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Abstract

Background: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic
ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate
and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective
strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in
numerous expressed proteins of the organism during its growth in different host environments.

Methodology/Principal Findings: Transmission electron microscopy analysis was performed to assess morphological
changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the
attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release
of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was
highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of
Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was
confirmed by confocal microscopy and immunoblot analysis.

Conclusions/Significance: Morphological differences in the pathogen’s progression, replication, and processing within
macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in
support of adaptation to vertebrate and tick cell environments.
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Introduction

Ehrlichia chaffeensis is a Gram negative obligate intracellular

pathogen that is transmitted via the bite of an infected Amblyomma

americanum tick to humans and several other vertebrate hosts [1–3].

This organism is responsible for an emerging disease, human

monocytic ehrlichiosis (HME) [4,5]. HME is characterized by an

acute onset of febrile illness which can sometimes be a fatal

disease. Clinical symptoms of the disease may resemble flu-like

illness which may include malaise, headache, myalgia and

persistent fever. Laboratory findings may include leukopenia,

thrombocytopenia, and elevated liver transaminases [4–6].

E. chaffeensis and other related tick transmitted rickettsial

pathogens are capable of persisting in both vertebrate and tick

hosts [7–13]. The pathogens may have evolved unique strategies

to establish infections in both invertebrate and vertebrate hosts in

order to successfully complete their lifecycle in dual hosts.

Persistent infection in ticks is also important as the organism

cannot be transovarially transmitted. Our recent molecular and

proteomic studies revealed global differences in the expressed

proteins of E. chaffeensis within different host cell environments

[13–16]. The pathogen’s growth in different host cell environ-

ments is also a major contributor for its dual host adaptation and

persistence [11]. The host cell-specific differences in the expressed

proteins support the hypothesis that E. chaffeensis employs novel

strategies to adapt and persist in both types of hosts, however, the

exact mechanism of adaptation remains to be established.

In this study, we investigated ultrastructural differences in E.

chaffeensis replicating in vertebrate and tick cells by employing

transmission electron microscopy (TEM) analysis to assess if the

organism differs in its progression. Specimens for TEM were

prepared and observed under various magnifications ranging from

2,0006 to 70,000 6. The pathogen progression stages described

here included the attachment of the organism to the host cell

membrane, its engulfment, replication within a morula by binary

fission, and release of the organisms from infected host cells by

complete host cell lysis or by exocytosis. We found evidence for

unique host cell-specific differences in the organism’s progression
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within phagosomes. In addition, our novel data suggest that E.

chaffeensis enters into host nuclei.

Results

Morphological forms of E. chaffeensis
Transmission electron microscopic (TEM) analysis aided the

visualization of diversity in the size and number of morulae

containing E. chaffeensis organisms within invertebrate and

vertebrate host cells. Two morphologically distinct forms (re-

ticulate and dense core cells) were identified within the phago-

somes of infected tick cells and macrophages. Although the two

morphological forms observed for the first time for E. chaffeensis

infection in tick cells, they are similar to the TEM data reported

earlier for the organism in macrophage cultures [17–20]. The

reticulate bodies had an even distribution of cytoplasmic

structures, while the dense core cells contained condensed material

considered to contain ribosomes and nucleoid material [17,18]. E.

chaffeensis in macrophages was relatively more synchronized

compared to infected tick cells (Figure 1). About 38% of

macrophage cells harbored only reticulate cells, 42% contained

only dense core cells, and 20% of the cells observed contained

both cell forms of E. chaffeensis but were found in separate morulae.

The cells containing both forms in macrophage cultures were

typically found in the later time points (96 and 168 hours), whereas

the early time points (48–72 hours) contained primarily reticulate

form. On the contrary, considerably a greater percent of the

infected tick cells (34%) contained both cell forms of the bacterium

within the same morula.

The intracellular vacuoles were filled with varying numbers of

bacteria which appeared to range from one organism to greater

than 100 organisms. In cells that contained large morulae, the host

cell nucleus was characteristically pushed to one side. The

characteristic morula membrane appeared as smooth, but the

morula containing several bacteria had more ruffled membranes

(Figure 2A). The morulae within the infected macrophages were

more compact with organisms occupying most of the intra-morula

space. In contrast, the organisms in infected tick cells were mostly

loosely packed and dispersed throughout the phagosome (74%). In

about 24% of the infected tick cells, the organisms aggregated at

one end of the morula or attached to the morula membrane

(Figure 2B). The morula size within the infected tick cells was also

bigger, often occupying the majority of the cytoplasmic space

(Figure 2B). Reticulate forms of E. chaffeensis within the tick cells

were highly pleomorphic (Figure 3). The bacterium in both

macrophages and tick cells contained two clearly visible mem-

branes; the outer membrane and the inner membrane (Figure 4).

The outer membrane was corrugated and was more prominent in

the reticulate forms.

Aggregation of Mitochondria Around a Morula
Morulae containing E. chaffeensis organisms within the infected

macrophage cells were often observed as surrounded with several

mitochondria. In many infected macrophage cells, mitochondria

were either in direct contact with a morula membrane or within

the same vicinity of a morula (Figure 5A). In infected macro-

phages, 98% had mitochondria aggregated around a morula;

nearly half of the cells having aggregated mitochondria also have

in direct contact with a morula membrane, and only in 2% of the

cells mitochondria could not be seen in the surrounding area of

a morula. Contrary to this, fewer mitochondria were seen

surrounding a phagosome containing E. chaffeensis organisms in

tick cells (Figure 5 B). TEM analysis revealed the attachment of E.

chaffeensis dense core forms to the host cell membrane at earlier

time points following infection. The organisms were also seen

within the pseudopodia extensions from a host cell enabling

engulfment and internalization into a phagosome (Figure 6A and

B). The modes of attachment and engulfment appeared to be the

same for the vertebrate and invertebrate cells.

