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Abstract 

Starch esterification and etherification have been known for decades and are of interests 

to academic and industrial researchers. While lightly substituted starches, primarily used in food 

applications, have been extensively studied, highly substituted starches could find many 

industrial applications but have not been widely commercialized. In this dissertation, recent 

advances in preparation and properties of intermediately and highly substituted starches were 

reviewed. Experiments were conducted to: (1) develop methods of synthesizing highly 

substituted starch esters and ethers without using conventional organic solvents, (2) characterize 

the starch derivatives synthesized from solvent-free methods, and (3) plasticize the starch 

derivatives and explore their potential application as chewing gum bases.  

 Waxy, normal, and high-amylose maize starches were acetylated to degree of substitution 

(DS) 0.1-1.7 in aqueous medium. Reaction efficiency (RE) of acetylation was in the order of 

high-amylose>waxy>normal starch. Distribution of acetyl groups on anhydrous glucose 

monomer level was determined by 1H-NMR after peracetylation (with deuterated acetic 

anhydride) or perpropionylation. Acetylation was greatly preferred in C2 position in all DS 

levels regardless of amylose/amylopectin ratio of the base starch. Selected starch acetates were 

pre-gelatinized, dried, and melted in excessive octenylsuccinic anhydride (OSA) at 160 °C, to 

produce octenylsuccinylated acetylated starch (OS-Ac-starch) at three different scale levels (10 

mg, 5 g, and 60 g). The representative OS-Ac-starch achieved a combined DS up to 2.85 (1.71 

acetyl and 1.14 octenylsuccinyl) and contained less than 0.2% unreacted OSA. RE of 

octenylsuccinylation was positively related to acetyl DS and was between 0.5 to 16.2%. 

Pregelatinization significantly improved RE of OSA when acetyl DS was below 0.88; however, 

was not helpful when initial acetyl DS was higher. 



 

 Triacetin was tested in OSA-starch acetate melting reaction as a diluent to reduce the 

usage of OSA. Addition of triacetin thinned the reaction melt and prevented acidity build-up 

during reaction. OS-Ac-starch produced in triacetin-added reaction achieved combined DS up to 

2.55 and was structurally similar to starch ester synthesized in pyridine medium. RE of OSA was 

improved from 16.2 to 37.7% by triacetin addition. OS-Ac-starches had glass transition 

temperature (Tg) around 56 °C and were partially to fully soluble in organic solvents such as 

acetone and chloroform, suggesting their potential uses as water-resistant thermoplastic 

materials. Chewing gum base made from high-amylose starch ester had great stretch (360% 

elongation before breaking) and was superior to waxy and normal starch-based gums. 

In another approach, high-amylose maize starch was hydroxypropylated in aqueous 

isopropanol with propylene oxide to various molar substitution (MS) levels (0.56-1.64) and 

further acetylated to a range of DS (0.09-1.97), by either reacted in anhydrous acetic anhydride 

(dry heat melting reaction) or aqueous acetylation, to prepare hydroxypropylated acetylated 

starches (HPAcS). Tg of HPAcS was synergistically lowered by hydroxypropylation (HP) and 

acetylation (Ac) and was between -11 to 110 °C. Solubility of HPAcS in water was greatly 

enhanced by hydroxypropylation but significantly reduced by acetylation. From varying 

substitution levels of HP and Ac, it was practical to prepare thermoplastic starch materials of 

different water resistance. Chewing gum bases formulated from water insoluble HPAcS 

withstood different stretching forces and showed no sign to break at 750% elongation.  
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Abstract 

Starch esterification and etherification have been known for decades and are of interests 

to academic and industrial researchers. While lightly substituted starches, primarily used in food 

applications, have been extensively studied, highly substituted starches could find many 

industrial applications but have not been widely commercialized. In this dissertation, recent 

advances in preparation and properties of intermediately and highly substituted starches were 

reviewed. Experiments were conducted to: (1) develop methods of synthesizing highly 

substituted starch esters and ethers without using conventional organic solvents, (2) characterize 

the starch derivatives synthesized from solvent-free methods, and (3) plasticize the starch 

derivatives and explore their potential application as chewing gum bases.  

 Waxy, normal, and high-amylose maize starches were acetylated to degree of substitution 

(DS) 0.1-1.7 in aqueous medium. Reaction efficiency (RE) of acetylation was in the order of 

high-amylose>waxy>normal starch. Distribution of acetyl groups on anhydrous glucose 

monomer level was determined by 1H-NMR after peracetylation (with deuterated acetic 

anhydride) or perpropionylation. Acetylation was greatly preferred in C2 position in all DS 

levels regardless of amylose/amylopectin ratio of the base starch. Selected starch acetates were 

pre-gelatinized, dried, and melted in excessive octenylsuccinic anhydride (OSA) at 160 °C, to 

produce octenylsuccinylated acetylated starch (OS-Ac-starch) at three different scale levels (10 

mg, 5 g, and 60 g). The representative OS-Ac-starch achieved a combined DS up to 2.85 (1.71 

acetyl and 1.14 octenylsuccinyl) and contained less than 0.2% unreacted OSA. RE of 

octenylsuccinylation was positively related to acetyl DS and was between 0.5 to 16.2%. 

Pregelatinization significantly improved RE of OSA when acetyl DS was below 0.88; however, 

was not helpful when initial acetyl DS was higher. 



 

 Triacetin was tested in OSA-starch acetate melting reaction as a diluent to reduce the 

usage of OSA. Addition of triacetin thinned the reaction melt and prevented acidity build-up 

during reaction. OS-Ac-starch produced in triacetin-added reaction achieved combined DS up to 

2.55 and was structurally similar to starch ester synthesized in pyridine medium. RE of OSA was 

improved from 16.2 to 37.7% by triacetin addition. OS-Ac-starches had glass transition 

temperature (Tg) around 56 °C and were partially to fully soluble in organic solvents such as 

acetone and chloroform, suggesting their potential uses as water-resistant thermoplastic 

materials. Chewing gum base made from high-amylose starch ester had great stretch (360% 

elongation before breaking) and was superior to waxy and normal starch-based gums. 

In another approach, high-amylose maize starch was hydroxypropylated in aqueous 

isopropanol with propylene oxide to various molar substitution (MS) levels (0.56-1.64) and 

further acetylated to a range of DS (0.09-1.97), by either reacted in anhydrous acetic anhydride 

(dry heat melting reaction) or aqueous acetylation, to prepare hydroxypropylated acetylated 

starches (HPAcS). Tg of HPAcS was synergistically lowered by hydroxypropylation (HP) and 

acetylation (Ac) and was between -11 to 110 °C. Solubility of HPAcS in water was greatly 

enhanced by hydroxypropylation but significantly reduced by acetylation. From varying 

substitution levels of HP and Ac, it was practical to prepare thermoplastic starch materials of 

different water resistance. Chewing gum bases formulated from water insoluble HPAcS 

withstood different stretching forces and showed no sign to break at 750% elongation.
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1 

Chapter 1 - Preparation, characterization, and applications of 

intermediately to highly substituted starches, a review 

 Abstract 

 Starch can be esterified or etherified to yield products with altered physicochemical 

properties. While lightly substituted starches have been a focus for food applications, 

intermediately and highly substituted starch could find many industrial applications. Preparation, 

properties, and applications of starch esters and ethers with degree of substitution greater than 

0.2 are reviewed. The latest developments of synthesis routes, influence of synthesis media (e.g. 

aqueous, non-aqueous, and solvent-free), catalysts, and reaction conditions are summarized. 

Characterization methods and physicochemical properties (e.g. thermal properties and solubility) 

of intermediately to highly substituted starches are discussed.  

 Introduction 

Starch is an abundant glucose-based polymer synthesized by higher plants for energy 

storage. In recent trend of renewable material development, starch has received much attention 

for its potentials as industrial bioplastics; however, some shortcomings such as high 

hydroscopicity, sensitivity to enzymatic and acidic degradation, insolubility in organic solvents, 

and more importantly, high glass transition temperature (Tg) that limits its processibility, have 

hurdled native starch from becoming a widely used industrial polymer (BeMiller & Whistler, 

2009). Chemical modifications, such as esterification and etherification, have been applied to 

starch for decades to overcome these shortcomings by grafting different functional groups to 

starch (Ačkar et al., 2015; Hjermstad, 2012). Comparing to food grade modified starches, which 

often lightly modified to degree of substitution (DS; substitution only on starch hydroxyl group) 
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or molar substitution (MS; substitution possible on both starch and substituent hydroxyl 

groups)< 0.2, industrial starches often require higher substitution levels (DS or MS > 0.3) for 

desired functionalities such as low Tg, enzyme resistance, and improved solubility in various 

solvents (Spychaj, Wilpiszewska, & Zdanowicz, 2013). As DS increases, solvent compatibility 

of starch esters may shift from water-soluble to organic-soluble depending on types of 

substituent group (Chi et al., 2008). The improved solubility in organic solvents, along with a 

decreased Tg, imparts starch esters enormous potential as water-resistant, thermoplastic, and 

biodegradable materials that find applications in many fields, e.g. packaging films, coatings, 

foams, etc., through casting, blowing, hot pressing, and extrusion (Shogren, 1996). Starch 

etherification also introduces substituent groups; however, these substituents such as 

hydroxypropyl, hydroxyethyl, or carboxylic groups, contain hydrophilic functional groups, and 

thus aqueous solubility of starch ethers is often enhanced as substitution level increases 

(Hjermstad, 2012; Tuschhoff, 1987).  

Despite numerous advantages, commercial production of high DS starch materials has 

been limited due to several difficulties. The most challenging hurdle is lack of a suitable solvent 

that is low toxicity and cost-effective  to overcome high viscosity due to disruption of granular 

structure while keeping starch effectively dispersed throughout synthesis (Aburto, Alric, & 

Borredon, 1999; Gilet et. al., 2018). Furthermore, highly modified starches tend form a viscous 

and aggregated mass in reaction media to impact efficiency in reagent penetration and byproduct 

removal. Recently, researchers have studied different pathways, reaction media, and 

pretreatments to enhance starch esters synthesis to make such process feasible in industrial scale. 

Unconventional methods for starch derivatization, mostly for making substituted starches with < 

DS 1, have been reviewed by Gilet et al. (2018). This review focuses recent advances in 
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synthesizing high DS starch, particularly on synthesis media and pathways of traditional 

synthesis routes, and routes that feature “green chemistry” without using conventional starch 

solvents such as pyridine, dimethyl sulfoxide (DMSO), toluene, dimethylformamide, dioxane 

etc. Alternative synthesis methods with green chemistry are summarized and the information is 

useful for assessing production feasibility of highly substituted starch. 

 Initial literature search was carried out using SciFinder® with keywords “starch ester” 

and “starch ether” and proceeded with specific mainstream starch derivatives listed in Table 1.1 

and illustrated in Fig 1.1. We reviewed the search results and selected the studies that 

emphasized DS > 0.3 for this review. Some old, yet very valuable studies were also included in 

the review. Carboxymethyl and hydroxyethyl starch were excluded from the scope, because there 

are already recent reviews available (Hjermstad, 2012; Spychaj et al., 2013). Some extensively 

studied concepts such as ionic liquids and enzyme -catalyzed acylation, and microwave and 

ultrasound -assisted reactions fit the concept of “green chemistry” but have been thoroughly 

reviewed (Alissandratos & Halling, 2012; Gilet et al., 2018; Yang, Qiao, Li, & Li, 2016). 

Therefore, those areas are not covered in this review.  

Table 1.1. Number of publications found by SciFinder® from year 2000 to 2018 by using 

different keywords. 

Keywords 

# of literature 

match/containing 

keywords 

Most relevant reviews 

Starch ester 121/1060 
Ačkar et al., 2015; Hong, Zeng, Brennan, 

Brennan, & Han, 2016 

Starch ether 70/816 Hjermstad, 2012 

OSA modified starch 55/214 Altuna, Herrera, & Foresti, 2018; Sweedman, 

Tizzotti, Schäfer, & Gilbert, 2013 Octenyl succinic anhydride starch 36/237 

Hydrophobic starch 65/852  
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Ionic liquid & starch 300 

Gilet et al., 2018; Laus et al., 2005; 

Wilpiszewska & Spychaj, 2011; Yang et al., 

2016 

Starch fatty acid ester 25/1088 Ačkar et al., 2015 

Acetylated starch 204/685 Golachowski et al., 2015 

Enzyme & starch & esterification 67 
Alissandratos & Halling, 2012; Van den 

Broek & Boeriu, 2013 

Hydroxypropylated starch 113/702 Hjermstad, 2012 

Carboxymethyl starch 852/1030 
(Heinze, Liebert, Heinze, & Schwikal, 2004; 

Spychaj et al., 2013) 

Hydroxyethyl starch 3494/4097 (Hjermstad, 2012; Westphal et al., 2009) 

 

 

Figure 1.1. Structure of recurring glucose units with substituted groups (a); R represents 

substituent groups; representative substituents are: acetate (b), propionate (c), butyrate 

(d), long chain carboxylates (e), succinate (f), and octenylsuccinate (g); hydroxyethylate (h), 

hydroxypropylate (i), and carboxylate (j). 
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 Synthesis of intermediately to highly substituted starch 

 Conventional methods  

 Synthesis of starch esters in aqueous medium 

Starch acetate is considered the simplest starch ester and has been studied the most 

compared with more complicated acyl groups. Methods for starch acetylation are often 

applicable to propionylation and butylation with appropriate acyl donor. Aqueous synthesis is the 

most widely used starch esterification method. In such method, an acyl donor, e.g. acyl 

anhydride or chloride, is introduced to a starch aqueous medium that maintained at slight basic 

pH. It is known that the DS value of starch esters produced in aqueous medium is low, mainly 

because (1) starch slurry is diluted as reaction proceeds and (2) water and water-carried reagents 

have poor penetration to starch granule, unless the starch granule is disrupted or swelled 

(BeMiller & Whistler, 2009). Low DS starch derivatives typically retain granular structure and 

can be washed and dewatered readily (Ačkar et al., 2015; Golachowski et al., 2015). However, a 

swelled starch, which typically due to elevated temperature or localized alkali, is much more 

difficult, if not impractical, to dewater than granular starch (BeMiller & Whistler, 2009). 

According to Rutenberg & Solarek (1984), starch acetylated in aqueous medium can be 

concentrated by repeated filtration to achieve DS over 0.5. 

 Synthesis of starch esters in anhydrous medium 

Acyl anhydride can be used in excessive amount to serve as a reactive solvent in adjunct 

with acid or alkali catalysts. Sulfuric acid (Zhang, Xie, Zhao, Liu, & Gao, 2009), acetic acid 

(Diop, Li, Xie, & Shi, 2011), methanesulphonic-acid (Chi et al., 2008) and p-toluene sulfonic 

acid (Han et al., 2013) and tartaric acid (Tupa et al., 2013) were catalysts reported produced high 

DS starch acetates. Alkali metal hydroxides are popular catalysts first reported by Mark & 
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Mehltretter (1972) in a facile anhydrous process that reacted starch with fourfold quantities of 

acetic anhydride with 11% (w/w starch) NaOH at 123 °C. Under such conditions, the starch was 

fully substituted (DS=3) and the DS can be conveniently adjusted by varying reaction time. This 

method has been adopted by many researchers in producing high DS starch esters (Bello-Pérez, 

Agama-Acevedo, Zamudio-Flores, Mendez-Montealvo, & Rodriguez-Ambriz, 2010; Shogren, 

1996; Volkert, Lehmann, Greco, & Nejad, 2010; Xu & Hanna, 2005; Xu, Miladinov, & Hanna, 

2004) and extended to starch propionate (Di Filippo, Tupa, Vázquez, & Foresti, 2016), butyrate 

(Tupa et al., 2013) and acetate-maleate (Xu, Miladinov, & Hanna, 2005).  

To synthesize starch esters that possess longer alkyl chains (C4-C18), aqueous medium 

strongly unfavored due to several reasons, (a) immiscibility of water and the oily reagent, (b) 

poor penetration of the reagents into starch granule, and (c) high rate of side-reaction (Namazi, 

Fathi, & Dadkhah, 2011). Ultimately, reaction stops from lack of dispersion because starch ester 

separates from aqueous phase as DS increases. Conventional preparation of high DS starch ester 

(long chains) often requires at least one organic solvent to facilitate starch ester dispersion 

(Ačkar et al., 2015; Hong et al., 2016; Lower, 1996; Tessler & Billmers, 1996). Table 1.2 

summaries common methods to achieve high DS for starch esters of various substituent chain 

length. Eliminating the use of organic solvents remains a strong interest to the field.  

Table 1.2. Conventional synthesis routes for high DS starch derivatives 

Starch 

derivative 

Starch 

(g) d.b. 

Reagent, Mole 

ratio to starch 

Solvent 

(mL) 
Catalysts Conditions 

Wash 

solvent 
DS Reference 

Acetate 

30 
Acetic 

anhydride, 4:1 

Acetic 

anhydride 

10.2 g 50% 

aqueous NaOH 
123 °C, 4h Water 2.59 Xu et al., 2004 

10 

Acetic 

anhydride, 

4.7:1 

10 mL 

Acetic acid 
0.38 mL H2SO4 70 °C, 3h Water 2.67 Zhang et al., 2009 

Succinate 10 
Succinic 

anhydride, 4:1 

60% 

pyridine 
None 

115 °C, 10 

min 
Ethanol 3 

Bhandari & 

Singhal, 2002 
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Propionate 25.8 

Propionic 

anhydride 

7:1 

300 mL 

pyridine 
Pyridine 95 °C, 4h Methanol 2.61 

Garg & Jana, 

2011a, 2011b; 

Zhu et al., 2017 

Medium 

chain esters 

(C4-C6) 

16.2 
Acid chloride, 

4.5:1 

200 mL 

Dioxane & 

200 mL 

toluene 

50 mL Pyridine 100 °C, 6h 
Ethanol & 

water 
>2.80 

Sagar & Merrill, 

1995 

Long chain 

esters 

(C8-C18) 

0.5 
Vinyl esters 

3-5:1 

5 mL 

DMSO 

Various basic 

salts 

110 °C, 

24h 
Methanol >2.90 

Junistia et al., 

2009 

 2 

Acyl 

chlorides, 

18:1 

15 mL 

pyridine 
Pyridine 105 °C, 3h Ethanol 2.7 

Aburto, Alric, 

Thiebaud, et al., 

1999; Thiebaud et 

al., 1997 

Octenylsucci

nate 
20 OSA, 3.6:1 

80 mL 

Pyridine 
Pyridine 97 °C, 2.7h 

70% ethanol 

& water 
1.35 

Gu et al., 2015; Li 

et al., 2012; Wang 

et al., 2011 

Hydroxypro

pylate 
10 

Propylene 

oxide, 

2:1 

40 mL 

water 
5% NaOH 40 °C, 24h water 0.66 

Aminian, Nafchi, 

Bolandi, & Alias, 

2013; Hjermstad, 

2012 

 Changes to conventional methods  

 Synthesis of high DS starch short chain carboxylates in aqueous slurry 

 Water is the most preferred medium in starch modification for its lowest cost and 

environmental impact. When synthesized in water, DS of starch ester, e.g. starch acetate, 

typically do not raise beyond 0.2 (BeMiller & Whistler, 2009; Golachowski et al., 2015). A one-

step in aqueous synthesis for high DS starch acetate was disclosed by Billmers and Tessler, 

(1994). In a such synthesis, high-amylose starch reacted with 200% (starch dry wt.) acyl 

anhydrides, catalyzed by 25% NaOH at pH 8, reached DS 1.71 and 1.57 for acetate and 

propionate substituent, respectively. Billmers and Tessler (1994) have also extended acetylation 

to waxy and normal starches, flours, hydrolyzed starch and several dextrins. Luo and Shi (2012) 

characterized starch acetates synthesized Billmers and Tessler (1994) method and reported high-

amylose starch reached highest DS (1.29) value comparing to waxy (1.08) and normal (0.71) 

starches. Luo & Shi (2012) noted that starch acetate experienced “swelling and shrinking”, 
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reflected by reaction slurry settling volume, during acetic anhydride addition. Regardless of 

starch amylose content, starch swelling peaked at 33% acetic anhydride (starch wt.) addition. 

They attributed the swelling to granule surface gelatinization at DS about 0.3. Such swelling was 

limited when DS was higher as starch become more hydrophobic and tends to settle out from the 

slurry. Pu et al. (2011) reported a starch acetate of DS 2.93 synthesized in aqueous medium with 

400% acetic anhydride usage. Pu et al. (2011) carried out the synthesis at 80 °C to allow full 

contact of starch and reagent; however, a specific mechanical mixer must be employed to 

overcome anticipated high viscosity. Other variations of the aqueous slurry method includes 

using excessive reagent to achieve DS 0.45 starch succinate (Zhu et al., 2001), DS 0.29 starch 

heptanate (Fang, Fowler, Sayers, & Williams, 2004), and DS 0.51, 0.30, and 0.15 for starch 

octanate, laurate, and palmitate, respectively, with alkali gelatinized starch (Fathi & Namazi, 

2014; Namazi & Dadkhah, 2010). Approaches to enhance starch-reagent contact, e.g. pre-

gelatinization of starch (Hassan Namazi & Dadkhah, 2010; Pu et al., 2011; Thitisomboon, 

Opaprakasit, Jaikaew, & Boonyarattanakalin, 2018), using emulsified reagent (Chi et al., 2007), 

microwave and ultrasonic treatments are effective to higher DS for some substituents but less 

prominent for long chain esters (Gilet et al., 2018).  

 Synthesis of highly substituted starch ether in aqueous slurry 

Starch ether, on the other hand, can be synthesized to high substitution in water relatively 

easily compared to starch esters, due to high compatibility of water and reagent as well as water 

and starch ether. For instance, hydroxypropylated starch can be prepared in water and achieve 

high substitution levels as long as sufficient reagent is supplied. Owning to the excellent 

solubility of propylene oxide in water, hydroxypropylated starch can be synthesized in water up 

to DS 1.4 (Jyothi, Sreekumar, Moorthy, & Sajeev, 2010). However, starch recovery at such a 
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high DS is problematic due to excessive swelling. Dialysis, alcohol or acetone washing must be 

employed (Han & BeMiller, 2005; Hjermstad, 2012).      

 Development in pyridine-free synthesis routes 

In laboratory synthesis of starch esters, pyridine has been long used as a multi-purpose 

reagent to swell the starch granule, catalyst the esterification, and protect starch backbone by 

neutralizing liberated acid (Aburto, Alric, Thiebaud, et al., 1999; Thiebaud et al., 1997; Whistler, 

1945). Pyridine involved starch esters has little industrial importance because it is a highly toxic, 

expensive, odor-intense, and polluting chemical. However, variations of pyridine media are still 

routinely used nowadays in lab-scale synthesis to obtain full substitution for a wide array of 

substituents and to minimize starch degradation. Typical variations including using a diluent 

such as DMSO (Biswas, Shogren, Kim, & Willett, 2006; Rosu et al., 2013), ethyl acetate (Sun et 

al., 2016), dimethylformamide (DMF) (Lukasiewicz & Kowalski, 2012; Rajan, Sudha, & 

Abraham, 2008), toluene (Zhang, Macquarrie, Clark, & Matharu, 2014), N,N-dimethylacetamide 

(Vanmarcke et al., 2017), trifluoroacetic anhydride (Yang & Montgomery, 2006, 2008) to 

correct viscosity and reduce pyridine usage. Ideal diluent should be compatible with reagent yet 

inert, non-flammable, non-toxic, and recyclable. However, the reagents mentioned above may 

still impose toxicity and reactivity. In more recent studies, DMSO in adjunct with basic salts 

(Dias et al., 2013; Junistia et al., 2008, 2009; Winkler et al., 2014; Winkler et al., 2013) and 

lipase enzymes (Alissandratos & Halling, 2012; Söyler & Meier, 2017) have been used; 

removing DMSO from final starch is still industrial uneconomic due to its high hydroscopicity 

(Schmitz, Dona, Castignolles, Gilbert, & Gaborieau, 2009). Ionic liquids media has become 

popular in replacing pyridine and DMSO recently as they are excellent solutions for starch over a 

wide DS range (Yang et al., 2016). Particularly, enzyme catalyzed reactions in ionic liquids are 
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thought to be true green methods; however, low enzyme activity in ionic liquids, cost to recycle 

ionic liquid, as well as possible toxicity in waste water, remained unresolved (Adak & Banerjee, 

2016; Alissandratos & Halling, 2012; Gilet et al., 2018; Laus et al., 2005; Wilpiszewska & 

Spychaj, 2011).     

