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INTRODUCTION

In this paper it will be assumed that the reader is familiar with the

algebra of quaternions. We shall restrict our consideration to the real

quaternions, i. e. , all quantities of the form x = x + ix^ + jx + kx ,

where x , x , x^, and x_ are real numbers. The vector space consisting

of all real quaternions will be denoted by "Q. " The real numbers will be

regarded as the subset of Q formed by the condition that x = x^ = x = 0,

By the term "vector" we shall mean a quantity of the form

ix + jx + kx-, i. e. , the vectors shall be the subset of Q formed by the

condition that x = 0. In this way we shall retain the original concept

that a quaternion is a scalar plus a vector. We shall see that this concept

has several notational advantages. The scalar part of x is x^ and the

vector part of x, denoted by x , is ix, + jx_ + kx^ . Then x = x„ + x .

V 1Z3 Ov
First we shall establish a notation based on this concept. Then we

shall see how some of the ideas of calculus can be applied to quaternions.

To do this, we shall develop a number of formulas which are extensions

of familiar fornnulas in real variables. In conclusion, we shall show how

Taylor's series can be used to describe quaternions which are functions

of other quaternions.

Let us define some functions which are basic to our analysis.

For a discussion of quaternion algebra the reader is referred to

P. G. Tait, An Elementary Treatise on Quaternions.



The norm of x, denoted by N(x) or by [x] , will be defined to be

2 2 2 2 2
|x|= N{x) = (Xq + x^ + x^ + x^) .

A metric on Q will be denoted by m(x, y) and defined by m(x, y) = N(x-y).

The quantity which we have defined as N(x) was called the "tensor" of

x in the original literature on quaternions, while the "norm" was origi-

nally the square of the tensor. This terininology is no longer convenient,

since the term "tensor" currently has another meaning.

Another useful function of x is the conjugate of x, denoted by x or

by K(x). If x = X + ix + jx + kx then

X = K(x) = Xq ^ ix^ - jx^ - kx^ = ^0 " \'

Throughout this paper multiplication will be denoted by juxtaposition.

We shall list here a few properties of multiplication which will be impor-

tant in our development.

1) xy =-x»y +x Xy . Here x • y and x Xy are the familiarvv vv vv vv vv
dot and cross products of vector algebra.

2) XX = xx= jxj

3) x"^ = x/\xj;^

4) (x) (y) = (y) (x)

5) |xy| = |x//y|.

Much of the geometric convenience of quaternions is due to Property 1.

It could be used to define quaternion multiplication.



Note that xy = (x^ + x^) (y^ + y^)

= x-y„ + x.y + y.x + x yV V V V

= x^y- + x.y + y.x - x .y + x Xy
O'O O'v ^Ov v'v v'v

= x^y„ - X 0Y + x.y + y.x + x Xy .

0^0 V V V V V V

This notation links the noncommutativity of quaternion multiplication

with the anticommutativity of the cross product. We have now established

the criterion for two quaternions to commute under multiplication: Their

vector parts must be proportional.

THE "ex" FUNCTION

We shall now develop a notation based on a function which we shall

denote as ex(x). It bears a strong resemblance to the familiar exponential

function and, as we shall see, actually reduces to e if x is a real or

connplex number.

First let us define

ex(x^) = cos|x^|+ (x^/ /xj) sin|x^
|

.

Let /x / = 0. Then x /O = E = iE, + jE^ + kE,, is a unit vector in the
V V I Z i

direction of x , and x can be written as x = x. + x = x. + E0. Note
V V

that is a real number, JEJ = 1, and E= E = -E. Also

ex(Ee) = cos (9) + E sin (0),

which resembles the form for e to an imaginary power.



Now consider |ex(EO)
[

.

|ex(EO)| =|(ex(EQ) )
(ex{E9)

)|

= /(cosO + EsinO) (cosO - EsinO)y

1_

2

2

= (cos - E sin 0)-^

2
Note that from property 1), E = -1, so

2„.2
|ex(E0)

I

= (cos + sin 0)

= (1)^

= 1 .

Thus, ex(x ) is a quaternion of unit norm, whose vector part points

in the direction of x , for every x .

