THE DESIGN AND IMPLEMENTATIOR OF
MEMORY MANAGEMENT AND INITIALIZATION MODULES
FOR A LISP INTERPRETER

by
LEE ROY WHITLEY

B.S., Texas Technological University, 1961
A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan,Kan sas

1977

Approved by:

St Mgl

LD
AU6T
R4

{477 TABLE OF CONTENTS

WE 2

La 2

_DQ\'—«;/ e g 4

LIST OF FIGURES . ¢« « « o o o « »

Chapter

T INTRODUCTION . « o« o «

LISP PROGRAMMING LANGUAGE

LTISP IKTERPRETER SYSTEM
Driver .« « ¢« &« o o &
Input e & s & o o @
Scan e e o s e o =
Interpreter . . « . &
Memory Management . .

MODULAR DESIGN

INTERDATA 8/32

SUMHARY e s = & @ ; .

2. MEMORY MANAGEMENT DESIGN

INTRODUCTION . « « « &

MARKING s e s a8 & s =

COMPACTIOR . ¢ « « o @

SYSTEM DIFFERERCES . .

IGTBLK CONCEPT
IGTBLK Data Structures

Marking Algorithm . .

IGTBLE Marking Module .

IGTBLK Compaction Module

i

W

Page

. 1
. 1
. 2
. 2
. 3
. 3
. 3
. 4
. 4

L]
0 [« -] @ ~J N [+, o v w

« 10
. 10
« 12

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

3.

GETBLK CONCEPT . . .

GETBLK Data Structures

Regeneration Algorithm

INTRODUCTION
MAIN SUBMODULE IGTBLK
Function IGTBLK .
Calling Statement
Input . « . 4+ + &

0 ntp ut L J L - - -

MEMORY MANAGEMENT MODULES

Sequence of Operation

Subroutine REGEN1 .
Calling Statement
Input « « . . .« &

output - - L] L] L]

L

Sequence of Operation

Subroutine MARK .
Calling Statement
Input e s o o @

Output

Sequence of Operation

Subroutine COMPAC .
Calling Statement
Input “ w ow = m

Output

Sequence of Operation

MAIN SUBMODULE GETBLK .

ii

25
25
26
28
28
28
28
29
29
30
30
31
31
32
32
32
32
32
33
33
33
34
34
34
34
35
36

4.

Subroutine GETBLK . . .
Calling Statement . .
Input e o o o s o @
Output « o « « o o @
Sequence of Operation

Subroutine REGEN . . .
Calling Statement . .
Input . « = « « & ...
Output .« o « « « « &
Sequence of Operation

Subroutine MARK1 . . .
Calling Statement . .
Input « « ¢ o« o o o &
Output . . « « « o« &
Sequence of Operation

AUXILIARY ROUTINES . . «
INTRODUCTION . « o« « «
SUBROUTINE SETUP . . « &

OveIview .« « « o« « o o

Calling Statement . . .

Input . &« ¢« o o« o o o o

Cutput . . - « « « « &

SUBROUTINE STCRE . . . «

OVerviev . « o o« « o &

Calling Statement . . .

Input « « « o « o o o =

Ollt p\lt e ® ® 8 s s @& e

iii

36
36
36
37
38
39
39
39
40
41
41
41
41
&1
42
42
42
42
42
43
43
43
§3
44
4g
44
&5

5.

6.

SUBROUTINE FREED

Overview

Calling Statement

Input .

out put

Sequence of Operation

SUBROUTINE OUTPUT

Overview

Calling Statement

Input .

dutpnt

Sequence of
INTERDATA 8/32
INTRODUCTION

DOCUMENTATION

HARDWARE

SOFTWARE

Specification

L]

Operation

L] L]

Common Data . .

Job Control

TESTS e o
INTRODUCTION
TEST 1 . .
TEST 2 . .
TEST 3 . .
TEST 4 . .
SUMEARY . .

Language

iv

Statement

45
45
46
46
46
46
47
47
47
47
48
48
49
49.
&9
49
50
50
51
51
53
53
53
53
53
53
53

APPENDIXES

BIBLIOGRAPHY

AUXILIARY ROUTINES

-

FUNCTION IGTBLK .

SUBROUTINE GETBILK .

TESTS .

56
57
65
79
89

LIST OF FIGURES

Figure Page

-1 LISP Interpreter System Design 2
2-2 IGTBLK Block Diagram . « « « « « « ¢ s o « « 13
2-3 IGTBLK Linkage « « e « o« o o o « o s o o o = 14
2-4 IGTBLK SyStel . « o« o o« « o s o « o s s o« o« o 15
2-5 IGTBLK Structure Before Marking . . . « « « « 16
2-6 IGTBLK Structure Before Descent . . ¢ « =« « « 17
2-17 One Level Descent of Mark Routine 18
2-8 Second Level Descent of Mark Routine 19
2-9 IGTBLK Structure Prior to Ascent « 20
2-10 IGTBLK After One AsceNt « « « o o « o « s « &« 21
2-11 GETBLK Block Diagram .« o « =« =« o o s o« « o o 22
2-12 GETBLK Linkage . ¢« ¢ o« ¢ o « o « o« o« s « » « 23
2-13 GETBLK SYStelm . o « o« « o o « o« « = o « « « « 24
3-1 IGTBLK Management Relationship . « « « « « . 29
3-2 GETBLK Management Relationship . « ¢ ¢ o « « 37
4-1 SET Module Relationship . « « « o « o ¢ o « « U2

4-2 STORE Module Relationship . . « « ¢ o =« &« « o Ut

vi

Chapter 1
INTRODUCTION

This paper describes a portion of an overall project
designed to implement a LISP interpreter on a minicomputer.
The programming for the interpreter was done in the FORTRAN
v programming language. The purpose of this portion of the
project was: .

(1) To design the initialization and memory management
routines for a LISP interpreter.
(2) To program these modules in a high-level language.

(3) To implement the modules on the INTERDATA 8/32.

