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Abstract 

Synchronization is one of the most critical steps in a wireless communication system. 

With the system having limited energy resources, low power devices and designs are key 

aspects of the design process. Digital communication and decoding is discussed along 

with how synchronization is part of communication. The parameters for wireless 

communication are outlined and how the system can be simplified in order to reduce 

power consumption for the network is investigated. The background for the Body Area 

Network Board which was created for the project, Biosensor Networks and 

Telecommunication Subsystems for Long Duration Missions, EVA Suits, and Robotic 

Precursor Scout Missions, is discussed along with some synchronization background as 

well as some previously researched demodulators designed for limited preambles.  

With limited-length preambles, oversampling is needed to achieve 

synchronization. This research investigates what minimum oversampling ratio is needed 

in a simplified system to still achieve packet synchronization and several synchronization 

words were compared. The parameters for packet synchronization are outlined as well the 

impulse noise model used for simulation. For the simulation and the test setup, several 

oversampling ratios and synchronization words are compared using probability of miss 

detection and probability of false detection. The oversampling ratio of 16 was shown to 

be a critical point where increasing the oversampling rate above 16 had diminishing 

returns. In terms of probability of miss detection, the 7-bit Barker sequence along with 

the start of frame delimiter for IEEE 802.15.4 had better performance compared to the 

start of frame delimiter for Ethernet and the sequence 01010111. 
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Chapter 1 - Introduction 

Synchronization is the most critical step for a communication system. Without proper 

synchronization, devices from cellphones to satellites wouldn’t be able to operate. Wireless 

networks such as Bluetooth or Zigbee aren’t exempt and designing a simple/low-power system 

while still having reliable synchronization is a difficult task.  

In order to simplify the synchronization process for a communication system, first 

consider the channel parameters that need to be estimated by a receiver in order to achieve 

synchronization. The channel parameters are timing, frequency, phase, and amplitude. 

Depending on the modulation scheme and choice of RF receiver, certain parameters would not 

need to be estimated. For Zigbee, which is based on IEEE 802.15.4, 40 bits are used for allowing 

a receiver to synchronize to a bit stream. This long synchronization header causes the packet to 

become less efficient and requires more power [1]. This thesis presents a packet synchronization 

method that will reduce overhead where the only parameter that needs to be determined is the 

timing parameter thereby simplifying the receiver architecture.  

 For a digital receiver, there are two sampling methods for timing recovery, 

synchronized and non-synchronized. Synchronized sampling is achieved with the use of a NCO 

(numerically controlled oscillator) that makes adjustments to the sampling based on some error 

signal. A non-synchronized sampling method samples the incoming bit stream based upon a 

fixed clock and is not locked to the incoming data stream [2]. The synchronized sampling 

method is typically more computationally expensive than the non-synchronized method, and is 

therefore, undesirable for a low-power network. In order to avoid the loss of information in the 
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data stream for a non-synchronized sampling system, oversampling is needed. According to the 

Nyquist theorem, the sampling rate must satisfy the following condition. 

     � 𝟏
𝑻𝑻
� ≥ 𝟐𝑩𝒙      (1) 

    
Where Bx is the bandwidth of the incoming signal. Therefore, for the non-synchronized 

system, a minimum oversampling ratio of two is needed. However, this thesis will investigate the 

effects of oversampling ratios at rates higher than the minimum needed to reconstruct the signal.   
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Chapter 2 - Background 

 2.1 Kansas NASA BAN Board 
The Kansas NASA Body Area Network board was used for testing of the design and is 

shown below in Figure 1. 

Figure 1: Kansas NASA BAN Board 

  

The Kansas NASA Body Area Network was designed to be used for the implementation 

of a biosensor network as part of task 3 for the Biosensor Networks and Telecommunication 

Subsystems for Long Duration Missions, EVA Suits, and Robotic Precursor Scout Missions 

project, where task 3’s goal was to develop the wireless network and its protocol. The Kansas 

NASA BAN board consists of three major IC components being a MCU, a FPGA, and an RFIC. 

When the board is in transmit mode, the MCU (microcontroller) controls a sensor located on the 

daughter board shown below in Figure 2 and communicates data from the sensor to the FPGA 

(Field Programmable Gate Array). The FPGA organizes the data into a packet and programs the 

RFIC (Radio Frequency Integrated Circuit) to transmit the data. When the board is in receive 

FPGA RFIC 

MCU 
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mode, the RFIC receives an incoming signal and sends the signal to the FPGA. The FPGA 

decodes the signal and sends the decoded data to the MCU.  

Figure 2: Daughter Board with Sensor 

 

With the chosen modulation scheme of BFSK (Binary Frequency Shift Keying), the 

receiver needs to be able to distinguish between the two transmitted frequencies in order to 

decode the received signal.  In order to simplify the system, only one carrier frequency is used 

whereas most traditional communication networks use multiple carrier frequencies. Therefore, 

the carrier frequency will not need to be determined or estimated by the receiver. Figure 3 below 

shows the receiver architecture of the RFIC and the interface to the FPGA. 
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Figure 3: RFIC Receive Mode Architecture 

 

The RFIC is a low power/mass/volume UHF radio originally created for mars missions. 