V V

To define ex{x) = ex{x- + x ), let
V

ex(x + X ) = ex(x )ex(x ),

and

x^
ex(x^) = e ^.

Note that for any quaternion y, y = ly] (y/ I yj). This implies that y

can be written as the product of a real number, 1 y [ , and a quaternion

of unit norm. The quantity y/ly| will be called the vers or of y and

denoted by U(y) or y .



We shall now show that for any quaternion, y, there exists ^

quaternion x such that y = ex(x). This is similar to the polar represen-

tation of complex numbers. To do this, we shall write x = ln(r) + EO,

where r = 1 yj and E and are defined as above.

Let E = y /
I
y

I

and tanO = [y I/y^- Note that

1
J.

, , ,2 2 2,2 2 2 22,1
(|yj +yo) =(yi + y2 + y3 + V =1^1 = "-

Then since tanO =[y l/y^,. sinO =ly |/r and cosO = Y^f^-

Note that
I

y I
= {r)sinO, so E = y /( (r)sinO), or y = rEsin9.

Also, since cosO = Y^/^, Yn ~ (r)cosQ. Thus we have shown that

y + y = (r)cosO + rEsinO

= r(cosQ + Esin9)

= e^^^^)(ex(EO)
)

= (ex{ln(r)
) ) (ex(EO) )

= ex(ln(r) + EO)

= ex(x).

This completes the proof.

We can now see that the complex case arises whenever the direction

of E is fixed. Whenever this happens, we are restricted to the two di-

mensional subspace of Q spanned by 1 and E. In this space the basis vectors

have the familiar multiplication properties of complex variables.
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To illustrate this, let x = (r) (ex(EO) ) and y = (s) {ex(F(P) ). Then

xy = (r{ex(EO) ) ) (s(ex(F(I)) ) )

= (rs) (ex(E0) ) (ex(F(D) )

= (rs) (cosO + EsinO) (cosQ) + Fsinfl))

= (rs) (cosOcosQ) - E«Fsin9sin(D + EsinOcosQ

+ FcosOsiniP + EXFsinOsinQ).

This reduces to the familiar form in complex variables when E = F,

for then E«F = E«E =1e|^ = 1 and EXF = EXE = 0.

xy = (rs)(cos0cos(D - sinOsinO + EsinOcosfl) + Ecos9sin(P)

= (rs)(cos(0 + (DJ + Esin(9 + 0) )

= (rs)(ex(E(0 + (P) ) ).

In this notation it is easy to examine rational powers of a quaternion.

If n is an integer and x = r(ex(E-0) ), then an obvious induction based on

the above formula gives x = r (ex(EnO) ).

Example : Given w = s(cos0 + Fsin(D), find x such that x = w.

Let X = r(ex(EO) ),

n 1 / r»

Case 1: sinfl) ji 0. Choose E = F. r = s, so r = s ' Cos(nO =

cos® and sin(n0) = sinU, so = ((D + 2iTm)/n, for m = 0, 1, 2, . . . , n-1.

L. Brand, Vector and Tensor Analysis, pp. 412-413



Case 2: sinfl) = 0, i.e. , the direction of F is arbitrary.

a) If w> 0, (D = Z-nm, and = Z-nm/ n, for m = 0, 1, 2, , . . , n-1. If n = 2,

we get two roots, + \/w. If n> 2, some values of { ^0, ir) give non-real

roots with E in an arbitrary direction.

b) If w<0, (D = IT, = (2m + Uir/n, for m = 0, 1, 2, ... , n-1. In every

case some values of (jtir) give non-real roots with E in an arbitrary

direction.

GREAT CIRCLES

Although the lack of a simiple multiplication rule detracts from

the value of the function ex(x), this function can still be useful for many

purposes. One example of this is in spherical geometry. For this

purpose, let a and b be vectors of unit norm. Recall that for any

quaternions x, y, and z, xy = z implies that |xj|y| = |z| .