 Solvent-free synthesis 

 Oftentimes, esterification reagents are added in great excess to ensure high DS and the 

reagent themselves can as well serve solubilizing/plasticizing purpose along the reaction. The 

term “solvent free” implies to the reactions utilize zero solvent in addition to the reactive 

solvents. Strictly speaking, conventional methods used for starch acetylation i.e. heating starch 

and acetic anhydride with a very limit amount of water, is the simplest form of a solvent-free 

reaction (Mark & Mehltretter, 1972; Volkert et al., 2010). In such reaction, starch swelled and 

acetylated initially in alkali water and the partially acetylated starch solubilized into acetic 

anhydride, allowing the reaction to continue. Many starch esters, e.g. acetate (Biswas et al., 

2008; Shogren, 2003; Tupa et al., 2013), propionate (Di Filippo et al., 2016), succinate 

(Koroskenyi & McCarthy, 2002; Wang, Shogren, & Willett, 1997), phosphates (Passauer, 

Bender, & Fischer, 2010), malate (Zuo et al., 2013), and citrate (Kapelko-Żeberska, Zięba, 

Pietrzak, & Gryszkin, 2016) have been synthesized at high DS in a pressurized reactor, 

microwave, extrusion, or open roasting set-ups. Tupa, Ávila Ramírez, Vázquez, & Foresti (2015) 

reported a solvent-free synthesis of starch acetate that utilized starch’s own moisture without 

adding water. They achieved near full substitution at 130 °C, 1.85 g catalyst/g starch, 6.5 g acetic 

anhydride/g starch. Chang, Qian, Anderson, & Ma (2012) claimed destroying starch crystallinity 

by pre-gelatinization and freeze dry was an effective pre-treatment for starch succinylation. In 

their study, succinic anhydride (1.5 mol per mol AUG) was diffused into a porous starch matrix 
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and reacted at 110 °C for 4h to achieve DS 1.9. This system works robustly for short chain esters 

but not well for long chain esters, probably because the long chain imposes greater stearic 

hindrance and prohibits initial acylation. One practical route is to first derivatize starch with a 

short chain substituent to intermediate DS so when the reagent for secondary long chain is 

introduced, starch short chain ester can readily swell in it (Yang & Montgomery, 2006, 2008). 

Aburto, Alric, & Borredon (1999) carried out a solvent-free two-step synthesis for starch 

octanate. They first derivatized starch in formic acid (4.3 eq/AGU) to obtain DS 1.7 starch 

formate and dropwise added octanoyl chloride (6 eq/AGU) to the formylation reaction. The 

highest DS for octanate was 2.1 at 68% yield. Starch formate was readily dispersible in octanoyl 

chloride; however, they noted the starch degradation, from a low yield and high glucose in upper 

liquid, was severe in some conditions due to liberated HCl and lack of neutralizing base. Aburto, 

Hamaili, Mouysset-Baziard, et al., (1999) extended the optimal conditions to starches of different 

crops and their waxy cultivars. No significant difference was found in either formate or 

octanoate DS, probably because destruction of the granule and crystallinity in all starches thus 

the reaction was rather homogenous. Experiments with longer fatty acid showed a clear trend 

that DS diminished as chain length increase. Shogren, (2003) reported a starch acetate (DS 0.34) 

octenylsuccinate (DS 0.49) mixed ester from co-heating acetic anhydride, OSA, and acetic acid 

mixture to 180 °C for 20 min. However, the reaction was carried out in a pressure-resist DSC 

pan without agitation, discoloration and possible degradation were reported. Aburto, Alric, & 

Borredon, (2005) reported another solvent-free route for DS~0.6 starch laurate by first subjected 

starch to thermal aqueous pretreatment and then transesterified with emulsified lauric acid at 190 

°C for 4h. Horchani, Chaâbouni, Gargouri, & Sayari, (2010) claimed a solvent-free route to 

prepare DS 2.86 starch oleic acid ester using CaCO3-immobilized lipase. However, the actual 
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media was water and their DS calculation method may be overestimated as pointed out by 

Alissandratos & Halling (2012).  

 Properties of highly substituted starch 

 DS determination 

 Titration methods  

Titration is the most common method that is used for DS determination in literature. In a 

typical titration, acyl group is saponified by a known amount of alkali and the alkali consumption 

is determined by back-titrating with acid (Golachowski et al., 2015; Zhu et al., 2017). Although 

titration method is widely used, it has been acknowledged unsuitable for esters that have 

substituent side chain longer than butyrate. As pointed out by Alissandratos & Halling (2012), 

high-viscosity and insolubility of starch esters and fatty acids lead to heterogenicity of the 

titration media and often compromise a clear end-point.  

 NMR spectroscopy  

NMR spectroscopy has been regarded as a powerful tool for DS determination featuring 

rapidness, greater accuracy, and small sample usage (Hong et al., 2016). Owning to the distinct 

chemical environment between starch ring protons and substituent protons, it is possible to 

obtain distinct starch backbone proton peaks, from 3.0 to 5.5 ppm, and below 2.1 ppm for 

methine and methylene groups in various substituents. DS of starch esters can be resolved from 

equation DS = 7A/3B, where A is the sum of end methyl proton signal areas and B is the sum of 

starch ring proton signals areas (Barrios, Giammanco, Contreras, Laredo, & López-Carrasquero, 

2013; Chi et al., 2008; Muljana et al., 2017; Vanmarcke et al., 2017). NMR method has been 

noted the most accurate for DS above 2.0 for carboxylic esters, e.g. acetylated starch, where the 

starch ester can dissolve in deuterated chloroform. At below DS 2.0, starch ester could only 
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dissolve in DMSO-d6. Spectra obtained from DMSO-d6 often interfered by (1) large residual 

water peak at 3.3 ppm, and (2) broadening of starch ring proton and thus the accuracy of DS 

calculation was reduced. Alissandratos & Halling (2012) and Elomaa et al. (2004) attributed the 

signal broadening to DMSO’s high hygroscopicity and viscosity; however, substituent at 

different AGU positions, i.e., 2,3,6-tri-, 2,3-di-, 2,6-di-, 3,6-di-, 2-mono-, 3-mono-, 6-mono-, and 

unacetylated AGUs, shielded ring protons to different extents thus caused the ring protons of 

same position to possess various chemical shift values which ultimately resulted in broadened 

peaks (Kono, 2013; Kono, Hashimoto, & Shimizu, 2015). To determine DS unambiguously, 

some studies further fully derivatize the starch esters with a secondary substituent, i.e. acetyl or 

propionyl, to resolve starch ring proton regions (Junistia et al., 2008, 2009; Liebert et al., 2011).  

 Other DS determination methods 

Alternatively, elementary analysis was carried out for starch esters to compute the DS 

from elementary composition (Winkler et al., 2014; Winkler et al., 2013). FT-IR spectroscopy 

was also used to estimate DS of starch acetate from the ratio of emerged carbonyl signal (C=O) 

at 1743 cm-1 to starch CH2 vibration (2929 cm-1) versus acetate standards (Shogren, 2003). 

Elomaa et al., 2004, carried out TGA/FT-IR to quantify acetic acid released during heating of 

starch acetate and obtained a high correlation with titration method determined DS (R2=0.985). 

Qiu, Bai, & Shi, (2012) analyzed DS of starch octenylsuccinate using HPLC to measure 

saponified octenylsuccinic acid, and the method was able to distinguish octenylsuccinic acid 

between covalently-bounded and unreacted free forms.    

 Compatibility of substituted starches and organic solvents 

 Solvents and starch esters  
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Native starches are cold-water insoluble as they occur in nature as tightly-packed 

granules through H-bond forming hydroxyls and are partially crystalline. However, starch is 

soluble in hot water, because upon heating, starch granules swell to form a paste in water (known 

as gelatinization). When a starch is highly substituted, starch-water compatibility is affected by 

the substituent and could become water-resistant or water-soluble depending on the nature of 

substituents. Solvent compatibility is a crucial property to consider in starch because it plays a 

key role determining the end-use of a starch. Table 1.3 summarized compatibility of substituted 

starch and common organic solvents. These solvents are generally recognized as evaporative, 

inert, and readily removable after being used as a processing aid, e.g. evaporate from a casted 

starch film. It is noteworthy that some solvents e.g. DMSO and dioxane, are not evaporative and 

they are mostly used during synthesis or characterization rather than in end product processing.  

 Plasticizers of starch derivatives 

Plasticizers are additives of small molecules with high boiling points and low vapor 

pressures that increase plasticity and fluidity of a material (Han, 2014). For a starch-based 

material such as starch esters, a plasticizer is often incorporated to increase mobility of the 

polymer chains; thus, the starch may be manipulated during processing. Plasticizers compatible 

with starch esters includes glycerol, polyols, triacetin, caretriethyl citrate, dibutyl sebacate, 2-

octenyl succinic anhydride, 2-tridodecen-1-yl succinic anhydride propylene glycol, triethyl 

citrate, and dibutyl phthalate (Mekonnen et al., 2013; Tarvainen et al., 2003; Vieira et al., 2011; 

Zhu et al., 2013). According to Bonacucina et al. (2006), 10-30% (starch wt) plasticizers in end-

products (e.g. film, foam, or packaging materials) are typically used to reduce brittleness. Other 

researchers used triacetin as a plasticizer in high DS starch ester films and noted triacetin 

significantly soften the starch acetate film and lower storage tensile modulus (Zhu et al., 2013). 
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Tarvainen et al. (2003)  reported that n-alkenyl succinic anhydrides, particularly 2-octenyl 

succinic anhydride can be a good plasticizer for potato starch acetate (DS 2.8). The film 

plasticized with 60% 2-octenyl succinic anhydride exhibited excellent elongation (12.8%) 

comparing <3% for other starch acetate films. When choosing a plasticizer for starch-based 

materials, it is helpful to consider using a non-polar, oil nature, e.g. triacetin, and 

triacylglycerols, to couple with highly substituted starch esters, and use plasticizers of some 

hydrophilic behaviors, e.g. propylene glycol, with intermediate or lightly substituted starch 

esters. In the case of water compatible starch ethers such as hydroxypropylated starch, glycerol 

and polyols are widely used (Han, 2014; Zhang et al., 2013; Zhu et al., 2013).     

Table 1.3. Solvent compatibility of substituted starches.  

Starch derivatives DS* Starch-solvent compatibility Reference 

Acetate, propionate, 

and butyrate 
0-2.5 Solubility in water decreased as DS increased 

Garg & Jana, 2011a; 

Shogren & Biswas, 2006 

Acetate 

Propionate 

2.0 acetyl, 

1.6 propionyl 
Partially soluble in petroleum ether at 1% solid 

Di Filippo et al., 2016; 

Tupa et al., 2015 

Acetate 2.5-3.0 
Soluble in acetone and ethyl acetate at 1.7% solid, 

solubility inversely related to molecular weight 

Lehmann & Volkert, 

2011 

Succinate 0.2-1.9 
65% soluble in water (DS 0.2, 80 °C), moisture 

pickup decreased significantly as DS increased 

Chang et al., 2012; 

Lawal, 2012 

Maleate 0.35 
Surface wetting significantly reduced as DS 

increased 
Zuo et al., 2013 

Carboxylates (C6-18) >2 

Insoluble in DMSO* and water, soluble and 

swellable at 10% solid in chloroform and 

tetrahydrofuran 

Winkler et al., 2013 

Carboxylates (C12-22) 0.1-0.6 
Insoluble in water, DMSO, acetone, and methanol; 

swellable in chloroform and tetrahydrofuran 
Barrios et al., 2013 

Fatty acid esters (C18) 1.3 

Soluble in tetrahydrofuran, chloroform, methylene 

chloride, toluene, xylene, benzene; swellable in 

water and DMSO 

Söyler & Meier, 2017 

Palmitate > 1.3 Soluble in methylene chloride Liebert et al., 2011 

Hydroxypropylate 0.3-1.4 Soluble in water up to 25% solid Jyothi et al., 2010 

DS, degree of substitution; DMSO, dimethyl sulfoxide. Thermal properties of highly substituted 

starch  
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 Thermal properties of high DS starch 

 Glass transition 

Thermal behavior of a highly substituted starch follow typical  

“glassrubbermeltdegradation” path as temperature elevates (Liebert et al., 2011). 

Depending on nature of substituents, extent of substitution, and presence of plasticizers, 

temperatures for these thermal transitions vary. Glass transition temperature (Tg), melting 

temperature (Tm) and thermal decomposition temperature (Td) are important characteristics and 

play key roles in thermal processing of starch. These temperatures are conveniently determined 

by differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), and 

thermogravimetric analyzer (TGA). A summary of thermal transitions in highly substituted 

starch are presented in Table 1.4. In typical thermal processing (e.g. extrusion, hot press, and 

molding), processing temperature must be above Tg, is preferably above Tm, but well below Td to 

ensure the starch  softened, and therefore to be manipulated without degradation (Junistia et al., 

2009; Shogren, 1996). Dry native starches have Tg (226 °C) well above typical thermal 

processing temperature (150 °C) and close to Td (around 300 °C) (Shogren, 1996), and therefore, 

is not suitable for thermal processing unless large amount of external plasticizers such as water, 

glycerol, or polyols is present. Substituents provide intermolecular plasticization (Fringant, 

Rinaudo, Foray, & Bardet, 1998) and lower the Tg of a dry starch to manageable temperature for 

thermal processing. In pure short chain carboxylic starch esters, DS and chain length are the 

most determining factors for Tg. Shogren, (1996) reported that acetyl DS of 1.5-2.5 could 

effectively lower dry starch Tg to around 150 °C, granting a larger margin for processing 

tolerance. For bulkier substituents groups such as fatty acid esters, multiple thermal transitions 

often observed due to side chain melting, oftentimes lower than or overlapping with starch 
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backbone glass transition (Winkler et al., 2014). The side chain melting temperature mostly 

correlates with length of side chain and is less relevant to DS for long chain substituents. For 

example, both starch laurate of DS 1.6 and 2.3 had melting temperature between 4-5 °C (Junistia 

et al., 2009; Winkler et al., 2014). There is no study showing clear cutoff chain length for side 

chain melting peak to occur; however, C10 (Liebert et al., 2011) and C12 (Junistia et al., 2008; 

Vanmarcke et al., 2017; & Winkler et al., 2014) esters are some short fatty acid chains reported 

to exhibit distinguished side chain melting transition (Winkler et al., 2014). Frequently, highly 

substituted starch fatty acid esters give an apparent Tm for their “hot-gel” properties but it is 

indeed the interplay of side chain and backbone melting (Liebert et al., 2011).  

 Thermal degradation 

Zhang et al. (2014) studied thermal degradation of starch esters with different DS by 

thermogravimetric analysis. Peak degradation temperature was elevated approximately 70 °C as 

DS increased from 0 to 2.5. The improved thermal stability is largely attributed to reduced 

number of –OH groups that undergo dehydration upon heating (Fang, Fowler, Tomkinson, & 

Hill, 2002; Xu et al., 2004). The starch ester substituent is eventually cleaved, but the cleavage 

temperature is higher than hydroxyl dehydration temperature (Barrios et al., 2013; Elomaa et al., 

2004). It is noteworthy that a few studies reported starch esters were less heat stable than native 

starches (Di Filippo et al., 2016; Tupa et al., 2015; & Zuo et al., 2013). These samples were 

synthesized with “dry” or “solvent-free” media that lack of a countering alkali. Therefore, trace 

acid residue in the sample might have destabilized the starch ester during heating.   

Table 1.4. Thermal transitions of common starch esters.  

Starch derivatives DS Thermal transitions (°C)* 
Degradation 

(°C) 
Reference 

Maleate 0.35  250-320 Zuo et al., 2013 

Succinate 1.7  260-320 Chang et al., 2012 
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Acetate 2.9 171 (Tg)  Yang & Montgomery, 2008 

Propionate 2.5  350-400 Garg & Jana, 2011b 

Propionate 2.4-2.6  320-390 Zhu et al., 2017 

C6 3.0 69 (Tg)  Yang & Montgomery, 2008 

C6 2.4 68 (Tg) 

320-380 Winkler et al., 2014 C12 2.4 4 (Tm); 78 (Tg) 

C18 2.2 26 (Tm); 100 (Tg) 

C16 3.0 30-50 (Tm); 45-60 (Tg)  Liebert et al., 2011 

C8 2.8 40 (Tg) 

300-350 Vanmarcke et al., 2017 C12 2.8 -40 (Tm); 40 (Tg) 

C16 2.8 10 (Tm); 40 (Tg) 

C12 1.8 27 (Tm) 
310-390 Junistia et al., 2009 

C18 1.5 21 (Tm) 

C18 1.3 82-92 (Tg) 310-360 Söyler & Meier, 2017 

* Tm, side chain melting temperature; Tg, starch backbone glass transition temperature. 

 Conclusions 

Substituted starches with intermediate to high DS are environment-friendly biomaterials 

based on abundant and renewable resource. While high DS short chain starch carboxylic acid 

esters can be prepared in aqueous or anhydrous media without using organic solvents, 

mainstream methods for long chain esters still involve large amount of solvents, mainly pyridine 

analogs, to aid catalyzation and starch dispersion. A major challenge in the field is to discover a 

“true green” pathway that is feasible for large scale production that is cost effective and 

environmentally friendly. Areas that have been focused on including: (1) increasing reagent-

starch combability and dispersity with emulsions, microwave, and ultrasonic treatments, (2) 

using less harmful solvents (e.g. DMSO, toluene, and ionic liquids), (3) using enzyme to 

transesterify acyl from plant oil to starch, and (4) “solvent-free” route that first derivative the 

starch with a less bulky substituent, e.g. formate and acetate, to make the starch compatible for 
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further reaction media. In author’ opinion, the latter two directions fit the concept of “green 

chemistry”, because exclusion of harmful solvents reduce overall cost for synthesis and 

purification. 
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Chapter 2 - Position of acetyl groups on anhydroglucose unit in 

acetylated starches with intermediate degrees of substitution   

 Abstract 

Waxy, normal, and high-amylose maize starches were acetylated to various degrees of 

substitution (DS) in aqueous medium at pH 8.0 and the substitution pattern of the acetyl group 

on anhydroglucose unit (AGU) was determined. A stepwise addition of acetic anhydride 

enhanced reaction efficiency and DS was in the order of high-amylose maize starch (DS 1.72) > 

waxy maize starch (DS 1.60) > normal maize starch (DS 1.03) when 240% (w/w) acetic 

anhydride was added. Starch acetates were further fully esterified to DS 3.0 using acetic 

anhydride-d6 or propionic anhydride to analyze position of acetyl groups on AGU by 1H NMR. 

The hydroxyl group linked to C-2 in AGU was the preferred reaction site when the DS was 

lower than 0.14. At DS 1, the distribution of acetyl groups was ca. 44%, 32%, and 24% at C-2, 

C-3, and C-6 positions regardless of amylose content. Deuterated acetyl group was a preferred 

secondary substituent over propionyl group in subsequent 1H NMR analysis because it resulted a 

clean spectrum without interference from propionyl methyl protons.  

 Keywords  

starch acetate, substituent distribution, 1H NMR, peracetylation 

 Abbreviations 

DS, degree of substitution; NMR, nuclear magnetic resonance; AGU, anhydroglucose 

unit; CA, cellulose acetate; SA, starch acetate; CDCl3, chloroform-d; DMSO-d6, dimethyl 

sulfoxide-d6; 
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  Introduction   

Starch is an abundant and renewable natural polymer that is widely used in food and 

industrial applications. Chemical modifications are often used to improve physiochemical 

properties of starch for specific applications (BeMiller & Whistler, 2009; Wurzburg, 1986). 

Repeating glucose units in a starch molecule provide ample hydroxyl (–OH) groups, which are 

excellent sites for grafting various functional groups. Acetylation is one of the modifications by 

reacting vinyl acetate or acetic anhydride with starch (Wurzburg, 1986) to esterify a fraction of –

OH groups with acetyl groups. Acetylated starch that has an acetyl content less than 2.5% (DS 

0.097) is approved by the US Food and Drug Administration (FDA) as a food additive (FDA, 

2017).  

Intermedium- to high-DS (0.8-3.0) starch acetates (SA) become soluble in acetone and 

chloroform, have improved thermoplasticity (Wurzburg, 1986), resistant to enzymatic digestion 

(Bird, Brown, & Topping, 2006), and have potential applications in hot melt adhesive, 

biodegradable package materials, tablets, and encapsulation of bioactives (Billmers & Tessler, 

1994; Korhonen, Kanerva, Vidgren, Urtti, & Ketolainen, 2004; Robert, García, Reyes, Chávez, 

& Santos, 2012; Tessler & Billmers, 1996). For preparation of medium- to high-DS SA, pyridine 

was often used to facilitate granule swelling and improve starch reactivity (Wurzburg, 1986). 

However, due to its toxicity and difficulty to be removed after reaction, pyridine is not widely 

used for large-scale production of SA. Mark and Mehltretter (1972) reported a pyridine-free 

method to produce starch acetate up to DS 3.0 using acetic anhydride as a reactive solvent; 

however, the reaction was done at 123 °C resulting granular structure destroyed and off-color 

(Xu, Miladinov, & Hanna, 2004). Billmers and Tessler (1994) disclosed a one-step process of 
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making medium-DS SA in aqueous media by using high levels of acetic anhydride and 

concentrated alkaline.  

Properties of chemically modified starches, including acetylated starches, are dependent 

on total DS, pattern of reaction within the granule, and pattern of modification on individual 

starch molecules (Huber & BeMiller, 2009). At the universal level, the overall extent of 

acetylation or DS of an acetylated starch is affected by the sources of starch and may be 

determined by titration or NMR (Chi et al., 2008; Dicke, 2004; Elomaa et al., 2004; Luo & Shi, 

2018; Mormann & Al-Higari, 2004; Shogren & Biswas, 2010). When reacted with acetic 

anhydride in water by the method of Billmers & Tessler (1994), high-amylose maize starch had a 

higher DS than waxy and normal maize starches (Luo & Shi, 2012).  At the granular level, the 

uniformity of acetylation is dependent on reagent type (acetic anhydride vs. vinyl acetate) and 

granule size (Huang, Schols, Jin, Sulmann, & Voragen, 2007a; Huang, Schols, Jin, Sulmann, & 

Voragen, 2007b; Huang, Schols, Klaver, Jin, & Voragen, 2007). Vinyl acetate tends to penetrate 

deeper to the granule and produce clustered acetylation on starch polymer chains, whereas acetic 

anhydride is rather fast reacting on the surface of the starch granule (Huang, Schols, Klaver, Jin, 

& Voragen, 2007).  At the molecular level, substitution patterns along starch chains are often 

obtained by treating modified starches with enzymes and analyzing the resulted hydrolyzed 

products (Bai, Kaufman, Wilson, & Shi, 2014; Mischnick & Momcilovic, 2010; Richardson & 

Gorton, 2003). Luo & Shi (2018) reported that catalyst concentration affected the substitution 

pattern along starch chains; 20% NaOH favored acetylation on external chain or away from 

branching points, whereas 3% NaOH favored substitution in inner regions. Bai, Kaufman, 

Wilson, & Shi (2014) reported that octenylsuccinic anhydride prefers to react near branching 

points and reducing ends in amylopectin. 
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At the molecular level, substitution positions on anhydrous glucose unit (AGU) also may 

affect properties of modified starches. Gas chromatography/mass spectrometry (Lee & Gray, 

1995) and liquid chromatography, particularly high performance anion-exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) (Richardson & Gorton, 

2003) have been used to determine substitution positions on AGU in cellulose and starch 

derivatives; however, those approaches have disadvantages such as laborious methylation, 

difficult to fully methylate starch, and lack of suitable standards (Richardson & Gorton, 2003). 

Nuclear magnetic resonance (NMR) such as 13C NMR has been reported as a powerful tool for 

determining substitute position on AGU by providing the ratio of substituted carbon signal at a 

shifted ppm to the unsubstituted carbon (Kono, Hashimoto, & Shimizu, 2015). However, the 

resonance of C-2 to C-5 (85-70 ppm) of AGU monomer is overlapped and difficult to be 

quantified (Heins, Kulicke, Käuper, & Thielking, 1998). Furthermore, the resolution of 13C NMR 

spectrum can be unsatisfactory because the analysis required a highly concentrated, non-viscous 

sample solution, but starch acetates with low and intermediate DS have poor solubility in NMR 

solvents, e.g. D2O, chloroform-d, and DMSO-d6 (Richardson & Gorton, 2003). Tezuka and 

Tsuchiya (1995) first reported a perpropionylation pretreatment on cellulose acetate to quantify 

partial DS at C-2, C-3, and C-6. The pretreatment substituted unreacted hydroxyl groups with 

propionyl groups, rendering the sample readily soluble in chloroform at a high concentration. 