Cell Divisions and Release
The cell division process visualized in macrophages was typical

of binary fission of reticulate cells (Figure 7A). This observation is

consistent with the previous reports describing the TEM analysis

of infected macrophages [17,18,20]. In tick cells, E. chaffeensis was

also found to be dividing mostly by binary fission (80%)

(Figure 7B). In addition, filamentous type cell divisions were

observed in about 20% of infected cells (Figure 7C) (also can be

seen in the image presented in Figure 1D). Once the bacteria have

replicated to the point where the morula occupied majority of the

space within a host cell cytoplasm, the organisms were released

from the host cells mostly by complete lysis (90%) of the infected

cells (Figure 8A and B). The release of bacteria in vertebrate and

tick cells was also observed by exocytosis with an opening to

a phagosomal membrane (Figure 8C and D). The organisms

released by host cell lysis represented only dense core cells. About

5% of the infected macrophages, but not infected tick cells, also

contained morulae that had organisms appeared to have been

degraded (Figure 9).

Invasion of Host Cell Nucleus
Bacteria of the family Anaplasmataceae reside within a phago-

somal vacuole, whereas the related bacteria of the family

Rickettsiaceae escape from a phagosome and reside in a host cell

cytoplasm or move to the host cell nucleus [21]. To date, there

were no reports that described any species within the family

Anaplasmataceae to invade a host cell nucleus. Initial electron

microscopic studies revealed the presence of vacuoles with

inclusions in a subset of infected cell nuclei. As the infection

progressed, the cells were more heavily infected and by 168 hours

post infection about 18% of the infected cells (both macrophage

and tick cells) also contained vacuoles within nuclei and included

inclusions that resembled Ehrlichia organisms (Figure 10).

Confocal Microscopy Analysis
To examine if the inclusions in the nuclei of infected cells are E.

chaffeensis organisms, infected macrophage and tick cell cultures

were subjected to double immunofluorescence labeling and

confocal microscopic examination (Figure 11). Confocal micros-

copy offers the ability to optically slice through a cell and generate

Z or depth information about a specifically labeled organism

within a cell. By showing sequential optical slices through a cell

(Figure 11) and generating orthogonal projections of all slices in

a Z-series (A and B of the top right panel of the figure) it was

possible to determine if E. chaffeensis localized in a nucleus. In both

cell lines, nuclei were labeled with the nucleic acid stain propidium

iodide (red in all images). Polyclonal sera made against the whole

Ehrlichia organism [11] or three different monoclonal antibodies

(mAbs) which recognize p28-Omp 19 protein (mAbs 56.5, 18.1,

and 65.1) [22] were used as primary antibodies, followed by Alexa

488 (green color) conjugated secondary antibody to identify E.

chaffeensis within the host cells (Figure 11 included data generated

using mAb 56.5). Alexa 488 staining was visible in the inclusions of

both cytoplasm (green) and nucleus (green-yellow) of infected

macrophages. Similar analysis with infected tick cells exhibited

obvious E. chaffeensis inclusions only in the cytoplasm, but not in

the nucleus (not shown). The inclusions were observed in about

10% of the total cell population examined.

Host Cell-Specific Differences in E. chaffeensis
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Cell fractionation and Western Blot Analysis
To further verify the presence of E. chaffeensis in the nucleus of

infected macrophages and tick cells, infected cells were fraction-

ated to cytosolic and nucleic fractions. Total proteins recovered

from the nucleic and cytosolic fractions were isolated and

subjected to Western blot analysis using polyclonal sera or using

mAbs 56.5 that recognize p28 outer membrane protein [22]

(Figure 12). Ehrlichia proteins were recognized in both the nucleic

and cytosolic fractions derived from macrophages and tick cells,

whereas the antibodies against the bacterium did not recognize

similar proteins from the total cell extracts prepared from

uninfected cells. To rule out the contamination of cytosolic

proteins in the nucleic fraction, immune blot analysis was also

performed for the nucleic and cytosolic fractionated proteins

resolved from infected macrophages and tick cells using a mAb

that recognizes canine b actin. The beta actin-specific antibodies

identified a 42 kDa protein band only in the cytosolic fraction

derived from infected macrophages.

Discussion

TEM analysis of E. chaffeensis in macrophages and other

vertebrate cell lines has been reported previously [17–20]. In

particular, previous studies have been focused primarily on the

Figure 1. Twomorphologically distinct cell forms of E. chaffeensis in infected macrophages or tick cells. This Figure included TEM images
to represent uninfected macrophages (A) and tick cells (B) and E. chaffeensis-infected macrophages (C) and tick cell (D). Majority of the morulae in the
infected macrophages harbored only reticulate cells or dense core cells. In infected tick cells, considerably more infected cells contained both cell
forms of the bacteria within the same morula. (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g001

Host Cell-Specific Differences in E. chaffeensis

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36749



organisms replicated in vertebrate cells, but there were no studies

reported about how the organisms progress in infected tick cells.