We can visualize unit vectors a and b as vectors which terminate

at points A and B, respectively, on a sphere of unit radius, center at

the origin,

A directed great circle arc is thus defined from A to B. "We shall

be concerned with adding such arcs "vectorially. " Note that if A and

B are permitted to move on the great circle connecting them, while the

angle (a, b) remains fixed, we still have, for our purposes, the samie

arc. To add two great circle arcs, then, we first find a point of inter-

section of the two great circles. Then we shift the arcs along their



great circles until the terminal point of the first coincides with the

initial point of the second at that point. The result, or "sum" is the

great circle arc from the initial point of the first to the terminal point

of the second.

We shall now show that great circle arcs under addition correspond

to versors, or unit quaternions, under multiplication.

The product ba may now be regarded as an operator which will

rotate the vector a into the position b. We shall now show that ba

is of the form cosO + EsinO, where is the angle between a and b, and

E is perpendicular to the plane of a and b so that a, b, and E form a

dektral set.

Recall that for two vectors p and q the product is pq = -p»q + pXq.

Also, since a is a vector of unit nornn, a = -a. Thus ba = b(-a) =

0-l)ba = (-l)(-b.a) + (-l)(bXa) = (-l)(-cosO) + (-l)(-aXb) = cosO + aXb = .

cosO + EsinO.

Note that if A and B are permitted to move on a great circle whose

plane is perpendicular to E while the angle (a, b) is fixed the product

ba remains unchanged.

Thus for every unit quaternion ex(EO) there is a corresponding great

circle arc of a unit sphere centered at the origin, and conversely. This

arc lies on a great circle whose plane is perpendicular to E and is directed

in a right-handed direction with respect to E.



Let A, B, and C denote points of a unit sphere centered at 0. Let

OA->a, OB-^b, and OC->c. Then arc (AB) = ba' and arc (BC) = cb" .

Arc (AC) = (cb"S(ba"^) = ca"^

At this point we need to note some special cases. Let q be a unit

quaternion. If q = 1 (0 = 0) or q = 41 (0 = it), the direction of E is

arbitrary. Any point on the sphere may represent q = 1 and any great

semicircle may represent q = -1. If q = E (0 = ir/Z) then q represents

a quadrental arc whose plane is perpendicular to E.

Let p, q, r, and s be unit quaternions. Then we have corresponding

arcs; arc(p), arc{q), arc(r), and arc(s). From the foregoing argument,

arc(p)'+ arc(q) = arc(qp), or in general, arc(p) + arc{q) + arc(r) + arc(s) =

arc(srqp).

If arc(p), arc(q), arc(r) and arc(s) form the sides of a closed

spherical polygon, then we say .
'

• '.

arc(p) + arc(q) + arc{r) + arc(s) = 0,

Hence, arc(srqp) = 0, or srqp = 1,

ROTATIONS

Another useful product of quaternions is r' = qrq . We shall

consider q( )q to be an operator, acting on r to product r'. From



i^fwr

the elementary properties of multiplication it follows readily that

q( )q" is distributive with respect to both addition and multiplication

of quaternions, i.e. , if r and s are any two quaternions, then

q{r + s)q"'^ = q(r)q" +q{s)q" and q(rs)q" = (q{r)q" ) (q( s)q ).

Let q = lq| (cosO + EsinO). We shall show that this operator has three

characteristics:

1) lr|= |r'l :

3) r is rotated about E through an angle of 20 in a right-handed
V

direction to obtain r' .

V

To establish property 1), consider |r'I =jqrq
[ =jq|JrHq j

=

WW|ql'' =Kllqr' |rl=|H.

To establish 2) and 3), note that

-1^-1
= qr^q + qr^q

-1^-1
= qq ^o+'i\'i

Note that we can, without loss of generality, assume that |r |= jq |

=

1. Let r = cos(P + Fsinfll. We now need to consider qr q = q(Fsin(D)q

sin(P{qFq' ).