These characteristics make the RFIC a great choice for low power or energy harvesting systems. 

The receive chain of the RFIC includes a tuned-RF LNA (low noise amplifier) which is then 

followed by an image rejection mixer. After the signal has been mixed down to baseband, the 

signal is sent through an IF filter. The IF filter reduces the bandwidth of the down converted 

signal down to approximately 300 kHz. The signal is then amplified at the IF frequency of 10.7 

MHz then converted to a digital signal by the 1-bit ADC. The sampling frequency for the 1-bit 

ADC shown above in Figure 3 as Fs, is controlled by the FPGA [3]. 

The FPGA on the Kansas NASA BAN board is the Actel IGLOO/e. The IGLOO FPGA’s 

are some of the lowest power FPGAs available making them ideal for an energy harvesting 

network. The IGLOO FPGA’s are flash based, which allows them to achieve ultra-low power 

without losing register data [4]. So why use an FPGA and a microcontroller? FPGA’s offer some 

advantages over microcontrollers for a software defined radio.  
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FPGA Advantages  

-Parallel execution 

-Extremely configurable 

-Different logic interfaces, I/O configurations 

-Space limited, not time limited  

 Another advantage specific to the IGLOO FPGA’s is that only the active portion 

of the FPGA will be powered and not the entire chip. Currently, the uC is only used to interface 

to the sensor on the daughter board. In future designs it could be possible to have the FPGA 

interface to the sensors and eliminate the uC thus making the NASA board more efficient and 

compact.  

 2.2 Undersampling 
Utilizing a 1-bit ADC, the RFIC is able to reduce computation and have a lower power 

design without the loss of information. In [5] it was shown that a 1-bit ADC with down sampling 

does not degrade system performance even if a frequency offset exists compared to a 10-bit 

ADC without down sampling. Therefore there is no loss in information yet the system can 

operate at lower frequencies. The FPGA then demodulates the incoming 1-bit data stream.  

 2.3 Demodulators 
 In previous work done for Kansas NASA EPSCoR (Experimental Program to 

Stimulate Competitive Research) project, several demodulators were investigated. A PFD (phase 

frequency detector) usually incorporated in a PLL (phase lock loop) was shown to be an 

effective demodulation design. Thus, a simple PFD along with an averaging filter was used to 

decode the data into a bit stream. At this point, the only channel parameter that needs to be 
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estimated is the timing parameter to achieve synchronization, and more precisely, one-shot 

packet synchronization. 

 2.4 Synchronization 
 James L Massey was one of the first to point out that “one-shot” synchronization 

where the synchronization word is either preceded by a preamble or nothing is an interesting 

problem to find the optimum synchronization rule [6]. Since his paper in 1972, several papers 

have been written that attempt to solve the issue of “one-shot” packet frame synchronization [7]. 

So what exactly is “one-shot” packet synchronization?  

 Frame synchronization is the process of using unique bits, a synchronization 

word, to synchronize the receiver to each frame within the incoming data stream. This is a 

critical issue for any communication system. As an example, in video transmission a packet of 

data is made up of several frames and these frames must be distinguishable from one another. 

Therefore, unique frame synchronization words are used to separate the frames. For MPEG-4 

video encoding, resynchronization words are placed at bit intervals [8]. Figure 4 below shows a 

data packet with several frames of data. 

Figure 4: Standard Data Packet Format 

 

For the case of “one-shot” packet synchronization, the synchronization word is at the start 

of the data packet and is either preceded by a preamble or nothing. The entire data packet is 

treated as a single frame. Figure 5 below shows the case of “one-shot” packet synchronization.  
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Figure 5: One-Shot Data Packet Format 

 

In order for the communication system to receive the incoming data stream, it is critical 

for the receiver to detect and sync to the synchronization word, otherwise, the entire data packet 

will be lost.  

 In most wireless network systems, the frame synchronization word, or start of 

frame delimiter, is preceded by a preamble at the beginning of the packet. The preamble is a 

sequence of bits that the receiver uses for carrier and bit synchronization. Carrier synchronization 

is typically acquired by the RF front end of the receiver. A reference carrier is generated at the 

receiver with a phase that is close to that of the received signal. A baseband signal is produced at 

the receiver through coherent demodulation of the incoming signal with the created reference. 

