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ANALYSIS OF REINFORCED CONCRETE

FOLDED PLATES BY MINIMUM ENERGY

PRINCIPLE

by Vinu K. Patel
a

Synopsis

At the present time, a number of methods of analysis of folded plate

structures are available that are based on rigorous theory and that are

practically applicable without the aid of high-speed computers. The method

presented here is based on the principle of minimum total potential energy.

In this method the stress resultants of minor importance such as membrane

shear, longitudinal bending moment in slab, slab twisting moment, etc. are

considered. These are in addition to the stress resultants ordinarily con-

sidered (longitudinal direct stresses and transverse slab moments). The

method of analysis is developed in detail for simply supported structures.

Strain-energy and potential energy expressions for the stress resultants,

considering the elastic curve distribution and sine wave distribution of

deflection, are developed. To illustrate the method, an example is solved.

Graduate Student, Department of Civil Engineering. Kansas State University,
Manhattan, Kansas



INTRODUCTION

The problem of carrying roof loads over long spans has frequently oc-

cupied the attention of structural engineers and architects, and many struc-

tural forms have been developed. It is generally recognized that the shell

roofs provide an efficient solution to the problem. These structures

translate the applied external loads into compressive and tensile forces and

shears in the plane of their surface. These forces and shears are called

membrane stresses. The measure of the structural economy of the system depends

on the degree to which membrane stresses are dominant over the out-of-plane

flexural stresses. The shell structure of reinforced concrete is economical

of material, but its cost may be high because of the elaborate false- work

required, and due to the difficulty in placing concrete over the shell struc-

ture.

The disadvantages of shell structure can be overcome, retaining the

other advantages, by folded plate structure. Folded plates structures,

sometimes called prismatic shells, are the types of roofs consisting of a

series of flat plates, mutually supporting each other along their longitudinal

edges, that frame into transverse end diaphrams. Folded plates have been used

extensively in the construction of long-span roof systems because of economy and

their interesting and pleasing architectu. ;earance. The materials required

for folded plc.ce construction are usually less than needed for flat slab, slab

and beams, or other conventional systems and are little more than required for

continuous cu , with the advantage of utilizing simple forms. These

strucu. ..ave a deep corrugated form somewhat similar to that of multiple-

barrei cylindrical shells, except that plane elements are used, intersecting

in "folded lines' 1 in the direction parallel to the span. Folded plate



structures represent an attempt to simplify forming and still retain the advan-

tages of shell construction, but are not ideal shells, because flexure action

may have a considerable influence on their design. Folded plates may be simply

supported at their ends or they may be continuous over transverse diaphrams.

There are various theories of analyzing the folded plate structure, some

of which are exact and some are inexact. The inexact theories are relatively

simpler and easier to follow as compared to exact theories. The first man to

develop the principle of folded plate construction was G. Ehlers of Germany.

He published the first technical paper on this subject in 1930. In his

method of analysis he considered the various plate elements as beams supported

at the cross-and end diaphrams. Along the longitudinal edges, the plates were

assumed to be connected by hinged joints, that do not slide longitudinally and

that are considered capable of transferring edge shears between the contiguous

plate elements. Thus he neglected entirely the connecting moments transmitted

between the plates due to the rigidity of joint (as construction is monolithic).

The uniform loads on the plates were transferred to the line loads, P, acting

at the joints, as shown in Figure 1. These loads P were then resolved into two

components, P
ccj and P

C5» parallel to the two adjacent plates as shown in Figure 2,

PLATE
ELEMENT;

LOMQITUDINAL
TOIMT.S

B

A

Folded
plate
structure

Resolution of loads
at ridges

Figure 2

"Ein neues konstruktionprinzip" , by G. Ehlers, Bauingenieur, Vol. 9,

1930, p. 125.



The plates, acting as beams between the diaphrams, carried the loads P. As

he assumed that there was no longitudinal relative displacement between the

two plates at longitudinal edges, there must exist the shear stresses along

the edges. The condition of equal longitudinal strains at edges was used to

determine the magnitude and distribution of shear stresses. Thus in his

theory G. Ehlers neglected two things.

1. Connecting moments at longitudinal edges.

2. Relative displacements between the joints.

In 1932, E. Gruber published his method in which he considered the effect

of the rigidity of the joints, i.e., connecting moments acting along the

common edges of the plates and the relative displacements between the joints.

This method consists in solving simultaneous dif tial equations, which is

a tedious job. He showed that the maximum longitudinal j cresses on a cross

section and maximum deflections for a roof with hinged plates were about twice

as great as those for the rigidly connected plates. Thus he concluded that

the influence of the rigid connections should not be neglected ai> it had been,

according to practice.

Later the theory was further developed and expanded in many respects by

H. Craemer2 » , Mr. Gruber and others. With the exception of Mr. Gruber

all writers have made the simplifying assumption of neglecting the effect

of the relative deflections of the joints. The method most commonly used

5
in the U.S.A. was introduced by George Winter and Pei , and was later modified

2 "Der hentige stand der Theorie der Schneibentracier and Faltwerke. in
Eisenbenton" by II. Cracaer, Beton and Eisen, Vol. 56, 1937, p. 269.

3 Ibid., p. 297.
"Ecrcchnug prismatischcr schciben wcrke" by l, Gruber, Memoirs,

International Assn. of Bridges and Structural Engg., Vol. 1, 1932, p. 225.
-> "Hipped plate construction" by G. Winter and Pei, Journal ACI, Jan.,

1947.



by Ibrahim Gaafar , to include the effect of joint displacements.

John £. Goldberg, and 11. Leve have developed the solution using the

theory of elasticity. The method developes a solution for the stresses in

a folded plate structure by combining the equations of the classical plate

theory for loads normal to the plane of the plates together with the elastic-

ity equations defining the plane stress problem for loads in the plane of the

plates. This method requires extensive computation and so becomes practical

when programmed for a digital computer.

At the present time many methods of analyzing folded plate structure are

available. The design methods referred to are those presented by I. Gaafar

and D. Yitzhaki, which overcome objections to previous methods by taking into

account the slab reactions induced by relative displacements of the ridges.

The method presented here is an alternate method of solving folded plate

roofs, which is based on the principle of minimum total potential energy. In

this method, appropriate expressions for the deflection curves are introduced

and used to develop the potential of the external forces and the strain energy

of the deflected structure. The total potential energy of the deformed struc-

ture is obtained by summing the potential energy of the external loads and

internal forces. The potential energy of the internal forces is the strain

energy of the deformed structure. The principle of minimum total potential

energy is applied to evaluate the deflection coefficients. The stresses are

then calculated with the help of deflections. The method is developed for

structures simply supported at the ends.

6 "Hipped plate analysis considering joint displacements" I. Gaafar,
Transactions, ASCE., Vol. 119, 1959, pp. 743-739.

"The design of prismatic and cylindrical shell roofs" by D. Yitzhaki,
Haifa. Science publishers, Haifa, Isreal, 1958.

"Theory of prismatic folded plate structures" by J. E. Goldberg,
E. H. L. Leve I.A.B.S.E. (Zurich), No. 87, 1957, p. 54.



DEFINITIONS

The following definitions are used as a basis for the discussion in

this report:

(1) A plate is an individual planar element of the structure.

(2) The length of a plate is the dimension between transverse

supports, (Figure 3, "L").

