postal service,
though, is that the registry receipt is left in the mailbox until the receiving party comes
home. Furthermore, the transferring of a register letter usually takes twenty-hours to
deliver.

In secret mail, the same letter can be sent in a few minutes, assuming the
communication link is available and the receiver is authenticated. The letter is also doubly
encrypted on transferring from source to destination and remains in a single encrypted

form in the receiver’s secret mailbox until the intended reader requests it.

In perspective, secret mail provides a securer delivery mechanism than the postal
service provides. Even in the general use of secret mail, the users usually only want an
intended receiver to the mail; therefore, whether the mail messages are ordinary or

sensitive, secret mail can provide a reliable service.

REFERENCES
[Bhargava 82]

[Birrell 82]

[Cardenas 79]
[Codd 70]

[Eswaran 76]

[Fernandez 81]

[Kernighan 73]
[Lamport 78]
[Lampson 81]

[Martin 81]
[Metcalfe 76]
[NBS 77]
[Ritchie 74]

[Solomon 82]

[Tanenbaum 81]

[Ullman 82]

[UNIX 83]

-37-

Bhargava,Bharat,"Resiliency Features of the Optimistic Concurrency
Control Approach for Distributed DataBase Systems" IEEE, Reliability
in Distributed Software and Database System" 1982

'Birre]l, Andrew D.Lerin, R.Needham, R.M..Schroeder, M.D.
GRAPEVINE: An Exercise in Distributing Computing"
Comm.ACM.(April,1982),Vol.25, Num.4

Cardenas, Alfonso F.,"Database Management System" Allyn and
Bacon,Inc.,1979

Codd,E.F."A Relational Model of Data for Large Shared Data
Banks",Comm.ACM.(June,1970),Vol.13,Num.6

Eswaran, K.P., et al.,"The Notions of Consistency and Predicate Locks
in a Database System’,Comm.ACM.(Nov.1976).VoL19, Num.11.624~
633

Fernandez,E.B.Summers, R.C., Wood.C..,"Database Security and
Integrity”. The System Programming Series, Addison-Wesley
Publishing Company.1981

Kernighan, BK., Ritchie D.M.,"The C Programming Environment"
Printice-Hall.Inc., Englewood Cliffs, New Jersey. 1978

Lamport, L.."Time, Clocks, and the Ordering of Events in Distributed
Systems"Comm.ACM.(July 1978).Vol.21,Num.7,558-564

Lampson, B.W., et al..(Atomic Transactions)'Distributed Systems-
Architecture and Implementation”, Springer-Verlag Berlin Heidelberg
New York,1981,246-265

Martin, J."Design and Strategy for Distributed Data Processor”
Prentice-Hall, Inc..Englewood Cliff, New Jersey,1981

Metcalfe, R.M..Boggs. D.R.,"Ethernet: Distributed Packet Switching
for Local Computer Networks'.Comm.ACM,Vol.19.Num.7, (July
76).395-404

National Bureau of Standards,"Data Encryption Standard”, 1977

Ritchie, D.M.Thompson, K.'The UNIX Time-Sharing System"

Comm.ACM.,(July 1974),Vol.17,.Num.7,365-375

Solomon, M., Landweber, L.H.Neuhengen, D.The CSNET Name
Server",Computer Network,(July 1982),Vol.6.Num.3,

Tanenbaum, Andrew S.."Computer Networks” Prentice-Hall, Inc.,
Englewood Cliffs New Jersey.1981

Ullman, J.D."Principles of Data Base System" Computer Press,
Inc.,1982

*UNIX 's Manual®,4.2 Berkeley Software Distribution,
Virtual VAX-11 Version, Univerity of California, Berkeley,
CA..(August 1983)

-38 -

Appendix 1

SECRET MAIL DATA STRUCTURE AND DEFINITIONS

-39 -

DATA STRUCTURE PASSED BETWEEN SERVERS

struct USER__INFO {
int FLAG:;
int cmd;
char *usr__id;
char usr_ pswd[25];
char *mach_id;
char *rem_ usr__id;
char C_key[12];
char AS_;:ey[ZS]:

DATA STRUCTURE DEFINITIONS

1. FLAG - the variable status flag set by the Name Server
and the Message Server that defines if a request
was "VALID" or "INVALID".

2. cmd - the variable set by the Authorization Server that
defines a request for the Name Server. The following
are the possible requests that the Authorization
Server can make to the Name Server:

Command Value

PASSWORD
ENROLL
CONNECT
SEND
DISCONNECT
REMOTE
MSERVER
ASKEY

usr_id - the user's "login" identification

usr_pswd - the user’s password

rem_ usr_id - the receiver's "login” name

mach_id - the receiver’s host computer name or address

[- S W WV I

C_key - the conversation key
AS_ key - the authorization key

ge = N ok

— 4=

Appendix 2

DIRECTORY AND FILE STRUCTURES

=il s

DIRECTORY STRUCTURES

/ .../ secretmail/

-42 -

USER FILE STRUCTURE
NEW
PASSWORD LINE
STATUS RECEIVER'S RECEIVER'S CONVERSATION
MODE FLAG SRR HOST ADDRESS REACE NAME RS KEY

Password - fixed string of 13 characters
Status Mode Flag - fixed string of 2 characters

Receiver’s Host Address - variable length string of characters

Receiver's Name - variable length string of characters

Conversation Key - fixed string of 9 integers
Space - blank character
New Line - a new line character

-43 -

Appendix 3

FUNCTIONAL BLOCK DIAGRAMS OF MODULES AND PROCESSES

Display Message:
User Is Not Enrolled

NO

-44 -

P_Reque

Is User Enrolled

Retrieve User's
Password from
Database

-45-

E_Request()

Display Message:
User Already Enrolled

Is User enrolled

NO

Create user file
Luith password added

|

{Append User's name
to enrollee file

lcmm

Child Process:
Update remote’s

enrollee file

_ Are
Display Message: User and Receiver
NOT ENROLLED <~ o= Enrolled
?
YES
Display Message: Does A Connect
CONNECTION |e— | ?
EXISTS YES Already Exist
NO
Y
Generate
For Update of File
Conversation Key
Y
Receiver:
?
Local or Remote
LOCAL REMOTE
Update
Receiver’s File

Computer's
AS_Key
Retrieve Remote

-47 -

__Requ
Y
User Has No More Mail Remove Any Records
or Marked XX

ASNeeds C_Key |N°| 1n Status Field

Need
C_Key
Disols . User's File:
See Your Administrator | N Racord| Sender's Address