1.1 LISP Programming Language

LISP is a list processing language . It is an efficient
langquage for use with symbolic data manipulation. Symbolic
data manipulation requires extensive use of recursive
techniques, and LISP is designed to make recursion easy to
use. The use of recursion involves temporary storage of many
different environments. To allow for the allocation and
deallocation of these elements in storage requires the ﬁse
of a dynamic memory management systea.

The dynamic memory management system will be discussed
in detail in chapters 2 and 3. The remainder of this
section contains a brief discussion of the overall project

and the interaction with the INTERDAT2A 8/32.

1

1.2 LISP Interpreter Systenm

The interpreter (Figure 1-1.) consists of a driver
podule and five major subsystem modules. The five major
subsystem modules have different functions and were designed
so that they could be developed and tested separately. Each
major subsystem module is capable of functioning under the
direction of a single driver module. The modular concept is
not only efficient, but it is also convenient for splitting
a large project into smaller projects which can be developed
by different individnals.

LISP INTERPRETER SYSTEM DESIGN

LISP INTERPRE TER
DRIVER

| i 1 |

INPOUT SCAN INTERPRETER OUTPUT

MEMORX
MANAGEMENT

Figure 1-1

1.2.1 Driver

The driver module contains four basic parts: (1) the
information describing the use of the module; (2) the common
data statements declaring the global data; (3) a dictionary
of variables and constants used; and (4) the call statements

which invoke the various subsystem modules. The code for

the driver is at Appendix B.

1.2.2 Input

The input module is responsible for: (1) requesting
memory space from the memory management module and; (2)
reading the user's progranm into addressable storage
locations. The INPUT,SCAN, and a portion of the INTERPRETER
modules were prepared by David C. PRosserman and are

discussed in depth in his report.

1.2.3 Scan

The SCAN module is a driver routine., It calls a token
generator routine and symbol table search routine. It causes
the user's program to be scanned and placed into an address
array. The address array shows: (1) the location of each
symbol/string in the user's program; (2) the length of each
symbol/string; (3) its key word/function status; and (4) its
location within a key word/function table described in block

data.

1.2.4 Interpreter

The INTERPRETER module performs two major functions.
It initially creates a general tree representation of the
user's program. Once the general tree has been created it is
passed to the EXECUTOR portion of the module. The EXECUTOR

portion is the subject of another future report.

1.2.5 Memory Management

The memory management module is a driver routine which
operates a dynamic memory management system. There are two
main submodules which allow for vwariable sized blocks to be
allocated. One system was designed for use by the scanner
and rparser and the other for the executor. Memory

management will be discussed in detail in chapter 2.

1.3 Modular Design

This project was designed from the beginming in a
top-down manner. All necessary modules were visualized and
Urittén into the initial programs as stubs of routines. The
routine stubs were replaced with completed modules only
after the modules had been tested. 211 global and external
parameters required by the modules were provided by a test
driver,

211 modules have been designed with a definite
hierarchy. No module calls a module of a higher level, and
all parameters are passed to the called routine thru common
statements or calling statement parameters. A1l modules have
been written as subroutines or functions containing only one
entry and one exit point. The number of lines within each
module have been limited to a specific function for ease of
reading and debugging, and all primary actions have been

documented within the progran.

1.4 INTERDATA 8/32

The INTERDATA 8/32 was used during the designing,
programming, and testing of +this portion of the LISP
interpreter. The computer is owned by the Computer Science
Department and is located in Fairchild Computer Room. RAll of
the necessary input/output devices are available for the
user, and 640K bytes of memory are more than adegquate for
the normal program. The problems encountered lnsing the

INTEBRDATA are discussed in Chapter 4.

1.5 Summary

This report covers one part of a three part projedt
involving the development of a LISP interpreter written in a
high-level language and implemented on a minicomputer. In
addition to the initialization, the major portions of the
interpreter discussed in this report are: (1) Memory
Mapagement; and (2) Output.

The INTERDATA 8/32 was used during the program and test
phases, and it proved to be an excellent computer. After the
initial hurdles of learning how to keep it rumnning, the
remaining problems were insignificant.

This project enabled the author to gain "hands-on"
experience with devices which had previously only been read
about in textbooks. It also provided valuable experience in
working with a minicomputer. |

Chapter 2

MEMORY MANAGEMENT DESIGN

2.1 Introduction

This report is concerned with two different types of
Eemory manpagement systems. Both systems use dynamic memory
allocation techniques, and both allocate variable sized
blocks of memory from a single area called ISPACE. When the
allocatable space is full, memory is regenerated by moving
all slocks in use to the low address portion of memory. All
blocks which remain in the high address portion are
available for reuse.

The two memory management modules discussed in this
report ‘are named IGTBLK and GETBLK. Both systems use an
indirect method of addressing and will be discussed in
detail in chapter three. The basic terminology of the two
systens, and the fundamental concepts involved will be
discussed in this chapter.

2.2 Marking

During memory regeneration all blocks must be
identified as current if they are still in use. This process
is called marking. Normally a single mark bit is set aside
in each block header for this purpose, but a whole word was
used for this _project. The reason for using a word will be

discussed in a chapter on the INTERDATA. The position used

7
for marking will be referred to as the MARK bit or MARK
field. If a block is referenced directly or indirectly by a
variakle, the block is currently in use and should be
retained in nénory. The executor is allowed to explicitly
free any block no longer needed. A block could also ke freed

by GETBLK, but so far this has not been required.

2.3 Compaction

Sequential memory allocation is a fast method of memory
allocation, but it requires that all useable memory be
contained in a contiguous block of memory. During memory
regeneration and after marking, the system which moves all
useable space into a contiguous block is called nmemory
compaction. During memory compaction all current blocks
(all marked blocks) are moved to the low address portion of
memory, and all of the pointers are changed to reflect the
new locations.

