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  Abstract—Accidental slips and falls due to decreased 
strength and stability are a concern for the elderly.  A method 
to detect and ideally predict these falls can reduce their 
occurrence and allow these individuals to regain a degree of 
independence.  This paper presents the design and assessment 
of a wireless, wearable device that continuously samples 
accelerometer and gyroscope data with a goal to detect and 
predict falls.  Lyapunov-based analyses of these time series 
data indicate that wearer instability can be detected and 
predicted in real time, implying the ability to predict 
impending incidents. 

 
Keywords—Accelerometer, gyroscope, wearable devices, 

ZigBee wireless, Lyapunov exponents, Android smart phone 

I.  INTRODUCTION 

Injuries from falls are a concern for the elderly, as 
approximately one-third of people over the age of 70 fall at 
least once in a given year, and one-fourth of those falls 
result in injury [1].  Such injuries can lead to worse 
conditions if a person is not treated immediately, increasing 
the chance of fatality within six months after a fall [2].  For 
this reason, the ability to detect and predict falls is desirable.  
Research suggests that elderly individuals with gait 
variability and inconsistencies in their steps fall more often 
than others, so quantification of an elderly person’s balance 
and walking stability can likely predict their propensity to 
fall [3].  Fall-prone, elderly patients often decrease walking 
speed, vary stride time, and lose stability in the hip regions, 
leading to significantly higher variability in gait patterns [4].  
Early work with falls assessment and prediction approaches 
that utilize Lyapunov methods, e.g., as described in [4], 
show promise to predict falls up to several hours in advance. 

This paper describes a slips-and-falls detection and 
prediction device designed with Lyapunov methods in mind.  
The wireless sensor is light weight, compact, and low power 
so that it can be comfortably worn all day on the patient’s 
hip while it acquires accelerometer and gyroscope data that 
will be used to assess patient stability via Lyapunov 
approaches [4-9].  The largest Lyapunov exponents (LLEs) 
can indicate system stability.  By noting the trajectory of the 
LLEs calculated from patient data, this system will predict if 
patient gait/balance will become chaotic and unstable, 
indicating that they may be at risk for a fall.   

II.  METHODOLOGY 

A.  Device Hardware/Software 
The slips and falls detector/predictor prototype (see Fig. 

1) employs a module for wireless communication and 
processing, an accelerometer and gyroscope for dynamic 
movement detection, local storage/processing capabilities, 
and a mini-USB port to recharge the battery and program 
the processor.  If a person has fallen or is at risk to fall, 
wireless communication is needed to let outside parties 
know that attention is required. Therefore, a Jennic 5148 
ZigBee wireless module (802.15.4 standard at 2.4 GHz) has 
been implemented on the sensor board to communicate 
patient data to an external host, such as a ZigBee-enabled 
Android smart phone.  The patient could then access this 
information through an Android app.  The ZigBee wireless 
protocol was chosen for its low power consumption, 
sensible communication range, and adequate throughput.  A 
CMA3000 MEMS 3-axis digital accelerometer and a 
CMR3000 3-axis digital gyroscope were chosen for their 
low power consumption, high precision, and high sampling 
rate.  Each of the six sensor axes is sampled at 100 Hz, and 
data are provided to the Jennic module through a serial port 
interface.  The device can store up to 22 hours of 
accelerometer/gyroscope data using on-board flash memory.  
An ABS plastic case for the sensor board is shown in Fig. 2.  
All sensor data can be received by a PC USB port (either in 
cabled mode or through a wireless ZigBee dongle) and 
analyzed in MATLAB.  These dynamic-motion plots are 
utilized to explain concepts in this paper.   

Note that while the unit is designed to transmit sensor 
data and calculations directly to the user’s ZigBee-inherent 
Android smart phone or tablet, market availability of such 
devices is limited.  However, a ZigBee-enabled tablet has 
been purchased that is compatible with the wireless 
functionality of the Jennic ZigBee Pro module.  An interim 
solution would be to create a ZigBee receiving dongle that 
utilizes Android 3.1’s ability to support USB host mode, 
allowing these wireless data to be accepted through the 
phone’s USB port. 
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Fig. 1. Sensor board for the Slips and Falls Predictor prototype. 
 