A Record

Message Time-Stamp Change Status Flag

> - S— TO
NO
Conversation Key XX

lYES

Send
Conversation Key;
To AS

- 48 -

Display Message:
No Connection

D_Request()

NO

Is There An Active
Record In User's

File

YES

Update User's File:
Status Flag Field
Change to Deactivated

LOCAL

Update Local

Receiver's File

Is Receiver
Local or Remote

——

Update Remote File

with Rdiscon Process

G

-49 -

ED_Request(
U
Display gl Is User Enrolled
e e |
User Not Enrolled | NO ?
YES

Change Password

- 50 -

Display Menu:
1. Manual Pages

2. General Information

3. EXIT

Display Manual Pages

General Information

-51-

Renroll_ Proc

Use "uux” from
remote machine and

executes renroll

Process creates a
"pipe” between
local and remote

New Member's name
copy of the
appended to remote
enrollee’s file

-52 -

——

Use "uux” to
remote machine and
executes the rdiscon

process

Process creates a
"pipe” between
local and remote

Data passed through

pipe and receiver's

recorddeactivated

-53-

Appendix 4

SOURCE CODE

-54 -

/*NS__Request.c Module - Name Server Request Module */
#include "database.h”

#include <sys/time.h>

#include "constant.h”

extern struct DATABASE *P_Request();
extern struct DATABASE *E_ Request();
extern struct DATABASE *C_ Request();
extern struct DATABASE *D_ Request();
extern struct DATABASE *MS_ Request();
extern int lock(), unlock();

extern char *cat();

extern int Rec_err();

extern int err__flag;

extern struct DATABASE *
NS_Request(p_DB)
struct DATABASE *p_ DB;
{

char err[128];

/% strcpy(&err[0],"This is a test in the NAME SERVERO);
& Rec__err(&err[0],OPEN);

*/

switch(p_DB->cmd)

{

case PASSWORD: p_ DB = P_Request(p_DB);

, break;

case ENROLL: p_DB = E_Request(p_DB);
break;

case CONNECT: p_DB = C_Request(p_DB);
break;

case SEND: p_DB = C_Request(p_DB);
break:

case DISCONNECT: D_Request(p_DB);
break;

case MSERVER: MS_ Request(p_DB);
break:

case EDIT: ED_Request(p_DB):
\ break;

;-etum(p_,DB):

-55-

/*= April, 1986 ***/

/* Connect request verifies that the machine id

* is a valid machine. If valid a Conversation Key is
generated and passed back to the Authorization Server(AS)
The C_Key is stored in the user’s data file along with the
machine and the receiver's id.

Remote connects assumes no other connections exist since
the sender’s database (where connect was issued) has
verified that a connection does not already exist.

Send request verifies that a connection exist for the user.
If true, the user's database struct is loaded with
information and passed back to the AS.

Author: J. W. Merritt

O W W M OH W K NN NN

L
~

#include "database.h"
#include "constant.h"

extern int lock(), unlock();
extern char *cat();

extern int Rec__err();

char err[128];

extern struct DATABASE *
C_Request(p_DB)

struct DATABASE *p_DB;
{

char conn_mach_ id[25], rec_usr_id[25]. Mode_ flag[25];
/*flag:Connect,Local,Disconnect.Remote*/

char *modTypel = "CL";

char *modType2 = "CR";

char ver_ receiver[25];

char *s_ ptr, name[25];

int chmod(), access(), value, byte, as_key = 0;
long time():

long *tloc;

FILE *FP, *MFP, *EFP;

struct stat stbuf;

int gethostname(), enroll_flag = 0;

if((value = gethostname(name.sizeof (name))) == -1)

Rec__err("CONNECT: Error on gethostname function\n",OPEN);
p_DB->FLAG = INVALID;
return(p_DB);

}

-56 -

if(p_ DB->FLAG == ASKEY)
{

s_ptr = cat(MACH_DIR, "avail__mach");

'if((FP = fopen(s_ptr,"r")) == NULL)
Rec_err("CONNECT: Open to avail__mach file\n",OPEN):
p_DB->FLAG == INVALID;
return(p_DB);

a{else

while((byte = fscanf(FP,"%s %s\n",

; &conn_mach__id[0].&p_DB->AS_key[0])) = EOF)
if (stremp(&name[0],&conn__mach__id[0])==0)

p_DB->FLAG = VALID;
fclose(FP);
return(p_DB);

}

}

p_DB->FLAG = INVALID;
fclose(FP);

return(p__DB);

}
;f(p_DB- >FLAG == REMOTE)

s_ptr = cat(USERS_DIR,p_ DB->usr_id):
lock(s_ptr);
%f((EFP = fopen(s_ptr,"a")) == NULL)

sprintf(&err[0],"CONNECT-REMOTE: Opening of %s’s file
ruserid=%s machid= %s key=%s\n",
p_DB->usr_id, p_DB->rem_usr_id,p_DB->mach_id.
p_DB->C_key):
Rec_err(&err{0],0PEN);
p_DB->FLAG = INVALID;
return(p_DB);

Tlse
fprintf(EFP,"%s %s %s %s\n","CR",p_DB->mach_id,
p_DB->rem_usr_id. &p_DB->C_ key[0]);
filush(EFP);
fclose(EFP);
unlock(s_ptr);
p_DB->FLAG = VALID;
return(p_DB);

- 57 -

}

s_ptr = cat(USERS_ DIR,p_ DB->usr_id);

';f((value = access(s_ptr,0)) == -1)
fprintf(stderr,” %s Is Not Enrolled \n", p_DB->usr_id);
p. DB->FLAG = INVALID:
return(p_DB);

}f (stremp(&name[0],p_DB->mach_id) == 0)

s_ptr = cat{(USERS_DIR,p_ DB->rem_ usr_id);
if((value = access(s_ ptr,0)) == -1)

fprintf(stderr,"Local Receiver %s Is Not Enrolled \n",
p_DB->rem_usr_id);

p_DB->FLAG = INVALID;

return(p_DB);

}

?lse
s_ptr= cat(MACH_DIR.P_DB->mach_id):
}f((EFP = fopen(s_ptr,"r")) == NULL)

fprintf(stderr,"\n%s Not a Valid Machine\n",
p_DB->mach_id);

p_DB->FLAG = INVALID;

return(p_DB);

else
{
wihile((byte = fscanf(EFP,"%s\n",&ver__receiver[0])) != EQOF)

if(stremp(p_DB->rem__usr_id.&ver_ receiver[0]) == 0)
{

enroll_flag = 1;
fiush(EFP):
fclose(EFP);
b:}‘eak:

