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Abstract

We start with linear single variable conservation laws and examine the conditions un-

der which a local extrapolation method (LEM) with upwinding underlying scheme is total

variation diminishing TVD. The results are then extended to non-linear conservation laws.

For this later case, we restrict ourselves to convex flux functions f , whose derivatives are

positive, that is, f ′′ A 0 and f ′ A 0. We next show that the Goodman-LeVeque flux satisfies

the conditions for the LEM to be applied to it. We make heavy use of the CFL conditions,

the geometric properties of convex functions apart from the martingle type properties of

functions which are increasing, continuous, and differentiable.
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Preface

In Chapter 1, we give a background of hyperbolic conservation laws and the problems

faced in solving them both analytically and numerically. We also discuss some traditional

numerical methods used.

In computing solutions to equations of the form ut(x, t) + f(u(x, t))x = 0 numerically,

many difficulties do arise. Using Godunov’s method, which is first order accurate, the nu-

merical results are very smeared in regions near the discontinuities. The first order accurate

method has a large amount of “numerical viscosity” that smoothes the solution just as

physical viscosity would, but to an unrealistic extent by several orders of magnitude. The

numerical viscosity may be eliminated by using some standard second order methods but

dispersive effects leading to large oscillations in the numerical solution are introduced. A

solution to the discontinuity problem, is to use “shock tracking”, whereby some explicit pro-

cedure for tracking the location of discontinuities is incorporated into the standard numerical

methods.

Ideally it is preferable to have schemes that produce sharp approximations to discontin-

uous solutions automatically, without explicit tracking and use of jump conditions. These

are the so called “shock capturing” schemes. Various approaches have been used to develop

these high resolution schemes. Examples include essentially non-oscillatory schemes (ENO)

due to Harten, Engquist, Osher and Chakravarthy [4]; Total Variation Diminishing schemes

(TVD) due to Harten [3] , Goodman and LeVeque [2], Van Leer [7].

In Chapter 2, we discuss the ENO schemes due to Osher, et al and the scheme due

to Goodman and LeVeque. These are methods that are at least second order accurate on

smooth solutions and yet give well resolved, non oscillatory solutions.

Yang [18] developed a local extrapolation method (LEM) that increases the order of

an rth order scheme by one, using ENO underlying schemes. We restate the LEM and

then examine the conditions under which the LEM with the upwinding underlying scheme

x



is TVD under the more general assumptions that the problem has convex, positive flux,

that is, the flux function f has f ′′(u) A 0 and f ′(u) A 0. The main tool used is the CFL

condition (named for Courant, Friedrichs and Lewy). It states that a numerical scheme

can be convergent only if its numerical domain of dependence contains the true domain of

dependence of the PDE, at least in the limit as ∆t and ∆x go to zero. It is a necessary

condition for stability which in turn is sufficient for convergence. The CFL condition is set

up so that the flux across any cell interface does not depend on flux emanating from any

neighboring cells. In addition to the general properties of continuous, differentiable and

increasing functions, geometric properties of convex functions are also used.

We then show that the flux of Goodman and LeVeque’s scheme, satisfies the conditions

required by the LEM in [18]. Goodman-LeVeque’s scheme is a second order method and

TVD. The geometric nature of Goodman and LeVeque’s scheme makes its implementation

relatively easy, and computation-wise it is less expensive compared to the ENO schemes of

the same order. The LEM is desirable because it is less expensive to implement than to use

for example the ENO schemes of equivalent order.

In Chapter 3, we discuss some general stability and entropy conditions. Various forms

are introduced and we then make a connections between the entropy conditions and the

discussions on the Riemann problem in Chapter 1.3. We state the Lax-Wendroff theorem

- if the numerical solution of a conservative scheme converges, it converges towards a weak

solution - which is a useful tool towards determining whether numerical solutions obtained

satisfy the entropy conditions or not.

In Chapter 4, we give some numerical examples for both the linear and non-linear con-

servation laws. A few spatial step lengths h are considered whereas the parameter λ for the

LEM is fixed at 0.8. The ENO schemes, both second and third order, Goodman-LeVeque

scheme and LEM are considered in various cases. We also compute the mean computation

times for the various schemes in solving a linear conservation law.
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Chapter 1

Introduction

The initial value problem of hyperbolic systems of conservation laws is given by

ut +

d

Q
i=1

(fi(u))xi
= 0

u(x,0) = u0(x), (1.0.1)

where u > Rm is an m-dimensional vector of conserved quantities, x > Rd and fi � Rm � Rm.

The hyperbolicity of system means that

d

Q
i=1

ξi �∂fi
∂u
�

has m real eigenvalues and a complete set of eigenvectors for all collections of real numbers

�ξi�di=1. Conservation laws arise in fields like physics and engineering. Some examples are

• Euler equations of gas dynamics

• Aerodynamics

– modeling of wing flutter

– modeling flow patterns around rotating helicopter blades

– modeling flow patterns around the blades of a turbine

• Meteorology and weather predictions: the weather fronts are just a shock waves, i.e.

discontinuities in pressure and temperature.

• study of explosions and blast waves

1



1.1 Conservation Laws in 1-D

In one space dimension the conservation laws are of the form

ut(x, t) + f(u(x, t))x = 0. (1.1.1)

Note that the m�m Jacobian matrix f ′(u) is diagonalizable - since we have a complete set of

m linearly independent eigenvectors - and all its eigenvalues are real. u is an m−dimensional

vector of conserved quantities so that uj is the density function for the jth state variable (con-

served quantity). The total quantity of this state variable in the interval [xκ−1, xκ] at time

t is given by R
xκ

xκ−1
uj(x, t)dx. Conservation of the state variables means that R

ª

−ª
uj(x, t)dx

is constant with respect to t. f is called the flux function.

Note that if f ′(u) > Rm�m then we can write

f ′(u) =RΛR−1 (1.1.2)

where R is the matrix of right eigenvectors. Letting ũ =R−1u the system (1.1.1) is reduced

to

ũt +Λũx = 0 (1.1.3)

which is just a set of m decoupled advection equations. If f ′(u) is not a constant then both

R and Λ may depend on x and/or t and (1.1.3) does not hold.

A well known fact is that the solution of (1.1.1) may develop discontinuities in itself or its

derivatives in a finite time no matter how smooth the initial function u0(x) is (see examples

A.1, A.2 and A.3 in Appendix A). A typical solution of (1.1.1) is a piecewise smooth function

whose domain consists of regions where the solution is smooth, separated by discontinuities,

for example, shocks, contact discontinuities and the wave fronts of rarefaction waves.

The shock tube problem is an example that illustrates a solution of the form described

above. In this case consider a tube filled with gas, initially divided by a membrane into

two sections. The gas has higher density and pressure in one half of the tube than in the

other half, with zero velocity everywhere. At initial time (t = 0), the membrane is suddenly

2



removed and the gas allowed to flow. A net motion in the direction of lower pressure is

expected and a uniform flow across the tube may be assumed.

The flow has three distinct waves separating regions in which the state variables are

constant.

• A shock wave propagates into the region of lower pressure, across which the density

and pressure jump to higher values and all of the state variables are discontinuous.

• A contact discontinuity follows the shock wave. Across it the density is discontinuous

but the velocity and pressure are constant.

• A rarefaction wave moves in the opposite direction. All state variables are continuous

and there is a smooth transition. As this wave passes through, the gas is rarefied (the

density of the gas decreases).

1.2 Low Order Numerical Schemes

The hyperbolic problem (1.1.1) is discretized by space-time finite differences. The half plane

�(x, t) � −ª < x < ª, t A 0� is discretized by choosing a spatial grid size h �= ∆x and a

temporal step k �=∆t. The grid points (xj, tn) are then given by

xj = jh, j > Z, tn = nk, n > N. (1.2.1)

For subsequent discussions in this dissertation we set

λ �=
k

h

and define

xj+ 1
2
= xj +

h

2
.

We look for discrete solutions Un
j which approximate the values u(xj, tn) of the exact solution

for any j, n. Any explicit finite-difference method can be written in the form

Un+1
j = Un

j − λ �gj+ 1
2
− gj− 1

2
� , (1.2.2)

3



where gj+ 1
2
= g(Un

j , Un
j+1) for every j and g(ċ, ċ) is some function called the numerical flux.

Some examples of explicit finite difference schemes are

1. Upwinding

Un+1
j = Un

j − λ∆�xf(Un
j ), (1.2.3)

where

∆+xf(Un
j ) = f(Un

j+1) − f(Un
j ) and ∆−xf(Un

j ) = f(Un
j ) − f(Un

j−1).

Backward differences, that is ∆−xf(Un
j ), are used if f ′(Un

j ) A 0 while forward differ-

ences, that is ∆+xf(Un
j ), are used if f ′(Un

j ) < 0.

2. Forward Euler/centered

Un+1
j = Un

j −
λ

2
�f(Un

j+1) − f(Un
j−1)� (1.2.4)

3. Lax-Friedrichs

Un+1
j =

1

2
�Un

j+1 +Un
j−1� −

λ

2
�f(Un

j+1) − f(Un
j−1)� (1.2.5)

4. Lax-Wendroff

Un+1
j = Un

j −
λ

2
��1 − λAj+ 1

2
� �f(Un

j+1) − f(Un
j )� + �1 + λAj− 1

2
� �f(Un

j ) − f(Un
j−1)��

= Un
j −

λ

2
�f(Un

j+1) − f(Un
j−1)�

+

1

2
λ2 �Aj+ 1

2
�f(Un

j+1) − f(Un
j )� −Aj− 1

2
�f(Un

j ) − f(Un
j−1)�� (1.2.6)

where

Aj� 1
2
= f ′ �1

2
[Un

j +Un
j�1]� .

Definition 1.1. Let u be the exact solution of the conservation law (1.1.1). The local

truncation error L(u;k, h) of the numerical scheme (1.2.2) is given by

L(u;k, h) = u(xj, tn+1) − u(xj, tn)
k

+

g(u(xj, tn), u(xj+1, tn)) − g(u(xj−1, tn), u(xj, tn))
h

(1.2.7)

4



We say the scheme is of order p in time and of order q in space (for suitable integers p and

q), if for a sufficiently smooth solution of the exact problem, we have that

L(u;k, h) = O(kp
+ hq).

Both Upwinding and Lax-Friedrichs schemes are of first order whereas the Lax-Wendroff

scheme is of second order. A drawback to using Lax-Wendroff scheme in the above form

is that evaluation of the Jacobian is needed. So it is more expensive to use than the other

forms that only use the flux function. Ways to avoid using the Jacobian include using

two step procedures (see [8]). The Lax-Wendroff scheme may also produce oscillations in

the solution. The Upwinding and Lax-Friedrichs schemes have smearing effects around the

discontinuities. Hence they do not capture the true profiles of the solution around the dis-

continuity. Generally the low order schemes are not adapted to handling the discontinuities

effectively.

Definition 1.2. A finite difference scheme is said to be consistent if the local truncation

error L(u;k, h) goes to zero at k and h tend to zero independently.

Definition 1.3. A numerical scheme is said to be convergent if

lim
k,h�0

max
j,n
Su(xj, t

n) −Un
j S = 0. (1.2.8)

Definition 1.4. A numerical method for a hyperbolic problem is said to be stable if, for any

time T , there exists two positive constants CT and δ, such that

SSUnSS∆ B CT SSU0SS∆, (1.2.9)

for any n such that nk B T and for any k, h such that 0 < k B δ, 0 < h B δ. Note that SS ċ SS∆ is

a suitable discrete norm.

An example of a suitable discrete norm is

SSVSS∆,p = �h
ª

Q
j=−ª

SVj Sp�
1
p

for p = 1,2 (1.2.10)

5



or

SSVSS∆,ª = sup
j
SVj S.

Definition 1.5. Let a = f ′(u) = const. Courant, Friedrichs and Lewy showed that a neces-

sary and sufficient condition for any explicit finite difference scheme to be stable is that

SaλS = Vak

h
V B 1,

which is known as the CFL condition. The quantity aλ is referred to as the CFL number.

In the case when f ′(u) is not constant the CFL condition is given by

k B
h

supx>R,tA0 Sf ′(u(x, t))S .

For the hyperbolic system where f ′(u) > Rm�m the stability condition becomes

Vλp
k

h
V B 1, p = 1, ċ ċ ċ,m

where �λp� are the eigenvalues of f ′(u).

Definition 1.6. The total variation of a solution U is defined to be

TV (U) =
ª

Q
j=−ª

SUj+1 −Uj S.

The numerical method Un+1
= EnU is called total variation diminishing (TVD) if

TV (Un+1) B TV (Un)

for all grid functions Un.

1.3 The Riemann Problem

The Riemann problem is the conservation equation together with a piecewise constant initial

condition having a single jump discontinuity,

ut + f(u)x = 0, u, f > Rm

u(x,0) = u0(x) = � ul if x < 0
ur if x A 0.

(1.3.1)

6



As the solution evolves the shock propagates with some speed, s(t). The Rankine-Hugoniot

jump condition is

s(ur − ul) = f(ur) − f(ul). (1.3.2)

This can be written in the form sBuG = BfG where BċG represents the jump across the shock.

For a scalar conservation law the shock speed is

s =
f(ur) − f(ul)

ur − ul

(1.3.3)

that is, for the Riemann problem, the constant number s is the speed of the resulting shock.