Bit synchronization is the process of aligning the receiver clock with that of the bit stream 

sequence. The main difference between bit/carrier synchronization and packet synchronization is 

that the issue of packet synchronization is usually solved with aid of a specific message format, 

synchronization word, which is inserted into the bit stream specifically for synchronization 

purposes whereas estimating bit and carrier synchronization does not always involve a special 

design of the data packet [9]. As mentioned above, a conventional receiver does not take 

advantage of the known preamble for synchronization purposes.  In [10] a receiver design was 

used that utilized the known bit sequence of the preamble for packet synchronization. This type 

of process is known as two stage frame synchronization. The first stage tries to synchronize with 
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the know bit sequence of the preamble, and the second stage, conventional frame 

synchronization method, takes over once the preamble bit stream has been located. In essence, 

this two stage frame synchronization method could be viewed as simple packet synchronization 

with an extended synchronization word where the beginning of the synchronization word is also 

used for bit/carrier synchronization. The method in [10] was shown to provide 1.5 to 2 dB 

improvement than the traditional method.  

 A similar type of frame synchronization was investigated in [11].  Frame 

synchronization was achieved at the receiver through multiple frame observations.  It was shown 

in [11] that using a multiple-frame decision method improved frame synchronization, however, 

having more than double frames did not result in system performance.    

 This thesis presents a packet synchronization process where only one 

synchronization word is used to achieve packet synchronization. As was mentioned above, in 

order to simplify the system, only one carrier frequency is used where in a typical 

communication system multiple carrier frequencies are used. For instance, IEEE standard 

08.15.4 can operate at three different frequency bands, 868 MHz, 915 MHz, or 2450 MHz. 

Therefore, a preamble is currently not needed to achieve carrier synchronization, however, the 

RFIC has the capabilities to achieve carrier synchronization and this will be covered more in the 

future work section. By oversampling the bit stream, the bit rate and packet synchronization can 

both be estimated from the one synchronization word.  
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Chapter 3 - Synchronization 

 3.1 Synchronization Word Length and Pattern 
There are two parameters to consider for one-shot packet synchronization, the length and 

bit pattern of the synchronization word. To make the data packet efficient, the length of the 

synchronization word should be kept as short as possible to reduce overhead. The 

synchronization word should also be chosen as to maximize the likelihood that the detector will 

find the sync word and to minimize the chance that the receiver will have a false detection of the 

sync word. In other words, the sync word should be chosen to maximize the probability of 

detection and minimize the probability of a false detection.  

The study of binary sequences up to length 40 were studied in [12]. In [12] it is noted that 

Barker codes are optimal sequences for the use of sync words since Barker codes have been 

shown to have small sidelobes in their autocorrelation functions. In [7] several sync words 

including the 7-bit Barker sequence along with the 13-bit Neuman-Hofman sequence were used 

to test frame synchronization for asynchronous packet transmission.  For the purpose of this 

thesis, the 7-bit Barker sequence was used along with the sequences, 01010111, the start of 

frame delimiter for Ethernet, and the start of frame delimiter for IEEE 802.15.4. 

 3.2 Oversampling 
Without the aid of the preamble, the receiver must oversample the received bit stream in 

order to determine synchronization. According to [2], the oversampling ratio must be at least 

double the bandwidth of the incoming data stream. 

To achieve packet synchronization at the receiver, the maximum-likelihood parameter 

estimation is used. The output data stream from the demodulator is oversampled at the rate set by 

the oversampling ratio. The sampled data is stored in a shift register whose size, M, is 
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determined by the number of transmitted bits and the oversampling ratio. Another shift register, 

whose size, N, is set by the number of transmitted bits, has values from specific tap locations of 

the shift register containing the sampled data. The tap locations are set by the data rate. An 

exclusive or operation is then performed bit by bit between the tap locations and the 

synchronization word. The result of the XORs are added together and a decision is made to 

determine if synchronization has occurred. Figure 6 below shows the design to achieve 

synchronization.  

Figure 6: System overview to achieve synchronization using MLE 

 

The length of first shift register, M, is determined by 

M = (oversampling ratio)*(length of sync word – 1)            (2) 

The length of tap locations, N is determined by 

N = length of sync word               (3) 

The tap locations are spaced apart by 

Spacing = Oversampling Ratio               (4)  

The above example considers that the transmitted data is only at one data rate. If K data 

rates are possible then there would need to be K tap locations whose spacing would correspond 

to the Kth data rate. 
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The parameter used to determine synchronization is the hamming distance, the number of 

bits that are different from the sync word. To determine if synchronization has occurred, an 

estimate of the hamming distance is performed through the use of the adder. The likelihood 

function is a function of the hamming distance, and the MLE (maximum likelihood estimate) is 

the estimate that minimizes this likelihood function, or in other words, the MLE will determine 

that synchronization has occurred when the hamming distance is below the threshold. 

 3.2.1 Noise Model 
The simple demodulator is sensitive to low SNRs and the output bit stream from the 

demodulator is affected by noise. Shown below in Figure 7 is the bit stream output, in blue, from 

the demodulator on an oscilloscope along with the transmitted bit stream, 01010111, corrupted 

by noise before it enters the RF input of the BAN board, in yellow. The RF signal generator for 

Figure 7 is set to -76 dBm which corresponds to an SNR of approximately 6 dB seen by the 

receiver. 