The use of memory compaction makes memory allocation
simple; searching for a block that is large enough is not
required. Compaction also eliminates the problem of memory
fragmentation, which happens when there is adequate
availaktle memory, but the blocks are spread all over menofy
in such small portions that a single request for space
cannot be met. Since compaction makes all current blocks

contiquous, it causes a reduction in page thrashing.

2.4 System Differences

.

This report describes two different nmemory management
systems, IGTBLK and GETBLK. GETBLK was designed to be used
by the input, scan, and initialization modules of the
interpreter. - IGTBLK was designed to be used by the
executor. GETBLK provides fqr contiqguous storage in large
blocks without headers interspersed. This method is simple
and fast; however, it does not allouw for blocks pointing to
other blocks. IGTBLK is more general, but it is slower and
uses much wmore space for pointers and header information.
GETBLK requires that all current blocks be referenced by an
indirect pointer table, IPT. IGTBLK relaxes this restriction
in that it requires current blocks to be referenced by an
initial address 1list, IAL, only if they are not reachable
through any seguence of pointers in Lklocks, starting with a
block referenced by IAL.

The executor module should decide which blocks must be
referenced by the initial address 1list. 1In general only
pointers to the bgginning of a structure are placed on the
initial address list. It was impossible to coordinate with
the programmer of the executor since that is the sulkject of
a future report; therefore, it became necessary to implement
a patch for test purposes. In the current implementation ;11

blocks are pointed to by the IAL.

2.5 IGTBLE Concept

IGTBLK is a <function and can be called@ by any module,
but it was designed to be initiated by the STORE module. The

executor would initiate a call to STORE, which would then

9
obtain the desired space from IGTBLK. STORE would then place
the data into the block and return the address of a pointer
to the block. The FRRED module was designed to allow any
block to be freed. Use of the FREED module was necessary
during the testing of memory regeneration and maintenance of
the initial address 1list. The executor module can properly
save and free blocks by passing a flag in the calling
statement to the STORE module. During each nemory
regeneration, any current block may be moved. In this case
all pcinters to that block must be adjusted. This creates
the following requirements:

(1) The header must contain information about which
vords in the blocks are to be used as pointers to other
blocks.

(2) All required blocks not referenced by internal
block pointers must be placed on the IAL.

(3) The marking routine must mark all blocks referenced

by the IAL or by internal block pointers of current Lklocks.

2.5.1 IGTBLK Data Structures

The data structures used by this module are shown in
Figures 2-2 thru 2-4. Figure 2-2 shows the fields that are
contained in each block. The LENGTH field contains an
integer represehting the number of words in the block
including the header. The POINT field is used during memory
regeneration. It is initialized to zero before being
assigned for storage. During marking the POINT field is used

to indicate which word in the data field is being processed.

10
Compaction uses the POINT field to indicatg the new location
of the block after movement. The MARK field is initialized
to zero and is set to one if the block is in use at the tinme
of marking. The USE field contains a use bit for each word
in the DATA field. The use bit is set to zero or one by the
STORE module to indicate a use of data or pointer
respectively. In the DATA field each word contains a pointer
or data.
| Figure 2-3 shows the IGTBLK linkage with all blocks
being referenced directly by the 1IAL or indirectly by the
internal block pointers. Figure 2-4 shows the overall
systen. NLIST 4is a variable indicating the number of
elements on the IAL. ISLIST is a constant indicating the
maximum size of the IAL. ISPACE is an array used for
allocating memory. IFREE is a pointer to the first
wnallocated block in memory. ISIZE is the maximum size of

allocatable memory.

2.5.2 Marking Algorithm

I=1
do while (I £ NLIST)
BEGIN
Mark the block located at IAL (I)
Depth first mark all unmarked blocks
referenced by internal pointers
I=I+1
END

2.5.3 IGTBLK Marking Module

Figure 2-5 thru 2-10 show the marking procedure used by

11
blocks and reversing the pointers in the structure while
descending (moving deeper into the structure), then
restoring the pointers while ascending. Figure 2-5 shows the
blocks prior to marking. The first block is of length seven;
the MARK field is zero; it has two use bits with value one,
indicating the two pointers. Pigure 2-6 shows that the block
being processed 1is pointed to by the variable A and the
point and MARK field are set to one. The value one in the
POINT field indicates that the first word is being
processed. Tenporary pointers B and C are set to zero.

Figure 2-7 shows the status of the blocks after one
descent. Each time that a non-null pointer is <found that
points to an unmarked block, the following steps apply:

(1) B is changed to point to the same block as A.

(2) A is changed to point +to the block referenced by
the pointer being processed.

{(3) The pointer being processed is changed to point to
the block referenced by C.

{(4) C is changed to point to the same block as B.

(5) The mark and POINT fields of the new block pointed
to by A are set to one, and the processing continues.,

All of the above steps can be traced through on Figure
2-7. HBotice that the next to 1last pointer in the first
block is now zero. Both B and C were initialized to zero
before descent as shown at Figure 2-6. Figure 2-8 shows the
status of the blocks after one more descent, and Figure 2-9
shows the status of the blocks after the descent is
complete. Notice that the POINT field contains a value of

three and there are only two words in the block. This

12 |
situation is caused by a loop which is used to increment
the POINT field each time a word is processed. When the
POINT field exceeds the number of words in the block, the
ascent will follow. During the ascent the pointers are set
back to their previous values. Figure 2-10 shows the status

of the blocks after one ascent.

2.5.4 IGTBLK Compaction Module

The compaction routine for this module is more
complicated than the one for GETBLK because of the
additional pointers involved. The compaction is dome in
steps which are:

(1) Process all current blocks, and put the new address
of each block in the POINT field of the header.

(2) Update each element on the IAL so that it contains
the value of the POINT field of the block that it
references.

(3) Process the blocks sequentially and change each
pointer in the DATA field to reflect the new location of the
block that it points.

(4) Move the blocks to their new locations.

(5) Update IFREE to reflect the first available block

to be allocated in the new contiguous block.