For a better understanding of solutions to the Riemann problems, we shall look at some

examples.

Definition 1.7. For the scalar case (m = 1), the function u(x, t) is a weak solution of the

conservation law (1.1.1) if for all test functions φ(x, t) > C1
0(R,R) we have that

S
ª

0
S
ª

−ª

[uφt + f(u)φx]dxdt = −S
ª

−ª

u(x,0)φ(x,0)dx. (1.3.4)

Example 1.1. Consider Burgers’ equation

ut + �u
2

2
�

x

= 0 (1.3.5)

with piecewise constant initial data

u(x,0) = � ul if x < 0
ur if x A 0.

The solution depends on whether ul A ur or ul < ur.

Case 1.1. ul A ur

Using (1.3.3), the shock speed is

s =
u2

r

2 −
u2

l

2

ur − ul

=
1

2
(ur + ul). (1.3.6)

7



The unique weak solution is

u(x, t) = � ul if x − st < 0
ur if x − st A 0.

= � ul if x < st
ur if x A st.

(1.3.7)

Note that the characteristic speed to the left of the shock is f ′(u) = ul and to the right it is

f ′(u) = ur. We have that 1
ul
<

1
ur

. Hence the characteristics in each of the regions where u

is constant go into the shock x = st as time advances.

Case 1.2. ul < ur

This case has infinitely many solutions, one of them being (1.3.7) but with characteristics

now going out of the shock. This solution is not stable to perturbations.

A weak solution that is stable to perturbations is the rarefaction wave, namely,

u(x, t) =
¢̈̈
¦̈̈̈
¤̈

ul if x < ult
x
t if ult B x B urt

ur if x A urt.
(1.3.8)

Consider a Riemann problem where we assume the flux is convex i.e. f ′′ A 0, and ul < ur.

Then the rarefaction wave is given by

u(x, t) =

¢̈̈
¨̈̈̈
¨̈¦̈̈
¨̈̈̈
¨̈¤

ul if x < f ′(ul)t

v(x
t ) if f ′(ul)t B x B f ′(ur)t

ur if x A f ′(ur)t

(1.3.9)

where v(ξ) is the solution to f ′(v(ξ)) = ξ.

Lemma 1.1. For non convex flux, the solution to the IVP for nonlinear hyperbolic systems

of conservation laws

ut(x, t) + f(u)x = 0, t A 0, −ª < x <ª

u(x,0) = u0(x) = � ul, x < 0
ur, x A 0

is

u(x, t) = u�x
t
� = u(ξ), (1.3.10)

8



where u(ξ) satisfies

f(u(ξ)) − ξw(ξ) =
¢̈̈
¦̈̈̈
¤̈

minulBwBur[f(w) − ξw], ul < ur

maxurBwBul
[f(w) − ξw], ur < ul.

(1.3.11)

Theorem 1.1.

u(ξ) =
¢̈̈
¦̈̈̈
¤̈

−
d
dξ (minulBwBur[f(w) − ξw]) , ul < ur

−
d
dξ (maxurBwBul

[f(w) − ξw]) , ur < ul.
(1.3.12)

For a more detailed discussion and proofs of Lemma 1.1 and Theorem 1.1 see [11].

1.4 Conservative methods

Definition 1.8. A numerical scheme is said to be in conservative form if it can be written

in the form

Un+1
j = Un

j − λ[g(Un
j−p, ċ ċ ċ, U

n
j+q) − g(Un

j−p−1, ċ ċ ċ, U
n
j+q−1)] (1.4.1)

for some function g called the numerical flux function and where λ = k
h with k the temporal

step and h the spatial grid size.

The simplest case is when p = 0 and q = 1 so that

Un+1
j = Un

j − λ[g(Un
j , Un

j+1) − g(Un
j−1, U

n
j )]. (1.4.2)

For brevity, we shall use the notation

gn
j+ 1

2

= gj+ 1
2
[Un] = g(Un

j−p, ċ ċ ċ, U
n
j+q). (1.4.3)

and so

gn
j− 1

2

= gj− 1
2
[Un] = g(Un

j−p−1, ċ ċ ċ, U
n
j+q−1). (1.4.4)

Example 1.2.

• Forward Euler/Centered is conservative with numerical flux

gn
j+ 1

2

=
1

2
[f(Un

j+1) + f(Un
j )]. (1.4.5)

9



• Lax-Friedrichs Scheme is conservative with numerical flux

gn
j+ 1

2

=
1

2
�f(Un

j+1) + f(Un
j ) −

1

λ
(Un

j+1 −Un
j )� . (1.4.6)

• Lax-Wendroff is conservative with numerical flux

gn
j+ 1

2

=
1

2
[f(Un

j+1) + f(Un
j )] −

1

2
λAj+ 1

2
[f(Un

j+1) − f(Un
j )]. (1.4.7)

where

Aj+ 1
2
= f ′ �1

2
[Un

j +Un
j+1]� .

The method (1.4.1) simulates the exact relation

un+1
j = un

j − λ[fn

j+ 1
2
− f

n

j− 1
2
] (1.4.8)

of the conservation law, where,

• un
j =

1
h R

x
j+ 1

2
x

j− 1
2

u(x, tn)dx is the cell-average

• f
n

j+ 1
2
=

1
k R

tn+1

tn f(u(xj+ 1
2
, t))dt is the average flux

Definition 1.9. The method (1.4.1) is consistent with the conservative law (1.1.1) if

g(u, ċ ċ ċ, u) = f(u) (1.4.9)

for all u in the domain of f .

A sufficient condition for consistency is for g to be a Lipschitz continuous function in each

variable (see for example [8, 9]).

10



Chapter 2

High Resolution TVD Schemes

We define a high resolution scheme to be one which

• achieves high order accuracy in the regions where the true solution is smooth

• produces sharp profiles for the shocks and contact discontinuities

• avoids superfluous oscillations around the discontinuities

• gets the correct positions and speeds of the discontinuities

We first describe Godunov’s scheme on which many high resolution schemes are based.

• Define a piecewise constant function w(x, tn) which takes on the value Uj on Ij =

(xj− 1
2
, xj+ 1

2
).

• Solve the conservation law exactly up to time tn+1 with initial data w(x, tn) to obtain

w(x, tn+1) [for k sufficiently small we have a sequence of Riemann problems].

Then

Un+1
j =

1

h S
x

j+ 1
2

x
j− 1

2

w(x, tn+1)dx.

11



2.1 Essentially Non-Oscillatory Schemes (ENO)

The ENO schemes were originally developed by Chakravarthy, Engquist, Harten and Osher.

We define the so called sliding average as

u(xj, t
n) = 1

h S
x

j+ 1
2

x
j− 1

2

u(ξ, tn)dξ = S
1
2

−
1
2

u(xj + ηh, tn)dη. (2.1.1)

Now given the cell average values, �un
j � j > Z� we want an approximate q(x) to u(x, tn). The

process of finding q(x) is called reconstruction and the most efficient way is via primitive

functions. q(x) should be as simple as possible, say, piecewise polynomial.

Now fix a j0 > Z+ and consider

pj+ 1
2
= h

j

Q
k=j0

un
k = h

j

Q
k=j0

1

h S
x

k+ 1
2

x
k− 1

2

u(ξ, tn)dξ = S
x

j+ 1
2

x
j0−

1
2

u(ξ, tn)dξ. (2.1.2)

Hence

pj+ 1
2
= p(xj+ 1

2
)

where

p(x) = S
x

x
j0−

1
2

u(ξ, tn)dξ

is an antiderivative of u, that is, p′(x) = u(x, tn). Thus, we may first obtain an approximation

P (x) to p(x). Then

q(x) = P ′(x). (2.1.3)

P (x) is obtained by interpolation. If we want,say, q(x) to be a polynomial of degree r − 1

on (xj− 1
2
, xj+ 1

2
) then degP (x) = r and so r+ 1 interpolation points are required. These must

be chosen from among ċ ċ ċ, xj− 5
2
, xj− 3

2
, xj− 1

2
, xj+ 1

2
, xj+ 3

2
, xj+ 5

2
, ċ ċ ċ. The schemes are named so,

because small oscillations on the scale of the interpolation error are still possible.

For consistency we require

p(xj+ 1
2
) − p(xj− 1

2
) = S

x
j+ 1

2

x
j− 1

2

u(ξ, tn)dξ = S
x

j+ 1
2

x
j− 1

2

q(x)dx = P (xj+ 1
2
) − P (xj− 1

2
).

This can be achieved if xj− 1
2

and xj+ 1
2

are among the interpolation points, that is, P (xj� 1
2
) =

p(xj� 1
2
). The choice of the collection of r+1 interpolation points is not unique. For example,

12



if r = 2 the choice is �xj− 3
2
, xj− 1

2
, xj+ 1

2
� or �xj− 1

2
, xj+ 1

2
, xj+ 3

2
�. The ENO approach is to choose

the collection so that the function p is the smoothest i.e., it has the least oscillation, on

the chosen stencil - namely grid points. If you want to approximate the function outside

an interval containing a discontinuity then the discontinuous part should not be used to

compute the approximation. For complete details and several variations see [4]. One way

of computing the smoothest p is to note that

• if u is smooth

∆Uj− 1
2
= Uj+ 1

2
−Uj− 1

2
= O(h)

∆2Uj− 1
2
= O(h2)
�

∆rUj− 1
2
= O(hr)

• if the difference crosses a discontinuity

∆kUj = O(1)

Therefore

S∆kUj Sdisc Q S∆kUj Ssmooth.

Hence to determine the smoothest p

Procedure 2.1. Let I(j) be the starting (left most) point on the stencil for the interpolation

on [xj− 1
2
, xj+ 1

2
].

I(j) = j − 1
2

Do k = 2, ċ ċ ċ, r

if S∆kp(xI(j)S A S∆kp(xI(j)−1S

then I(j) = I(j) − 1

13



otherwise

I(j)=I(j)

endif

enddo.

2.2 A Local Extrapolation Method

Lemma 2.1. The scheme (1.4.1) is accurate of order r if, for all sufficiently smooth solu-

tions w, the numerical flux can be written as

gj+ 1
2
[wn] = f

n

j+ 1
2
+ α(xj+ 1

2
, tn)hr

+O(hr+1) (2.2.1)

where α(x, t) is Lipschitz continuous for x and t with

wn
j =

1

h S
x

j+ 1
2

x
j− 1

2

w(x, tn)dx and f
n

j+ 1
2
=

1

k S
tn+1

tn
f(w(xj+ 1

2
, t))dt.

We prove the above Lemma which is stated without proof in [18].

Proof. Let λ = k
h and consider the local truncation error, L(wn

j ;λ), in the conservative

scheme,

L(wn
j ;λ) = wn+1

j −wn
j + λ �gj+ 1

2
[wn] − gj− 1

2
[wn]� . (2.2.2)

On applying the assumption (2.2.1) we get

L(wn
j ;λ) = wn+1

j −wn
j + λ �fn

j+ 1
2
− f

n

j− 1
2
� + λ �α(xj+ 1

2
, tn) − α(xj− 1

2
, tn)�hr

+O(hr+1)
= λ �α(xj+ 1

2
, tn) − α(xj− 1

2
, tn)�hr

+O(hr+1),

since w satisfies the conservation law (see (1.4.8)). Now

SL(wn
j ;λ)S = Uα(xj+ 1

2
, tn) − α(xj− 1

2
, tn)U ċO(hr)

B K Uxj+ 1
2
− xj− 1

2
U ċO(hr) since α is Lipschitz continuous

= O(hr+1). (2.2.3)
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In Yang [18] the following LEM which raises the order of accuracy of the underlying

scheme by one is introduced. The only assumption is that for all sufficiently smooth solutions

w the numerical flux function of the underlying scheme satisfies

gj+ 1
2
[wn] = f

n

j+ 1
2
+ α(xj+ 1

2
, tn)hr

+ β(xj+ 1
2
, tn)hr+1

+O(hr+2) (2.2.4)

where gj+ 1
2
[v] and α have Lipschitz continuous first derivative and β is Lipschitz continuous.

The LEM algorithm extrapolates the numerical fluxes of the underlying scheme between a

fine grid with step sizes h and τ and a coarse grid with step sizes H = 2h and T = 2τ .

Algorithm 2.1. [18, Yang 2000] (The linear LEM for an r th order underlying

scheme)

(i) Set up the initial condition on the fine grid numerically.

For j = 0,�1,�2, ċ ċ ċ,

U0
j =

1
h R

xj+1~2
xj−1~2

w0(x)dx.

(ii) For n = 0,1,2, ċ ċ ċ,

1. Determine λ according to the maximum wave speed and the CFL number.

2. Compute the numerical solution at tn = nT on the coarse grid:

For j = 0,�1,�2, ċ ċ ċ, set

V n
j = (Un

2j−1 +Un
2j)~2 and W n

j = (Un
2j +Un

2j+1)~2.

3. Advance one step on the fine grid with the underlying scheme:

For j = 0,�1,�2, ċ ċ ċ,

U
n+ 1

2
j = Un

j − λ(gj+ 1
2
[Un] − gj− 1

2
[Un]),

Save gj+ 1
2
[Un] as well as U

n+ 1
2

j

4. For j = 0,�1,�2, ċ ċ ċ, evaluate gj+ 1
2
[Un+ 1

2 ]

5. Evaluate the numerical flux on the coarse grid:

15



(a) For j = 2i + 1, i = 0,�1,�2, ċ ċ ċ, evaluate Gn
j+ 1

2

= gj+ 1
2
[W n].