(3) The width of a plate is the dimension between longitudinal

edges. (Figure 3, "h").

(4) The height of the structure is the vertical dimension of the

upper and lower extremes of a transverse cross section.

(Figure 3, "H").

(5) The work stored in the elastically distorted body in the

form of energy is defined as strain energy, or elastic

energy. ("The Analysis of Structures" by N. J. lloff, p. 122).

END PORTION
OF A FOLDED

PLATE

Figure 3



(6) Potential energy of a system is defined as the negative of the

v;ork done by forces acting on the system. ("Energy Methods in

Applied Mechanics" by H. L. Langhaar, p. 18).

(7) Total potential of the system is the summation of strain

energy and potential energy of the system. ("The Analysis of

Structures" by N. J. Hoff
, p. 139.).

Advantages of folded plate structure over shell structure ; Following are

the advantages of a folded plate structure over a shell structure:

(1) The formwork required is relatively simpler in a folded plate

structure as it involves only straight planks, while in case of

a shell structure the formwork is complicated as it involves

curved members.

(2) Formwork can be removed at the end of icven days, if not

earlier, because of their greater rigidity; This results in

quicker turnover which, in turn, cuts down the construction

time.

(3) The design involves only simple calculations which do not

call for a knowledge of higher mathematics, while calculations

involved in shell structures are complicated and laborious.

(4) As folded plate construction involves only straight planks,

movable formwork can be employed in its construction with

great ease, while in shell construction movable formwork cannot

be employed with case as it involves curved planks.

(5) Folded plate construction requires simple rectangular diaphrams

as against complicated transverses required for a shell

structure.



(6) Their light-reflecting geometry and pleasing outlines make

them comparable with shells in their aesthetic appearance.

STRUCTURAL ACTION OF A FOLDED PLATE

The action of a folded plate structure in carrying externally applied

loads is conveniently separated into two parts. One in the transverse

direction and second in the longitudinal direction. In the transverse direction

between fold lines, loads are carried by slab action, i.e., the loads applied

to the surface are carried by the bending strength of the surface. In the

longitudinal direction, the reaction of all such transverse beam strips is

applied as a line loading along the fold lines. The structural action of the

plate units in resisting this line loading is same as that of inclined deep

girders, laterally braced by adjacent plates, and spanning between end walls

of the structure. Thus any load applied on a folded plate structure is

carried on supports (end diaphrams).

The key to the structural behavior of such structures is in the capacity

of the fold lines to serve as lines of support for the transverse beam strips.

To study the structural action of the folded plate structure, let us consider

a simple folded plate building as shown in Figure 4.

Let the structure be loaded by a uniformly distributed load of w

Ibs/sq.ft. Let a be the angle made by inclined plates with the horizontal

as shown in Figure 4.

The component normal to the surface of the plate will be carried to fold

lines by slab action and the component in the plane of the plate will be

carried by plate action. The transverse slab strip will deliver reactions

to the fold lines. The reactions from all such transverse slab strips cause
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FOLDED PLATE BUILDING

Figure 4

a line loading along the entire length of the fold line. Let P be the

resultant of all the line loads acting at the fold line of plates 1 and 2 per

foot length of the plate. The direction of the fold line deflection, ab, will

depend on the relative stiffness of the plates at that fold line, i.e., plates

1 and 2. The deflection of each plate can be resolved into components parallel

and perpendicular to the plate, for example ac and cb parallel and perpendicular

to plate 1 and ad and bd parallel and perpendicular to plate 2 as shown in

Figure 5. Each plate has negligible resistance to deflection normal to its

DEFLECTION OF PLATES AT A RIDGE

Figure 5



plane compared to its great resistance to deflection in its own plane. It

is seen that a fold line cannot deflect in any direction without causing

in-plane deflection of one or both of the adjacent plates.

While any plate is extremely flexible out of its plane, it is extremely

stiff in its own plane, just as a deep beam is stiff. The load in any

direction is resolved into components parallel to the two adjacent plates.

The load P at a fold line is resolved into two components P, and P
2
parallel

to plates 1 and 2 as shown in Figure 6. The load P, in addition to W.h.Sina

lbs/ft. length will be carried to the end diaphrams by plate action. A

similar situation is obtained at any other fold line. For satisfactory

structural behavior, it is only necessary that the plates do r.ot meet at too

flat an angle.

RESOLUTION OF LOADS AT A RIDGE

Figure 6

Reinforced concrete folded plates are designed transversely as continuous

slabs with top steel at fold lines and bottom steel for positive moment

between the fold lines. These transverse slab strips deliver fold line loads

which are resolved as described, into components in the plane of the two

adjacent plates. The plates span as deep beams between end walls, with

principal tensile reinforcement at the lower fold line or valley.

There are two design complications which result from reinforced concrete
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folded plate structures. One design complication is that relatively slight

differential displacements of the fold lines relative to one another can

have a substantial influence on slab moments, and on the reactions delivered

to the fold lines. This reaction difference requires a corrective deflection

analysis. A second characteristic design feature is that the primary analysis

may result in longitudinal plate stresses differing on either side of a

fold line. This will cause strains also to differ on either side of a fold

line. This strain incompatability cannot exist in actual structure because the

stress and strain on one side of a fold line must be the same as on the other.

The result is that longitudinal shears are caused along the fold line, acting

equal and in opposite directions on two adjacent plates, which restore com-

patability. These edge shears modify the longitudinal stresses across the

entire width of each plate.

PRINCIPLE OF MINIMUM TOTAL POTENTIAL

Statement . The principle states that the actual configuration of an

elastic structure deformed by loading is such that the total potential energy,

which consists of the potential energy of the applied loads and strain energy

of the deformed structure, is a minimum.

We know that the principle of virtual displacements establishes the

vanishing of the sum of the external and internal work for any virtual dis-

placement as the necessary and sufficient condition of equilibrium of a system

of mass points.

6 we + 6 wi = o

where

6we = External work of the external loads acting on the system.

&wi = Internal work of the internal forces.
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The external work 6we is ZP*&P, if the external loads P are all concentrated

forces and the displacements &P are those of their points of attack in the

directions of the forces corresponding to the virtual displacement. VThen the

elastic body is under the action of distributed loads, the external work can

be calculated by integration rather than by summation. If for the sake of

simplicity the principle of virtual displacements is written for the case of

concentrated external loads, it becomes

6we + 6wi = ZP-&P - 6U = o (1)

because

&wi = -6U

Equation (1) is a necessary and sufficient condition of equilibrium,

provided the variation sign & is understood to imply any arbitrary displacement.

The change in the strain energy has to be calculated on the assumption

that the forces remain unchanged during the variation of the state of strain.

It is convenient to define potential V of the external forces in such a

manner that the work done by the forces during a variation of the state of

deformations be equal to -&V. In the form of an equation

-6V = SP'&P (2)

when all the external loads are concentrated forces. Substitution of -6V

in equation (1) yields

_6U - i>y = o

or

6(U + V) = o (3)

The expression U + V is known as the total potential of the system.

Let it now be assumed that the total potential U + V is a function of one

single displacement parameter q. Then the elastic body is in equilibrium if
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5(U + V) = d(U + V)/dq • 6q = o (Proof by Taylor* s Theorem &

considering the terras of first order

in virtual displacement)

that is, if

d(U + V)/dq = o (4)

since &q / o by assumption.