10
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Let us use F = F,, + Fj_ , where F, , is the component of F parallel

to E and F^ is the component of F perpendicular to E. Note that F^

lies in the plane of E and F. Further, from page 3, since F,, is

parallel to the vector part of q, F, , and q commute,

qFq' = q(F,, + Fj. )q"

= qF,,q" + q^i.
q"

-1..
, ^ -1

= qq F,, + qF;_ q

= F,,+qIlq"\

We now need only to consider qi^ q

qF^ q' = (cos9 + EsinO)Fj_ (cosO - EsinO)

= (cosO + EsinO) (F^ cosS - F^ EsinO).

Note that F, • E = .

ql^ q' = (cosO + EsinO)(Fj_ cosO - {Fj_ XE)sinO)

2
= Fj_ cos + (EXFj_ )sinOcose - (Fj.XE) sinOco&O

-E(Fj. XE)sin^O.

Note that Fj_ XE = -EXF^ . Also, E{Fj_XE) = -E»(Fj_ XE) + EX{Fj_ XE).

But Fj_ XE is perpendicular to E, so E»{Fx XE) = 0.

EX(FxXE) = Fj.(E«E) - E(Fx • E)

= Fj. .-12 2
So qF_^q = Fj_ cos + (EXFj_ )2sinOeosO - F^ sin

2 2
= Fj_ (cos - sin 0) + {EXFj_)2sin0cos0

= F^ (<=°s20) + (EXFj_)sin20.
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Thus if q = ex(E9), q(
)q''^ can be regarded as a rotation operator

whose only effect is to rotate r about E through an angle of 20.

Successive rotations, then are easily handled. Given two rotations,

p(
)p"^ and q( )q"\ if we perform them in that order the result is

q(p( )p'Sq' = qp( )p' ^' = ^P( )(^P) •

DIFFERENTIATION

If a quaternion, y if a function of a scalar, t, the operation of

differentiation presents no difficulty.

dy ^ dy idy^^jdy2^kdy3
^

dt dt dt dt dt

If, however, we have a quaternion, y, which is a function of another

quaternion, x, the problem of differentiation cannot be so easily resolved.

The familiar concept of differential coefficients or derived functions has

been found to be, in general, inapplicable to quaternions. As we shall

see, this is because of the non-commutativity of quaternions under mul-

tiplication. In the case of scalar functions, the most general linear

functions are of the form ax + b. In quaternion functions a linear form

may be considerably more complex.

We need, then, a definition of differentiation which is applicable to

any norme d vector space and which will reduce to the customary defini-

tion whenever it is applicable. Such a definition was made by Hamilton:
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'"Simultaneous Differentials are Limits of Equimultiples

of Simultaneous and Decreasing Differences .

'

'And conversely, whenever any simultaneous differences ,

of any system of variables, all tend to vanish together ,
accor-

ding to any law, or system of laws; then, if any equimulti-

ples of those decreasing differences all tend together to any

system of finite limits, those Limits are "said to be Simul-

taneous Differentials of the related Variables of the System;

and are denoted, as such, by prefixing the letter d, as a

characteristic of differentiation, to the Symbol of each such

variable. '"^

More symbolically, let x, y, and z be related variables in any

norme d vector spaces. Let Ax, Ay, and az denote arbitrary incre-

ments in these variables. Then let the sums x + A x, y + Ay, and z +

A z, be related in the same way that x, y, and z originally were. Thus

if AX, Ay, and A z occur simultaneously, a relation between them is

prescribed. Now consider dx - n Ax, dy = nAy, and dz = nAz, where

n is a suitably chosen scalar. If jAxi )Ayi, and l2iz(tend toward zero, we

may expect dx, dy, and dz to do the same. But in many cases, we can

make n tend toward infinity in such a way that dx, dy, and dz approach

a system of finite limits. If this happens, dx, dy, and dz are said to

be simultaneous differentials.

Now that the operation of differentiation has been defined and

explained, let us illustrate it with an example. Let x be a quaternion

2
and y = X . Let us find dy.

W. R. Hamilton, Elements of Quaternions , p. 431,
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2
y = X

y + Ay = (x +Ax)

x2 2
Ay = (x +Ax) - X

2 2 2
= x + xAx + (ax)x + (ax) - X

2
= x(ax) + (ax)x + (ax)

Z
nAy = nx(Ax) + n(Ax)x + n(Ax)

2
= x(nAx) + (nAx)x + (nAx) .

n

We shall adjust n so that (nAx) = dx = constant ^0.

