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Abstract

Diseases such as Alzheimer’s, Parkinson’s, eye lens cataracts, and Type 2 diabetes are

the results of protein aggregation. Protein aggregation is also a problem in pharmaceutical

industry for designing protein based drugs for long term stability. Disordered states such as

precipitates and gels and ordered states such as crystals, micro tubules and capsids are both

possible outcomes of protein–protein interaction. To understand the outcomes of protein–

protein interaction and to find the ways to control forces, it is required to study both kinetic

and equilibrium factors in protein–protein interactions.

Salting in/salting out and Hofmeister effects are familiar terminologies used in protein

science field from more than a century to represent the effects of salt on protein solubility,

but they are yet to be understood theoretically. Here, we build a theory accounting both

attractive and repulsive electrostatic interactions via the Poisson Boltzmann equation, ion–

protein binding via grand cannonical partition function and implicit ion–water interaction

using hydrated ion size, for describing salting in/salting out phenomena and Hofmeister

and/or salt specific effect. Our model free energy includes Coulomb energy, salt entropy

and ion–protein binding free energy. We find that the salting in behavior seen at low salt

concentration near the isoelectric point of the protein is the output of Coulomb energy such

that the addition of salt not only screens dipole attraction but also it enhances the monopole

repulsion due to anion binding. The salting out behavior appearing after salting in at high

salt concentration is due to a salt mediated depletion interaction. We also find that the

salting out seen far from the isoelectric point of the protein is dominated by the salt entropy

term. At low salt, the dominant effect comes from the entropic cost of confining ions within

the aggregates and at high salt, the dominant effect comes from the entropy gain by ions in

solution by enhancing the depletion attraction. The ion size has significant effects on the

entropic term which leads to the salt specificity in the protein solubility.



Crystal growth of anisotropic and fragile molecules such as proteins is a challenging task

because kinetics search for a molecule having the correct binding state from a large ensemble

of molecules. In the search process, crystal growth might suffer from a kinetic trap called

self–poisoning. Here, we use Monte Carlo simulation to show why protein crystallization is

vulnerable to the poisoning and how one can avoid such trap or recover crystal growth from

such trap during crystallization. We show that self–poisoning requires only three minimal

ingredients and these are related to the binding affinity of a protein molecule and its proba-

bility of occurrence. If a molecule attaches to the crystal in the crystallographic state then

its binding energy will be high but in protein system this happens with very low probability

(≈ 10−5 ). On the other hand, non–crystallographic binding is energetically weak, but it

is highly probable to happen. If these things are realized, then it will not be surprising to

encounter with self–poisoning during protein crystallization. The only way to recover or

avoid poisoning is to alter the solution condition slightly such as by changing temperature

or salt concentration or protein concentration etc.
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because kinetics search for a molecule having the correct binding state from a large ensemble
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bility of occurrence. If a molecule attaches to the crystal in the crystallographic state then

its binding energy will be high but in protein system this happens with very low probability
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Chapter 1

Introduction

1.1 Introduction

Protein–protein interaction results in several outcomes. One of them is protein aggregates.

Often, protein aggregates are toxic and cause diseases. For example, neurodegenerative

diseases such as Alzheimer’s and Parkinson’s are caused by aggregation of Aβ42, and alpha-

synuclein proteins respectively1. Type 2 diabetes is caused by aggregation of IAPP poly–

peptide2. Similarly, eye lens cataract and sickle cell anemia are caused by condensation of

lens crystallin proteins and red blood cell haemoglobin proteins respectively3. Apart from

these diseases, complexes like virus capsid, micro tubules, enzymes are also the outcomes of

protein–protein self–assembly. Protein aggregation is also a great challenge and subject of

interest in the pharmaceutical industry. They want to design protein–based drugs with long

term stability, but as the drugs are transported and/or stored proteins aggregate over time.

Protein crystals are also an outcome of protein–protein interaction. Protein crystals are

required for the X–ray crystallography. X-ray crystallography4;5 is a highly precise technique

which reveals the three dimensional structure of macromolecules including proteins. The

number of crystal structures in the protein data bank are now around 125,0006 and more

than 90 % of the structures are determined by the X-ray crystallography. But, it requires

protein crystal of sufficient size and quality suitable for the diffraction. Protein crystals have
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well defined structures such as cubic, tetragonal, monoclinic etc. So from such structures, it

is easy to extract important informations such as interaction sites, volume fraction of protein

and solvent etc.

But, the task of obtaining protein crystal of sufficient size and quality from the solution

of protein monomers is difficult. In protein crystallization experiments, people frequently

encounter three kinds of unwanted results7. The first kind of crystallization failure is that

the solution remains homogeneous at the end of experiment. It means no new phase is

formed. The second kind of failure is that they achieve a dense phase but not a crystal. The

solid phase obtained is a gel or disordered aggregates. Another undesireable result is the

formation of crystals that lacks the quality to be used in crystallography.

The first published protein crystal was haemoglobin of earthworm blood and it was first

observed by Hunefeld8 in 1840. However, protein crystallization is still a challenging task

because of the lack of rational guidelines. The guidelines made for the crystallization of

one protein don’t work for another protein because each protein has different physical and

chemical properties. So, the trial and error approach is still the most common method used

for crystallization. Many organic molecules crystallize easily compared to the proteins. This

is because the crystallization condition of such molecules depends on few parameters such as

temperature and crystallizing species. But, in the protein system other parameters such as

pH of the solution, various buffer agents, precipitating agents, concentration of salt added

and its type must also be monitored in addition to the temperature and crystallizing species9.

George and Wilson measured the osmotic second virial coefficients (B22) of many proteins

under crystallizing condition by using static light scattering and their study demonstrated

that the value of B22 to lie in very narrow range. The narrow range of B22 value is called the

crystallization slot. The crystallization slot of proteins lies between (−1× 10−4 mol ml g−2)

and (−8×10−4 mol ml g−2)10. This “slot” is explained as the competition between two effects.

Too weak attraction can’t initiate phase transition leaving the solution in homogeneous form

while too strong attraction leads to the unwanted gel and amorphous aggregates. For the

successful crystallization of protein, it requires the precise balance between attractive and

repulsive interactions.
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How do protein–protein interactions lead to different types of aggregates? What are the

ways to control them? These questions remain still unknown. To understand the different

outcomes of protein–protein interactions and find out the ways to control them, it is required

to study both kinetic and thermodynamic factors affecting the protein–protein interaction.

In the following section, we present a brief introduction of kinetics and then thermodynamics

associated with protein–protein interaction.

1.2 Kinetics

Crystallization is a two step process; nucleation and crystal growth. At first, crystallizing

molecules nucleate to form a nucleus. Then, the nucleus searches for a crystallizing molecule

having correct binding energy required for the growth. A schematic diagram of crystal growth

kinetics is shown in Fig.(1.1). It shows three critical protein concentrations indicating the

location of solution phase, crystal growth regime, kinetic trap, and the amorphous growth.

At low protein concentration region (below C1 in Fig.(1.1)), crystallizing molecules have

low driving force which is insufficient to cross the energy barrier required for the nucleation.

The insufficient driving force leaves crystallizing molecules in the solution phase. If super-

saturation lies between C1 and C2, then it is suitable for the crystal growth. In this region,

the on–rate of molecules is greater than their off-rate in such a way that the defects, if any

of them were created, get enough time to be removed. Experimental evidences suggest that

the crystal growth window of proteins is very narrow10. Further increase of supersaturation

causes the growth to fall into kinetic trap which means there is no growth because the rate

of binding and unbinding of crystallizing molecules are equal. The kinetic trap region lies

between C2 and C3 in Fig.(1.1). After concentration C3, the binding rate of molecules

dominates their unbinding rate such that the molecules bound in incorrect ways don’t get

sufficient time for unbinding leading to the amorphous growth.

At higher concentration, crystal growth is prevented by kinetic traps, a well known kinetic

trap is the appearance of amorphous aggregation at concentration above C3. In this work

we study less well understood kinetic trapping at an intermediate range of concentration
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(between C2 and C3) that don’t show the obvious signature of large insoluble precipitates.
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Figure 1.1: Kinetics of crystal growth. There are three concentrations separating different
stages of growth11. Below C1, crystallizing molecules remain in solution phase. Between C1
and C2, crystal grows. Crystal growth suffers from kinetic trap in concentration range from
C2 to C3. After C3, there is uncontrolled aggregation leading to amorphous growth.

1.3 Protein–protein interaction at equilibrium and

“phase” diagram

The phase diagram of a protein provides the guidelines for different outcomes such as crys-

tal, gel, amorphous structures. The study of the phase diagram also helps to narrow down

the parameter space by identifying the less expensive tuning parameters required for exper-

iments. A simple 2D phase diagram is shown in Fig. (1.2). In the figure, the precipitant

concentration is varied and solubility line is drawn. The solubility line separates the two

phases, namely, undersaturated and supersaturated. The undersaturated zone lies under the

solubility curve whereas the supersaturated region lies above the solubility curve. Since su-

persaturation is the driving force for the phase transition, one should perform crystallization

experiment maintaining the solution condition supersaturated. The supersaturated region

is further divided into three regions. They are the metastable, labile, and precipitation

zones12. Right above the solubility line, there exists a metastable zone where the nucleation
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occurs spontaneously. But, if supersaturation is weak then it takes unreasonable time for

molecules to nucleate in this zone. Right above the metastable zone, there is labile zone

where nucleation occurs in experimental time scales and next to it there is the precipitation

zone. In the precipitation zone, the favorable outcome is the disordered structures due to

the stronger supersaturation.

P
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Precipitant concentration

Under saturated 

Super saturated

Solubility curve

Precipitation zone

Labile zone

Metastable zone

Figure 1.2: Phase diagram showing solubility line. Solubility line separates the under-
saturated and super-saturated region.

Protein solubility is an essential thermodynamic quantity needed for the study of aggre-

gates in different fields. For example, the first thermodynamic information needed for crys-

tallographers for designing a crystallizing system is the solubility13. Unlike the second virial

coefficient14–17 which measures the two bodies interaction, solubility measures the strength

of many body interaction. It is defined as the protein concentration in the soluble state

when chemical potential of protein in the soluble state and the crystal state are equal18;19.

Experimentally, the solubility at a given set of solution condition is measured either by

dissolving protein crystal in the under–saturated solution till the saturation is reached or

by leaving crystal in the over–saturated solution allowing the crystal growth to attain the

equilibrium condition. The protein solubility curve, which is obtained by joining the protein

concentration data at equilibrium at varying parameters, provides the information regarding

the location of crystallizing conditions which are otherwise expensive to explore in terms of

time and materials.
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Experimentally, it has been shown that the solubility of protein relies on several factors.

These factors include not only the properties of the protein itself but also they include the

properties of the environment in which the proteins are put. The internal factors that affect

protein solubility are shape and size of protein, type of amino acids and their location in the

protein. Properties of the solvent such as pH9;20, concentration and type20–24 of salt, and

temperature9;23;25 are some external factors affecting the solubility of protein. There is no

well known theory to explain these experimental measurements.

Protein–protein interaction is composed by both electrostatic26–29 and non–electrostatic30;31.

Below, we will discuss how solution pH and the type and concentration of salt affect elec-

trostatic and non–electrostatic interactions.

1.3.1 Electrostatic contribution

It is known that the electrostatic free energy density of a system containing protein and

mobile salt ions is composed by the Coulomb energy and salt entropy26–28. When a charged

protein is placed in a solution having mobile salt ions then, counter ions form a screening

layer around protein. While forming the screening layer, ions lose their entropy and in return,

the electrostatic interaction gets strongly reduced. The competition of Coulomb energy and

salt entropy can be accounted for using the Poisson Boltzmann equation.

Effect of solution pH

The net charge of a protein can be positive, zero or negative as determined by the protonation

state of its charged amino acids. The contribution on protein charge by its charged amino acid

depends on the pKa value of the side chain and pH of the solution. The Hendersen–Haselbach

equation is used to calculate the charge of amino acid. The charge of positive and negative

amino acids are Q+ = 1
1+10(pH−pka) and Q− = −1

1+10−(pH−pka) , respectively which show how the

pKa of amino acid and solvent pH affect protein charge in combination. The net charge of

protein is given by the summation of positive and negative residues (Q =
∑
Q− +

∑
Q+).

The protein net charge is positive below its isoelectric point whereas above the isoelectric
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Figure 1.3: (Left:) Variation of protein charge with respect to solution pH. The net charge
of protein is zero at the isoelectric point (pI). Net charge of protein is positive when pH < pI
and it is negative when pH > pI. (Right:) Solubility of protein with respect to pH. Often,
solubility is minimum at the isoelectric point.

point it is negative. Isoelectric point (pI) of a protein is the pH at which the average charge

of protein is zero. The value of pI varies from one protein to another protein depending on

the population of charged amino acids on protein.

The charge state of a protein is extremely important in the study of its solubility. Gener-

ally, the solubility of protein is minimum at its isoelectric point and solubility increases while

going away from isoelectric point in either direction giving “U” shape variation with pH20.

The schematic diagram showing the variation of protein net charge and solubility with pH

is shown in Fig.(1.3). Hence, the solution pH can be used as a tuning parameter to change

the interaction.

Screening effect of salt

In addition to pH, salt concentration also strongly affects protein solubility by screening

charges. This effect can be monotonic or non–monotonic with increase in the salt concen-

tration (see Fig.1.4). When a protein is placed in a salt solution the salt ions, particularly

counter ions build a screening layer around protein, which means the electric potential de-

cays faster than the Coulomb potential (r−2). The screening length for monovalent salt ions
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Figure 1.4: (Left:) A diagram to show a monotonic behavior of solubility with salt concen-
tration. If the solubility increases with the salt concentration, it is called salting in and if
it decreases with the increase in salt then it is called salting out. (Right:) Non–monotonic
dependence of solubility with salt concentration.

is given by expression (κ−1 =
√

εkBT
2e2c0

). The dielectric constant of the medium, temperature

and salt concentration are the factors on which the screening length depends. If the dielectric

constant of water is used at temperature 300K, then the relation between screening length

and salt concentration expressed in molar unit becomes ( 3.05[Å]√
c0/[M ]

). It shows that the screen-

ing length is inversly proportional to the square root of salt concentration. For an example,

the value of screening length at salt concentration 1M is around 3Å.

Screening of protein charges softens the electrostatic interaction. For example, screening

of monopole charge results the weakening of electrostatic repulsion and screening of higher

order charge such as dipole weakens the electrostatic attraction. The net charge of the

protein, the monopole, dominates the repulsive interaction between proteins. If we keep

adding salt to the solution then the repulsive interaction becomes progressively weaker.

Therefore, the screening of monopole repulsion leads to the salting out of proteins.

The salting out of protein is popularly used as a technique to isolate and purify protein.

For this process, a salt is continuously added to the protein solution until the proteins

precipitate. This method is used in number of experiments in different proteins21;32. At

high salt concentration, salting out phenomenon is described by Cohn emperical formula32.
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Cohn formula relating the protein solubility with the salt concentration is (lnS = β−ksms).

Where, S is protein solubility, ms is salt concentration, ks is salting out constant and β is

the intercept of the straight line. This formula predicts a linear dependence of solubility

with the salt concentration. But, there are many experiments that have measured the non–

linear nature of salting out in the salt concentration range in which electrostatic interaction

can’t be neglected. Such non–linear salting out behavior of protein has been explained by

Schmit and Dill by accounting for the effect of salt entropy on the repulsive electrostatic

interaction33;34.

Often, salting out of a protein is observed if the protein is far from its isoelectric point.

At such pHs, effect of the higher order charges of protein are insignificant for the interaction.

But, the result can be salting in if the higher order charges are significant in comparison

to the monopole charge. This condition is satisfied near the isoelectric point. Experimen-

tally, people have measured salting in behavior in number of proteins near their isoelectric

point14;35;36. To explain salting in behavior, people have proposed two possible mechanisms.