The current study represents the first detailed investigation

describing the ultra-structures of E. chaffeensis in tick cells. This

study also reevaluated and compared the organism’s morpholog-

ical structures in vertebrate macrophages with those observed in

infected tick cells. The study revealed several similarities in E.

chaffeensis replication in macrophages and tick cells. In addition, the

organism possessed several tick cell-specific differences. Here, we

examined the invasion, replication within phagosomes, morpho-

logical variations in the replicating cells, and their subsequent

release from the infected cells. Reticulate cells are typically larger

and have an even distribution of the cytoplasmic material for E.

chaffeensis cultivated in both macrophages and tick cells. The dense

core cells contained a more compact and condensed material.

Both cell forms were observed as having the characteristic

corrugated membrane that has been described previously in other

ultrastructure studies of the pathogens from the Anaplasmataceae

family [17,18,23–27]. The dense core cells are the only form

observed in the extracellular environment. This observation is

consistent with a recent study demonstrating that the dense core

cells represent infectious organisms [20]. Our analysis revealed for

the first time that the reticulate forms of E. chaffeensis differ

considerably in their morphology when replicating in two different

host cell backgrounds. Specifically, the reticulate form in tick cells

is often larger in size and is highly pleomorphic compared to those

observed in macrophages.

The majority of E. chaffeensis organisms within a morula of

vertebrate cells are either dense core or reticulate forms. The

presence of both cell types in infected tick cells is relatively high

compared to those observed in macrophage cells and may indicate

that all E. chaffeensis organisms in a tick cell may mature at different

times to form dense core cells, whereas in macrophages, the

organisms grow more synchronously. In most of the morulae

within infected tick cells, E. chaffeensis organisms are not tightly

packed as observed in infected macrophages. Previous studies with

A. marginale, E. equi, E. canis, E. muris, and the A. phagocytophilum have

visualized vesicle like structures within the phagosomes where the

organisms are replicating in vertebrate cells [18,28,29]. Likewise,

Popov et al. [17] also reported similar vesicles within a phagosome

of E. chaffeensis replicating in morulae of infected macrophages.

Similar structures were also observed in the current study in the

morulae of both infected tick cells macrophage cells (these

structures can be seen in several images presented in this

manuscript). It is not clear what these vesicles represent and their

significance to the organism.

Our study identified mitochondria directly attached to a morula

membrane or near the vicinity of a morula in infected

macrophages. Similar observations are also reported for several

Figure 2. Variations of morulae in infected macrophages and tick cells. E. chaffeensis containing phagosomes within the infected
macrophages (A) were more compact with organisms occupying most of the intra-morulae space. The organisms in infected tick cells (B) were mostly
aggregated at one end of the morula or attached to the morula membrane, intra-morulae space is also considerable more in the tick cell
phagosomes and the morula size is also larger. (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g002

Figure 3. Extensive pleomorphic structures of E. chaffeensis in
infected tick cells. E. chaffeensis in infected tick cells have extensive
pleomorphic structures. (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g003

Host Cell-Specific Differences in E. chaffeensis
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other rickettsias in the Anaplasmataceae family [17,18,30,31].

Together, these observations suggest that the organisms may

require close interaction with a mitochondrion, possibly to obtain

energy sources directly from the organelle. E. chaffeensis is an

obligate intracellular pathogen and may depend heavily upon the

host cell for energy. If this should be the case, a specific carrier

mediated membrane transport system for exchange of ATP and

ADP should be expressed at the surface of the morulae membrane

to aid in the exchange of the nucleotides. ATP/ADP transporter

proteins have been characterized for other intracellular bacteria,

including Rickettsia prowazekii, Chlamydia trachomatis, and Caedibacter

caryophilus [32]. E. chaffeensis genome includes several putative

transporter proteins [33]. However, it remains to be studied if any

of the transports are involved in support of the nucleotide uptake

by the organism. In a recent study, Liu et al. [34] reported the

selective inhibition of mitochondria function in E. chaffeensis

infected vertebrate cells. The closer association of mitochondria,

together with the inhibition of mitochondria function reported

earlier, suggests that the interactions between the morulae and

mitochondria may be necessary for the pathogen’s survival in the

phagosomal environment.

Our TEM analysis of E. chaffeensis infected macrophages and

tick cells revealed distinct developmental stages. We visualized E.

chaffeensis to have active interaction with host cell projections in

both macrophages and tick cells. Phagocytosis is the likely

mechanism by which E. chaffeensis enters into both vertebrate

and invertebrate host cells. The TEM examination revealed

adhering of organisms to host cell membrane and support the

Figure 4. Corrugated outer membrane present in E. chaffeensis. Both E. chaffeensis reticulate and dense core forms have ruffled outer
membrane structures (Higher magnification of reticulate forms from infected macrophages (A) and infected tick cells (B) are presented. (Scale bar
1 mm).
doi:10.1371/journal.pone.0036749.g004

Figure 5. Mitochondria aggregation around morulae. Aggregation of mitochondria was observed more frequently in infected macrophages
where they were also attached to the phogosomal membrane (A). Fewer mitochondria were visible in the infected tick cells harboring E. chaffeensis
(B). (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g005

Host Cell-Specific Differences in E. chaffeensis
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hypothesis for receptor mediated endocytosis. This hypothesis is

consistent with the reports suggesting that the 120 kDa outer

membrane protein of E. chaffeensis expressed predominantly on the

surface of the dense core cells and aides in the attachment to host

cells [19,20].