2
nAy = x(dx) + (dx)x + (dx) .

n

Now we shall let AX -T^O and n->oc>. In the limit, nAy-*dy, so

dy = x(dx) + (dx)x.

Note that the concept of infinitesimals plays no role in this

definition; dy and dx are finite quantities and need not be sma.ll. Even

2
when they are large, there can be no additional ternns involving (dx) ,

for this would imply that for a constant c= dx, the term c/n did not tend

to zero as n tended to infinity.

Out definition can be stated formally as

dy = linn£n(y(x +Ax) - y(x) )}•

Ax-*0

nAx = const, j^
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We can simplify this definition by introducing dx = nAx - constant.

Then ax = dx/n, and

dy = lim n(y(x + dx) - y(x) )

n-*oo —
n

This is the definition which is normally given.

Starting then with a function y{x) we arrive at a function dy = y'(x, dx).

We shall now develop two properties of y'(x, dx) which may be considered

fundamental properties independent of the form of y.

First we shall show that y'(x, dx) is homogeneous of first order

with respect to dx. Let s be an arbitrary scalar.

y'{x, sdx) = lim n(y(x + sdx) - y(x)
)

n

= (s)lim(n/s)(y{x + sdx ) - y(x) )

n->oo
n

= (s)lim(n/s){y(x + dx/(n/s) )
- y(x)

)

n-^oo

= (sUim(n/j)(y(x + dx/(n/s) ) - y(x) )

= (s)y'(x, dx)

Now we shall show that y'(x, dx) is distributive with respect to dx,

that is, if dx = dr + ds, then y'(x, dr + ds) = y'(x, dr) + y'(x, ds).

y'{x, dr + ds) = lim n(y(x + dr + ds ) - y(x) )
n->oo

n
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= lim I'n(y(x + dr + ds)- y{x + ds ) + y(x + ds)

n-*oo n n n n

-y(x)
)]

= lim ^n(y(x + dr + d£) - y(x + ds ) )|

n-*oo n n n

lim |n(y(x + d£) - y(x) )j

= y'(x, dr) + y'(x, ds)

In the real field the most general function, y', which can satisfy

both of these conditions is dy = (u) (dx), where u is an element of the

field. Thus the differential always takes the form of a real number

times dx. This may be regarded as an unusual property of the real

numbe r s

.

In the complex field the problem is not quite so simple. If y =

y +Ey,E =-1, x=x+ Ex , and y is a function of x, then dy =

If we assunme that there exists a function f = u + Ev such that dy =

(f) (dx), then dy = (u + Ev) (dx^ + Edx^)

= (u) (dx^) - (v) (dx^) + E^(v) (dx^) + (u) (dx^)j-.

Thus we see that the desired f exists only H ^Yq _ BY-, and ^y _^^Yq-

9Xq dx^ 3Xq 3x^
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So if we restrict our consideration to functions satisfying the Cauchy-

Riemann equations, differentiation in the complex field resembles

differentiation in the real numbers.

If, however, we attempt to do the same thing with quaternions,

we find that the class of functions which are satisfactory seems tOO)

restricted to be useful.

To see this, consider the quaternion function y = x ,

dy = x(dx) + (dx)x

= /x + (dx)x{ dx) ' j" dx

There does not exist a function of y alone which can be multiplied

by dx on the right to produce dy. We encounter the same problem if we

look for a right naultiplier.

Thus, if we desire something which we can call a derivative,

2
we must consider the derivative to be an operator. If y = x , then

y'(x, )
= x( ) + ( )x.