IGTBLK BLOCK

13

LENGTH

POINT

MARK

USE

DATA

DATA

Figure 2-2

IALIST

IGTBLK LINKAGE

14

Figure 2-3

IALIST

NLIST

ISLIST

ISPACE

LSS

Figure 2-4

P4
_ IFREE
UNALLOCATED SPACE
A
ISIZE

15

BEFORE MARKING

Figure 2-5

16

17

BEFORE DESCENT

QWb
(I
o O

Figure 2-6

18

ONE LEVEL DESCENT

[—
v Y
\}
[IY
t—l
[
[y
o
g

Figure 2-7

o

Q

SECOND LEVEL DESCENT

Figure 2-8

19

20

PRIOR TO ASCENT

—

1 1 1] 111 o 1

N

ﬂ

~J
H
._I.
'_l
o
P

v Vv

¥
-3
W
[y
o
-
%*
—

Figure 2-9

(o]

AFTER ONE ASCENT

(@1
{\ﬁ

Figure 2-10

21

GETBLK BLOCK

22

LENGTH

POINTER

DATA

WORD

WORD

WORD

WORD

Figure 2-11

GETBLK LINKAGE

IPT

Figure 2-12

IPT

1

IPUSED

IPSIZE

ISPACE

AZZ77

4

IFREE

UNALLOCATED SPACE

Figure 2-13

ISIZE

24

25

2.6 GETBLK Concept

As mentioned before this module was designed for use by
the READ module, the SCAN module, and a portion of the
INTERERETER modules. The main difference between this
module and IGTBLK is that this module allows a large block
of data to be allocated in several different cells without
any headers being interspersed. This system was used to
great advantage during the testing phase of the READ module.
When this module is called a block of words of any size can
be requested, normally eighty words are regquested which is
the length of an input card. A lock is passed if a large
contiguous block is desired which keeps a header from being
placed on each block. The starting address of the data is
returned to the calling routine each time a block is
requested. On the last request from the calling module the
lock is changed and the header information is updated to
reflect the current 1length of the block. The only
requirements that exist for this system are:

(1) Bach block must have only one pointer to it which
is the indirect pointer table,IPT.

(2) Each block must have at least.one reference to it,
and the IPT must be changed to =zero for each block not in

usSee.

2.6.1 GETBLK Data Structures

The data structures used by this module are shown in
Figures 2-11 thru 2-13. Figure 2-11 shows the fields that

are contained in each block. The LENGTH field includes the

26
nu;ber of words in the block including the header. The POINT
field is used to point back to the indirect pointer
table,IPT. The DATA field can contain any type of data and
any number of‘uords. There is no MARK field in this block as
the length field is used during marking.

Figure 2-12 shows the GETBLK linkage which is guite
simple. The IPT contains the pointers to the current blocks.
IPUSED is the last element on the IPT. IPUSED is initialized
as zero. IPSIZE is the maximum number of elements on the
IPT. ISPACE is the same array used by IGTBLK. The space
used ty GETBLK will always be at the low address portion of
memory, and this portion of menbry will not be allocated
again after the executor starts. reqguesting space fronm
IGTBLE. ISPACE and IFREE are the same as in the other

module. The overall GETBLK system is shown in Figure 2-13.

2,6.2 Regeneration Algorithm

I=1
comment Mark each block in use
do while (IKNLIST)
begin
Change the LENGTH field of the block
referenced by IPT(I) to negative
I=1I+1
end
comment Change the IPT to point to the new location
I=1
IFREE1=1
do while (I<IFREE)
begin
if LENGTH<O
Pointer (I) =IFREE1
IFREE1=IFREE1+LENGTH
else
I=I+LENGTH
end
comment Move the blocks
Sequentially move all blocks
Update IFREE1=IFREE1+LENGTH after each move

27
comment All blocks have been moved
IFREE=IFREE1
end
The algorithm shows that there are three stages of

operation in GETBLK regeneration (1) mark the blocks; (2)

update the IPT; and (3) relocate the Ltlocks.

28

Chapter 3

MEMORY MANAGEMENT MODULES

3.1 Introduction

This chapter describes the structure of both of the
memory management systems. The calling statement, input
requirements, output, and sequence of operation will be

covered in all modules unless no explanation is needed.

3.2 Main Submodule IGTBLK

The function of this main submodule is to : (1) find
the first available block in memory and pass the location of
the block to the calling routine; (2) print an overflow
message when required and abort the run when recovery is
impossible; (3) regenerate memory by using garbage

collection and compaction when necessary.

3.2.1 Function IGTBLK

This module is called by the STORE module and it calls
REGEN1 when required for menory regeneration. The
relationship of the overall main submodule is shown at

Figure 3-1., The code for this module is at Appendix C.

29

IGTBLK MANAGEMENT RELATIONSHIP

STORE
IGTBLK
REGEN1
]
{ 1
MARK COMPAC
FPigure 3-1

3.2.1.1 Calling Statement

IGTBLK (NWORDS) contained in an executable statement

3.2.1.2 Input

NWORDS is an input parameter passed as an argument in
the calling statement and represents the number of words to
be allocated. Thé labeled common blocks SPACE and IAL are
needed.

COMMON/SPACE/IPTABL (50) ,ISPACE (2000) ,IPUSED
1,IFREE,IPSIZE,ISIZE

COXEON/IAL/IALIST {(20),NLIST, ISLIST

ISPACE,IFREE, and ISIZE are used from the common block

SPACE. ISPACE is an array used to store the different

30
elements in allocatable memory. IFREE is a pointer used to
indicate the next free block in memory, and ISIZE is the
size of allocatable memory. All of the IAL common klock is
used. IALIST -is an initial address 1list used to store the
pointers to all active blocks. NLIST is the number of
pointers 6& the 1initial address 1list, and ISLIST is the
maximum number of pointers that may be placed into the

IALIST.