}
if (enroll_flag '=1)

fprintf(stderr."\nRemote Receiver %s Not Enrolled\n",
p_DB->rem_usr_id);

p_DB->FLAG = INVALID;

return(p_DB);

-58 -

}
/* Check that remote machine is valid and pick-up AS-key */

s_ptr = cat(tMACH_DIR,"avail__mach™);
i{f((BFP = fopen(s_ptr."r")) == NULL)

Rec__err("CONNECT: Open error on avail__mach's file\n",0PEN);
exit(0);

t{alse
while((byte = fscanf(EFP,"%s %s\n".&conn_mach__id[0],
&p_DB->AS_ key[0])) != EOF)

if (stremp(p__DB->mach__id,&conn_mach__id[0]) == 0)

fclose(EFP);
flush(EFP);
as_key =1;
break;
}
}
}
if(as_key !=1)

{

sprintf(&err{0],"CONNECT: Can Not Find machine: %s AS_Kkey",
p_DB->mach_id);
Rec__err(&err{0].OPEN);
exit(0);

s_ptr = cat(USERS_DIR,p_DB->usr__id);
lock(s_ptr);
if((FP = fopen(s_ptr,"r+")) == NULL)

sprintf(&err{0],"CONNECT: Unable to READ %s's file\n",
p_DB->usr_id);
Rec_err(&err[0].OPEN);
p_DB->FLAG = INVALID;
return(p_DB);

t{else

fscanf(FP,"%s\n",&p__DB->usr_pswdl[0]);

while ((byte = fscanf(FP,"%s %s %s %s\n",
&Mode_ flag{0].&conn__mach_id[0],
&rec_usr_id[0],&p_DB->C_key[0])) t= EOF)

if((stremp(p_DB->mach__id.&conn_mach_id[0]) == 0) &&
(stremp(p_DB->rem_ usr_id.&rec_usr_id[0]) == 0) &&

-59-

((stremp(modTypel.&Mode_ flag[0])==0)I
: (stremp(modType2.&Mode_ flag[0])==0)))

if (p_DB->cmd == SEND)
{

fclose(FP);
unlock(s_ptr);
p_DB->FLAG = VALID;

} return(p_DB);

fprintf(stderr,

"A Connection For %s To %s!%s Already Exists\n",
p_DB->usr_id,p_DB->mach_id,
p_DB->rem_usr_id);

fiush(FP);

fclose(FP);

unlock(s_ptr):

p_DB->FLAG = INVALID;

feturn(p_DB):

)
}

i{f(p_DB—> cmd == SEND)

fclose(FP);
unlock(s_ptr);
p_DB->FLAG = INVALID;
fprintf(stderr."No Active Connection between %s and %s\n",
p_DB->usr_id,p_ DB->rem_usr_id);
} return(p_DB);

i{f (sprintf(&p_DB->C_keyl[0],"%1d".time((long *) 0)) < 0)

Rec_err("CONNECT: Time function not working\n",OPEN);
strepy(&p_ DB->C_key[0]."CONVERKEY");
}

fprintf(FP,"CL %s %s %s\n",
p_DB->mach_id,p_DB->rem_usr_id.&p_DB->C_key[0]);

fAush(FP):
fclose(FP);
unlock(s_ptr);

if(stremp(&name[0],p_DB->mach_id) == 0)
{
s_ptr = cat(USERS_DIR,p_ DB->rem_ usr_id);

lock(s_ptr);
i{f((FP = fopen(s_ptr."a")) == NULL)

- 60 -

Rec_err("CONNECT: Open error update receiver file\n",OPEN);
exit(0);
}
else

{
if (stremp(p_DB->usr_id,p_DB->rem_ usr_id) !=0)
{

£printf(FP,"CL %s %s %s\n",
p_DB->mach_id,p_ DB->usr_id.&p_DB->C_key[0]);
fAush(FP);
fclose(FP);
l}mlock(s__ptr):

}
}
unlock(s_ptr);
p._DB->FLAG = VALID:
return(p_DB);

/* DATA.BASE April, 1986 */

/* Declaration of the Name Server and Message Server modules
** Also the data structure that is passed between the Name

** Server and the Authorization Server

"y

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <strings.h>
#include <pwd.h>
#include "constant.h”

static struct DATABASE {
int FLAG:
int cmd;
char *usr_id;
char usr_ pswd[25];
char *mach_ id:
char *rem_ usr_id;
char C_key[12];
char AS_key[25];

»

static struct DATABASE *NS_ Request();
static struct DATABASE *P_Request();
static struct DATABASE *E_ Request();
static struct DATABASE *C_ Request();
static struct DATABASE *D_ Request();
static struct DATABASE *ED_ Request():
static struct DATABASE *MS_ Request();
static struct DATABASE DB;

int d_flag=0;
int err__flag = 0;

-62-

/* D_Request.c April, 1986 */

/* The Disconnect module deactivates a connection between the
* user and the other member. The connection record is

* not removed until all mail that is associated to the

* conversation key has been read.

%/

#include "database.h"
#include "constant.h"

extern int lock(), unlock();
extern char* cat();
extern int Rec__err();

extern struct DATABASE *
D_Request(pp_DB) _
.t{struct DATABASE *pp_DB;

char *s_ ptr, *cmd, cline{128], name[25], err[128];
FILE *EFP, *RFP, “popen()

int value, child;

struct DATABASE *Search();

cmd = &cline[0];

if((value = gethostname(name,sizeof(name))) == -1)
Rec__err("DISCONNECT: error on gethostname\n",0PEN);

s_ptr = cat(USERS_ DIR,pp_DB->usr_id);

lock(s_ptr);

}f((EFP = fopen(s_ptr."r+")) == NULL)

sprintf(&err[0],"DISCONNECT: Can not open %s's files\n",
pp_DB->usr_id);
Rec_err(&err{0],OPEN);
} exit(0);
pp__DB = Search(EFP.pp__DB);
unlock(s_ptr);
if(pp_DB->FLAG == INVALID)

{

fprintf(stderr,"\nNo Active Connection existed for %s to
%s!%s\n", pp_DB->usr_id,pp_ DB->mach_id.pp_ DB->rem_usr_id);
return(pp_DB);

}

/* If Disconnect is associated with remote machine

* pipe a "uux" to start up rdiscon program so

* remote receiver's connection record will be deactivated
* If local disconnect deactivation is handled here.