Figure 7: demodulator bit stream on oscilloscope affected by noise 

 

 

As can be seen above in Figure 7, the bit stream output from the demodulator is not the 

correct sequence. The signal appears to have been corrupted by noise, and more precisely, 
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impulse noise. Shown below in Figure 8 is again the bit stream output, in blue, from the 

demodulator along the transmitted bit stream now being 0101011100011010 with the RF signal 

generator now  set to -77 dBm which corresponds to an SNR of approximately 4 dB seen by the 

receiver. 

Figure 8: longer data stream, RF signal gen at -77 dBm 

 

 

As the SNR gets lower, the impulse noise has a greater effect on the bit stream and the 

receiver can no longer correctly decode the data. A higher oversampling ratio has the ability to 

reduce the effect of the impulse noise. 

Thus the minimum oversampling ratio of 2 might not be adequate to determine 

synchronization and decode the bit stream. 

 3.2.2 Simulation 
To model the system, first the packet structure must be determined. The packet structure 

is shown below in Figure 9. The first word of the packet is the synchronization word which is 

then followed by a random sequence of data that is the same length as the sync word. 
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Figure 9: Packet Structure for Simulations 

 

Several synchronization words were compared against each other using probability of miss 

detection and probability of false detection. Three parameters are used to characterize the 

impulse noise. These parameters are impulse length, impulse occurrence, and number of 

impulses. The first two have units of time while the last parameter is an integer number. First the 

number of impulses was determined. Three different levels of impulse noise were simulated 

where the maximum number of impulses could be 5, 10, or 15. The number of impulses was 

determined by sampling from a uniform distribution that ranged from 0 to the maximum number 

allowed. Then the occurrence time was determined for each impulse by also randomly sampling 

from a uniform distribution that ranged from 0 to N, where N is the maximum time value of the 

bit stream. Finally, the length of each impulse was determined. The length for each impulse was 

again sampled from a uniform distribution from 0 to Tb, where Tb is the time it takes to transmit 

a single bit. Figure 10 below shows an example of how the data packet could be affected by 

impulse noise. 
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Figure 10: Bit Stream with Impulse Noise 

 

Then the MLE method was used to determine if synchronization had occurred, and if so, did it 

occur during the correct interval. For example, suppose the synchronization word is 8 bits long, 

then the synchronization should occur during the transmission of the 8th bit. Otherwise, if the 

system decides synchronization outside this window, it will be counted as a false detection. For 

the simulation, 10,000 packets were sent and the number of missed synchronizations and the 

number of false synchronizations were tallied. Then it is a straight forward process to determine 

the probability of miss detection and false detection as follows 

Probability of Miss Detection = #Missed Syncs / Total Sent            (5) 

Probability of False Detection = #False Syncs / Total Sent                                                          (6) 

Table 1 below is a summary of the simulation results with the probability of failed 

synchronization circled in red for the oversampling ratio of 16 which will be shown in the results 

section to be a knee point in the data. 
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Table 1: Simulation Results 

 

As the oversampling ratio increased, the probability of miss detection was lowered and the 

probability of false detection was increased. This was expected since a higher oversampling ratio 

should lessen the effect of the impulse noise while at the same time increasing the probability of 

false detection since a higher oversampling ratio results in more observations of the data. None 

of the synchronization words tested stood out in terms of probability of false detection or 

probability of miss detection. Figures 11 through 14 below show a graphical representation of 

the data. 

 

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
64 7% 6% 64 20% 20% 64 32% 40%
32 9% 5% 32 22% 18% 32 33% 37%
16 11% 5% 16 25% 17% 16 37% 31%
8 14% 4% 8 31% 13% 8 44% 24%
4 21% 3% 4 41% 9% 4 54% 16%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
64 7% 10% 64 21% 19% 64 32% 27%
32 8% 9% 32 23% 18% 32 34% 25%
16 10% 9% 16 25% 16% 16 37% 21%
8 14% 7% 8 31% 12% 8 44% 16%
4 22% 6% 4 41% 9% 4 55% 10%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
64 8% 11% 64 19% 20% 64 32% 27%
32 8% 11% 32 22% 18% 32 34% 25%
16 10% 11% 16 26% 17% 16 37% 21%
8 14% 9% 8 31% 14% 8 44% 16%
4 21% 7% 4 41% 9% 4 53% 10%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
64 7% 7% 64 21% 20% 64 32% 36%
32 8% 6% 32 22% 19% 32 33% 32%
16 11% 6% 16 26% 17% 16 37% 28%
8 14% 5% 8 31% 14% 8 44% 22%
4 20% 4% 4 40% 9% 4 53% 15%

10,000 Sync Words, 00010011, 802.15.4 10,000 Sync Words, 00010011, 802.15.4 10,000 Sync Words, 00010011, 802.15.4