3.2.1.3 Output

If ap overflow condition is created this module will
print a message which indicates .the reason for progranm
termination. If an overflow condition does not exist, the
address of the present block being assigned is placed in the
initial address list and NLIST is updated. The location of
the block on the initial address 1list is assigned to IGTBLK
which 1is passed back to the calling routine. The total
number of words including the header is placed in the LENGTH
field of the header, and the mark and pointer fields are set
to zero. The use bits are set to zero before control is
passed back. IFREE which is the pointer to the first cgll
of the next available block is updated. The address of the
present block being assigned is placed in the initial

address list.

3.2.1.4 Sequence of Operation

(1) This module selects the first available pointer

31
location in the initial address list to be used for the
address of the block to be assigned. If a pointer location
does not exist an error message will be printed and
execution will terminate.

{2) If the number of words to be stored will cause an
overflow on memory size, REGEN1 1is called to regenerate
space.

(3) If the number of words to be stored still causes an
overflow on memory size an error neésage is printed and
execution stops.

(4) The number of elements on the initial address list,
NLIST is updated.

(5) The function name is assigned to the pointer
location.

(6) The header is initialized; the wuse bits are set to
zero, and IFREE is updated.

(7) Control is returned.

3.2.2 Subroutine HEGEN1

This module is called by IGTBLK to regenerate space.
It calls the MARK and COMPAC modules. The relationship'of
this module within the overall main sukmodule is shown at

Figure 3-1. The code for this module is shown at Appendix C.

3.2.2.1 Calling Statement

CALL REGEN1

32
3.2.2.2 Input

The only input parameters needed by this module are the
SPACE and IAL common statements. The elements of the initial

address list are processed sequentially.

3.2.2.3 Output

All output of this routine is produced by its

subrodules, MARK and COMPAC.

3.2.2.4 Sequence of Operation

(1) The MARK module is called for each block currently

- in use.

{2) 211 blocks in use are compacted.

{(3) Control is returned to IGTBLK.

3.2.3 Subroutine MARK

This module is called by REGEN?1 and does not call any
other module, The relation of this module to other modules
is shown at Figure 3-1., The code for this module is at

Appendix C.

3.2.3.1 CALLING STATEMENT

CALL MARK (N)

33
3.2.3.2 Input

N is the address of the current block to be marked. All
pointers contained within this block will be processed until
all blocks pointed to by this block and the blocks that it
points to are marked. Two variables ISPACE and IFREE are

used from the common block SPACE.

3.2.3.3 Output

The MARK field, ISPACE (BLOCK + 1), and the POINT field,
ISPACE (BLOCK ¢ 2), are changed. The MARK field is set to one
and the POINT field is changed to show the word being

processed during a traverse of the blocks being marked.

3.2.3.4 sequence of Operation

(1) If the block is not marked, the mark and POINT
fields are set to one.

(2) Temporary blocks, B and C, used im traversing the
blocks are set to zero.

(3) The use bits are checked to see if the word
contains a pointer or data.

(4) If the word is a pointer it is checked to verify
that it is not null.

(5) If the pointer is not null, the block that it
points to is checked to verify that it is marked.

(6) If the block is not marked, block B is set to point
to the current block A. A is then changed to point to the

nev block, and the word containing the pointer is changed to

34 |

point to block C.

(7) € is changed to point to block B.

(8) Steps 3-7 are repeated until the bottom is reached.

(9) C ié changed to point to the Lklock pointed to by
the B block DATA field. This is a block previously marked.

{10} B block DATA field is changed to point to block A.

(11) A is changed to point to B, and B to point to C.

(12) This process 1is continued until block B again is

equal to zero.

3.2.4 Subroutine COMPAC

This module is called by REGER1 and it calls no other
modules. The relationship with other modules is shown in

Figaure 3-1. The code of this module is at Appendix C.

3.2.4.1 Calling Statement

CALL COMPAC

3.2.4.2 Input

The labeled common blocks SPACE and IAL are needed by
this module. The three elements of the header in each block

are used to relocate the blocks.

The number of elements on the initial address list,

NLIST, is updated and the pointers in the initial address

35
list, IALIST(I), are changed to point to the new location of
the blocks indicated by the POINT fields. The MARK fields
are reset to zero. IFREE is updated to point to the first

available block.

3.2.4.4 Sequence of Operation

(1) If the block is marked it should be relocated. If
there are any unused blocks in front of it, Put the new
address of the block in the POINT field and change IFREE1 to
point to the next block.

(2) If a block is not wmarked IFREE1 is not changed
until another block is relocated.

(3) After the location of the block is put in the POINT
field, put its location in the initial address list.

(4) All pointers within the blocks are now changed to
point to the location contained in the POINT field of the
block that it pointed to previously.

(5) Relocate all marked blocks and update IFREEI1.

(6) All blocks having been relocated , update IFREE.

~{(7) Return control to REGEN1.

36

3.3 Main Submodule GETBLK
The function of this main submodule is to: (1) f£ind the
first available block in memory and pass the location of the
block to the calling routine; (2) only assign headers to new
blocks as indicated by the calling statement; (3) print an
overflov message when required and abort the run when
recovery is impossible; é$ regenerate memory by using

garbage collection and compaction when necessary.

3.3.1 Subroutine GETBLK

This module is called by INPUT, SCAN, and modules
vithin the INTERPRETER. It calls REGEN when required. The
relationship of the overall main submodule is shown at
Figure 3-2. The code for the main submodule is at Appendix

E.

3.3.1.1 Calling Statement

CALL GETBLK (NWORDS, IADDRS,LOCK)

3.3.1.2 Input

NWORDS is an input parameter passed as an argument in
the calling statement. HNWORDS is a variable describing the
number of words to be stored. LOCK is an input parameter
passed as an argument in the calling statement. It has a
value of zero or one. A value of zero indicates that a
larger block is desired and the completion of header

information must wait until the lock 1is changed to one. The

37
labeled common block SPACE is required, and all of the

variables in that block are used in this module.