Let us develop a few more rules of differentiation. Note that it

follows from the definition that d(x) = dx. First let y = uv, where u

and V are functions of x.

dy = lim-rn(u(x + dx)v(x + dx) - u(x)v(x) )t

n->oo n n

= linn jn(u(x + dx)v(x + dx )
- u{x)v(x + dx)

n->«o n
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+ u(x)v(x + dx) - u{x)v{x) ) j-

n

= lim rn(u(x + dx)v{x + dx) - u(x)v(x + dx) n
n-foo n n n -^

+ lim/n(u(x)v(x + dx) - u(x)v(x)
)|

n-t'co n

= (du) (v) + (u) (dv)

3
Example: Find d(x ).

3 2
d(x ) = d{x x)

,,2, 2 ,

= d(x )x + X dx

2
=

(
(dx)x + x(dx) )x + X dx

2 2
= (dx)x + x(dx)x + x dx

Example: Find d(x ),

{x)(x'S=l

(x)d(x'S +(dx)(x"'^) =

(x)d(x"S = -(dx)(x"^)

d(x"S = -{x"^)(dx)(x"^)

Examiple: Find d(x )

x'^x'^= X

1) x'^d{x'^) + d(x'^)x'^= dx

-v. ,. J.. . ^)2 --k,
d(x^)(x'^) + (x"^)d(x-*'=-) \x.M = x"'^{dx)(x^)
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Note that x"^= (x""^)/ |x^P, so x'^^x^j = {x'i).

2) d(x-^)(7^ + (x'^)d{x^) = x"^dx(x'^)

Adding 1) and 2),

x^d(x''^) + (x'^)d{x'^) + d(x'^)x'^ + d(x'^)(x'^) = dx + x"'^dx{x^).

(x-^^ + ^)d(x'^) + d(x'^)(x'^+ x^) = dx + x"'^dx{x^)

2{x'^) d(x'^^) + d(x^)2{x^)Q = dx + x"^ dxlx^'^) .

4(x'^) dlx"^) = dx + x"^ dx("x^)

d(x^) = dx + X (dx)x"^

4(x-^)q

The reader may have noted that the manipulations in the last

example were a little bit difficult. This illustrates the previous remark

that linear equations in Q are not as simple as linear equations in the

real numbers. We easily found dx in terms of a linear equation in

J- -1-

d(x^), but to get our answer we needed to solve for d(x*) as a linear

function in dx.

Since dy is a linear function in dx, the solution of linear equations

is a very important topic in the theory of quaternion differentiation.

Hamilton developed this subject extensively. However, it is beyond the

scope of this paper. We shall content ourselves by noting that the solu-

tion of linear equations can be regarded as a naatrix inversion problem.

This can be seen by writing dy and dx as a pair of column vectors.
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dy = ^^0

dy^

dy^

dy3j

dx =

dx^

dx.

dx.

Then "='^0"

dyi

'

"^z

^\

Alx> 3lo ilo iZo
&xo Sx, 3x^ S xj

ay
, 57. 31, 31,

d X(j dx, 3x^ dxj

dYo ay, ay, sy-,

'''"nl
= D

'^-ol
dXj ^1

dx^
''"z

.'\ ."^3.
9 Xfl dx, 5x_i 9x3

ay^ sy^ 1X3 3x3
3 x^ d X| <5 Xj d Xj

Thus, if the matrix D can be found, we can obtain dx as a function

of dy.

SOME SPECIAL, FUNCTIONS

To further illustrate the rules of differentiation, let us consider

some functions which are fundamental to the algebra of quaternions:

X, X-, X , / xl , and x .

V

The differentials of the first three can be found quite readily, for

let f(x) be any function which is homogeneous and distributive, i. e. ,

f(x + y) = f{x) + f(y) and, if s is a scalar, f(sx) = sf(x).

df(x) = lim|n{f(x + dx) - f{x) ))

n-»o° n

= lim {n(f(x) + f(dx) - f(x) ))

n-^oo
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= lim (n(f(dx/n) )\

= lim{n(l/n)(f(dx)
)J

n-^oo

= lim [(f(dx)
)}

df(x) = f(dx)

This gives us the formulas,

d(x) = (d^^),

d(XQ) = (dx)^,

and d{x )
= (dx) .