10,000 Sync Words, 01010111 10,000 Sync Words, 01010111 10,000 Sync Words, 01010111

10,000 Sync Words, 10101011, Ethernet 10,000 Sync Words, 10101011, Ethernet 10,000 Sync Words, 10101011, Ethernet

Max number of Impulses = 5 Max number of Impulses = 10 Max number of Impulses = 15
10,000 Sync Words, 7-bit Barker sequence 10,000 Sync Words, 7-bit Barker sequence 10,000 Sync Words, 7-bit Barker sequence
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Figure 11: 7-bit Barker Sequence as Synchronization Word, Simulation Performance 

 

Figure 12: 01010111 Sequence as Synchronization Word, Simulation Performance 
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Figure 13: Ethernet SFD as Synchronization Word, Simulation Performance 

 

Figure 14: IEEE 802.15.4 SFD as Synchronization Word, Simulation Performance 

 

The graphical representation of the data shows that there is a knee point at the 

oversampling ratio of 16. Having an oversampling ratio higher than 16 does not seem to lead to 

better system performance for the three different levels of simulated impulse noise. 
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Chapter 4 - Test Results 

 4.1 Test Setup 
The communication parameters used for the test setup were as follows 

- Burst FSK 

- 20 kbps data rate 

- Δf of 100 kHz 

- f1 set to 466.9 MHz 

-f2 set to 467 MHz 

For the frame synchronization word, the 7-bit Barker sequence was used along with the 

sequence 01010111, the start of frame delimiter for Ethernet, and the start of frame delimiter for 

the standard IEEE 802.15.4. The goal of the test setup was to answer the following questions. 

1. What is the lowest oversampling ratio needed to still detect the synchronization word 

while reducing impulse noise? 

2. Which synchronization word has better performance? 

Probability of miss detection and probability of false detection are used to determine the 

performance of the synchronization word.  

Figure 15 below shows a block diagram of the test setup.   

 Figure 15: Block diagram of test setup 
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The HP 8081A was used as the serial data generator. In order to set the data rate, an 

Agilent 33220A 20 MHz Function / Arbitrary Waveform Generator was used as the clock input 

for the serial data generator and was set to 20 kHz. Once a pulse is received at the cycle input for 

the serial data generator, the stored word is output at the bit rate set by the function generator. 

Figure 16 below shows the output of the serial data generator on an oscilloscope with the Barker 

sequence as the synchronization word. 

 Figure 16: Output of serial data generator on Oscilloscope 

 

 

The serial data generator is used as the modulation input of the RF signal generator. The 

HP 8648C Signal Generator was used at the RF signal generator. The RF signal generator was 

set to output a frequency of 466.9 MHz. Thus if the bit is a zero, the output will be 466.9 MHz 

and if the bit is a one, the output will be 467 MHz. The Tektronix MSO 2012 is only rated for 

signals up to 100 MHz, thus the two RF signals could not be viewed on the MSO. A graphical 

representation is shown below in Figure 17 of the modulated bit stream. 
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Figure 17: Visual Representation of Modulated Bit Stream (not to scale) 

 

The output power of the RF signal generator was set to three different power levels for the test 

setup; see Table 3 in the SNR control section. The RF signal was routed to a Mini-Circuits 

ZFDC-20-50 Directional Coupler. The out signal from the coupler which adds little attenuation 

to the signal was connected the spectrum analyzer to view the signal. The coupled output which 

adds approximately 20 dB of attenuation to the signal was connected to the RF input of the 

NASA BAN board. The video output of the spectrum analyzer was connected to the MSO input 

in order to see a decoded version of the transmitted bit stream. The FPGA Verilog design had the 

following block diagram. Figure 18 below is a screenshot from the Libero IDE design schematic. 
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Figure 18: Libero IDE Design Schematic, FPGA Verilog Design 

 

The Clock_Controller, Delay_20seconds, Cycle_Clock, Oversampling_Clock, and PLL 

modules are simply there for clock control. The UART_USB communicates to the CPU whether 

a synchronization was correct or false based on the output from the Sync_Detect_False Detect 

module. The MLE_Sync_Detection module performs the MLE of the received data and is the 

implementation of Figure 6, system overview to achieve synchronization using MLE. The 

Demod_Combined module programs the RFIC into receive mode through the RFIC’s 61 bit 

register and also performs the demodulation of the received signal with the PFD and averaging 

filter. For system testing, ten thousand packets were sent and the number of miss and false 

detections were tallied. Then the probabilities were calculated and can be seen in Table 4 in the 

test results section. 

 4.1.1 Selection of 1-bit ADC Sampling Frequency 
The frequency, 466.9 MHz, corresponded to the transmission of a zero and the frequency, 

467 MHz, corresponded to the transmission of a one. Therefore, the synthesizer in the RFIC was 

programmed to 466.95 MHz. This resulted in a baseband signal of 10.65 MHz or 10.75 MHz at 
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the IF stage.  Then an undersampling frequency for the 1-bit ADC needed to be chosen. The 

Nyquist folding diagram was used to determine the sampling frequency, an example of Nyquist 

folding is shown below in Figure 16. 