Near the isoelectric point, the net charge of protein is small allowing for attractive inter-

actions through the alignment of patches with complementary charge. In such case, the

screening of dipole attractions by salt ions leads to the increased solubility36 (salting-in).

Another proposed mechanism of salting in is the enhancement of monopole repulsion due to

ion binding37–39 to the protein surface.

Protein solubility can show non–monotonic behavior with the salt concentration too.

For example, salting out can be followed by salting in and vice–versa. Often, at low salt

concentration, protein solubility increases with the increase in salt concentration and after

certain salt concentration it starts to decrease with the increase in salt concentration. For

example, the salting in at low salt and salting out at high salt in chymosin protein have been

measured experimentally40. Salting out followed by salting in have also been measured41

in lysozyme protein experimentally. With the help of computer simulation by treating pro-

tein charges in a discrete way, people have shown non–monotonic solubility with the salt

concentration42;43. At low salt, they have observed salting out. At the intermediate salt

concentration, they have obtained salting in and at high salt, they have seen salting out.

9



The explanation of such non–monotonic solubility requires the consideration of other effects

of salt such as ion–protein binding and the ion size effects in addition to the screening effect.

The screening effect of salt on charges is meaningful only up to ≈ 1M salt concentration

because the thickness of screening layer above this salt concentration is less than 3Å (com-

parable to the hydrated ion size). Above this concentration, the electrostatic interaction

plays poor role in the interaction so the dominant interaction comes from non–electrostatic

protein–ion interaction. In such high salt regime, usually proteins, follow the salting out

behavior.

1.3.2 Non–electrostatic mechanism

Ion binding effect

In addition to the role of salt ions in screening electrostatic interactions, they can also

bind on the protein surface by mostly non–electrostatic protein–ion interaction. There is

plentiful experimental evidence showing the effect of ion binding on the protein charge44–47.

The binding of ions not only alters the net charge of protein but also it changes the dipole

moment of the protein. These both have immediate impact on the protein solubility. The

number of ions that bind on the protein surface increases with the salt concentration until

they find the available location to bind on the protein surface. The ion binding causes protein

charge to change with the salt concentration.

In the absence of binding, the net charge of protein is constant so the screening effect of

salt always weakens the electrostatic interaction. But, in the presence of ion binding, salt

ions have two effects happening concurrently. One effect is to screen electrostatic interaction

and another effect is to change charge of protein. So, the competition of the screening effect

and the binding effect decides the nature of solubility variation with the salt concentration.

Many theoretical works either ignore binding effect or use emperical formula to account for

it48. One of the limitation of traditional Poisson Boltzmann equation is it doesn’t account

ion–protein association. In our model, we account for it with the help of a grand cannonical

partition function.
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Ion size effect

Salt specificity is important in many chemical and biological phenomena. For instances,

electrolyte activities, buffers, viscosities, solubilities, protein cloud points, protein surface

charges etc. Salt type can increase or decrease protein solubility. Hofmeister in 1888 classified

different salt ions on the basis of their ability to precipitate protein21. The ranking of different

salt ions on the basis of their ability to precipitate protein is known as the Hofmeister series.

After Hofmeister, there are number of other solubility experiments measuring salt specific

effect in various proteins24;51;52. Some experiments regarding the salt specific effect follow

direct Hofmeister series while some follow a reverse Hofmeister series depending on the

solution pH whether it is below or above the isoelectric point of protein and the observation

of reverse and direct Hofmeister series also depends on the salt concentration used. For

instance, people have measured the reverse Hofmeister series at pH below isoelectric point

and they have measured the direct Hofmeister series above the isoelectric point in number

of experiments53;54;56;57;62. Recently, at pH below the isoelectric point, people have measured

the reverse Hofmeister series at low salt and direct series at high salt in the cloud point

temperature measurement of lysozyme protein48. But, the underlying mechanism of salt

specific effect is still poorly understood theoretically.

The popular DLV O (Boris Derjaguin and Lev Landau, Evert Verwey and Theodoor

Overbeek) theory49;50 which accounts for long ranged electrostatic repulsion and van der

Waals attraction fails to capture the salt specific effect. This theory works well for colloidal

particles at relatively low salt concentration. But, the salt specific effect is more pronounced

at high salt where electrostatic interaction is less effective. It doesn’t predict distinct result

if salts are made by ions of equal valency. For example, NaCl and NaI salts produces

the same result if DLV O theory is applied though they are vastly different. In addition,

globular proteins are small in size so the van der Waals interaction involved in DLV O plays

an insignificant role in the interaction.

The salt specific effect is being studied theoretically using different approaches that ac-

count for various salt specific interactions such as ion–protein dispersion interaction, im-
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age charge interaction, hydrophobic interactions30;57–62. To capture salt specific effects on

protein–protein interaction people have also considered the ion–water interaction. On the

basis of ion–water interactions people have divided ions in to two catagories, namely, kos-

motropes and chaotropes31;63. Kosmotrope ions have high charge density so they make thick

hydration layer around them. On the other hand, chaotrope ions have low charge density so

they make thin or no hydration shell around them. Most of the existing theoretical studies

of salt specific effect are limited to two body interactions calculating second virial coefficient

or pressure between two surfaces57;64.

Aggregates involve many body interactions. In case of aggregates, solubility is a param-

eter to measure the strength of interaction. The role of salt entropy on the formation of

protein aggregates has been shown before in Ref.33;34. In fact, the translational entropy of

salt ion depends on the size making it an ion specific quantity. Here we show that if salt

specific entropy is accounted for in the model then it will describe the physics undergoing in

the protein aggregates in different salt solutions.

1.4 Our approach to model protein solubility and Hofmeis-

ter effect

Here, our purpose is to design a minimal analytical theory for describing protein solubil-

ity and the Hofmeister effect. In our model, we include Coulomb energy, salt entropy and

protein–ion binding free energy as ingredients of total free energy. Among these three ingre-

dients of total free energy, we show how the salt entropy term is essential for solubility and

the Hofmeister effect.

The entropic cost of confining salt ions in the protein aggregate is the major contributor

to the electrostatic free energy, as previously shown by Schmit and Dill33;34. But, in their

isotropic model, only the net charge of protein was considered and higher order charges were

left out. Their model also doesn’t capture the salt specific effect. Here, we improve the

model of Schmit and Dill by adding the electrostatic contribution from higher order charge.
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In addition, we add other two effects of salt, namely, the ion binding effect and the depletion

effect. With these modifications to the Schmit and Dill model, our model describes many

effects of salt on the protein solubility.

Both the repulsive and attractive electrostatic interaction originate from the protein

surface charge. To account for this, we use a multipole expansion of charge up to its first

order. The zeroth order moment represents the monopole and it is resposible for the repulsive

interaction while the first order moment represents the asymetric distribution of charged

amino acid on the protein surface and captures the attractive interaction. The region where

the dominant effect of zeroth order moment and first order moment depends on the pH scale

of solution and salt concentration of salt used. Normally, away from isoelectric point zeroth

moment has a dominant role whereas near or at isoelectric point higher order moments

show their effect. The value of salt concentration also determines when zeroth moment and

first order moment show their dominant behavior. The effect of zeroth order moment is

observed at low salt and the effect of first order moment is observed at slightly higher salt

concentration43. The screening effect of salt produces the salting out followed by salting in

if both monopole and dipole charges have significant values42;43 in proteins. In addition to

the screening effect of salt65, we account for binding44 and the depletion effect66;67 of salt

too.

Salt ions are not point particles instead they have a finite size and their bare size is

strongly effected by the solvation. The finite size of the ions is one source of ion specificity

in the protein–protein interaction. Due to their finite sizes, there is some excluded region

around proteins for ions. It affects both electrostatic and non–electrostatic interactions.

When proteins make an aggregate or a crystal then it has to satisfy the neutrality condition.

For the neutrality of aggregate, proteins have to trap mostly counter–ions in the solvent

cavity. At low salt, ion size strongly affects the entropic loss during confinement in the

cavity which is required to neutralize the aggregate. For example, for bigger ions, the entropic

penalty to confine in a place is higher than the penalty for smaller ions because of the higher

excluded volume. Ion size is important at high salt too. For example, at high salt, ions exert

a force to bring proteins together so that the ions can minimize their excluded volume and
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can gain entropy in solution. This effect of ion size is a non–electrostatic interaction known

as the depletion attraction and plays a dominant role at high salt concentration.

There are numerous models developed before to describe salt specific effects such as

protein–ion dispersion effect30;46;68, image charge effect59 and hydrophobic effect58 but all of

them are missing contribution of salt entropy. We believe, if new model is made by combining

salt entropy effect from our model with other existing salt specific effects, then it will be

more accurate to explain Hofmeister effect–one of the oldest problem in this field.

1.5 Our approach to model kinetics

We study the kinetics of crystal growth using Monte Carlo simulation. The kinetics of pro-

tein crystal growth look for the correct binding state because proteins are anisotropic and

flexible molecules. We study crystal growth from a solution having two components. The

two components are the representations of a molecule regarding its way of binding to the

crystal. A molecule can attach to the crystal in two ways, namely, crystallographic and non–

crystallographic ways. In our model, the crystallographic state of a molecule is represented

by Blue color and the non–crystallographic state is represented by Red color. We account

the binding affinity of a molecule and its probability to the crystal in following ways. The

attachment of a molecule to the crystal in crystallographic way is strongly energetically fa-

vorable for the crystal growth. On the other hand, the attachment in a non–crystallographic

way is weak energetically. But, the probability of crystallographic binding is very low in

comparison to the non–crystallographic way of binding.

In our study, by accounting for the ways of a molecule binding to the crystal and their

respective probability, we show the variation of growth rate with respect to the protein

concentration. From our study, we also show how the quality of crystal changes with the

protein concentration, why proteins are vulnerable for growth poisoning and how one can

avoid self–poisoning or recover crystal growth.

14



1.6 Overview of chapters

In chapter 2, we describe our model which captures many effects of salts such as electrostatic

screening, ion binding, and the depletion effect on the thermodynamics of protein crystal

growth. We also break down interactions to electrostatic and non–electrostatic part to

explore their individual contribution on protein solubility. In chapter 3, we study the kinetics

with the help of simulation and explain the minimal requirements for self–poisoning in the

crystal growth. In the final chapter, we summarize our current work and discuss potential

future work.

1.7 Bibliography
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Chapter 2

Protein–protein interaction at

equilibrium

2.1 Introduction

Proteins are flexible and anisotropic biomolecules built from different types of amino acids

such as hydrophobic, hydrophilic, charged etc. These amino acids play vastly different roles

in intra– and inter–molecular interactions. A number of diseases such as type 2 diabetes1,

cataracts2, neurodegenerative diseases3 etc. are caused by protein aggregation. Also com-

plexes such as virus capsid, microtubules and protein crystals are also possible outcomes of

protein–protein interaction. To understand how protein–protein interaction lead to different

outcomes, we study a thermodynamic quantity called “solubility” because it measures the

strength of many body interactions. It has been measured experimentally that protein solu-

bility is affected by several factors such as solution pH, salt concentration, salt type etc but

it is poorly understood theoretically.

The electrostatic interactions between proteins has been studied previously4–6 and it has

been the subject of interest becasuse it plays a major role in protein–protein interactions. For

simplicity in calculation, people often use only the zeroth order moment of charge (monopole)

assuming charges are distributed isotropically on the protein surface. The higher order
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charges are short ranged and they are less important when proteins are far from the isoelectric

point. At those regions, the monopole charge is large and its repulsive strength dominates

the attractive strength of higher order charges. But, near the isoelectric point, the net charge

of protein is almost zero so the effect of higher order charge can be important.

In salt solution, the electrostatic interactions are screened by the counter-ions. To do

this, ions have to lose some entropy when they form a screening layer around charged macro-

molecules. The importance of salt entropic contribution to the formation of protein aggregate

has been shown by Schmit and Dill7. As a consequence of the screening effect, the repulsion

of monopole charge as well as the attraction of higher order charge are weakened by the

addition of salt. Screening effect of salt has the opposite effect on the monopole charge

and higher order moments. By increasing the screening effect on the monopole charge, one

can promote the aggregation of proteins which is a salting out mechanism, whereas in the

case of higher order moments of charges the aggregation is supressed by the addition of salt

which is a salting in phenomenon4. The Hofmeister effect (1888), or salt specific effect, was

discovered more than a century ago but it is still not understood well theoretically. People

have proposed number of salt specific interactions such as ion–protein dispersion interac-

tion10;13;14, solvophobic interaction11, image charge interactions12 as the cause of Hofmeister

effect but none of them has accounted the salt specific entropy.

Here, our purpose is to design a theory that accounts many effects of salts and effect

of pH on protein solubility. The free energy of a protein state, in our model, includes the

Coulomb energy, salt entropy, and protein–ion binding free energy. From this model, we

show that most of the free energy of protein aggregation is contributed by the salt entropy

term. In addition to that we show that entropic term is salt specific if the excluded volume of

salt is included. We model protein charge distribution using a first order spherical harmonic

expansion which allows us to include both repulsive and attractive electrostatic interactions.

The dominant region for repulsive or attractive electrostatic interaction relies on the values

of solution pH and isoelectric point of model protein. In our model, we account for protein–

ion association with the help of grand canonical partition function and also account for the

effect of protein–ion binding on protein charge. We treat the ion as a finite sized entity and
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use hydrated ion size to account the solvation effect implicitly. We also account for excluded

volume effects in our model. Our model which includes screening and binding effect of salt

and excluded volume effect is capable of capturing salting in/salting out and Hofmeister

effect. This model is also capable of describing the reversal Hofmeister series seen while

shifting salt concentration from low to high regime.

2.2 Model

Our model considers two states, namely, the solution state and the crystal state. At equi-

librium, chemical potential in the solution state µs is equal to the chemical potential in the

crystal state µc.

µc = µs

Fb + Fc = kBT ln c0 + Fs

Fb + Fc − Fs = kBT ln c0 (2.1)

Where Fb is the salt independent protein–protein interaction in the crystal state, Fc and Fs

are the salt dependent free energies in crystal state and solution state respectively. c0 is the

concentration of protein in solution state, and kBT ln c0 represents the translational entropy

of protein in solution state.

Solving for c0, we get,

c0 = Ae
(Fc−Fs)
(kBT ) (2.2)

which is the concentration of protein in solution state and at equilibrium, it is defined as the

protein solubility20;21. Here, A = eFb/kBT is a constant that we use as a fitting parameter.

The salt dependent free energies are,
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Fs/c = Ecoul − TSsalt + Fbind (2.3)

Where, Ecoul is the Coulomb energy and TSsalt is the energy contributed by ion entropy at

temperature T . Fbind is the free energy contributed by the binding of ions to the protein.

The Coulomb energy Ecoul is,

Ecoul =

∫
ε

2
| ∇Ψ |2 d3r (2.4)

Where, ε is the position dependent permittivity and Ψ is the electric potential.

The free energy due to ion entropy is8,

− TSsalt = kBT [

∫
V

[c+ ln
c+

cs
− c+ + cs]d

3r +∫
V

[c− ln
c−
cs
− c− + cs]d

3r] (2.5)

Where c+ = cse
− eΨ
kBT and c− = cse

eΨ
kBT are the concentrations of positive and negative ions

respectively. cs is the concentration of ions at the bulk solution. The first term in the

right hand side of equation (2.5) comes from the entropy of positive ions and the last term

represents the entropy of negative ions.