*/

= 6 &

if (stremp(&name{0],pp_DB->mach_id) == 0)

s_ptr = cat(USERS_DIR.pp_DB->rem_usr_id);
lock(s_ptr):
i{f((EFP = fopen(s_ptr,"r+")) == NULL)

sprintf(&err{0],"DISCONNECT: Error on users file %s\n",
s_ptr)
Rec_err(&err[0],0PEN);
: exit(0):
pp_DB->rem_usr_id = pp_DB->usr_id:
pp_DB = Search(EFP,pp_DB);

else
{

/* Fork a child process to handle uux request to remote machine */

child = fork();

'Ef(child == 0)
sprintf(cmd.,"/usr/bin/uux - %slrdiscon %s %s %s",
pp_DB->mach_id,pp_DB->usr_id,pp_DB->rem__usr_id.
&name[0]);
i{f((RFP = popen(cmd,"w")) == NULL)

} Rec__err("DISCONNECT: Popen pipe error\n",OPEN);
fiush(RFP);
pclose(RFP);

\ exit(0);

unlock(s_ptr);
pp_DB->FLAG = VALID;
return(pp_DB);

/* The Search function goes into the a user’s file
* and properly lines up the file pointer so fscanf,
for reading, is possible. It starts at the bottom
of file for faster accesses since the most recent
active record is near the bottom of the file.

% * N W

i 4

struct DATABASE *
Search(SFP, pp_DB)

struct DATABASE *pp__DB:
FILE *SFP;

o

int Backup();

int byte;

int BUPO = 15, BUP1 = 19;

char *model = "CL";

char *mode2 = "CR";

char mode__type{25], rem_ usr_id[25], conn_mach_id[25];
char c, *cp;

cp = &c;

Backup(cp.SFP,-201,2);

while((byte = fscanf(SFP,"%s %s %s %s\n".&mode_ type[0],
?com_mh_id{O].&rem_usr_id[O].&pp_DB—> C_key[0])) != EOF)

/*fprintf(stderr,"%s %s %s %s\n",&mode__type[0],

**&conn_mach_id[0]. &rem_ usr_id[0].&pp_DB->C_keyl{0]):
=/

if((strcmp(pp_DB->mach__id.&conn_mach_ id[0]) == 0) &&
(stremp(pp_DB->rem_usr_id.&rem_usr_id[0]) == 0) &&
((stremp(&mode__type[0].model) == 0) I

{ (stremp(&mode_type[0].mode2) == 0)))

byte = BUPO + strlen(&conn_mach_id[0]) +
strlen(&rem_ usr_ id[0O]);
fmek(SFP,—(long)byte.l): /*line ptr to status flag*/
fprintf(SFP,"%s","DL"); /* change status flag */
fush(SFP);
fclose(SFP);
pp_DB->FLAG = VALID;
} return(pp_DB);
?lse
byte = BUP1 + strlen(&conn__mach_id[0]) +
strlen(&rem_ usr_ id[0]);
} Backup(cp.SFP,-(long)byte,1);

}
pp_DB->FLAG = INVALID;
return(pp_DB);

/* Works in conjunction with the Search function.
* Once a record is read, the pointer is moved up

* the file to the next new line found.

'

-65 -

int
Backup(bcp,B__FP.offset, where)
char *bep;
FILE *B_FP;
long offset;
i{nt where;
int byte;
char c;

bep = &c:
fseek(B_ FP,offset,where); /* Move beyond new-line char */
?vhile((byte = fread(bep,1,1,B_FP)) == 1)

}f(¢ =="\n") /* back up to next new-line char */
| return,
fseek(B_FP,-21,1);

return;

}

-66 -

/* ED_Request.c April, 1986 */
/* This module changes the user’s old password
** to the new password. Works with editx

** program.

=/

#include "database.h"
#include "constant.h"

extern struct DATABASE DB;
extern struct DATABASE *p_ DB:
extern char *cat();

extern int Rec_err();

extern struct DATABASE *
ED_ Request(p_DB)
struct DATABASE *p_DB;

}

char err{128];
char *s_ ptr;

int chmod(), value;
FILE *FP:

struct stat stbuf;

s_ptr = cat(USERS_DIR,p_DB->usr_id);
if((FP = fopen(s_ptr."r+")) == NULL)

sprintf(&err[0],"Unable to READ file for %s\n",
p_DB->usr_id);
Rec__err(&err{0],0PEN);
p_DB->FLAG = INVALID;

} return(p_DB);

else

fprintf(FP,"%s\n", &p_DB-~>usr_pswd[0]):
flush(FP);
fclose(FP);
p_DB->FLAG = VALID;
} return(p_DB);

-67 -

/* E_Request.c April, 1986 */

/* The enroll module creates and checks that the user
** is not already enrolled in the system.

%/

#include "database.h”
#include "constant.h”
#include <fcntl.h>

extern char *cat();
extern int lock(), unlock();
extern int Rec__err():

extern struct DATABASE *
E_Request(p_DB)
struct DATABASE *p_DB;
{
char file_buf[128], IN_file[128], rem_ mach[128],
line[BUFSIZ];
char *s_ptr, *cmd, cline[128], name[25], err{128];
int chmod(). value, gethostname(), byte, access(),
child;
FILE *FP, *MFP, *RFP, *popen();
struct stat stbuf; -

cmd = &cline[0];

s_ptr = cat(USERS_DIR,p_ DB->usr_id);

i{f ((value = access(s_ptr.0)) == 0)
fprintf(stderr," %s Already Enrolled \n", p_DB->usr_id);
return(p_DB);

else
{
'if((FP = fopen(s_ ptr."w")) == NULL)

p_DB->FLAG = INVALID;

sprintf(&err[0], \nENROLL: Unable to CREATE Enroll file
for %s\n", p_DB->usr_id);

Rec_err(&err[0],OPEN);

return(p_DB);

?lse
fprintf(FP,"%s\n", &p_DB->usr_pswd[0]);
flush(FP);
fclose(FP);
if ((value = gethostname(name, sizeof(name))) == -1)
Rec_err("ENROLL: Error on gethostname\n", OPEN);

-68 -

chmod(s_ ptr,0600);

s_ptr = cat(MACH_ DIR.&name[0]);
lock(s_ptr);
if((FP = fopen(s_ptr,"a")) == NULL)

sprintf(&err{0],"Can’t open Enroll file %s file \n",
&file_buf{0]);
Rec_err(&err{0].OPEN);
unlock(s_ptr):
| exit(0);
?lse
fprintf(FP,"%s\n",p_DB->usr_id);
fAush(FP);
fclose(FP);
unlock(s_ptr);

s_ptr = cat(MACH_DIR,"avail__mach");
}f ((FP = fopen(s_ptr."r")) == NULL)