Previous reports suggest that the dense core cells of E. chaffeensis

transform to reticulate cells prior to the organisms replication by

binary fission within the phagosomes of infected macrophages

[6,17,18]. In the current study, we observed bacterium forms

having filamentous structures with short spherical organisms

attached to the structures. These observations suggest that the

bacterium also replicates by filamentous type cell divisions that is

similar to Mycoplasma species [35]. Previous studies reported the

absence of lipopolysaccharide (LPS) on E. chaffeensis [36], which is

further supported by the absence of genes encoding proteins

needed for the LPS in the bacterial genome [33]. The

pleomorphic nature of reticulate cells and filamentous structures,

observed in the current study in infected tick cells, may also have

resulted due to the lack of this cell wall substance.

Release of organisms from infected cells was observed as a result

of the complete lysis of the host cells or by exocytosis of the

organisms from morulae releasing the bacteria from an intact host

cell. The release of bacteria by exocytosis observed for Ehrlichia is

similar to other intra-phagosomal pathogens such as Chlamydia

species [37–39]. The dense core cells are the only cell form

observed in the released E. chaffeensis organisms that were also

attached to naı̈ve cells. Together, these data support the prior

observations that the dense core cells are the only infectious forms

[20]. Overall, the developmental cycle visualized in both

macrophage and tick cells included the attachment, replication

by binary fission and/or by filamentous type cell divisions (tick

cells), and finally the release of dense core bacteria by total cell lysis

or by exocytosis for subsequent infection to naı̈ve host cells.

Recently, Thomas et al. [37] presented evidence that the E.

chaffeensis are transported to neighboring cells through the host cell

filopodium during initial stages of infection, a form of exocytosis.

This appears to be one of the mechanisms by which the bacterium

infects naı̈ve cells. We, however, did not find similar host cell

filopodium containing E. chaffeensis organisms in our TEM studies.

In this study, we also found evidence of two novel observations:

1) a subset of infected macrophages appear to clear E. chaffeensis

from phagosomes, and 2) the presence of vacuoles in the host cell

nucleus with E. chaffeensis organisms. We identified a subset of

cultured macrophages that contained phagosomes with cellular

debris, but did not include Ehrlichia organisms. The cellular debris

may represent degraded bacterial organisms. This observation

suggests that a subset of macrophages is capable of clearing E.

chaffeensis from their phagosomes. Considerable evidence is

presented in the literature that E. chaffeensis infected animals,

including humans, do induce the strong B and T cell responses

[13,40–42]. If the infection was not processed by vertebrate

macrophages or by other antigen presenting cells, one cannot

expect a host response in inducing acquired immune response. It is

possible that a subset of antigen presenting cells in vivo also

breakdown E. chaffeensis organisms and that the immunogenic

epitopes are presented for the induction a cellular response.

The second novel observation in this study was the identification

of inclusions in the nuclei of a subset of E. chaffeensis infected host

cell. We presented three lines of evidence demonstrating the entry

of E. chaffeensis organisms into host cell nucleus; TEM, confocal

microscopy and Western blot analysis. It is not clear how the

bacterium enters into the host cell nucleus. One possible

mechanism could be that the organisms may be trapped in a host

cell nucleus during the cell divisions. Alternatively, the organisms

may actively gain entry by nuclear phagocytosis. These hypotheses

remain to be verified. It is also not clear if the bacterium indeed

enters into the nucleus of an infected host cell under in vivo

conditions. Inclusions in the vacuoles within the nucleus of a subset

of infected cells are similar in size to E. chaffeensis organisms.

Confocal microscopic analysis and Western blot analysis further

confirmed the TEM observations that the inclusions observed

within the nucleus of a subset of infected cells were indeed E.

chaffeensis organisms. In our Western blot analysis, we presented

clear evidence that the nuclear extracts are not contaminated with

cytoplasmic proteins for infected macrophages by demonstrating

the presence of b-actin only in the cytoplasmic extracts. Similar

experiment, however, could not provide conclusive evidence of

tick cell infection, as the b-actin antibody used in the current study

does not cross-react with tick protein homologs. Although the

nuclear protein extraction method was the same for fractionating

proteins from infected macrophages and tick cells, the possibility of

contamination of tick cell nuclear extract with Ehrlichia proteins

from cytoplasmic extracts cannot be excluded. Thus, the bacterial

Figure 6. Attachment and internalization of dense core forms of E. chaffeensis. In macrophage cells (A), E. chaffeensis dense core cells
interaction with the host cell membrane was seen as direct attachment to the host cell and with pseudopodia formed. E. chaffeensis dense core forms
in tick cells (B) also attach to the host cell membrane and get internalized with the formation of pseudopodia. (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g006

Host Cell-Specific Differences in E. chaffeensis
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localization with the nucleus of tick cells remains to be validated

further.

The inclusions found in the nuclei are approximately one

micron in size suggesting that the organisms found in the nuclei of

infected cells do not appear to be replicating. This is the first study

to document the presence of E. chaffeensis organisms in nuclei of

infected cells of both vertebrate macrophages and tick cells.

Recent studies suggest that the Ehrlichia and Anaplasma species

pathogens transport bacterial proteins, such as the AnkA repeat

proteins, into the infected host cell nuclei [43–45]. The proteins

appear to bind to nuclear DNA and alter host gene expression. It

is not clear if our observation that the inclusions in a host cell

nucleus has any biological significance.

In summary, we reported ultrastructure variations of E.

chaffeensis in vertebrate macrophages and in infected tick cells.