(b) For j = 2i, i = 0,�1,�2, ċ ċ ċ, evaluate Gn
j+ 1

2

= gj+ 1
2
[V n].

6. Evaluate the flux increment for local extrapolation:

For j = 0,�1,�2, ċ ċ ċ,

g̃j+ 1
2
= �1

2
�gj+ 1

2
[Un] + gj+ 1

2
[Un+ 1

2 ]� −Gn
j+ 1

2

  1

(2r
− 1) (2.2.5)

7. Completion of one time step of the algorithm.

For j = 0,�1,�2, ċ ċ ċ,

Un+1
j = U

n+ 1
2

j − λ ��gj+ 1
2
[Un+ 1

2 ] + 2g̃j+ 1
2
� − �gj− 1

2
[Un+ 1

2 ] + 2g̃j− 1
2
�� .

Definition 2.1. The minmod function is defined to be

minmod(x1, x2) = sign(x1) + sign(x2)
2

min(Sx1S, Sx2S) (2.2.6)

and in general

minmod(x1, x2, ċ ċ ċ, xk) = minmod(minmod(x1, x2, ċ ċ ċ, xk−1), xk). (2.2.7)

To turn off spurious oscillations, the minmod function is used. The following modifica-

tions are made to Algorithm 2.1

Algorithm 2.2. [18, Yang 2000] (Componentwise LEM)

(i) The same as the step (i) in Algorithm 2.1.

(ii) For n = 0,1,2, ċ ċ ċ, the steps 1-6 are the same as the corresponding steps in Algorithm

2.1.

7. For j = 0,�1,�2, ċ ċ ċ,

gn−ext
j+ 1

2

= minmod �βg̃j+ 3
2
, g̃j+ 1

2
, βg̃j− 1

2
� (2.2.8)
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8. For j = 0,�1,�2, ċ ċ ċ,

Un+1
j = U

n+ 1
2

j − λ ��gj+ 1
2
[Un+ 1

2 ] + 2gn−ext
j+ 1

2

� − �gj− 1
2
[Un+ 1

2 ] + 2gn−ext
j− 1

2

�� . (2.2.9)

Theorem 2.1. Consider the linear advection equation

ut + aux = 0, a = const.

If the underlying scheme is the upwinding scheme, (1.2.3) and β B 2, then Algorithm 2.2 is

TVD for 0 < λa B 1.

Proof. Note that gj+ 1
2
[u] = auj and the order of underlying scheme is r = 1. So

g̃n
j+ 1

2

=

aUn
j + aU

n+ 1
2

j

2
−

aUn
j + aUn

j−1

2

=
a

2
�Un

j +Un
j − λ[aUn

j − aUn
j−1]� −

a

2
[Un

j +Un
j−1], on using (1.2.3)

=
a

2
�(2 − λa)Un

j + λaUn
j−1� −

a

2
[Un

j +Un
j−1]

that is

g̃n
j+ 1

2

=
a

2
(1 − λa)Un

j +
a

2
(λa − 1)Un

j−1

=
a

2
(1 − λa)[Un

j −Un
j−1].

Letting ∆Un
j− 1

2

= Un
j −Un

j−1 we get

g̃n
j+ 1

2

=
a

2
(1 − λa)∆Uj− 1

2
. (2.2.10)

The scheme becomes

Un+1
j = Un

j − λ[aUn
j − aUn

j−1]
−λ��aUn

j − λa[aUn
j − aUn

j−1] + 2gn−ext
j+ 1

2

�
− �aUn

j−1 − λa[aUn
j−1 − aUn

j−2] + 2gn−ext
j− 1

2

��
= �1 − λa − λa + (λa)2�Un

j + �λa − (λa)2 + λa − (λa)2�Un
j−1

+(λa)2Un
j−2 − 2λ �gn−ext

j+ 1
2

− gn−ext
j− 1

2

�
= (1 − λa)2Un

j + 2λa(1 − λa)Un
j−1 + (λa)2Un

j−2 − 2λ �gn−ext
j+ 1

2

− gn−ext
j− 1

2

� .
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Hence

Un+1
j+1 −Un+1

j = (1 − λa)2[Un+1
j+1 −Un

j ] + 2λa(1 − λa)[Un+1
j+1 −Un

j−1] + (λa)2[Un+1
j+1 −Un

j−2]
= −2λ �gn−ext

j+ 3
2

− 2gn−ext
j+ 1

2

+ gn−ext
j− 1

2

�

which can be written in the more compact form

∆Un+1
j+ 1

2

= (1 − λa)2∆Un
j+ 1

2

+ 2λa(1 − λa)∆Un
j− 1

2

+ (λa)2∆Un
j− 3

2

−2λ �gn−ext
j+ 3

2

− 2gn−ext
j+ 1

2

+ gn−ext
j− 1

2

� . (2.2.11)

Assume that λa B 1
2 .

Now by definition and using (2.2.10)

gn−ext
j− 1

2

= minmod�βg̃n
j+ 1

2

, g̃n
j− 1

2

, βg̃n
j− 3

2

�

= minmod�βa

2
(1 − λa)∆Un

j− 1
2

,
a

2
(1 − λa)∆Un

j− 3
2

, β
a

2
(1 − λa)∆Un

j− 5
2

  .

(2.2.12)

Using the definition of minmod function and (2.2.12), we observe that

�2λgn−ext
j− 1

2

� �2λa(1 − λa)∆Un
j− 1

2

� C 0, (2.2.13)

that is, gn−ext
j− 1

2

and the second term on right of (2.2.11) have the same sign. We also have

that

2λ Ugn−ext
j− 1

2

U B 2λβ
a

2
(1 − λa) U∆Uj− 1

2
U B 2λa(1 − λa) U∆Uj− 1

2
U since β B 2. (2.2.14)

Similarly

gn−ext
j+ 3

2

= minmod�βg̃n
j+ 5

2

, g̃n
j+ 3

2

, βg̃n
j+ 1

2

�

= minmod�βa

2
(1 − λa)∆Un

j+ 3
2

,
a

2
(1 − λa)∆Un

j+ 1
2

, β
a

2
(1 − λa)∆Un

j− 1
2

 
(2.2.15)

so that

�2λgn−ext
j+ 3

2

� �2λ(1 − λa)2∆Un
j+ 1

2

� C 0, (2.2.16)
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and

2λ Ugn−ext
j+ 3

2

U B 2λ
a

2
(1 − λa) U∆Uj+ 1

2
U B (1 − λa)2 U∆Uj+ 1

2
U since λa B

1

2
. (2.2.17)

Lastly

gn−ext
j+ 1

2

= minmod�βg̃n
j+ 3

2

, g̃n
j+ 1

2

, βg̃n
j− 1

2

�

= minmod�βa

2
(1 − λa)∆Un

j+ 1
2

,
a

2
(1 − λa)∆Un

j− 1
2

, β
a

2
(1 − λa)∆Un

j− 3
2

  .

(2.2.18)

This implies that either 4λgn−ext
j+ 1

2

= 0 or the first three terms on the right of (2.2.11) and

4λgn−ext
j+ 1

2

have the same sign.

In view of the above observations, we rewrite (2.2.11) as

∆Un+1
j+ 1

2

= �(1 − λa)2∆Un
j+ 1

2

− 2λgn−ext
j+ 3

2

� + �2λa(1 − λa)∆Un
j− 1

2

− 2λgn−ext
j− 1

2

�
+ �(λa)2∆Un

j− 3
2

+ 4λgn−ext
j+ 1

2

�

and on taking absolute values yields

U∆Un+1
j+ 1

2

U B U(1 − λa)2∆Un
j+ 1

2

− 2λgn−ext
j+ 3

2

U + U2λa(1 − λa)∆Un
j− 1

2

− 2λgn−ext
j− 1

2

U
+ U(λa)2∆Un

j− 3
2

+ 4λgn−ext
j+ 1

2

U
and since the paired terms have the same sign

= (1 − λa)2 U∆Un
j+ 1

2

U − 2λ Ugn−ext
j+ 3

2

U + 2λa(1 − λa) U∆Un
j− 1

2

U − 2λ Ugn−ext
j− 1

2

U
+(λa)2 U∆Un

j− 3
2

U + 4λ Ugn−ext
j+ 1

2

U .

We rearrange the above to get

U∆Un+1
j+ 1

2

U B (1 − λa)2 U∆Un
j+ 1

2

U + 2λa(1 − λa) U∆Un
j− 1

2

U + (λa)2 U∆Un
j− 3

2

U
−2λ �Ugn−ext

j+ 3
2

U − 2 Ugn−ext
j+ 1

2

U + Ugn−ext
j− 1

2

U� . (2.2.19)

We now assume that 1
2 B λa B 1.
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By definition of minmod function and (2.2.15) we have

�2λgn−ext
j+ 3

2

� �2λa(1 − λa)∆Un
j− 1

2

� C 0, (2.2.20)

and

2λ Ugn−ext
j+ 3

2

U B 2λβ
a

2
(1 − λa) U∆Uj− 1

2
U B 2λa(1 − λa) U∆Uj− 1

2
U since β B 2. (2.2.21)

Similarly

�2λgn−ext
j− 1

2

� �2λ(λa)2∆Un
j− 3

2

� C 0, (2.2.22)

and

2λ Ugn−ext
j− 1

2

U B 2λ
a

2
(1 − λa) U∆Uj− 3

2
U B (λa)2 U∆Uj− 3

2
U since

1

2
B λa� 1 − λa B λa. (2.2.23)

Finally, as in the previous case, either 4λgn−ext
j+ 1

2

= 0 or the first three terms on the right of

(2.2.11) and 4λgn−ext
j+ 1

2

have the same sign.

So we write

∆Un+1
j+ 1

2

= �(1 − λa)2∆Un
j+ 1

2

+ 4λgn−ext
j+ 1

2

� + �2λa(1 − λa)∆Un
j− 1

2

− 2λgn−ext
j+ 3

2

�
+ �(λa)2∆Un

j− 3
2

− 2λgn−ext
j− 1

2

�

and on taking absolute values

U∆Un+1
j+ 1

2

U B U(1 − λa)2∆Un
j+ 1

2

+ 4λgn−ext
j+ 1

2

U + U2λa(1 − λa)∆Un
j− 1

2

− 2λgn−ext
j+ 3

2

U
+ U(λa)2∆Un

j− 3
2

− 2λgn−ext
j− 1

2

U
and since the paired terms have the same sign

= (1 − λa)2 U∆Un
j+ 1

2

U + 4λ Ugn−ext
j+ 1

2

U + 2λa(1 − λa) U∆Un
j− 1

2

U − 2λ Ugn−ext
j+ 3

2

U
+(λa)2 U∆Un

j− 3
2

U − 2λ Ugn−ext
j− 1

2

U .

which is just inequality (2.2.19).

Hence (2.2.19) holds for 0 < λa B 1. Now summing (2.2.19) over all j

Q
j

U∆Un+1
j+ 1

2

U B Q
j

(1 − λa)2 U∆Un
j+ 1

2

U +Q
j

2λa(1 − λa) U∆Un
j− 1

2

U +Q
j

(λa)2 U∆Un
j− 3

2

U

−2λ�Q
j

Ugn−ext
j+ 3

2

U − 2Q
j

Ugn−ext
j+ 1

2

U +Q
j

Ugn−ext
j− 1

2

U� (2.2.24)
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that is,

Q
j

U∆Un+1
j+ 1

2

U B Q
j

U∆Un
j+ 1

2

U +Q
j

(−2λa + a2λ2) U∆Un
j+ 1

2

U +Q
j

2λa(1 − λa) U∆Un
j− 1

2

U

+Q
j

(λa)2 U∆Un
j− 3

2

U − 2λ�Q
j

Ugn−ext
j+ 3

2

U − 2Q
j

Ugn−ext
j+ 1

2

U +Q
j

Ugn−ext
j− 1

2

U� .

(2.2.25)

Since ∆Un
j+ 1

2

=∆Un
j− 1

2

=∆Un
j− 3

2

= 0 for sufficiently large j and in turn gn−ext
j+ 3

2

= gn−ext
j+ 1

2

= gn−ext
j− 1

2

=

0, with the exception of the first term on the right of (2.2.25), the rest of the terms cancel

out to yield

Q
j

U∆Un+1
j+ 1

2

U BQ
j

U∆Un
j+ 1

2

U .

Theorem 2.2. Consider the conservation law (1.1.1) under the assumption that f ′ A 0 and

f ′′ A 0. If the underlying scheme is the upwinding scheme, (1.2.3), 0 < µ B 1
2 and β B 2 �1−µ

2−µ�,
then Algorithm 2.2 is TVD for 0 < λSSf ′SSª B µ.