When the total volume integration in the equation (2.5) is divided into ion excluded and

accessible regions then it can be written as,

− TSsalt = kBT [

∫
(V−V +

ex)

[c+ ln
c+

cs
− c+ + cs]d

3r +∫
(V−V −ex)

[c− ln
c−
cs
− c− + cs]d

3r +

cs(V
+

ex + V −ex )] (2.6)
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The last term in the right hand side of the equation (2.6) is contributed by excluded volumes,

V +
ex and V −ex where c+/− = 0. The excluded volumes depend on the ion size requiring distinct

values for each ion. The excluded volume is also a function of the protein size, shape, and the

protein-protein separation, resulting in a depletion attraction. Importantly, we take the ion

size to be an effective parameter that includes the effects of bound water, thereby implicitly

capturing solvent structuring.

We compute Fbind term by writing the grand partition function

e−Fbind/kBT =
∑
nb

Ns!e
(−Es+nb(µ−Ebind))/kBT

(Ns − nb)!nb!
(2.7)

where Ns, nb, Es, µ = kBT ln cs, Ebind are the number of binding sites on the protein, number

of bound ions, electrostatic protein-ion energy, ion chemical potential, and non-electrostatic

protein-ion attraction, respectively. Due to the uncertainty in the location of the binding

sites, we assume that the number of bound ions is equal in the soluble and aggregated states.

Therefore, Fbind does not change upon aggregation and the contribution of this term is to

modify the charge on the protein.

2.2.1 Protein in solution state is modeled as a sphere with monopole

and dipole

In the solution state, we model the protein as charged sphere and surface charges are ap-

proximated by a first order multipole expansion ρ(r, θ) = (σ0 + σ1 cos θ)δ(r − R) as shown

in figure (2.1A). The zeroth order term represents the net charge n0 = 4πR2σ0/e of protein

(monopole) in the unit of electronic charge and produces the repulsive interaction between

proteins. The first order term represents the dipole n1 = 4πR2σ1/e = 3p
eR

charge in electronic

units, which is the source of attractive electrostatic interaction. The dipole moment (p) of a

protein is calculated based on how its charged amino acid are distributed from the centroid

of protein. To evaluate the dipole charge (n1), we match the dipole moment p to the first

moment of charge distribution. The net charge (n0) and dipole moment (p) at different pHs
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B

D

C

Figure 2.1: Cartoon representation of the geometry used in our model. A) The protein
is modeled as a sphere embedded in an aqueous environment. The charge distribution is
described by a monopole and dipole, which is schematically shown as charges at the sphere
center and poles, respectively. B) Each protein in the aggregate is surrounded by a Wigner cell
consisting of the protein (red spheres) and surrounding water (blue). C) We approximate the
surrounding water as cylindrical channels. D) The volume accessible to ions in the channels
depends on the ionic radius. Smaller ions have a larger accessible volume (green).
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are calculated from the Henderson-Hasselbach equation using model pKa values of amino

acids44. R is the radius of spherical protein which we calculate from the crystal structure of

a protein using following relation,

R =

[
3abcpc
4πnm

] 1
3

(2.8)

Where, a, b, c are the dimensions of a unit cell, nm is number of protein molecules, pc is the

fraction of protein means (1− pc) is the fraction of solvent in a unit cell.

We solve the linearized Poisson Boltzmann equation (∇2Ψout = κ2Ψout) and Laplace

equation (∇2Ψin = 0) in spherical geometry to find the electric potential outside Ψout and

inside protein Ψin by using appropriate boundary condition. The first boundary condition

says that the potentials at the surface of protein are equal.

Ψin |(r=R)= Ψout |(r=R) . (2.9)

The second boundary condition is,

εw
∂Ψout

∂r
|(r=R) −εp

∂Ψin

∂r
|(r=R)= −(σ0 + σ1 cos θ) (2.10)

Where, εw = 80ε0 and εp = 4ε0 are the permittivity of water and protein. ε0 is the per-

mittivity of vacuum. For the dielectric constants of water and protein we use 80 and 4,

respectively.

By solving above equations, we get the electric potential outside the protein at distance

r to be,

Ψout(r) =
n0ee

−κ(r−R)

4πεwr(1 + κR)

+
n1eR(1 + κr) cos θ

4πεwr2[ εp
εw

(1 + κR) + (2 + 2κR + κ2R2)]

×e−κ(r−R) (2.11)
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The first term in Eq. (2.11) represents the potential due to monopole charge and the second

term is the potential due to dipole, κ is the inverse Debye length and e is an electric charge.

Similarly, we find the electric potential inside the protein to be,

Ψin =
n0e

4πεwR(1 + κR)

+
n1er(1 + κR) cos θ

4πεwR2[ εp(1+κR)

εw
+ (2 + 2κR + κ2R2)]

(2.12)

These potentials are due to the bare charges which will get modified by ion binding

events. We account for the ion binding events, particularly anion binding because many

experiments and theoretical study have shown that anion interaction is much stronger with

the protein surface than it is for cations30–33;35.

The following expression, which utilizes Eq. (2.7), gives the total number of anions that

bind to the protein surface.

nb =
∂Fbind

∂µ

∣∣∣∣
µ=kBT ln cs

(2.13)

with

Es =

nb−1∑
n=0

Ψ(n0 − n, n1 − n) |(r=R,θ=π
3

) (−e) (2.14)

Where Ψ(n0−n, n1−n) |(r=R,θ=π
3

) is the electric potential which is the function of monopole

and dipole charge modulated by the anion binding. The dipole correction is an approximation

that assumes that anions bind primarily to the positive hemisphere, where θ = π/3 gives a

median value for the potential. n = 0 means there are no anions bound.

2.2.2 Crystal state is modeled as cylindrical channels surrounded

by proteins

When proteins are in the crystal state, we assume that the dipoles align with each other

cancelling their dipole charges and leaving only monopole contribution in the electrostatic

interaction. The cancellation of asymmetric charge due to the protein alignment requires

no calculation of the Couloumb energy inside the protein because the symmetric charge
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distribution has no contribution to the energy inside the protein9. To neutralize the repulsive

interaction of monopole charges and successfully form the electrically neutral protein crystal,

couter–ions must be recruited in the cavities so that net system gets neutralized. The cavities

in the protein crystal are in fact occupied by solvent and many salt ions. We need to calculate

the energy and entropy in the cavities. For this purpose, We model each cavity as a cylindrical

channel of solvent surrounded by the proteins. The surface to volume ratio in case of cylinder

is better representation than the case of sphere in our model. As a rough approximation, we

assume that each protein is surrounded by channels with a total length of 24R, as would be

expected in a crystal with cubic packing symmetry (see Fig. 2.1C). We further approximate

these channels as cylinders with a radius, Rc, chosen to match the solvent content of the

aggregate. Since each channel is surrounded by four proteins (see Fig. 2.1B,C), the solvent

volume per protein is 6πR2
cR. To obtain the ion accessible volume we use Rc → (Rc−Rion),

where Rion is the effective radius of the ion and its solvation shell. We estimate the radius

of cavitiy (Rc) from the protein crystal data using following expression.

Rc =

[
abc(1− pc)

6πnmR

] 1
2

(2.15)

We solve the linearized Poisson Boltzmann equation around a non-zero average potential

(φ0)7 to find the potential in the cavity. The dimensionless potential within a protein

aggregate, Φ = eΨ/kBT , often exceeds the threshold Φ < 1 for linearization of the PB

equation. However, since the cavities are small, on the order of κ−1, the variation in the

potential is small. Under these conditions, it is an excellent approximation to linearize the PB

equation around a nonzero potential φ0. We assume that a cavity is made by two concentric

cylinders trapping ionic solvent. The outside cylinder has radius Rc and the inside cylinder

has radius Rin. To eliminate numerical issues at r = 0, the inner cylinder radius Rin is set

to the small value 0.01Å in the numerical calculations. The linearized Poisson Boltzmann

30



equation around non-zero potential is,

∇2
yΦ = sinh(φ+ φ0)

∇2
xφ = φ+ tanhφ0 (2.16)

Where, Φ = φ+ φ0, y = κr and x =
√

coshφ0y.

With the boundary conditions,

− dφ

dx
|x=α = E0

dφ

dx
|x=β = 0 (2.17)

the solution of equation (2.16) in cylindrical coordinates is,

Φ(x) =
E0(K1[β]I0[x] + I1[β]K0[x])

[I1[α]K1[β]− I1[β]K1[α]]
− tanhφ0 + φ0 (2.18)

Where K and I are modified Bessel functions, α =
√

coshφ0κRc, β =
√

coshψ0κRin and the

dimensionless electric field at the cylinder surface is

E0 =
(n0 − nb)e2

12πεwRkBTα
. (2.19)

The non-zero averaged potential is obtained by using the neutrality condition in the

cavity as follows.

(n0 − nb) = −(c̄+v+ − c̄−v−) (2.20)

Where v+ and v− are the accessible volume for positive and negative ions in the cavity

respectively. The ion accessible volume in the cavity, 6π((Rc−Ri)
2−R2

in)R, depends on the

size of ion Ri. c̄+ = cse
−eφ0
kBT and c̄− = cse

eφ0
kBT are the concentration of positive and negative

ions inside the cavity in the presence of average potential.
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After calculating energy and entropy in two states and finding the free energy there, we

use equation (2.2) to find solubility of proteins at various salt concentration, pH and type

of salts. Note that, due to the uncertainty in the location of the binding sites, Fbind term in

solution state and crystal state are taken equal so its net contribution to the change in free

energy is zero. To calculate the contribution of the ion excluded regions on the solubility,

we use computer program Chimera49 which evaluates the change in excluded volume in

the soluble state and aggregate state. The excluded region of ions gets reduced upon the

aggregation of protein by the amount which is equal to the value of overlapped volume

(V s
ex − V c

ex).

To calculate the overlapped volume, we first load a protein of our interest in software

using its PDB code (Protein Data Bank) then create crystallographic copies around 5Å

distance. Let the total number molecules be np. Then, we expand each molecule by the

size of an ion of our interest and roll an ion over the surface of a molecule. This process

measures the volume of an individual molecule (let it be V1). After measuring the volume of

individual molecules, we combine all the copies of molecules. Then, we again roll the same

ion over the combined surface of molecules. This measures the total volume of complexes

(let it be V2). Finally, we calculate the volume difference in two states which provides us the

value of overlapped volume (V s
ex − V c

ex = np × V1 − V2). This is the amount of volume that

ions feel increased in the bulk solution and they gain entropy.

2.3 Result and Discussion

2.3.1 Theory compares well with experiment to describe salting

in, salting out and ion specific effect

The solubility is a sensitive function of the solvent content within the aggregate state. To

facilitate the comparison of our theory with experiments, we focus on crystalline aggregates

where the solvent content is readily obtained from the atomic structure. Protein and cavity

radii are chosen to match the protein and solvent volumes reported in the crystal structures of
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Figure 2.2: Comparison of chymosin solubility (points)41 to the theoretical model (lines) as
a function of salt concentration cs. The model captures the transition from pure salting-out

at pH=6 to non-monotonic solubility at lower pH. R = 23.3Å, Rc = 8.6Å, ∆V Na
ex = 4800Å

3
,

and ∆V Cl
ex = 3200Å

3
.

Lysozyme47 and Chymosin48. Following Eqs. 2.8 and 2.15, we found the radius of chymosin

and lysozyme to be 23.3Å and 16.1Å respectively and the corresponding cylindrical cavity

sizes to be 8.6Å and 6.0Å.

We have shown the comparision between experiment41 and our theory in figure (2.2).

This is the solubility of chymosin protein near its isoelectric point in NaCl solution. The

hydrated ion radii used for sodium and cloride are RNa+ = 1.67Å42 and RCl− = 1.50Å43

respectively. For this comparision, we have selected anion binding sites to be Ns = 36 and

binding affinity to be Eb = −0.3kBT . We will describe the reason why we selected these

values of Ns and Eb later when we compare our another result with experiment. The fitting

parameter required in our main expression of solubility is prefactor A which is obtained to

be AChy = 2.12 mg/ml for chymosin protein. Theory compares well with experiment at all
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pHs. Both experiment and theory predict salting in followed by salting out in pHs 4.0, 4.6,

4.8 and 5.0. In pH 6.0, experiment and our theory both predict salting out. The solubility

strongly depends on the pH of the solution because charge of the protein changes with the

pH.

The charge of chymosin protein at multiple pHs are tabulated in table (2.1) calculated

using the Henderson-Hasselbach equation. For the calculation of charge, we use pKa values

of amino acids from Ref.44. Since there is little variation in the dipole parameter n1, we use

the average value (n1 = 17.65) at all pHs, which is equivalent to a moment of 653 Debye

(137 eÅ).

Table 2.1: Charge of chymosin vs pH
pH Monopole charge(n0) Dipole parameter(n1)
4.0 4.77 17.49
4.6 −2.4 17.47
4.8 −3.9 17.62
5.0 −5.04 17.74
6.0 −9 17.92

We have also shown the comparison of lysozyme solubility at pH 4.5 between our theory

and the experimental result by Ries-Kautt45 in the Fig.(2.3). At pH 4.5, the net charge of

protein is n0 = 10 and dipole parameter (n1) is 7. Here, the common anion is cloride and

its radius is taken to be 1.50Å. The cations used in the comparison are Na+, K+ and NH+
4

with sizes 1.67Å, 1.50Å and 1.25Å43 respectively. Note that, the hydration effect reverses the

relative size rankings of sodium and potassium demonstrating the importance of water-ion

interactions in ion specificity46.

The solubility decreases in the order NH+
4 > K+ > Na+ which agrees with the direct

Hofmeister series and there is good aggreement between theory and experiment. Here, we

can notice that the big co–ions are more favorable for aggregation than small co–ions. The

binding sites used in lysozyme protein for anion is Ns = 18. We will explain the reason

of using Ns = 18 in the ion binding subsection later. The parameters that require fitting

are the prefactor A and Ebind, the non-electrostatic anion-protein interaction. ALys = 15.64
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mg/ml and Ebind = −0.3kBT are obtained by fitting to lysozyme solubility (Fig. 2.3). We

used the same value Ebind = −0.3kBT in chymosin protein because in both proteins the

binding species is Cl−.

The salting in/salting out and salt specific effects are a result of several competing terms

in the free energy. In the following sections we examine these contributions individually.

2.3.2 Electrostatic mechanism

2.3.3 Monopole repulsion, an electrostatic source of salting out,

is dominated by counter-ion entropy

To simplify our analysis of the contributions to the free energy, we begin by examining a

version of the model in which the ion-specific features of ion excluded volume and ion-protein

binding have been removed. This model is equivalent to a Poisson-Boltzmann analysis and

gives a view of the behavior expected from purely electrostatic interactions.

The first plot in Fig.(2.4) shows the variation of solubility with respect to zeroth order or

monopole charge (n0) at various salt concentrations with a negligible dipole term (n1 = 0).

The solubility of protein becomes minimum at a point when net charge of protein is zero.

This point is known as the isoelectric point. While going away on either side of the isoelectric

point, both solubility and charge of protein are increased. The solubility also depends on

the salt concentration. The solubility decreases if we increase the salt concentration keeping

the monopole charge constant. This means that the screening effect of salt on electrostatic

repulsion is one cause of salting out. This figure reproduces the well known behavior of

protein solubility with pH and salt concentration which tells that the solubility is minimum

at the isoelectric point and screening effect of salt on net charge of protein causes salting

out25;26.