Both infected vertebrate and tick cells contained two morpholog-

ical cell forms (reticulate and dense core forms), the dense core

form attached to the host cell membrane to gain entry by

phagocytosis, transform to reticulate form and replicates within

a morula by binary fission, convert to dense core form and release

into the extracellular environment as a result of whole cell lysis or

by exocytosis. We identified E. chaffeensis cultivated in tick cells to

contain larger reticulate forms and have a higher degree of

pleomorphism. They also included filamentous like structures,

possibly resulting from replications similar to Mycoplasma species

[35]. We have presented two novel findings; cell debris in

phagosomes of a subset of infected macrophages, which possibly

represent degradation of the organisms, and the localization of E.

chaffeensis organisms within the nucleus of a subset of infected host

cells. The morphological differences in infected tick cells and

macrophages parallel to our prior observations that E. chaffeensis

organisms express unique host cell specific proteins [13–16]. The

morphological differences in the pathogen’s progression in infected

macrophages and tick cells are further evidence that the pathogen

employs unique host-cell specific strategies.

Materials and Methods

Cultivation of E. chaffeensis
E. chaffeensis (Arkansas isolate) was propagated in the canine

macrophage cell line (DH82) using the minimal essential medium

(MEM) supplemented with 6.5% fetal bovine serum and 2 mM L-

glutamine at 37uC with 5% CO2 essentially as described earlier

[46]. DH 82 is a macrophage-monocyte cell line from a dog with

malignant histiocytosis [38] and is commonly used for in vitro

cultivation of E. chaffeensis [14,46]. The ISE6 tick cell line, an

embryonic cell line of Ixodes scapularis described previously [25],

was also used to cultivate E. chaffeensis as we reported earlier [14].

Briefly, uninfected and infected tick cell cultures were maintained

at 34uC in L15B300 medium modified with 5% tryptose

phosphate broth, 5% heat-inactivated fetal bovine serum, and

0.1% bovine lipoprotein concentrate at pH 7.2. The medium for

infected cultures was additionally supplemented with 25 mM

HEPES and 0.25% NaHCO3 with an adjusted pH of 7.5 [25].

The intracellular growth of the organisms was monitored with

a polychromatic staining kit, Hema-3 stain (Fisher Diagnostics,

Middletown, VA) following the transfer of 100 ml of culture

suspension onto a slide by cytospin centrifugation (Wescor Inc.,

Logan, UT).

Preparation of E. chaffeensis Cultures for Use in Electron
and Confocal Microscopy Analysis
E. chaffeensis infected culture at about 80–90% infectivity were

harvested from a confluent T75 flask and centrifuged at 20006g

Figure 7. E. chaffeensis replication. E. chaffeensis reticulate cells in
macrophages and tick cells exhibiting replication by binary fission (A,
macrophage and B, tick cells). Tick cell grown organisms also included
filamentous type cell divisions (about 20% of the cells) (C). This
observation can also be seen in the image presented in Figure 1D.
(Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g007

Host Cell-Specific Differences in E. chaffeensis
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for 10 min to remove intact host cells and nuclei. The culture

supernatant was filtered through 5 and 3 mm filters (Millipore,

Billerica, MA) to recover host cell-free E. chaffeensis organisms. The

filtered solution was centrifuged at 15,5006g for 15 minutes and

the host cell free bacteria were resuspended in 5 ml each of

minimal essential medium (for vertebrate culture) or L15B

medium (tick cell culture). One milliliter each of the culture was

used to inoculate naı̈ve 5 ml DH82 or ISE6 cultures. Infected

cultures were harvested at different time points post infection.

Cultures were harvested by centrifuging at 5006g for 5 min at

4uC and the pellets were resuspended in 16 phosphate buffered

saline (PBS) for use in electron microscopy analysis.

Transmission Electron Microscopy Analysis
All centrifugation steps used in preparing the TEM samples

were performed at 4uC for 5 min at 2006g, unless otherwise

specified. The cultures in PBS were fixed with 1 ml of Karnovsky’s

fixative containing 2% paraformaldehyde, 2.5% gluteraldehyde in

0.1 M cacodylate buffer (pH7.4) at 4uC overnight. The cells were

then washed three times with 1 ml of 0.1 M cacodylate buffer and

were incubated in 1 ml of 1% osmium tetraoxide in 0.1 M

cacodylate buffer for one hour at 4uC, washed thrice with double

distilled water and then resuspended in 2% trypsin soy agar

solution. Each sample was diced with a teflon coated razor blade

and placed in a wheaton glass vials with 50% ethanol at room

temperature for 15 min, then stained with 70% ethanol/uranyl

acetate in the dark for one hour at room temperature. Cells were

passed through a dehydration process with an ethanol gradient of

increased concentrations from 50% to 100%. All samples

embedded in the resin were transferred to silicon molds to allow

for polymerization to be completed. All blocks were examined

under a dissecting scope to identify a sample that was flush to the

end of the block using an Ultracut E-Reichert-Jung ultramicro-

tome, sections of 0.5 mm were cut in the range of 75–90 nm, and

placed on Athene Thin Bar copper grids (Ted Pella, Redding,

CA). The grids were stained with uranyl actetate in 70% ethanol

Figure 8. Release of E. chaffeensis from infected macrophages and tick cells. Most of the infected host cells exhibited release by complete
lysis. A subset of the infected cells also released organisms by exocytosis by creating an opening to the morula membrane. (A and C, infected
macrophages and B and D, infected tick cells) (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g008
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followed by Reynold’s lead citrate. The grids were stained with

lead citrate and the stained grids were examined under a Hitachi

H-300 electron microscope (Hitachi High-Tech, San Jose, CA).