The DS on individual C position was calculated from propionyl and acetyl C=O signal resolved 

at 174-169 ppm. However, 13C spectrum requires several hours to achieve quantitative signal-to-

noise ratio and it is not feasible when a large number of samples are to be analyzed (Kono, 

2013). 1H NMR can be an option to determine the substituent distribution much quicker if the 

methyl protons at different carbon locations can be resolved. When dissolved and analyzed in 
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DMSO-d6, methyl protons appear as one large splitting peak (Chi et al., 2008) which is only 

useful for total DS determination. Goodlett et al. (1971) first reported an approach to peracetylate 

cellulose acetate (CA) with acetyl-d3 chloride to make the CA soluble in CDCl3. Because CDCl3 

is a much less-viscous solvent to DMSO-d6, and the deuterated methyl causes no interference to 

the ordinary methyl signal, the 1H NMR spectrum gives improved resolution and could be used 

to quantify the DS on individual carbon. A limited number of studies have been reported on the 

position of acetyl groups on AGU in acetylated starches and distribution patterns are affected by 

the reaction medium, type of reagent (e.g. vinyl acetate vs. acetic anhydride), and catalyst 

(Hampe & Heinze, 2014; Mormann & Al-Higari, 2004; Richardson, Andersson, Brinkmalm, & 

Wittgren, 2003; Shogren & Biswas, 2010). Dicke (2004) determined substitution pattern by 

carrying out perpropionylation followed by 1H NMR on a series of starch acetates (synthesized 

in DMSO medium with various catalysts) and concluded that the acetylating reagent and type of 

catalysts were influential to substitution pattern. Vinyl acetate with 2% of neutral or alkaline 

salts was reactive at starch C-2 position exclusively, whereas acetic anhydride resulted in a more 

even substitution with some preference at C6 position. Unlike acetylation of starch in DMSO 

(Dicke, 2004), when potato starch was reacted with vinyl acetate in water in the presence of a 

base, no regioselective distribution of acetyl groups was observed; ca. 46% acetyl groups was on 

C2 and more than 50% acetyl substituents were on C3 and C6.  

Preparation of starch acetates with intermediate DS using acetic anhydride in aqueous 

medium avoids toxic chemicals (Billmers & Tessler, 1994; Luo &Shi, 2012; Luo & Shi, 2018; 

Tessler & Billmers, 1996); however, the position of acetyl groups on AGU made by this 

approach has not been studied. To our knowledge, there is no report on if starches with different 

amylose contents would have the same or different acetyl distribution patterns. In this study, 
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maize starches of various amylose contents were acetylated in aqueous medium to up to 1.71 DS 

and the change of acetyl distribution on monomer level (AGU) was investigated as the reaction 

proceeded for the first time. A side-by-side comparison of peracetylation and perpropionylation 

pretreatments prior to 1H NMR was carried out to evaluate their effectiveness of improving the 

spectrum resolution. The objectives of this study were to investigate (1) acetylation efficiency of 

SA produced from using a concentrated (10 N) NaOH solution with acetic anhydride added in 

one dose or stepwise manner, (2) perdeuterated acetylation verses perpropionylation as 

pretreatments for subsequent 1H NMR analysis, and (3) distribution of acetyl groups in the starch 

acetate synthesized in aqueous medium. 

 Materials and methods 

 Materials 

Waxy, normal, and high-amylose starches were obtained from Ingredion Incorporated 

(Bridgewater, NJ). Acetic anhydride and acetic anhydride-d6 (98.5% purity, Cat. No: 

AC174670050) were purchased from Fisher Scientific (Waltham, MA). Propionic anhydride and 

(Cat. No: 240311) chloroform-d (Cat. No: 151858) were purchased from Sigma-Aldrich (St. 

Louis, MO). 

 Synthesis of SA of various DS 

Waxy, normal, and high amylose maize starch (35 g each) were suspended in distilled 

water to form 30% solid slurries in a 500 mL three-neck-flask and stirred using an overhead 

mechanic stirrer in an icy water bath for 30 min. The actual temperature of starch slurry was 5 °C 

throughout the reaction. The pH of starch slurry was adjusted and maintained at 8.0 by a pH 

controller system (Eutech Instruments, Vernon Hills, IL) delivering drop-wise 10 N sodium 

hydroxide. After initial pH was stabilized for 30 minutes, 10, 85, 120, and 240% acetic 
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anhydride was introduced using a peristaltic pump at 1% acetic anhydride per min for total 10, 

85, 120, and 240 minutes, respectively. The slurry was adjusted to pH 6.0 with 1N HCl, filtered, 

and the starch cake was washed three times with 500 mL distilled water, and dried in an air-

forced oven at 40 °C overnight. The 240% acetic anhydride experiment was carried out with a 

stepwise procedure where the acetic anhydride was added at three doses of 120, 60, and 60%. 

The starch slurry was filtered and re-suspended into two parts of water in between each addition. 

The dried acetylated starch was ground by a food blender and passed through #60 mesh and 

stored in air tight containers. Control experiments were carried out using an equal weight of 

acetic acid instead of acetic anhydride and so that the starches were only subjected to 10 N 

NaOH treatment but not acetylated. 

 Titration to determine the DS of the SA  

Titration method was used to determine the DS of the SA (Elomaa et al., 2004). Briefly, 

0.5 grams of SA was mixed with 50 mL distilled water and the pH was adjusted to 7. Hydrolysis 

was done by adding 25 mL 0.5N NaOH to the sample and stir at room temperature for 24 h. HCl 

(0.5 N) was used to titrate the mixture to pH 7 and the consumption of HCl was used to calculate 

DS using the following equations. 

%𝐴𝑐𝑒𝑡𝑦𝑙 =
(𝑉𝐵𝑙𝑎𝑛𝑘 −𝑉𝐴𝐶)×0.5×0.043

0.5
× 100%     (1) 

𝐷𝑆 =
162×%𝐴𝑐𝑒𝑡𝑦𝑙

43−42×%𝐴𝑐𝑒𝑡𝑦𝑙
        (2) 

where VBlank was the volume of HCl consumed in titrating unmodified starch and VAC was the 

HCl volume consumed in titrating acetylated starch  

 Determination of reaction efficiency (RE) 

RE% was calculated as DS × AGU (mol)/acetic anhydride (mol) × 100%.  
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 Morphology of acetylated and unmodified starches 

Starch (10 mg) was mixed with 1 mL glycerol/water (50/50) and stirred for five minutes. 

The slurry was observed under an optical microscope (Olympus BX51, Tokyo, Japan) using a 

40× objective lens.   

 Full acetylation or propionylation of starch acetate 

The peracetylation procedure was modified from Mormann & Al-Higari (2004). Starch 

acetates of various DS were dried in a vacuum oven at 80 °C overnight. Each dried starch acetate 

(100 mg) was mixed in 10 mL pyridine at 60 °C until fully dispersed. Acetic anhydride-d6 (400 

mg) was reacted for 48 h. The reacted product was washed in methanol (30 mL) for three times 

and dried in an air-forced oven at 60 °C overnight. The perpropionylation was carried out in 

similar fashion except that the reaction temperature was elevated to 80 °C and the reaction time 

was shortened to 24 h. 

 1H NMR analysis  

The percetylated and perpropionylated starch derivatives (10 mg, each) were dissolved in 

chloroform-d1 (1 mL) and transferred into 3 mm NMR tubes. All NMR spectra were recorded at 

298 K on a Varian 500 MHz NMR System (Varian Inc., Palo-Alto, CA) equipped with a triple-

resonance, inverse-detection, pulse-field-gradient probe. The chemical shifts were calibrated 

against chloroform proton at 7.26 ppm. The NMR spectra were Fourier transformed and 

analyzed using ACD/NMR Processor (Advanced Chemistry Development, Inc., Toronto, 

Canada). Individual DS was calculated using the following equation (Chi et al., 2008): 

𝐷𝑆𝑎𝑐𝑒𝑡𝑦𝑙 =
7𝐴

3𝐵
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𝐷𝑆𝑝𝑟𝑜𝑝𝑖𝑜𝑛𝑦𝑙 =
7𝑃

3𝐵
 

where A was the area of acetyl’s methyl protons between 1.90 to 2.27 ppm; P was the area of 

propionyl’s methyl protons between 1.30-0.98 ppm; B was the sum of the seven glucose ring 

protons higher than 3.8 ppm. 

 Statistical analysis 

NMR analysis and titration were replicated two times for each starch sample. The DS 

changes was analyzed by one-way analysis of variance (ANOVA). A probability of P ≤ 0.05 was 

considered significant. Statistical procedures were by SAS 9.3 (SAS Institute; Cary, NC).      

 Results and Discussion 

 Effect of ratio of acetic anhydride to starch on DS and RE 

DS of SA increased as a function of the ratio of acetic anhydride to starch (Fig. 2.1). 

During 240 min reaction time, the DS change for all three starches exhibited hyperbolic curves 

that plateaued over 120% acetic anhydride based on the weight of starch. The increase in DS was 

faster at the beginning due to the ample amount of free hydroxyl groups, which depleted as 

reaction proceeded. At the beginning of acetylation, the slurry remarkably expanded, resembling 

an aerated foam that was approximately three times of liquid volume as the starches swelled. The 

swelling of starch was largely attributed to disruption of intermolecular bond by acetylation and 

was also noted by Billmers & Tessler (1994) and Luo & Shi (2012). Starch swelling as measured 

by a settling volume measurement peaked with an approximate 30 to 70% acetic anhydride 

addition (Luo & Shi, 2012). As more acetic anhydride was added, the reaction slurry thinned as 

the starches’ hydrophobicity increased. High-amylose maize starch reached the highest DS 

among all three starches (Fig. 2.1), which could be explained by its low crystallinity in the 

granules (Luo & Shi, 2012); more amorphous regions provided more reaction space for acetic 



38 

anhydride. The DS for waxy starch was slightly less than the DS of high-amylose starch but 

greater than normal maize starch, which is probably due to more hydroxyl groups exposed in 

waxy maize starch (Luo & Shi, 2012), as the initial swelling volume of waxy maize starch was 

greater.  

Reaction efficiency (RE) of acetylation decreased as more acetic anhydride was added 

(Fig. 2.1). The decrease in RE could be due to a combined effect of diminishing unreacted 

hydroxy group and dilution of starch content during the reaction. In this study, we designed a 

step-wise process determine the effect of re-concentrating the slurry on RE. The slurry was 

filtered and suspended in three parts (as to dry starch) of water between the additions of 120, 60, 

and 60% acetic anhydride. The acetic anhydride was divided in such proportion to aim ease of 

dewater and improve RE. Because after 120% acetic anhydride was added, the acetyl DS was 

high to constraint starch swelling so that the starch acetate could be readily filtered. Moreover, 

the DS increase was not evident after 120% acetic anhydride addition in continuous reaction. 

The step-wise procedure resulted in 5%, 4%, and 6% RE increase in waxy, normal, and high-

amylose starch, respectively, and the DS was in the order of high-amylose maize starch (DS1.72) 

> waxy maize starch (DS 1.60) > normal maize starch (DS 1.03) when total 240% (w/w) acetic 

anhydride was added (Fig. 2.1). In a study reported by Pu et al. (2011), a higher DS (2.93) high-

amylose maize starch acetate was synthesized in aqueous medium when the reaction was 

maintained at above gelatinization temperature (80 °C) and the acetic anhydride addition was 

400% based on the weight of starch. However, in our preliminary trials, we found that reaction 

slurry greatly thickened at above gelatinization temperature and led to difficulties in temperature 

and pH control, and therefore we carried out acetylation at a lower temperature. 
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Figure 2.1. Reaction efficiency (RE) and degree of acetylation of starches as a function of 

acetic anhydride amount; hollow symbols represent the results of 240% acetic anhydride 

added stepwise in three portions. 

 Changes in morphology  

Light microscopy was used to examine the starch morphologic change after acetylation 

(Fig. 2.2). After 10% acetic anhydride was added, edges of starch granules became rough and 

irregular. As DS increased to 1.0 and greater, loss of birefringence was observed (Fig. 2.2 b&c). 

This could be explained by the partial disruption of intermolecular H-bonds, which is the key 

force retaining starch granular structure. Previous studies reported that in when SA were 

synthesized at above 100 °C, granule structure was lost completely at DS 1.68 and above (Chi et 

al., 2008; Xu et al., 2004). Starch granular structure was retained largely in this study when 
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synthesized in aqueous media at 5 °C. In a controlled experiment where starch was only 

subjected to acetic acid and countering alkaline, no noticeable change was observed comparing 

to the untreated starch and therefore, the morphological changes were mostly attributed to 

acetylation but not alkaline addition.   
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Figure 2.2. Light microscopic images of unmodified and acetylated waxy (W), normal (N), 

and high-amylose (H) maize starches prepared with 10 (a), 120 (b) and 240 (c)% acetic 

anhydride; “P” indicates that the samples were viewed under polarized light. 

 Peracetylation using acidic anhydride-d6  

 Figure 2.3 shows the representative 1H NMR spectra of SA in chloroform-d1 after 

peracetylation. To verify a full substitution was achieved, a parallel experiment using ordinary 

acetic anhydride was carried out to ensure that the complete substitution was achieved. It should 

be noted that three equally-sized acetyl peaks between 1.8 and 2.3ppm (DS 0.015) were observed 

when native starch reacted only with acetic anhydride-d6 (Fig. 2.3a). The three acetyl peaks were 

presumably resulted from a trace amount (1.5%) of ordinary acetic anhydride in the acetic 

anhydride-d6 reagent. For a 1H scans of partially substituted SA, broadening and shifting of the 

ring protons signals has been observed (Chi et al., 2008; Kono et al., 2015). Because SA is a 

mixture of eight types of AGUs (2,3,6-tri-, 2,3-di-, 2,6-di-, 3,6-di-, 2-mono-, 3-mono-, 6-mono-, 

and unsubstituted) and the heterogeneity of substitute distribution caused the AGU ring proton 

signals to shift downfield differently and peaks were not well resolved. However, peracetylation 

allowed the AGU protons to be evenly shifted, resulting in well resolved spectra (Fig. 2.3). 

Signals at 2.20, 2.03, and 1.99 ppm were identified as acetyl protons substituted at C-6, C-2, and 

C-3, respectively (Goodlett et al., 1971; Mormann & Al-Higari, 2004). Adapting calculation of 

resolution factor in a chromatogram (Equation 3), the resolution factor of C-2 and C-3 acetyl 

signals was 1.2 (Fig. 2.3f), which was close to a baseline resolution 1.5 (Miller, 2005). 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = (δ2 − δ3) (0.5 × (𝑊2 + 𝑊3))⁄      (3) 

Where δ2 and δ3 were chemical shifts value of C-2 and C-3 acetyl signal, and W2 and W3 were 

the width of the C-2 and C-3 acetyl signal at half peak height in ppm. 
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Figure 2.3. 1H-NMR spectra of high amylose maize starch reacted with 0 (a), 10 (b), 85 (c), 

120 (d), 240 (e), and 240% (stepwise) (f) acetic anhydride, and further fully acetylated to 

DS 3.0 with acetic anhydride-d6. NMR signals of protons in anhydrous glucose units (AGU) 
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and protons of methyl in acetyl group attached to O-2, O-3, and O-6 on AGU are indicated 

in Fig 2.3e. 

Perpropionylation using propionic anhydride 

Propionylated starch showed proton signals from –CH3 at 0.95-1.35 ppm and –CH2– 

signals at 2.65-2.10 ppm (Fig. 2.4a). The combined DS of acetyl and propoionly was 

approximately 3.0 indicating the starch was fully substituted. However, the acetyl signal from C-

6 position was overlapped with –CH2– (Hampe & Heinze, 2014), making it impossible to 

calculate its acetyl DS directly. To resolve that, we calculated the area attributed from the -CH2- 

in propionate group via the peak area of propionyl -CH3, which was clearly resolved between 

0.95-1.35 ppm (Fig. 2.4). The area from -CH2- was 2/3 of the peak area of propionyl -CH3. 

Therefore, the area from acetyl at C-6 was calculated from the total area between 2.1—2.65 ppm 

minus 2/3 of propionyl -CH3 peak area, and then acetyl DS at C-6 was calculated. C-2 and C-3 

acetyl signals were broader than in the fully acetylated sample and the resolution factor was 0.8 

(Fig. 2.4f), indicating a less than desired resolution than the peracetylated sample. Thus, acetyl 

groups at C-2 and C-3 DS were calculated as a sum in starch acetate propionate. Our approach 

allowed us to verify that total acetyl and propionyl DS was close to 3.0 and ensure that the full 

derivation was achieved.   
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Figure 2.4. 1H-NMR spectra of high amylose maize starch reacted with 0 (a), 10 (b), 85 (c), 

120 (d), 240 (e), and 240% (stepwise) (f) acetic anhydride, and further fully propionylated 
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to DS 3.0 with propionic anhydride. Protons in anhydrous glucose units (AGU) and protons 

of acetyl methyl group attached to O-2, O-3, and O6 on AGU are indicated in Fig. 2.4e. 

 Substituted positions of SA  

 Position of acetyl groups on AGU 

Tables 2.1 and 2.2 summarize the DS at each reaction site for waxy, normal, and high-

amylose maize starches. After subtracting the acetyl peaks arisen from ordinary acetic anhydride 

in the deuterated acetic anhydride reagent, the spectrum of the starches reacted with 10% acetic 

anhydride (Fig. 2.3b) showed only substitution at C-2 position, indicating that there was a great 

reaction preference over other hydroxyl groups and acetylation started exclusively at 2-OH 

groups. At DS 0.10-0.15, regio-specific 2-O-acetylated starches were produced regardless 

amylose content (Table 2.1).  

As the reaction proceeded, the overall acetyl DS increased (Table 2.1 and 2.2). At 

approximately DS 1.0, nearly half of acetyl group substituted at C-2 and a marginal preference of 

C3 over C6 was observed, regardless of amylose content of the base starch and the amount of 

acetic anhydride consumed. Mormann and Al-Higari (2004) reported a similar substitution 

pattern when they acetylated potato starch to DS 1 using vinyl acetate in water. Vinyl acetate is 

regarded as a slower reacting acetylation reagent and the same level of acetylation DS is 

achieved in longer reaction time but produce a more even substitution in granular level as 

compared to acetic anhydride (Huang, Schols, Jin, et al., 2007b; Huang, Schols, Klaver, et al., 

2007). Our results suggest that at DS about 1, acetic anhydride and vinyl acetate produce similar 

position of acetyl groups at monomer level, which is a predominately 2-O-acetylated starch when 

prepared in water in the presence of a base. After more than 85% acetic anhydride (based on the 

weight of starch) was reacted, C3 and C6 had similar acetyl substitution (Table 2.2).   
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Relative reactivity of hydroxyl groups in carbohydrates has long been a subject of studies 

and reviews (Haines, 1976; Lawandi, Rocheleau, & Moitessier, 2016; Miljkovic, 2009, Sugihara, 

1953). In an aldohexopyranose, the anomeric hydroxyl group (i.e. 1-OH) is most reactive 

(Damager et al, 2010). However, the level of reducing ends or anomeric hydroxyl groups in 

starch is very low. For AGU in starch, there are three hydroxyl groups that are linked to C-2, C-3 

and C-6, and they all have an equatorial orientation. In general, the primary hydroxyl group (i.e. 

6-OH) is more reactive than secondary hydroxyl groups due to steric factor (Lawandi, 

Rocheleau, & Moitessier, 2016; Miljkovic, 2009). However, higher reactivity is found at 2-OH 

in this study and other modified starches including methyl, hydroxylethyl, and hydroxypropyl 

starches (Richardson & Gorton, 2003). The higher reactivity of the 2-OH in modified starches 

has been noted when reactions use low alkali concentration (Richardson & Gorton, 2003). The 

enhanced reactivity of 2-OH is attributed to its greater acidity because of its proximity to the 

electron-withdrawing anomeric carbon, a carbonyl or a potential carbonyl group (Haines, 1976; 

Richardson & Gorton, 2003; Sugihara, 1953). In contrast, when higher alkali concentrations are 

used in making cellulose derivatives, 6-OH, the primary hydroxyl group, is the most reactive 

because it is sterically less hindered (Pitha, Trinadha Rao, Lindberg & Seffers, 1990; Richardson 

& Gorton, 2003). Under similar alkali concentrations, starch has a stronger preference for 

substitution at 2-OH than cellulose because starch and cellulose have α and β anomeric 

configurations, respectively. The differences in anomeric configuration may attribute to the 

lower acidity of the hydroxyl group on C-2 in cellulose (Richardson & Gorton, 2003).    

It is remarkable that regioselective 2-O-acetyl starches were produced in water when 10% 

acetic anhydride was reacted in this study (Table 2.1).  As the degree of acetylation increased, 

the availability of 2-OH groups decreased, and 3-OH and 6-OH were reacted when 85% acetic 
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anhydride was added (Table 2.1). The acetylation at 2-OH may have increased the reactivity of 

the neighboring 3-OH groups.  

Table 2.1. Distribution of acetyl group determined by peracetylation using acetic 

anhydride-d6 

Starch 

Acetic 

Anhydride 

(%) 

Acetyl C-2 

DS 

Acetyl C-3 

DS 

Acetyl C-6 

DS 

Total 

Acetyl DS 

Waxy 

10 0.13±0.01e 0d 0c 0.13±0.01e 

85 0.45±0.01d 0.29±0.01c 0.29±0.02b 1.00±0.04d 

120 0.50±0.01c 0.35±0b 0.28±0.01b 1.16±0.03c 

240 0.56±0.01b 0.45±0.01a 0.40±0.01a 1.42±0.02b 

240sw 0.65±0.00a 0.49±0.03a 0.46±0.02a 1.56±0.05a 

Normal 

10 0.10±0.00e 0d 0d 0.10±0.01e 

85 0.29±0.01d 0.21±0.01c 0.16±0c 0.65±0d 

120 0.33±0.01c 0.23±0bc 0.17±0c 0.74±0.01c 

240 0.41±0.01b 0.27±0.02ab 0.20±0.01b 0.86±0.02b 

240sw 0.47±0.01a 0.29±0a 0.25±0.01a 1.00±0.02a 

High-amylose 

10 0.15±0.01d 0d 0d 0.15±0.01e 

85 0.45±0.01c 0.30±0.02c 0.25±0c 1.02±0.02d 

120 0.53±0.01b 0.40±0.02b 0.31±0.01c 1.26±0.02c 

240 0.55±0b 0.44±0b 0.39±0.02b 1.38±0.01b 

240sw** 0.66±0.01a 0.53±0.01a 0.55±0.02a 1.70±0.04a 

 

*Different letters indicate significant difference (n=2; P<0.05) between each starch type in each 

column; **sw, 240% acetic anhydride was added stepwise in three portions. 

Table 2.2. Distribution of acetyl group in starch AGU determined by perpropionylation of 

partially acetylated starches subtracted for propionate NMR signals. 

Starch 

Acetic 

anhydride 

(%) 

Acetyl at 

C-2&C-3 

 

Acetyl at 

C-6 

 

Total 

acetyl DS 

Propionyl 

DS 
Total DS 

Waxy 10 0.13±0.01d 0e 0.13±0.01e 2.84±0.06a 2.97±0.04a 
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85 0.74±0.01c 0.28±0.03d 1.02±0.04d 2.02±0.04b 3.04±0.08a 

120 0.78±0.01c 0.35±0.01c 1.13±0.02c 1.91±0.02b 3.04±0.03a 

240 0.92±0.01b 0.42±0.01b 1.34±0.02b 1.71±0.02c 3.05±0.02a 

240sw 0.98±0.01a 0.53±0.01a 1.51±0.02a 1.50±0.02d 3.01±0.01a 

Normal 

10 0.11±0.01d 0d 0.11±0.01e 2.90±0a 3.01±0.01bc 

85 0.51±0.01c 0.15±0.01c 0.65±0d 2.44±0.01b 3.09±0.01a 

120 0.60±0.02b 0.18±0.01b 0.78±0.01c 2.28±0c 3.07±0.01a 

240 0.64±0.01b 0.21±0.01b 0.85±0.02b 2.14±0d 2.99±0.01c 

240sw 0.74±0.02a 0.31±0.01a 1.05±0.03a 2.00±0.01e 3.05±0.02ab 

High-amylose 

10 0.14±0.01d 0d 0.14±0.01e 2.84±0.01a 2.98±0.01b 

85 0.73±0.02c 0.28±0c 1.02±0.02d 2.12±0.04b 3.13±0.02a 

120 0.83±0.02b 0.38±0.01b 1.21±0.04c 1.88±0.02c 3.09±0.05a 

240 0.89±0.01b 0.42±0.01b 1.31±0b 1.76±0.01d 3.07±0.01ab 

240sw** 1.06±0.01a 0.55±0.02a 1.61±0.03a 1.41±0.01e 3.02±0.02ab 

*Different letters indicate significant difference (n=2; P<0.05) between each starch type in each 

column; **sw, 240% acetic anhydride was added stepwise in three portions. 