Coulomb energy and salt entropy are the electrostatic contributions to the free energy

(F = Ecoul − TSsalt) as shown in equation (2.3). In Fig.(2.4)B, we have investigated the

contribution of Coulomb energy and salt entropy to the change in free energy between

36



0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0
1.1
1.2
1.3
1.4
1.5

monopole chargeHn0L

c 0
@a

rb
.

u
n

it
sD

0.1M
0.2 M
0.3M
0.4 M
0.5 M

H A L

0.1 0.2 0.3 0.4 0.5 0.6
-2.0
-1.5
-1.0
-0.5

0.0

cs @MD
D

HD
X

L@k
B

T
D

-TDH DSL

DH DEL
DH DFL

H BL

0.1 0.2 0.3 0.4 0.5 0.6
-2.0

-1.5

-1.0

-0.5

0.0

cs @MD

-
T

D
HD

S
L@k

B
T

D

Total

Coion
Counterion

H CL

0.1 0.2 0.3 0.4 0.5 0.6

-0.2
-0.1

0.0
0.1
0.2
0.3

cs @MD

D
HD

X
L@k

B
T

D

Coion entropy

Energy

H DL

Figure 2.4: A) Solubility of a charged spheres as a function of monopole charge n0 and
salt concentration. The dipole moment and non-electrostatic effects have been omitted (σ1 =
Ns = Ebind = Ri = 0). Repulsion between proteins stabilizes the solution state and increases
the solubility. Adding salt screens the repulsion and leads to salting-out. B) Change in the
Coulomb energy, entropy, and free energy of aggregation relative to 100 mM salt, ∆(∆X) =
∆X(cs)−∆X(0.1 M), for spheres with charge n0 = 5. The repulsive interaction is dominated
by the ion entropy, so adding salt leads to a large decrease in the entropy penalty. C) The
salt entropy can be further separated into coion and counterion terms demonstrating that
the dominant contribution comes from the confinement of counterions. D) The salt entropy
contributed by co–ions is energetically almost equal to the Coulomb energy of the sytem but
their nature is just opposite.
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dipole moment and non-electrostatic effects have been omitted (σ1 = Ns = Ebind = Ri = 0).
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the aggregate and solution states. It tells us that the electrostatic origin of salting out is

dominated by the salt entropy because ions are required to be confined within the aggregates

to form a crystal7;9. Since counter–ions are required for the crystal neutrality, the total salt

entropy is mostly contributed by counter-ions entropy which is shown in Fig.(2.4)C. There

is finite probability to find co–ions in the cavity which means co–ions also have to lose their

entropy. The contribution of energy term in free energy is so small that its magnitude is

comparable to the contribution of co–ion entropy (Fig.(2.4)D).

From the Fig.(2.4)B, we knew that the entropy change and Coulomb energy change show

distinct variation with the salt concentration. The former becomes more attractive and the

later becomes more repulsive with the addition of salt. To analyze it, we have plotted Fig.

(2.5) which compares the contribution of energy and entropy in each of solution state and

crystal state when protein charge is modeled up to monopole term only. The magnitude of

energy term (first figure) in solution state dominates the counterpart in the crystal state.

This is because the potential in the crystal state varies slowly with the distance due to the

lack of enough space in comparison to the variation of potential with distance in the solution

state. This produces the slow variation of energy with respect to salt in crystal state and
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fast variation of energy in the solution state. So, the difference between the crystal state

energy and solution state energy is attractive at low salt and becomes less attractive with

the addition of salt. Due to this reason, we see the repulsive behavior of energy term with

salt in Fig.(2.4)B.

On the other hand, the entropic penalty is greater in the crystal state than it is in the

solution state. It is because ions have to lose more entropy while being confined in a small

cavity in crystal state than the amount of entropy they lose while forming the screening

layer around protein in soluble state. Thus, the entropy difference between the crystal state

and solution state is dominated by the entropy in the crystal state. Furthermore, it is

repulsive. With the addition of salt, it becomes less repulsive and more favorable for protein

aggregation. Also, from the figure, it is seen that the entropy in the crystal state dominates

other components of the free energy such as the entropy in solution state, the Coulomb

energy in the aggregate state, and the Coulomb energy in the solution state. For this reason,

the solubility of a protein having only monopole charge is dominated by the translational

entropy of salt ions (Fig.(2.4)B).

2.3.4 Dipole attraction leads to salting in and it is dominated by

energetic term

In Fig.(2.6)A, we have plotted the solubility with respect to dipole charge (n1) at various

salt concentrations. In this case, the monopole charge is negligible (n0 = −0.01). The dipole

has the opposite effect of the monopole on the solubility. The solubility decreases with the

increase in dipole charge at a fixed salt concentration. The increased dipole charge means

the increased attractive strength and the increased attractive strength is favorable for the

aggregation. If the dipole moment is kept constant and the salt concentration is increased

then the solubility increases due to the screening effect of salt on the dipole attraction. The

electrostatic origin of salting in is screened dipole attraction.

The second plot shows the contribution of energy (blue line) and entropy (red line) to the

change in free energy (green line). Another difference between the dipole and the monopole
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Figure 2.6: Electrostatics-only model (Ns = Ebind = Ri = 0) showing the solubility of
a nearly ideal dipole (n0 = −0.01). A) Dipole attraction decreases the solubility and the
addition of salt increases solubility. B) Variation of the energy, entropy and free energy of
aggregation (∆(∆X) = ∆X(cs)−∆X(0.1 M)) of a pure dipole (n1 = 10). Both the energy
and entropy are favorable for aggregation and become less favorable with the addition of salt.

interaction is that both energy and entropy have same type of contribution to the free energy.

This is because the association of proteins leads to both the release of counterions and the

close association of complementary charges between proteins. In the dipole only model, the

free energy is dominated by the Coulomb energy which is shown in Fig.(2.6)B unlike in

monopole only model in which entropic effect of counter–ions dominanated change in free

energy.

2.3.5 Competition of monopole repulsion and dipole attraction

In our study, we have expanded the charge distribution of the protein up to first order.

Remember that the zeroth order charge represents the net charge of protein and the first

order represents the dipole moment. We intend to apply our theory to explain salting in

and salting out of protein. Since the protein monopole and dipole moments have opposite

effects on the solubility, it is important to determine whether salting-in or salting-out or

combination of them will occur. The combined effect of zeroth and first order charge is

plotted in Fig.(2.7).

Fig.(2.7) shows the solubility of protein with respect to the mixed charge distribution at

different salt concentration. For this purpose, we have kept dipole charge fixed at n1 = 5
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in an electrostatics only model (Ns = Ebind = Ri = 0). (A) Solubility vs (n0

n1
) at n1 = 5. (B)

Solubility vs (n0

n1
) at n1 = 10. (C) Solubility vs (n0

n1
) at n1 = 15. We see pure salting in (left

to the shaded region), pure salting out (right to the shaded region) and salting out–salting
in trends (shaded region). These crossover points depend weakly on the magnitude of the
dipole. In the last figure, three different outcomes are shown by choosing different values of
n0

n1
. When n0

n1
is 0.2 then it gives pure salting in (red colored line). The values of n0

n1
equal to

0.3 and 0.4 give non–monotonic result (salting out followed by salting in shown in blue color)
and monotonic salting out (shown in inset) respectively. The radius of protein is 23.3Å and
radius of solvent cavity is 8.6Å.
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(Fig. A), n1 = 10 (Fig. B) and n1 = 15 (Fig. C) and changed the monopole charge to express

the mixed charge distribution in the ratio of monopole charge to the dipole charge n0/n1

at different salt concentrations. In all graphs, we observe three distinct regions, namely,

only salting in, only salting out and salting out followed by salting in. At lower values of

|n0/n1| roughly below 0.19±0.03, the solubility of protein increases with the increase in salt

concentration which is the salting in region. In this region, the monopole charge is weak so

the dipole attraction is stronger than the monopole repulsion and we observe pure salting

in. This means that the dipole charge has to be substantially bigger than the monopole

for salting-in to occur. Also note that, the cross–over point of salting out from salting in

depends on the salt concentration. Here, the lowest salt concentration we have studied is

0.01M and the highest salt concentration is 0.5M which is reasonable for the electrostatic

interaction.

When the value of n0/n1 is more than 0.46± 0.02 then we see only salting out region. It

means the monopole charges are strong enough that the repulsive interaction dominates the

attractive interaction produced by the dipole charge. But, the solubility is non–monotonic

when the value of n0/n1 lies in the region between 0.2 and 0.45. In this region, both monopole

and dipole are not strong enough to show dominant effect. In this case, we observe salting

out of protein at low salt and it is followed by the salting in at high salt. The salting out

lasts for narrow range of low salt concentration than the salting in but it becomes wider as

the value of n0/n1 is increased and finally yielding pure salting out.

In the plots, we have used three values of n1 which are 5, 10 and 15 and changed the

monopole charge to get different values of ratio n0/n1. The value of ratio (n0/n1) up to

which we get pure salting in, salting out–salting in and pure salting out depends weakly on

the value of dipole charge. For example, if n1 = 5 then we see salting in up to n0/n1 = 0.16.

This means that the monopole charges up to 0.8 are insufficient to dominate over a dipole

charge equal to 5. If we increase the dipole charge by three fold then we see pure salting in up

to the value of ratio n0/n1 = 0.22 which means monopole charge is 3.3 which is greater than

the three fold value of previous monopole charge 2.4 but the difference in monopole charge

is less than a unit charge. So, the ratio of n0/n1 can be useful to predict the conditions to
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Figure 2.8: (B) Variation of c0[0.5M ]
c0[0.1M ]

with respect to n0

n1
at various dipoles which shows that

the cross-over of salting out from salting in at different cases are almost at the same point
around 0.3. (C) Variation of c0[0.5M ]

c0[0.1M ]
with respect to n0

n1
at various protein volume fraction

choosing dipole charge to be 10 which shows that the cross-over of salting out from salting in
shifts towards the larger value of n0/n1 if the volume fraction of protein is decreased. Ratios
greater than unity indicate salting-in over this range of salt concentrations. As the protein
volume fraction increases from 10% to 60%, smaller monopoles are required for salting out
to dominate. The radius of protein is 23.3Å and radius of solvent cavity is 8.6Å.

achieve a monotonic and a non–monotonic behavior of solubility.

In the last plot of Fig.(2.7), we have selected three values of n0/n1 from three distinct

regions, namely, from left of the shaded region, shaded region, and right of the shaded region

to show three different results of solubility with respect to salt concentration. As expected,

the lower value of the ratio (n0/n1 = 0.2) choosen from the left side of shaded region shows

only salting in. The intermediate value (0.3) selected from the shaded part shows the non–

monotonic solubility showing salting out followed by salting in and the higher value of n0/n1

(0.4) picked from right side of the shaded part in the figure shows the pure salting out.

This result indicates that the electrostatic interactions can lead to either monotonic or non–

monotonic behavior of solubility depending on the strengh of terms in the expansion of

charge.
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2.3.6 Shift of salting out cross–over point with dipole charge and

volume fraction of protein

For the further study of salting in and salting out with respect to the mixed charge distri-

bution of protein, we have plotted Fig.(2.8). In Fig.(2.8B), we have plotted the ratio of two

solubilities with respect to the ratio of monopole to dipole at various dipole charges. To test

the cross-over point of salting out from salting in, we have taken the ratio of two solubilities

at salt concentrations 500mM and 100mM and observe the variation with respect to the

ratio of n0 to n1 for various dipoles ranging from 4 to 16 which are indicated by different

colors in the figure. Here, the value of ratio c0[0.5M ]
c0[0.1M ]

on the vertical axis greater than 1 indi-

cates salting in and less than 1 indicates salting out. The result is either salting in or salting

out depending upon the values of n0 and n1. Near the isoelectric point, n0 is small resulting

small n0/n1. In this situation, the monopole charges are small so the dipole interaction plays

dominant role giving salting in. On the other hand, far from the isoelectric point, n0 is large

so the ratio n0/n1 is also large. In this case, the monopole interaction dominates producing

salting out. This plot indicates that the cross–over point of salting out from salting in falls

around (n0/n1 = 0.3) at 60% protein volume fraction. This means that the dipole charge

has to be substantially larger than the monopole for salting-in to occur. This plot also shows

that the cross–over point depends weakly on the magnitute of dipole.

In Fig.(2.8C), we have shown the effect of volume fraction on the salting in/salting out

cross–over point by changing the volume fraction from 10% to 60% choosing dipole parameter

(n1) to be 10. Here we observed that the salting out cross–over point shifts towards higher

values of n0/n1 if the volume fraction of protein is decreased. The value of cross-over point

increases from 0.33 to 0.60 when the volume fraction of protein is reduced from 60% to 10%.

The salting out transition point depends strongly on the volume fraction of protein in the

aggregate. The salting in/salting out cross–over point varies due to the distinct mechanisms

underlying the dipole and monopole interactions. The dipole interactions are driven by the

energetic gain of pairing charged patches while the monopole repulsion is dominated by

counterion confinement entropy. Therefore, increasing the solvent content of the aggregate
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Figure 2.9: Measurement and calculation show the different values of pH related to solubility
minima. (Left:) Measured solubility minima is at pH 4.041. (Right:) Calculated solubility
minima is at pH 4.6. In both cases salt concentration is 0.1M . These plots suggest that
non–electrostatic effects are needed to explain the shift in the solubility minima to lower pH
value.

(means decreasing the protein volume fraction) will reduce the monopole repulsion with

minimal effect on the dipole attraction giving higher values of the cross–over point.

2.3.7 Non-electrostatic mechanism

Protein-ion interaction shifts isoelectric point

Salt ions, mostly counter ions, build the screening layers around the charged protein which

help to weaken electrostatic interactions. In addition to building the screening effect, salt

ions have significant probability to bind to the protein. This effect is important for our

modeling of chymosin, which has a calculated isoelectric point closer to pH of 4.6 while the

measured solubility minimum is closer to 4.041. The solubility minimum is at different pH

in experiment and theory which is shown in Fig. (2.9).

The result of ions binding to the surface of protein will be directly seen on the electrostatic

interaction because ion binding to the protein shifts its isolectric point. The shift of the

isoelectric point due to anion binding is shown in Fig.(2.10). For the purpose of showing the

effect of anion binding on the protein charge, we have selected binding sites on the protein

surface to be 15 and varied the binding affinity. The stronger the binding affinity the more

bound ions there are.
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binding affinities are shown in the figure. The strong binding affinity increases the number
of bound anions as a result of which pI shifts towards lower values of pH.

In fact, the amount of charge perturbation depends on the number of ions bound to

the protein. The dipole moment perturbation depends on both the number of anion bound

and the location of binding. There are no such standard results which suggest the number

of bound ions on the protein surface at certain condition. However, there are multiple

experiments on lysozyme protein reporting the number of binding sites with varying results

such as 35± 756, 9± 457, 7± 258, 22± 159.

For the comparision of theory to experiment, we calculated the average number of binding

sites from these varying results and used it in the study of lysozyme protein. The average

value of binding sites is found to be (Ns = 18) from experiments cited above for lysozyme.

For the anion binding study of chymosin protein, we used (Ns = 36). For chymosin protein, in

our knowledge, there are no such experimental evidences to give binding sites on its surface.

Due to unavailability of binding sites data for this protein, we estimated the number of

binding sites on its surface. The chymosin protein has nearly double surface area than the

lysozyme protein. So, by comparing the surface area of lysozyme and chymosin, we used

(Ns = 36) for chymosin which is double the binding sites of lysozyme.

The inclusion of anion binding to our theory helped us to shift the isoelectric point from

pH 4.6 to pH 4.0. The solubility trends with respect to pHs before and after anion binding

inclusion are shown in Fig. (2.11).
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Figure 2.12: Free energy change of chymosin protein (∆(∆F ) = ∆F (cs) − ∆F (0.1 M))
with respect to salt at pHs 4.6 and 4.8 considering (solid line) and without considering (dashed
line) anion binding. For anion binding Ns = 36 and Eb = −0.3kBT . Anion binding promotes
salting in in these pHs.

Anion binding affects electrostatic interaction by making charge dynamic with

salt concentration

Here, we perform the case study of chymosin’s solubility with and without anion binding.