V V

To find d(|x|) we shall first find d(|x|^). Then we shall use the

previous result for the differential of a square root.

|x| = XX

?d(|x|^) = {x)(dx) + d(x)(x)

= (x){dx) + (dx)(x)

= (x) (dx) + ((x)(dx)
)

= 2( (x)(dx)
)q

From the formula for d(q'^), d(|xl) = d(jxl ) + /xj" d([xl ) /xj

41 xL

Note that jx| is a scalar, Ixj = lx[ .
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d (lx|) = d(jx|^) + d(|x6
41x|

= ^2( {x)(dx) )q+ 2( (x)(dx) )q}/(41x|;

=
(
(x)(dx) ),

^0_

lx|

This is often given in the more easily remembered form,

|xl
^^ ^0

— 2 — 2 -1
To obtain this, note that ((x)(dx))Q//x| = ((x/| x) )(dx))Q = (x dx)^

Now we can find d(x).

x =
I X| X

dx = d(|x/)(x) + |x|d(5c)

-i, -i
/x|d(x) = dx - d(Jx|)x

d(x)(x"-^) = dx(x"^ - d(lxl)//xj

= dx(x"S -
(
(x"S(dx)

)q

= (dx{x"^
)^

d{x) = (dx(x"S ) ^

HIGHER DIFFERENTIATION

In order to arrive at an understanding of what is meant by higher

differentiation we need to consider the differential of a function of
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dz =

two variables. Let z be a function of two quaternions, x and y.

= lim n <z{x + dx, y + dy) - z{x, y) i

n->oo ^ n n

= lim n|z(x + dx, y + dy) - z(x, y + dy )

n~>oo n n n

+ z(x, y + dy) - z(x, y)\
n

= lim n jz(x + dx, y + dy) - z(x, y + dy)|

n-*co n n ^

+ lim n j'z(x, y + dy) - z(x, y)|
n->oo n

= z'(x, y, dx) + z'(x, y, dy)

= d z + d z,
X y

Here z' (x, y, dx) and d z denote the result which will be obtained
X X

if we assume that x is the variable and y is a constant. Note that if

y is, in fact, a constant then dy = 0. Since z' (x, y, dy) is homogeneous

of first order in dy, z' (x, y, 0) = 0.

This reasoning leads us easily to an understanding of what form

higher differentials must take. We start with a function f(x). Differ-

entiating once, we obtain df(x, dx). To differentiate this, we shall

simply treat df(x, y) as a function of two "independent" variables. The

independence is modified, however, by the identification of y with dx.
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1) d^f = d (df(x, y, dx) ) + d (df(x, y, dy) )

2 2
We shall use d x to denote dy and think of d x as the second differential

of X,

d^f = d (df(x, dx, dx) ) + d {df(x, dx, d^x) )
X Q-X

Note that the first term on the right is no longer necessarily homo-

geneous of the first degree in dx. However, the second term must be

2
homogeneous of the first degree in d x. This will be implied when we

2 2
write the above form simply as d f(x, dx, d x).

Higher differentials will be treated in the same way.

We shall now establish some notation which will be essential in

the development of Taylor's series.

2
Note that d x was considered the differential of dx. If we assume

that dx is a constant, this implies that

2 3 n
= dx = dx=- • • =dx=- • • .

We may expect that we could then differentiate df(x, dx) as if x were

2
the only variable. Equation 1) shows that this will give d f(x, dx, 0).

Similarly, a third differentiation, still made on the assumption that x

3
is the only variable involved, will give d f(s, dx, 0, 0). For notational

2 3
convenience, then, we shall simply write d f(x, dx) and d f(x, dx) with

the understanding that dx is being treated as a constant.
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2 2 3
Example: If y = x , find d y and d y.

dy = x(dx) + (dx)x

2 2 2 2 2
d y = (dx) + x(d x) + (d x)x + (dx)

= x{d^x) + 2(dx)^ + (d^x)x

d^y = x(d^x) + (dx)(d^x) + 2(dx)(d^x) + 2(d x){dx)

+ (d^x)x + (d^x)(dx)

= x(d^x) + 3{dx)(d^x) + 3{d^x)(dx) + (d^x)x

2 3
Here x, dx, d x, and d x are three independent variables. However, if

2 3
dx is considered a constant, d x = d x = 0. Then

2 2
d y = 2(dx)

d\ =

THE TAYLOR SERIES

Let a and b be two quaternion constants and s a scalar. If f is a

quaternion function of the quantity (a + sb), then f is a fiinction of s.