Images were captured on Kodak Electron Microscopy film 4489

(Electron Microscopy Sciences, Hatfield, PA) and developed in

Kodak D-19 Developer (Electron Microscopy Sciences, Hatfield,

PA) as per the manufacturer’s instructions. The photograph scale

marker was used to identify magnification.

Quantitative Analyses of TEM Images
Typically, individual cells viewed under TEM were counted to

determine various observations. Twenty separate grids were

captured from each micrograph to access differences for infection

in tick cells and macrophages.

Immunolabeling
Ehrlichia infected macrophage or tick cell cultures (140 ml)

were transferred to a glass slide (Fisher Scientific, Pittsburg, PA)

by using a cytospin centrifuge (Wescor Inc., Logan, UT). The

slides were air dried and fixed in 4% paraformaldehyde for

20 min at room temperature. The slides were then washed with

PBS. Antibodies were diluted in FA serum diluting buffer

(VMRD, Inc., Pullman, WA) and 10 ml of either polyclonal

antisera (1:256) raised in mice against E. chaffeensis [11] or one

of the three different monoclonal antibodies (mAbs) (1:500) that

recognize 28 kDa outer membrane protein, p28-Omp 19,

(mAbs 18.1, 56.5 or 65.1) [22] were transferred to the slides.

Slides were then placed in a moist chamber at 37uC for 30 min,

washed in 16 FA buffer and placed in a jar containing the

same solution for 10 min. Ten microliters of Alexa Flour 488

conjugated goat anti-mouse IgG (H+L) (0.5 ng/ml) (Invitrogen,

Carlsbad, CA) was added to each slide and placed in a moist

chamber at 37uC for 30 min and were rinsed as described

above. Cells were then permeabolized by adding 10 ml of 0.1%

Triton X-100 in 1X PBS. For visualization of the nuclei, 10 ml

of 1.5 mM propidium iodide (PI) in PBS was added to the slide.

The slides were air-dried and mounted with Fluoromount-G

(Fisher Scientific, St. Louis, MO). The samples were then stored

at 4uC in the dark until viewing.

Confocal Microscopy
Samples were viewed on a Zeiss laser scanning confocal

microscope model LSM 5 PASCAL equipped with an Axioplan

2 MOT Research Microscope using a 636/1.4 oil Plan

apochromat objective. Single track images of Alexa 488 and

PI labeling as well as multi-track images, track #1 Alexa 488

and PI images and track #2 reflected light images, were

collected. For single track images and multi-track images, Alexa

488 and PI fluorophores were excited with the 488 nm line of

a 25 mW Argon laser and the 543 nm line of a 1 mW HeNe

laser, respectively, and fluorescence imaged using an HFT 488/

543/633 primary dichronic, an NFT 545 secondary dichronic,

a 560 long pass filter and channel 1 (photomultiplier tube, red)

for viewing PI, a 505–530 band pass filter and channel 2

(photomultiplier tube, green) for imaging Alexa 488. The

pinhole for channel 1 was set to an Airy unit of one and

channel 2 was adjusted to an optical slice thickness equal to

channel 1. Single and multi-track Z-stacks were collected at

0.8 mm intervals through the full thickness of infected cells to

determine if E. chaffeensis resided within the nucleus.

Figure 9. An infected macrophage containing phagosomes
with cell debris. (Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g009

Figure 10. Inclusion in the nuclei of infected host cell. Vacuoles with inclusions within the infected macrophage (A) and tick cell (B) nuclei.
(Scale bar 1 mm).
doi:10.1371/journal.pone.0036749.g010
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Figure 11. Confocal microscopy Z-stack imaging to localize E. chaffeensis within a host cell nucleus. Immunofluorescent detection of E.
chaffeensis was accomplished with mAb 56.5. Detection was made using Alexa Fluor 488 (green fluorescence) anti-mouse secondary antibody.
Propidium iodide was used to stain nuclei (red fluorescence). Yellow fluorescence indicates E. chaffeensis localized within the nucleus. (Z-stack images
collected at 0.8 mm sections were presented in the top left panel of the figure. The cell sections in the figure were identified with the section depth at
the top left on each image. The magnification in each cell section was presented at the bottom right of each image by placing a 10 mm scale bar.) In
top right panel; A is Z-projection in the X–Z direction, B is Z-projection in the Y–Z direction and the blue lines in A and B indicate the Z-depth of the
3.20 mm optical slice in C. The green and red lines in C indicate the orthogonal planes of the X–Z and Y–Z projection, respectively. Uninfected cells
which were subjected to similar immunofluorescence analysis were used to serve as a negative control for this experiment (bottom right panel).
doi:10.1371/journal.pone.0036749.g011