Proof. Note that gj+ 1
2
[u] = f(uj) and r = 1. Since f is smooth, use the mean value theorem

to write

f(Un
j ) − f(Un

j−1) = f ′(ξn
j )[Un

j −Un
j−1]

= f ′(ξn
j )∆Un

j− 1
2

(2.2.26)

for some ξn
j between Un

j−1 and Un
j (see Figure 2.2). So

f(Un
j − λ[f(Un

j ) − f(Un
j−1)]) = f(Un

j − λf ′(ξn
j )∆Un

j− 1
2

)
= f(Un

j ) − λf ′(αn
j )f ′(ξn

j )∆Un
j− 1

2

(2.2.27)

for some αn
j between Un

j − λf ′(ξn
j )∆Un

j− 1
2

and Un
j , on using Taylors’ theorem. Similarly

f(1
2
[Un

j−1 +Un
j ]) = f(Un

j −
1

2
[Un

j −Un
j−1])

= f(Un
j ) −

1

2
f ′(ηn

j )∆Un
j− 1

2

(2.2.28)
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for some ηn
j between 1

2[Un
j−1 +Un

j ] and Un
j .

But note that f ′(ξn
j ) is the slope of the line segment joining the points (Un

j−1, f(Un
j−1))

and (Un
j , f(Un

j )) where as f ′(ηn
j ) is the slope of the line segment joining the points (12[Un

j−1+

Un
j ], f(12[Un

j−1 +Un
j ])) and (Un

j , f(Un
j )). Convexity of f yields, (see Figure 2.1)

f ′(ξn
j ) < f ′(ηn

j ). (2.2.29)

Lemma B.2 gives us that

f ′(ηn
j ) < 2f ′(ξn

j ). (2.2.30)

Let γn
j be a point between Un

j−1 and 1
2[Un

j−1 + Un
j ] such that f ′(γn

j ) is the slope of the

line segment joining the points (Un
j−1, f(Un

j−1)) and (12[Un
j−1 + Un

j ], f(12[Un
j−1 + Un

j ])) (see

Figure 2.2). Then by Lemma B.3

f ′(ξn
j ) =

f ′(γn
j ) + f ′(ηn

j )
2

. (2.2.31)

The underlying scheme is given by

U
n+ 1

2
j = Un

j − λ[f(Un
j ) − f(Un

j−1)]
= Un

j − λf ′(ξn
j )∆Un

j− 1
2

. (2.2.32)

So the algorithm becomes

Un+1
j = U

n+ 1
2

j − λ��gj+ 1
2
[Un+ 1

2 ] + 2gn−ext
j+ 1

2

� − �gj− 1
2
[Un+ 1

2 ] + 2gn−ext
j− 1

2

��
= Un

j − λf ′(ξn
j )∆Un

j− 1
2

− λ�f(Un
j − λf ′(ξn

j )∆Un
j− 1

2

) + 2gn−ext
j+ 1

2

− �f(Un
j−1 − λf ′(ξn

j−1)∆Un
j− 3

2

) + 2gn−ext
j− 1

2

�� (2.2.33)

that is,

Un+1
j = Un

j − λf ′(ξn
j )∆Un

j− 1
2

− λ�f(Un
j ) − λf ′(αn

j )f ′(ξn
j )∆Un

j− 1
2

+ 2gn−ext
j+ 1

2

− �f(Un
j−1) − λf ′(αn

j−1)f ′(ξn
j−1)∆Un

j− 3
2

+ 2gn−ext
j− 1

2

�� (2.2.34)
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Figure 2.1: Convexity of the flux function f and slopes of secant lines

which simplifies to

Un+1
j = Un

j − 2λf ′(ξn
j )∆Un

j− 1
2

+ λ2f ′(αn
j )f ′(ξn

j )∆Un
j− 1

2

−λ2f ′(αn
j−1)f ′(ξn

j−1)∆Un
j− 3

2

− 2λ �gn−ext
j+ 1

2

− gn−ext
j− 1

2

� . (2.2.35)

Similarly

Un+1
j+1 = Un

j+1 − 2λf ′(ξn
j+1)∆Un

j+ 1
2

+ λ2f ′(αn
j+1)f ′(ξn

j+1)∆Un
j+ 1

2

−λ2f ′(αn
j )f ′(ξn

j )∆Un
j− 1

2

− 2λ �gn−ext
j+ 3

2

− gn−ext
j+ 1

2

� . (2.2.36)
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Figure 2.2: Convexity of the flux function f and the mean value theorem

Hence subtracting (2.2.35) from (2.2.36) yields

∆Un+1
j+ 1

2

= �1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)�∆Un

j+ 1
2

+2λf ′(ξn
j )�1 − λf ′(αn

j )�∆Un
j− 1

2

+ λ2f ′(αn
j−1)f ′(ξn

j−1)∆Un
j− 3

2

−2λ �gn−ext
j+ 3

2

− 2gn−ext
j+ 1

2

+ gn−ext
j− 1

2

� . (2.2.37)

To show the TVD property we need to take absolute values in (2.2.37). At this point we do

not know the signs of the terms in the equation neither do we know how they compare to
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each other in magnitude. We rewrite (2.2.37) as

∆Un+1
j+ 1

2

= ��1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)�∆Un

j+ 1
2

− 2λgn−ext
j+ 3

2

�
+ �2λf ′(ξn

j )�1 − λf ′(αn
j )�∆Un

j− 1
2

− 2λgn−ext
j− 1

2

�
+ �λ2f ′(αn

j−1)f ′(ξn
j−1)∆Un

j− 3
2

+ 4λgn−ext
j+ 1

2

� . (2.2.38)

With this grouping, if we can show that the three groups have the same sign and for each

group the gn−ext has the same sign as the rest of the terms and less than the terms in

magnitude, then we can take absolute values simplify to get an inequality.

We now determine an expression for g̃n
j+ 1

2

by substituting (2.2.27) and (2.2.28) into

(2.2.5).

g̃n
j+ 1

2

=
1

2
�f(Un

j ) + f(Un+ 1
2

j )  −Gn
j+ 1

2

= �f(Un
j ) −

1

2
λf ′(αn

j )f ′(ξn
j )∆Un

j− 1
2

  − f(1
2
[Un

j +Un
j−1])

= �f(Un
j ) −

1

2
λf ′(αn

j )f ′(ξn
j )∆Un

j− 1
2

  − �f(Un
j ) −

1

2
f ′(ηn

j )∆Un
j− 1

2

  .

Hence

g̃n
j+ 1

2

=
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )�∆Un
j− 1

2

. (2.2.39)

So by definition and (2.2.39)

gn−ext
j− 1

2

= minmod�βg̃n
j+ 1

2

, g̃n
j− 1

2

, βg̃n
j− 3

2

�

= minmod�β 1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )�∆Un
j− 1

2

,

1

2
�f ′(ηn

j−1) − λf ′(αn
j−1)f ′(ξn

j−1)�∆Un
j− 3

2

,

β
1

2
�f ′(ηn

j−2) − λf ′(αn
j−2)f ′(ξn

j−2)�∆Un
j− 5

2

  . (2.2.40)

Examining terms of (2.2.38), first we show that gn−ext
j− 1

2

has the same sign as the term that

has ∆Un
j− 1

2

and it is less than the same in magnitude. Now for all j

f ′(ηn
j ) − λf ′(αn

j )f ′(ξn
j ) A f ′(ξn

j ) − λf ′(αn
j )f ′(ξn

j ) since 0 < f ′(ξn
j ) < f ′(ηn

j )
= f ′(ξn

j )�1 − λf ′(αn
j )� A 0, (2.2.41)
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since by assumption, we have the CFL condition 0 B λSSf ′SSª B 1
2 .

The definition of gn−ext
j− 1

2

includes ∆Un
j− 1

2

whose coefficient is positive from (2.2.41). So

gn−ext
j− 1

2

must have the same sign as ∆Un
j− 1

2

or is zero and thus

�2λgn−ext
j− 1

2

� �2λf ′(ξn
j )�1 − λf ′(αn

j )�∆Un
j− 1

2

� C 0 (2.2.42)

and

2λ Ugn−ext
j− 1

2

U B 2λβ
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )� U∆Un
j− 1

2

U . (2.2.43)

We want

2λ Ugn−ext
j− 1

2

U B 2λf ′(ξn
j )�1 − λf ′(αn

j )� U∆Un
j− 1

2

U . (2.2.44)

(2.2.44) is true if

β
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )� B f ′(ξn
j )�1 − λf ′(αn

j )�, (2.2.45)

that is, if

�1 − β

2
�λf ′(αn

j )f ′(ξn
j ) B f ′(ξn

j ) −
β

2
f ′(ηn

j ). (2.2.46)

But (2.2.46) holds if

�1 − β

2
�µf ′(ξn

j ) B f ′(ξn
j ) −

β

2
f ′(ηn

j ) since 0 < λSSf ′SSª B µ. (2.2.47)

Substituting (2.2.31) into the above and simplifying we get

µ

2
�1 − β

2
� (f ′(γn

j ) + f ′(ηn
j )) B

1

2
f ′(γn

j ) + �
1

2
−

β

2
�f ′(ηn

j ). (2.2.48)

Now (2.2.48) is true if

µ

2
�1 − β

2
� B 1

2
−

β

2
and

µ

2
�1 − β

2
� B 1

2
, (2.2.49)

that is, if

0 < β B 2�1 − µ

2 − µ
� . (2.2.50)
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Similarly

gn−ext
j+ 3

2

= minmod�βg̃n
j+ 5

2

, g̃n
j+ 3

2

, βg̃n
j+ 1

2

�

= minmod�β 1

2
�f ′(ηn

j+2) − λf ′(αn
j+2)f ′(ξn

j+2)�∆Un
j+ 3

2

,

1

2
�f ′(ηn

j+1) − λf ′(αn
j+1)f ′(ξn

j+1)�∆Un
j+ 1

2

,

β
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )�∆Un
j− 1

2

  . (2.2.51)

Using (2.2.41) and the definition (2.2.51) , we have that gn−ext
j+ 3

2

has the same sign as ∆Un
j+ 1

2

or is zero and thus considering (2.2.37) and the CFL condition, we have

�2λgn−ext
j+ 3

2

� ��1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)�∆Un

j+ 1
2

� C 0 (2.2.52)

and

2λgn−ext
j+ 3

2

B 2λ
1

2
�f ′(ηn

j+1) − λf ′(αn
j+1)f ′(ξn

j+1)� U∆Un
j+ 1

2

U .

We need to show that

2λgn−ext
j+ 3

2

B �1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U . (2.2.53)

Now (2.2.53) is true if

λ�f ′(ηn
j+1) − λf ′(αn

j+1)f ′(ξn
j+1)� B 1 − 2λf ′(ξn

j+1) + λ2f ′(αn
j+1)f ′(ξn

j+1)

which is equivalent to showing that

0 B 1 − λf ′(ηn
j+1) − 2λf ′(ξn

j+1) + 2λ2f ′(αn
j+1)f ′(ξn

j+1). (2.2.54)

Noting that

Un
j+1 − λf ′(ξn

j )∆Un
j+ 1

2

C Un
j+1 −

1

2
∆Un

j+ 1
2

since λSSf ′SSª B 1

2

=
1

2
[Un

j+1 +Un
j ],

we have that the slope of the secant line joining Un
j+1 −λf ′(ξ)∆Un

j+ 1
2

and Un
j is greater than

the slope of the secant line joining 1
2[Un

j+1 +Un
j ] and Un

j by the convexity of f , that is,

f ′(αj+1) C f ′(ηj+1) for 0 < λSSf ′SSª B 1

2
. (2.2.55)
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So if

0 B 1 − λf ′(αn
j+1) − 2λf ′(ξn

j+1) + 2λ2f ′(αn
j+1)f ′(ξn

j+1) (2.2.56)

is true then (2.2.54) would be implied, that is, if subtracting a larger positive quantity yields

a non negative number then certainly it must be true for a smaller positive quantity. We

rewrite (2.2.56) as

1 − λf ′(αn
j+1) − 2λf ′(ξn

j+1)�1 − λf ′(αn
j+1)� = �1 − λf ′(αn

j+1)��1 − 2λf ′(ξn
j+1)�

C 0 since 0 < λSSf ′SSª B 1

2
. (2.2.57)

Hence (2.2.54) holds and in turn (2.2.53) is true.

Finally note that the definition gn−ext
j+ 1

2

includes ∆Un
j+ 1

2

, ∆Un
j− 1

2

and ∆Un
j− 3

2

. So either

4λgn−ext
j+ 1

2

= 0 or the first term in each grouping of (2.2.38) and 4λgn−ext
j+ 1

2

have the same sign.