 Conclusions  

 Peracetylation using deuterated acetic anhydride was a preferred pretreatment over 

perpropionylation for determining the distribution of acetyl group by 1H NMR, because 

separation of acetyl proton signals after peracetylation was clear and unambiguous. In the case of 

perpropionylation, methylene signal interfered with acetyl protons on O-6 position, and the 

resolution of O-2 and O-3 acetyl methyl resonance was poor. At low levels of esterification, C-2 

hydroxyl group was most preferred over C-3-hydroxyl and the C-6-hydroxyl. The 

regioselectivity at C-2 was diminished as more acetic anhydride was used. Amylose content had 

no evident effect on the distribution of acetyl on AGU.  
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Chapter 3 - Preparation of highly substituted starch 

octenylsuccinate using granular and pre-gelatinized acetylated high-

amylose maize starch 

   Abstract 

 Starch acetate octenylsuccinate mixed esters were prepared by a two-stage solvent-free 

melting reaction. High-amylose maize starch was first acetylated in aqueous medium to degree 

of substitution (DS) between 0.53-1.71 and pre-gelatinized. Acetylated starches before and after 

pre-gelatinization were reacted in excessive octenylsuccinic anhydride (OSA) at 160 °C to form 

a reactive melt, followed by purification with ethanol. Combined DS of starch esters ranged from 

0.97 to 2.85. Glass transition temperature of the starch esters were between 53 to 107 °C. Pre-

gelatinization of starch acetate of DS 0.53 and 0.89 resulted in significantly higher DS in 

subsequent octenyl succinate reaction; However, pregelatinization only showed marginal 

improvement when starch acetate DS was 1.3 or 1.7. A scale-up synthesis using DS 1.33 starch 

acetate (60 g) demonstrated excellent feasibility of such method in large-scale preparation. 

Unbounded octenylsuccinic acid in was 0.4% by weight in final purified starch ester in the scale-

up experiment. 

 Keywords  

Starch ester, hydrophobic starch, solvent-free synthesis, thermoplastic starch, OSA-

modified starch, starch acetate 

 Abbreviations 

OS-Ac-starch, octenylsuccinylated acetylated starch; pregel, pre-gelatinized starch. DS, 

degree of substitution; RE, reaction efficiency; Tg, glass transition temperature; TFA, 
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trifluoroacetic acid; DMSO, dimethyl sulfoxide; TMS, tetramethylsilane; OSA, octenylsuccinic 

anhydride; 

 Introduction  

 Starch is an abundant, low cost, and renewable natural polymer that is produced by 

higher plants as a storage polysaccharide. Besides being an important component of human diets, 

starch can be used in a number of industrial applications such as adhesives for paper, oil drilling, 

and cosmetics (BeMiller & Whistler, 2009). Starch has been studied for  as an alternative for 

plastics from 1960s (BeMiller & Whistler, 2009); however, the high hydrophilicity and 

brittleness hurdled starch from producing satisfactory products, even after high amount addition 

of plasticizers such as glycerol, water, and sugar alcohols (Talja, Helén, Roos, & Jouppila, 

2007).  

Esterification of starch has been reported as an effective method to overcome some limits 

of native starch materials through disrupting starch recrystallization and lowering glass transition 

temperature (Tg) (Shogren, 1996). Depending on the degree of substitution (DS) and type of 

substituent, water resistance of starch materials can be largely improved (Winkler, Vorwerg & 

Rihm, 2014). The esterification process refers to reacting starch with esterifying reagents, most 

commonly being alkyl anhydride and chloride, graft ester to starch hydroxyl groups. Ester 

substituents that have been studied include short chain carboxylates (Garg & Jana, 2011), 

succinate (Chang, Qian, Anderson, & Ma, 2012), alkenylsuccinate (Chi et al., 2007; Jeon, 

Lowell, & Gross, 1999), malate (Zuo et al., 2013), and long chain fatty acid esters (Gao, Luo, & 

Luo, 2012). Typically, ester substituents must bound at high DS to impart internal plasticization 

and deliver functional properties such as water resistance and thermoplasticity (Fringant et al., 

1998). While synthesis of low DS starch esters can be carried out by mixing acid anhydride, 
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chloride, or vinyl esters in aqueous slurries of starch in presence of a base, high DS starch ester 

synthesis is much more challenging, particularly in the cases when the substituents contain long 

alkenyl chains. Namazi et al. (2011) esterified starch with C1-C16 acyl groups in aqueous 

medium and reported decreasing reaction efficiency (RE) and DS as chain length increased. Chi 

et al. (2007) reported DS of dodecenyl succinic anhydride modified starch in aqueous medium 

could not pass DS 0.026 even after pre-emulsifying the reagent. Major hurdles in high DS 

reactions are (1) lack of suitable solvent to solubilize starch and starch ester throughout reaction 

because starch’s hydrophobicity undergoes substantial change during esterification, (2) removal 

of unreacted chemicals and byproducts, and (3) degradation of starch backbone. To overcome 

such challenges, approaches to improve starch-solvent-reagent compatibility have been studied 

and achieved some success. Use of organic media, e.g. pyridine (Aburto, Alric, & Borredon, 

1999; Fringant et al., 1998), molten imidazole (Liebert et al., 2011; Neumann, Wiege, & 

Warwel, 2002) and dimethyl sulfoxide (Junistia et al., 2008; Henning Winkler et al., 2013) kept 

starch ester solubilized throughout reactions and have become choices to produce highly 

esterified starch in literatures. However, high cost and toxicity of those solvents, as well as 

purification difficulties, hurdled large-scale synthesis. More recently, use of ionic liquids, e.g. 1-

butyl-3-methylimidazolium chloride (Biswas, Shogren, Stevenson, Willett, & Bhowmik, 2006) 

have become popular in starch esterification and achieved comparable DS to starch esters 

synthesized in organic media. In a review paper by Wilpiszewska and Spychaj (2011), ionic 

liquids have been claimed as “green solvent” in many ways such as low vapor pressure, non-

flammability, and recyclability; however, large-scale synthesis is still not feasible because ionic 

liquids are uneconomic and difficult to recycle, and pollution in water ways (Laus et al., 2005).  
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While all above studies aimed to increase starch solubility in reaction, a few studies 

carried out solvent-free synthesis and also achieved high DS (Aburto, Alric, & Borredon, 1999; 

Aburto et al., 2005; Shogren, 2003). Aburto, Alric, et al. (1999) first reported an approach 

utilizing starch-bound formic acid ester as an intermolecular plasticizer and achieved high DS in 

various starch fatty acid ester synthesis. In their work, starch was first reacted with formic acid to 

about DS 1.0 to impart a good compatibility in fatty acid chloride, and then heated with fatty 

acid chloride in absence of other chemicals to obtain high DS formated fatty acid starch ester. 

However, liberated HCl was reported as a major issue with this reaction setting, because HCl 

rapidly degraded the starch and caused low yield and discoloration (Aburto, Alric, & Borredon, 

1999).  

To resolve the acid degradation, using a different acyl donor e.g. octenylsuccinic 

anhydride (OSA), could be a choice because OSA release water as byproduct, which is clearly 

advantageous to acyl chlorides that release HCl. While low DS OSA modified starch is chiefly 

synthesized in aqueous media (Altuna et al., 2018; Sweedman et al., 2013), solvent-free high DS 

octenylsuccinic starch synthesis has only been reported by Shogren (2003) in milligram levels by 

heating starch, acetic acid, and OSA at 1/1/1 at 180 °C in differential scanning colorimetry 

(DSC) pans. In this paper, we propose a novel synthesis pathway to first acetylate the starch in 

water and followed by a melting reaction of dry starch acetate in excessive OSA to foster a high 

level of octenylsuccinylation (OS) (Fig 3.1). Furthermore, we pre-gelatinized the acetylated 

starch to investigate the effect of pre-gelatinization to subsequent OSA-starch reaction. 
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Figure 3.1. Solvent free two-stage starch mixed ester synthesis involving acetylation of 

starch in aqueous medium and subsequent octenylsuccinylation by dry heating starch 

acetate in octenylsuccinic anhydride. 

 Materials and methods 

 Materials 

High-amylose starches (HYLON™ VII) was obtained from Ingredion Incorporated 

(Bridgewater, NJ). Acetic anhydride, sodium hydroxide, acetonitrile, trifluoroacetic acid (TFA), 

dimethyl sulfoxide (DMSO) and ethanol were purchased from Fisher Scientific (Waltham, MA). 

OSA was kindly provided by Gulf Bayport Chemicals (Pasadena, TX). Deuterium oxide, 

DMSO-d6 and tetramethylsilane (TMS) were purchased from Sigma-Aldrich (St. Louis, MO). 

 Starch acetylation  

High-amylose maize starch (200 g, 11% moisture) was slurried in distilled water to form 

a 30% solid slurry in a 4-L bucket. The bucket was jacketed in a polystyrene foam cooler 

containing ice water and the slurry was stirred by an overhead mixer for 30 mins. pH of starch 

slurry was adjusted and maintained at 8.0 ± 0.1 by a pH controller (Eutech Instruments, Vernon 

Hills, Illinois) coupled to a tubing pump (Masterflex, Gelsenkirchen, Germany) delivering 10 N 

sodium hydroxide. Acetic anhydride (50, 100, 150, and 200% to weight of dry starch) was 

introduced using a peristaltic pump at about 1% acetic anhydride per min. After the designated 
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amount of acetic anhydride was added and the pH was stable at 8.0 for 10 minutes, the slurry 

was adjusted to pH 6.0 using 3 N HCl and recovered by vacuum filtration. Each starch was 

washed three times with 1.5 L distilled water and dried in a vacuum oven at 40 °C overnight. 

Dried starch acetates were ground to pass a #60 mesh sieve and stored in an air tight container. 

DS of acetylation was determined using 1H NMR (Appendix A). 

 Pre-gelatinization of starch 

 Unmodified or acetylated high-amylose maize starch (10 g each, dry weight) was 

suspended in distilled water to make a 5% solid slurry. Each slurry was heated directly on a 

heating plate and boiled for 10 min to precook the starch. The precooked starch slurry was 

transferred to a 250-mL hydrothermal reactor (HydrionScientific, Shanghai, China) and heated in 

an oven at until the slurry had reached 130 °C for 20 mins (oven setting 140 °C; time for reactor 

content to reach 130 °C pre-determined by heating mineral oil). At the end of the pre-

gelatinization process, the slurry was smeared directly on a glass slide and viewed by a light 

microscope to ensure Maltese cross disappeared and freeze-dried to obtain pre-gelatinized starch 

(pregel).    

 Synthesis and purification of octenylsuccinic starch acetate (OS-Ac-starch) (Fig 3.2) 

 OS-Ac-starch synthesized by dry heating  

Acetylated starch was dried in a vacuum oven at 80 °C for 2 h and weighed (5 g) into a glass 

bottle (ACE Glass Incorporated, Vineland, NJ). OSA (20 g) was then added into the bottle and 

the mixture was stirred by a magnetic stirring bar for 1 h. An aliquant of the mixture (20 µL) was 

transferred to a differential scanning calorimeter (DSC) pan and analyzed by DSC (see section 

2.9.2). The rest of the mixture was heated in an air-forced oven pre-heated to 160 °C. During the 

first hour, the mixture was swirled manually every 5 min to prevent settling of the starch. Once 
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the starch formed a paste, the bottle was left undisturbed for a total heating time of 4 h at 160 °C. 

Pure ethanol (50 mL) was added after the mixture was cooled to approximately 70 °C. The bottle 

was capped and shook on an oscillating shaker (Eberbach Corp. Ann Arbor, MI) vigorously for 2 

h to disperse the hot melt. One volume of water (50 mL) was added to precipitate the starch. 

Flocculent precipitation was collected by a generic kitchen strainer and subjected to another 

ethanol wash for a total of 4 times. The resulting octenylsuccinylated acetylated starch (OS-Ac-

starch), which was a white mass resembling a wheat flour dough, was soaked in 500 mL water 

overnight and dried in a vacuum oven at 60 °C overnight. In the cases of using unmodified starch 

and unmodified pre-gel as starting materials, simple ethanol wash and filtration was sufficient to 

recover the starch because the unmodified starches were clearly powdery and settled out from 

ethanol after reaction. DS of octenylsuccinylation was determined using HPLC (Appendix D) 

 

Figure 3.2. Synthesis diagram of octenylsuccinylated acetylated starch (OS-Ac-starch) 

using granular and pre-gelatinized (pregel) acetylated starch; methods of purification were 

tested in a separate sample set.  

 Fractionation of OS-Ac-starch  



61 

Aiming to increase starch ester recovery yield, a separate set of experiment was carried out to 

collect OS-Ac-starch in two fractions. OSA (40 g) and starch acetates (10 g) was reacted 

similarly as shown in Fig 3.2. Cooled melt was then dispersed in 100 mL pure ethanol and 

centrifuged at 7500×g for 20 min. The pellet was subjected to ethanol wash for a total of three 

times and denoted as “ethanol-insoluble” fraction. Pooled supernatant was purified by water 

precipitation and denoted as “ethanol-soluble” fraction (Fig 3.2).   

 Scale-up of OS-Ac-starch synthesis   

To determine feasibility of scale-up, a reaction of 60 g starch acetate (DS 1.33) and 240 mL 

OSA was carried out in a 950-mL bottle (ACE Glass Incorporated, Vineland, NJ). Synthesis was 

the same as in section 2.4.1 except that the purification was carried out in a 2.5 L glass jar and 

with mechanical stirrer.  

 Microscopic examination  

Starch materials were examined under a light microscope (Olympus BX51, Tokyo, Japan) 

equipped with polarization lens. Starch slurry after pre-gelatinization was examined directly to 

ensure that the Maltese cross was lost for all starch granules. Dried starch acetates (10 mg) was 

vortexed in 1 mL mixture of glycerol and water (50:50, v/v) and observed. Starch-OSA melt 

made by DSC was dispersed in pure ethanol at 1:10 w/v.   

 X-ray diffraction (XRD)  

Moisture of native, acetylated starch and pregels was uniformly dried to 5% moisture using a 

vacuum oven. The XRD measurements were carried out at 35 Kv and 20 Ma with a theta-

compensating slit and a diffracted beam monochromator (PANalytical, Almelo, The 

Netherlands). The diffractograms were recorded between 2 and 35° (2θ). Crystallinity is 
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calculated by dividing the crystal peaks over amorphous area in OriginPro 8.5 software 

(OriginLab Corporation, Northampton, MA). 

 Thermal properties of starch acetate and OS-Ac-starch 

 Discolor temperatures of OS-Ac-starch 

Temperature that OS-Ac-starch began to discolor was determined visually in a 

conventional capillary melting temperature apparatus (Barnstead Thermolyne, Dubuque, IA). 

 DSC analysis of starch esters 

Gelatinization properties of starch acetates (granular and pregel) were measured by a 

DSC-8000 (Perkin-Elmer, Norwalk, CT). Starch acetates (5 mg) and water (20 µL) were 

weighed in a DSC pan and equilibrated overnight. Each pan was heated from 20 to 120 °C at 10 

°C/min.  

Glass transition of the OS-Ac-starches was determined at different moisture levels. 

Rehydration of the samples was carried out in a humidity chamber due to their non-wetting, 

hydrophobic natural. Vacuum dried OS-Ac-starches were placed in a 100% RH chamber at 25 

°C for 1-7 days to rehydrate. Moisture absorption was determined by weight difference after 1, 2, 

3, 5, and 7 days. The OS-Ac-starch at moisture level zero (dry), one (after 1 day) and two (after 7 

days) were subjects to thermal analysis. OS-Ac-starch (Ca. 15 µg) in the DSC pan was heated 

from 25 to 160 °C, quenched to -10 °C, and reheated from -10 to 160 °C at 10 °C/min. DSC data 

was analyzed using Universal Analysis software (TA Instruments, New Castle, DE).       

 Statistical analysis 

All starch ester synthesis was carried out in duplicates. NMR, HPLC, and DSC analysis 

were average values of two analysis. DS, RE, and thermal property changes were analyzed by 
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one-way analysis of variance (ANOVA). A probability of P ≤ 0.05 was considered significant. 

Statistical procedures were carried out by SAS 9.3 (SAS Institute; Cary, NC).      

 Results and discussion 

 Properties and characterization of starch acetate 

 DS determination by NMR 

After acetylation, 1H NMR spectra showed emerging methyl signals at 1.90-2.15 ppm, 

which intensified as the level of acetic anhydride increased (Appendix A). Four DS values were 

calculated using the acetyl peak area to starch proton signals. In the spectrum of native starch, 

H2-H6 protons signals showed in 3-4 ppm range and these signals broadened after acetylation. 

This could be explained by that carbonyl oxygen of the acetyl increased electron negativity of 

the neighboring protons (Kono, 2013). DS values of 50, 100, 150, and 200% acetic anhydride 

modified starch acetate were 0.53±0.03, 0.89±0.05, 1.33±0.11, and 1.71±0.08, respectively. 

It was noteworthy that swelling of starch granules during the acetylation was first 

increased and then decreased as starch became more hydrophobic. Initial granule swelling 

rendered dewatering and drying very difficult. For example, the starch slurry was difficult to 

dewater when 50% acetic anhydride was added but can be readily filtered after 100% acetic 

anhydride was added. Because the use of concentrated alkali, localized pasting of starch must be 

avoided, by quick dispersion of alkali with sufficient agitation.  

 Pre-gelatinized starch acetate 

Pre-gelatinization intended to destroy the remaining granular structure of starch acetate. 

Owning to higher amylose content, the starch had higher gelatinization temperature than normal 

maize starch (Luo & Shi, 2012). Therefore, an autoclaving process was necessary. Gelatinization 
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and freeze-drying did not alter the starch acetyl content, the DS of pre-gelatinized starch acetate 

were 0.53±0.02, 0.88±0.02, 1.30±0.04, and 1.71±0.01, respectively. 

 Crystallinity of starch acetate 

X-ray diffractograms for granular and gelatinized starch acetate are shown in Appendix B. 

Crystallinity values are reported in Table 3.1. Type B crystal pattern was exhibited for 

unmodified starch, unmodified pre-gel, and starch acetate (DS 0.53) where crystallinity peaks at 

5°, 15°, 17°, 20°, 22°, and 23° were observed (Cheetham & Tao, 1998). The crystallinity of 

unmodified starch was 15.7%, which was slightly lower than typical crystallinity (17.6% at 10% 

moisture) value reported for high-amylose maize starch (Cheetham & Tao, 1998). This is 

probably due to minimization of moisture content of the samples in the preparation of XRD 

analysis. Because starch acetates of DS 1.3 and 1.7 were difficult hydrate, all starches were dried 

to ~4% moisture to match the original moisture of DS 1.3 and 1.7 starch acetate (3-4%). Increase 

in acetyl DS resulted in a decreased crystallinity. This was expected as because acetyl group 

disrupt and reduce the formation of intermolecular H-bond, which is known to hold together 

starch semicrystal structure (Luo & Shi, 2012). Crystallinity was greatly reduced and 

disappeared in starch acetate DS > 0.53, which was in agreement with Shogren (1996). 

Crystallinity was reduced, but detectable, in unmodified pregels even the granular structure was 

destroyed. This reduced crystallinity was attributed to retrogradation of starch, particularly 

among amylose chains, occurred during freeze-drying. DSC demonstrated that after acetylation, 

the temperature required to gelatinize starch decrease significantly (Appendix C). Pre-gelatinized 

unmodified starch showed lower melting temperature, which were presumably from disruption 

of re-associated starch (Table 3.1). No melting peaks were detected in acetylated pregels. 
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Table 3.1. Gelatinization properties and crystallinity of unmodified and acetylated high-

amylose maize starch as determined by DSC and X-ray diffraction. 

Sample 
Crystallinity 

% 
To,°CA Tp,°CA Tc,°CA ΔH J/g 

High-amylose 

starch 
15.7±0.08a 68.7±2.3a 90.3±1.0a 126.9±1.6a 13.0±0.1a 

Pregel 6.9±0.03c 50.9±1.4b 60.1±1.3c 79.3±2.0c 6.1±0.3c 

DS 0.53 11.6±0.05b 51.1±0.4b 69.1±1.8b 94.3±0.1b 7.7±0.1b 

DS 0.89 0 49.2±0.4bc 64.4±1.1c 91.6±1.0b 6.0±0.1c 

DS 1.33 0 48.9±1.6bc 62.2±0.4c 82.7±0.4c 4.4±0.3d 

DS 1.71 0 44.2±0.4c 54.6±0.7d 73.7±0.4d 3.2±0.1e 
A To, Tp, and Tc represent the onset, peak and conclusion temperature of the endothermic peaks; starch to 

water ratio was 1:3 w/w. Different letters indicate significant difference (n=2-3; P<0.05) between 

each starch type in each column; 

 Morphology of starch acetate before and after heated in OSA (by DSC) 

Starch acetates were examined under normal and polarized light to document structural 

change during heating in OSA. Unmodified high-amylose maize starch contained a significant 

part of elongated granule that displayed skewed or no Maltese cross (Fig 3.3). According to 

Jiang et al. (2010), these elongated granules were mainly starchplasts that failed to separate and 

comprise more than 85% amylose. For starch granules that showed and retained distinct Maltese 

cross after acetylation, their amylopectin content was higher and probably more crystallized, 

rendering them more difficult to be acetylated. As DS increased, starch granules exhibited rough 

surfaces, aggregation, and irregular shapes. For starch acetates DS 0.89 and higher, loss of 

Maltese cross was observed. However, most of the granules still displayed, although less distinct, 

Maltese cross (Fig 3.3). Due to the low crystallinity in the high-amylose starch, acetic anhydride 

diffuses into the starch granule more easily (Luo & Shi, 2012). Therefore, it is reasonable to 

believe the reaction was rather heterogeneous and favored in those elongated, amylose-
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dominated granules. A good way to test the heterogenicity of acetylation is  by FT-IR 

microspectroscopic census (Bai, Shi, & Wetzel, 2009). Regardless of acetyl DS, pre-

gelatinization effectively destroyed the granular structure and the starch acetate were flaky 

particles after freeze-drying (Fig 3.3). 

 

Figure 3.3. Microscopic images of granular and pre-gelatinized starch (pregel) acetates in 

50% glycerol under normal (lighter background) and polarized light (darker background); 

DS, degree of substitution. 
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Granular starch acetate melted after heated in OSA. Number of remaining visible 

granules and Maltese cross clearly decreased with increased acetyl DS as demonstrated in Fig 

3.4. The melting was probably due to increased starch-OSA compatibility brought by acetyl 

substituents. Above DS 1.33, the reaction mixtures appeared a homogenous transparent gel, and 

upon light microscopic examination, starch remnant was hardly found (Fig 3.4), whereas the 

reaction mixtures from the low DS starch acetate (0.53 and 0.89) were opaque gel with weeping 

OSA on top. After heating in OSA, those flakes of starch acetate pregels showed blur edges, 

which is a sign of partial solubilization. At DS above 1.30, the flakes fragmented and eventually 

melted completely (Fig 3.4). DSC thermograms revealed large exothermic events after ~125 °C 

indicating esterification reaction took place (Appendix C). 
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Figure 3.4. Microscopic images of unmodified and acetylated high-amylose maize starch 

(granular and pre-gelatinized) heated with octenylsuccinic anhydride (400% starch weight) 

from 25 to 160 °C in DSC pans; Images were taken in ethanol dispersion under normal 

light (bright background) and polarized light (dark background); DS in the images is the 

degree of substitution for the acetylated starches; “Pregel” in the images means that the 

starch was pre-gelatinized. 

 OS-Ac-starch synthesized with granular and pre-gelatinized acetylated starches 

A 12-point calibration (0.032, 0.16, 0.32, 0.48, 0.64, 0.8, 0.96, 1.28, 1.6, 1.44, 1.92, and 

2.4 µg per 10 µL injection) of OS acid was made from serial dilution of OSA. The standard 

curve (y=1010.8x; R2=0.9998) was an excellent linear regression in the selected range of OS 
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acid concentration. Three OS acid isomers (1-OS acid, cis-2-OS acid, trans-2-OS acid) were 

eluted between 1.8-2.2 min, which was in agreement with (Qiu et al. 2012) (Appendix D).   