GETBLK MANAGEMENT RELATIONSHIP

INPUT SCAN INTERPRETER

GETBLK

REGEN

MARK1

Figure 3-2

3.3.1.3 Output

If a condition exists that causes a space overflow this
module will print a message indicating the reason for
- program termination. IADDRS is an output parameter passed to
the calling routine thru the calling statement. IADDRS is
the starting address of data to be stored in the new block.
This module will cause memory space to be placed into a

contiquous block of any desired size _uith a small header

38
identifying the length, and pointer location in the indirect
pointer table. A header for GETBLK is shown at Fiqure 2.4.
IFREE which is the pointer to the first cell of the next

available block is updated.

3.3.1.4 Sequence of Operation

(1) Find the first available space 1in the indirect
pointer table (IET). |

(2) 1If the table is full call REGEN to regenerate
space.

(3) If REGEN was called, try agaim to find space in the
IPT. If +the IPT is still full themn print an overflow
message.

(4) If space was available in the IPT, see if the
desired size block will fit in the remaining memory space.
If the block is too big call REGEN to regenerate space and
then try again after control is returned. ELSE if the block
fits into memory., then allocate the block.

(5) If a larger contiguous block is not'desired assign
the header information, update the IPT, upﬂate FREE, and
return the starting address IADDRS to the calling routine.

(6) If a larger contiguous block is desired set the
flag to indicate that a block is being btuilt and wait until
the lock is changed before assigning a value to the LENGTH
field in the header.

(7) If the 1lock changes update the total number of
vords in the b}ock. ITOTAL, update FREE, update the header,

and change the contiguous block indicator, IFLAG, back to

39

Zero.

3.3.2 Subroutice REGEN

This module is c¢alled by GETBLK and calls no other
module. The relationship of this module is shown at Figure
3-2. 1he code of the module is at 2ppendix D. The function
of this module is to act as a driver for MARK1, use the
indirect pointer table to keep track of the current blocks,

and perform compaction on all blocks in use.

3.3.2.1 Calling Statement

CALL REGEN

3.3.2.2 Input

This module uses all of the elements in the labeled
conmon statement, SPACE.

COMMON/SPACE/IPTABL (50) ,ISPACE (2000)

1,IPUSED,IFREE,IPSIZE,ISIZE

IPTABL is an array used to store the indirect pointers.
ISPACE is an array used to store the d4ifferent elements in
allocatable memory. IPUSED is a variatle indicating the last
-used space in the IPT. IPFREE is a pointer used to indicate
the start point of the next free block in memory, ISIZE is
the =<size of allocatable memory,and IPSIZE is a variable

indicating the size of the IPT.

40

3.3.2.3 Ontput

1f regeneration is successful IPREE is updated with the
nev location of the first available Lklock. All pointers in
the indirect pointer table are changed to point to the new
location of their previous block. Any block that is not in
use has its indirect pointer set to zero. A1l blocks in use

are compacted at the low address portion of memory.

3.3.2.4 Sequence of Operation

(1) Call MARK1 to mark all used blocks.

(2) Using the header information, process each one of
the blocks in memory.

(3) If the block is marked then assign the starting
address to its indirect block pointer, IBP , and move IFREE1
to the start of the next block; move to the start of the
next Lklock.

(4) Perform steps 2 thru 3 until the address of the
next block is greater than IFREE.

(5) Starting wvith the first block relocate all blocks
in use.

(6) If the block is marked then relocate the block;
update IFREE1; unmark the block.

(7) Move to the next block and perform steps 6 and 7
until the starting address is greater than IFREE.

(8) All blocks have been moved so update IFREE.

(9) Return control to GETBLK.

41

3.3.3 Subroutine MARK1

This module is called by REGEN and does not call any
other modules. Its relationship to other modules is shown at
Fiqure 3-2. The code of this module is at Appendix D. The
function of this module is to mark each block referenced by

the IPT by changing the LENGTH field to a negative number.

3.3.3.1 Calling Statement

CALL MARK1

3. 3. 3.2 Input

Variable IPUSED, and arrays IPTAEL and ISPACE from the
SPACE labeled common are used. IPUSED is the last used space
in the IPT. IPTABL(I) contains the pointer to the block
being processed. ISPACE is the array used for storage of

elements.

3.3.3.3 Output

211 blocks pointed to by the IPT have their length

fields marked by changing the field to negative.

3.3.4 Sequence of Operation

(1) locate each block pointed to by the IPT.
(2) Mark the block by making the LENGTH field negative.

(3) Return control to REGEN.

42

Chapter 4

AUXILLIARY ROUTINES
4.1 Introduction

This chapter will discuss four different routines which
are mainly supporting modules. The modules are SETUP, STORE,
?RBBD, and OUTFUT. The first three routines are used
prina:ily in memory management and the last can be used by

any routine, The code for these modules is at Appendix B.

4.2 Subroutine SETUP

This module is called by the driver and does not drive
any other module. The relationship of the module is shown in

Figure 4-1.

SETUP MODULE RELATIONSEIP

DRIVER

SETUP

Figure 4-1

4.2.1 Overview

This module pertains to the estaklishment of the global

variakles. The only function of the SETUP nmodule is to

u3 |
establish the size of the variables in coammon statements,
Flexibility is gained by having the common variables
initialized in one module. During the testing phase
variatles can be made small to check the various overflow
and recovery mechanisms as well as faster tests. The
variakles can be easily changed at a future date prior to
implementation to take advantage of the available menmory.
All variables used in memory allocaticon have heen
initialized with small values and should only be changed
prior to final implementation in order to be fair to the

nultiple users of the minicomputer.

4.2.2 Calling Statement

CALL SETOP

4,2.3 Input

The input required by the setup consists of all of the
labeled common statements which contain variables to be

initialized.

4.2.4 Output

The desired size of all global variables contained in

labeled common statements is the only outpat.

4.3 Subroutine STORE

This module is called by the driver and calls the

4y
IGTBLK module. The relationship of the module is shown in
Figure 4-2. Code for the module is at Appendix B.