When U + V is a function of two independent displacement parameters

q, and q2 , the body is in equilibrium for

d(U + V)/3q1 = o (5)

i

S(U + V)/dq
2

= o (6)

If the function U + V is plotted against the independent variable q,

eq.(4) requires that the curve has a horizontal tangent. This is so when

U + V is a maximum or minimum or when it has an inflection point. In each case

the function is said to have a stationary value. Therefore, the total potential

has a stationary value when an elastic body is in equilibrium. The stationary

value always corresponds to a minimum when the equilibrium is stable. There-

fore, the total potential is a minimum when an elastic body is in equilibrium

configuration.

This principle is of great importance in structural analysis. Methods

of calculating stresses by its use are known as energy methods.

RAYLEIGH-RITZ METHOD

The simplest procedure for obtaining an approximate deflection function

was devised by Lord Rayleigh. It consists of assuming arbitrarily a reasonable

deflected shape involving an undetermined coefficient and equating the first

derivative of total potential with respect to an undetermined coefficient.
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This will give the undetermined constant, which when substituted in the assumed

deflection function gives the approximate deflection function. The assumed

deflection function should be such that it satisfies the boundary conditions.

Rayleigh* s method has often been criticized because it provides no information

about the accuracy of the approximation. The most convenient shapes one can

assume in the Rayleigh method for the deflections functions are those represented

by trigonometric functions and polynomials.

A natural extension of the Rayleigh method, denoted as the Rayleigh-Ritz,

or often simply as the Rayleigh method, makes use of a more complex expression

for the deflected shape. We can choose a function involving n undetermined

coefficients. We have to adjust the 'n* undetermined constants in such a

manner as to approximate best the true deflected shape. Tae best approximation

is derived by the principle of the minimum of the total potential. We know

that the true deflected shape differs from all other geometrically possible

shapes inasmuch as it corresponds to the minimum value of the total potential.

The total potential must therefore be mace as snail as possible by a suitable

choice of the constants. This can also be expressed by saying that the total

potential must be minimized with respect to the n undetermined coefficients.

The 'n' undetermined coefficients can be obtained by putting partial derivatives

of total potential with respect to each constant equal to zero and solving these

n equations simultaneously. Substituting these n constants in an assumed

deflection function wc get an approximate deflection function. The deflection

function obtained by this method is better than that obtained by the Rayleigh

method.

The number of undetermined constants to be taken into an approximate

deflection function depends on the degree of accuracy required. The Rayleigh-

Ritz method gives an exact solution when an infinite trigonometric series is
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used in it and all the terms are considered in the calculation. It is seen

from this discussion that Rayleigh-Ritz method replaces by a much simpler

procedure the task of minimizing the total potential of a system with the aid

of the variational calculus and of solving the differential equations so

obtained. The solution obtained by the Rayleigh-Ritz method is approximate

when a finite number of terms are considered, and often a very small number

of terms suffice to obtain a satisfactory solution. The solution is exact

when all the terms of an infinite series are taken into account.

In short, following are the steps to obtain a deflection function:

(1) Assume the deflection function such that

(a) The boundary conditions of deflection are fulfilled

(b) The shape of the deflection curve is generally in accord

with the expected deflected shape, and

(c) The actual shape and amplitude of the curve is defined by a

set of undetermined coefficients.

(2) Find the strain energy of the system corresponding to an assumed

deflection function.

(3) Find the potential of the loads corresponding to an assumed

deflection function.

(4) Obtain the total potential as the summation of the strain energy

and the potential of the loads. The total potential is a function

of the undetermined constants.

(5) Set the partial derivatives of the total potential with respect

to each undetermined constant equal to zero.

(6) Solve as many equations as there are unknowns simultaneously and

obtain all the undetermined constants.
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(7) Substitute these constants in the assumed deflection function and

obtain the deflection function.

Once the deflection function is obtained, stresses and deflections can be

calculated easily.

GENERAL THEORY

General. The theory presented herein is based on the following

assumptions.

(1) The material is homogeneous, uncracked and elastic.

(2) Longitudinal edge joints are fully monolithic and continuous;

there is no relative rotation or translation of two adjoining

plates at their common boundary.

(3) The principle of superposition holds, that is, the structure may

be analyzed separately for the effects of its redundant s and

various external loadings and the results combined algebraically.

(4) The longitudinal strain due to plate action varies linearly across

the width of the plate (plane section remains plane).

(5) The supports are infinitely stiff edge beams in the plane of the

loads but are completely flexible in the plane of the plates. For

Figure 7, this means that the end support is very stiff vertically

but can distort horizontally as the deformations of the plates may

require.

The assumptions involved in developing strain-energy expressions will

be presented subsequently. First, the structure with non-yielding supports

(actually non-existant) at the ridges is subjected to the actual loading

and the ridge reactions are computed. Second, these ridge reactions are



SUPPORT CONDITION

Figure 7

applied to the actual folded plate structure* Solution of the first loading

on the structure represents a conventional analysis of a continuous slab over

non-yielding supports.

Forces Acting on ,i Folded Plate , The forces acting on a folded plate

are shown in Figure 9. Figure 8 shows folded plate notation.
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FOLDED PLATE NOTATION

Figure 8
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ieflection Curves and Deflection Expressions of Edges , Complete

specification of the displacement of any point on the folded plate structure

would involve three components in each plate; that is, in the longitudinal

(u) t transverse (v) , and normal directions (W) , with respect to each plate.

However, in the development of energy expressions herein, two basic characteris-

tics of folded plate action are utilized so as to deal only with the transverse

deflection component, v, in each plate. Thus, the requirement that the

longitudinal strains at each ridge must be the same for each adjoining plate

is used to obviate explicit consideration of longitudinal displacement.

Another fact, that the normal deflections of each plate at the ridges can be

expressed in terms of the transverse deflections of these plates, will be used.

To express the normal deflections of the plates in terras of the transverse

deflections of the plates the geometry of the deflected folded plate structure

will be considered. The vertical and the horizontal displacement of any ridge

can be expressed in terms of the transverse deflections in the plates.

The transverse deflection of the k plate, v., that is consistent with

the previous assumptions may be obtained to a precise degree of accuracy if

v is expressed in terms of a complete set of functions each multiplied by a

coefficient, as yet not determined. Thus for a simply supported structure,

vk Kj • Sin rcx/L K
2

• Sin 2tcx/L + (7)

The Rayleigh-Ritz method could be used to evaluate all the coefficients

K. . Once the deflection is known, the stress can be evaluated easily. The

actual longitudinal distribution of deflection of a folded plate structure

corresponding to a particular loading is closely approximated by a linear

combination of (a) the clastic curve corresponding to the loading and the end

support conditions of the structure and (b) the normal curve in accordance
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with the end-support conditions. For symmetric loading of a simple span

structure, the shape of the elastic curve is very nearly the same as the

normal curve for the simple span, which is a half wave of a sine curve,

9 10
Experience with the Rayleigh-Ritz method ' has shown that the values of

the maximum deflections obtained are relatively insensitive to small variations

in the assumed deflection curve. The use of either the simple beam elastic

curve or a sine wave as the shape of the transverse deflection curve for the

plate should, therefore, yield almost equal values of the transverse slab

moments that are linearly dependent on these deflections. However, this

insensitivity is not characteristic of the longitudinal stresses as these are

dependent on the plate moment and the central load, both of which vary as the

second derivative of the displacement. A linear combination of the elastic

curve and a sine-wave distribution could be used as the assumed deflection

curve to take this into account where greater accuracy is desired, but this

refinement is not included herein.