Due to excessive OSA used as reactive solvent, unbound OS acid must be removed. In 

our preliminary studies, dispensability of reaction mixture was tested in methanol, ethanol, iso-

propanol, chloroform, and hexane. Ethanol was the reagent of choice because the reaction melt 

was effectively dispersed, and the dispersion could be mixed with water to precipitate the 

hydrophobic starch esters. Three consecutive ethanol washes successfully removed unbound OS 

acid and the starch material showed firmer texture after each wash (Appendix E). As Table 3.2 

shows, free OS acid value (%OSfree) were mostly between 0.1-0.4%, which are close to the limit 

(0.3%) set by Joint FAO/WHO Expert Committee on Food Additives (JECFA) of United Nation 

for food-grade OSA-starch. Bound OS acid (%OSbound) from each OS-Ac-starch was converted 

to DS (Table 3.2). DS of OS modification ranged between 0.44-1.25 and showed positive 

relation to DS of acetylation (Table 3.2), this is because acetylation had (1) disrupted the H-

bonds and freed more reaction sites, and (2) increased hydrophobicity of starch to allow melting 

taking place in OSA. Without acetylation, pre-gelatinization did not render the starch more 

reactive to OSA. At acetyl DS 0.53 and 0.89, pregelatinization resulted in significantly higher 

level of OS substitution compared to using granular starch acetate (sample 3-6) but the 

effectiveness of pregelatinization diminished at DS 1.33 and above (sample 7-10). The improved 

DS in sample 3-6 might due to the complete destruction of granular structure and more exposure 

of hydroxyl group for reaction. However, as acetylation DS increased, starch granular structure, 

as well as crystallinity, have already been greatly weakened; therefore, pre-gelatinization may 

have not provided significant improvement to octenylsuccinylation. Moreover, the limited 
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availability of hydroxyl group for octenylsuccinylation in highly substituted acetylated starch 

might have further reduced the effectiveness of pre-gelatinization. 

A scale-up from 5 g to 60 g was carried out using granular acetylated starch. Same level 

of DS was achieved in both experiments (sample 7 and 11). The %RE was slightly lower in the 

scale-up experiment, which was probably due to the lost material that clung to utensils during 

purification. 

Table 3.2. Octenylsuccinylated acetylated starch (OS-Ac-starch) synthesized by dry heating 

granular and pre-gelatinized (pregel) acetylated high-amylose maize starch in 400% starch 

weight of octenylsuccinic anhydride (OSA); DS, degree of substitution. 

Sample # Acetyl DS 

OS-Ac-

starch 

yield (g) 

OS DS %OSbound %OSfree 

Acetylated 

starch % 

recovery* 

%Reaction 

efficiency 

1 Unmodified 4.76±0.06 - - - - - 

2 
Unmodified 

(pregel) 
4.74±0.04 0.02±0 2.07±0.09e - 98 0.49±0.02e 

3 0.53 0.32±0.02 0.44±0.01d 33.26±1.32d 0.3±0cd 67 0.53±0.02e 

4 0.53 (pregel) 0.32±0.01 0.62±0.03c 41.10±1.45c 0.2±0de 59 0.66±0.02e 

5 0.89 3.2±0.02 1.08±0.06b 53.25±0.43ab 0.9±0.1a 47 8.52±0.07d 

6 0.88 (pregel) 3.51±0.02 1.41±0.01a 59.77±0.30a 0.2±0cde 40 10.49±0.05c 

7 1.33 5.76±0.06 1.19±0.01ab 53.30±1.51ab 0.6±0b 47 15.35±0.43ab 

8 1.30 (pregel) 5.81±0.09 1.23±0.01ab 54.19±1.86ab 0.2±0de 46 15.74±0.54a 

9 1.71 6.14±0.05 1.25±0.04ab 52.19±1.33ab 0.1±0e 48 16.24±0.41a 

10 1.71 (pregel) 6.21±0.08 1.14±0.01b 50.57±0.90ab 0.2±0de 49 15.70±0.28a 

11 
1.33 scale-

up 
64.29±1.2 1.20±0.09ab 53.68±1.81ab 0.4±0c 46 14.38±0.49b 

* Weight fraction of acetylated starch in OS-Ac-starch divided by initial acetylated starch 

weight (5 g for sample 1-10, 60 g for sample 11). *Different letters indicate significant 

difference (n=2-4; P<0.05) between each starch type in each column; each sample was 

synthesized in duplicate using the same starch acetate composite.  
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 Ethanol-soluble and ethanol-insoluble fractions of OS-Ac-starches  

 Yield of OS-Ac-starch was lower our expectation as they translate to only about 46-67% 

of initial acetylated starch weight (Table 3.2). Therefore, we suspect that there is an ethanol-

insoluble fraction washed away, as we only collected the material solubilized in ethanol and then 

precipitated by water. In another set of experiments, we collected the “washed-way” fraction by 

centrifuging starch-ethanol dispersion during the first wash cycle and recovered OS-Ac-starches 

in two fractions (Table 3.3). Ethanol-soluble fraction showed similar DS as to the OS-Ac-starch 

sample 3-10 in Table 3.2, while the ethanol-insoluble fraction was only substituted at DS 0.24-

0.64, regardless of whether pre-gelatinized. By collecting the ethanol insoluble fraction, 

acetylated starch recuperation recovery increased from about 45% to 75%, proving the loss of 

recovery yield was due to wash away of ethanol-insoluble fraction. Considering together with 

microscopic analysis in Fig 3.3, it is reasonable to conclude the octenylsuccinylation was 

heterogenous and unfavored in those, possibly under-acetylated, starch materials.  

Table 3.3. Octenylsuccinylated acetylated starch fractioned based on ethanol solubility.    

Acetyl 

DS 
Ethanol soluble fraction  Ethanol-insoluble fraction  

Acetylated 

starch % 

Recovery* 

%RE 

 Yield %OSbound DS  Yield %OSbound DS    

DS 0.53 0.81±0.04d 35.11±0.50e 0.46±0.01e  8.98±0.45a 22.50±0.38d 0.24±0.01d  75 5.5±0.1d 

0.53 (pregel) 0.77±0.01d 41.25±0.64d 0.62±0.02d  8.87±0.06ab 21.93±0.97d 0.25±0.01d  74 5.7±0.1d 

DS 0.89 5.76±0.47c 56.30±0.33b 1.22±0.03bc  7.91±0.17abc 33.18±0.19c 0.44±0c  80 14.6±0.1c 

0.88 (pregel) 6.03±0.13c 61.98±0.29a 1.54±0.02a  7.69±0.09c 34.97±1.14bc 0.51±0.03b  73 16.1±0.2b 

DS 1.33 10.11±0.33b 53.93±1.49bc 1.14±0.07c  4.88±0.41d 38.26±0.02a 0.61±0a  78 17.8±0.2a 

1.30 (pregel) 10.36±0.22b 55.40±0.23b 1.29±0.01b  4.69±0.10d 37.19±0.18ab 0.62±0a  76 18.7±0.2a 

DS 1.71 12.03±0.20a 51.59±0.53c 1.17±0.02c  2.85±0.23e 36.30±0.80ab 0.61±0.02a  77 17.9±0.2a 

1.71 (pregel) 11.84±0.08a 52.41±0.33c 1.23±0.02bc  2.79±0.01e 36.42±0.31ab 0.64±0.01a  74 18.1±0.2a 

*: Sum of weight fraction of acetylated starch weight both fractions divided by initial acetylated 

starch weight (10 g); unreacted OS% were 2.0-3.4% and 0.1%-0.2% in ethanol soluble and 



72 

ethanol insoluble fractions, respectively; different letters indicate significant difference (n=2; 

P<0.05) between each starch type in each column; each sample was synthesized in duplicate 

using the same starch acetate composite; detailed fractionation scheme was drawn in Fig 3.2; 

%RE, reaction efficiency of octenylsuccinic anhydride; DS, degree of substitution. 

 Moisture uptake of OS-Ac-starches 

The moisture uptake of OS-Ac-starches was hyperbolic during seven-day hydration in a 

100% RH chamber (Fig 3.5). For all starch esters, moisture content increased rapidly during the 

first two days and plateaued after the third day. The maximum water content ranged from 25.1% 

to 4.4% for OS-Ac-starch that has lowest (0.53 acetyl, 0.44 OS) to highest (1.71 acetyl, 1.24 OS) 

combined DS. As expected, the maximum moisture content for starch esters reversely correlated 

with their combined DS, because water is repelled by the non-polar ester substituents.  
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Figure 3.5. Moisture uptake of octenylsuccinylated acetylated starch esters in humidity 

chamber (100% relative humidity) up to seven days; Ac, acetate; OS, octenylsuccinate; the 

values in the parenthesis are the degree of substitution for Ac and OS groups.  

 Thermal properties of OS-Ac-starch 

 As expected, Tg of dry unsubstituted starches was not detected up to 120 °C (Table 3.4). 

This could be explained by lack of molecular mobility from H-bond constraint. Tg of dry OS-Ac-

starch had Tg between 57.0-106.9 °C, which were significantly lower than unmodified high-

amylose maize starch that has Tg of 230 °C (Shogren, 1996). Ester substituents are small 

moieties that provide intermolecular plasticization to reduce molecular friction and allow starch 

molecules slide against each other more easily at lower temperatures. When heated to above 

those temperatures (Tg), starch esters greatly soften as they undergo “glassy-to-rubbery” 

transition. Extend of specific heat capacity (ΔCp) appeared to increase with DS of OS side chain. 



74 

According to Liebert et al. (2011), glass transition of starch ester is largely contributed by side 

chain re-alignment thus a high substitution level of long side chain should correspond to higher 

ΔCp. Discolor temperatures were determined for the OS-Ac-starch because it is an important 

factor to determine processing temperatures in applications. Temperature that OS-Ac-starch 

began to discolor was between 131-189 °C (Table 3.4). The cause of discoloration is probably 

due to acidity of OS group as because the OS groups were octenylsuccinic acid after the dry 

reaction. Therefore, it is reasonable to see a decrease in discolor temperature as OS substitution 

level increased. Differences between Tg and discolor temperature in certain OS-Ac-starch, i.e. 

Ac(1.33)-OS(1.20), was over one hundred Celsius degrees and should provide large freedom for 

temperature selection during thermal processing. Although there was no prior report on thermal 

properties of high DS OS-Ac-starch, our results showed high consistency with high DS starch 

fatty acid esters. According to Liebert et al., (2011), typical glass-to-rubber transition (Tg) of 

intermediate DS starch esters (chain length between C8-C18) were around 100 °C, where DS 2.5 

and above could further lower the Tg below 50 °C. Winkler et al. (2014) reported Tg of starch 

hexanoate (DS 2.4) was around 70 °C. 

 Moisture appeared to be a good plasticizer in low DS OS-Ac-starch because of its good 

compatibility with large amount of residual hydroxyl groups. With 25% moisture increase, Tg of 

Ac(0.56)-OS(0.44) starch was evidently lowered by from 105 to 36 °C as shown in Fig 3.6. The 

decease of Tg because less pronounce as starch ester DS increased. Tg difference was less than 

ten Celsius degrees due to very low water adsorption (Appendix F). The low adsorption of water, 

together with minor Tg alteration after hydration could make high DS OS-Ac-starch ideal for 

water resistant materials. To alter the Tg of high DS starch esters, oil-like plasticizers, e.g. 

triacetin or polyene glycol, could be more effective than water. 
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Table 3.4. Thermal properties and discolor temperature of octenylsuccinylated acetylated 

starch determined by differential scanning calorimeter (2nd scan) and melting point 

apparatus; values in parenthesis indicate degree of substitution of acetylation and 

octenylsuccinylation. 

Sample 

# 
DS Tgo,°C Tgm,°C Tge,°C ΔCp (J/g°C) 

Discolor 

(°C) 

1 Unmodified - - - - N/A 

2 Unmodified (pregel) - - - - N/A 

3 Ac(0.53)-OS(0.44) 104.8±0.7a 106.9±1.0a 108.2±0.3a 0.199±0.01d N/A 

4 Ac(0.53)-OS(0.62) 101.7±0.6a 103.1±1.1a 105.1±1.2a 0.212±0.003d N/A 

5 Ac(0.89)-OS(1.08) 60.0±2.8b 71.51±2.3b 81.7±1.6b 0.286±0.004c 189±3a 

6 Ac(0.88)-OS(1.41) 59.4±2.1b 64.0±2.6c 73.93±2.6c 0.341±0.004b 178±1b 

7 Ac(1.33)-OS(1.19) 51.0±1.3c 61.0±2.8cd 67.9±1.3d 0.377±0.008a 165±3c 

8 Ac(1.30)-OS(1.23) 52.1±1.5c 58.5±0.8cde 65.8±2.2d 0.387±0.003a 162±3c 

9 Ac(1.71)-OS(1.25) 48.9±1.3c 54.9±1.8de 57.0±1.7e 0.382±0.008a 131±2d 

10 Ac(1.71)-OS(1.14) 50.3±0.5c 53.1±1.3e 57.0±0e 0.376±0.006a 134±2d 

11 
Ac(1.33)-OS(1.20) 

scale-up 
51.3±0.9c 59.5±0.6cde 65.2±0.1d 0.365±0.008ab 160±2c 

different letters indicate significant difference (n=2; P<0.05) between each starch type in each 

column. 
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Figure 3.6. Glass transition (Tg, mid-point) temperature of octenylsuccinylated (OS) 

acetylated (Ac) starch at different moisture contents; values in parenthesis indicate degree 

of substitution of acetylation and octenylsuccinylation.  

 Conclusions  

 Acetylation to intermediate DS renders starch acetate meltable and reactive in OSA 

without aid of hazardous chemicals. Starch-OSA reaction was enhanced by higher acetyl DS. 

Acetylation (DS 1.3-1.7) resulted in higher OS substitution compared to acetylated starches of 

DS < 0.88, because the highly acetylated starches were very soluble/meltable in OSA and yet 

still had ample hydroxy groups for reaction. Pre-gelatinization of starch acetate significantly 

improved the bound OS content in the mixed ester when acetyl DS was below 0.88. Pre-

gelatinization may be used when a high OS, low acetyl starch ester is desired. A scale-up trial 
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using 60 g starch acetate produced 64.29 g OS-Ac-starch esters with similar DS to 5 g batches. 

The mixed esters (acetyl and OS) had combined DS > 2.5, which was adequate to lower the glass 

transition temperature of the starch to below 60°C. Highly substituted starch esters were largely 

hydrophobic and showed great potentials as thermoplastic, water-resistant materials. 
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Chapter 4 - Preparation, structure, and properties of highly 

substituted mixed esters from waxy, normal, and high-amylose 

maize starches 

 Abstract 

 Highly substituted acetylated octenylsuccinic starch esters were prepared using novel 

dry-heating method. Waxy, normal, and high amylose maize starches were acetylated to degree 

of substitution (DS) 0.85-1.31 and further reacted in mixture of octenylsuccinic anhydride and 

triacetin to produce octenylsuccinate (OS) substitution of DS 0.55-1.25. HPLC, FT-IR, and 1H 

NMR revealed similar substitution signals to one produced from conventional pyridine-catalyzed 

method. The mixed starch esters were highly hydrophobic and showed upshift in thermograms at 

56.4 °C, which possibly represented glass transition of OS side group. Plasticized starch mixed 

esters formed a gum mass resembled chewing gum base and showed excellent stretch (360% 

elongation). Stiffness (G’) of the gums was in the chewable range at body temperature and 

underwent approximately 10-fold decrease when heated to 70 °C. Starch esters of high amylose 

maize starch produced by the novel dry-heating method have potentials as bioplastic materials.  

 Keywords 

High DS starch, Hydrophobic starch, Solvent-free synthesis, Thermoplastic starch, 

Octenylsuccinic anhydride modified starch, Starch acetate 

 Abbreviations 

AS, acetylated starch; OS-AC-starch, Octenylsuccinylated acetylated starch; DS, degree of 

substitution; RE, reaction efficiency; Tg, glass transition temperature; TFA, trifluoroacetic acid; 
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DMSO, dimethyl sulfoxide; OSA, octenylsuccinic anhydride; GPC, gel permeation 

chromatography; LVR, liner-viscoelastic region.  

 

 Introduction 

Starch is an abundant renewable resource that is used in a board range of food and non-

food industrial applications. Native starch has limited industrial uses because they are highly 

hydrophilic, susceptible to enzyme and acid breakdown, and require high amount of plasticizers 

when been processed to avoid thermal degradation because of their natural high glass transition 

temperature (Tg) (Kaseem, Hamad, & Deri, 2012; Vieira et al., 2011).  End products of 

processed starch, often as films or foams, are brittle and vulnerable to moisture and gas 

permeation (Shogren, 1996). Starch derivatives, especially starch esters substituted with long 

alkyl side groups were known to have remarkable improved functional properties due to the 

hydrophobic nature and intermolecular plasticization effects offered by the substituents 

(Winkler, Vorwerg, & Rihm, 2014). Of all the characteristics of a starch ester, degree of 

substitution (DS) and substituent type are considered two most effective aspects to alter the 

overall properties of a starch. To render a starch ester thermoplastic and organic solvents 

compatible, the DS of such starch ester need to be above 2.0 in general (Winkler, Vorwerg, & 

Wetzel, 2013). 

Despite many advantages and potentials reported in literatures, there are few commercial 

high DS starch esters at present. A major hurdle preventing large scale synthesis is use of 

solvents such as pyridine, imidazole, and ionic liquids which not only elevate the cost but also 

cause environment pollutions (Ačkar et al., 2015). Solvent-free synthesis of high DS starch ester 

has been reported as a “green” method. Aburto et al. (1999) first reported a solvent-free synthesis 



82 

of starch octanate (C8) by first synthesizing starch formate and subsequent octanoyl chloride 

treatment. They claimed that DS 1.7 starch octanate would be produced by co-heating excessive 

octanoyl chloride and starch formate at 105 °C for 40 min. However, starch degradation was 

severe because of the liberated acid in various stages. Shogren (2003) synthesized a starch 

octenylsuccinate acetate mixed ester by co-heating starch, acetic acid, and octenylsuccinic 

anhydride (OSA) at 1:1:1 to 180 °C and obtained an ester that had DS 0.49 for octenylsuccinate 

and DS 0.34 for acetyl. In the previous chapter, we reported that starch acetylated to DS above 

1.3 was highly reactive in OSA as because OSA alone can be both a highly effective plasticizer 

and acyl donor for starch acetate. Efforts were carried out to develop a true “green” synthesis of 

highly substituted starch ester using OSA as reactive solvent. However, in our previous work, 

excessive amount of OSA (400% of starch weight) was used to achieve the desired DS. Such 

high usage of OSA was due to several reasons: (1) to reduce viscosity of reaction mixture so that 

the reaction was stirrable, and (2) to prevent acid burn as we noted the starch quickly discolored 

when less OSA was used, possibly from high acid concentration in small reaction volume. The 

high amount of OSA imposed low reaction efficiency (around 18%), which, from cost 

perspective, must improve to favor industrial scale preparation Furthermore, excess use of OSA 

also leave large amount of unreacted reagent to remove. In this follow-up study, we aim to 

reduce the use of OSA by incorporating an inert diluent to the reaction system. The resulting 

starch esters was analyzed to evaluate (1) reaction efficiency change by adding a diluent, (2) 

thermal and rheological properties of starch esters with different amylose content in base starch, 

and (3) potential use of the materials as a chewing gum base.  
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 Materials and methods 

 Materials 

Waxy, normal, and high amylose maize starches were obtained from Ingredion 

Incorporated (Bridgewater, NJ). Acetic anhydride, sodium hydroxide, acetonitrile, trifluoroacetic 

acid (TFA), dimethyl sulfoxide (DMSO), pyridine, ethanol, chloroform, acetone, hexane, and 

calcium carbonate were purchased from Fisher Scientific (Waltham, MA). OSA was kindly 

provided by Gulf Bayport Chemicals (Pasadena, TX). Triacetin, deuterium oxide, and DMSO-d6 

and tetramethylsilane (TMS) was purchased from Sigma-Aldrich (St. Louis, MO). Acetylated 

monoglyceride (Acetem 70) was kindly provided by DuPont USA (Wilmington, DE). Pullulan 

standards were purchased from American Polymer Standards Corp (Mentor, OH). 

 Synthesis of starch esters 

 Synthesis of starch acetate 

Waxy, normal, and high amylose starches were acetylated using the method of Luo & 

Shi, (2012) with some modifications: (1) Acetic anhydride (150% starch wt) was used across the 

board for every starch, and (2) 10 N aqueous NaOH was used as pH adjustor and catalyst (Fig 

4.1).  

 Preliminary experiments  

Swelling power of acetylated and octenylsuccinylated acetylated high-amylose maize 

starch (OS-Ac-starch; prepared by solvent-free synthesis from a previous study) were first tested 

in several potential diluents including acetylacetone, ethyl acetoacetate, ethylene glycol 

diacetate, propylene glycol diacetate, diethyl malonate, and triacetin (Appendix G). 

 Synthesis of OS-Ac-starch using triacetin and OSA 
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Triacetin and OSA (20 g each) were mixed with a magnetic stirring bar for 10 min in a 

250-mL glass beaker. To this mixture, starch acetate (10 g) was added, and the mixing was 

continued at 25 °C for 1 h, and then heated in an oil bath at 150 °C. As soon as 150 °C was 

reached, the heating temperature was lowered to 120 °C and maintained at 120 °C for 2 h while 

been constantly stirred by a magnetic bar. The hot melt was then cooled to 50 °C. Pure ethanol 

(50 mL) was added and the content was stirred with an overhead mechanic stirrer to fully 

solubilize the hot melt which soon turned to a homogenous viscous solution. One volume of 

water (50 mL) was added as an antisolvent to precipitate the starch ester. The starch ester was 

collected by a 10-mesh sieve, reconstituted and precipitated for a total of three times using 

ethanol and water. The resulted gum, a white mass resembling a wheat flour dough, was briefly 

kneaded under running water and dried in a vacuum oven at 50 °C overnight. The starch material 

was then ground and passed through a 40-mesh sieve. An overall diagram to synthesis starch 

mixed esters is illustrated in Fig 4.1. 
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Figure 4.1. A flow chart of starch acetylation in aqueous medium and octenylsuccinylation 

using a novel solvent-free melting reaction. 

 Synthesis of OS-Ac-starch in pyridine 

Octenylsuccinylation of AS was synthesized in pyridine to Wang et al., (2011). Briefly, 

high amylose maize starch acetate (DS 1.3) was dried in a vacuum oven at 80 °C for 2 hrs. 

Starch acetate (1 g) was dispersed in 10 mL pyridine at 90 °C. OSA (4 g) was added and the 

reaction proceed for 12 h at 90 °C while constantly stirred. Methanol (50%, 20 mL) was added to 

the mixture to precipitate starch derivatives. The precipitated starch was then dispersed in 

straight methanol (10 mL) and precipitated by adding 10 mL water for a total of four times. The 

resulted precipitate was then dissolved in 20 mL chloroform and shook with 20 mL 0.1 M H2SO4 

in a separatory funnel to extract pyridinium salts into aqueous phase. Finally, the chloroform 

phase was collected and evaporated in a vacuum oven at 50 °C to yield an off-white starch curd 

which was then ground with mortar and pestle.   
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 Characterization of starch mixed esters 

 DS of octenylsuccinate (OS) by HPLC 

Bound and unbound OS contents were determined according to Qiu et al., (2012). 

Reaction efficiency (RE) is calculated using Equation 1.  

𝑅𝐸 = % 𝑏𝑜𝑢𝑛𝑑 𝑂𝑆 × 𝑌
𝑂𝑆𝐴 𝑢𝑠𝑎𝑔𝑒⁄ .        (1) 

Where Y is dry yield of OS-Ac-starch in grams, OSA usage is in grams. 

 Fourier-transform infrared spectroscopy (FT-IR) analysis 

FT-IR spectra was collected in the region of 400-4000 cm-1 using a PerkinElmer 

Spectrum 100 FT-IR spectrometer (Waltham, MA). Pure starch acetate and OS-Ac-starch were 

scanned 32 times at 2 cm-1 resolution and absorption spectra were recorded. 

 1H Nuclear magnetic resonance (1H NMR)  

OS-Ac-starches (30 mg for normal and high amylose starches, 20 mg for waxy starch) 

were dried at 80 °C in a vacuum oven for 2 hours, stirred in 1 mL deuterium oxide at room 

temperature overnight, freeze dried, and dissolved in 1 mL DMSO-d6. The solution was analyzed 

by a Varian 400 MHz system (Varian Inc., Palo Alto, CA) at 25 °C. Sixteen scans were acquired 

for each sample and the relaxation time was 1.0 s. Chemical shift was calibrated to 0 ppm with 

TMS. 

 Differential scanning colorimetry (DSC) analysis 

Ground OS-Ac-starches were dried in a vacuum oven at 50 °C overnight, removed to a 

desiccator for 24 hours and weighed (Ca. 10 µg) into a DSC pan. The sample pan was heated 

from room temperature to 120 °C at 10 °C/min to erase thermal history, quenched to 0 °C, and 

re-scanned to 250 °C at 10 °C/min. The DSC data was analyzed using Universal Analysis 

software (TA Instruments, New Castle, DE). 
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 Molecular weight distribution by gel permeation chromatography (GPC) 

 Native starches and their acetylated counterparts (8 mg) were added into 2 mL DMSO 

and stirred overnight in 80 °C water bath, filtered through 0.45 micro filter and injected into a 

PL-GPC 220 instrument (Polymer Laboratories, Inc., Amherst, MA). Separation was performed 

on three Phenogel 10 μm columns arranged in order of 106 Å, 103 Å and 102 Å pore size 

(Phenomenex, Inc., Torrance, CA, USA), a guard column (Phenomenex, Inc., Torrance, CA), 

and recorded by a differential refractive index detector. Eluent system was DMSO containing 

LiBr (0.55% w/v) at a flow rate of 0.8 mL/min. Column oven temperature was controlled at 80 

°C. Pullulan standards and maltose were used for molecular weight calibration.  