STORE MODULE RELATIONSHIF

DRIVER

STORE

IGTBLK

Figure 4-2

4.3.1 Overview

This module is used to store data into the allocatable
portion of memory. The module first calls the IGTBLK
memory management and obtains the appropriate size block
- requested by the executor. It then stores the values into
the use bits and DATA fields of the block. After the data is
stored the adﬁress of the pointer contained in the imitial

address list is passed back to the executor.

4.3.2 Calling Statement

CALL STORE (IWORD,IA,NUM)

4,.3.3 Input

IWORD and NUM are input parameters passed im the

45

calling statement. IWORD is the array of the data to be
stored into the temporary dimension space. NUM 1is the
variable representing the number of words to be stored.
Labeled common statements SPACE and IAL are used. All data
stored from the executor falls into one of two classes,
pointer or data. The type of data is determined by the
array IBIT which is passed in the calling statement. IR is
an input parameter obtained from the function IGTBLK. 1IA
represents the number of the stored block in the initial

address list.

4.3.4 Output

The output produced by the store module is the number
of the element on the initial address list (IA). IA is
passed back to the calling routine as a parameter in the
calling statement. The use bits of the block header are set

to the appropriate value of one or zero.

4.4 Subroutine FREED

This module is called by the INTERPRETER, and it does
not call any other module. The code for this module is shown

at Aprendix B.

4.4.1 Overview

The FREED module is designed to free an unused block of

memory. It was designed for use with the executor portion of

46
the IRTERPRETER. By freeing a block it will be able to be
used again if memory regeneration has ever been called.
Rhen a block is freed it is removed from the initial address
list, and after garbage collection it can be compacted or

placed back on the avail list if links are used.

4.4,2 Calling Statement

CALL FREED(I)

4.4.3 Input

This module needs the number of the element on the
initial address list to be freed, I. The labeled common
statement IAL is also used to update the initial address

list.

4.4.4 Output

The freed element 4is taken out of the initial address
list if it wvas a valid element in the £first place. The
elements of the list are then moved to replace the void

space created by the removal. NLIST is then updated.

4.4.5 Sequence of Operation

(1) If the element to be freed is zero then return.
(2) If the number of the element to be freed is greater
than the number on the list then return.

(3) If the freed element is not -the last one on the

47
list then move all elements up to £ill the void space.
(4) Decrement the number on the 1list,.

(5) Return control to the calling module.

4,5 Subroutine Output
This module is called by the interpreter to print the

output of each function call. It does not call any other

module., The code for this module is at Appendix B.

4.5.1 Overview:

This is a flexible output module which can print any
block referenced by the initial address list. The module was
designed for the executor portion of the interpreter;
however, it could be used by all modules during the testing

phase to check what elements had been stored in memory.

4.,5.2 Calling Statement

CALL OUTPUT (IWORD,IA,NUH)

4.5.3 Input

In addition to the SPACE and IAL labeled common blocks,
three variables, TIWORD, IA, and NUM are needed. IWORD is
used for temporary storage for each word coming out of
memory. IA is the index of the pointer in the initial
address list and is used to identify which block is desired
for ouvtput. NUM is a variable to be used in the event that

an entire block is not desired for output.

us

4,5.4 Output

This module prints a referenced block from memory. The

output is preceded by “THE VALUE IS ",

4.5.5 Sequence of Operation

(1) If ISTART is not equal to zero a specific block
wvhich is not necessarily referenced Lty the initial address
list. Print the block.

(2) If ISTART is zero then a block referenced by the
initial address 1list is wanted. Determine the 1location of
the block.

(3) Determine the number of words in the block to be
printed.

(4) Check the use bits to see if the data contained in
the block is alphanumeric or numeric.

(5) Select the appropriate format statement and print
the block.

(6) Return control to the calling routine.

49

Chapter 5

INTERDATA 8/32
5.1 Introduction

The INTERDATA 8/32 is a very good training vehicle for
graduate students and should be used much more than it is.
This chapter will discuss some of the problems encountered
during this project so that future users might avoid the

same pitfalls.

5.2 Documentation

One major problem in using the INTERDATA 8/32 is that
there is no central 1location of publications that a new
user can identify that will epable him to use the systena.
Documentation does exist for the various 1languages
implemented on the INTERDATA. The user shoﬁld allow
sufficient time to become familiar with the procedures which
are not implemented in the selected prograpming language.
New versions of compilers have been obtained for COBOL and
FORTRAN; however, the documentation that explains the new

changes has not been received.

5.3 Hardware

No significant problems were encountered with the
INTERDATA 8/32 hardware, but programming was halted or

reduced on numerous occasions. Becurring problems have

50
existed with the memory and with the 'disk cooling system.
About thirty percent of available memory §as unuseable for
an extended period while a piece of diagnostic equipment was
being obtained. The window air conditioners used to cool the
computers are inadequate to cool the disks, and several

times the disks could not be used due to overheating.

5.4 Sof tware

The software package supplied with the INTERDATA 8/32
consists of: (1 nonproduction INTERDATA software; (2)
softvare taken off the shelf for immediate issue; and (3)
software generated by personnel of the Computer Science
Department.r The greatest hindrance to this project vas
caused by faulty or inadegquate software. The major
categories of software delays were; (1) system crashes
caused by the software when valid commands were entered at
the terminals; and (2) useless error messages which do not
explain the errors or errors gdgenerated by the software
itself.

Some of the specific software proktlems are discussed

below.

5.4.1 Specification Statement

During programming of the block data module an error
message of "WRONG PROGRAM" was obtained. All available
manuals on FORTRAN and user manuals for INTERDATA vwere

researched to no avail. The program was then run on the IBM

51
370 sucessfully with no errors. By systematically
eliminating portions of the module and numerous compilations
it was found that the error was caused by a specification
statement "INfEGER*Z". BY researching INTERDATA information
sheets it was discovered that an error in the FORTRAN
compiler does not align the words in memory after
WINTEGER*2" is used. If the number of words stored under the
- specification statement is not a wmultiple of 2 then the

memory.is out of alignment and the program will not compile.