Rec__err("ENROLL: Can not open avail__mach file\n", OPEN);
p_DB->FLAG = INVALID;
return(p_DB);

o

s_ptr = cat(MACH_DIR,&name[0]);

strepy(&file_buf{0].s_ ptr);

child = fork():

if (child == 0)

Iwhile((byte = fscanf(FP,"%s%*s\n" . &rem__mach([0])) != EOF)

if(stremp(&name[0],&rem__ mach[0]) == 0)

continue;

sprintf(cmd,"/usr/bin/uux - %slrenroll %s".
&rem__mach[0],&name[0]);
i{f((RFP = popen(cmd,"w")) == NULL)

Rec_err("ENROLL.: Pipe error\n",OPEN);
}
s_ptr = cat(MACH_DIR,&name[0]);
lock(s_ptr);
if ((MFP = fopen(s_ ptr,"r")) == NULL)
{
Rec_err("ENROLL: Can’t open file for pipe\n".OPEN);
exit(0);

-69 -

}
while((byte = fread(&line[0],sizeof (&line[0]),
: BUFSIZ,MFP)) = 0)

byte=fwrite(&line[0] strlen(&line[0]),byte,RFP);
filush(RFP);
continue;

unlock(s_ptr);
fAush(MFP);
fclose(MFP);
fAush(RFP);
pelose(RFP);

fAush(FP);
} fclose(FP):
'Ef(child = 0)

, exit(0);
p_DB->FLAG = VALID;
return(p__DB);

-70 -

/* MS_Request.c April, 1986 */

/* The message server module, retrieves the conversation

** key for a particular mail message and also marks and

** removes deactivated records when the AS reports no more
** mail is left the user’s mail box.

#include "database.h”
#include "constant.h"

extern int lock(), unlock();
extern char *cat();
extern int Rec_err();

char err[128];

extern struct DATABASE *
MS_Request(pp_DB)
struct DATABASE *pp_DB;
{

char *s_ptr, name[25];

FILE *EFP;

int value;

int gethostname();

struct DATABASE *MSearch();

if((value = gethostname(name, sizeof(name))) == -1)
Rec_err("error on gethostname\n",OPEN);

/% Bld PATH string to user file*/

s_ptr = cat(USERS_DIR,pp_DB->usr_id):
lock(s_ptr); /* Create user lock file for protection */
/* open user file to read */

if ((EFP = fopen(s_ptr,"r+")) == NULL)

sprintf(&err{0],"Can not open %s's database\n",
pp_DB->usr_id):
Rec_err(&err{0].OPEN);
’ exit(0):
pp_DB = MSearch(EFP,pp_DB.s_ptr);
unlock(s_ptr); /* remove user lock file */
} return(pp_DB);

struct DATABASE *
MSearch(SFP, pp_DB.ptr)

-71-

struct DATABASE *pp_DB:
FILE *SFP;
c{:har *ptr;

extern int d__flag:

int MBackup();

int byte;

char *mode3 = "DL";

char *mode4 = "DR";

char mode[25]. remusrid[25], filemach[25];
char file_key[25], line[BUFSIZ];

char c, *cp, ts_ptr[128];

FILE *TFP, *NFP;

/** copy user's file to user__tmp file if

¥* there are no more messages and there are
** deactivated records in file

*/

if(pp_DB->FLAG = DELETE)

fprintf(stderr,"FLAG = %d d_flag = %d\n",
pp_DB->FLAG.d_ flag);
i{f(d_ﬂag - 0)

pp_DB->FLAG = VALID;
return(pp_DB);

}

strepy(&ts_ptr[0],USERS_DIR);
strcat(ts_ptr,pp_ DB->usr_id):
strcat(ts_ptr,"_tmp™);

i{f ((TFP = fopen(&ts_ptr{0],"a")) == NULL)
} Rec__err("MSERVER: TFP error\n",OPEN);
else

{ =
, fseek(SFP,01,0); /* beginning */

byte = fscanf(SFP,"%s\n".&pp_DB->usr_pswd[0]);
fprintf(TFP,"%s\n",&pp_DB->usr_ pswd[0]:

while((byte = fscanf(SFP,"%s %s %s %s\n".&mode[0],
, &filemach[0],&remusrid[0].&file_key[0])) != EOF)

if((stremp(mode3,&mode[0]) == 0) I
(stremp(moded.&mode[0]) == 0))

o B

continue;

fprintf(TFP,"%s %s %s %s\n".&mode[0],
&filemach[0],&remusrid[0],&file_ key[0]);
fAush(TFP);
| continue;
fclose(SFP); /* close user file */
unlink(ptr); /* remove old usr file */
fiush(TFP);
fclose(TFP);
i{f((TFP = fopen(&ts_ptr[0],"r")) == NULL)

Rec_err("MSERVER: Error on TFP read\n", OPEN);
}exit(O):

if((NFP = fopen(ptr,"a")) == NULL) /* create new usr file */

Rec_err("MSERVER: Error on file change\n",OPEN);
exit(0);

}

chmod(ptr,0600);
while((byte=fread(&line[0],sizeof (&1line[0]),
, BUFSIZ.TFP)) t= 0)

fprintf(NFP,"%s".&line[0]);
filush(NFP);

\ continue;

flush(TFP);

fclose(TFP);

flush(NFP);

fclose(NFP);

unlink(&ts_ ptr{0]);

pp_DB->FLAG = VALID;

return(pp_DB);

} /* end first if statement */

cp = &c:

/* move file ptr to last record in file */
MBackup(cp.SFP,-201.2);

/* read user’s file one record */

while((byte = fscanf(SFP,"%s %s %s %s\n",&mode[0],

{ &filemach[0],&remusrid[0].&file_key[0])) = EOF)

/%% is record deactivated ¥**/

-73 -

if((stremp(&mode[0],mode3) == 0)
I (stremp(&mode[0], mode4) == 0))

{
d_flag++;

/* check record to see if machinelremote_user match */

if (stremp(pp_DB->mach__id.&filemach[0]) == 0) &&
Estrcmp(pp_DB—>rem_usr_id.&remusrid[O]) == 0))

/*fprintf(stderr,"file_key = %91d\n",atol(&file_ key[0]));*/

/* type cast character into long type and check time
* stamp against conversation key.
x

*/
1f({ (long) atol(&pp_DB->C_key[0]) >= (long) atol(&file_key[0]))
strepy(&pp_DB->C_ key[0] &file_key[O]):

byte = 19 + strlen(&filemach[0]) + strlen(&remusrid[0]);
MBackup(cp.SFP.~(long)byte,1);

while((byte = fscanf(SFP,"%s %s %s %s\n",&mode[0],
, &filemach[0],&remusrid[0].&file_key[0])) != EOF)

if ((stremp(&mode[0],mode3) == 0)