Figure 19: Nyquist Folding diagram 

 

In the above figure, only the first harmonics are shown for the sampled frequencies and 

the aliased signals, however, since the signals are square waves, they have components at odd 

harmonics. Figure 20 below displays how the sampling/mixing of the harmonics could cause 

interference.  
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Figure 20: Odd harmonics and possible interference between aliased signals 

 

In Figure 20 above only the harmonics of one of the aliased signals is shown, 10Fs-Fif. 

Just from examining the harmonics of one of the aliased signals, it can be seen how the aliased 

signals of the harmonics could cause interference. Therefore, a sampling frequency should be 

chosen to attempt to lessen the interference. To reduce the interference effects, the aliased signals 

should be close to fs/4, centered between 0 and fs/2. This will widen the distance between the 

aliased signals on the folding diagram but will also increase the sampling frequency. Thus there 

is a tradeoff between higher frequencies, since the goal was to undersample and keep the 

frequencies low, and the amount of interference between the aliased signals.  

 Also, the Up and Down outputs from the PFD demodulator will be dependent on the 

aliased frequencies. Consider how the PFD generates the Up and Down pulses shown in Figure 

21 below. 
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 Figure 21: Frequency Phase Detector Operation 

 

 

The duration of the up or down pulses is dependent on the phase difference between the 

aliased signal and the reference signal and the number of up/down pulses during a bit time will 

be related by the general rule 

Number of pulses = (aliased frequency / data rate)                                 (7)  

The desired data rate for the system was 50 kbps. With the aliased frequency of 1.6 MHz 

which will be derived below, the number pulses should be around 30. Therefore, the simple 

averaging filter was designed to output a one or zero by comparing the number of Up and Down 

pulses. Figure 22 below shows the Up pulses from the PFD when the transmission of a one at the 

data rate of 25 kbps.  
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 Figure 22: Up Pulses from PFD with transmission of a one, 25k data rate 

 
 

From equation 7, the number of up pulses should be around 64 and in the above figure, 

the number of up pulses is around 57. Shown below in Figure 23 are up (D9), down (D8), and 

output from the filter (D10) for the data rate of 10 kbps shown in blue. 

 Figure 23: PFD outputs and averaged output, 10k data rate 

 
 

Shown below in Figures 24 through 27 are the up (D9), down (D8), and filter outputs 

(D10) for data rates of 20 kbps, 25 kbps, 30 kbps, and 40 kbps with the transmission of the 

sequence 1010101010101, shown in blue. 
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 Figure 24: PFD outputs and averaged output, 20k data rate 

 
 

 Figure 25: PFD outputs and averaged output, 25k data rate 

             
             

 Figure 26: PFD outputs and averaged output, 30k data rate 
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 Figure 27: PFD outputs and averaged output, 40k data rate 

  
The demodulator appears to work for data rates up to 30 kbps. For FSK (Frequency Shift 

Keying) the equation for determining the bandwidth needed to receive the signals is 

BW = 2*Δf + 2*B                                       (8)  

Where 2*Δf is the frequency difference between the two transmitted frequencies and B is the 

bandwidth of the baseband signal with 2*B being the data rate. For the above testing, delta_f was 

100 kHz and the bandwidth of the baseband signal changed with the data rate. The receiver is 

limited in bandwidth by the IF filter, which has a bandwidth of 300 kHz. Thus the theoretical 

maximum data rate is 

2B = BW (IF)  - 2Δf  = 300 kHz - 100 kHz = 200 kbps. 

So the simplified demodulator can only handle throughput at 30 kbps or 15% of the max 

capacity. 

A higher aliased frequency will improve the PFD demodulator performance by increasing 

the number of either up or down pulses however this would counter the objective of 

undersampling. Thus there is a tradeoff between having lower frequencies or better PFD 

demodulator performance. Several sampling frequencies were simulated in MATLAB, and the 

sampling frequency of 6.15 MHz was chosen since it created aliased frequencies that limited 
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harmonic interference by generating aliased frequencies of 1.55 and 1.65 MHz where fs/4 is 1.54 

MHz.  Shown below in Figure 28 is the simulated aliased signal, y(t), down from 10.65 MHz for 

the sampling frequency of 6.15 MHz. 

 Figure 28: MATLAB plot with 6.15 MHz sampling frequency of 1-bit ADC 

 

 4.1.2 Bit Pattern Generation 
The packet to be transmitted was chosen to be similar to the format used for simulations. 

A serial data generator was used to create the data stream. The serial data generator lacks the 

ability to create the random sequence that follows the synchronization word. Therefore, a 

constant sequence was used for testing purposes. The sequence was chosen so that no bias would 

be introduced into the results. If the data was randomly generated, the hamming distance would 

vary from 0 to 8, compared to the synchronization word.  With the statistic used for determining 

synchronization as the MLE, where the hamming distance is used to determine synchronization, 

the sequence following the synchronization word was chosen to have a hamming distance of four 
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from the sync word. Table 2 below shows the sequence and corresponding synchronization 

word. 