Figure (2.12) shows the effect of anion binding on the electrostatic interaction. Solid lines in

the plot shows the electrostatic interactions at various pH with respect to the salt concen-

tration after anion binding whereas the dashed line shows the the variation of free energy

in the absence of anion binding in the respective pH. Without anion binding, there is weak
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salt concentration if no binding is happened (left panel). With ion binding, the charges
change with the salt concentration leading to the charge reversal or over–charging (right
panel). Ns = 36, Eb = −0.3kBT .

salting in effect but in the presence of anion binding the salting in effect is enhanced. This

demonstrates that anion binding can enhance the monopole repulsion.

Anion binding to the protein enhances salting in which is true only in certain conditions.

One suitable condition to enhance salting in due to anion binding is that a protein should

be at or below its isoelectric point at the start of binding event. For the enhancement of

the salting in, the net monopole charge should increase due to the ion binding. For this

purpose, at least one of the following mechanisms are essential. If protein has net charge

zero (isoelectric point) before binding then the addition of few anions on the protein surface

make it negatively charged and with the further addition of salt make it more negatively

charged which can lead to the salting in phenomenon. In another case, if protein is initially

negatively charged (above isoelectric point) then its net charge increases due to the anion

binding and the overcharging happens with the further addition of salt. The overcharging

can promote salting in but only at low salt regime. For instance, at high salt concentration

(≈ 0.5), the screening effect of monopole charge is so strong that it can lead to the salting

out even if the monopole charge is increased. In addition to monopole role, if the dipole

moment of protein gets reduced by the binding process then it also enhances salting in.

The effect of anion binding on the net charge of chymosin protein at various pHs are
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Figure 2.14: Charge of chymosin protein vs salt concentration. Figures represent pHs 4.0
and 4.6, 4.8 and 5.0. The red horizontal line in each figure is the monopole charge of protein.
The green line is the number of anion bound on protein and the blue line is the net charge
of protein after anion binding. N = 36, Eb = −0.3kBT .
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shown in Fig.(2.13). Before considering the anion binding, the protein charges are constant

at a pH in entire salt concentration range which is shown in the first graph. At this situation,

the addition of salt has only screening effect on the charge. But, the consideration of anion

binding adds one more additional effect of salt which is to make charges of protein dynamic

with the salt concentration at a pH in addition to its screening effect.

The addition of salt will not always weaken electrostatic interaction if the effect of the

increased protein charge is stronger than the screening effect. In chymosin protein, anion

binding is enhancing salting in effect because at low salt regime, net charges of protein are

increasing in such a way that the screening effect isn’t sufficient to keep up with the increased

charge. Due to the increased electrostatic repulsion with the increase in salt concentration,

the salting in behavior is enhanced. In chymosin protein, the electrostatic repulsion is

increased with salt concentration because of two phenomenons happening together due to

anion binding. The first is the enhanced monopole repulsion and the second is the weakening

dipole attraction.

The binding of ions to the protein upon the addition of salt alters the protein monopole

charge as well as its dipole moment, which can have dramatic effects on the solubility. Since

anions are the binding species, the net positive charge of the protein will decrease with

added salt. This means that the magnitude of the protein charge will increase if the pH

is above the isoelectric point. Fig. 2.14 shows this increase in the protein charge along

with the beginnings of a saturation at high salt as the sites become occupied. Between the

saturation of binding sites and the enhanced screening at high salt, the effects of ion binding

on the solubility are confined to the low salt regime (< 0.3 M). This is demonstrated in

Fig. 2.12 which shows that the inclusion of ion binding dramatically enhances the salting-in

effect below 0.3 M salt. This is because the addition of charge to the protein happens faster

than the enhancement of the screening effect. At higher salt the effect dissipates as the salt

becomes concentrated enough to screen the addition of further charges.
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Effect of ion size on depletion attraction and monopole repulsion

Electrostatic interaction between proteins is important at low salt concentrations. But at

high salt, it becomes weak due to the screening effect of salt. In such high salt concentrations

or crowded environments, the dominant effect originates from non-electrostatic interactions.

One non-electrostatic interaction is the depletion interaction which is attractive in nature

and is one source of salting out. So, as we change salt concentration from low to high or

vice versa then we need to make sure to include both electrostatic and non-electrostatic

interactions.

At high salt concentration, salt ions occupy a significant amount of volume in the system

and the dominant contribution to the free energy comes from the salt-mediated depletion

interaction. The depletion effect arises from the final term of Eq. 2.6. The attraction is

proportional to the salt concentration and to the change in the ion accessible volume upon

aggregation. The accessible volume for different ions is different so the depletion interaction

is ion specific. The depletion effect starts to play a role once the ion excluded volumes

overlap with each other due to the close proximity of proteins. The amount of overlapped

volume for different sized ions for different proteins are shown in table 2.2.

Table 2.2: Change in ion accessible volume per protein in lysozyme and chymosin crystals.

Size of ions (Å) Lysozyme(Å
3
) Chymosin(Å

3
)

1.25 (NH+
4 ) 800 1820

1.50 (Cl−, K+) 1200 3200
1.67 (Na+) 2000 4800

The variation of free energy contributed by the depletion effect with respect to salt

concentration is shown in Fig.(2.15). It becomes more important as the salt concentration

is increased. To show its ion specificity, we have shown its effect for different salts. This

effect also depends on the size of the protein. Here, we have shown this effect for chymosin

and lysozyme protein. Fig.(2.16) shows the importance of depletion interaction at high salt

where the electrostatic effect is minimal.

The size of an ion is correlated with its population in the cavity. To show the effect of
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ion size on the electrostatic interaction, we have choosen the lysozyme as our model protein.

The radius of lysozyme in the spherical model is 16.1Å and the radius of cylindrical cavity

formed in the aggregate state is 6.0Å based on the crystal structure data47. We have studied

lysozyme far from its isoelectric point at pH 4.5 where its net charge is n0 = 10 and dipole

charge is n1 = 7.

Figure (2.17) shows the free energy change with respect to salt concentration. The free

energy change decreases with the increase in salt concentration leading to salting out. In

the left hand side figure, we have changed the size of anions keeping the cation size fixed.

Notice that the bigger anions produce a higher solubility than the smaller ones. In this case,

protein is positively charged (n0 = 10) so anions are counter-ions. The bigger counter-ions

are unfavorable to be accomodated in the crystal cavity. The population of bigger counter-

ions in the cavity makes it difficult to satisfy the neutrality condition in the crystal. So, due

to the exclusion of bigger counter-ions, the resulting solubility is higher. On the other hand,

the smaller counter-ions are easily accomodated in the cavity and make it easier for protein

crystal satisfy the neutrality condition resulting the lower solubility.

In the right hand side figure of figure (2.17), the size of cations are changed by keeping

the common anion size fixed. The size effect of cation is just opposite than anions. In this

case, cations are coions. The use of bigger coions decreases the solubility whereas the smaller

coions increase the solubility.

The crystal cavities are supposed to be filled mostly by counter-ions. But, there are some

co-ions too. So, if we compare two figures then we can see that the size of anions effect is

larger than the cation effect. The size of ions used here are shown in figure. The size of

common cation in left figure and the size of common anion in right figure are equal to 1.5Å.

In both figures, we haven’t considered the depletion interaction so the whole effect is coming

from purely electrostatic origin.
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Figure 2.17: Electrostatic effect on solubility due to various anion and cation size. (Left)
Size of anions are changed. (Right) Size of cations are changed. In both figures, the charge
of protein is taken to be 10 and size of common ion is taken to be 1.50Å, size of protein and
cavity are 16.1Å, and 6.0Å respectively. Note that the anion effect is more pronounced than
cation effect.

Salting out–salting in–salting out trends

In the previous section, we have mentioned the role of anion binding on the salting in

enhancement. The enhancement can be observed at or above isoelectric point at salt con-

centrations where electrostatic interactions are significant. The outcome of anion binding at

low salt can be salting out too if the protein is below isoelectric point. In such case, both

screening effect and anion binding effect are favorable for the salting out. To observe salting

out at low salt, the binding should decrease the net monopole charge before its charge get

reversed. If the magnitude of protein charge gets decreased at low salt and then increases

at high salt after charge reversal then in such cases, the solubility can be non–monotonic

function of salt concentration producing salting out at low salt, salting in at intermediate

salt, and salting out at high salt. The first salting out is the result of reduced monopole

charge plus the screening effect of salt. The follow up salting in at intermediate salt con-

centration is the outcome of increasing charge due to charge reversal and the final salting

out at high salt is the result of the screening effect (if salt concentration isn’t high enough

already to neutralize electrostatic interaction) plus salt mediated depletion interaction. The

multiple non–monotonic solubility of a model protein with lysozyme like parameters at pH

7.8 is shown in Fig.(2.18). The origin of such non–monotonicity in solubility is due to the
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are taken to be 25.

salt dependence of protein net charge. A schemetic diagram showing the variation of protein

charge and its dramatic effect on solubility with respect to salt concentration is presented in

Fig.(2.19).

This kind of non–monotonic behavior in lysozyme has been measured in the second virial

coefficient53, in cloud point temperature54 and in solubility55. Allahyarov et al. (2003)

has performed simulation capturing the discrete charge of protein predicting the salting out

at low salt followed by salting in and salting out. Similarly, Tavares et al (2004) modeled

protein charge by monopole and dipole and showed that the monopole screening happens

in faster rate than the dipole screening resulting salting out behavior at lower salt regime

which is followed by salting in at relatively high salt concentration. Broide et al (1996)

has measured salting out–salting in behavior of lysozyme experimentally with transition

happening at around 1M for various ions but notable effect is seen on ions with valency

more than one. But, the begining of salting in at such high salt concentration (> 1M) cast

doubt that it is caused by the electrostatic effect.

Size of counter-ion competes for depletion and neutralization entropy

For the illustration of ion size effect on solubility at low and high salt concentration, we have

plotted Fig.(2.20). In the left hand side figure, size of anions (counter-ions) are varied from
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Figure 2.19: A schematic diagram demonstrating the effect of anion binding on protein
net charge and solubility.

1.50Å to 2.50Å in the step of 0.5Å keeping cation size constant at 1.50Å. In this plot, we

observe the reversal effect on solubility at low salt and high salt. At low salt, big counter-ions

result the strong monopole repulsion giving large solubility. But, at high salt, we see the

reversal effect on solubility as a outcome of larger depletion attraction caused by the bigger

ions.

In the right hand side figure in Fig.(2.20), size of cations (co-ions) are varied from 1.50Å

to 2.50Å in the step of 0.5Å keeping anion size constant at 1.50Å. Here, we don’t see

solubility reversal with respect to the salt concentration because cations are co-ions and

their size effect at low salt is hard to observe due to the low probability of finding them in

the cavity. Even if co-ions are present, the probability of finding smaller ions is more than

the probability of finding bigger ions. Due to this reason, bigger co-ions are bad to achieve

higher solubility at low salt. But at high salt, they play similar role as counter–ions play

in non-electrostatic interaction leading to salting out with the nonlinear screening behavior

giving way to a linear depletion effect at high salt.

In Fig. (2.21), we have plotted the effect of two anions–floride and iodide on the solubility.

In this plot, floride ion makes protein more soluble at low salt and it makes protein less

soluble at high salt than the iodide ion does. The size of floride and iodide ions are 3.52Å

and 2.16Å51 respectively. The binding sites is taken to be Ns = 18 and Eb = −0.3kBT
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Figure 2.20: Comparison of the effect of excluded volume on counterions and coions. A)
Variation in the counterion size leads to a reversal in the Hofmeister series with large ions
more effective at salting-out at high salt and small ions more effective at low salt. B) Coions
do not show a reversal since the exclusion of large ions and the depletion effect both favor
aggregation. In both panels, the protein charge is n0 = 10, the common ion size is 1.5Å,
and ion binding effects have been removed (Ns = Ebind = 0) to highlight the excluded volume
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Figure 2.21: Reversal in the Hofmeister series for a positively charged protein with n0 = 10.
At low salt, there is a reverse Hofmeister effect dominated by the entropy of neutralizing the
aggregate, whereas at the high salt there is direct Hofmeister effect due to the depletion
interaction. The ion radii are RF = 3.52Å, RI = 2.16Å? , and RNa = 1.67Å. R = 16.1Å,
Rc = 6Å, Ns = 15, Ebind = −0.3kBT . Charge of protein is taken to be 10.
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respectively in all cases to minimize the parameter in the theory though it changes from one

ion to another.

From the effectiveness of these two anions to salt out protein, we see that they follow the

reverse Hofmeister series at low salt regime and follow the direct Hofmesiter series at high

salt concentration. This kind of reverse Hofmeister series at low salt and direct Hofmeister

series at high salt is observed in the experimental measurement of cloud point temperature

of lysozyme52. Previous work has attributed the reversal to the non-electrostatic association

of anions with the protein surface60. However, Boström et al. did not consider the ionic

excluded volume, suggesting that ion-protein association and excluded volume effects both

contribute to the salt concentration dependent reversal.

2.4 Conclusion

We have designed a theoretical model that captures salting in, salting out and Hofmeister

effects. Many effects of salt such as the screening effect, the binding effect, and the depletion

effect have been accounted in the theory. By accounting for the monopole and dipole of

the charge distribution, we have shown when to expect salting in/salting out of protein.

In monopole dominant case (away from the isoelectric point), the screening of electrostatic

interaction gives the salting out result. In this case, we have also found that the majority

of free energy is contributed by the entropic loss of counter ions while being confined in the

cavities of the aggregate as earlier shown by Schmit and Dill7;9. In dipole dominant region

(near the isoelectric point), we found that the screening effect of salt results in salting in. In

this case, the free energy is mostly contributed by the Coulomb energy term because due to

the dipole alignment the salt ions trapped in screening layers escape thereby gaining entropy.

These two results are purely electrostatic and represents the screening effect of salt.

But, the straightforward results mentioned above change when other effects of salt are

accounted for. If anion binding to the protein surface is considered in addition to the

screening effect then the competition of weakening and enhancing of electrostatic interaction

determines the results. At the isoelectric point or above it, anion binding always enhances
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monopole repulsion whereas below the isoelectric point anion binding can reduce monopole

repulsion. The salt dependent charge caused by anion binding strongly effects the electro-

static interaction. The salting in behaviors seen in chymosin protein at low salt regimes are

due to the combined effect of dipole screening and monopole enhancement. The salting out

behavior seen in that protein at high salt following salting in is due to the non–electrostatic

depletion attraction. At high salt, electrostatics are negligible so the non–electrostatic de-

pletion effect plays a dominant role. At high pH, the monopole charge becomes large so we

obtain only salting out behavior which is caused by monopole screening (at low salt) and

depletion effect (at high salt).

To capture the salt specific effect in the theory, we treat salt ions not being point particles

instead they have a finite size and their bare size is strongly effected by the solvation. The

finite size of the ions has many effects that must be accounted for. First, the ion size

correlates with polarizability, which affects the protein-ion interaction35. Secondly, the ion

radius determines its affinity to water, resulting in non-trivial corrections to the effective ion

volume34. This effective size, in turn, determines the entropic cost of trapping ions within

the aggregate and the strength of the salt-mediated depletion attraction.

Our theory is capable of explaining the reversal Hofmeister series seen for counter-ions

at low salt and high salt. According to our model, at low salt regime, big counter–ions

are unfavorable for protein aggregation because they exclude from the aggregate cavities

and make it difficult for the aggregate to satisfy the neutrality condition. The exclusion

of counter–ions from the cavities leads to the increase in solubility. On the other hand, at

high salt, big counter–ions are favorable for protein aggregation because they enhance the

depletion attraction. The enhancement of depletion attraction at high salt decreases protein

solubility. Our theory is also capable of describing the co–ions specific effect seen in lysozyme

protein. We found that big co–ions are favorable for protein aggregation both in low salt

and high salt regimes. The exclusion of big ions makes aggregate easy to satisfy neutrality

condition at low salt and this effect decreases the protein solubility. At high salt, big co–ions

enhance depletion attraction like counter–ions and also decrease solubility. Our theory of

co–ion specific effect compares well with the experimental result obtained by Kautt et al
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(1989) in lysozyme protein at pH 4.5.
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Chapter 3

Kinetics of crystal growth

We have published some contents of this chapter in J. Chem. Phys., 144, 064903 (2016).