Therefore, we can take absolute values in (2.2.38) to get

U∆Un+1
j+ 1

2

U B U�1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)�∆Un

j+ 1
2

− 2λgn−ext
j+ 3

2

U
+ U2λf ′(ξn

j )�1 − λf ′(αn
j )�∆Un

j− 1
2

− 2λgn−ext
j− 1

2

U
+ Uλ2f ′(αn

j−1)f ′(ξn
j−1)∆Un

j− 3
2

+ 4λgn−ext
j+ 1

2

U
and since the pairwise terms have the same sign and the

coefficients of the ∆Un’s are nonnegative

= �1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U − 2λ Ugn−ext
j+ 3

2

U
+2λf ′(ξn

j )�1 − λf ′(αn
j )� U∆Un

j− 1
2

U − 2λ Ugn−ext
j− 1

2

U
+λ2f ′(αn

j−1)f ′(ξn
j−1) U∆Un

j− 3
2

U + 4λ Ugn−ext
j+ 1

2

U

that is,

U∆Un+1
j+ 1

2

U B �1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U
+2λf ′(ξn

j )�1 − λf ′(αn
j )� U∆Un

j− 1
2

U + λ2f ′(αn
j−1)f ′(ξn

j−1) U∆Un
j− 3

2

U
−2λ �Ugn−ext

j+ 3
2

U − 2 Ugn−ext
j+ 1

2

U + Ugn−ext
j− 1

2

U� . (2.2.58)
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Now summing over all integers j,

ª

Q
j=−ª

U∆Un+1
j+ 1

2

U B
ª

Q
j=−ª

�1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U

+

ª

Q
j=−ª

2λf ′(ξn
j )�1 − λf ′(αn

j )� U∆Un
j− 1

2

U +
ª

Q
j=−ª

λ2f ′(αn
j−1)f ′(ξn

j−1) U∆Un
j− 3

2

U

−2λ�
ª

Q
j=−ª

Ugn−ext
j+ 3

2

U − 2
ª

Q
j=−ª

Ugn−ext
j+ 1

2

U +
ª

Q
j=−ª

Ugn−ext
j− 1

2

U� . (2.2.59)

Keeping the first term on the right hand side of the above inequality as it is but re-indexing

the rest yields

ª

Q
j=−ª

U∆Un+1
j+ 1

2

U B
ª

Q
j=−ª

U∆Un
j+ 1

2

U +
ª

Q
j=−ª

�−2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U

+

ª

Q
j=−ª

2λf ′(ξn
j+1)�1 − λf ′(αn

j+1)� U∆Un
j+ 1

2

U +
ª

Q
j=−ª

λ2f ′(αn
j+1)f ′(ξn

j+1) U∆Un
j+ 1

2

U

−2λ�
ª

Q
j=−ª

Ugn−ext
j+ 1

2

U − 2
ª

Q
j=−ª

Ugn−ext
j+ 1

2

U +
ª

Q
j=−ª

Ugn−ext
j+ 1

2

U� (2.2.60)

which simplifies to the desired inequality, namely

ª

Q
j=−ª

U∆Un+1
j+ 1

2

U B
ª

Q
j=−ª

U∆Un
j+ 1

2

U . (2.2.61)

Theorem 2.3. Assume that f ′ A 0 and f ′′ A 0. Furthermore, for 1 B c B 2 let f ′(ηn
j ) <

cf ′(ξn
j ) where f ′(ξn

j ) and f ′(ηn
j ) are as defined on page 22. Then for the conservation law

(1.1.1), if the underlying scheme is the upwinding scheme (1.2.3), c
2 B s B 1 and β B 2(1−s)

c−s ,

then Algorithm 2.2 is TVD for c
2 B λf ′ B s.

The upper bound for c in the above theorem is given by Lemma B.2, that is

f ′(ηn
j ) < 2f ′(ξn

j ). (2.2.62)
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Figure 2.3: TVD Regions for Theorem 2.3

Proof. As in the previous theorem (2.2.37) holds. By definition we have

�2λgn−ext
j− 1

2

��2λ1

2
�f ′(ηn

j−1) − f ′(αn
j−1)f ′(ξn

j−1)�∆Un
j− 3

2

� C 0 (2.2.63)

and

2λ Ugn−ext
j− 1

2

U B 2λ
1

2
�f ′(ηn

j−1) − λf ′(αn
j−1)f ′(ξn

j−1)� U∆Un
j− 3

2

U . (2.2.64)

In (2.2.37) we want

2λ Ugn−ext
j− 1

2

U B λ2f ′(αn
j−1)f ′(ξn

j−1)�∆Un
j− 3

2

. (2.2.65)
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Figure 2.4: TVD Regions for Theorem 2.3

(2.2.65) is true if

f ′(ηn
j−1) − λf ′(αn

j−1)f ′(ξn
j−1) B λf ′(αn

j−1)f ′(ξn
j−1) (2.2.66)

that is, if

f ′(ηn
j−1) B 2λf ′(αn

j−1)f ′(ξn
j−1). (2.2.67)

On using the given assumptions, (2.2.67) is true if

cf ′(ξn
j−1) B 2λf ′(αn

j−1)f ′(ξn
j−1), (2.2.68)
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Figure 2.5: TVD regions surface plot for Theorem 2.3

that is, if

c B 2λf ′(αn
j−1). (2.2.69)

This holds by the given CFL condition. Hence (2.2.65) holds.

Similarly

�2λgn−ext
j+ 3

2

��2λβ
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )�∆Un
j− 1

2

� C 0 (2.2.70)

and

2λ Ugn−ext
j+ 1

2

U B 2λβ
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )� U∆Un
j− 1

2

U . (2.2.71)

In (2.2.37) we want

2λ Ugn−ext
j+ 3

2

U B 2λf ′(ξn
j )�1 − λf ′(αn

j )� U∆Un
j− 1

2

U . (2.2.72)
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(2.2.72) is true if

β
1

2
�f ′(ηn

j ) − λf ′(αn
j )f ′(ξn

j )� B f ′(ξn
j )�1 − λf ′(αn

j )�, (2.2.73)

that is, if

�1 − β

2
�λf ′(αn

j )f ′(ξn
j ) B f ′(ξn

j ) −
β

2
f ′(ηn

j ). (2.2.74)

But (2.2.74) holds if

�1 − β

2
� sf ′(ξn

j ) B f ′(ξn
j ) −

β

2
f ′(ηn

j ) since
c

2
< λf ′ B s (2.2.75)

which is true if

�1 − β

2
� sf ′(ξn

j ) B f ′(ξn
j ) −

β

2
cf ′(ξn

j ) since f ′(ηn
j ) < cf ′(ξn

j ). (2.2.76)

Now (2.2.76) is true if

�1 − β

2
� s B �1 − β

2
c� (2.2.77)

that is, if

β B 2�1 − s

c − s
� . (2.2.78)

Hence (2.2.72) holds since the above equation is true by assumption.

Finally either 4λgn−ext
j+ 1

2

= 0 or the first three terms on the right of (2.2.37) and 4λgn−ext
j+ 1

2

have the same sign. Therefore

U∆Un+1
j+ 1

2

U B �1 − 2λf ′(ξn
j+1) + λ2f ′(αn

j+1)f ′(ξn
j+1)� U∆Un

j+ 1
2

U
+2λf ′(ξn

j )�1 − λf ′(αn
j )� U∆Un

j− 1
2

U + λ2f ′(αn
j−1)f ′(ξn

j−1) U∆Un
j− 3

2

U
−2λ �Ugn−ext

j+ 3
2

U − 2 Ugn−ext
j+ 1

2

U + Ugn−ext
j− 1

2

U� . (2.2.79)

Now summing over all integers j and using similar arguments to the proof of Theorem

2.2.37, we get the desired inequality, namely

j=ª

Q
j=−ª

U∆Un+1
j+ 1

2

U B
j=ª

Q
j=−ª

U∆Un
j+ 1

2

U . (2.2.80)
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2.3 Goodman-Leveque Geometric Approach

We give an overview of the geometric approach (see Goodman and Leveque [2]). To obtain

second order accuracy, the solution is reconstructed from the cell averages using a piecewise

linear function ṽ(x, tn),

ṽ(x, tn) = Un
j + sj(x − xj) for x > (xj− 1

2
, xj+ 1

2
) (2.3.1)

where

sj =

¢̈̈
¨̈¦̈̈
¨̈¤

0 if (Uj+1 −Uj)(Uj −Uj−1) B 0,

sgn(Uj+1 −Uj)min�UUj+1−Uj

h U , UUj−Uj−1

h U� otherwise .
(2.3.2)

To obtain the numerical flux at the cell edges, the true flux f is approximated by a piecewise

linear function g such that

g′j =

¢̈̈
¨̈¦̈̈
¨̈¤

f(U+j )−f(U−j )
U+j −U

−

j
if sj x 0,

f ′(Uj) if sj = 0,

(2.3.3)

where

U�j = Uj �
h

2
sj. (2.3.4)

Note that U−j , U+j , U−j+1, U
+

j+1 are monotonically ordered (by (2.3.2)) and g interpolates f at

these points.

Consider the problem ut + g(u)x = 0, that is, ut + g′(u)ux = 0. Note that g′(u(xj+ 1
2
, t)) is

constant for tn B t B tn+1 and so the solution here is

u(xj+ 1
2
, t) =

¢̈̈
¦̈̈̈
¤̈

U+j − (t − tn)sjg′j if f ′ A 0,

U−j+1(t − tn)sj+1g′j+1 if f ′ < 0.

Hence the numerical flux due to Goodman and LeVeque is

G(U ; j) = 1

k S
tn+1

tn
g(u(xj+ 1

2
, t))dt

(2.3.5)

=

¢̈̈
¦̈̈̈
¤̈

f(U+j ) − 1
2ksj(g′j)2 if f ′ A 0,

f(U−j+1) − 1
2ksj+1(g′j+1)2 if f ′ < 0.

(2.3.6)
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Theorem 2.4. The LEM raises the order of the Goodman-LeVeque scheme by 1.

By the theorem of Yang [18], it suffices to prove that the Goodman-LeVeque flux satisfies

(2.2.4), that is, for all sufficiently smooth solutions w, the numerical flux function of the

underlying scheme satisfies

gj+ 1
2
[wn] = f

n

j+ 1
2
+ α(xj+ 1

2
, tn)hr

+ β(xj+ 1
2
, tn)hr+1

+O(hr+2)

where gj+ 1
2
[v] and α have Lipschitz continuous first derivative and β is Lipschitz continuous.

We have two cases, sj−1 x 0 x sj and sj = 0. In the second case, the Goodman-LeVeque

method reduces to the first order Godunov method. W.l.o.g assume that f ′ A 0.

Case 2.1.

sj−1 x 0 x sj. (2.3.7)

Let w be a sufficiently smooth solution. Firstly, we note that

sj = sgn(wn
j+1 −wn

j )min�Ww
n
j+1 −wn

j

h
W , Ww

n
j −wn

j−1

h
W¡ . (2.3.8)

Now

wn
j =

1

h S
x

j+ 1
2

x
j− 1

2

w(x, tn)dx

=
1

h S
x

j+ 1
2

x
j− 1

2

�w(xj+ 1
2
, tn) +wx(xj+ 1

2
, tn)[x − xj+ 1

2
]

+

1

2
wxx(xj+ 1

2
, tn)[x − xj+ 1

2
]2 + 1

6
wxxx(xj+ 1

2
, tn)[x − xj+ 1

2
]3 + ċ ċ ċ�dx,

that is,

wn
j =

1

h

<@@@@>
w(xj+ 1

2
, tn)x +wx(xj+ 1

2
, tn)
[x − xj+ 1

2
]2

2

+

1

2
wxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]3

3
+

1

6
wxxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]4

4
+ ċ ċ ċ

=AAAA?

x
j+ 1

2

x
j− 1

2

=
1

h
�w(xj+ 1

2
, tn)h −wx(xj+ 1

2
, tn)h

2

2
+

1

2
wxx(xj+ 1

2
, tn)h

3

3
−

1

6
wxxx(xj+ 1

2
, tn)h

4

4

+O(h5)�
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which simplifies to

wn
j = w(xj+ 1

2
, tn) −wx(xj+ 1

2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6
−wxxx(xj+ 1

2
, tn)h

3

24

+O(h4). (2.3.9)

Similarly

wn
j+1 =

1

h S
x

j+ 3
2

x
j+ 1

2

w(x, tn)dx

=
1

h

<@@@@>
w(xj+ 1

2
, tn)x +wx(xj+ 1

2
, tn)
[x − xj+ 1

2
]2

2

+

1

2
wxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]3

3
+

1

6
wxxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]4

4
+ ċ ċ ċ

=AAAA?

x
j+ 3

2

x
j+ 1

2

that is,

wn
j+1 =

1

h
�w(xj+ 1

2
, tn)h +wx(xj+ 1

2
, tn)h

2

2
+

1

2
wxx(xj+ 1

2
, tn)h

3

3
+

1

6
wxxx(xj+ 1

2
, tn)h

4

4

+ O(h5)�
= w(xj+ 1

2
, tn) +wx(xj+ 1

2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6
+wxxx(xj+ 1

2
, tn)h

3

24

+O(h4). (2.3.10)

and

wn
j−1 =

1

h S
x

j− 1
2

x
j− 3

2

w(x, tn)dx

=
1

h

<@@@@>
w(xj+ 1

2
, tn)x +wx(xj+ 1

2
, tn)
[x − xj+ 1

2
]2

2

+

1

2
wxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]3

3
+

1

6
wxxx(xj+ 1

2
, tn)
[x − xj+ 1

2
]4

4
+ ċ ċ ċ

=AAAA?

x
j− 1

2

x
j− 3

2
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that is,

wn
j−1 =

1

h
��w(xj+ 1

2
, tn)h +wx(xj+ 1

2
, tn)h

2

2
−

1

2
wxx(xj+ 1

2
, tn)h

3

3
+

1

6
wxxx(xj+ 1

2
, tn)h

4

4
�

−�wx(xj+ 1
2
, tn)(2h)

2

2
−

1

2
wxx(xj+ 1

2
, tn)(2h)

3

3
+

1

6
wxxx(xj+ 1

2
, tn)(2h)

4

4
�

+ O(h5)�
= w(xj+ 1

2
, tn) − 3

2
wx(xj+ 1

2
, tn)h + 7

6
wxx(xj+ 1

2
, tn)h2

−

5

6
wxxx(xj+ 1

2
, tn)h3

+O(h4). (2.3.11)

We examine the two cases in (2.3.8).