Software decisions can be made to maximize the speed 
and battery life of the sensor device.  For example, since 
sending data across the ZigBee link consumes the majority 
of the power on the board, data transmissions to the receiver 
platform can be limited to (a) the Lyapunov coefficients 
calculated from the raw sensor data, (b) the slips and falls 
indicators acquired from those coefficients, and/or (c) low 
battery level indicators.  By limiting data across the link, the 
battery life can increase from approximately 20 hours (for 
continuous transmission) to several days on a single charge. 

Fig. 2. ABS plastic case for the Slips and Falls Predictor, with a USB cable 
connected to the board. 

B.  Lyapunov Algorithm 
To predict if a patient is at risk to fall in the near future, 

a quick and accurate algorithm needs to be implemented on 
the device processor.  One proposed approach is to execute 
an algorithm consistent with the family of Lyapunov codes:  
methods which evaluate the perceived dynamic stability of a 
system based on current and past time series data, such as 
the accelerometer and gyroscope data acquired with the 
Slips and Falls Predictor.  Lyapunov exponents measure 
“exponential rates of average divergence or convergence of 
nearby trajectories as a system evolves in time” [5].  The 
hypothesis for this work is that these Lyapunov coefficients 
will track the instability of a user and allow the system to 
extrapolate a user’s propensity for a fall based on current 
and past data.  This behavior can be modeled by the 
expression 

tCetd λ=)(   
where d(t) represents the average divergence at time t, C is 
the initial separate normalization constant, and λ is the 
spectrum of Lyapunov exponents [6].  Calculating the entire 
spectrum of exponents allows one to realize the complete 
stability of the system.  However, this is computationally 
expensive.  The calculation can be greatly simplified by 
realizing that “two randomly selected initial trajectories 
should diverge, on average, at the rate determined by the 
largest Lyapunov exponent,” or LLE [7].  Calculating only 
the LLE is much less computationally intensive and can 
accurately evaluate the stability of a system – in this case, 
patient gait.  A focus on this exponent implies that if the 
trajectory deviates from the expected trajectory, the system 
may be chaotic and unstable, indicating that the patient may 
fall in the near future.  In other words, the value of an 
exponent indicates how quickly the trajectory departs from 
the nominal trajectory [8].  Therefore, if the algorithm yields 
a higher, positive value of the LLE, the trajectory will be 
assumed to exponentially deviate even more quickly, 
indicating a more unstable system.  If the LLE is equal to (or 
very close to) zero, the system is stable, and if it is negative, 
the system is stationary [9].  When the average expansion 
rate of the trajectory demonstrates a strong linear increase in 
the given time series, the slope will be used to calculate the 
LLE.  Factors such as noise, undersized time series, and 
small embedding dimensions can result in an absent linear 
region, resulting in a miscalculation of an LLE [9].  Many 
Lyapunov methods can be utilized to analyze the stability of 
patient dynamics, but Rosenstein’s method to calculate 
LLEs is most appropriate for this situation.  This is because 
Rosenstein’s approach is more reliable with small data sets, 
less computationally expensive, and less sensitive to noise 
compared to other similar algorithms [6]. 

The accuracy and speed of Rosenstein’s method to 
calculate LLEs depend on several factors, such as the size of 
the embedding dimension, the embedding lag, and the 
length of the time series.  Each of these factors can be 
calculated or estimated, depending on the sample data.  
Since the LLE could potentially be calculated up to several 
hundred times per second for this application, the length of 
the time series data set inserted into the algorithm is 
important.  A greater number of time series samples used for 
each LLE calculation yields greater accuracy, but at the cost 
of increased computation time.  However, while smaller 
time series lead to faster computations, the resulting LLEs 
may be inaccurate.   

Fig. 3 below shows the calculated LLEs versus the 
number of accelerometer samples inserted into the 
Lyapunov algorithm for a person walking both stably and 
unstably.  The number of samples ranges from 50 (0.5 
seconds of walking) to 10,000 (100 seconds of walking).  
Clearly, for a small time series, the LLE is inaccurate and 
inconsistent with LLEs obtained using larger sample sizes.  
As greater numbers of samples are introduced into the 



   

algorithm, the LLEs begin to stabilize and converge to a 
consistent value.  Given the information in Fig. 3, it is 
unnecessary to introduce more than 5,000 samples into the 
Lyapunov algorithm, as the algorithm will continue to yield 
approximately the same LLEs [5].  Also, note that the 
unstable, more chaotic walking pattern did indeed yield 
higher LLEs than walking stably. 