 Table 2: Synchronization words and the next sequence 

 

 4.1.3 SNR Control 
The FPGA on a Kansas NASA BAN board first sends a pulse to the serial data generator. The 

pulse triggers the serial data generator to output the stored sequence. The sequence is used as the 

modulation input of a RF signal generator. The RF signal generator is setup to transmit 466.9 

MHz if the bit is a zero and 467 MHz if the bit is a one. The RF signal generator is connected to 

a coupler. The coupler has two outputs, out and coupled. The out signal was routed to a spectrum 

analyzer and the coupled output, which approximately attenuates the signal by 20 dB, is 

connected to the RF input of the NASA BAN board. To vary the SNR (signal to noise ratio) seen 

by the receiver, the RF generator’s output was adjusted and then the SNR was measured at the 

output of the IF filter on the BAN board. Three different RF signal outputs were used which 

corresponded to three different SNRs seen by the receiver. Table 3 below shows the various RF 

signal outputs and corresponding SNRs seen by the receiver. In order to calculate the SNR seen 

at the receiver, the IF output on the BAN was measured on a spectrum analyzer using a RF 

probe. Then the relationship between the measured SNR on the SA and the SNR seen by the 

receiver is 

SNR_rx = (SNR_on SA) + 10*log(resolution_bw / measured IF_bw)          (9) 

Sync Word Next Sequence
01010111 00011010

Barker Sequence 00001101 10100111
Ethernet 10101011 01101101
802.15.4 00010011 10001001
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Figure 29 below shows a screenshot of the IF output on a spectrum analyzer with the RF signal 

generator set to -75 dBm. 

 

 Table 3: RF signal power into BAN board, measured SNR, SNR seen by receiver 

 

 Figure 29: IF output on SA with RF generator set to -75 dBm 

 

In the above Figure, the measured SNR on the SA is approximately 32 dBm, the IF 

bandwidth is approximately 300 kHz, and the resolution bandwidth is 1 kHz. 

4.2 Tables and Plots of Results 
Table 4 on the next page shows the test setup results with the 16 times oversampling ratio 

for the failed synchronizations circled in red. 

 

 

RF signal Power into BAN Board Measured SNR (dB) SNR (dB) seen by receiver
 -80 dBm 43 dB 18 dB
 -95 dBm 32 dB 7 dB
 -97 dBm 29 dB 4 dB
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 Table 4: Test Setup Results 

 

The graphical representation of the data can be seen in Figures 30 to 33, page 33 and 34. 

 

 

 

 

 

 

 

 

 

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
60 1% 6% 60 35% 19% 60 61% 16%
32 1% 6% 32 38% 18% 32 66% 15%
16 1% 4% 16 33% 17% 16 58% 16%
8 2% 2% 8 40% 14% 8 65% 14%
4 6% 1% 4 51% 10% 4 74% 10%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
60 3% 3% 60 59% 1% 60 86% 0%
32 3% 3% 32 61% 1% 32 87% 0%
16 3% 3% 16 59% 1% 16 84% 0%
8 4% 2% 8 60% 1% 8 86% 0%
4 5% 1% 4 64% 1% 4 87% 0%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
60 7% 5% 60 65% 4% 60 87% 1%
32 7% 3% 32 69% 3% 32 89% 1%
16 7% 3% 16 64% 3% 16 87% 2%
8 13% 5% 8 65% 4% 8 86% 3%
4 10% 1% 4 71% 2% 4 90% 1%

Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs Oversampling ratio Failed Syncs False Syncs
60 1% 13% 60 34% 8% 60 60% 4%
32 2% 14% 32 35% 8% 32 60% 4%
16 2% 18% 16 34% 9% 16 60% 4%
8 2% 21% 8 38% 9% 8 65% 4%
4 2% 34% 4 44% 12% 4 70% 5%

10,000 Sync Words, 00010011, 802.15.4 10,000 Sync Words, 00010011, 802.15.4 10,000 Sync Words, 00010011, 802.15.4

10,000 Sync Words, 01010111 10,000 Sync Words, 01010111 10,000 Sync Words, 01010111

10,000 Sync Words, 10101011, Ethernet 10,000 Sync Words, 10101011, Ethernet 10,000 Sync Words, 10101011, Ethernet

SNR = 18 dB (RF_gen at -60dBm) SNR = 7 dB (RF_gen at -75dBm) SNR = 4 dB (RF_gen at -77dBm)
10,000 Sync Words, 7-bit Barker sequence 10,000 Sync Words, 7-bit Barker sequence 10,000 Sync Words, 7-bit Barker sequence
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Figure 30: 7-bit Barker Sequence as Synchronization Word, Test Performance 

 

Figure 31: 01010111 Sequence as Synchronization Word, Test Performance 
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Figure 32: Ethernet Start of Frame Delimiter as Synchronization Word, Test Performance 

 
 

Figure 33: IEEE 802.15.4 Start of Frame Delimiter as Synchronization Word, Test 
Performance 

 
 

Another aspect to consider is the space required on the FPGA for the different oversampling 

ratios. Considering the 7-bit Barker sequence, Table 5 below shows the drop in probability of 
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miss detection compared to the increase in logic gates for the various oversampling ratios with 

SNR (dB) seen by the receiver being 7 dB. 