 Solubility of starch esters in organic solvents 

 Starch acetate and OS-Ac-starch (4% w/v) were stirred in chloroform, acetone, hexane, 

DMSO, and triacetin overnight. Opacity of each mixture was estimated against an aqueous 4% 

native starch slurry and recorded as soluble for transparent, partially soluble for reduced opacity, 

and insoluble for complete opaque.  

 Acid thinning for waxy maize starch 

Waxy maize starch (100 g) was slurried in 200 ml water and treated with 2 g concentrated 

HCl (12 N) for 8, 12, and 16 h. Treated starch was recovered by filtration and dried. Alkali 

fluidity of acid treated starch was carried out to verify viscosity change. Briefly, starch (5 g dw) 

was stir in Ca. 9.4 ml water (minor adjusts for moisture compensation). NaOH (0.25 N, 85 ml) 

was added to the starch water and stirred for 3 min. The viscosity of alkali starch solution was 

tested with a Brookfield DV-II+Pro viscometer (Ametek Brookfield, Middleboro, MA) at 25 °C 

under shear rates 10-100 1/s. Molecular weight distribution was determined by GPC procedure. 



88 

 Rheological analysis of starch esters 

  Rheological properties of OS-Ac-starch in organic solvents 

 OS-Ac-starch (1 g) was mixed with DMSO or triacetin at 1:1 (starch/solvent, w/w). The 

mixture was kept at ambient temperature overnight and the starch paste were briefly kneaded to 

ensure thorough cooperation. The starch paste was loaded on a set of 25 mm smooth surface 

parallel plate attached on an ATS rheometer (Canon Instrument Company, Bordentown, NJ) and 

pressed to 2 mm gap. Stress sweep (102-104 Pa) was carried out at 25 °C to find the linear-

viscoelastic region (LVR), which was determined at 10% decrease of initial storage modulus 

(G’). Frequency sweep was carried out in from 1-50 Hz within the LVR. 

 Formulated starch ester as a chewing gum base  

Formulation of starch chewing gum base was adapted from Liu, 2010. As shown in Table 

4.1, plasticizers of choice (triacetin, hydrogenated soybean oil, and acetylated monoglyceride) at 

different amount, denoted as high, mid, and low triacetin formulas, were mixed in a 100-ml 

beaker and heated at 60 °C for one hour to form a one-phase plasticizer. The plasticizer mix was 

then added to starch ester calcium carbonate blend. The mixture was conditioned at 60 °C for 20 

min and kneaded to a uniform dough. The dough rested at room temperature for 24 h before 

assessment. A commercial gum was obtained from water extraction of Trident Chewing Gum 

(washing and kneading the chewing gum in 40 °C water for 10 min).  

Elongation of the gum base was determined by a TA.XT Texture-Analyzer (Texture 

Technologies Corp. and Stable Micro Systems, Ltd., Hamilton, MA) coupled to a double clamp 

geometry (TA-96). Starch gum base was rolled to 5 mm sheet using a rolling pin with 5 mm 

guide. Stripes (40 mm×20 mm) were cut from the gum sheet and clamped to the geometry with 
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each end clamping 10 mm of the gum stripe. The gum was stretched from 20 cm to 170 mm (150 

mm travel distance) at 3.3 mm/s. 

High-amylose based gum balls were slowly pressed to fit the gap (2 mm) of the 

geometry. Stress sweep was carried out from 102-104 Pa, frequency (1-50 Hz) and temperature 

sweeps (20-70 °C) were carried out using 500 Pa, which was determined in stress sweep in the 

LVR of all samples.  

Table 4.1. Formulation of starch ester chewing gum base at different plasticizer levels; 

liquid plasticizers were first heated at 60 °C and mixed to form one phase and then blended 

with starch ester powder and calcium carbonate; commercial chewing gum was kneaded in 

water for 10 min to remove soluble materials. 

Ingredients 
Low 

triacetin 

Mid 

triacetin 

High 

triacetin 

Commercial 

(Trident) 

 g 

Commercial chewing gum 

curd (Trident) 
   10 

OS-Ac-starch 5.6 5.0 4.5  

Triacetin 2.4 3.0 3.5  

Hydrogenated soybean oil 0.5 0.5 0.5  

Acetylated monoglyceride 0.5 0.5 0.5  

Calcium carbonate 1.0 1.0 1.0  

 Statistical analysis  

Swelling power of acetylated and OS-Ac-starch in different diluent (preliminary 

experiment) was carried out once. Starch octenylsuccinylation in pyridine and diluent of choice, 

triacetin, were carried out in duplicates and analyzed by NMR, HPLC, GPC, DSC, and 

rheometer for one time each sample. Acid thinning of waxy maize starch and subsequent 

esterification were carried out in duplicates. Esterification DS was analyzed by one-way analysis 

of variance (ANOVA). A probability of P ≤ 0.05 was considered significant. Statistical 

procedures were carried out by SAS 9.3 (SAS Institute; Cary, NC). 
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 Results and discussion 

 DS and yield 

DS of acetylation was 1.20, 0.85, and 1.31 for waxy, normal, and high amylose maize 

starches reacted with 150% starch weight of acetic anhydride. The preparation AS presented no 

issues during filtration and milling. The starches recovered as free-flowing, fine, white powders. 

To further react AS in presence of a diluent, the diluent of choice must have good compatibility 

throughout the reaction and purification. Several key characters were considered for the diluent: 

(1) able to swell AS and OS-Ac-starch, (2) miscible with OSA and ethanol, (3) inert at reaction 

temperature (150 °C) and (4) having boiling point > 150 °C. Triacetin gave swelling power 4.6 

and 7.3 for AS and OS-Ac-starch, which were the highest value among all diluents. Triacetin 

also had the high boiling point (259 °C) and flashing point (138 °C) and therefore, was chosen as 

the diluent for octenylsuccinylation.  

DS of OS substituent was determined by HPLC and summarized in Table 4.2. Effect of 

different amylose content and acetyl DS played a role in determining the DS of starch 

esterification. Despite small difference of initial acetyl DS, high amylose starch acetate produced 

a noticeably thinner and stirrable slurry than waxy starch acetate in the OSA reaction, which 

could be the reason to a significant higher OS substitution. Normal starch acetate also formed a 

thin slurry with OSA and remained fluid throughout the reaction; however, did not achieve 

comparable DS to high-amylose starch, probably because the lower acetyl DS resulted poorer 

starch dispersibility in OSA. Taking consideration of recovered starch ester weight, overall RE 

of octenylsuccinylation was in the order of high amylose>waxy>normal starches. in another 

experiment, high-amylose AS was solubilized in pyridine, and reached full substitution with 

octenylsuccinate (combined DS 2.95). Synthesis of high DS starch octenylsuccinate in pyridine 
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has been studied by Li et al., 2012 & Wang et al., 2011 and the reported highest DS achieved 

was 1.35 using OSA/starch ratio of 4.6:1, heated at 97 °C for 2.7 h, translating to RE = 37.8% 

assuming all starch material was recovered. The result of our pyridine-free method was 

remarkable because the use of pyridine was completely avoided and the RE was even higher than 

a pyridine-involved reaction. 

Table 4.2. OS-Ac-starch prepared from acetylated waxy, normal, and high amylose starch 

using novel solvent-free melting methods. 

 
Starch 

(g) 

OSA 

(g) 

Acetylation 

DS 
OS DS % Bound OS 

Yield of OS-

Ac-starch (g) 
% RE 

Waxy 10 20 1.20 0.83±0.04c 45.00±1.41c 14.45±0.1ab 32.50±0.37b 

Normal 10 20 0.85 0.55±0.01d 36.74±0.40d 12.67±0.45b 23.26±0.58c 

High amylose 10 20 1.30 1.25±0.03b 55.23±1.10b 13.71±0.21ab 37.69±0.57a 

High amylose 

(pyridine) 
1 4 1.30 1.65±0.05a 61.62±0.56a 2.31±0.06 35.44±1.39b 

Unreacted OS% was 0.2% in pyridine catalyzed sample and was undetected in all other samples; 

different letters indicate significant difference (n=2-4; P<0.05) between each starch type in each 

column; each sample was synthesized in duplicate using the same starch acetate composite; 

%bound OS was determined by HPLC analysis; %RE was based on ratio of %bound OS in 

actual recovered starch esters to total OSA usage.  

 Molecular weight determination by GPC 

 Molecular weight distribution of native starches and AS was determined by GPC. It was 

as expected that Mw was in the order of high amylose (4.5×105) < normal (8.9×106) < waxy 

(1.9×107) corn starch (Fig 4.2a). It is noteworthy that the waxy and normal corn starch showed 

a heavier distribution in lower molecular weight range than normal values, which could indicate 

a slight degradation of the molecule during dissolution. Amylopectin portion of the high amylose 

starch (30% theoretically) did not distinguish from the amylose as a separated peak, it is 
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probably the right tail of the chromatogram overlapping with waxy starch. Acetylated waxy, 

normal, and high amylose starches had slightly larger molecular weight, possibly due to the 

grafting of acetyl groups, but retained the shape of their distribution curve to the native starches 

(Fig 4.2b). OS-Ac-starch was also analyzed through GPC however no signal was detected from 

reflective index detector. We suspected that octenylsuccinate side chain might have inferenced 

with the RI detector. 
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Figure 4.2. Molecular weight distribution of acetylated and unmodified base starches; 

molecular weight was estimated using pullulan standards. 

 FT-IR 

As Fig 4.3a shows, highly substituted starches exhibited very little hydrogen bond stretch 

at 3000-3800 cm-1 which are typical for unmodified starch. The starch esters showed a cluster of 

bands from 2853 to 2953 cm-1 which represented the typical long chain hydrocarbon stretch 
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contributed by OS substituent. A distinct feature of a mixed ester, two distinct C=O symmetric 

stretching vibration bands, were clearly observed at 1736 and 1706 cm-1 (Jiang, Dai, Qin, Xiong, 

& Sun, 2016; Pu et al., 2011). Because OS moiety has a higher molecular mass than acetyl which 

translate to a lower stretching frequency, the OS carbonyl band was assigned to 1706 cm-1 and 

the acetyl carbonyl band was assigned to 1736 cm-1. Intensity of two carbonyl stretch vibration 

bands also reflected the relative DS of each substituent and it was consistent with the DS 

determined by HPLC and NMR. Other major absorption bands appeared at 1364, 1218, and 1032 

cm-1 were due to the CH3 antisymmetric deformation, carbonyl C-O stretch, and C-O stretch of 

starch ring (Chi et al., 2008).     
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Figure 4.3. FT-IR spectra of OS-Ac-starch (a); 1H-NMR spectra of OS-Ac-starch (b; starch 

was exchanged in deuterium oxide and solubilized in DMSOd-6); DSC thermogram of OS-

Ac-starch ester (c; 2nd scan; pre-dried to minimize moisture). 

 1H NMR  

 Based on the reports (Bai, Shi, Herrera, & Prakash, 2011; Chi et al., 2008; Sweedman et 

al., 2013), starch substituted with carboxylic acids gave strong methyl signal at lower ppm 

representing methyl and methylene resonance. As shown in Fig 4.3b, three major proton NMR 

peaks were clearly shown between 2.5-0.5 ppm. Acetyl methyl signal was found at 2.08 to 2.01 

ppm, three methylene of OS substituent was identified as one broad peak at 1.45-1.05 ppm, and 

methyl of OS group was seen at 0.93-0.66 ppm. Starch ring protons signals of OS-Ac-starches 

were broadened and hindered the calculation to confirm the overall DS; however, ratio of acetyl 

methyl to OS methyl was ambiguously calculated as 0.8, 1.0, 1.5, and 1.6 for high-amylose 

(pyridine), high-amylose, waxy, and normal OS-Ac-starches, agreed with the DS ratio 

determined by HPLC as specified in Table 4.2. The broadening of starch ring protons NMR 

signal is common for intermediate DS starch esters. It has been reported by Kono, Hashimoto, & 

Shimizu (2015) due to uneven electron negativity drawing by heterogenous substituent 

distribution on anhydrous glucose unit. 

 DSC analysis 

Upshifts in heat flow curve, which indicate typical glass transition, were observed for all 

OS-Ac-starches at around 55 °C. Considering the DS of acetylation typically do not greatly 

lower starch Tg, i.e. Tg between 165-185 °C for DS 1.6-2.5 AS (Shogren, 1996), these shifts 

should be attributed to OS substituent. Changes in DS of OS did not influence the Tg of all OS-

Ac-starches, which seemed to disagree with Gordon-Taylor Equation that stated a higher fraction 

of low Tg plasticizer, e.g. OS substituent, shall lower the Tg of the polymer (Fringant et al., 

1998). Therefore, it is reasonable to attribute this shift at 55 °C solely to Tg of OS substituent. 
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According to Liebert et al. (2011), highly substituted starch esters are expected to have much 

lower Tg than native starch and the extent of Tg decrease is mainly related to substituent chain 

length, DS, and presence of plasticizers. Tg of high DS OS-Ac-starch have never been reported. 

However, some insights can be provided by comparing it to starch esters that has close 

substituent chain length and DS. Fringant et al. (1998) reported starch acetate/caproate of  DS 

1.3/1.0 had Tg of 90 °C, while Yang and Montgomery (2008) reported starch acetate/octanoate of 

DS 1.66/1.03 and DS 1.91/0.67 to have onset Tg near 95 and 112 °C. According to Liebert et al. 

(2011), the DS of long chain substituent was responsible for the melting point of a starch ester 

and generally must achieve at least 2.5 for starch esters to melt at below 100 °C while acetyl had 

very little contribution in lowering the Tg, although acetylation was commonly practiced to 

elevate overall DS and water resistance. A major exothermic peak was observed at temperature 

150-200 °C as showed in Fig 4.3c. Temperature of the exothermic peak appeared to negative 

relate to DS of octenylsuccinate. We suspect those peaks to be starch backbone degradation 

caused by OS substituent, because OS substituent presented in acid form (-COOH) and might 

cause cleavage of starch backbone at high temperature.    

 Solubility of OS-Ac-starch in organic solvents 

 Dissolution behavior of starch esters differs as DS changes in various solvents and the 

opacity of the so formed solution is a direct indication of solubility. The solvents listed in Table 

4.3 covered a range of relative polarities and were representative in starch esters studies as either 

plasticizer, casting-solvent, diluent, or reaction medium. High-amylose OS-Ac-starch formed 

clear solution in chloroform, acetone, DMSO, and triacetin, indicating complete dissolution. 

Waxy and normal starch esters were partially soluble in the most solvents because of cloudiness 

in some solvents which might due to lower DS. In classic starch ester applications such as film 
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casting (Zhu et al., 2013), impregnation (Larotonda, Matsui, Sobral, & Laurindo, 2005) and 

coating (Han, 2014), high solubility in casting-solvents was always desired to allow complete 

molecular re-alignment for film formation. Therefore, only high amylose ester was suitable to 

cast to a film from solubility standpoint. 

Table 4.3. Starch ester compatibility in different organic solvents. 

  OS-Ac-starch  

Solvent Waxy Normal High amylose 

Chloroform P I S 

Acetone P P S 

Hexane P I P 

DMSO S S S 

Triacetin P P S 

S, soluble; P, partially soluble; I, insoluble. 

 Rheology properties of OS-Ac-starch 

Triacetin and DMSO were chosen to mix with starch esters as they were non-volatile and 

widely used media for dissolving and plasticization of starch materials. Starch esters formed self-

standing clear (DMSO) and opaque (triacetin) mass after 1:1 (w/w) mixing. Storage modulus 

(G’), the stored portion of applied force, was known to correlate with samples’ solid-like 

behavior and apparent stiffness. G’ of the starch ester mass at small oscillation stress was 

between 1 to 10 kPa, which was well on the high end for gels or pastes formed by starch, 

probably due to the high solid ratio (Rezler & Poliszko, 2010) (Fig 4.4a). Loss modulus (G’’), 

also known as dissipated portion of applied stress due to samples’ liquid-like character, was well 

below G’ for normal and waxy starch ester mass and nearly equal to G’ in high amylose mass, 

suggesting the normal and waxy ester were more solid-like than high amylose ester, which has 
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equal liquid- and solid-like behavior. Starch esters plasticized with DMSO was systematically 

lower in both modulus than with triacetin, indicating higher compatibility with DMSO to form 

less stiff starch mass. Linear viscoelastic region reveals a critical stress value that from which the 

sample structure starts to fail (Sang, Bean, Seib, Pedersen, & Shi, 2008). The LVR was for high 

amylose ester/triacetin was over 3 kPa, indicating a good elasticity for deformation recovery over 

a wide stress range. For frequency sweep, 500 Pa was chosen to accommodate the critical stress 

of waxy and normal starch ester masses. As Fig 4.4b shows, G’ of starch ester masses was 

dependent of frequency, indicating the materials gained stiffness if the stress was applied at high 

frequency, e.g. rubbing, rolling, or chewing etc., and softened when stress was removed.  
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Figure 4.4. Stress sweep (a) and frequency sweep (b) of starch ester gels formed in DMSO 

and triacetin; tests carried out with 25 mm smooth surface parallel plate at 2 mm gap. 

 Chewing gum base made from OS-Ac-starch 

 Starch esters formed homogenous gum bases that resemble wheat flour dough after 

addition of a mixture of plasticizers. However, these gum bases exhibited distinct difference in 

extensibility when manipulated. Waxy and normal starch-based gums were very crumbling and 

easily broken apart when stretched while high amylose starch-based gum was clearly more 

extendable (Fig 4.5). In early studies, amylose has been reported to produce strong and elastic 

films similar to cellulose, owning to their long linear structure that favors inter-chain association  

(Lourdin, Valle, & Colonna, 1995; Shogren, 1996; Whistler & Hilbert, 1944).  Yang and 

Montgomery (2008) also tested several starch ester films and concluded that amylose content 

was mainly responsible for film elongation, where higher amylopectin content resulted in brittle 

films that has significant low extensibility. Fig 4.5 demonstrated the differences in extensibility 

of starch esters that contain mainly amylopectin vs amylose. Waxy and normal starch esters were 

prone to break and clearly inferior to high amylose starch ester and therefore, only high amylose 

starch ester was selected for gum base rheology tests. 
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Figure 4.5. Formulated OS-Ac-starch to mimic starch-based chew gum rolled (first row) 

and stretched (second row); W, waxy; N, normal; H, high amylose starch; Elongation test 

was by texture profile analyzer; the gum curd was stretched from 20 mm to breakage at 3.3 

mm/s; force and at break was 289, 228, and 813 g for normal, waxy, and high-amylose 

starch, respectively, corresponding to 31, 12, and 72 mm elongation. 

Starch ester made from high amylose starch was compounded to chewing gum bases at 

three different triacetin levels and compared with commercial chewing gum. G’ of the LVR was 

inversely related to the level of plasticization, which was expected because the plasticizer was 

mostly liquid and provided no stress storage (Fig 4.6a). As stress increased, the highly 
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plasticized starch showed slight decrease in G’ from about 8 kPa oscillatory stress, where mid 

and low plasticized starch gum held G’ constant through the tested range. Commercial chewing 

gum had a large initial G’ (1 mPa) and was more sensitive than starch gums to applied stress as 

its G’ decreased nearly two magnitudes during the stress sweep (Fig 4.6a). Translating to sensory 

descriptions, commercial gum stays as a solid mass and do not undergo deformation when sitting 

untouched, however softens greatly when forces are applied. Starch gums, on the other hand, can 

slowly deform when untouched, which is due to a much less initial G’ at small stress. At above 5 

kPa stress, both gums fall into the similar G’ range, which was very desirable because chewing 

force is often associated with high stress (Martinetti et al., 2014). Frequency sweep showed that 

both starch and commercial gums were sensitive to frequency change as the G’ and G’’ 

increased steadily and the starch gums had a more liquid-like behavior as G’’> G’ (Fig 4.6b). It 

was also noteworthy that the plots of starch gums were smoother than the commercial gum, 

which is possible because starch gums were more adhesive while commercial gum encountered 

wall slipping against geometry surface.  
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Figure 4.6. Stress sweep (a), frequency sweep (b), and temperature sweep (c) of high 

amylose starch-based gum; tests carried out with 25 mm smooth (starch gum) and serrated 

(Trident gum) surface parallel plates at 2 mm gap. 

According to Fritz (2006), stiffness of chewing gum curd is highly dependent on 

temperature to satisfice good chew and ease to process. Phillips, Morgret, Xia, & Shen (2011) 

suggested that a chewing gum curd should produce a G’ about 105 to 107 Pa at 25 to 37 °C upon 

chewing and rapidly reduce to less than 105 Pa at 60 °C. As showed in Fig 4.6c, the commercial 

chewing gum tested well fit in this G’ range. Starch based gums had smaller G’ at human body 

temperature (37 °C), which could translate to a softer texture when chewed. In addition, starch- 

based gums exhibited steady G’ drop along the heating ramp and lacked an exponential G’ decay 

occurred in commercial gum curd between 40-50 °C. However, according to Phillips, Morgret, 

Xia, & Shen (2011), a smaller temperature-dependent G’ differential is strongly associated with 

ease of a gum to be removed from environmental surface, because the heating and cooling cycles 

are less likely to melt the gum and result an “interlocking” effect between gum and another 

surface.   

 Effects of linear vs branched starch backbone structure  

 It was clear that high amylose-based gum gave the most stretch after plasticization (Fig 

4.7), which could due to a couple of reasons, e.g. linear molecular conformation, smaller 

molecular weight, or higher DS, that particularly favors elongation. It is interesting to find out 

whether a starch ester that has branchy backbone will develop any stretch if the DS and 

molecular weight are the same to high amylose starch ester. To put this to an embodiment, we 

used an acid hydrolyzed waxy maize starch that has a similar molecular weight distribution as to 

high-amylose starch to make esterified samples.  
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Figure 4.7. Alkali viscosity of native and acid treated waxy corn starch (5% solid) at 25 °C 

(a); molecular weight distribution of acid treated acetylated waxy corn starches (b). 

Acid treatment greatly reduced molecular weight of waxy starch (Fig 4.7b), and reduction 

of molecular weight reflected on starch paste viscosity change (Fig 4.7a). Confirmed by GPC, 

acid treatment for 8, 12, and 16 h reduced Mw of waxy starch from 1.9×107 to 4.6×106, 4.7×

105, and 2.2×105, respectively. The 12 h acid treated sample was chosen for esterification as it 

had similar Mw to high amylose starch (4.5×105). From preliminary trials, acid treated starch 

tended to have lower yield when recovered by filtration, which was possible due to higher 

solubility of low molecular weight fractions in aqueous media and wash water. Therefore, 

acetylated 12h acid treated waxy starch was recovered by dialysis instead of filtration. Acetyl DS 

and Mw of dialysis-recovered starch was 1.4 and 3.9×105 which was just slightly different than 

acetylated high amylose starch (1.3 and 5.5×105). Subsequent OS modification was carried out 

using OSA/triacetin medium and purified by dialysis against ethanol. The DS of octenylsuccinic 

group was 1.3, which was higher than the DS based on untreated waxy starch. The 12h acid 

treatment remarkably decreased the viscosity of OS reaction which was readily stirred by a 

conventional magnetic stir plate. Reduction of molecular weight enhanced reaction DS however 

created some difficulties in recovering the starch ester due to solubility change. A chewing gum 

base sample was formulated similarly using the “mid-triacetin” formula in Table 4.1. The gum 

base was not able to stay aggregated and broke easily when handled.  