I. If sj = sgn(wn
j+1 −wn

j ) T(wn
j+1 −wn

j )~hT, then using (2.3.9) and (2.3.10), we have

wn
j+1 −wn

j

h
= wx(xj+ 1

2
, tn) + 1

12
wxxx(xj+ 1

2
, tn)h2

+O(h4) (2.3.12)

II. If sj = sgn(wn
j+1 −wn

j ) T(wn
j −wn

j−1)~hT, then using (2.3.9) and (2.3.11) we have

wn
j −wn

j−1

h
= wx(xj+ 1

2
, tn) −wxx(xj+ 1

2
, tn)h + 19

24
wxxx(xj+ 1

2
, tn)h2

+O(h3) (2.3.13)

The true flux at the cell interface x = xj+ 1
2

can be written in the form

f(w(xj+ 1
2
, t)) = f(w(xj+ 1

2
, tn)) + f ′(w(xj+ 1

2
, tn))wt(xj+ 1

2
, tn)[t − tn]

+

1

2

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
[t − tn]2

+

1

6

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
[t − tn]3

+O �[t − tn]4� . (2.3.14)
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So the average flux over the time interval [tn, tn+1] is

f
n

j+ 1
2
=

1

k S
tn+1

tn
f(w(xj+ 1

2
, t))dt

=
1

k
��f(w(xj+ 1

2
, tn))t + f ′(w(xj+ 1

2
, tn))wt(xj+ 1

2
, tn)[t − tn]2

2

+

1

2

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

[t − tn]3
3

+

1

6

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

[t − tn]4
4
�
tn+1

t=tn
+O �k5�

£̈̈
§̈̈
¥

= f(w(xj+ 1
2
, tn)) + f ′(w(xj+ 1

2
, tn))wt(xj+ 1

2
, tn)k

2

+

k2

6

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

+

k3

24

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
+O �k4� . (2.3.15)
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We now find an expression for the constant slope g′j, in (2.3.6)

g′j =
1

hsj

�f �wn
j +

h

2
sj� − f �wn

j −
h

2
sj� 

=
1

hsj

�f(w(xj+ 1
2
, tn)) + f ′(w(xj+ 1

2
, tn)) �wn

j +
h

2
sj −w(xj+ 1

2
, tn)�

+

1

2
f ′′(w(xj+ 1

2
, tn)) �wn

j +
h

2
sj −w(xj+ 1

2
, tn)�

2

+

1

6
f ′′(w(xj+ 1

2
, tn)) �wn

j +
h

2
sj −w(xj+ 1

2
, tn)�

3

+O ��wn
j +

h

2
sj −w(xj+ 1

2
, tn)�

4

�

−�f(w(xj+ 1
2
, tn)) + f ′(w(xj+ 1

2
, tn)) �wn

j −
h

2
sj −w(xj+ 1

2
, tn)�

+

1

2
f ′′(w(xj+ 1

2
, tn)) �wn

j −
h

2
sj −w(xj+ 1

2
, tn)�

2

+

1

6
f ′′(w(xj+ 1

2
, tn)) �wn

j −
h

2
sj −w(xj+ 1

2
, tn)�

3

+ O ��wn
j −

h

2
sj −w(xj+ 1

2
, tn)�

4

��¡

Let

Ψ� = wn
j �

h

2
sj −w(xj+ 1

2
, tn)

so that

g′j =
1

hsj

�f ′(w(xj+ 1
2
, tn))hsj + �wn

j −w(xj+ 1
2
, tn)� f ′′(w(xj+ 1

2
, tn))hsj

+

1

6
�3hsj[wn

j ]2 − 6hsjw
n
j w(xj+ 1

2
, tn) + 1

4
h3s3

j + 3hsjw
2(xj+ 1

2
, tn)� f ′′′(w(xj+ 1

2
, tn))

+O(Ψ4
�
)�

= f ′(w(xj+ 1
2
, tn)) + �wn

j −w(xj+ 1
2
, tn)� f ′′(w(xj+ 1

2
, tn))

+�1
2
[wn

j ]2 −wn
j w(xj+ 1

2
, tn) + 1

24
h2s2

j +
1

2
w2(xj+ 1

2
, tn)� f ′′′(w(xj+ 1

2
, tn)) +O(Ψ4

�
)
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Hence

(g′j)2 = �f ′(w(xj+ 1
2
, tn)) + �wn

j −w(xj+ 1
2
, tn)� f ′′(w(xj+ 1

2
, tn))

+

1

2
�wn

j −w(xj+ 1
2
, tn)�2 f ′′′(w(xj+ 1

2
, tn)) + 1

24
h2s2

jf
′′′(w(xj+ 1

2
, tn))�

2

+O(Ψ4
�
)

= [f ′(w(xj+ 1
2
, tn))]2 + 2 �wn

j −w(xj+ 1
2
, tn)� f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))

+ �wn
j −w(xj+ 1

2
, tn)�2 f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))

+ �wn
j −w(xj+ 1

2
, tn)� [f ′′(w(xj+ 1

2
, tn))]2

+2 �wn
j −w(xj+ 1

2
, tn)�3 f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))

+

1

4
�wn

j −w(xj+ 1
2
, tn)�4 [f ′′′(w(xj+ 1

2
, tn))]2

+

1

12
�f ′(w(xj+ 1

2
, tn)) + 1

2
�wn

j −w(xj+ 1
2
, tn)� f ′′(w(xj+ 1

2
, tn))

+

1

2
�wn

j −w(xj+ 1
2
, tn)�2 f ′′′(w(xj+ 1

2
, tn))�f ′′′(w(xj+ 1

2
, tn))h2s2

j

+

1

(24)2h4s4
j[f ′′′(w(xj+ 1

2
, t))]2 +O(Ψ4

�
). (2.3.16)

I). If we use (2.3.9) and (2.3.12) we get

(g′j)2 = [f ′(w(xj+ 1
2
, tn))]2

+2 �−wx(xj+ 1
2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6

−wxxx(xj+ 1
2
, tn)h

3

24
�f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))

+ �w2
x(xj+ 1

2
, tn)h

2

4
+wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)h

3

6
� �

f ′(w(xj+ 1
2
, tn))f ′′′(w(xj+ 1

2
, tn))

+ �−wx(xj+ 1
2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6
−wxxx(xj+ 1

2
, tn)h

3

24
� �

[f ′′(w(xj+ 1
2
, tn))]2

+2 �wxxx(xj+ 1
2
, tn)h

3

8
�f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))

+

1

12
�f ′(w(xj+ 1

2
, tn)) + 1

2
�−wx(xj+ 1

2
, tn)h

2
�f ′′(w(xj+ 1

2
, tn))� �

f ′′′(w(xj+ 1
2
, tn))h2w2

x(xj+ 1
2
, tn) +O(h4). (2.3.17)

40



that is

(g′j)2 = [f ′(w(xj+ 1
2
, tn))]2

− �f ′(w(xj+ 1
2
, tn))f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

+

1

2
[f ′′(w(xj+ 1

2
, tn))]2wx(xj+ 1

2
, tn)�h

+�1
3
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

+

1

3
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w2

x(xj+ 1
2
, tn)

+

1

6
�f ′′(w(xj+ 1

2
, tn))�2�h2

+�− 1

12
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

+

1

6
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)

−

1

24
[f ′′(w(xj+ 1

2
, tn))]2wxxx(xj+ 1

2
, tn)

+

1

4
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

−

1

48
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w3

x(xj+ 1
2
, tn)�h3

+O(h4). (2.3.18)

We also have that

f �wn
j +

h

2
sj� = f(w(xj+ 1

2
, tn))

+f ′(w(xj+ 1
2
, tn)) �wn

j −w(xj+ 1
2
, tn) + h

2
sj�

+

1

2
f ′′(w(xj+ 1

2
, tn)) �wn

j −w(xj+ 1
2
, tn) + h

2
sj�

2

+

1

6
f ′′′(w(xj+ 1

2
, tn)) �wn

j −w(xj+ 1
2
, tn) + h

2
sj�

3

+O(Ψ4
+
). (2.3.19)

But

wn
j −w(xj+ 1

2
, tn) + h

2
sj =

1

6
wxx(xj+ 1

2
, tn)h2

+O(h4)
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so that

f �wn
j +

h

2
sj� = f(w(xj+ 1

2
, tn)) + 1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)h2

+O(h4). (2.3.20)

Hence the numerical flux can be expressed as

G[wn; j] = f �wn
j +

h

2
sj� − 1

2
ksj(g′j)2

= f
n

j+ 1
2
+ f �wn

j +
h

2
sj� − f

n

j+ 1
2
−

1

2
ksj(g′j)2 (2.3.21)

which on using (2.3.12), (2.3.15), (2.3.18) and (2.3.20) yields

G[wn; j] = f
n

j+ 1
2

+f(w(xj+ 1
2
, tn)) + 1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)h2

+O(h4)

− �f(w(xj+ 1
2
, tn)) + f ′(w(xj+ 1

2
, tn))wt(xj+ 1

2
, tn)k

2

+

k2

6

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

+

k3

24

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
+O �k4��
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−

1

2
k �wx(xj+ 1

2
, tn) + 1

12
wxxx(xj+ 1

2
, tn)h2

+O(h4)� �
�[f ′(w(xj+ 1

2
, tn))]2

− �f ′(w(xj+ 1
2
, tn))f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

+

1

2
[f ′′(w(xj+ 1

2
, tn))]2wx(xj+ 1

2
, tn)�h

+�1
3
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

+

1

3
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w2

x(xj+ 1
2
, tn)

+

1

6
�f ′′(w(xj+ 1

2
, tn))�2�h2

+�− 1

12
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

+

1

6
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)

−

1

24
[f ′′(w(xj+ 1

2
, tn))]2wxxx(xj+ 1

2
, tn)

+

1

4
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

−

1

48
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w3

x(xj+ 1
2
, tn)�h3

+O(h4)� . (2.3.22)
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Simplyfying we get

G[wn; j] = f
n

j+ 1
2
+

1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)h2

+O(h4)

− �f ′(w(xj+ 1
2
, tn))wt(xj+ 1

2
, tn)k

2

+

k2

6

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

+

k3

24

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
+O �k4��

−

1

2
k �wx(xj+ 1

2
, tn) + 1

12
wxxx(xj+ 1

2
, tn)h2

+O(h4)� �
�[f ′(w(xj+ 1

2
, tn))]2

− �f ′(w(xj+ 1
2
, tn))f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

+

1

2
[f ′′(w(xj+ 1

2
, tn))]2wx(xj+ 1

2
, tn)�h

+�1
3
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

+

1

3
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w2

x(xj+ 1
2
, tn)

+

1

6
�f ′′(w(xj+ 1

2
, tn))�2�h2

+O(h3)  . (2.3.23)

Now note that

f ′(w(xj+ 1
2
, tn))wt(xj+ 1

2
, tn)k

2
+

1

2
kwx(xj+ 1

2
, tn)[f ′(w(xj+ 1

2
, tn))]2

=
k

2
�f ′(w(xj+ 1

2
, tn))[−f ′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)]

+wx(xj+ 1
2
, tn)[f ′(w(xj+ 1

2
, tn))]2� using conservation law

=
k

2
[f ′(w(xj+ 1

2
, tn))]2 �wx(xj+ 1

2
, tn) −wx(xj+ 1

2
, tn)� = 0. (2.3.24)
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In view of (2.3.24), the numerical flux (2.3.23) becomes

G[wn; j] = f
n

j+ 1
2
+

1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)h2

+O(h4)

− � k
2

6

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

+

k3

24

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
+O �k4��

−

1

2
k � 1

12
wxxx(xj+ 1

2
, tn)h2

+O(h4)� �
�[f ′(w(xj+ 1

2
, tn))]2

− �f ′(w(xj+ 1
2
, tn))f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

+

1

2
[f ′′(w(xj+ 1

2
, tn))]2wx(xj+ 1

2
, tn)�h

+�1
3
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

+

1

3
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w2

x(xj+ 1
2
, tn)

+

1

6
�f ′′(w(xj+ 1

2
, tn))�2�h2

+O(h3)  . (2.3.25)

The numerical flux can then be written in the form

G[wn; j] = f
n

j+ 1
2
+ α(xj+ 1

2
, tn)h2

+ β(xj+ 1
2
, tn)h3

+O(h4) (2.3.26)

where

α(xj+ 1
2
, tn) = 1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

−

k2

6h2

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
(2.3.27)

and

β(xj+ 1
2
, tn) = − k3

24h3

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn

−

k

24h
wxxx(xj+ 1

2
, tn)[f ′(w(xj+ 1

2
, tn))]2. (2.3.28)
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II For the other case (see page 37), we use (2.3.9) and (2.3.13) in (2.3.16)

(g′j)2 = [f ′(w(xj+ 1
2
, tn))]2

+2 �−wx(xj+ 1
2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6

−wxxx(xj+ 1
2
, tn)h

3

24
�f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))