3.1 Introduction

Crystallization in a solution is a two step process. In the first step, crystallizing particles

make a nucleus through the process of nucleation. Then in the next step, other crystallizing

particles attach to the nucleus to advance the crystal growth. For the advancement of

growth, it is required to have molecules with greater chemical potential in solution than in

the crystal. This condition is fulfilled when the solution is supersaturated. But, to figure

out the supersaturation suitable for the growth of high quality crystals in a reasonable

time is a challenging task. Too low supersaturation (metastable) isn’t a favorable condition

because it is insufficient to form crystal in reasonable time whereas too high supersaturation

leads to gelation and unwanted aggregation so it is also not preferable. People prefer to

perform crystallization experiments at intermediate supersaturation (labile)1. But, even in

that regime, often crystallization of many small molecules such as polymers and proteins

end up with no crystal due to kinetic traps.

Self–poisoning is one of the kinetic traps that can prevent the crystallization of molecules

from solution2;3. To hamper crystal growth, molecules possessing internal degrees of freedom
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attach to the crystal in such a way that they don’t follow the existing pattern in terms of

orientations and conformations. If crystal growth has encountered self–poisoning then the

growth rate doesn’t increase monotonically with the thermodynamic driving force. Instead,

it shows non–monotonic behavior. At first, growth rate increases with the driving force, then

it drops which is the characteristic of self–poisoning. Finally it increases sharply after it has

passed the disordered precipitation limit.

Schmit and Dill (2012) have shown the adverse effect of non–productive binding of

molecules on the growth rate of protein crystal in their analytical model4. The non–

productive binding of molecule on the crystal growth site doesn’t allow a productive molecule

to advance crystallization. People have also seen self–poisoning in hard rod liquids5, in the

assembly of polymers2;6;7, and proteins8;9. In hard rods, orientational degree of freedom de-

termines crystallization and in polymer and protein both orientational and conformational

degrees of freedom plays role in crystallization.

Here, we use Monte Carlo simulation to study self–poisoning in crystal growth. Anisotropic

and flexible molecules such as proteins are prime candidates for growth poisoning. Crys-

tal growth of anisotropic and flexible molecules look for the correct binding state. Such

molecules may fall into kinetic traps while searching for the crystallographic state. Our

simulation study shows that three minimal requirements are sufficient for the emergence of

self–poisoning in crystal growth. One required ingredient is that a molecule can bind in

two ways to a crystal, namely, crystallographic and non–crystallographic. Both kinds of

binding are energetically attractive but crystallographic way of binding is more energetically

favorable than the non–crystallographic way of binding. The next requirement is that the

energetically favorable binding events are less probable to happen than non–crystallographic

binding events. If these minimal requirements are fulfilled then the crystal growth rate can

be non–monotonic with the thermodynamic force. The growth rate is also closely related to

the quality of the crystal. As the growth rate increases the quality of crystal declines. This

study also shows the guidelines for avoiding or recovering from poisoning. Our simulation

results are consistant with the results obtained from mean field theory of crystal growth13.
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3.2 Monte Carlo simulations

To carry out our simulation, we represent crystallizing molecule in the solution by either blue

or red color. Similar type of molecular representations are used in previous works10–12. Blue

colored particles represent the crystallographic conformation and orientation of a molecule

whereas the red color represents the non–crystallographic conformation and/or orientation of

the same molecule. We assume that blue and red particles are in p/(1− p) proportion in the

solution and p is less than 1/2, which means that a molecule possessing a non-crystallographic

state is more probable than the crystallographic one. The interaction energy between these

particles is attractive but the strength of the interaction depends on the type of particles

involving in the interaction. For example, if the interaction is between crystallographic

particles (blue–blue) then it is stronger. Otherwise (blue–red or red–red), the interaction

energy is weak. We have shown the representation and interaction energy between particles

in Fig.(3.1).

  

Crystallographic state Non-crystallographic state

Strong attraction Weak attraction

Weak attractionWeak attraction

Figure 3.1: Cartoon representation of crystallographic and non–crystallographic state. In-
teraction energies between crystallographic states are strong and all remaining interactions
are weak.

We use lattice Monte Carlo simulations to see the growth of structure from two component

system. Here, the simulation consists of a 3D cubic lattice with system dimensions 15×15×

100. We apply periodic boundary conditions along the two short directions. At each time

step we choose a site randomly. If the choosen site is empty then we propose with probability
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(p) to fill it by blue particle and with probability (1−p) to fill by red particle. If the randomly

selected site is occupied with a blue or red particle, we attempt to remove that particle and

make site empty. We don’t allow the interchange between blue and red particles. Also,

we don’t allow the change of state of any lattice site that has been surrounded by 6 nearest

neighbours particles. We accept the move according to the following Metropolis probabilities.

Here, W represents the empty site, B and R represent the blue and red particles, respectively.

W → B : min(1, p−1e−β∆E)

B → W : min(1, pe−β∆E)

W → R : min(1, (1− p)−1e−β∆E)

R→ W : min(1, (1− p)e−β∆E)

Where, β is the reciprocal of thermal energy and ∆E is the energy change due to the insertion

or removal of particle in a site. To evaluate the energy change, it is required to identify the

status of nearest neighbour site whether it is occupied or not and if it is occupied then it

is further required to know whether the particle is blue or red. We use the lattice energy

function to calculate the energy change as follows:

E =
∑
<i,j>

εC(i)C(j) +
∑
i

µC(i) (3.1)

Where, εC(i)C(j) is the interaction energy between colors C(i) and C(j) and the first sum

in equation (3.1) runs over all distinct nearest neighbours to find out the total interaction

energy. The second sum in equation (3.1) runs over all sites. The chemical potential µC(i)

is µkBT , −kBT ln p and −kBT ln(1− p) for W , B and R respectively. Note that, the blue–

blue interaction is strong and blue–red or red–red interaction is weak and these pairwise

interaction energies are represented by following expression.
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εBB = −εbkBT (3.2)

εBR = εRB = εRR = −εdkBT (3.3)

If the pairwise interaction energies are turned off then the probability of a given site to be

empty, blue and red is

pW =
1

(1 + eµ)
(3.4)

pB =
p

(1 + e−µ)
(3.5)

pR =
(1− p)

(1 + e−µ)
(3.6)

respectively.

To begin simulation, we put three complete layers of blue particles at one end of the

simulation box. This eliminates the need for spontaneous nucleation. Then, we choose the

interaction energies and p parameter and let simulation happen for fixed time. A layer in

the box is considered to be grown only if at least 50% of sites in that layer are occupied by

blue or red particles. We measure growth rate and composition of the structure at different

values of the parameter c = eµ.

3.3 Results

3.3.1 Growth rate with respect to driving force

Fig.(3.2) shows simulation snapshots taken at the end of 5×109 MC sweeps for different values

of the driving force (concentration). The energy parameters for crystallographic binding and

non–crystallographic binding are Eb = −3.5kBT and Ed = −1.4kBT respectively, which

suggests that crystallographic binding is energetically favorable. We have selected the p

parameter to be 10−2 which means the probability of finding the correct binding state for
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crystallization is 1%. The driving force has been increased from left to right. Low value of

concentration means molecules approach the crystal for binding at a slow rate. This also

means they get enough time to unbind from the crystal to remove defects. On the other

hand, high concentration means molecules come at faster rate for binding so that the bound

molecules don’t have enough time for unbinding. From the unequal height of structure

shown in figure, we can say that the growth rate of crystal is non–monotonic function of

concentration. Also, it can be observed that the color of the structure is turning from blue

to red as we go from left to right. The more blue color in the structure, the higher the purity

of crystal and as the population of red color increases the purity of the crystal declines. The

growth rate first increases with concentration but this trend doesn’t last long because the

growth rate start to decrease with the further increase in concentration. This is the signature

of self–poisoning. Self–poisoning happens because the crystal becomes less pure which means

the effective driving force for the growth decreases due to the fact that interaction energy is

weak. This trend is also not a permanent because the growth rate increases sharply with the

further increase in concentration which is the indication that the driving force has surpassed

the disordered precipitation limit.

In left hand side figure in Fig.(3.3), the growth rate with respect to concentration for

different values of weak interaction energies is shown. The strong interaction energy and

p parameters are kept constant at 3.5kBT and 10−2 respectively. The weak interaction

energies are shown in the plot legends. The growth rate is measured by the number of

layers added to the aggregate at the end of 5 × 109 MC sweeps. We consider a layer to

have been added if greater than 50% of the sites are occupied by red or blue particles.

Here, we have normalized the layers grown by the total number of layers in the simulation

box. At concentrations just above the blue solubility limit the aggregate grows linearly

with increasing concentration. At higher concentrations the growth rate reaches a maximum

and then drops sharply. After crossing the red solubility limit, the growth rate increases

fast. The location of red solubility limit and self–poisoning concentration strongly relies

on the value of weak interaction energy such that both of them shift towards lower value

of concentration if the non–crystallographic binding energy is increased. This makes sense
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Figure 3.2: Snapshots at the end of equal simulation time for a range of concentration
(driving force). The concentration is increasing from left to right. The height of structure
first increases and then decreases with concentration and finally it increases beyond the pre-
cipitation line. Meanwhile, the quality of structure changes continuously with more blue color
at low driving force and the color turns in to more red as the driving force increases. Growth
rate shows the non–monotonic behavior with concentration. Parameters are Eb = 3.5kBT ,
Ed = 1.4kBT and p = 10−2. From left to right, values of c are 0.008, 0.0083, 0.009875,
0.0119, 0.014225, 0.0149, 0.01512
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because the increased value of non–crystallographic energy reaches close to the value of

crystallographic energy so that it is expected to reduce the crystal quality and the gap

between the blue and red solubility line. To investigate the effect of the strong interaction

energy to the onset of blue and red growth, we have plotted right hand side figure in Fig.(3.3)

keeping Ed = 1.4 and p = 0.01 parameter fixed. In this plot, we don’t see the shift of

concentrations associated with the self–poisoning and red solubility limit but there is slight

increase in the onset of blue growth when the crystallographic interaction energy is decreased.

From these observation, we can expect that the energy difference between crystallographic

and non–crystallographic interactions determine the range of concentration in which crystal

growth can happen. Generally, the more the energy difference between these two ways of

binding, the longer the range of concentration suitable for high quality crystal growth.

The simulation doesn’t predict an arrested concentration regime where the growth rate is

zero as predicted a the mean field theory developed by Whitelam and Schmit13. The mean

field result representing growth rate and the quality of crystal is shown in Fig.(3.4). However,

the simulation confirms the qualitative prediction that the growth rate is a non-monotonic

function of the concentration. The growth rate in the simulation doesn’t vanish because it

satisfies detailed balance and must evolve to equilibrium at long times. We have shown the

evolution of the structure grown at red solubility region towards the equilibrium with time

in Fig.(3.5).

We have also measured the crystal quality by an order parameter (m) which is shown

in Fig.(3.6). It is measured by taking the difference between total blue particles and red

particles in the structure grown at the end of simulation time. We have normalized it by the

total number of particles in the structure. So, the positive value indicates that the structure

is mostly built by blue particles and the negative value means the structure is dominated by

red particles. As we can see in the figure, the crystal quality is high (m value closer to 1)

at low concentration but it declines as the concentration is increased. The decline in crystal

quality works as a driving force for poisoning because unbinding of molecules is favorable

due to the weak interaction energy.
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Figure 3.3: (Left): Normalized growth rate vs concentration at Eb = 3.5kBT , p = 0.01
and different Ed. Growth rate shows non–monotonic behavior with concentration at different
values of weak interaction energies. The onset of blue growth barely depends on the weak
interaction energy but the concentrations associated with both self–poisoning and onset of red
growth show strong dependence on it by shifting their locations towards low concentrations
with the increase in the interaction energy (Ed). (Right): Growth rate vs concentration at
Ed = 1.4kBT , p = 0.01 and different strong interaction energy. Growth rate shows non–
monotonic behavior with concentration but the position change of self–poisoning and red
precipitation line are hard to notice but the onset of blue growth increases with the decrease
in interaction energy.
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Figure 3.4: Prediction of a dynamic mean field theory13 for self–poisoning. It shows that the
growth rate vanishes as it is suffered by the poisoning (Left). It also shows that the quality of
the crystal deteriorates with the driving force. Different colors represent the binding energy
of a molecule in non–crystallographic manner.
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Figure 3.5: Structure eventually evolves to equilibrium because simulation satisfies the de-
tailed balance. Here, we show snapshots at increasing time from left to right and this simula-
tion is done in the precipitation regime (c = 0.0274). Eb = 3.5kBT , p = 0.01 and Ed = 1.2.
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Figure 3.6: Quality of structure vs concentration at Eb = 3.5kBT , p = 0.01 and different
Ed. The value of m closer to 1 suggest that the quality of crystal is better (blue phase) while
the value closer to −1 means crystal is enriched by defects (red phase). The value around 0
indicates the mixed state which is also not a good crystal.

3.3.2 Growth of blue and red particles with respect to driving

force

In the growth rate plot shown in Fig.(3.3), the contribution of both blue and red particles

are included so it is impossible to identify how these blue and red particles are growing with

the concentration. To see the growth of blue and red particles, we have plotted Fig.(3.7). In

Fig.(3.7), we see that the blue particles grow roughly linearly with the concentration unless

their growth is poisoned. The reason behind the poisoning of blue growth is the growth

of red particles. Once the blue growth is hit by poisoning, red particles grow so fast that

blue growth can’t recover. This figure also clearly shows how the red solubility line shifts

towards lower concentration with the increase in their interaction energy. It shifts towards

low concentration because the bound molecules are less probable to unbind due to increased

energy and other molecules are coming in faster rate for binding. In some of the simulations

(lower values of weak interaction energy) there is a significant increase in the blue particles

at concentrations just above the red solubility limit. This is a result of annealing occurring

within the aggregate in the neighborhood of voids and may not be physical for certain systems

(i.e. protein crystals). These void are less common at higher concentrations and we observe
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Figure 3.7: Growth of blue (Left) and red (Right) particles vs concentration at Eb = 3.5kBT ,
p = 0.01 and different Ed. Blue particles grows linearly at low concentration while red
particles grows negligibly. Once red particles start to grow then the growth of blue particles
declines resulting the crystal growth self–poisoning. After poisoning, only red particles grow
which is just the precipitation not a useful crystal.

a correspondingly lower amount of annealing.

In Fig.(3.8), we have shown the number of snapshots taken at different time during

simulation. Snapshots are taken at concentration c = 0.0149 in which growth was poisoned

for energy parameters Eb = 3.5kBT and Ed = 1.4. We see that the growth front of all

structures are occupied by the red molecules which are unstable and fluctuates with time.

The fluctuation of molecules with time is also shown in Fig.(3.9). The blue growth is free

from fluctuation because of the strong binding energy. Blue particles are slowly growing

from lower end of structure which shows the sign of structure evolving towards equilibrium.