H{(strcmp(&mode[()].modeli) == 0))
d__flag++;

b;reak:

byte = 19 + strlen(&filemach[0]) + strlen(&remusrid{0]);
MBackup(cp.SFP.-(long)byte,1);
continue;

} /* end while above ¥/

fprintf(stderr."d_flag = %d\n", d_flag);
pp_DB->FLAG = VALID;
re}turn(pp_DB):

else
{ _
byte = 19 + strlen(&filemach[0]) + strlen(&remusrid[0]);

-74 -

MBackup(cp.SFP.-(long)byte,1);
continue;

/** end of if statement on comparison of key and timestamp **/

}
}
else
{ /* back up one record */
byte = 19 + strlen(&filemach{0]) + strlen(&remusrid[0]);
MBackup(cp.SFP,-(long)byte,1);
} /* end of if statment on comparing sender’s address */
} /* End of While */

pp_DB->FLAG = INVALID;

fprintf(stderr,"Could Not Find C_key for %s to %s!%s\n",
pp_DB->usr_id,pp_DB->mach_id,pp_DB->rem_usr_id);

sprintf(&err{0],"Could Not Find C_key for %s to %s!%s\n",
pp_DB->usr_id,pp_DB->mach_id,pp_DB->rem_usr_id);

d_flag = 0;

Rec__err(&err{0].OPEN);

flush(SFP);

filush(SFP);

fclose(SFP);

return(pp_DB);

int
MBackup(bcp.B_FP,off set,where)
char *bep;
FILE *B_FP;
long offset;
i{nt where;
int byte;
char c;
bep = &c;
fseek(B_FP,offset,where); /* Move beyond new-line char */
\{while((byte = fread(bcp,1,1.B_FP)) == 1)

if(¢ =="\n") /* back up to next new-line char */
{

return;

)
} fseek(B_FP.-21.1);

return;

}

-75 -

/* P_Request.c April, 1986 */
/* This module retrieves the user’s password */

#include "database.h”
#include "constant.h"

extern struct DATABASE DB;
extern struct DATABASE *p_DB:
extern char *cat();

extern int Rec_err();

extern struct DATABASE *

P_Request(p_DB)
?truct. DATABASE *p_DB;
char err[128];
char *s_ ptr;
int chmod(), value;
FILE *FP;
struct stat stbuf;

s_ptr = cat(USERS_DIR,p_DB->usr_id);
}f((value = access(s_ptr.0)) == -1)

fprintf(stderr,” %s Is Not Enrolled \n", p_DB->usr_id);
p_DB->FLAG = INVALID;
return(p_DB);

else

{
if ((FP = fopen(s_ptr,"r")) == NULL)

{

sprintf(&err[0],"Unable to READ file for %s\n",
p_DB->usr_id);

Rec m(&err[O] OPEN);

p_DB->FLAG = INVALID;

;-etum(p_DB):

fise
fscanf(FP,"%s", &p_ DB->usr_ pswd[0]):
fclose(FP);
p_DB->FLAG = VALID;
return(p_DB):

< T8 =

/** Rec_err() April, 1986 **/
/* This module records errors detected within
** the Name Server. Mostly software errors

** on the opening and closing of files.
%/

#include <stdio.h>
#include <sys/time.h>
#include "constant.h"

extern int lock(), unlock();
extern char *cat();
extern int err_flag:

extern int
Rec_err(sptr.flag)
char *sptr;

int flag:

long time(), clock;
struct tm *localtime();
struct tm *tmptr;

char *ptr, errtime[10];
char errfile[256];

FILE *ERRFILE:

%f(ﬂng = OPEN)

ptr = &errfile[0];
time(&clock);
tmptr = localtime(&clock);
strepy{(&errfile{0], USERS__DIR);
strcat(&errfile[0],"../ERRLOG/err__log™);
sprintf(&errtime[0],"%d.%d" tmptr->tm_ mon+1,tmptr->tm_mday);
strcat(&errfile[0],&errtime[0]);
if ((ERRFILE = fopen(ptr."a")) == NULL)
fprintf(stderr,"Can not open errlog file\n");

fprintf(ERRFILE,"\n%s\n" sptr);
flush(ERRFILE);

} fclose(ERRFILE):

return;

}

s 7 =

/* cat.c April, 1986 */
/* This module is used to combine strings */

#include <strings.h>

extern char *
cat(p1,p2)
char *pl, *p2;
{

static char *string;
static file[128];

string = strepy(&file{0].p1);
string = strcat(file,p2);
return(string);

}

/* constant.h April. 1986 */

/* Keywords passed between AS and NS */

#define VALID 1

#define INVALID 0

#define PASSWORD 1

#define ENROLL 2

#define CONNECT 3

#define SEND 4

#define DISCONNECT 5

#define REMOTE 6

#define MSERVER 7

#define ASKEY 8

#define DELETE 9

#define EDIT 10

#define OPEN 1

#define CLOSE 2

#define MACH_DIR "/usrb/att/chance/smail/MACHINES/"
#define USERS_DIR "/usrb/att/chance/smail/USERS/"
#define MAILDIR "/usrb/att/chance/smail/mail/"

#define TMPFILE "/usrb/att/chance/smail/tmp/maXXXXXX"

-78 -

/* database.h April, 1986 */

/* data structure passed between AS and NS
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <strings.h>

#include <pwd.h>

extern struct DATABASE {
int FLAG;
int cmd;
char *usr__id;
char usr_pswd[25];
char *mach_id;
char *rem_ usr_id;
char C_key[12];
char AS_key[25]:

extern struct DATABASE *p_DB;
extern struct DATABASE DB;
static int lockQ);

static int unlock();

static char *cat();

static int Rec_err():

/* editx.c April, 1986
x

* This command allows a user to change his password in the
* secret mail service. It requires a login id and

* a passwd that will have to be qouted each time an amail

* service cmd is invoked. The input info is passed to the

* Name Server which creates the entry in the registration

* database.

