ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326010764

Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli

Poster · January 2018 DOI: 10.13140/RG.2.2.19936.79363

> CITATIONS 0

3 authors, including:

Chathuranaga Ran

Chathuranaga Ranaweera
Kansas State University
14 PUBLICATIONS 32 CITATIONS

Some of the authors of this publication are also working on these related projects:

Mechanism of Substrate Binding to the Molecular Chaperone ClpB View project

Biochemical and physiological characterization of human protease HtrA3, UMO-2013/09/B/NZ1/01068 View project

14 PUBLICATIONS 32 CITATIONS

SEE PROFILE

READS 32

Przemysław Glaza
Captor Therapeutics Inc.

SEE PROFILE

19 PUBLICATIONS 206 CITATIONS

Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from *Escherichia coli*

Chathurange B. Ranaweera, Przemyslaw Glaza, and Michal Zolkiewski Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS

ClpB reactivates aggregated proteins in cooperation with DnaK. The ClpB monomer contains two AAA+ ATP-binding domains (D1, D2), the coiled-coil domain, and the N-terminal domain. The ClpB-mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB.

We investigated the peptides B1 and B2, which have been shown to mimic ClpB substrates (1). The TANGO algorithm (2) predicts that B1 and B2 contain discrete aggregation-prone sequence segments. To test the role of the aggregation-prone segments in supporting binding to ClpB, we also produced truncated and scrambled derivatives of B1 and B2. The peptides have been labeled with FITC at their N termini.

Binding of the peptides to the ClpB-trap variant (3) was associated with an increase in the FITC fluorescence anisotropy. The binding required ATP, which is consistent with the substrate-binding mechanism of the AAA+ ATPases. The peptide binding to ClpB showed positive cooperativity, consistent with the linkage between substrate binding and ClpB self-association into hexamers.

4. The N-terminal domain of ClpB is not required for peptide binding

B1 and B2 bind to wild type ClpB in the presence of ATP γ S. The N-terminally truncated Δ NClpB binds the peptides with a higher affinity than the full-length ClpB.

5. Aggregation-prone segments are not sufficient to support the peptide binding to ClpB

2/2

 $^{\circ}$

Truncated peptides that contain only the aggregation-prone segments in B1 and B2 interact with ClpB with a lower affinity than the full-length B1 and B2.

This experiment was performed using ClpB-trap in the presence of ATP.

6. Aggregation-prone segments are not necessary to support the peptide binding to ClpB

The affinity of the scrambled peptides towards ClpB does not correlate with the presence of aggregation-prone regions. This experiment was performed using ClpB-trap in the presence of ATP.

7. Summary of the ClpB-peptide interaction affinities

Peptide	K _d [nM]	Hill
		Coefficient
B1	47	2.4
B1T	329	1.7
B2	13.2	2.5
B2T1	912	1.1
B2T2	>1000	0.5
N1	7.3	1.4
N2	17.6	1.7
N3	10.2	0.9
N4	11.5	1.3

All experiments were performed using ClpB-trap in the presence of ATP. The non-linear least-squares fitting was performed using GraphPad Prism software.

8. Conclusions

- We tested the hypothesis that the predicted aggregation-prone segments in peptides mediate the substrate recognition by ClpB. We found that the aggregation-prone segments are neither sufficient nor necessary for the peptide interactions with ClpB.
- Our results suggest that the substrate recognition mechanism of ClpB may rely on global surface properties of aggregated proteins rather than on local sequence motifs.

References:

- . Schlieker et al., Nat. Str. Mol. Biol., <u>11</u>, 607, 2004.
- 2. Fernandez-Escamilla et al., Nat. Biotech., <u>22</u>, 1302. 2004.
- 3. Barnett et al., J. Biol. Chem., <u>280</u>, 34940, 2005.

Funding:

National Institutes of Health, R56 Al121366