Figure 12. Western blot analysis to identify E. chaffeensis proteins. Total cell lysates from uninfected cells, cytoplasm (C) and nucleic (N)
fractions from E. chaffeensis-infected macrophages and tick cells were assessed by immunoblot analysis using E. chaffeensis mAb 56.5 that recognizes
p28 Omp 19 [22]. E. chaffeensis infected macrophage and tick cell protein fractions were also probed with b actin Ab. (U–T, uninfected cell-derived
total soluble proteins; I–C, E. chaffeensis-infected cell derived cytoplasmic proteins; I–N, E. chaffeensis-infected cell derived nucleic proteins).
doi:10.1371/journal.pone.0036749.g012
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Protein Subcellular Fractionation and Western Blotting
Analysis
E. chaffeensis protein fractions were prepared from infected

macrophage and tick cell cultures having 80–90% infectivity. The

protein fractions from the whole cell, cytosol, and nuclei were

isolated using ProteoExtractTM, a Subcellular Proteome Extrac-

tion Kit, (Calbiochem, Darmstardt, Germany) according to the

manufacturer’s instructions. The extracted protein fractions were

resolved on 12% SDS-PAGE gel, transferred on to a nitrocellulose

membrane for use in Western blot analysis. Western blot analysis

was performed with E. chaffeensis mAb 56.5 [22] or polyclonal sera

obtained from infected C57BL/6J mice as described earlier [11].

Immuno blot analysis was also performed using polyclonal

antibodies against mouse beta actin which cross react with canine

b-actin (catalog# AB6276, Abcam, Cambridge, MA).

Acknowledgments

This manuscript is a contribution from the Kansas Agricultural

Experiment Station, number 11-378-J. The authors thank Ms. Gina Scott

and Ms. Mal Hoover for their help in preparing some of the figures.

Author Contributions

Conceived and designed the experiments: RRG. Performed the experi-

ments: SED CC LHW DLB. Analyzed the data: SED RRG. Contributed

reagents/materials/analysis tools: SED CC LHW DLB RRG. Wrote the

paper: SED RRG.

References

1. Gayle A, Ringdahl E (2001) Tick-borne diseases. American Family Physician 64:

461–466.
2. Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging

pathogen. Clin Microbiol Rev 16: 37–64.

3. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an
emerging infectious threat. Clinical Infectious Diseases 32: 897–928.

4. Walker DH, Dumler JS (1996) Emergence of the ehrlichiosis as human health
problems. Emerging Infectious Diseases 2: 18–29.

5. Dumler JS, Madigan JE, Pusterla N, Bakken JS (2007) Ehrlichioses in humans:

epidemiology, clinical presentation, diagnosis, and treatment. Clinical Infectious
Diseases 45 Suppl 1: S45–S51.

6. Rikihisa Y (1991) The tribe Ehrlichieae and ehrlichial diseases. Clinical
Microbiology Reviews 4: 286–308.

7. Andrew HR, Norval RA (1989) The carrier status of sheep, cattle and African
buffalo recovered from heartwater. Veterinary Parasitology 34: 261–266.

8. Dumler JS, Sutker WL, Walker DH (1993) Persistent Infection with Ehrlichia

chaffeensis Clinical Infectious Diseases 17: 903–905.
9. CDC (1996) Human ehrlichiosis–Maryland, 1994. MMWR Morb Mortal Wkly

Rep 45: 798–802.
10. Ganta RR, Wilkerson MJ, Cheng C, Rokey AM, Chapes SK (2002) Persistent

Ehrlichia chaffeensis infection occurs in the absence of functional major

histocompatibility complex class II genes. Infect Immun 70: 380–388.
11. Ganta RR, Cheng C, Miller EC, McGuire BL, Peddireddi L, et al. (2007)

Differential clearance and immune responses to tick cell-derived versus
macrophage culture-derived Ehrlichia chaffeensis in mice. Infect Immun 75:

135–145(PMID): 17060466).
12. Olano JP, Wen G, Feng HM, McBride JW, Walker DH (2004) Histologic,

serologic, and molecular analysis of persistent ehrlichiosis in a murine model.

Am J Pathol 165: 997–1006.
13. Ganta RR, Peddireddi L, Seo GM, Dedonder SE, Cheng C, et al. (2009)

Molecular characterization of Ehrlichia interactions with tick cells and
macrophages. Front Biosci 14: 3259–3273 (PMID. 19273271) p.

14. Singu V, Liu H, Cheng C, Ganta RR (2005) Ehrlichia chaffeensis expresses

macrophage- and tick cell-specific 28-kilodalton outer membrane proteins.
Infect Immun 73: 79–87.

15. Singu V, Peddireddi L, Sirigireddy KR, Cheng C, Munderloh UG, et al. (2006)
Unique Macrophage and Tick Cell-specific Protein Expression from the p28/

p30 Omp Multigene Locus in Ehrlichia Species. Cell Microbiol 8: 1475–1487.
16. Seo GM, Cheng C, Tomich J, Ganta RR (2008) Total, membrane, and

immunogenic proteomes of macrophage- and tick cell-derived Ehrlichia

chaffeensis evaluated by LC-MS/MS and MALDI-TOF methods. Infect
Immun 76: 4823–4832(PMID): 18710870).

17. Popov VL, Chen SM, Feng HM, Walker DH (1995) Ultrastructural variation of
cultured Ehrlichia chaffeensis. J Med Microbiol 43: 411–421.

18. Popov VL, Han VC, Chen SM, Dumler JS, Feng HM, et al. (1998)

Ultrastructural differentiation of the genogroups in the genus Ehrlichia. J Med
Microbiol 47: 235–251.