 Table 5: Drop in Miss Detection vs Increase in Logic Gates, 7-bit Barker Sequence 

 

 4.3 Test Results Conclusion 
In terms of probability of miss detection, the 7-bit Barker sequence and the IEEE 802.15.4 start 

of frame delimiter outperformed the sequence 01010111 and the start of frame delimiter for 

Ethernet. However, in terms of false detection, all synchronization words had their probability of 

false detection drop with increasing oversampling ratio except for the IEEE 802.15.4 start of 

frame delimiter. The 01010111 sequence along with the Ethernet start of frame delimiter and the 

IEEE 802.15.4 start of frame delimiter had similar probabilities for false detection and 

outperformed the 7-bit Barker sequence. The false detection results could have been influenced 

by the choice of sequence that followed the synchronization word, and contrary to the simulation 

results, the number of false detections did not increase as the SNR (dB) was lowered. This was 

especially true for the sequence 01010111. 

Shown on the next page in Figure 34 is a plot of oversampling ratio versus number of failed 

syncs per logic gates. 

Oversampling Ratio Improved Failed Sync Performace (4x as reference) Increased Number of Logic Gates (4x as reference) Number of Failed Syncs per Logic Gates
60 -3% 192 0.027
32 5% 109 0.034
16 7% 54 0.033
8 9% 25 0.043
4 x x 0.055
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 Figure 34: Oversampling ratio versus number of failed syncs per logic gates 

  
 

As can be seen in Table 5, doubling the oversampling ratio also doubles the number of logic 

gates for the system. As was seen in the simulation results, increasing the oversampling ratio 

above 16 does not improve the results significantly to justify the increase in logic elements.  
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Chapter 5 - Summary and Conclusions  

Both the simulation and test results showed that the optimal oversampling ratio is 16. Having a 

higher oversampling ratio does not improve system performance enough to justify the extra logic 

elements required as was shown in figure 34. For the synchronization words compared, the 

simulation results showed that all synchronization words have comparable results for both 

probability of miss detection as well as probability of false detection. The probability of false 

detection increased with the oversampling ratio for all synchronization words for simulation. 

This seems reasonable since a higher oversampling ratio would result in more estimations of 

synchronization for a given time window. However, this was not the case for all synchronization 

words for the test setup. This was most likely due to the simulation considering impulse noise as 

the only noise source while in the system testing; there are multiple sources of noise. For 

instance, as the SNR was lowered, the probability of bit error increased for a channel operating 

in AWGN (Additive White Gaussian Noise) along with the increases in impulse noise due to the 

simple demodulator being sensitive to low SNRs. When the synchronization words were 

compared in the test setup, the 7-bit Barker sequence along with the start of frame delimiter for 

IEEE 802.15.4 showed improvements in the probability of miss detection compared to the 

sequence 01010111 and the start of frame delimiter for Ethernet. This was expected since Barker 

sequences are known to have autocorrelation functions with small sidelobes. 
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Chapter 6 - Future Work 

 For simulation and testing, only one data rate was used. The PFD demodulator has the 

ability to work at several different data rates, so for the system to operate at more data rates, the 

only module that would need adjusting is the maximum-likelihood estimation. A physical layer 

protocol would need to be first determined as is done in IEEE standard 802.15.4. For example, 

the communication system could operate at three different data rates, 10 kbps, 20kbps, or 30 

kbps. However, since the data rate is only determined at the start of the packet, the packet would 

need to be uniform in terms of bit times. For instance, it wouldn’t be possible to transmit the first 

half of the packet at one data rate and the other half at another data rate. It would only be 

possible to accomplish this if another frame synchronization word were placed in the middle of 

the packet in order to reestablish synchronization and determine the new data rate using the 

method described in this thesis. The number of possible data rates would determine the number 

of maximum likelihood estimators that would need to be created as was pointed out in section 

3.2.  

 Another channel parameter that was fixed for simulation and testing was the carrier 

frequency. The RFIC has an RSSI (Received Strength Indicator). Therefore, with a physical 

layer protocol specifying the different possible carrier frequencies, the FPGA could program the 

RFIC to scan through the possible carrier frequencies while measuring the RSSI to determine 

which carrier frequency was used. However, this would make the design more complicated 

which would make the design consume more power.  
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