»/

#include "DATA.BASE" /* user registration database structure */

int getuid(;

char *getpass();

char *getlogin();

char *crypt();

struct passwd *getpwuid();

struct DATABASE *p_DB;
char saltc[2];

char *myname, *mypasswd:
char *pwd, opwbuf[25], *pw:

-'7G

long salt;
int good, i, ¢, uid, cmd;

p_DB = &DB:
p_DB->usr_id = getlogin():
if(p_DB->usr_id == NULL) {
uid = getuid():
p_DB->usr_id = getpwuid(uid)->pw_name;

p_DB->cmd = PASSWORD:

NS__Request(p_DB);

if (p_DB->FLAG == INVALID) {
fprintf(stderr, "connect: database access error");
exit(1);

}
strepy(opwbuf, getpass("Enter old password: "));
pwd = p_DB->usr_pswd:
pw = crypt(opwbuf, pwd);
if(stremp(pw. pwd) 1= 0) {
fprintf(stderr, "Sorry.\n");
: exit(1);

/%

* The following code generates a random number

* by adding the long integer time with the process

* id. The number is "processed” and used as the key for

* the pertubation of the "DES" algorithm within the "crypt”
* subroutine call which is used to "hide" the user passwd

x

L

time(&salt):
salt += getpid();
saltc[0] = salt & 077;
saltc[1] = (salt > > 6) & 077:
for (i=0; i<2; i++) {
¢ = saltcfi] +°.7;
if €>'9)c+=7;if (c>Z)c+=6;
} saltcfi] = c;

mypasswd = crypt((getpass"ENTER new password: ")).saltc);
strepy(p_DB->usr__pswd, mypasswd);

/%

* The Name Server is called to enter the user in the
* registration database.

%/

p_DB->cmd = EDIT:

-80-

p_DB = ED_Request(p_DB):
if(p_DB->FLAG == VALID) {
printf("You now have a new password\n");
} exit(0);
else {
fprintf(stderr, "enroll: registration database error.\n");
exit(1);
}
}

/*** helpx.c March 25, 1986 ***/

/* This command in secret mail is a help message
** consisting of general information and manual
** page on commands.

*/

/] W, Merritt¥***/

#include <stdio.h>

#include <curses.h>
#include <signal.h>
#define screen §

char *menu[screen] = {
"\n Help Information on Secret Mail\n",
"\n Type in Item number\n\n",
"1. General Information about Secret-Mail\n",
:2. Manual Pages of Commands\n",

3.

):

int flag:
inain()

int cnt, i;

char *HELP;

char *s, term[BUFSIZ];

FILE *FP;

void int catch();

void int catchint();

signal(SIGHUP,catch);
signal(SIGINT ,catchint);
signal(SIGQUIT catch):

initser();

for(::)

clear();

refresh();

s = &term[0];

for(cnt = 0; cnt < screen; cnt++)

{

= B =

fprintf(stderr,"%s",menulcnt]):

if(gets(s) == NULL)
exit(9);
i= atoi(s);
Twitch (i
case 1: HELP="/usrb/att/chance/smail/general”;
break;
case 2: HELP="/usrb/att/chance/smail/manual";
break;
case 3: exit(0);

}
i{f((FP = fopen(HELP,"r")) == NULL)

fprintf(stderr," can not open help file\n");
} exit(0);
clear();
refresh();
flag=1;
?rhile((iag && fgets(s.BUFSIZ.FP) I= NULL))

fprintf(stderr."%s".s);

i{f (cat++ >=17)
fprintf(stderr,"Hit Return Key to Continue\n");
gets(s);
cnt = 0;
clear();

: refresh();

}
}

catch()

{
fprintf(stdout,"Caught Interrupt Signal - BYEN\n");
exit(0);

?atchint()
| flag=0;

-82 -

/* lock.c April, 1986 */

/* This module prevents more than one user writing
** to the same file.

ny

#include <stdio.h>
#include <strings.h>

extern int
lock(file)
c{:har *file:
FILE *LFP;
int i, value;
char file_lock[128], *p__lock:

p_lock = &file_lock[0]:
strepy(file__lock file);
strcat(file_lock,"_lock™);

for(i=0:i < 10; i++)
if((value = access(p_lock,0)) == -1)
%f((LFP =fopen(p_lock, "a+")) = NULL)

fclose(LFP);
return;

}
else

fprintf(stderr.”can not create lock file\n");
| sleep(2);

fprintf(stderr,"Timed out to create %s file\n",p_lock);
return;

}

unlock(file)
t{:har *ile;
char file_unlock{128], *p__unlock;

p_unlock = &file_unlock[0];
strepy(file_unlock. file):
strcat(file__unlock,”_lock™);
unlink(p_unlock);

return;

-83-

#

#The makefile for compiling the Secret Mail software
#

CC=cc

HOME=/usrb/att/chance

all: enroll connect renroll sendx getx rsend rcon rdiscon
disconnect editx

install: enroll connect renroll sendx getx rsend rcon rdiscon
disconnect editx

enroll: enroll.c name.a
${CC} enroll.c name.a -o enroll
chmod 4755 enroll
cp enroll ../bin/enrollx

editx: editx.c name.a
${CC} editx.c name.a -0 editx
chmod 4755 editx
cp editx ../bin/editx

sendx: sendx.c name.a libcpe.a
$(CC} sendx.c name.a libcpe.a -0 sendx
chmod 4755 sendx
cp sendx ../bin

getx: getx.c name.a libcpe.a
${CC} getx.c name.a libcpe.a -o getx
chmod 4755 getx
cp getx ../bin

connect: connect.c name.a libcpe.a
${CC} connect.c name.a libcpc.a -0 connect
chmod 4755 connect
cp connect ../bin

disconnect: disconnect.c name.a libcpe.a
${CC]} disconnect.c name.a libcpc.a -o disconnect
chmod 4755 disconnect
cp disconnect ../bin

rsend: rsendx.c libcpc.a name.a
${CC} rsendx.c libcpc.a name.a -0 rsend
chmod 4755 rsend
cp rsend ${HOME}/bin

recon: reon.c libcpe.a name.a
${CC} rcon.c libcpe.a name.a -0 rcon
chmod 4755 rcon
cp rcon ${HOME}/bin

-84 -

renroll: renroll.c name.a
${CC} renroll.c name.a -o renroll
chmod 4755 renroll
cp renroll ${HOME}/bin

rdiscon: rdiscon.c name.a
${CC]} rdiscon.c name.a -o rdiscon
chmod 4755 rdiscon
cp rdiscon ${HOME}/bin

name.a: P_Request.o E_Request.o C_Request.o NS_Request.o
cat.o lock.o D__Request.o MS_ Request.o Rec__err.o
ED_Request.o
ar rv name.a $?
ranlib name.a

NS_Request.o P_Request.o E_Request.o D_Request.o C_Request.o
MS__Request.o Rec__err.o ED__Request.o:
database.h constant.h

libcpc.a: getem.o des.o
ar rv libcpc.a $?
ranlib libcpe.a
/* rdiscon.c April, 1986 */
/* This module removes deactivated records on the remote
** computer.
*/