The displacements of the ridges can be expressed in terms of the dis-

placements of the adjoining plates on the basis of geometric considerations. 11

In deriving these relationships, the following assumptions are made:

(a) The width of each plate remains unchanged (normal strains in

transverse direction are neglected).

(b) The slope of each plate with respect to its original direction is

very small.

Referring to Fig. 10 the displacements normal to plate K at ridges

Q
"Elasticity in Engineering", by E. E. Sechler, John V7iley & Sons, Inc.,

New York, N. Y., 1952, pp. 195-199.
10 .

"Energy Methods iv. _ Lied Mechanics" by H. L. Langhaar, John Wiley
& Sons, Inc., New York, N. Y., 1962.

11 "Tne Design of Prismatic and Cylindrical Shell Roofs", by D. Yitzhaki,
Haifa Science Publishers, Haifa, Israel, 1958.
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K-l and K, respectively, are

w
k-i,k = Vtan Vi - v

k-i
/sin Yk-i < 8 >

and

vk+l v
k

W
k,k

=
Sin Yk

" tan Yk
(9)

The vertical displacement at ridge k is

&
k

=
\+i<

coa
®v/

einr
y? - V cosvWsinV (10)

The above expressions 3, 9, and 10 are true when the stress resultants of

minor importance are not included in the analysis. When the effect of the

stress resultants of relatively minor importance is included in the analysis,

the preceding displacement expressions must be revised to account for the

additional transverse displacement in the plane of each plate, s. , due to

membrane shear. For this case, the foregoing equations become

Vi.k Vtan Vi - r
u-i

/ain Vi (u)

\,k -Wsin \ - V"n Yk
(12 >

\ = Vi (Cosv
k
/sin V - rkWo8<Wsin V (13)

in which

X
K
U

K

Figure 10

AXES
REFERENCE
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E & H are the respective positions of points A and F in the deflected structure,

AB = vv_i A = wk-l k Axes ^tyi.* 2
].

are ttie axes of the reference.

GF = v. FI = v, .,k k+1

We can prove the above expressions 8, 9 and 10 using the geometry in

Figure 10.

DERIVATIONS OF STRAIN ENERGY AND POTENTIAL ENERGY EXPRESSIONS
CONSIDERING SINS-WAVS DISTRIBUTION OF TRANSVERSE DEFLECTION

For the uniform longitudinal ridge loading : The energy expressions are

derived for the case of uniform vertical loads, R,„, along each ridge. The

sine wave transverse deflection of the k plate is taken as

v
k (x) - v,_ • Sin tc • xA (14)

th.The potential of the distributed external load, & , at the k ridge,

Vk , is evaluated by

L

k * "J R
k<

x) # 6 k(x)
# dx • • • • (15)v.

o

For .-sin e-wave distribution of deflection and R, constant,

L

V
fc

s -K\ * \ ' Sin* xA • dx -2 Bj. • &k • 1A • • • • (16)

The potential of all the ridge loads is obtained from

n n n
V =

,

Z
,
Vv =

i

Z
,

* 2L * Rk * b
l/* = " 0-O366L -I R, • 6, (17)

The strain energy of the longitudinal bending of the k plate, Ub , is
k

evaluated from

Ub = ^ EIk [v
k (x)J /2 • dx Primes (") denote second derivative of

L

S
"k o

v-.(x) with respect to x
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For sine wave distribution of deflection

-.22

k o

k 2L o **

EIkV
4

, T.
EI
k
V^

4
24-552 2~ *

2 " 5" = ~T^ "Xkvk < 18 >

2L * 4L IT

The expression for the total strain energy of the longitudinal bending of

all the plates is

n n

U. - I U, = 24-352 S I Ivf (19)
b

k=l
b
k L3 k=l k k

The strain energy due to the central load, N , resulting from the

difference in the longitudinal shear at the k , and k-1
n ridge is now con-

sidered. The longitudinal distribution of these shears and, consequently, of

12
the central loads, N, , has been shown to be the sane as the longitudinal

distribution of moment due to the external loads on a beam with similar sup-

ports. The strain energy due to the central loading is, in general,

L Nj? (ae) -dx

\ '
I V 3

(20)
k ° k

For the sine-wave distribution of the deflection,

N, (x) = N. sin 2Hi
k k L

2

U = I (1< sin -£ / 2A E> • dx = _^i
Nk o k L k 4^

and expression for the total strain energy is

(21)

I2 "The Design of Prismatic and Cylindrical Shell Roofs," by D. Yitzhaki,
Haifa Science Publishers, Haifa, Israel, 1953, p. 35.
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n LN
2

U = Z —= (22)
N k=l 4EAk

To evaluate the foregoing expressions for UN in terms of the undetermined

coefficients, v. , use is made of the fact that the longitudinal stress at each

ridge must be the sane for each adjoining plate. Thus, for the folded plate

structure with n plates, there exists a set of N-l equations

,

\~ 2 Vi 2

The final equation required to express each N. in terns of the various

v^ values is obtained from equilibrium considerations. For the usual case

of no applied longitudinal load,

Jl Nk = ° <24 >

For the sine-wave distribution of the deflection, the foregoing equations

become

N
k

N
k+ i

Sv
k+i

(x)IVi Sv
k (*)hk

, N= + (25)
Ts ^1 2 2

Now we have,

vk(x) - vksin^ x/L

it, N TT TOC

. . vk(x) = -v. ? sin —

at :c=L/2

vv(L/2) = - —=-

Putting the value of v
fc

(L/2) in equation (25) we get,

\ Ak+1

N
k Nk+ i 2r i

7- - 7^ = -4»935 E/L h v + h • v (26)
A,. A, ., L k k k+1 k+U
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The strain-energy expression corresponding to the transverse bending

of the slab (slab action) is now developed. This strain-energy is evaluated

as the external work done by the ridge reactions generated by the slab bending

in moving through the assumed deflections at the ridges. These ridge reactions

may be obtained either by the slope deflection equations or by the moment

distribution. In the latter method, one plate is deflected at a time and the

ridge reactions corresponding to that deflection obtained. The total ridge

reaction is then obtained as the sum of the ridge reactions due to each of

the plate deflections. Because the ridge reactions, R^ , depend linearly on
bk

the deflections, the longitudinal distribution of these reactions will be the

same as the deflection distribution. The general strain energy cue to the

transverse slab bending is

L

UT 5 £ Rc (x)& k <x) «dx (27)
k o b

k

For the sine-wave distribution

EU (x) = EU • sin Z£
\ ^k L

and

rac
i
k(x) = V sin ~

Therefore,

L

C i TCX . „. 71X
U-, = 3 \ • R c, • c'ir. ~— - <>,, • Sin -j- • dx

k o k

L

= h 3 Rc b . • Sin — • dx
o S

k
k L

= -;• 'L-Rg • (28)
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and

U i I R„ • 6. (29)
k=l 6

k
k

The foregoing components of the total potential, namely, the potential

of the applied loads and the strain energies of the longitudinal bending, the

longitudinal central load, and the transverse slab bending, correspond to the

stress resultants ordinarily considered in the analysis of the folded plate

structure. However, for certain dimensions of the structure, the effects of

twisting moment, the longitudinal slab moment, the torsional resistance of the

edge members, and the transverse shear, become more important. These will now

be investigated. Because their effects are minor, approximate expressions will

be developed in the interest of simplicity. For the same reason, only the sine

wave distribution of the deflection will be considered in developing the strain

energy expressions for these stress resultants.