3.4 Conclusion

With the help of computer simulation, we have presented the minimal requirements for the

crystal growth self–poisoning and none of the requirements needed molecular details. The

minimal requirements include the binding energy of molecule and its probability such that a

molecule (monomer of a crystal) can bind either in crystallographic or non–crystallographic

way and these ways of binding can happen with sufficiently unequal probability. The crys-

tallographic way of binding should be energetically stronger than the non–crystallographic
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Figure 3.8: Snapshots to represent the fluctuation of red particles at poisoned concentration.
Eb = 3.5kBT , p = 0.01, c = 0.0149 and Ed = 1.4. The red particles are surrounded by empty
sites so they are unstable. The population of blue particles increases with time and there are
fewer empty sites in their neighborhood. Blue particles are slowly growing from lower end of
structure which shows the sign of structure evolving towards equilibrium.

way of binding but the probability of crystallographic binding is much smaller than the

probability of non–crystallographic binding. If these three requirements are fulfilled then

crystal growth will suffer from self–poisoning and the growth becomes a non–monotonic

function of the thermodynamic driving force. Self–poisoning is seen in many molecular

systems2;5;8;9 because these systems satisfy the minimal requirements presented here. For

instance, protein crystallization is a challenging task for crystallographers and would benefit

from rational guidance4;15–19. Our simulation parameters suggest that proteins are strong

candidates to suffer from self–poisoning during their crystallization because they have much

smaller p parameter than other small rigid molecules. The low value of p parameter means

that the rate of attachment of non–crystallographic molecule increases and it also increases

the wait time for the growth of thermodynamically stable crystals. Proteins are anisotropic

and conformationally flexible biomolecules so their non–crystallographic modes of binding

dominate their crystallographic mode of binding by a factor of order of 104 or 105 4;8;14. In
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Figure 3.9: Blue and red particle fluctuation vs time at poisoned concentration (c = 0.0149).
Eb = 3.5kBT , p = 0.01 and Ed = 1.4. Blue particles varies with time monotonically and red
particles show the fluctuation with time.

protein crystallization experiments, people frequently don’t achieve a new phase such that a

solution remains homogeneous at the end of experiment20. This failure may be due to the

self–poisoning phenomenon.

The present model can also suggest the ways of avoiding self–poisoning. The small change

in parameters can be used as a technique to recover crystal growth. For instance, Fig.(3.3)

shows the growth rates suffering from poisoning for varying values of interaction energies. To

avoid poisoning, one could change the driving force of crystallization or change the solution

conditions, for instance, by adding salt to change the interaction energy of molecules so that

the existing location of poisoning can be relocated or permanantly disappeared.

3.5 Bibliography
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Chapter 4

Conclusion and future work

4.1 Conclusion

Protein–protein interactions are a subject of interest due for multiple reasons. The vary-

ing assembly products such as protein crystals and protein aggregates are the outcomes of

protein–protein interaction. Crystals are required in x–ray crystallography for structural

study. Protein aggregates often cause diseases such as Alzheimer’s, Parkinson’s, eye lens

cataracts etc. The outcomes of protein assembly change significantly when the interaction

strength are modified. For instances, proteins dissolve or precipitate in solution depending

on the interaction strength. So, to control outcomes it is necessary to know the role of

different parameters on protein–protein interaction.

Using analytical theory and computer simulation, we have studied the kinetic and equilib-

rium factors in protein crystal growth. Since proteins are anisotropic and flexible molecules,

their crystal growth is a delicate process. Supersaturated solution is required for crystal

growth but the supersaturation of solution doesn’t assure protein crystallization because

there must also be accessible kinetic pathways to the correct binding state. Additionally,

proteins are often part of a heterogeneous systems, (for instance, the cell), so the interac-

tion between proteins not only depend on themselves but also it depends on neighbouring

molecules and the solution conditions. There could be so many interactions happening in
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the system concurrently such as electrostatic, hydrophobic, hydrogen bonding, salt bridg-

ing, van der Waals and they all make some fraction of contribution to the net interaction.

In our equilibrium study, we emphasized the role of pH, salt concentration and its type

in the protein–protein interaction by developing an analytical theory. For the kinetics, we

used computer simulation to identify the associated difficulties during the course of crystal

growth.

Salting in/salting out and the Hofmeister effect are familiar words in this field for over a

century. They describe the effect of salt on protein solubility. They are measured experimen-

tally but understood very little theoretically. Protein solubility is a thermodynamic quantity

that measures the strength of interaction in many body system. Our main ingredient of cap-

turing salting in/salting out and Hofmeister effect is salt entropy1;2. In their isotropic model,

Schmit et al (2010, 2011) accounted for monopole charge and designed an analytical theory

to model the salting out of proteins. In their model, they demonstrated that the screening

of monopole repulsion is the cause for non–linear salting out. More importantly, their study

also demonstrated the importance of salt entropy such that the free energy associated with

the protein aggregate or crystal is dominated by the entropy of mobile salt ions.

Knowing that solubility increases with salt concentration in salting in phenomenon, we

primarily modeled it accounting the dipole term in the charge distribution which was absent

in the Refs.1;2. The idea to account for the dipole in describing salting in is inspired by

Tanford (1966) who qualitatively proposed that salting in is resulted by the screening of

dipole attraction3. The reality with dipole is that it becomes noticeable only if monopole

charge is weak. It happens at or close to isoelectric point of protein where the average charge

of protein is zero or small. In such condition the screening of dipole attraction by adding

salt to the solution make protein–protein interaction less attractive giving salting in. Salting

in is unfavorable for protein aggregation. One way to avoid possible protein aggregation is

to shift solution pH towards the isoelectric point of protein. This explanation is valid for

proteins which show salting in behavior near their isoelectric point at low salt regime. There

are number of proteins showing salting in behavior near their isoelectric point3–6.

Often, salting in is observed at low salt and it is followed by salting out as the salt
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concentration increases. In salting out, the protein solubility decreases with the increase in

salt concentration. It is observed in number of different solution conditions. For instances,

if solution pH is away from the isoelectric point then the dipole interaction is negligible

compared to monopole repulsion so the addition of salt screens electrostatics resulting in

salting out. This example is true only when salt concentration isn’t high enough to screen

all the electrostatic interaction. Once the electrostatic interaction is highly screened at high

salt then the salt mediated hydrophobic interaction could cause the salting out. This could

be true in high salt without depending on the pH of the solution. The Cohn emperical

formula describes salting out, but this formula predicts only the linear solubility7. Many

experiments have measured the non–linear solubility in number of protein which can’t be

described by using the Cohn formula1;8;9. The non–linear salting out seen at electrostatic

regime of salt concentration has been modeled by Schmit et al. using the Poisson Boltzmann

equation by accounting the screening of monopole repulsion1 and our model has generalized

and expanded this approach.

We accounted for effect of anion binding on the protein–protein interaction in addition

to the screening effect. A number of experiments have shown that anions are the primary

binding species to proteins regardless of the charge state of protein10–12. These experiments

have also revealed how the charge of the protein changes with the number of bound ions.

Keeping this effect in our model, we evaluated the number of bound anions to the protein

using a grand cannonical partition function and used it to calculate the effective charge and

dipole moment. The inclusion of anion binding in the theory has multiple effects on the

solubility of protein depending on the solution conditions such as pH and salt concentration.

Near the isoelectric point or above it, anion binding causes salting in enhancement by in-

creasing the monopole repulsion whereas below from isoelectric point, it causes salting out

by reducing the monopole repulsion. Of course, the number of anions binding to the protein

surface depends on the binding affinity, binding sites available, and salt concentration.

We have also accounted for the depletion effect. This effect plays significant role once

the salt particles occupy a significant amount of volume in the system13;14. This is the case

at high concentration and in such high salt almost all the electrostatic effect gets screened.
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In our model of chymosin protein, the salting out observed following the salting in at high

salt concentration (≈ 0.3M) was caused by the depletion interaction. In the same protein,

we observed only salting out at pH 6 which was due to the combined effect of screening

monopole repulsion and depletion interaction but the dominant cause of that salting out

came from the screening effect of salt. pH 6 is far enough from the isoelectric point that the

dipole effect is unnoticeable. We modeled this effect by considering the excluded volume for

finite size of salt in the solution state and in the aggregate state. This interaction depends

on the identity of both protein and salt as well as on the concentration of salt. As the

salt concentration increased we observed more salting out behavior and the non–linearity

of salting out observed at low salt regime turned to a linear behavior because of the weak

electrostatic effect at such high salt.

Our model captured salt specific effects popularly known as the Hofmeister effect. We

included Coulomb energy, salt entropy and ion–protein interaction terms in our master free

energy equation. Besides the ion–protein interaction term, the entropic term also contained

salt specific effects. For this purpose, we treated salt ions as a finite size entities such that

the size of one ion differs from the size of another ion. We took hydrated ion size to include

the ion–water interaction implicitly. Note that, the salt specific effect can’t be explained

solely by using DLV O theory because it treats ions with equal valency as the same. Our

model of protein aggregate required to confine salt ions in the aggregate cavities to make the

whole aggregate electrically neutral. The ion accessible volume in aggregate cavity differs

from one ion to another because salt ions have different hydrated radii.

Ion size has immediate impact on entropy and hence on protein solubility in entire range

of salt concentration. At low salt, entropy of salt ions affects electrostatic interactions and

at high salt, entropy affects depletion interaction. Counter–ions size shows opposite effect

on protein solubility at low salt and high salt producing a reversal in the Hofmeister series.

Bigger counter–ions make the protein more soluble at low salt than smaller counter–ions

do. On the other hand, at high salt, smaller counter–ions are less favorable for protein

aggregation than bigger counter–ions. This means in order to precipitate protein at low salt

(below ≈ 1M), it is wise to use counter–ions which have a small hydrated radii so that they
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can easily fit to the aggregate cavity and make it easier for the protein aggregate to satisfy

the neutrality condition. But, at high salt (above ≈ 1M), it is better to select counter–ions

with high charge density (so their hydrated size is large) so that they enhance depletion

attraction and force proteins to precipitate. But, co–ions size have similar effect on protein

solubility in entire salt concentration. Big hydrated co–ions are always favorable for protein

aggregation. At low salt, their exclusion from the cavity make aggregate simple to attain

neutrality condition as a result of which solubility gets reduced and at high salt, they enhance

depletion attraction as done by big counter–ions which also decreases solubility.

To sum up the equilibrium study of crystal growth, our model successfully described the

salting in/salting out and the Hofmeister effect. The salting in effect observed in chymosin

protein near its isoelectric point was due to the combined effect of dipole screening and

monopole enhancement and the follow up salting out effect was due to the enhanced depletion

effect. The pure salting out observed in the same protein far from isoelectric point was due

to the combination of monopole screening and salt mediated depletion attraction. The salt

specific effect seen in salting out of lysozyme protein was the combined effect come from the

exclusion of bigger ions from the aggregate and the enhanced salt specific depletion effect.

In existing studies of salt specific effects people considered ion–protein dispersion interaction

(Ninham et al)15, image charge effect (Zhou et al)16, hydrophobic effect (Levin et al)17 as

a source of specificity but the contribution of salt specific ion entropy has been neglected.

But, these existing studies dealt mostly with two body interactions, such as the second virial

coefficient so the neglect of ion entropy might have been a reasonable approximation. But,

when dealing with the protein aggregates, entropy must not be ignored because it plays the

dominant role in the free energy. Further, entropy is a source of salt specific interaction. So,

here, we emphasize that if we could design a unified theory by including existing salt specific

term plus salt entropy term then it will be more accurate and will be valuable contribution

to this field.

The kinetics of crystal growth is difficult especially for large and fragile molecules like

proteins. Crystal growth requires a search for the rare correct binding event. For an exam-

ple, in protein crystal growth, the probability of a correct binding event is very low (10−4
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or 10−5)18. Due to the rare nature of correct binding events, kinetics often favor disordered

assemblies because the probability of molecules to bind in incorrect ways is high. Alterna-

tively, kinetic factors could result in no assembly at all. One reason behind the last type of

possibility is a phenomenon called self–poisoning. If crystal growth is suffered by the self–

poisoning then the growth rate shows the non–monotonic behavior with the thermodynamic

driving force. Our kinetic study showed that the crystal growth from molecules possessing

many orientational and conformational degree of freedoms is vulnerable to be suffered by

self–poisoning.

We used Monte Carlo simulation and predicted minimal physical requirements for crys-

tal growth self–poisoning. We found that self–poisoning phenomenon required only three

ingredients to happen. In crystal growth, the binding energy should be realized in two ways

such as if a molecule binds in a crystallographic way then the associated binding energy

should be stronger whereas if it binds in non–crystallographic way then the energy of inter-

action should be weaker. Further, these two binding energies should come with sufficiently

unequal probability such that the non–crystallographic binding is more probable than crys-

tallographic binding. In our simulations, we used 10−2 as a probability of events associated

with crystallographic binding and we selected different values of binding energies. By using

these conditions, we showed that the growth rate suffered from self–poisoning. These mini-

mal requirements can easily be satisfied by proteins and other flexible polymers so the lack

of crystal growth from such molecules in experiments could be due to the self–poisoning.

Our work also showed how the small changes in the energy parameters can be used to avoid

self–poisoning or to recover crystal growth. Experimentally, binding parameters could be

increased or decreased by changing the pH of the solution, salt concentration or salt type

etc.

In our studies, we used simple coarse–grained model to capture the important interac-

tions. In reality, atomic details are important in the interactions. However, high resolution

models are impossible to solve analytically. All atom simulations are the alternative but

such simulations are computationally expensive becasue of the inclusion of the huge number

of atoms in the system. In addition, in all atom simulation model it is difficult to figure
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out the role of different interactions in certain phenomenon unlike in analytical model where

we can easily realize the consequence of changing certain parameters. Existing biomolecular

simulation packages such as CHARMM are designed to study all atom interactions but they

don’t account the entropic effect of salt. This means they are ignoring this important effect

in their force field because previous study and our current study have proven that the en-

tropy of salt plays major role in protein–protein interaction particularly while forming the

aggregates. So, our claim is that such simple analytical model should get more attention

while designing the higher resolution force fields needed for capturing complex biological

systems.

4.2 Future direction

Our current model compared well with the experiments6 showing the non–monotonic solubil-

ity with salt concentration at number of pHs. In this work, non–monotonicity of solubility

means the salting in behavior at low salt was followed by salting out at high salt. Fur-

ther, the current model captured the monotonic experimental results quantitatively which

included only salting out in entire salt concentration. For example, salting out of chymosin6

at pH 6.0, salt specific salting out of lysozyme8 at pH 4.5. But, there are some unique

experimental observations in which salting out at low salt is followed by salting in at high

salt such as the experiments of Broide et al (1996)19 and Ries–Kautt et al (2002)20. In

these experiments, the observed salting in lies outside the range of concentration in which

electrostatic is believed to be significant (≈ 1M). These experiments were performed far

from isoelectric point of proteins which means monopole interaction is playing a dominant

role. Furthermore, the clear salting out–salting in behavior were seen when one of the salt

ion was not monovalent. We can observe salting out followed by salting in below (1M) in

lysozyme protein by using our current model but for this purpose we have to increase our

binding site parameter Ns = 18 by almost 50%. Note that, we were using only salts made

by monovalent ions in the current model. So, we believe that a new model can be developed

in future for higher valency ions keeping the heart of the current model the same to capture
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salting out–salting in quantitatively.

There are also many experiments measuring the salt specific cloud point19;21 of proteins

and these measurements have shown the reversal Hofmeister series at low salt and at high salt.

Our current model measured the reversal Hofmeister series of protein solubility qualitatively.

This model showed that the volume fraction of solvent in the protein aggregate can shift

the monopole and dipole dominant region significantly. The solvent volume fraction is a key

parameter that is connected with the cloud point of proteins. So, in future, we can test our

current model by comparing with the experimental results for the cloud point temperature.

4.3 Bibliography
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Appendix A

Solution state calculation

A.1 Electric potential inside and outside the protein

The linearized Poisson Boltzmann equation is,

∇2Φ =
2e2c0

εkBT
Φ

= κ2Φ (A.1)

Where, κ2 = 2e2c0
εkBT

and κ−1 =
√

εkBT
2e2c0

is the Debye screening length.