19. Popov VL, Yu X, Walker DH (2000) The 120 kDa outer membrane protein of
Ehrlichia chaffeensis: preferential expression on dense-core cells and gene

expression in Escherichia coli associated with attachment and entry. Microb

Pathog 28: 71–80.
20. Zhang Jz, Popov VL, Gao S, Walker DH, Yu Xj (2007) The developmental

cycle of Ehrlichia chaffeensis in vertebrate cells. Cell Microbiol 9: 610–618.
21. Silverman DJ (1991) Some contributions of electron microscopy to the study of

the rickettsiae. Eur J Epidemiol 7: 200–206.
22. Li JS, Yager E, Reilly A, Freeman C, Reddy GR, et al. (2001) Outer membrane

protein specific monoclonal antibodies protect SCID mice from fatal infection

by the obligate intracellular bacterial pathogen Ehrlichia chaffeensis. J Immunol
166: 1855–1862.

23. Du-Plessis JL (1975) Electron microscopy of Cowdria ruminantium infected
reticulo-endothelial cells of the mammalian host. Onderstepoort J Vet Res 42:

1–13.

24. Hidalgo RJ, Jones EW, Brown JE, Ainsworth AJ (1989) Anaplasma marginale in

tick cell culture. Am J Vet Res 50: 2028–2032.
25. Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, et al. (1999)

Invasion and intracellular development of the human granulocytic ehrlichiosis

agent in tick cell culture. J Clin Microbiol 37: 2518–2524.
26. Munderloh UG, Madigan JE, Dumler JS, Goodman JL, Hayes SF, et al. (1996)

Isolation of the equine granulocytic ehrlichiosis agent, Ehrlichia equi, in tick cell
culture. J Clin Microbiol 34: 664–670.

27. Sells DM, Hildebrandt PK, Lewis GE, Nyindo MBA, Ristic M (1976)

Ultrastructural observations on Ehrlichia equi organisms in equine granulocytes.
Infect Immun 13: 273–280.

28. Bell-Sakyi L, Paxton EA, Munderloh UG, Sumption KJ (2000) Growth of
Cowdria ruminantium, the causative agent of heartwater, in a tick cell line. J Clin

Microbiol 38: 1238–1240.
29. Blouin EF, Kocan KM (1998) Morphology and development of Anaplasma

marginale (Rickettsiales: Anaplasmataceae) in cultured Ixodes scapularis (Acari:

Ixodidae) cells. J Med Entomol 35: 788–797.
30. Kocan KM, Crawford TB, Dilbeck PM, Evermann JF, McGuire TC (1990)

Development of a rickettsia isolated from an aborted bovine fetus. J Bacteriol
172: 5949–5955.

31. Paddock CD, Sumner JW, Shore GM, Bartley DC, Elie RC, et al. (1997)

Isolation and Characterization of Ehrlichia chaffeensis Strains from Patients
with Fatal Ehrlichiosis. J Clin Microbiol 35: 2496–2502.

32. Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, et al. (2004)
ATP/ADP translocases: a common feature of obligate intracellular amoebal

symbionts related to Chlamydiae and Rickettsiae. J Bacteriol 186: 683–691.
33. Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, et al. (2006)

Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:

e21.
34. Liu Y, Zhang Z, Jiang Y, Zhang L, Popov VL, et al. (2011) Obligate intracellular

bacterium Ehrlichia inhibiting mitochondrial activity. Microbes Infect 13:
232–238.

35. Razin S (1978) The mycoplasmas. Microbiological Reviews 42: 414–470.

36. Lin M, Rikihisa Y (2003) Ehrlichia chaffeensis and Anaplasma phagocytophilum
lack genes for lipid A biosynthesis and incorporate cholesterol for their survival.

Infect Immun 71: 5324–5331.
37. Thomas S, Popov VL, Walker DH (2010) Exit mechanisms of the intracellular

bacterium Ehrlichia. PLoS One 5: e15775.
38. Wellman ML, Krakowka S, Jacobs RM, Kociba GJ (1988) A macrophage-

monocyte cell line from a dog with malignant histiocytosis. In Vitro Cell Dev

Biol 24: 223–229.
39. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular

bacterium Chlamydia. Proc Natl Acad Sci U S A 104: 11430–11435.
40. Dawson JE, Rikihisa Y, Ewing SA, Fishbein DB (1991) Serologic diagnosis of

human Ehrlichiosis using two Ehrlichia canis isolates. J Infect Dis 163: 564–567.

41. Rikihisa Y, Ewing SA, Fox JC (1994) Western immunoblot analysis of Ehrlichia
chaffeensis, E. canis, or E. ewingii infections in dogs and humans. J Clin

Microbiol 32: 2107–2112.
42. Chapes SK, Ganta RR (2008) Defining the Immune Response to Ehrlichia

species Using Murine Models Vet Parasitol 158: 344–359 (PMID. 19028013) p.

43. Park J, Kim KJ, Choi KS, Grab DJ, Dumler JS (2004) Anaplasma
phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell

Microbiol 6: 743–751.
44. Rikihisa Y, Lin M (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis

type IV secretion and Ank proteins. Curr Opin Microbiol 13: 59–66.
45. Zhu B, Nethery KA, Kuriakose JA, Wakeel A, Zhang X, et al. (2009) Nuclear

translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific

adenine-rich motif of host promoter and intronic Alu elements. Infect Immun
77: 4243–4255.

46. Chen SM, Popov VL, Feng HM, Walker DH (1996) Analysis and ultrastructural
localization of Ehrlichia chaffeensis proteins with monoclonal antibodies.

Am J Trop Med Hyg 54: 405–412.

Host Cell-Specific Differences in E. chaffeensis

PLoS ONE | www.plosone.org 11 May 2012 | Volume 7 | Issue 5 | e36749