The general expression for the strain energy due to the twisting moment in

plate K is

k L ttU,)
2

-cbc .dy
U = ( 5

—S (30)
Mj. o o 2GJ

}

We know that,

where

D--J*
3

12(1-7)

From mechanics of materials we know that,

E = 2 G(l+iO
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Putting the value j of D, and E in the equation of !: , ..
: ;""/'

i2(i.u
2
)

a*>y

-
' -

= "Y2
~* d^ but a /12 = J

a 2w>
= 2GJ £

c - y

Putting the value of M__ in Equation (50), we get,

h
k L (2 GJ • c 2^; f

V B
j J ^y • <kc • dy
o o 2 GJ

hkL 2Wv .2
=

5 5 2 GJ ( ZJS. ) • dx -dy (3X)
o o oxuy

- deflection normal to the plate, W, has been defined along c.. -

longitudinal edges as

tc::
r

i(

.(x,o) s w,
c_1 k

• sin -£- for y = o (32a)

id

W
k
(x'V = W

k,k
• sin H for y = hk (32b)

The distribution of W throughout the plate is required for evalu. -

of the strain energy, but it is not 1 The - .s not .

cisverse distribution of \v, once the values of W aloi

If a transverse section of the de- plate is taken to

line . en the ^ges, I

condition along the edges of the plates,

U (ac.y) = W • sin 2H£ + (w. . - W. , , ) — • sin —£ . . (3:
k k-l,k L k,k k-l,k hk L
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^2 /- a 7i
(Wk.k wk-l,k^ „ itx2

W. /oxOy = 7 «— I— • Cos —
kr * L hjj L

o2wk
Putting the value of m equation (31) and integrating, we get,

oxoy °
.

\ ^ £wk.k- wk-i,k>
2

• • • <33b >

If we had assumed the edges to be fixed we would have obtained approx-

imately the same result. The total strain energy of the twisting moment of

all the plates is

" W *2 2
(54)\ =

k=i ^q- <wk.k-v'k-i,k>'

In performing actual computations, it is desirable to express U in terms

of Ug. Comparison of equations (18) and 33b) yields

Gtl ^ <wk<k- wk.1>lc )

2

Uv = 0.4016 r2— — XL 05)
\ Eh^ Vl

b
k

Where the exterior edges of the folded plate structure are free, the

normal deflection, W, along these exterior edges is not defined by the plate

deflections, v. Consequently, the effect of the twisting stresses in these

edge members cannot be evaluated by the preceding method. To take account of

the twisting strain energy in such edge members, the previous method of

determining the strain energy due to the transverse bending of the slabs will

be revised to include the torsional resistance of the edge members. For sine

wave longitudinal deflection, this torsional resistance may be accounted for

using for the edge member stiffness factor, K , applied at the first interior

edge the following value,

13 "The Design of Prismatic and Cylindrical Shell Roofs," by D. Yitzhaki,
Haifa Science Publishers, Haifa, Israel, 1958.
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= ^G Jt «*L (36)
10

l2

The moment distribution method or the slope deflection equations can then be

used to compute the ridge reactions corresponding to the transverse slab

bending combined with the torsion of the edge members. With these reactions,

eq. 29 is used to compute the strain energy.

We know from classical plate theory that,

2t.t, .,2t-Wk o "Wig

2.

M = d| —f- +
l
i —j-l (57a)

ul
= J * t l"^2— J

dx dy (5S)

where D = E " J/CL-[i )

In developing the strain-energy expression for slab bending in the

longitudinal direction, the effect of Poisson*s ratio is neglected and the

following expression is used:

h

EJr o2Wk(X) l2

'k o o

As noted previously, W, is defined along the ridges, but the distribution

of W throughout the plate is not known. U, will be evaluated on the assumption

that W varies linearly bctx^cen its values cjc the ridges.

W. Gc.y) = W. _ . sin -^ v (u .- W. _ . ) Z sin H ... (59a)
k k-l,k L k,k k-l,k h^ L

Talcing the second partial derivative of W,(x,y) in equation (52a) f inserting

in eq. (50) and integrating it, we get,

ir^EJht _2

\ -£r ' ** (59b)

i^EJ n _ 2
U = -TT" I (40)
L 4L-* k=i
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in which

ij - ^""ly^ k,k k—l,k k tk (41a)
k

"

3

In performing an actual computation, it is often desirable to express

U_ in terms of U^. Comparison of Eqs. (18) and (39b) yields

D_ = ~~-f n (42)

The effect of the shearing stresses in the plane of the plates (membrane

shear), is considered in two categories, that is, strain energy of shear and

additional deflection in the plane of the plates due to shearing strains

.

The precise expression for strain energy depends on the transverse variation

of shearing stress across each plate. As an average value

L Sg (x)

he o 2GAk

For equilibrium of the plate element shown in Figure (9)

S
k
(x) = b£(x) J* <Tk-l (x)

+ T
k
(x) >•* (43b)

We have already seen that 3k and Tk have the same longitudinal distri-

bution.

Tk-1<2:) " Tk-1<2> Sin T (44b)

Tk(x) = Tk(|) Sin tcx/L (44c)

and

Bk(x) = 3k(^) Sin -^ (44d)

therefore

1 TT TtX

Tk_x (ac) = Tk_x-{ Cos
~

(44e)

TV- Superscript 1 denotes first derivative
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T
k
(s) = T

k' l
" Cos T (4Af)

b£(x) = Bk(|) Cos ~ (44g)

Bk(L/2) = -EIk vk (§)

s2Ik?' vk C44h)

Putting B, (L/2) froa eq. (44h) in 44g) , we get,

4<x
> * EIk ^3

vk
# Cos r (44j)

Putting the values found in eq. (43b), we get,

1/

3
, . TtX f 7t It 1 , . „

Sk
(x) = Cos T \jg EIkVk* 2T • h

k(Tk_r Tk)J
(45a)

Putting value of S, (x) in Equations (43a) and integrating it, we get,

u
s, = SET [S EIkV T < Tk-i

+ V]
2

<46a>
r? Tjt2 „_ hk

,GLA
k

L L
:

and

n
71
2

r-n.2 ^k 1 2

S ^=1 4GLAk 1-2 *• & 2 K-i K -

The additional deflection due to membrane shear strain, 8. , is obtained

by integration of the expression for unit strain.

o--(x)

(47 a)
*y " AkG

and

* Sk(x)
-,.(x) = )

— d:c (47b)

o

/e already found Sk (x) |_Eq. (45a)J for a sine-wave curve for v-.(x)

Putting this value in the equation below, we get, sk(L/2).
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L£ Cos ^ [p EIkvk+ £ hk (Tk_!+ Tk )

Sk^/2) = 5
" Zg dx . . . (47c)

k"

= gL[72 EIkvk+ f (T1<-1+ V] <48 >
L
2

„_ *>k

LkLr

The total transverse deflection, r. , is the sum of vk and S^. This

total deflection, r. , must be used in an aquation in determining deflections

normal to each of the slabs and ridge deflections for subsequent use in the

computations for the slab bending and twisting energies, U , U„, and IL, and

potential of the external loads.