Consider df/ds.

df _ lim f(a + sb + Asb) - f(a + sb)

da As-^o As

= lim (]_^{si + sb +_b
)

- f{a + sb)]

As>o\AEyV 1/as '

= lim /J_Yf(a + sb + b ) - f(a + sb)\

(1/as)->^{ s/l 1/As /

= df(a + sb, b)
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If this is evaluated at s = 0, df/ds = df(a, b). Also

d^f ^ _d (f(a + sb, b)
)

, 2 ds
ds

2
= d f(a + sb,b)

^ ""
d^f(a + sb, b)

ds

Now consider a quaternion function f{x + sdx), where we shall

treat x and dx as constants. We shall think of f as a function of s.

We can write the Taylor series of f, subject, of course, to questions

of convergence which are beyond the scope of this paper. We shall

expand the series about s = 0.

f{x + sdx) = f(x) + sdf + s_d f + • • • + s^d^f + • • • .

2! n!

Note that although x and dx are considered constant, they are

arbitrary.

Example: If df = x(dx) + (dx)x, and f{x) is known for some x = a,

find f(x) for any x ^ a.

We shall assume that dx is a constant.

d^f(x, dx) = {dx)(dx) + (dx)(dx) = 2(dx)^

d^f{x, dx) =

2 2
f(a + sdx) = f{a) + s{a(dx) + (dx)a) + s 2(dx)

2
= f(a) + a(sdx) + (sdx)a + (sdx)
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2
Let c = f(a) - a

2 2
f(a + sdx) = a + a(sdx) + (sdx)a + (sdx) + c

2
= (a + sdx) + c

2
If X = a + sdx, then f(x) = x + c.

2
Example: Let df = x(dx)x + x (dx) and let f(x) be given for some

X = a. Find f(b) for a given b ^ a.

Again assume that dx is a constant.

2 2 2 2
d f =(dx) x+ x(dx) + x(dx) + (dx)x{dx)

d^f = (dx)^x + 2x(dx)^ + (dx)x(dx)

d^f = 4(dx)^

d^f =

2
f(a + sdx) = f(a) + s(a{dx)a + a dx)

+ -^s^ /{dx)^a + 2a{dx)^ + {dx)a{dx))

+ _s^ {4(dx)^]
6

2
,

2
f(a) + a{sdx)a + a (sdx) +-^(sdx) a

2 3
+ a(sdx) +-L(sdx)a(sdx) + _2 (sdx)

In this example no simple expression, such as was obtained in

the first example, is apparent. However, this expression will enable

us to evaluate f(b) for any b in Q. This can be accomplished simply
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by letting sdx = b - a. When this value is inserted into the series,

f(b) is obtained.

The foregoing material suggests two questions:

1. What form does a theory of integration take?

2. To what extent can this theory be extended to an arbitrary

vector space, and how?

These questions remain, at present, unanswered. We shall

confine ourselves to the unsatisfactory observation that they would

be interesting areas of further study.
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Although quaternions were never widely accepted as an analytic

tool for applied fields, ideas which arose from the study of quaternions

have had a profound effect on subsequent mathematical development.

The purpose of this paper was to investigate the use of the ideas of

calculus when dealing with quaternions, and to see what ideas about

calculus might arise from this investigation.

Before the discussion of calculus was begun, it was felt advisable

to establish a notation which was well adapted for representing quater-

nions and which exposed some of their geometric properties. The

examination of these geometric properties was further aided by a

discussion of their application in describing spherical geometry and

rotations.

It was found that the usual definition of differentiation, or of

differential coefficients, was not useful in the theory of quaternion

functions. The definition was modified by Hamilton in what at first

seems to be a rather curious way. Using Harri. Iton's definition a

differential calculus of quaternions was developed. This calculus is

unusual in that there is (usually) no function which can be regarded

as a derivative, and the idea of infinitesimals plays no role.

In conclusion, it was shown that, in one sense, Taylor's series

can be used to describe quaternions which are functions of other

quaternions.