#include "DATA.BASE"
#include "constant.h"

extern int lock();
extern char *cat();
extern int Rec_err();

char err[128]:

main(argc,argv)
int arge:;
t{:har *argvi];

struct DATABASE *DD_ Request();
struct DATABASE *p_DB;
p_DB = &DB;

_DB->usr_id = argv[1];

__DB->rem_usr_id = argv[2];
p_DB->mach_id = argv(3];
p_DB = DD_Request(p_DB):

- 85 -

/%f(p_DB->FLAG == VALID &é& p_DB->cmd > ENROLL)
fprintf(stderr,"\nThe structure for %s is:\nPSWD: %s\n
MACH_ID: %s\n R__USR: %s\nCK: %s\nASKey: %s\n",

p_DB->usr_id.&p_DB->usr_pswd[0].p_DB->mach_id.
p_DB->rem_usr_id.&p_DB->C_key([0].
&p_DB->AS_ key[0]);

*/

t}exit(o):

struct DATABASE *

DD_ Request(pp__DB)
struct DATABASE *pp_ DB;
{

int BUP = 19;

char *s_ ptr;

FILE *EFP;

char *cat();

int lock(), unlock(), value;
struct DATABASE *Search();
char name[25];

if((value = gethostname(name,sizeof(name))) == -1)
Rec__err("RDISCON: error on gethostname()\n",OPEN);

s_ptr = cat(USERS_DIR,pp_ DB->usr__id);

lock(s_ptr);

if((EFP = fopen(s_ptr,"r+")) == NULL)

sprintf(&err{0],"RDISCON: Can not open %s's database\n",
pp_DB->usr_id);

Rec__err(&err[0],OPEN);

exit(0);

pp_DB = Search(EFP,pp_DB);

if(pp_DB->FLAG == INVALID)
return(pp_DB);

unlock(s_ ptr):

?f (stremp(&name[0],pp_ DB->mach_id) == 0)

s_ptr = cat(USERS_DIR,pp_DB->rem__usr_id);

lock(s_ptr);

i{f((EFP = fopen(s_ptr,"r+")) == NULL)
sprintf(&err{0],"RDISCON: Error on users file %s\n",

s); :
Re?fgr(&m[o].opm):
exit(0);

pp_DB->rem_usr_id = pp_DB->usr_id:
pp_DB = Search(EFP,pp_ DB);

- 86 -

}

unlock(s_ptr):
} return(pp__DB);

struct DATABASE *
Search(SFP, pp_DB)

struct DATABASE *pp_ DB;
.FILE *SFP:

void int Backup();

int byte, BUP = 19;

char *model = "CL";

char *mode2 = "CR";

char mode_ type[25], rem_ usr_ id[25], conn_mach_ id[25];
char c, *cp;

cp = &c;
Backup(cp.SFP,-201.2);
while((byte = fscanf(SFP,"%s %s %s %s\n".&mode_ type[0],
&conn_ mach_ id[0],&rem_ usr_id[0],&pp_DB->C_key[0])) = EOF)

if((stremp(pp_DB->mach_ id.&conn_mach_ id[0]) == 0) &&
(stremp(pp_DB->rem_usr_id.&rem_usr_id[0]) == 0) &&
((stremp(&mode_typel0l.model) == 0) Il

(stremp(&mode_ type[0].mode2) == 0)))

byte = 15 + strlen(&conn_mach__id[0]) + strlen(&rem_ usr_id[0]);
fseek(SFP,-(long)byte,1);
fprintf(SFP,"%s","DR");
flush(SFP);
fclose(SFP):
pp_DB->FLAG = VALID;
; return(pp_DB);
?lse
byte = BUP + strlen(&conn_mach_id[0]) + strlen(&rem_usr_id[0]);
: Backup(cp.SFP.~(long)byte.1);

}
pp_DB->FLAG = INVALID;
flush(SFP);
fclose(SFP);
} return(pp_DB);

void int
Backup(bcp.B__FP,offset,where)

-87 -

long offset;
int where;

{
int byte;
char c;

bep = &c;
fseek(B_FP,off set,where):;/* Move beyond new-line char */
\{whne((byte = fread(bcp.1,1,B_FP)) == 1)

if(¢ == "\n") /* back up to next new-line char */
} return;
fseek(B_FP,-21,1);

}

return,;

}

- 838 -

/* renroll.c April, 1986 */
/* This program undates all remote computers enrollment
** files.
»
#include "DATA.BASE"

extern char *cat():
extern int lock():
extern int unlock();
extern int Rec_err();

char err{128];

main(argc.argv)
int arge;

char *argv];

{

char line[128], *s_ptr;
FILE *EFP:

struct passwd *getpwuid();
struct passwd *p;

p = getpwuid(geteuid());

s_ptr = cat(MACH_DIR.argv[1]);
lock(s_ptr):

if((EFP = fopen(s_ptr,"w+")) == NULL)

Rec__err("RENROLL: Remote enroll file error\n",O0PEN);
} exit(0);

chmod(s_ptr,0600);

chown(s_ptr,p->pw__uid,p->pw_gid):
rhile(fgets(&line[O].sizeof(line),stdin) l= NULL)

} fprintf(EFP,"%s" &line[0]);

filush(EFP);
fclose(EFP);
unlock(s_ptr):
exit(0);

DISTRIBUTED FILE SYSTEMS IN AN AUTHENTICATION SYSTEM

John W. Merritt

B. 8. E. E., University of South Carolina 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

uaster of Science

Department of Computer Science

Eansas State University
Manhattan, Kansas

1986

1430-89
CD-68

An Abstract of the Master's Report

The following is an abstract of the secret mail project. The designs of secret mail
are to authenticate and provide security and protection of computer messages

between UNIX(TM) computers with a minimum of effort.

The philosophy of secret mail is that messages of a sensitive nature should be
protected from outside probing or interception. Secret mail is designed to provide
this protection with single encryption for local messages and double encryption
during the remote transfer of messages. The messages remain encrypted until the
intended receiver requests delivery. The user’s data file, which contains
information pertinent to the encrypting and decrypting of messages, is protected
from outside scanning and corruption. Software mechanisms are provided within
the file system to ensure data integrity, and the file system was organized so that

the user would experience minimum response times.

The secret mail project consists of the three functional areas: the Authorization
Server, the Name Server, and the Message Server. The Authorization Server
provides the user interface, the authentication of the user, and message encryption
and decryption. The Name Server provides the management of the file system and
the generation of a unique conversation key. The conversation key is used for
encrypting and decrypting messages. The Message Server provides retrieval and
decryption of messages that have been sent. The main emphasis of this paper is

on the Name Server and the Message Server's interactions with the file system.