DERIVATIONS OF STRAIN ENERGY AND POTENTIAL ENERGY EXPRESSIONS
CONSIDERING THE ELASTIC CURVE DISTRIBUTION OF TRANSVERSE DEFLECTION

For Uniform Longitudinal Ridge Loading ; In the following paragraphs,

energy expressions are derived for the case of uniform vertical loads, R. ,

along each ridge. The elastic curve deflection is taken as

.
s

16 .x4 2x3 x
Vk(x) =Vk T (^--y +r) (49)

fch
The potential of the distributed external load, Rv , at the k ridge,

Vk , is evaluated by

L

Vk = - 5 RkOO 5 k(x) «dx (50a)

With the elastic-curve distribution of deflection

L

V. = - ) •— Rk5 k [x4/L4 - 2x3/L3 + x/LJ dx

and

5
o

= -16/25 L * Rk
6
k (50b)

V =
k=l

V
k

=
kJi -16/2S * L #Il

k
6
k = -°' 64L

kJx %c
6
k • • • <

50c >
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The strain energy of the longitudinal bending of the k plate, U, ,

k
is evaluated from

L

X^ = j EIk [_
vk(x) J

2
/2 • dx (51a)

k o

Putting the second derivative of v^(x) in eq. (51a) and integrating it,

v;e get,

Ub = 24.576 EIkv£/L
3 (51c)

V

and

n n

DL - I XL = 24.576 EA I IvvJ (52)
b k=l b

k k=l
k ^

The strain-energy expression due to the longitudinal central load, NL,

resulting from the difference in the longitudinal shears at the k and

th
( - ) ridges will now be derived. The longitudinal distribution of these

shears and, consequently, of the central loads, N, , has '---a shown to be the

came as the longitudinal distribution of moment due to — . external loads on

a beam with similar support conditions. The strain energy due w^ the central

loading is, in general,

L

l^ = $ i:k (::)dx / 2AkE (53a)

k o

For the elastic curve distribution of deflection,

Nk(x) = Nk • 4x(L-x) / L2 (53b)

; i6x2 (l-x) 2 ln£
U
K = J

T 4 o-
d:c =

x.n* -.- < 53c >
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and

\ k=l

2
U„ = J-, LNjf / 3-75 BAk (54)

To evaluate the foregoing expressions for UN in terms of the undetermined

coefficients, vk , iise is made of the fact that the longitudinal stress at

each ridge must be the same for each adjoining plate. Thus, for the folded

plate structure with n plates, there exists a set of n-1 equations.

Nk E v£(x) hk _ Nk+1 E vk+1 hk+1
Ak 2 Vl

(55)

The final equation required to express each N in terms of the various

v, values is obtained from equilibrium considerations. For the usual case
k

of no applied longitudinal load

n
I N, = (56a)
k=l *

For the elastic-curve distribution, equation (.55) becomes

" ITT
= "4 * 8MW hk+l vk+1] (56b)2k

Ak Ak+1

The strain-energy expression corresponding to the transverse bending of

the slabs (slab action) is now derived. This strain energy is evaluated as

the external work done by the ridge reactions generated by the slab bending

in moving through the assumed deflections at the ridges. These ridge reactions

are either obtained by moment distribution method or slope deflection equations,

Because the ridge reactions, R, , deDend linearly on the deflections, the
6
k

longitudinal distribution of these reactions will be the same as the deflection

distribution. Therefore
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(x) Rg |_JC
4
/L

4
- 2x

3
/L

5
+ xA]^| (57a)

6
k ~k

and

16VX) = 6k[ x4/L4 " 2x5/l3 + x/L ]V (57b)

The general strain energy clue to transverse slab bending is

L

UT = I \ R- 00 Mx > dx (57c)
T
k o b

k

L
2

UT = I \ Rs &,.(16/5)
2

[
x-
4
/L4 - 2x3/L3 + xAl" dx . . •

k o k L J

= 0*252 L • Rs 6 k (57d)

and
n

U„ = 0-252 L I R &, (58)
>kk=l S,- k

The expression for UT can be readily converted to an expression involvin

v, , using expression of 6j. in terms of v^.

EVALUATION OF DEFLECTIONS AND STRESS RESULTANTS

)ef lection . Using the expressions of the preceding section, the total

potential energy, U + V, is repressed in terns of the undetermined coefficients;

the term U includes either the strain energies associated with only the

principal stress resultants or the strain energies of all the stress resultants,

depending on the degree of accuracy desired. The principle of minimum total

potential energy is then applied to get the set of •n* linear equations

involving the n undetermined coefficients, v^ :

— (U + V) = 0, k = 1, 2, 3, n (59)
dVk
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Solving these equations simultaneously, the coefficients, v, , representing

the midspan transverse deflections, are evaluated. The vertical deflections

of ridges are obtained using equation 0.0) or (13) as applicable. The values

obtained for v^ will be practically the same whether the transverse deflection

curve is taken to be the elastic curve or the normal curve.

Transversa Slab Moment . In the calculations for strain energy associated

with this stress resultant, the transverse slab moments at the center of each

ridge have been expressed in terms of the coefficients, v, . Consequently,

with the determination of v, , the previously obtained expressions are used to

evaluate the transverse slab moments.

Longitudinal Plate Bending Moment. The bending moment at the center of

the span, Bk » is obtained from the deflection curve by

B
k
(L/2) = -2Ik< (L/2) (60)

For sine-wave deflection

Bk(L/2) = *2/L
2

EIkVk (51)

The value oi v-', depends on the shape of the deflection curve. Sufficient

accurate and conservative values of longitudinal plate bending moments are

obtained from the sine-wave distribution.

Longitudinal Plate Central Load . In computin^ the ^zs^in energy due to

this stress resultant, the longitudinal central loads, N. , have been expressed

in terms of v,_. Cnce v, values are found, N. values can be evaluated easily.

Longitudinal Plate Shear. The longitudinal shears at the horizontal edges

of each plate can be obtained from the longitudinal central loads, Kj., on the

basis of equilibrium considerations. Beginning with the exterior plate and

talcing each adjoining plate in turn, these shears are evaluated by setting
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the sua of longitudinal forces acting on each plate equal to zero:

.

= Tk-1" T
k < 62 >

Transvers \ Plate Shear . The transverse plate shear is obtained by equation

(45a) for sine-wave distribution of transverse deflection.

PROBLEM

To illustrate the method, a simple problem shown ir. re 11 is solved.

Statement
|

the. Problen . Consider a simple span of 60 ft. in which we

shall arbitrarily assume a column spacing along the ends of this longer span

of 24 ft. (Fig. 11)

STATEMENT OF THE PROBLEM

are 11
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Ridge Plate «h f in ft. •t* in ft. 'A' in sq.ft. 'I* in ft* ©° Y°

1 6.0 0.375 2.25 6„75 90°

1

2 13 42 0.375 5.05 75.5 26.6°

2 55.2°

DIMENSIONS

The data for this sample problem are as follows:

Slab thickness 4-§ inches

Span between transverses 60* -0"

Column spacing 24* -0"

LOADING:

Roofing

Snow load, insulation,, acoustics, etc—

4«5 x 150
Dead load of slab*

12

—£>p . S . £ .

-30p.s.f

.

s.f •

Total Load 91p,s.f.