(∇2) term in spherical polar coordinate with azimuthal symmetry can be written as,

∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) (A.2)

Using equation (A.2), equation (A.1) can be written as,

∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+

cos θ

r2 sin θ

∂Φ

∂θ
− κ2Φ = 0 (A.3)

The electric potential (Φ) is space(r) and angle dependent(θ). Using the separation of vari-

ables, we can write,
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Φ(r, θ) = R(r)Θ(θ) (A.4)

using (A.4), equation (A.3) becomes,

r2

R

d2R

dr2
+

2r

R

dR

dr
− κ2r2 +

1

Θ

d2Θ

dθ2
+

cos θ

sin θ

dΘ

dθ
= 0 (A.5)

Let us solve angular part first,

Let,

1

Θ

d2Θ

dθ2
+

1

Θ

cos θ

sin θ

dΘ

dθ
= −l(l + 1)

d

dθ
(sin θ

dΘ

dθ
) + l(l + 1) sin θΘ = 0 (A.6)

Where l is the constant of separation.

To convert equation (A.6) in to standard Legendre polynomial, let us change variables,

x = cos θ

dx = − sin θdθ

d

dθ
= − sin θ

d

dx
(A.7)

Also,

Θ(θ) = Y (x) (A.8)

Using equations (A.7) and (A.8) in equation (A.6) and solving, we get,

(1− x2)
d2Y

dx2
− 2x

dY

dx
+ l(l + 1)Y = 0 (A.9)

The solution of (A.9) is the Legendre polynomial of order l and its solution is [Arfken and
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Weber].

Y (x) = Θ(θ) =
∑
l

Pl(cos θ) (A.10)

It gives the solution of angular part. To get the solution of radial part, we go back to equa-

tion (A.5),

r2

R

d2R

dr2
+

2r

R

dR

dr
− κ2r2 − l(l + 1) = 0 (A.11)

d2R

d2r
+

2

r

dR

dr
− (κ2 +

l(l + 1)

r2
)R = 0 (A.12)

let,

R(r) =
u(r)√
κr

(A.13)

Now, the equation (A.12), with the help of equation (A.13) becomes,

r2d
2u

dr2
+ r

du

dr
− (κ2r2 + (l +

1

2
)2)u(r) = 0 (A.14)

Equation (A.14) is the modified Bessel equation [Arfken and Weber] and its solution is

u(r) = AIl+ 1
2
(κr) +BKl+ 1

2
(κr) (A.15)

Using equation (A.15) in equation (A.13) we get,

R(r) = Alil(κr) +Blkl(κr) (A.16)

where Al and Bl are constants and

il(κr) =

√
π

2

Il+ 1
2
(κr)
√
κr

(A.17)

kl(κr) =

√
2

π

Kl+ 1
2
(κr)

√
κr

(A.18)
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are spherical modified Bessel functions first and second kind respectively [Arfken and We-

ber].

Now, for the complete solution, we use equations (A.10) and (A.16) in equation (A.4).

Φ(r, θ) =
∑
l

[Alil(κr) +Blkl(κr)]Pl(cos θ) (A.19)

Equation (A.19) is the potential due to a charged sphere. According to the properties of

spherical Bessel function, its first part, i.e. il(κr) which is modified spherical bessel function

of first kind, diverges at infinity so we drop it from the potential expression and we keep

only the second kind of modified spherical bessel function (kl(κr)) in the expression. The

electric potential containing second kind of modified spherical bessel function is,

Φout(r, θ) =
∑
l

Blkl(κr)Pl(cos θ) (A.20)

= B0k0(κr) +B1k1(κr) cos θ (A.21)

To calculate the electric potential inside protein, we use Laplace equation which is,

∇2Φin = 0 (A.22)

The solution of equation (A.22) is

Φin =
∑
l

Alr
lPl(cos θ)

= A0 + A1r cos θ (A.23)

Now, at the surface of the protein (boundary condition),

Φin | (r = R) = Φout | (r = R)

A0 + A1R cos θ = B0k0(κR) +B1k1(κR) cos θ (A.24)
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Equating the coefficients we get,

A0 = B0k0(κR) (A.25)

and

B1 =
A1R

k1(κR)
(A.26)

Another boundary condition is,

εwE2 − εpE1 = σ0 + σ1 cos θ (A.27)

Where,

E2 = −∂Φout

∂r
| (r = R)

= −B0k
′
0(κR)−B1k

′
1(κR) cos θ (A.28)

Also,

E1 = −∂Φin

∂r
| (r = R)

= −A1 cos θ (A.29)

Using equations (A.28) and (A.29), equation (A.27) becomes,

εw(−B0k
′
0(κR)−B1k

′
1(κR) cos θ)

−εp(−A1 cos θ)

= σ0 + σ1 cos θ (A.30)

By solving equation (A.30), we will get the coefficients,

B0 = − σ0

εwk′0(κR)
(A.31)
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A0 = −σ0k0(κR)

εwk′0(κR)
(A.32)

A1 =
σ1

[εp − εwRk′1(κR)

k1(κR)
]

(A.33)

and

B1 =
σ1R

k1(κR)[εp − εwRk′1(κR)

k1(κR)
]

(A.34)

Now, equation (A.23) becomes,

Φin = −σ0k0(κR)

εwk′0(κR)
+

σ1

[εp − εwRk′1(κR)

k1(κR)
]
r cos θ (A.35)

We can replace modified spherical bessel function of second kind kl by [Arfken and Weber],

kl(x) = (−1)lxl(
1

x

d

dx
)l
e−x

x
(A.36)

Here, κr is replaced by x for simplicity.

For l = 0,

k0(κr) =
e−κr

κr
(A.37)

k′0(κR) = −e
−κR

κR2
(1 + κR) (A.38)

k0(κr)

k′0(κR)
= −R

2

r

e−κ(r−R)

(1 + κR)
(A.39)

Similarly, for l = 1,

k1(κr) =
e−κr

κ2r2
(1 + κr) (A.40)

k′1(κR) = − e
−κR

κ2R3
(2 + 2κR + κ2R2) (A.41)

k1(κr)

k′1(κR)
= −R

3

r2

e−κ(r−R)(1 + κr)

(2 + 2κR + κ2R2)
(A.42)
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Now, using
k0(κR)

k′0(κR)
= − R

(1 + κR)
(A.43)

and
k′1(κR)

k1(κR)
= −2 + 2κR + κ2R2

R(1 + κR)
(A.44)

equation (A.35) becomes,

Φin =
σ0R

εw(1 + κR)
+

σ1r cos θ

[εp + εw
(2+2κR+κ2R2)

(1+κR)
]

(A.45)

This equation (A.45) gives the potential inside the protein.

Now, equation (A.21) becomes,

Φout = − σ0k0(κr)

εwk′0(κR)
+

σ1Rk1(κr) cos θ

k1(κR)[εp − εwRk′1(κR)

k1(κR)
]

(A.46)

Using
k0(κr)

k′0(κR)
= −R

2

r

exp[−κ(r −R)]

(1 + κR)
(A.47)

k1(κr)

k1(κR)
=
R2

r2

(1 + κr)

(1 + κR)
exp[−κ(r −R)] (A.48)

and
k′1(κr)

k1(κR)
= −(2 + 2κR + κ2R2)

R(1 + κR)
(A.49)

equation (A.46) becomes,

Φout =
σ0

εw

R2

r

exp[−κ(r −R)]

(1 + κR)

+
σ1R cos θ

[εp + εw
(2+2κR+κ2R2)

(1+κR)
]
×

R2

r2

(1 + κr)

(1 + κR)
exp[−κ(r −R)] (A.50)

This gives the electric potential distribution in the salt solution.
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A.2 Ion binding to the protein

We account for only anion binding event. We do this using a grand cannonical partition

function.

Z =
∑
nb

N !

(N − nb)!nb!
exp[−ES + nb(µ− Eb)] (A.51)

where, N , nb, ES , µ, Eb are number of binding sites in protein, number of anion bound in

protein, electrostatic energy between protein and anion that bind to the protein, chemical

potential and binding energy of anion respectively. The electrostatic potential due to a

spherically modeled protein on its surface is given by equation (A.52).

Φr=R =
n0e

4πεw(κR + 1)R

+
n1e

4πεwR

(κR + 1) cos θ

(2 + 2κR + κ2R2 + εp
εw

(κR + 1))
. (A.52)

In short,

Φr=R = An0 + ABn1

where,

A =
e

4πεw(κR + 1)R

B =
(κR + 1)2 cos θ

2 + 2κR + κ2R2 + εp
εw

(κR + 1)

The electrostatic energy between protein and anion that bind to the protein is,

ES =

nb−1∑
N ′=0

[A(n0 −N ′) + AB(n1 −N ′)](−e) (A.53)

For simplicity, let us insert e into A then

ES =

nb−1∑
N ′=0

[−A(n0 −N ′)− AB(n1 −N ′)] (A.54)
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Now, A is modified to

A =
e2

4πεw(κR + 1)R

To find the sum, we used the following formula.

nb−1∑
N ′=0

(n0 −N ′) =
1

2
nb(1 + 2n0 − nb) (A.55)

nb−1∑
N ′=0

(n1 −N ′) =
1

2
nb(1 + 2n1 − nb) (A.56)

Now, the electrostatic energy becomes,

ES =
−Anb

2
(1 +B + 2n0 + 2n1B) +

n2
b

2
A(1 +B)

−ES =
Anb

2
(1 +B + 2n0 + 2n1B)− n2

b

2
A(1 +B)

(A.57)

Now, partition function becomes,

Z =
∑
nb

N !

(N − nb)!nb!
exp [cnb] exp [−d2n2

b ] (A.58)

Where,

c =
A

2
(1 +B + 2n0 + 2n1B) + µ− Eb (A.59)

d =

√
A(1 +B)

2
(A.60)

Let, nb = N/2− s then equation (A.58) becomes,

Z =

N
2∑

s=−N
2

N !

(N
2
− s)!(N

2
+ s)!

exp [c(
N

2
− s)]

exp [−d2(
N

2
− s)2] (A.61)
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Using an approximation,

N !

(N
2
− s)!(N

2
+ s)!

= g(N, 0) exp[−2s2

N
] (A.62)

equation (A.61) becomes,

Z =

N
2∑

s=−N
2

g(N, 0) exp[−2s2

N
] exp [c(

N

2
− s)]

exp [−d2(
N

2
− s)2] (A.63)

Where,

g(N, 0) =

√
2

πN
2N (A.64)

After the simplification of equation (A.63) and changing the summation into integration, we

get

Z = T

∫ N
2

−N
2

exp[−a(s− b)2]ds (A.65)

Where,

T = g(N, 0) exp[
Nc

2
− N2d2

4
+

(Nd2 − c)2

4( 2
N

+ d2)
] (A.66)

a = (
2

N
+ d2) (A.67)

b =
(Nd2 − c)
2( 2

N
+ d2)

(A.68)

From equation (A.65), we get the number of anion binding to the protein,

nb =
∂ logZ

∂µ

∣∣∣∣
µ=kBT ln[cs]

(A.69)
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A.3 Dipole moment calculation

From the distribution amino acids, we calculate the dipole moment of a protein. The dipole

moment is given by following expression,

p =

∫
v

rρ(r)dv

=

∫ ∞
r=R

∫ π

θ=0

∫ 2π

φ=0

rσ1 cos θδ(r −R)r2dr sin θdθ

dφ (A.70)

We calculate the component of dipole along x, y, and z direction. Along x− direction,

px =

∫ ∞
r=R

∫ π

θ=0

∫ 2π

φ=0

(r)xσ1 cos θδ(r −R)

r2dr sin θdθdφ

=

∫ ∞
r=R

σ1r
3δ(r −R)dr

∫ π

θ=0

cos θ sin2 θdθ∫ 2π

φ=0

cosφdφ

= 0 (A.71)

Along y− direction,

py =

∫ ∞
r=R

∫ π

θ=0

∫ 2π

φ=0

(r)yσ1 cos θδ(r −R)

r2dr sin θdθdφ

=

∫ ∞
r=R

σ1r
3δ(r −R)dr

∫ π

θ=0

cos θ sin2 θdθ

∫ 2π

φ=0

sinφdφ

= 0 (A.72)
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Along z− direction,

pz =

∫ ∞
r=R

∫ π

θ=0

∫ 2π

φ=0

(r)zσ1 cos θδ(r −R)r2dr sin θdθdφ

=

∫ ∞
r=R

σ1r
3δ(r −R)dr

∫ π

θ=0

cos2 θ sin θdθ

∫ 2π

φ=0

dφ

=

∫ ∞
r=R

n1e

4πr2
r3δ(r −R)dr

∫ π

θ=0

cos2 θ sin θdθ

∫ 2π

φ=0

dφ

=
n1e

4π

∫ ∞
r=R

rδ(r −R)dr(
2

3
)2π

=
n1e

3
R

=
n1eR

3
(A.73)

The resultant theoritical dipole moment is,

p =
√
p2
x + p2

y + p2
z

=
n1eR

3

n1 =
3p

eR
(A.74)

In equation (A.74), p is dipole moment in unit eA which can be obtained by knowing the

distribution of charged amino acids, R is the radius of protein and n1 is the dipole charge.

104



Appendix B

Aggregate state calculation

The dimensionless non–linear PB equation is,

∇2
yΦ = sinh Φ (B.1)

Where,

Φ =
eΨ

kBT

is dimensionless potential and

y = κr

is dimensionless length.

Now, we linearize the potential (Φ) around the average potential (φ0) such that Φ(y) =

φ(y) + φ0, so we have,

∇2
yΦ = sinh(φ+ φ0)

∇2
xφ = φ+ tanhφ0 (B.2)

Where,

x =
√

coshφ0y (B.3)
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and the non-zero averaged potential (φ0) is obtained by using the neutrality condition in the

cavity as follows.

(n0 − nb) = −(c̄+v+ − c̄−v−) (B.4)

where v+ and v− are the accessible volume for positive and negative ions in the cavity

respectively. The ion accessible volume in the cavity, 6π((Rc−Ri)
2−R2

in)R, depends on the

size of ion Ri. c̄+ = cse
−eφ0
kBT and c̄− = cse

eφ0
kBT are the concentration of positive and negative

ions inside the cavity in the presence of average potential.

To make problem calculation friendly, let us consider that the solvent is trapped be-

tween two concentric cylinders. Let Rc and Rin be the radii of outside and inside cylinder

respectively. Now, the solution of equation (B.2) in cylindrical coordinate is,

φ(x) = AI0[x] +BK0[x]− tanhφ0 (B.5)

Let,

α =
√

coshφ0κRc (B.6)

β =
√

coshφ0κRin (B.7)

To find the constants, we use the boundary conditions. Electric field at the outer bound-
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ary of the cavity is,

Ec = −dψ
dr

qe

2πεwrl
=

kBT

e

dφ

dr
qeκ

2πεwyl
=

kBTκ

e

dφ

dy

qeκ
√

coshφ0

2πεwxl
=

kBT
√

coshφ0κ

e

dφ

dx

qe2

2πεwkBTαl
=

dφ

dx
|x=α

E0 = AI1[α]−BK1[α]

(B.8)

Where,

E0 =
qe2

2πεwkBTαl
(B.9)

The second boundary condition tells that the electric field vanishes at the inner boundary

of the cavity due to the charge symmetry,

dφ

dx
|x=β = 0

AI1[β]−BK1[β] = 0

B = A
I1[β]

K1[β]
(B.10)

Solving equation (B.8) with the help of equation (B.10), we get,

A =
E0K1[β]

[I1[α]K1[β]− I1[β]K1[α]]
(B.11)

Now, equation (B.10) becomes,

B =
E0I1[β]

[I1[α]K1[β]− I1[β]K1[α]]
(B.12)
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Now, equation (B.5) becomes,

φ(x) =
E0K1[β]I0[x] + E0I1[β]K0[x]

[I1[α]K1[β]− I1[β]K1[α]]
− tanhφ0 (B.13)

Putting Eq.(B.13) in Φ = φ+ φ0 gives the electric potential in the cavity.
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