 Conclusions 

 Acetylated waxy (DS 1.20), normal (DS 0.85), and high amylose (DS 1.30) starches were 

reacted with OSA at 120 °C in presence of triacetin as a diluent. The starch mixed ester had 

octenyl succinate DS of 0.83, 0.55, and 1.25 for waxy, normal, and high amylose starches, 
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respectively, as determined by HPLC. FT-IR and 1H NMR analysis confirmed the successful 

grafting of both esters and their spectra patterns were same to a mixed ester synthesized in 

pyridine medium. DSC thermograms revealed the glass transition temperatures of those starches 

was 56 °C. High-amylose starch ester had higher solubility in acetone, chloroform, and hexane 

than waxy and normal starch esters, probably due to overall higher DS. All starch esters formed 

self-standing gel in DMSO and triacetin at 1:1 (w/w) ratio that had G’ from 1 to 10 kPa in linear 

viscoelastic region and increase with stress frequency. When compounded with a mix of 

plasticizers to produce chewing gum base, normal and waxy starch gums were crumbling and 

ruptured easily while high amylose starch gum exhibited great extensibility. Temperature sweep 

(20-70 °C) revealed the G’ of high amylose starch gum decreased approximately 10 folds (105-

104 Pa) and had a potential as a chewing material. Acid thinning effectively reduced molecular 

weight of waxy starch to a range close to high amylose starch. Acid thinning was helpful to 

prepare higher DS starch ester by reducing octenylsuccinylation medium viscosity. However, the 

gum base formulated with acid thinned waxy starch was far inferior comparing to high amylose 

starch-based gum as it was extremely crumbling and lack of cohesiveness, possibly due to the 

branchy structure that was unfavored for molecular association. Future studies will include (1) 

exploring other inert diluents instead of triacetin for cost saving and reaction efficiency 

improvement, (2) investigate film forming properties of the starch esters knowing they were 

soluble in some volatile solvent, and (3) optimization of the chewing gum formula, e.g. addition 

of microcrystalline wax to harden and soften the gum curd upon temperature change and 

replacing triacetin with other low-cost plasticizers such as propylene glycol.  
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Chapter 5 - Preparation and properties of highly substituted 

hydroxypropylated acetylated high-amylose maize starch 

 Abstract 

 High-amylose maize starch was reacted with various levels of propylene oxide in 

isopropanol-water mixture to obtain low (0.56), middle (1.18), and high (1.64) degree of molar 

substitution (MS) hydroxypropyl starches (HPS). The HPS were further acetylated with acetic 

anhydride to various extent (degree of substitution (DS) 0.09-1.97). Important physicochemical 

and thermal properties of HPS and acetylated hydroxypropylated starch (HPAcS) were 

determined. Hydroxypropylation alone at MS 1.18 and 1.64 rendered HPS completely cold water 

soluble where the HPAcS with high acetyl DS (1.21-1.97) were insoluble in water but soluble in 

chloroform, acetone, and dimethyl sulfoxide (DMSO). Acetylation with lower DS (DS 0.09-

0.86) rendered HPAcS 20-95% soluble in water at 2.5% solid content. Glass transition 

temperature (Tg) of dry HPS was significantly lowered (63.8 and 1.8 °C for mid and high MS 

HPS). Acetylation and hydroxypropylation synergistically, lowered the Tg of starch derivatives 

to subzero temperatures. Intrinsic viscosity of starch derivatives was 32-100 mL/mg comparing 

to native high amylose starch at 80 mL/mg, suggesting a smaller hydrodynamic volume after 

derivatization. The water insoluble HPAcS was blended with hydrophobic plasticizers to form a 

viscoelastic gum base. Rheological analysis indicated the gum bases made with higher Tg 

HPAcS were stiffer. Gum bases all had at excellent stretch without breaking, resembling 

chewing gum bases.  
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 Abbreviations 

HPAcS, hydroxypropylated acetylated starch; HPS, hydroxypropylated starch; HP, 

hydroxypropyl: Ac, acetyl; MS, molar substitution; DS, degree of substitution; RE, reaction 

efficiency; Tg, glass transition temperature; TFA, trifluoroacetic acid; DMSO, dimethyl 

sulfoxide; TMS, tetramethylsilane; IPA, isopropyl alcohol; PO, propylene oxide; AA, acetic 

anhydride; GPC, gel permeation chromatography 

 Introduction 

Starch is an abundant renewable polymer that has found uses in many food and non-food 

applications. However, shortcomings, e.g. insoluble in cold water and organic solvents, and 

susceptibility to degradation by enzyme, acid, heat, and shear, hurdled native starch from being a 

satisfactory industrial polymer (Shogren, 1996). Native starch is not thermoplastic owning to its 

high glass transition temperature (Tg). The high Tg allows narrow window for thermal processing 

without high amount of plasticizer (Kaseem et al., 2012). A practical approach to actualize 

starch’s industrial potential is through chemically derivatizations. Chemically modified starch, 

particularly starch ethers and esters, have altered thermal behavior and solvent compatibility 

depending on type and extent of modification (Liebert et al., 2011).  

Starch reaction with propylene oxide (PO) has been well known for many decades. The 

resulting product, hydroxypropylated starch (HPS), was chiefly produced at molecular 

substitution level (MS) 0.05-0.1 (one hydroxypropyl group per 10-20 glucose unit) (Tuschhoff, 

1987) as food additives. Such low MS HPS was prepared in aqueous starch slurry with addition 
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of 7-8% (starch wt) PO in presence of a gelatinization-inhibiting salt, e.g. 10-30% sodium sulfate 

(Han & BeMiller, 2005) and recovered as granular starch. Gelatinization temperature in low MS 

HPS was 5-18 °C lower than its native base starch. Upon cooling, HPS sets to a clear paste 

because hydroxypropyl groups provide disrupt interchain H-bond and their re-association and 

also improved hydrophilicity (Hjermstad, 2012). Hydroxypropylation would proceed to achieve 

MS up to 0.43 in aqueous medium with further addition of propylene oxide for longer reaction 

hours; however, hydroxypropylated starch material, primarily amylose, progressively leach out 

from the granule and renders dewatering extremely difficult (Shi & BeMiller, 2002). According 

to Aminian, Nafchi, Bolandi, & Alias (2013), the highest MS of granular HPS as was 0.66 and 

above which the starch was not recoverable from water. Hjermstad, (2012) pointed out 0.6 as the 

MS cutoff for HPS because above 0.6, starch granular structure and crystallinity are lost 

completely. HPS with MS > 0.6 can be synthesized in light alcohol water mixture to prevent 

swelling and settling, purified by alcohol wash, and recovered as an amorphous powder. A 

representative preparation of such HPS was disclosed by Hunt, Kovats, & Bovier (1981), in 

which the HPS was synthesized in aqueous isopropanol and the MS of HPS could potentially 

ramp higher with more reagent and longer hours (Han & BeMiller, 2005). Hydroxypropylation 

provide intermolecular plasticization that greatly lowers Tg of starch to allow thermal processing, 

e.g. hot press, extrusion, molding, casting, etc. possible without using external plasticizers 

(Hjermstad, 2012). HPS can be subsequently derivatized e.g. esterification, to gain more 

functions. Such preparation is known as dual-modification and it allows starch to gain both 

functional characters. Typical dual-modifications include cross-linked HPS (Gunaratne & Corke, 

2007; Zhao et al., 2015), acetylated HPS (Granza et al., 2015), and acid thinned HPS (Li et al., 
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2018); however, these studies were conducted using low MS HPS. There were very limited 

studies that dual-modified a high MS HPS.  

In this study, we synthesized HPS to three MS levels and further acetylated the HPS to 

six degree of substitution (DS) and examined their properties. In theory, high MS hydroxypropyl 

starch is highly water soluble and of a significantly lowered Tg. Subsequent acetylation is 

expected to counter the hydrophilicity and further lower the Tg. Therefore, we hypothesized that 

thermoplastic starches with different hydrophobicity can be prepared by varying MS of 

hydroxypropyl group and DS of acetyl group. Such starch derivatives could find applications as 

coatings, adhesives, foams, or controlled release carriers (Zhang et al., 2013). We picked acetyl 

group as the secondary substituent because it is a common, low-cost, and rather mature method 

to produce hydrophobic starch. According to Xu, Dzenis, & Hanna (2005), acetylated starch of 

DS above 1.6 would revert hydrophilicity of native starch and render the starch water insoluble. 

Furthermore, acetyl is a feasible ester to prepare because it is a less bulky substituent and easy to 

achieve high DS. It was expected that the hydroxypropylated acetylated starches (HPAcS) we 

synthesized are capable to cover a wide range of Tg and water solubility. We also explored a 

possible application of the HPAcS as chewing gum bases.   

 Materials and methods 

 Materials 

High-amylose (70% amylose) maize starch (Hylon VII) was obtained from Ingredion Inc. 

(Bridgewater, NJ). Acetic anhydride, propylene oxide, sodium hydroxide, isopropyl alcohol 

(IPA), chloroform, acetone, and calcium carbonate were purchased from Fisher Scientific 

(Waltham, MA). Triacetin, deuterium oxide, and DMSO-d6 and tetramethylsilane (TMS) was 
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purchased from Sigma-Aldrich (St. Louis, MO). Acetylated monoglyceride (Acetem 70) was 

kindly provided by DuPont USA (Wilmington, DE). 

 Preparation of starch derivatives 

 Preparation of HPS 

 HPS was prepared by using the method based on Hunt, Kovats, & Bovier (1981) (Fig 

5.1). Briefly, 300 g starch was slurried in 400 mL 85% isopropyl alcohol (IPA) and reacted with 

84 mL propylene oxide (PO) to produce low MS HP starch targeting MS approximately 0.6. 

HPS was washed, dried, re-slurried in fresh aqueous IPA, and further reacted with more PO to 

produce mid and high MS HPS (Fig 5.1). This set of HPS samples were denoted as made from 

“stepwise” method, because HPS at each MS level was isolated. In a separate set of experiment, 

mid and high MS HPS were prepared by adding the same amount of PO directly into the reaction 

without recovering low and mid MS HPS and re-slurry them into fresh reaction medium. This set 

of samples were denoted as made from “continuous” method. In another set of experiment, PO 

was added into initial reaction media in one-dose aiming at mid and high MS. This set of 

samples were denoted as made from “one-dose” method.       

 Preparation of HPAcS in anhydrous medium 

HPS was subsequently acetylated according to Mark & Mehltretter, (1972) by reacting 50 

g HPS in 150 mL acetic anhydride at 115 °C in presence of concentrated sodium hydroxide to 

achieve presumable maximum DS. The HPAcS paste was washed using methanol (500 mL) and 

precipitated with 500 mL water (Fig 5.1).  

 Preparation of HPAcS in aqueous medium 

Another set of HPAcS was prepared using in aqueous synthesis according to Luo & Shi, 

(2012). After hydroxypropylation, an aliquot of low, mid, and high MS HPS pastes containing 10 
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g HPS were adjusted to pH 8.5 with HCl and diluted with water to solid content 25%. Acetic 

anhydride was added dropwise to the mixture with intense stirring while the pH of the mixture 

was maintained at 8-9 by a pH controller (Eutech Instruments, Vernon Hills, Illinois). As 

reaction proceeded, HPAcS gradually precipitated and aggregated to a “doughball”. Actual 

consumption of acetic anhydride was recorded at the end-point of the reaction where there was 

no more flocculent precipitation formed. The HPAcS “doughball” was spooned out, desalted by 

dialysis, and freeze dried.  

 

Figure 5.1. Flow diagram of two-stage synthesis of hydroxypropylated acetylated starch 

(HPAcS); hydroxypropyl starch (HPS) was first prepared to low, mid, and high molecular 

substitution (MS) in aqueous isopropyl alcohol (IPA) with propylene oxide (PO) and 

acetylated using acetic anhydride as a reactive solvent.   

 Characterization of HPS and HPAcS 

 DS determination by 1H nuclear magnetic resonance (1H NMR)  

Sodium acetate anhydrous (250 mg) was weighed and dissolved in a 25 mL volumetric 

flask containing deuterium oxide (20 mL) and deuterium chloride (DCl, 5 mL, 35%w/w). To 
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each 2 mL aliquot (contain 20 mg sodium acetate) of above solution, HPS (100 mg, d.b) was 

added. The HPS slurry was heated in a boiling water bath for 30 min with constant stirring to 

yield a transparent solution. The solution was transferred to a standard 5 mm NMR tube and 

analyzed by a Varian 400 MHz NMR spectrometer (Varian Inc., Palo Alto, CA) at 25 °C. 

Sixteen scans were acquired for each sample and the relaxation time was 1.0 s. Chemical shift 

was calibrated to a trace addition of tetramethylsilane (TMS) to 0 ppm. Hydroxypropyl content 

and MS was calculated using Equation 1 and 2. 

%𝐻𝑃 =
59.3×𝐼1.13

82.05×𝐼2.08
× 20/100            (1) 

Where I1.13 and I2.08 was signal areas of hydroxypropyl’s and sodium acetate’s methyl groups. 

𝑀𝑆 =  
162×%𝐻𝑃

59−58×%𝐻𝑃
        (2) 

Reaction efficiency of hydroxypropylation (%REHP) was calculated using equation 3. 

%𝑅𝐸𝐻𝑃 =

𝑌

(162+58×𝑀𝑆)
×𝑀𝑆

𝑀𝑃𝑂
       (3) 

Where MPO was mole of propylene oxide used; Y was yield of HPS, MS is degree of mole 

substitution. 

Due to insolubility of HPAcS in aqueous solvent, DMSO-d6 containing 5% TFA-d was 

used. HPAcS (30 mg, d.b) was exchanged in 1 mL deuterium oxide with constant stirring at 

room temperature overnight, freeze dried and reconstituted in 1 mL DMSO-d6 TFA-d mixture 

and analyzed by NMR. DS and reaction efficiency of acetylation (%REAc) was calculated using 

and 4 and 5. 

 𝐷𝑆 =
𝐴

𝐵
× 𝑀𝑆         (4) 



118 

where B was signal area of acetyl methyl group at 2.10-1.93 ppm; A was HP methyl at 1.13 

ppm; MS was the molecular substitution of HPS. 

%𝑅𝐸𝐴𝑐 =

𝑌

(162+58×𝑀𝑆)+(43×𝐷𝑆)
×𝐷𝑆

𝑀𝐴𝐴
       (5) 

Where MAA was mole of acetic anhydride used; Y was yield of HPAcS, MS is degree of mole 

substitution of HPS, DS was the acetyl degree of substitution of HPAcS.  

 Differential scanning colorimetry (DSC) analysis 

HP starches and HPAcS that has been dried at 80 °C in vacuum oven for 2 hours were 

stored in a desiccator for 24 hours and weighed (Ca. 15 µg) into a DSC pan. The sample pan was 

heated from -30 to 100 °C at 10 °C/min and rescanned to 100 °C. In the cases of high MS 

starches, the scan began from -50 °C to accommodate expected low glass transition 

temperatures. DSC thermograms were analyzed using Universal Analysis software (TA 

Instruments, New Castle, DE). 

 Solubility of HPS and HPAcS in water 

 Solubility of starch derivatives was determined according to Aminian et al. (2013). 

Briefly, HPS and HPAcS (1 g d.b.) was weighed into centrifuge tubes and 40 mL distilled water 

was added. The tubes were heated at 30, 60, and 90 °C in a shaking water bath for one hour, 

cooled to room temperature, and centrifuged at 1700× g for 20 minutes. Supernatant was poured 

to pre-weighed dishes and dried overnight at 105 °C. Solubility was determined as the ratio of 

dried supernatants to one-gram starch. 

 Capillary viscometry of HPS and HPAcS 

 Intrinsic viscosity of starch derivatives was determined based on method of Aminian et 

al., (2013) with minor modifications. Starch solutions (1%) were prepared by mixing HPS and 
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HPAcS in DMSO overnight at room temperature until all solutions became complete transparent. 

In the case of native starch, the slurry was heated in a boiling water bath for 20 min to ensure 

dissolution. An Ubbelohde type capillary viscometer was used to measure intrinsic viscosity. The 

temperature was controlled by at water bath at 25 °C. Starch solutions (12 mL) was transferred 

into the viscometer and equilibrated for five minutes. The starch solutions were further diluted to 

0.3%, 0.5%, and 0.8% to measure specific viscosity and the intrinsic viscosity was obtained by 

extrapolating the specific viscosity to an infinite dilution.      

 Molecular weight determination by gel permeation chromatography (GPC) 

Native high-amylose starch, HPS, and HPAcS (8 mg) were added into 2 mL DMSO and 

stirred overnight in 80 °C water bath, filtered through 0.45 micro filter and injected into a PL-

GPC 220 instrument (Polymer Laboratories, Inc., Amherst, MA). Separation was performed on 

three Phenogel 10 μm columns arranged in order of 106 Å, 103 Å and 102 Å pore size 

(Phenomenex, Inc., Torrance, CA, USA), a guard column (Phenomenex, Inc., Torrance, CA), 

and recorded by a differential refractive index detector with dn/dc value 0.066. Eluent system 

was DMSO containing LiBr (0.55% w/v) at a flow rate of 0.8 mL/min. Column oven 

temperature was controlled at 80 °C. Pullulan standards and maltose were used for molecular 

weight calibration. 

 Rheological analysis of starch chewing gum base 

Formulation of starch chewing gum base is modified from (Liu, 2010). Triacetin (3.5 g), 

hydrogenated soybean oil (0.5 g), and acetylated monoglyceride (0.5 g) were mixed in a 100-ml 

beaker and heated at 60 °C for approximately one hour to form a one-phase liquid plasticizer 

mixture. HPAcS (4.5 g) was mixed with calcium carbonate (1 g) and added to the plasticizer 

mixture. The mixture was conditioned at 60 °C overnight and kneaded to a uniform gum base. 
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The gum rested at room temperature for at least 24 hours before analysis. Stress sweep (300-

10000 Pa) was carried out using smooth parallel plates (25 mm diameter; 2 mm gap) at 25 °C to 

find the liner-viscoelastic region (LVR), which was determined at 10% decrease of initial storage 

modulus (G’). Frequency sweep, temperature sweep, and creep recovery was conducted at using 

500 Pa, which was in the LVR of all samples.  

Extensibility of the gum base was determined by a TA.XT Texture-Analyzer (Texture 

Technologies Corp. and Stable Micro Systems, Ltd., Hamilton, MA) coupled to a double clamp 

geometry (TA-96). Starch gum base was rolled to 5 mm sheet using a rolling pin with 5 mm 

guide. Stripes (40 mm×20 mm) were cut from the gum sheet and clamped to the geometry with 

each end clamping 10 mm of the gum stripe. The gum was stretched from 20 cm to 170 mm (150 

mm travel distance) at 3.3 mm/s.  

 Statistical analysis  

Preliminary scouting synthesis was carried out for starch hydroxypropylation and 

acetylation to ensure levels of substitution fall into expected range. One formal full-scale 

synthesis according to Fig 5.1 was carried out. NMR, DSC, solubility, GPC and rheology 

analysis were carried out in duplicates. Texture profile was carried out in triplicates. Quantitative 

changes from above analysis were analyzed by one-way analysis of variance (ANOVA). A 

probability of P ≤ 0.05 was considered significant. Statistical procedures were carried out by 

SAS 9.3 (SAS Institute; Cary, NC).    

 Results and discussion 

 MS and DS determination by proton NMR  

 Colorimetric method has long been exercised as a conventional determination for starch 

HP content. In such method, HPS was treated in hot concentrated sulfuric acid to liberate 
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propylene glycol, which subsequently dehydrated to propionaldehyde to produce a violet color 

with ninhydrin (Fu, Zhang, Ren, & BeMiller, 2019). The colorimetric method was fundamentally 

sound; however, required extreme care to avoid aberrant results. Xu & Seib (1997) developed a 

method using high-resolution proton NMR to determine HP content, in which HPS was 

exhaustively digested with thermal stable α-amylase, spiked with sodium acetate and analyzed 

with a high-resolution NMR. Methyl signal of HPS was standardized to sodium acetate signal 

and the degree of substitution can be calculated. The NMR method was more accurate (only half 

of the standard errors as compared to colorimetric method) and less time-consuming and 

therefore, was adopted to determine the HP content in our samples. Considering high substitution 

might hinder enzyme activity, DCl was used instead to depolymerize the HPS thus reduce its 

viscosity. Owning to retrogradation-prevention from high HP substituent, the DCl treated HPS 

yielded a complete transparent, free-flowing solution that produced NMR spectra (Fig 5.2a) 

highly consistent to literature (Xu & Seib, 1997). 

After acetylation, HPAcS became largely insoluble in aqueous system; therefore, they 

were dissolved in DMSOd-6 to assess acetyl DS. Based on the reports (Chi et al., 2008a; Elomaa 

et al., 2004), starch substituted with carboxylic acids gave strong methyl resonance at lower ppm. 

As shown in in Fig 5.2b & c, acetyl methyl signal was found at 2.08 to 2.01 ppm and was clearly 

resolved from HP methyl signal. Starch ring proton signals on these spectra appeared broadened 

bands overlapping with HP methylene and methine signals and were not useful for acetyl DS 

calculation. Therefore, DS of acetyl was calculated as a direct ratio of acetyl to HP methyl signal 

intensities. The broadening of starch ring protons has been reported by Kono, Hashimoto, & 

Shimizu (2015) due to uneven electron negativity drawing by heterogenous substituent 

distribution on anhydrous glucose unit.  



122 

Substitution levels and yield of HPS were summarized in Table 5.1. RE of the “low MS 

HPS” was noticeably higher than conventionally reported values. According to Han & BeMiller 

(2005), typical hydroxypropylation for commercial food starch uses propylene oxide at up to 

8.3% starch weight to produce MS up to 0.15, translating to 62% RE. In many cases, starch 

substitution was heterogenous and favored on amylose than amylopectin, because amylose is 

amorphous and prone to leaching from starch granule during reaction (Han & BeMiller, 2005; 

Luo & Shi, 2012). Therefore, higher MS and RE were anticipated for high-amylose starch. MS 

of HPS reached 1.20 by further hydroxypropylation with more PO. Viscosity increase was 

apparent as reaction proceeded, because HPS greatly swelled as MS increased. Therefore, more 

aqueous IPA was added to dilute the reaction. MS of hydroxypropylation achieved 1.68 after 

another dose of the PO addition; however, the RE of hydroxypropylation was significantly 

reduced. HPS prepared by the “continuous” method had similar MS values to “stepwise” 

method, suggesting that refreshing reaction medium is not necessary as long as the viscosity of 

reaction media was adjusted. Adding PO in one dose resulted a thick glutinous starch mass that 

caused difficulties in subsequent processes.   

DS and RE of acetylation were reversely related to HP substitution (Table 5.2). HP 

substituent should not alter the amount of available hydroxyl reaction site because it carries an 

extra hydroxyl group which as well would esterify. Therefore, it is reasonable to attribute the 

decrease of acetylation efficiency to steric hindrance brought by bulkiness of HP substituent. 

Acetylation in aqueous medium resulted in much less DS than anhydrous reaction because starch 

material progressively precipitated and aggregated as DS increased thus prohibited contact of 

starch to acetic anhydride. 
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Figure 5.2. Proton NMR spectra of native, hydroxypropylated (a), and hydroxypropylated 

acetylated (b & c) high-amylose starch; spectra were recorded in D2O (b) and DMSO-d6 (a, 

c, & d).  

Table 5.1. Hydroxypropylated starch (HPS) synthesized by stepwise (isolating HPS at each 

molar substitution (MS) levels and reconstitute into reaction media) or continuous (adding 

more propylene oxide (PO) without refreshing the reaction media) procedure; %RE, 

reaction efficiency. 

HPS samples 
PO 

(Mole) 
%HP MS 

Starting 

starch/HPS 

wt (g) 

HPS 

yield 

(g) 

%REPO 

Low MS 1.21 17.2±0.4c 0.57±0.01c 300 322 78.1±1.6a 

Mid MS (stepwise) 2.81 30.1±0.1b 1.20±0.02b 200 253 46.6±0.6b 

High MS (stepwise) 3.77 38.1±0.9a 1.68±0.06a 100 136 23.4±0.5c 

Mid MS (continuous)  29.6±0.4 1.16±0.02b    

High MS (continuous)  37.7±0.4 1.66±0.03a    

Mid MS (PO added in 

one-dose) * 

Reaction viscosity too high (1600 Pa.s); did not proceed to 

characterization 

High MS (PO added in 

one-dose) * 

Reaction viscosity too high (720 Pa.s); did not proceed to 

characterization 

*Viscosity determined by rheological analysis (10% strain; 1 Hz) using smooth parallel plates 

(25 mm diameter; 2 mm gap) at 55 °C. Different letters indicate significant difference (n=2-4; 

P<0.05) between each starch type in each column.  

Table 5.2. Hydroxypropylated acetylated starch (HPAcS) synthesized in anhydrous (acetic 

anhydride (AA) as reactive solvent) or aqueous (adding AA to HPS aqueous solution) 

acetylation media; %RE, reaction efficiency; MS, molar substitution; HPS, 

hydroxypropylated starch; DS, degree of substitution. 

MS of HPS 
AA 

(Mole) 
%Acetyl DS 

Starting 

HPS wt 

(g) 

HPAcS 

yield 

(g) 

%REAA 

Anhydrous acetylation 

0.56 1.36 29.9±0.5a 1.94±0.05a 50 70 35.8±0.6a 

1.18 1.36 21.0±0.5b 1.43±0.04b 50 63 22.7±0.5b 

1.64 1.36 17.0±0.3c 1.23±0.03c 50 58 16.9±0.3c 

Aqueous acetylation 

0.56 0.09 16.2±0.4a 0.88±0.03a 10 10.4 45.2±1.2a 
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1.18 0.04 3.9±0.2b 0.22±0.01b 10 9.6 21.1±1.3b 

1.64 0.03 1.8±0.2c 0.11±0.01b 10 9.6 11.7±1.5c 

Different letters indicate significant difference (n=2-4; P<0.05) between each starch type in each 

column.  