For most folded plate structures, sufficiently accurate results are

obtained when analysis is based only on the effects of the applied loads,

of longitudinal bending and central load in the plane of each plate (membrane

action), and of transverse slab bending. Only for relatively short and

thick structures are the normally minor effects of membrane shear, slab

twisting moments, etc. considered. First of all a continuous one-way slab

analysis, with all ridges supported, is made and si nding moments and

ridge reactions computed. These ridge reactions are then considered as loads

applied to the folded plate structure, as there are no supports at ridges.

The final slab moments are obtained by superposition of the previously ob-

tained values and those obtained subsequently. Because of the symmetry of
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the structure and the loading, only one-half the structure has to be

investigated.

Primary Slab Monent . For the purpose of analysis, assume fictitious

supports at joints 1, 2, 3, and calculate the moments and reactions. These

moments will be termed as primary moments. It is assumed that the relative

displacement of joints is not present. A transverse strip one foot wide is

considered, treating it as continuous slab supported at the joints by non-

yielding supports. The moment distribution for this condition is performed

in Figure 12. 51 lbs./sq. ft.

i W I W l> I -i a l a I 4 + + ; ^ i >t I ... 4

12- -*+

C. 0. Factor

Distr. Factor

R E M
S

Balance 1,3

c. 0.

Final

0*5

0*5

-1092

-1092

0-00

+1092

546

-1092

- 546

+1638 -165S

l o t-

rj ,c

ii_L.5

H

+1092

-1092

•0-00

SLAB MOMENT DUE TO EXTERNAL LOAD

Figure 12

Reactions are as follows:

Total reaction at 1 = 409.5 lbs.

Total reaction at 2 = 1365.0 lbs.

iction at 3 -409.5 lbs.

These reactions were obtained on the assumption that fictitious supports

Bt at ridges 1, 2, and 3 and hence, on removal, they give equal and oppoi
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reactions. These reactions are placed on the plates as loads as shovm in

Figure 13.

PLATE SHOWING FORCES OPPOSITE ^0 REACTIONS DUE TO SLAB ACTION
Figure 15

After finding the reactions the following "Ordinary Procedure" is

followed.

Ordinary Procedure. In the following analysis, only the energy of the

applied loads, of plate bending and central loading, and of slab transverse

bending is considered. Energy regressions obtained by use of the sine-wave

deflection curve are used as practically equal energy is obt . from

elastic curve and sine-wave of transverse deflection.

(a) Ridge Deflections: Use Equation (10) to express the vertical

deflection of the ridges in terns of the coefficients, v, :

1c

6
1

= _Vl

&
2

= 2-24 v2

(63a)

(63b)

(b) Strain Energy of Plate Longitudinal Bending: Use the equation

for strain energy of longitudinal bending Equation (*_9! -o express U, in
b

terms of v :

Ub
24*352S

(60)
3

2 ?
6*75 V] + 15 '5 v? (64a)

E = Modulus of elasticity of concrete = 3 x 10 p.s.i.
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24*5525 r -> on
U
b

= 3600^60 [6-75 vf + 75-5 v^J

= 1-125 x 10
_4

E [_6-75 vx + 75*5 v
2

OUu A °^V) /.—S. = 15-2 x 10*"4 E vi and —- = 170 x 10 ^ 2 v, (64b)
v
1

1 ^v2 2

(c) Strain Energy of Plate Longitudinal Central Loading: Apply

Equation (26) to enforce the equality of longitudinal stress on each side of

ridge 1.

Ni No 4*955 r 1

2^25 - 5^5 = - 760)2
2

[_

6 v
l * 13-42 v2 _:

(65a)

Apply the condition of equilibrium of longitudinal forces:

Nj + N
2
- (65b)

Solve the preceding equations simultaneously tc ex\ ress N, in terns
iC

of v
k<

$ = -io'^ E : 1»28 v, + 2.86 v ]1 l 2J

N
2

= +10~4 f
l-28 v

1
+ 2-35 v

2
~j

Use the equation for strain energy of longitudinal central loading

Equation (22) to express U
7
in terns of v .

-> 2
f (1-28 vi + 2«86 v?)~ (1* ) 1

% = 15 x 10-8 E [_
-— + —J

— = 15 x 1G" C E 2*11 vx
+ .4-71 v2] (65c)

_a~

oUN or 1
= 15 x 10"° E 4-71 v, + 10-52 v, (65d)

ov2
l ZJ

(d) Potent .ads: Use the equation for potential of uniform leads

tion (17) and previous results to express V in t< of v,„.



42

V = -0*6366 LI R. •*.

k=l ^ k

V = -0-6366 x 60

Using equations (63b) and 63c), we get,

["409-5 b + 682.5 Z>

2

V = 15680 Vj - 5S250 v

(67a)

(67b)

(67c)

av.
= 15680 . (67d)

and

oV _= -53250 ..... (67e)
uv-

(e) Strain Energy of Slab Transverse Bending: Evaluate the slab ridge

reactions in terms of the ridge deflections. Slope deflection equations are

used to evaluate the ridge reactions

H
io ° °

M
12

2ej r
e, +9o-

3&12 1 r
2- h^Co^aTJ

=
13^42 l 2 -1 + ^2 - 0-25 &

12 (63a)

2EJ r 3 6-i-

M_ = r~ 28. + 8_ -
2sj r

'22 h2 L 2 i h
2
Cos .

21 _ 2EJ

C")J l.^>«"-v

* 1
u 2^ + 8 - 0-25 &

J
(68b)

M
2EJ r 5 623 I 2r

23 ~ h3 L 2
+ °3 h 3CosO_J

"
13-42 L 2

2^„ + o_ - 0*25 6
23J

(68c)

By symmetry

Q
l

= "©3

6 12
- 523

(63d)

Applying equilibrium at each joint,

*i
10

= -M
12

U
22

U
23

(68e)

(6Sf)
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The foregoing system of equations is solved simultaneously to give

Q2 = 612/8 < 6Go>

and

8
1 = 6

12/16 < 68h >

22 = ifrfj [
2b2 + Q

l " 0*25 & 12 ]
= -f^JZ hi] . . • . ^Si)

Now

4
Putting J = 0.006 ft. in equation (63i), we get,

M
22

= 0-56 Z 10~4 2 6
12 (68j)

6
12 " 5

2 " b
l

Investigating slab 2 as a free body, gives,

R_ = 0*047 x 10"4 E (2-24 v. + v.

)

*1 2 l

.—

.

R^ = -C»047 x 10~* 2 (2-24 v 2
+ v

x )

2

Use the equation for strain energy of slab transverse bending Equation (24)

to ex] . in terms of v^:

UT = 15 x 0*047 x 10
-4

E (-4-48 V]V2 - Vl - 5*02 v2 ) . . . (63k)

£-£ = 15 x 0-047 x 10~4 E (-4-48 v2 - 2vi) (681)

and

bTU,
= 15 x 0»047 x 10 E (-4-48 v

x
- 10-04 v2 ) (63a)

oUT , „ „.,-_. „-4

ov2

(f ) Principle of 1 un Total Potential Energy: Use the mini

principle by apply. .uation (59) to the sum of V, U^, UN , and U„.

oUjvj uUb oV
u(U * V)/uv- = —~ + r— + — + — =0 (69a)

1 ^V^ uV^ lV^ 0V]_
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c<U + V)/ov2
=^I + Bi + £Hb + ^ = (69b)

* yV2 UV2 UV2 OV2

Putting the values of various derivatives as found in the above equation,

we get,

.d

v
1

- 0»23v
2

= -0-0315 (69c)

-v + 51*6v = 0*426 (69d)

Solving the above equations simultaneously,

v = -0.0286 ft.

v
2

= +0.0126 ft.