+ �w2
x(xj+ 1

2
, tn)h

2

4
+wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)h

3

6
� �

f ′(w(xj+ 1
2
, tn))f ′′′(w(xj+ 1

2
, tn))

+ �−wx(xj+ 1
2
, tn)h

2
+wxx(xj+ 1

2
, tn)h

2

6
−wxxx(xj+ 1

2
, tn)h

3

24
� �

[f ′′(w(xj+ 1
2
, tn))]2

+2 �wxxx(xj+ 1
2
, tn)h

3

8
�f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))

+

1

12
�f ′(w(xj+ 1

2
, tn)) + 1

2
�−wx(xj+ 1

2
, tn)h

2
�f ′′(w(xj+ 1

2
, tn))� �

f ′′′(w(xj+ 1
2
, tn))h2 �w2

x(xj+ 1
2
, tn) − 2wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)h

+ �w2
xx(xj+ 1

2
, tn) + 19

12
wx(xj+ 1

2
, tn)wxx(xj+ 1

2
, tn)�h2

−

19

12
wxx(xj+ 1

2
, tn)wxxx(xj+ 1

2
, tn)h3 

+O(h4) (2.3.29)

46



that is

(g′j)2 = [f ′(w(xj+ 1
2
, tn))]2

− �f ′(w(xj+ 1
2
, tn))f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

+

1

2
[f ′′(w(xj+ 1

2
, tn))]2wx(xj+ 1

2
, tn)�h

+�1
3
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

+

1

3
f ′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w2

x(xj+ 1
2
, tn)

+

1

6
�f ′′(w(xj+ 1

2
, tn))�2�h2

+�− 1

12
f ′(w(xj+ 1

2
, tn))f ′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

−

1

24
[f ′′(w(xj+ 1

2
, tn))]2wxxx(xj+ 1

2
, tn)

+

1

4
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)

−

1

48
f ′′(w(xj+ 1

2
, tn))f ′′′(w(xj+ 1

2
, tn))w3

x(xj+ 1
2
, tn)�h3

+O(h4). (2.3.30)

In this case

wn
j −w(xj+ 1

2
, tn) + h

2
sj = −

1

3
wxx(xj+ 1

2
, tn)h2

+

17

48
wxxx(xj+ 1

2
, tn)h3

+O(h4)

so that (2.3.19) becomes

f �wn
j +

h

2
sj� = f(w(xj+ 1

2
, tn)) − 1

3
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)h2

+O(h4). (2.3.31)

Hence using (2.3.13), (2.3.15), (2.3.30) and (2.3.31) in the spirit of previous arguments

yields the required result.

G[wn; j] = f
n

j+ 1
2
+ α(xj+ 1

2
, tn)h2

+ β(xj+ 1
2
, tn)h3

+O(h4) (2.3.32)
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where

α(xj+ 1
2
, tn) = −1

3
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn)

−

k2

6h2

d

dt
�f ′(w(xj+ 1

2
, t))wt(xj+ 1

2
, t)�V

t=tn
(2.3.33)

and

β(xj+ 1
2
, tn) = 17

48
f ′(w(xj+ 1

2
, tn))wxxx(xj+ 1

2
, tn)
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k3

24h3

d2

dt2
�f ′(w(xj+ 1

2
, t))wt(xj+ 1
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, t)�V

t=tn

−

k

24h
wxxx(xj+ 1

2
, tn)[f ′(w(xj+ 1

2
, tn))]2. (2.3.34)

Case 2.2.

sj = 0. (2.3.35)

Recall that the method is just the first order Godunov’s scheme. So rewrite

G[wn; j] = f �wn
j � = f

n

j+ 1
2
+ f �wn

j � − f
n

j+ 1
2
. (2.3.36)

But

f �wn
j � = f(w(xj+ 1

2
, tn)) + f ′(w(xj+ 1

2
, tn)) �wn

j −w(xj+ 1
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, tn)�

+
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2
, tn)) �wn
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, tn)�2

+

1

6
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2
, tn)) �wn
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2
, tn)�3 +O ��wn
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24
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+O(h4)
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we get

f �wn
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, tn)) − 1

2
f ′(w(xj+ 1
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, tn))wx(xj+ 1
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, tn)h
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Hence substituting (2.3.37) and (2.3.15) into (2.3.36) gives
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48
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+O �h4�
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which can be simplified to
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+
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48
f ′′′(w(xj+ 1

2
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+O �h4�
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2
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2
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2
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2
, t)�V
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24
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2
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2
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We can write (2.3.38) as

G[wn; j] = f
n

j+ 1
2
+ α(xj+ 1

2
, tn)h + β(xj+ 1

2
, tn)h2

+O(h3) (2.3.39)

where

α(xj+ 1
2
, tn) = −1

2
f ′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

−

k

2h
f ′(w(xj+ 1

2
, tn))wt(xj+ 1

2
, tn) (2.3.40)

and

β(xj+ 1
2
, tn) = 1

6
f ′(w(xj+ 1

2
, tn))wxx(xj+ 1

2
, tn) + 1

8
f ′′(w(xj+ 1

2
, tn))wx(xj+ 1

2
, tn)

−

k2

6h2
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�f ′(w(xj+ 1

2
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2
, t)�V
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(2.3.41)
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Chapter 3

Entropy

3.1 General

It was observed in Chapter 1.3 that weak solutions of (1.1.1) may not be unique in general.

An additional condition is required to pick out the physically relevant vanishing viscosity

solution. Geometrically, this requires the characteristics to propagate toward the shocks.

Note that

classical solution ⊂ entropy solution ⊂ weak solution. (3.1.1)

The first form is due to Oleinik. Assume f ′′ A 0.

Definition 3.1. u(x, t) is the entropy solution to (1.1.1) if

u(x + a, t) − u(x, t)
a

B
E

t
, a A 0, t A 0, x > R, (3.1.2)

where E is independent of x, t and a.

Implications of the the condition are that for fixed t and letting x range from −ª to

ª, one can only jump down, that is, in one direction across a discontinuity. Intuitively, a

solution should satisfy (3.1.2) because from example A.1, we have that for smooth solutions

u′0 C 0 and

ux =
u′0

1 + tu′0f
′′(u) . (3.1.3)

If u′0 A 0 then

ux B
u′0

tu′0f
′′(u) =

1

tf ′′(u) B
E

t
, (3.1.4)
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where

E =
1

inf f ′′
.

Recall the jump condition

s =
f(ul) − f(ur)

ul − ur

= f ′(ξ), (3.1.5)

where ξ is between ul and ur. An entropy condition, also due to Oleinik, for an arbitrary

scalar flux function f is given by the following definition.

Definition 3.2. u(x, t) is the entropy solution if all discontinuities have the property that

f(u) − f(ul)
u − ul

C s C
f(u) − f(ur)

u − ur

(3.1.6)

for all u between ul and ur.

Hence for f ′′ A 0 we have the entropy condition

f ′(ul) A s A f ′(ur). (3.1.7)

Across shock discontinuities we must have ul A ur.

3.2 Entropy/Entropy-flux pairs

Definition 3.3. Two smooth functions Φ,Ψ � R� R comprise an entropy/entropy-flux pair

for the conservation law ut + f(u)x = 0 provided

Φ is convex

and

Φ′(y)f ′(y) = Ψ′(y), y > R

For each entropy/entropy-flux pair Φ,Ψ the entropy condition for u(x, t) is

Φ(u)t +Ψ(u)x B 0 on R � (0,ª).

This means that for each non-negative test function φ > Cª0 (R � (0,ª))

S
ª

0
S
ª

−ª

[Φ(u)φt +Ψ(u)φx]dxdt C 0. (3.2.1)
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Definition 3.4. u > C([0,ª), L1(R))�Lª(R � (0,ª)) is called an entropy solution of

ut + f(u)x = 0, (x, t) > R � (0,ª) (3.2.2)

u(x,0) = u0(x) (3.2.3)

if it satisfies (3.2.1) for each entropy/entropy-flux pair (Φ,Ψ), and u(ċ, t)� u0(x) in L1 as

t� 0.

Example 3.1. For any convex Φ we can find a corresponding flux function Ψ, namely

Ψ(y) = S
y

y0

Φ′(w)f ′(w)dw, y > R.

Theorem 3.1. For the single conservation law (3.2.2), there exists - up to a set of measure

zero - a unique entropy solution.

For a proof of the above theorem and general entropy definitions for systems of conser-

vation laws see for example [1] (proof due to Kruzkov).

We state a theorem due to Lax and Wendroff on convergence to a weak solution.

Theorem 3.2. Consider a sequence of grids indexed by l = 1,2, ċ ċ ċ, with mesh parameters

kl, hl � 0 as l � ª. Let Ul(x, t) denote the numerical approximation computed with a

consistent (definition 1.9) and conservative (definition 1.8) method on the lth grid. Suppose

Ul converges to a function u as l �ª, in the sense:

• Over every bounded set Ω = [a, b] � [0, T ] in x − t space

S
T

0
S

b

a
SUl(x, t) − u(x, t)Sdxdt� 0 as l �ª. (3.2.4)

• also assume that for each T there is an R A 0 such that the total variation (defini-

tion 1.6)

TV (Ul(ċ, t)) < R for all 0 B t B T, l = 1,2, ċ ċ ċ (3.2.5)

Then u(x, t) is a weak solution of the conservative law.
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For a proof to Theorem 3.2 see [8, 9].

Now in order to show that the weak solution u(x, t) obtained as a limit of our numerical

solutions Ul(x, t) satisfies (3.2.1), it suffices to show that a discrete entropy inequality holds,

of the form

Φ(Un+1
j ) B Φ(Un

j ) − λ [Θ(Un; j) −Θ(Un; j − 1)] (3.2.6)

where Θ is some numerical entropy flux function that must be consistent with Ψ in the same

manner that the numerical flux is required to be consistent with the true flux. So provided

it can be shown that (3.2.6) holds for a suitable Θ, then following the lines of the proof of

the Lax-Wendroff Theorem, one can show that the limiting weak solution u(x, t) obtained

as the grid is refined satisfies the entropy inequality (3.2.1).
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Chapter 4

Numerical Results

4.1 Linear Conservation Laws

Example 4.1.

ut + ux = 0 x > R, t C 0 (4.1.1)

with initial value

u0(x) =
¢̈̈
¨̈¦̈̈
¨̈¤

¼
1 − �x−0.5

0.15
�2 0.35 B x B 0.65

0 otherwise

(4.1.2)

assumed to be periodic with period one.

The problem is solved using the second and third order ENO schemes, Goodman-LeVeque

scheme and lastly the LEM applied to the Goodman-LeVeque scheme. For the LEM, the

parameter λ is fixed at 0.8. Numerical solutions were obtained for time T = 0.96.

From Figure 4.1 where the spatial step-size used was h = 0.05, it is not easy to see the

improvements to the computed solution obtained by applying the LEM. In fact, the third

order ENO scheme is much more accurate than the LEM applied to Goodman-LeVeque

scheme. Decreasing the spatial step-length to h = 0.02 we get the results given in Figure 4.2.

In this case the improvements achieved by applying the LEM to the Goodman-LeVeque

55



Figure 4.1: Numerical results for example 4.1 with h = 0.05

scheme are noticeable. The LEM applied to Goodman-LeVeque scheme captures the solution

profile about the discontinuities much better than the second order ENO scheme or just the

Goodman-LeVeque scheme. In fact it seems to be better than the third order ENO scheme

in this respect. Note that the wave head seems to travel faster than the tail when the LEM

is applied to the Goodman-LeVeque scheme. Numerical examples for the conservation law

ut + ux = 0 show that the diffusion/compression effect on the head of the wave is different

from that on the tail. The wave pattern may be distorted by this. To compensate for this,

see solution in [18].

Further more, mean computation times were obtained by executing each scheme 500

times. The results are given in Table 4.1. Comparing the computational time for the

Goodman-LeVeque method and the second order ENO scheme we observe that the com-
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Figure 4.2: Numerical results for example 4.1 with h = 0.02

putation time in the former case is smaller. Given its smaller computational time and the

ease with which it is implemented, the Goodman-LeVeque scheme is preferable over the

ENO scheme. Now comparing third order ENO scheme and the Goodman-LeVeque scheme

with LEM, we observe that the computational time of the latter is smaller. The second

order ENO scheme with LEM has a better computational time but does not compare fa-

vorably to the computation time of the Goodman-LeVeque scheme with LEM. Hence the

Goodman-LeVeque scheme with LEM is computation-wise less expensive compared to the

ENO scheme of the same order (r = 3). The ENO scheme has a high computational time

arising from determining the collection of interpolation points for which the interpolating

polynomial is smoothest, as described on page 13.

Note that the standard deviations are small meaning that the actual computation times
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scheme λ h cpu time standard deviation

ENO 2nd order 0.8 0.5 0.7673 0.0460
0.2 4.1973 0.2404

ENO 2nd order + LEM 0.8 0.5 0.5556 0.0460
0.2 2.3310 0.1126

ENO 3rd order 0.8 0.5 0.8884 0.0497
0.2 4.9126 0.2342

Goodman-LeVeque 0.8 0.5 0.1508 0.0247
0.2 0.3809 0.0280

Goodman-LeVeque + LEM 0.8 0.5 0.1955 0.0245
0.2 0.6641 0.0302

Table 4.1: mean cpu times for example 4.1

are close to the mean.