Fig. 3. Calculated LLEs versus the length of the time series data for both 
stable (blue) and unstable (red) walking. 

III. RESULTS AND DISCUSSION 

A.  Instability Detection 

 Accurately distinguishing between stable and unstable 
dynamic movements is important in this application because 
false negatives (non-perceived instabilities) could lead to 
falls and injuries.  Therefore, accurate calculations of LLEs 
are crucial.  Fig. 4 displays short time series for all three 
axes of both accelerometer and gyroscope data for a patient 
walking consistently and stably, while Fig. 5 displays 
similar data for a patient walking unstably and chaotically.  
Note how a consistent pattern emerges from the sensor data 
in both cases.  Therefore, when applying Rosenstein’s 
method for the Lyapunov algorithm, the calculated LLEs 
tend to be very small because very little deviation and few 
inconsistencies exist in the time series data.  However, 
inconsistent data, as shown in Fig. 5, yield higher LLEs 
because of deviations from the nominal trajectory.  This 
phenomenon is summarized in Fig. 6, which shows the 
LLEs of each axis under both stable and unstable conditions.  
In early studies, the LLEs for an unstable system can be 
approximately fifteen times greater than those of a stable 
system.  To obtain these Fig. 6 values, 5,000 data samples 
were entered into the Lyapunov algorithm, along with an 
embedding dimension of five and an embedding lag of one. 

Fig. 4. Three axes of accelerometer data (upper) and gyroscope data (lower) 
from a patient walking stably. 

Fig. 5. Three axes of accelerometer data (upper) and gyroscope data (lower) 
from a patient walking unstably. 

Fig. 6.  Calculated LLEs for both stable and unstable walking. 

B.  Slip and Fall Detection 
Not only should the device predict possible future falls 

through instabilities, but it should also detect whether the 
subject experiences a sudden, accidental slip or fall.  
Therefore, it is important to distinguish between falls and 
harmless movements.  The two scenarios can be 
distinguished by several dynamic features in the sensor data.  
Fig. 7 displays accelerometer and gyroscope data for a 
person sitting in a chair, while Fig. 8 displays these data for 
a person falling to the ground.  The two situations can be 
distinguished from one another by the rate of axis transitions 
and the amplitudes of the curves.  When the subject is sitting 
down, the transitions of the accelerometer and gyroscope 
data are smoother and have smaller magnitudes.  When the 
subject is falling to the ground, the data have jagged 
transitions and exhibit large spikes in amplitude.  
Furthermore, the falling data are characterized by a moment 



   

of “weightlessness” (where all three axes of the 
accelerometer are close to zero), a large rotational value for 
the Z-axis of the gyroscope (yaw), and a large spike in the 
amplitude of the data from both sensors, signifying the 
impact with the ground [10]. 

Fig. 7. Three axes of accelerometer and gyroscope data for a person sitting 
in a chair. 

 Fig. 8. Three axes of accelerometer and gyroscope data for a person falling 
backwards to the ground. 

 IV. CONCLUSION 

Accurately analyzing and applying largest Lyapunov 
exponents (LLEs) calculated from accelerometer and 
gyroscope time series data has the potential to predict falls 
due to instability and therefore avoid possible serious 
injuries.  This paper introduced and evaluated a prototype 
slips-and-falls detection and prediction device that can be 
comfortably worn while accelerometer and gyroscope 
sensor data are collected.  Not only could this device predict 
potential falls, but it also offers the potential to distinguish 
between falls and normal dynamic movements.  By utilizing 
Rosenstein’s method to calculate LLEs, the stability of a 
system can be accurately and quickly assessed with 
relatively small data sets.  Upon careful implementation of 
this algorithm, falls will ideally be predicted several hours in 
advance.  Furthermore, falls can also be detected by 
analyzing small data sets from the accelerometer and 
gyroscope.  By detecting signs of weightlessness, swift axial 

rotation, and large sensor magnitudes from impact, falls can 
accurately be detected without false alarms.  With the type 
of system presented here, these vital data could be sent to a 
patient’s or caretaker’s Android cell phone to let them know 
that attention is required.  Precisely detecting falls and 
potential falls may allow senior citizens to regain a level of 
reassurance and independence. 
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