(g) Ridge Deflections: Use Equations in paragraph (a) to find ridge

deflections.

b
l

= -v
l

&2 = +0*0286

&
2 = +2«24v

2

o
2

= 0.0282 ft.

(h) Transverse slab moment at the center of the Span: Use Equation (68 j)

to find moment in the slab in the transverse direction:

M22 = * * 56 x 10
~4

S(&
2 " 6

1^

= 0-56 X 10~4 X 5 X 10
6 x 144(0.0282 - 0.0286)

=

Total moment in the slab in the transverse dircc - Primary moment +

= 1638 ft. lbs/ft.

(i) Longitudinal it in the plate in its plane at the center of the

span:

» <*
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B
k

= -BIkvk<V2) (70a)

For sine-wave deflection curve

Bv = EIvvv (L/2) u 2/L2K •k
vk (

B = +EI
1
v

][

(L/2) ti
2/L2

= -9-86/3600 [3 x 10
6 x 144 x 6.75 x 0.02861

= -229000 ft. lbs (70b)

Similarly B
2

= EI
2
v
2
(L/2) 7l

2/L2

= . +1132,000 ft. lbs (70c)

(j) Longitudinal central load in the plane of the plate at the center

of the span: Use the equations in paragraph (c) to cc. the longitudinal

central loads in the plates:

N
x

= -10"4 x 3 x 106 x 144 f"l-28C-0-0236) + 2 -6o(0 -C126)

j

= 35 lbs (71a)

N = -N = -55 lbs (72b)

(k) Longitudinal plate shear between end and center ~_ ! an:

Values ot T, are obtained from the values of N. using eq ion (62)

T =0 (75a)

T
o " T

l = N
l

-Tj = 35 lbs (7:

T
x

= -55 lbs. .

T„ - T. b N„12 2

-35 - T
2

= -35

T
2

= (73c)

(5) Transverse plate shear at the ene .pan: Use equation (45a)

to find s the end of the span.
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k la Ll k k 2L k k-1 k J

5
1

B
]*
3/(60) 3

3eJ6«75 x (-0-0286) x 3 x 10
6 x 144 + ;i/(2 x 6o7|x 6(-35)

= -4105 lbs (74a)

Similarly,

5
2 =tc3/(60)

3
|xJ75.5 (0.0126) x 3 x 10

6 x 144 + n/<2 x 60)1 (-35-0)

= +22000 lbs (74b)
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CONCLUSIONS

The method presented herein is an alternate method to the Gaafar and

Yitzhaki methods. The principle of minimum total potential energy using the

Rayleigh-Ritz method v.dth sine-wave taken as the transverse deflection curve

affords a sufficiently accurate method of analyzing folded plate structures.

It has the inherent advantage of minimizing the complexity of physical

arguments involved in the analysis. The ordinary pre - described herein

Ls used for structures in \ the effects of twisting mi—ents, membrane

shear, longitudinal slab bendi .ents, etc. are neglible compared to

jt stress resultants. _ are required to consider

stress resultants where the dimensions and edge condic_._ . the structures

are such that it io necessary to take into account these mini

-"^jultants ir. i _s. This can be done by consid tri energy of these

-ss resultants.

Although this method does not furnish results accurate

obtained by J. E. Goldberg and II. L. Leve, it fun - adeqx . -curate

results. Th tiod presented herein can be extended to a foldec » con-

figuration other than the simple span structure. 1 t aces the

computational effort.

tods, the Winter and Pei pr ure is

It is applicable tc led plate structures .. .ch joint displacements

can be ignored without much _oss of accuracy. For tl - .olded

plate structures, the stress resultants of minor importance should be con-

sic, sr long span folded plate structures ordinary procedure will give

- same r - ilts others. The method presented herein is applicable to

>e of loadings



43

ACKNOWLEDGMENT

The writer wishes to express his sincere gratitude to Prof. V. II.

Rosebraugh for his kind guidance and assistance in completing the report

in the most systematic manner.



49

APPENDIX - I. EXPLANATION OF TERMS

A = Cross-sectional area of plate

2 = Bending moaent in plate in its plane

S = Modulus of elasticity

G = Shearing aodulus of elasticity

h = Width of plate or slab

I = Moment of inertia of plate

J = Moment c- .ii of slab per unit length

Jt = C**h*t t where vj.lue of C,. depend- on ratio o t

K,
Q

= Torsional resistance of edge slab

k = Subscript referring to ridge number or pl^cc r.ui.b^j

L = Span of structure

M,, llrp, l{ = Longitudinal bending moment, transverse bending nouent, and

twisting moment in slab per unit length respective!

N = Central load in plane of plate

R = Distributed load applied at ridge

Rg =
1— tz ridge reaction due to s bene Lng

r = Deflection in y - direction due to c je shear and

bending

s = Deflection in y - dii ar

T = Lo. .nal ar in plate at h

t = Thi - .- slab

D =

U , U = ^ lergy of plate bending, central load in plane of plate,

.. plate in its plane respectively
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Ut , Um, Um = Strain energy of slab bending moment in longitudinal direction,

twisting moment in slab, and bending moment in slab in transverse

direction respectively.

u - Deflection in x - direction

V = Potential of applied loads

v = Deflection in y - direction due to plate bending

W = Deflection in z - direction (normal to slab)

^k-1 k = Deflection at ridge k-1 normal to slab k

Wt. ,
= Deflection at ridge k normal to slab k

x,y,z = Rectangular co-ordinate. axes for plate or slab

Y = Deflection angle between successive plate

5 = Vertical deflection of ridge

6^2 = Vertical deflection of ridge 2 relative to ridge 1

E „,.,.. = Unit shear strain

8 = Angular rotation at ridge

u- = Poisson*s ratio

9 = Inclination angle of plate with horizontal
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A method of analysis of folded plate structures using the principle of

minimum total potential energy is presented.

Strain energy and potential energy expressions are derived considering

the elastic curve as the transverse deflection curve. In this method of

analysis we can include the effects of minor stress result ts such as

longitudinal slab bending moment, twist ^~zz in the slab, membrane

shear, etc. Thus the method can be applied to sh Lck folded plate

structures. For 1 pan folded plate structures, "ordinary procedure",

scribed . gives sufficiently accurate r<— Its. To start with the

solution, fictitious supports at the ridges a Lleys are a -d, and a

one foot wide strip of the slab is analyzed as a continuous beam. The moments

^-ained are termed as primary -s. The reactions ar< I by statics.

fori.— eqi— 1 and opposite to — se r .ons are then bo folded

plate structures as the ext^ cisvers ... function of

the plate is assumed to be a half sine-wave* The total potenti

corresponding to this as: ^eflec\:_ s obtained, using the derived ax-

7,r^sions here. The principle of minii

applied to evaluate the undetermined cc._ :s in the asc. __'_cction

£ui - :ion of these constants in the deflection function, gives

the transverse def! n. Using this deflection f . :

sessions Itants are calcv tal slab moment in

the transverse ^. obtained by summing the primary moment and the

_ned by the
j

--cribed above

A simple problem is outlined by "ordinary procedure".