4.2 Nonlinear Conservation Laws

Example 4.2.

ut + �u
2

2
�

x

= 0 x > R, t C 0 (4.2.1)

with initial value

u0(x) =
¢̈̈
¨̈¦̈̈
¨̈¤

¼
1 − �x−0.5

0.15
�2 0.35 B x B 0.65

0 otherwise

(4.2.2)

assumed to be periodic with period one.

In this example, we consider Burgers’ equation, the initial value being a semi-ellipse.

Figures 4.3 and 4.4 give us the solutions at time T = 0.16 when Goodman-LeVeque scheme

and Goodman-LeVeque scheme with LEM respectively are used. The spatial step size in

this case is h = 0.05. The Goodman-LeVeque scheme approximates relatively well the part

of the wave that moves with positive speed (the part moving to the right).
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Figure 4.3: Numerical results for example 4.2 with h = 0.05 - GL scheme
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Figure 4.4: Numerical results for example 4.2 with h = 0.05, β = 0.2 - GL + LEM scheme

We use a smaller spatial step size, h = 0.2 and compute the numerical solution at time

T = 0.096. The results are given in Figures 4.5 and 4.6. The numerical solution by the

Goodman-LeVeque scheme approximates the exact solution very well as can be seen from

Figure 4.5. From the plots, the improvements as a result of applying the LEM to the

Goodman-LeVeque scheme are not pronounced.

We also observe that it does not take long for a discontinuity to form on the right side

of the wave.

60



Figure 4.5: Numerical results for example 4.2 with h = 0.02 - GL scheme
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Figure 4.6: Numerical results for example 4.2 with h = 0.02, β = 0.2 - GL + LEM scheme

Example 4.3.

ut + �u
2

2
�

x

= 0 x > R, t C 0 (4.2.3)

with initial value

u0(x) =
¢̈̈
¦̈̈̈
¤̈

−0.5, x > (0,0.5)�(1.5,2)

0.2 + 0.7 cos(2πx), x > (0.5,1.5)
(4.2.4)

assumed periodic with period two.

In the last example, we once more consider Burgers’ equation but with the initial condi-

tion being a cosine wave. First, the solution is computed at time T = 0.24 with a spatial step

size of h = 0.05. Comparing Figures 4.7 and 4.8, representing the Goodman-LeVeque scheme
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and the Goodman-LeVeque scheme with LEM respectively, we can atleast find points of im-

provement when the LEM is applied to the Goodman-LeVeque scheme. This was not the

case for this spatial step size when the semi-elliptical initial condition was used.

Figure 4.7: Numerical results for example 4.3 with h = 0.05 - GL scheme
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Figure 4.8: Numerical results for example 4.3 with h = 0.05, β = 0.2 - GL + LEM scheme
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The step size is decreased to h = 0.02. The numerical solution using the Goodman-

LeVeque scheme was computed at time T = 0.24 whereas the solution using the Goodman-

LeVeque scheme with LEM was computed at T = 0.224, less than the former. The results

are given in Figures 4.9 and 4.10. Applying the LEM yielded more noticeable improvements

in this case. This is especially true around the peak of the wave.

A discontinuity forms on the right side of the wave at a very small value T . Of course

this forms when the peak is directly opposite the part of the wave with value −0.5.

Figure 4.9: Numerical results for example 4.3 with h = 0.02 - GL scheme
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Figure 4.10: Numerical results for example 4.3 with h = 0.02, β = 0.2 - GL + LEM
scheme
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Appendix A

Discontinuous Solutions of 1D
Conservation Laws

Example A.1. [13] Consider using the method of characteristics to solve (1.1.1). The

characteristics are straight lines and since the solution u is constant along characteristics,

it is implicitly given by

u(x, t) = u0(x − tf ′(u(x, t)), t A 0. (A.0.1)

Suppose u0 is a differentiable function and taking t sufficiently small, then from (A.0.1) we

get

ut = u′0[−f ′(u) − tf ′′(u)ut] and ux = u′0[1 − tf ′′(u)ux], (A.0.2)

so that

ut = −
f ′(u)u′0

1 + tu′0f
′′(u) and ux =

u′0
1 + tu′0f

′′(u) . (A.0.3)

Now assume that f ′′ A 0. If u′0(x) C 0 for all x then by (A.0.3) we have ∇u is bounded for

all t A 0 and the solution u exists for all time. If u′0 < 0 at some point, both ut and ux are

unbounded for some finite value of t.

Example A.2. Consider the Burger’s equation, that is, f(u) = 1
2u

2 in (1.1.1). Let the

initial condition be u0 = sinx, 0 B x B 2π. Since solution is constant along characteristics,

the maxima of the sine wave travels to the right with speed 1 and the minima to the left with

speed -1. The wave breaks into discontinuities at some finite time when the two fronts meet.
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Example A.3. [12] Another example is to consider the Burgers’ equation but with initial

condition

u(x,0) = u0(x) =
¢̈̈
¦̈̈̈
¤̈

1, x B 0,
1 − x, 0 B x B 1,
0 x C 1.

(A.0.4)

The characteristic line emanating from the point (x0,0) is given by

x(t) = x0 + tu0(x0) =
¢̈̈
¦̈̈̈
¤̈

x0 + t, x0 B 0,
x0 + t(1 − x0), 0 B x0 B 1,
x0 x0 C 1.

(A.0.5)

The characteristic lines do not intersect only if t < 1. The solution cannot be continuous at

the intersection and in this case a classical solution does not exist.
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Appendix B

TVD Schemes

Lemma B.1. Consider a scheme of the form

Un+1
j = Un

j −Cj−1(Un
j −Un

j−1) −Dj(Un
j −Un

j−2). (B.0.1)

Sufficient conditions for the scheme to be TVD are

0 B Dj ∀j

Cj +Dj+1 B 1 ∀j

0 B Cj−1 −Dj+1 ∀j. (B.0.2)

The proof is similar to the argument of Harten (see page 178 [8] or 116 [9]).

Proof.

Un+1
j+1 −Un+1

j = (1 −Cj)(Un
j+1 −Un

j ) +Cj−1(Un
j −Un

j−1)
−Dj+1(Un

j+1 −Un
j−1) +Dj(Un

j −Un
j−2), (B.0.3)

that is

Un+1
j+1 −Un+1

j = (1 −Cj −Dj+1)(Un
j+1 −Un

j ) +Cj−1(Un
j −Un

j−1)
−Dj+1(Un

j −Un
j−1) +Dj(Un

j −Un
j−2)

= (1 −Cj −Dj+1)(Un
j+1 −Un

j ) + (Cj−1 −Dj+1)(Un
j −Un

j−1)
+Dj(Un

j −Un
j−2). (B.0.4)
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On taking absolute value of both sides and using (B.0.2) we get

SUn+1
j+1 −Un+1

j S B (1 −Cj −Dj+1)SUn
j+1 −Un

j S + (Cj−1 −Dj+1)SUn
j −Un

j−1S
+Dj(SUn

j −Un
j−1S + SUn

j−1 −Un
j−2S). (B.0.5)

Now summing over all j

ª

Q
j=−ª

SUn+1
j+1 −Un+1

j S B
ª

Q
j=−ª

(1 −Cj −Dj+1)SUn
j+1 −Un

j S

+

ª

Q
j=−ª

(Cj−1 −Dj+1)SUn
j −Un

j−1S

+

ª

Q
j=−ª

Dj(SUn
j −Un

j−1S + SUn
j−1 −Un

j−2S). (B.0.6)

After re-indexing the last three summations on the right hand side of the equation above,

we get

ª

Q
j=−ª

SUn+1
j+1 −Un+1

j S B
ª

Q
j=−ª

(1 −Cj −Dj+1)SUn
j+1 −Un

j S

+

ª

Q
j=−ª

(Cj −Dj+2)SUn
j+1 −Un

j S

+

ª

Q
j=−ª

(Dj+1SUn
j+1 −Un

j−1S +Dj+2SUn
j+1 −Un

j S) (B.0.7)

that is

ª

Q
j=−ª

SUn+1
j+1 −Un+1

j S B
ª

Q
j=−ª

(1 −Cj −Dj+1 +Cj −Dj+2 +Dj+1 +Dj+2)SUn
j+1 −Un

j S

=

ª

Q
j=−ª

SUn
j+1 −Un

j S. (B.0.8)

Note that the coefficients Cj−1 and Dj in (B.0.1) depend on �Uj�s and a convenient form

may not be easy to obtain. For example, from (2.2.35), the resulting scheme when the LEM

is applied to the upwinding method is

Un+1
j = Un

j − 2λf ′(ξn
j )∆Un

j− 1
2

+ λ2f ′(αn
j )f ′(ξn

j )∆Un
j− 1

2

−λ2f ′(αn
j−1)f ′(ξn

j−1)∆Un
j− 3

2

− 2λ �gn−ext
j+ 1

2

− gn−ext
j− 1

2

� (B.0.9)
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which we can write as

Un+1
j = Un

j − �2λf ′(ξn
j ) − λ2f ′(αn

j )f ′(ξn
j )� [Uj −Uj−1]

−λ2f ′(αn
j−1)f ′(ξn

j−1)[Uj−1 −Uj−2] − 2λ �gn−ext
j+ 1

2

− gn−ext
j− 1

2

� . (B.0.10)

Now note that

Un
j−1 −Un

j−2 = (Un
j−1 −Un

j ) + (Un
j −Un

j−2) = −(Un
j −Un

j−1) + (Un
j −Un

j−2).

So (B.0.10) becomes

Un+1
j = Un

j − �2λf ′(ξn
j ) − λ2f ′(αn

j )f ′(ξn
j ) − λ2f ′(αn

j−1)f ′(ξn
j−1)� [Uj −Uj−1]

−λ2f ′(αn
j−1)f ′(ξn

j−1)[Uj −Uj−2] − 2λ �gn−ext
j+ 1

2

− gn−ext
j− 1

2

� . (B.0.11)

One may consider writing

Un+1
j = Un

j − �2λf ′(ξn
j ) − λ2f ′(αn

j )f ′(ξn
j ) − λ2f ′(αn

j−1)f ′(ξn
j−1)� [Uj −Uj−1]

−λ2f ′(αn
j−1)f ′(ξn

j−1)[Uj −Uj−2] − 2λ

Uj −Uj−2

�gn−ext
j+ 1

2

− gn−ext
j− 1

2

� [Uj −Uj−2]
(B.0.12)

so that

Un+1
j = Un

j − �2λf ′(ξn
j ) − λ2f ′(αn

j )f ′(ξn
j ) − λ2f ′(αn

j−1)f ′(ξn
j−1)� [Uj −Uj−1]

−�λ2f ′(αn
j−1)f ′(ξn

j−1) +
2λ

Uj −Uj−2

�gn−ext
j+ 1

2

− gn−ext
j− 1

2

�¡ [Uj −Uj−2]. (B.0.13)

Hence in this case we have that

Cj−1 = 2λf ′(ξn
j ) − λ2f ′(αn

j )f ′(ξn
j ) − λ2f ′(αn

j−1)f ′(ξn
j−1)

and

Dj = λ2f ′(αn
j−1)f ′(ξn

j−1) +
2λ

Uj −Uj−2

�gn−ext
j+ 1

2

− gn−ext
j− 1

2

� .

To show that the scheme (B.0.10) is TVD one would have to show that the conditions

(B.0.2) are satisfied and this may not be easy.
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Lemma B.2. Let g be continuous, differentiable and increasing on an interval [a, b]. Let

ξ > (a, b) and η > (a+b
2 , b) such that g′(ξ) is the slope of the secant line from the point (a, g(a))

to the point (b, g(b)) and g′(η) is the slope of the secant from the point (a+b
2 , g �a+b

2
�) to the

point (b, g(b)). Then

g′(η) B 2g′(ξ). (B.0.14)

Proof. We note that

g′(η) = g(b) − g �a+b
2
�

b − a+b
2

B
g(b) − g(a)

b − a+b
2

, (B.0.15)

on using the assumption that g is increasing and therefore g(a) < g �a+b
2
�. Hence

g′(η) B 2
g(b) − g(a)

b − a
= 2g′(ξ). (B.0.16)

Lemma B.3. Let g be continuous, differentiable and increasing on an interval [a, b]. Let

ξ > (a, b), γ > (a, a+b
2 ) and η > (a+b

2 , b) such that g′(ξ) is the slope of the secant from the point

(a, g(a)) to the point (b, g(b)), g′(γ) is the slope of the secant from the point (a, g(a)) to

the point (a+b
2 , g �a+b

2
�) and g′(η) is the slope of the secant from the point (a+b

2 , g �a+b
2
�) to

the point (b, g(b)). Then

g′(ξ) = g′(γ) + g′(η)
2

. (B.0.17)

Proof. We have

g′(γ) + g′(η)
2

=
1

2

¢̈̈
¦̈̈
¤

g �a+b
2
� − g(a)

a+b
2 − a

+

g(b) − g �a+b
2
�

b − a+b
2

£̈̈
§̈̈
¥

=

g �a+b
2
� − g(a)

b − a
+

g(b) − g �a+b
2
�

b − a

=
g(b) − g(a)

b − a

= g′(ξ). (B.0.18)
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