 Solubility of HPS and HPAcS in water 

 As shown in Fig 5.3, starch solubility was greatly altered after modification. Unlike 

normal native starch that is typically insoluble in cold water and partially soluble once heated 

above gelatinization temperature (>70 °C), native high-amylose starch showed very low 

solubility (<5%) after heating even to 90 °C. This is consistent with many previous studies 

because gelatinization temperature of high-amylose starch was over 130 °C due to longer 

amylose chains. For HPS with a MS 0.56, cold water solubility was improved to over 30%, 

indicating a weakened granular structure of the starch imparted by HP modification; moreover, 

heating to 60 °C and 90 °C further increased the solubility to 48%. The solubility increase 

suggested HP substituent greatly lower temperature required for gelatinization and prevented 

amylose interchain association. Starch had 100% solubility at as MS increased to 1.18 and 1.64 

with or without heating, indicating HP substituent completely prevented starch self-association. 

As reported by BeMiller (2009) & Fu et al. (2019), hydroxypropylation is the most effective 

modification to prevent starch retrogradation by interchain H-bond disruption. 

Hydroxypropylation at MS > 0.1 the starch can be up to 10% (10 g starch/100 mL water) soluble 

in cold water (Aminian et al., 2013). Solubility of HPAcS was negatively relative to acetylation 

DS. Acetylation of DS > 1.21 rendered starch virtually insoluble in water regardless of 

temperature. HP0.56Ac0.89, HP1.18Ac0.21, and HP1.64Ac0.09 samples showed 30-95% 

solubility although they were precipitated and recovered from aqueous synthesis medium. This 

disparity was possibly due to difference in solid contents (25% in synthesis vs 2% in solubility 
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test) and presence of sodium acetate (a salt byproduct that might reduce starch solubility). It was 

evident that maximum acetyl DS negatively related to HP content. One possible reason was 

because acetylation might have taken place on HP substituent and created more hydrophobic 

moieties. 

 

Figure 5.3. Solubility of 2% (starch wt. to volume) native, hydroxypropylated (HPS), and 

hydroxypropylated acetylated (HPAcS) high-amylose starches after heating in water at 30, 

60, and 90 °C for one hour and cooled to 25 °C. 
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*Images were respective samples heated at 90 °C and centrifuged at 1700× g for 20 min; first 

value in sample name was molar substitution of hydroxypropyl group; second value was degree 

of substitution of acetyl group. 

 Thermal properties of HPS and HPAcS 

Molecular mobility of a dry unmodified starch is greatly constrained by hydrogen bond 

and as a result, (Tg) of native starch is about 224 °C. Because Tg of the native starch is close to 

its thermal decomposition temperature (approximately 300 °C), there was narrow margin for 

thermal processing (Xu et al., 2005). In practical starch bioplastic processing, i.e. extrusion, 

starch materials typically were heated to a temperature lower than 150 °C to avoid degradation; 

therefore, we scanned them to 140 °C to capture the Tg that would be practically meaningful 

(Shogren, 1996; Xu et al., 2005). As shown in Fig 5.4 & Table 5.3, glass transitions temperatures 

decreased with increasing hydroxypropylation MS. These changes can be explained as 

replacement of hydroxyl by HP prevented hydrogen bond formation and increased free volume 

thus allowed higher molecular mobility. Low DS (0.86, 0.21, and 0.09) acetyl substitution 

significantly reduced the Tg of their base HPS to various extents. It was noted high DS (1.97, 

1.46, 1.21) acetyl substitution only brought about 10 °C further reduction on the Tg to their low 

acetyl DS counterparts. Probably because the intermolecular hydrogen bond formation was 

already inhibited in low DS HPAcS.  

Tg is a critical property for starch bioplastics since they not only define processing 

temperatures but also determine useful temperature range for end applications.  By varying 

substitution level of HP and acetyl, it is possible to obtain a series of thermoplastic starch of 

different hydrophobicity. For example, sample HP0.56Ac0.89 can be blended with a small 

amount of water and thermally processed, i.e. extrusion and hot press, to produce starch-based 
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plastics with moderate water resistance. Furthermore, sample HP0.56Ac0.89 was also 

synthesized with high reaction efficiency which increased practicability for industrial-scale 

production. In another example, sample HP1.18Ac1.46 had a dry Tg of 44.2 °C and was strictly 

water insoluble. With addition of common plasticizers, i.e. triacetin, triglyceride, and propylene 

glycol, etc., it is possible to create a gum base that soften at body temperature and useful as a 

masticatory material.  

 

Figure 5.4. Thermograms (second scan) of hydroxypropylated (HP) and 

hydroxypropylated acetylated (HPAc) high-amylose starch determined by differential 

scanning colorimetry; values in sample names indicate molar substitution of HP and degree 

of substitution of Ac. 

Table 5.3. Glass transition (second scan) of native, hydroxypropylated (HP) and 

hydroxypropylated acetylated (HPAc) high-amylose starches determined by differential 

scanning colorimetry; values in sample names indicate molar substitution of HP and degree 
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of substitution of Ac; To, onset temperature; Tg, glass transition temperature Te, end temperature; 

ΔCp, change in heat capacity; N/D, not detected. 

 To (°C) Tg(°C) Te(°C) ΔCp (J/g·°C) 

Native N/D N/D N/D N/D 

HP0.56 N/D N/D N/D N/D 

HP1.18 56.9±0.6c 63.8±0.3c 70.7±0.5c 0.308±0.008c 

HP1.64 -12.1±0.3e 1.8±0.1e 11.3±0.3e 0.512±0.014a 

HP0.56Ac1.97 94.7±0.5b 98.9±0.4b 108.5±1.0b 0.282±0.006cd 

HP1.18Ac1.46 38.0±0.1e 44.2±0.9e 49.3±0.6e 0.256±0.008d 

HP1.64Ac1.21 -19.0±0.4g -11.0±0.2g -7.1±0.3g 0.304±0.006c 

HP0.56Ac0.86 101.9±1.7a 110.4±1.2a 117.0±1.1a 0.310±0.006c 

HP1.18Ac0.21 42.3±1.3d 47.0±0.4d 55.1±0.3d 0.282±0.006cd 

HP1.64Ac0.09 -14.0±0.2f -0.6±0.4f 13.0±0.2f 0.468±0.007b 

Different letters indicate significant difference (n=2; P<0.05) between each starch type in each 

column. 

 Capillary viscometry and molecular size of HPS and HPAcS 

Intrinsic viscosity measures volume occupied by individual polymer molecule and it is a 

widely accepted criterion for molecular size. Conventionally, hot water (>60 °C) or potassium 

hydroxide (1N) were used to make diluted starch solution for intrinsic viscosity determination 

(Heitmann & Mersmann, 1995; Leach, 1963). However, considering great likelihood of 

retrogradation and instability of ester bond in alkali, straight DMSO was used as solvent as it 

was reported to effectively dissolve all kinds of starches (Schmitz et al., 2009).  As shown in 

Table 5.4, the intrinsic viscosity of native high-amylose starch was about 80.4 mL/g, whereas the 

value for modified starches ranged from 22.8 to 100.6 mL/g. Evidently, the intrinsic viscosity of 

high-amylose starch increased significantly when hydroxypropylation reached MS 0.56 and 

decreased as hydroxypropylation progressed, suggesting some degradation of starch polymers 

have occurred. The depolymerization of starch was likely due to beta-elimination (also known as 
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Peeling reaction) after prolonged residence in high alkaline conditions (BeMiller, 2019). 

Acetylation in aqueous media further decreased starch intrinsic viscosity, which was possibly 

due to localized high acidity when acetic anhydride was added. Starch acetylated in anhydrous 

acetic anhydride at high temperature resulted in the lowest intrinsic viscosity, which was 

reasonable because glyosidic bonds are vulnerable when heated in acidic environment. Gel 

permeation chromatography was used to reveal change of hydrodynamic volume of starch 

materials. The distribution of hydrodynamic volume (Fig 5.5) was converted to molecular weight 

distribution that was summarized in Table 5.4, assuming molecular conformation of HPS and 

HPAcS in DMSO was similar to dextrin standards. GPC analysis suggested starch occurrence 

was present, and primarily in amylopectin fraction. The amylopectin fraction was reduced after 

in-aqueous acetylation and disappeared after anhydrous acetylation (Fig 5.5). Polydispersity was 

reduced after modification in general, suggesting a narrower distribution of molecular weight. It 

was noted the very low molecular weight fraction was also reduced in the modified starch 

samples, this fraction loss might due to dialysis process.   

Table 5.4. Intrinsic viscosity, number (Mn) and weight (Mw) molecular weight, and 

polydispersity of hydroxypropylated (HP) and hydroxypropylated acetylated (HPAc) high-

amylose starch determined by capillary viscometry and gel permeation chromatography; 

values in sample names indicate molar substitution of HP and degree of substitution of Ac. 

Starch 

 

Intrinsic 

viscosity 

(mL/g) 
Mn (×103) 

Mw (×
103) 

PD 

Native 80.4±1.2b 47±0b 1223±28a 26.4±0.6a 

HP0.56 100.6±2.9a 55±1b 1354±27d 24.6±0.8d 

HP1.18 70.7±0.8c 54±2b 889±32b 16.9±0.6b 

HP1.64 41.5±0.5e 45±1.8b 773±32c 16.8±0.7b 

HP0.56Ac1.97 31.1±0.7f 57±12b 262±5e 4.7±1.1f 

HP1.18Ac1.46 34.9±0.4f 59±5ab 251±0e 4.3±0.4f 

HP1.64Ac1.21 22.8±0.5g 78±6a 235±6e 3.0±0.3f 
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HP0.56Ac0.89 78.0±1.6b 53±1.8b 687±17d 9.5±0.3e 

HP1.18Ac0.21 59.4±0.8d 63±2.6ab 887±37b 13.7±0.6cd 

HP1.64Ac0.09 32.2±0.5f 49±1.1b 754±17c 15.5±0.3bc 

Different letters indicate significant difference (n=2; P<0.05) between each starch type in each 

column. 

 

Figure 5.5. Distribution of hydrodynamic volume of hydroxypropylated (HP) and 

hydroxypropylated acetylated (HPAc) high-amylose starch determined by gel permeation 

chromatography; values in sample names indicate molar substitution of HP and degree of 

substitution of Ac. 

 Textural and rheological analysis of HPAcS chewing gum base 

 To explore potential uses of HPAcS, three highly hydrophobic HPAcS were selected to 

formulate to chewing gum bases. Choice of plasticizers was based on a patented starch-based 
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chewing gum formulation (Liu, 2010). As Fig 5.6 shows, the HPAcS formed off-white, opaque, 

and homogenous soft gums resembled chewing gum. Starch gums were stretchy and able to 

elongate determined by a texture analyzer. All gum samples did not break at maximum 

elongation distance (150 mm; 750% elongation); however, peak force during stretching was 

different and in the order of HP0.56Ac1.97 > HP1.18Ac1.46 > HP1.64Ac1.21. In starch-based 

gums, HPAcS and plasticizer amount were uniform for all three gums and therefore, peak force 

was affected by other intrinsic joint factors such as glass transition temperature of HPAcS and 

severity of depolymerization of starch backbone. As severity of depolymerization was not 

significantly different for all three HPAcS (Table 5.4), glass transition temperature probably was 

the most influential factor for the peak force of the gums.   
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Figure 5.6. Elongation test of hydroxypropyl acetylated starch (HPAcS) based chewing 

gum base by texture analyzer; the gum curd was stretched from 20 mm to 150 mm at 3.3 

mm/s; three images were HP0.56Ac1.97, HP1.18Ac1.46, and HP1.64Ac1.21, from left to 

right, respectively; values in sample names indicate molar substitution of HP and degree of 

substitution of acetyl 

 Oscillation stress sweep was carried out to characterize three gum bases to identify their 

linear viscoelastic region (LVR) (Fig 5.7a). A typical LVR, where storage modulus (G’) 

remained independent of stress up to certain value and decrease as stress further elevated, was 

observed for HP0.56Ac1.97 gum at 3 kPa. This critical value indicated the point where gel 
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structure began to fail, leading to reduction of stiffness. HP1.18Ac1.46 and HP1.64Ac1.21 based 

gums exhibited no observed critical stress within the stress range tested, indicating their structure 

was less prone to breaking under stress deformation. Initial G’ was reversely related to MS of 

HP, suggesting higher MS resulted in softer gum. It was also noted G’ was less than loss 

modulus (G’’) over the range of stress applied, meaning the starch gums had more liquid-like 

component. They may behave like a thick paste and flow slowly due to gravitational force. 

Frequency sweep showed starch gums were sensitive to frequency change as the G’ and G’’ 

increased steadily, together with constant G’’> G’ (Fig. 5.7b), it is concluded that the starch 

gums were “true paste” rather than “gel”. G’ of starch gum base was highly dependent on 

temperature as shown in Fig 5.7c. Upon heating to 20 to 70 °C, G’ undergone about 10-fold 

decline in every gum base. Dramatic stiffness decrease is very important in chewing gum 

processing, because compounding and blending the gum base with other ingredient require a thin 

mixture and the only practical way to “thin” the gum base is by heating (Fritz, 2006).    
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Figure 5.7. Rheological analysis of hydrophobic hydroxypropylated acetylated (HPAc) 

high-amylose starch formulated chewing gum base; values in sample names indicate molar 

substitution of HP and degree of substitution of Ac; formula contain: HPAc starch (4.5 g), 

triacetin (3.5 g), hydrogenated soybean oil (0.5 g), and acetylated monoglyceride (0.5 g) 
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 Conclusions 

 High-amylose maize starch was hydroxypropylated to MS 0.56, 1.18, and 1.64 in 

aqueous isopropanol medium and further acetylated to high and low DS. Hydroxypropylation 

and acetylation synergistically lower glass transition temperature of the HPS. By varying MS and 

DS, it was possible to prepare thermoplastic starch of different hydrophobicity. Plasticized 

HPAcS samples exhibited unique rheological properties resembled chewing gum bases. Those 

gums behaved like thick pastes, softened greatly upon heating and exhibited excellent 

elongation. Stiffness of the starch gums was dependent on glass transition temperature, which 

was ultimately determined by levels of hydroxypropylation. Future works may focus on more 

economy approaches in synthesizing and recovering HPS and HPAcS.    
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Chapter 6 - Overall conclusions 

Maize starches of different amylopectin contents were successfully acetylated in aqueous 

slurry to achieve intermediate DS. High-amylose maize starch appeared to achieve the highest 

DS (1.7), comparing to waxy and normal maize starches when same amount of acetic anhydride 

was used. Acetylation took place primarily on hydroxyl group linked to carbon number 2 

regardless of amylose content of base starch. The acetylated starches were further melted and 

reacted in OSA in absence of catalyst and organic solvent. In representative OSA modified 

starch acetate samples, reaction efficiency of OSA was around 18%, which translated to DS 

about 1.2 in the mixed starch ester. The OS substituent imparted thermoplasticity to starch 

materials by lowering its Tg to around 56 °C. Approaches to improve reaction efficiency of OSA 

such as pregelatinization of starch acetate, incorporating an inert diluent, and acid thinning of 

base starch, were tested. Incorporating triacetin as a diluent in the reactive melt effectively 

improved (doubled) reaction efficiency of OSA without harming DS of the products. The OSA 

modified starch acetate were further plasticized to mimic chewing gum base. Rheology analysis 

shows similarity of high-amylose starch-based chewing gum to commercial chewing gum in 

terms of stiffness and softening upon heating.  

Highly water-soluble and thermoplastic hydroxypropylated starch (MS 0.56-1.64) were 

prepared by reacting propylene oxide and high-amylose maize starch. Glass transition 

temperature of the starch ethers were greatly lowered by high degree of etherification and was 

further synergistically lowered by acetylation. Depending on the extent of acetylation, solubility 

of starch ethers changed drastically. It was very applicable to produce thermoplastic starch of 

different water solubility through manipulating extent of etherification and acetylation. Water 

insoluble starch ether esters were formulated to chewing gum bases. The starch-based chewing 
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gum bases demonstrated excellent stretch on texture profile analyzer and their stiffness was in 

range as chewing gum base. 
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Chapter 7 - Appendix list  

 Appendix A. DS determination using 1H-NMR 

The starch acetates and pre-gelatinized starch acetates (15 mg) were dried at 80 °C in 

vacuum oven for 2 h, boiled in 1 mL deuterium oxide for 10 min, freeze-dried, and dissolved in 

1 mL dimethyl sulfoxide-d6 (DMSO-d6) to obtain a clear solution. The solution was analyzed by 

a Varian 400 NMR system (Varian Inc., Palo Alto, CA) at 25 °C. Sixteen scans were acquired 

for each sample and the relaxation time was 1.0 s. The DMSO signal was calibrated to 2.5 ppm 

(Gottlieb, Kotlyar, & Nudelman, 1997). DS of each starch acetate was calculated by the 

following equation (Chi et al., 2008). 

𝐷𝑆 = 4𝐴/(3𝐵 + 𝐴) 

where A is the methyl protons at 2.01-2.08 ppm; B is the sum of OH and H-1 protons for 

anhydroglucose unit moiety observed at higher than 4.5 ppm. 
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Figure A. 1. 1H NMR spectra of acetylated high-amylose maize starches; DS, degree of 

substitution. 
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 Appendix B. X-ray diffraction 

5 10 15 20 25 30 35

0

200

400

600

800

1000

Degree 2θ (°)  

In
te

n
s
it
y

DS 1.71 

DS 1.33

DS 0.89

DS 0.53

Unmodified

 

Figure B. 1. X-ray diffraction patterns unmodified and acetylated high-amylose maize 

starches; DS, degree of substitution. 
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Figure B. 2. X-ray diffraction patterns of unmodified and acetylated pre-gelatinized 

(pregel) high-amylose maize starches; DS, degree of substitution; 
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Appendix C. Differential scanning calorimetry analysis

 

Figure C. 1. Differential scanning calorimetry thermogram of unmodified and acetylated 

high-amylose starch in water (25% solid); DS, degree of substitution. 
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Figure C. 2. Differential scanning calorimetry thermogram of unmodified and acetylated 

pre-gelatinized (pregel) high-amylose maize starches in water (25% solid); DS, degree of 

substitution. 
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Figure C. 3. Thermograms of unmodified and acetylated high-amylose starch heated in 

400% octenylsuccinic anhydride (OSA) by a differential scanning calorimeter; DS, degree 

of substitution 
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 Appendix D. High performance liquid chromatography (HPLC) analysis of 

octenylsuccinic starch acetate 

Contents of total OS and unbound OS in OS-Ac-starches were determined by a HPLC 

procedure adapted from Qiu, Bai, & Shi (2012) The method was modified accordingly to suit the 

high level of OS. An Agilent 1100 HPLC system (Agilent, Waldbronn, Germany) consisted of a 

G1311A pump, an auto-sampler with 10 µL injection loop, a G1315A diode array detector 

(DAD) and a Phenomenex Kinetex C18 column (2.6 µm, 100 × 4.6 mm; Torrance, CA) were 

used to perform the analysis. Mobile phase was a mixture of acetonitrile and water (50:50, v/v), 

acidified by 0.1% trifluoroacetic acid (TFA). Flow rate was 1 mL/min. Column temperature was 

kept at 25 °C.  

 Standard curve 

OSA reagent (1.0000 g) was weighed into a 100-mL volumetric flask acetonitrile was added 

to the mark to obtain OSA solution. To each 25 mL volumetric flask, 1, 2, or 3 mL of OSA 

solution was pipetted. Acetonitrile (11.5, 10.5, or 9.5 mL) was added into the volumetric flask 

respectively and the flask was filled to mark with water. The mixtures were stirred overnight to 

convert OSA to OS acid and were referred to OS acid stocks. OS acid stocks (1, 2, 3, 4, or 5 mL) 

was added into 25 mL volumetric flasks which were then filled to mark with acetonitrile and 

water (50:50, v/v) to produce working standards. The final OS acid amount in the working 

standards (per 10 µL injection) were 0.16 to 2.4 µg. In addition, 0.16 µg standard was further 

diluted five times to obtain a 0.032 µg standard to cover the very low end of the curve. 

 Unbound OS content 

OS-Ac-starch (Ca. 50 mg, dry weight) was weighted into 10 mL DMSO and stirred overnight 

to complete dissolution. An aliquot of the solution (0.2 mL) was diluted to 1.5 mL (final dilution 
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factor is 75×) with acetonitrile water (50:50, v/v) and filtered through a 0.45-micron syringe 

filter before injected into the HPLC. The %OSunbound was calculated from the equation below. 

%𝑂𝑆𝑢𝑛𝑏𝑜𝑢𝑛𝑑 =  
75 × 𝑊𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑊
× 100% 

where Wunbound was the weight of unbound OS in µg; W was the dry weight of OS-Ac-starch.   

 Total OS content and DS of starch gum  

OS-Ac-starch (Ca. 50 mg) was weighted into a 50-mL conical tube containing 4 N sodium 

hydroxide (5 mL) and stirred overnight. HCl (21 mL, 1 N) was added to neutralize the excessive 

alkali. One aliquot (1 mL) of the mixture was diluted 10 times using acetonitrile and water 

(50:50, v/v) before injection (final dilution factor was 260×). The %OStotal was calculated using 

the formula below.   

%𝑂𝑆𝑡𝑜𝑡𝑎𝑙 =  
260 × 𝑊𝑡𝑜𝑡𝑎𝑙

𝑊
× 100% 

where Wtotal was the weight of total OS in µg; W was actual weight of starch gum in µg. 

 The DS of octenyl succinate in the starch gum was determined from the equation below. 

𝐷𝑆 =
(162 + (43 × 𝐴𝑐𝐷𝑆)) × %𝑂𝑆𝑏𝑜𝑢𝑛𝑑

210 − 209 × %𝑂𝑆𝑏𝑜𝑢𝑛𝑑
 

where the AcDS the DS of acetylation of base starch; %OSbound the difference between %OStotal 

and %OSunbound.    
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Figure D. 1. HPLC chromatograms of hydrolyzed octenylsuccinylated acetylated starch 

(1.33 acetyl 1.19 octenylsuccinyl). 
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 Appendix E. Images of octenylsuccinylated acetylated starch (1.33 acetyl, 1.19 

octenylsuccinyl)  

 

* unpurified (1), after ethanol wash cycles (2-4) and soaked in water overnight (5) 
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 Appendix F. DSC thermograms of starch acetate and octenylsuccinyl acetate at 

different moisture contents 
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*Thermograms of starch acetate (DS 1.33), dry (a) and octenylsuccinylated acetylated starch (DS 

1.33 for acetyl and DS 1.2 for octenylsuccinate groups), dry (b), 5.8% moisture (c), and 8.7% 

moisture (d); DS, degree of substitution. 
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 Appendix G. Solubility and swelling power (SP) of AS and OS-Ac-starch in various 

diluents 

  Starches (pre-dried in a vacuum oven at 80 °C for 2 h, 100 mg) and different diluents (1 

g) were into pre-weighed centrifuge vials. The mixtures were vortexed for 10 min, heated at 120 

°C for 1 h and cooled to 25 °C, and centrifuged at 1000 × g for 15 min. Supernatant was 

removed to pre-weighed glass vials by pipetting. Swelling power was obtained by dividing 

weight of mixture with weight of AS. Solubility was determined by vacuum drying supernatant 

at 120 °C. In another set of experiment, different diluents were mixed with OSA at diluent to 

OSA 1:4, and 1:1 (w:w), with ethanol at 1:1 (w:w) to observe miscibility. All diluents showed no 

phase separation with OSA and ethanol; however, exhibited different SP and solubility to starch 

esters. 

Diluents 
Boiling 

point (°C) 
Acetylated starch  

OS-Ac-

starch 
 

  SP Solubility % SP Solubility % 

Acetylacetone 140.0 3.34 1.23 7.32 5.73 

Ethyl acetoacetate 180.8 3.61 1.21 7.16 6.10 

Ethylene glycol 

diacetate 
186 3.82 2.19 7.70 5.94 

Propylene glycol 

diacetate 
190 4.00 1.48 8.12 7.42 

Diethyl malonate 199 4.23 1.47 8.00 7.58 

Triacetin 259 4.60 7.27 7.75 9.52 

Figure G. 1. Swelling power (SP) and solubility of acetylated high-amylose maize starch 

(DS 1.3) and octenylsuccinylated (DS 1.3) acetylated (DS 1.3) high-amylose maize starch 

(OS-Ac-starch) in various diluents.    
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