5.4.2 Common Data

A problem similar to the one above was obtained after
adding another common statement to block data. Approximately
fifty hours were spent in isolating the item causing the
error. The reason for the lengthy delay was caused by the
bad diagnostics of the software in that the only error that
it would display was "WRONG PROGRRM". A call to Interdata
revealed that they were aware of an errof in their compiler
and that a patch was needed. Computer Science personnel were
able to apply the correction to the pertinent addresses in
less than five minutes. The program was then recompiled

sucessfully.

5.4.3 Job Control Language

The job control language of the INTERDATA 8,/32 has not
been developed fully. It is not possible +to compile and

execute a program in one step. Imn fact it requires the user

52
to reply to a query from the terminal five different tinmes
just to execute a task that has been previously established.
This is a waste of time and presents more opportunities for

user typing errors.

53
Chapter 6

TESTS
6.1 Introduction

This chapter will discuss some of the testing used
during the development of the memory management systenms.
Three different tests that were used are still a part’of
this pfogran to enable the executor to test storage of
data at future times. No tests that wvere used during the
developrent of GETBLK are shown as these modules were tested

earlier with the READ and SCAN modules which use the systenm.

6.2 Test 1

jest 1 and the other test routines are shown at
Appendix BE. Test 1 is a simple test designed to check a
call to the function IGTBLK, store some data into the cells
of the array ISPACE, and then have the values printed to

verify if the values were entered correctly.

6.3 Test 2

Jest 2 is a routine desigpned to be implemented along
with Test 1. It tests successive calls to IGTBLK.' After
printing the results of Test 2 the point and data fields can
be verified. The variables used for memory management such
as IFREE, NLIST and the elements in the IAL were checked

with this test.

54
6.4 Test 3

Test 3 is a routine designed to check the garbage
collector. By giving IFREE a value slightly smaller than the
size cof the array ISPACE and causing another call to IGTBLK
for =pace all functional parts of the system could be
checked. If blocks were freed for the test then the
compaction routine was checked; otherwise, the overflow

mechanism was checked.

6.4 Test &

Test 4 is a routine designed to check all of the
vorking parts of the main submodule IGTBLK. The test starts
by using a read routine for obtaining data. The STORE module
is then called to obtain space from IGTBLK on four different
requests for blocks. After the data is stored the blocks are
printed by the module OUTPUT. A block is freed by a call to
the FREED module. The IAL is printed to check the
repositioning of the elenments on the IAL after the element
is freed. IFREE is set to a large value, anﬂ another call

for a block causes the garbage collector to be exercised.

6.5 Summary

211 of the above tests proved to be useful during the
testing. A1l tests wvere completed sucessfully with
different data and separate runs of the program task. These
tests should pe retained and modified as needed by the

executor. All tests should be taken out of the program prior

to final implementation

55

56

APPENDIX A

Knuth,Donald E. The Art of Computer Programming. 24 ed.
Massachusetts: Addison-Wesley, 1975.

Shapiro,Linda. Data Structures.

Weissman,Clark. LISP- 1,5 Primer. Belmont, California:
Dickenson, 1967.

57
APPENDIX B
T s P e
TBIS IS A DRIVER ROUTINE USED TO CHECK AND IMPLEMENT
THE MODULES OF THE INITIALIZATION PORTION OF THE LISP
INTERPRETER. THIS WOULD BE REPLACED BY THE MAIN
PROGRAM.
T T S PR TE E 2SR TR S L
INTEGER*2 IARG
DOUBLE PRECISION FOUNCT
COMMON/TABLE/FUNCT (8, 24) ,IARG (8, 24)
COHﬁON/SPACE/IPTABL(SO),ISPECB(ZOOO)
1,IPUSED, IFREE ,IPSIZE,ISIZE
COMMON/IAL/IALIST (20) ,BLIST,ISLIST
DIMENSION IBIT (80),IWORD (80)
CALL SETUP
TRkRA RS SRk Rk Rk kR Rk kK
SETUP IS USED TO INITIALIZE THE VARIABLES IN COMMON
CATA. THIS ROUTINE SHOULD BE CHECKED FOR THE PROPER
SIZE OF ALL ELEMENTS BEFORE FINAL IMPLEMEMTATION.
kkkhkkbkkkkhkkRkERkRTRERRERXK
LOCE=1
EEEkER xR kkRRRERRk kR kkkkE kkkk
READNO IS A ROUTINE TO READ IN NUMBERS FROM THE SCANNER
OR EXECUTOR.

3k e e 3 2k 2 o e e 3 o ok ol e e s e o o ke o o ok o o o o ek

CALL STORE(IWORD,I,NUN)
shkkkkkkkkrkkhkhkhkhkhk kb ehkhihkk
STORE IS A ROUTINE TO PUT DATA 1IN THE ALLOCATABLE

EORTION OF MEMORY.

58
Aok et ook ek b ke ke e ok ke ek ok ke ko dkok ok kol

Fkkokdok kR ok kkdkkk dkokokokkkkok kR kR

QUTPUT IS A ROUTINE WHICH CALLS DATA OUTPUT FROM THE

STORAGE BY USING THE INITIAL ADDRESS LIST NUMBER.

11
10
99

F¥kbkkkkkkkfkkkkkkkkkkkkkkkkrrhkk

CALL TESTY4

po 10 I=1,10

WRITE (6,11) NLIST,IALIST (NLIST)

FORMAT (* °,*IALIST(',I2,") IS EQUAL TO *,I3)
CONTINUE

STOP

END

| 59

SUBROUTINE SETUP

COMMON /SPACE/IPTABL (50) , ISPACE (2000)

1,IPUSED, IFREE, IPSIZE, ISIZE

COMMON/IAL/IALIST (20),NLIST,ISLIST

IPUSED=0

IFREE=1

IPSIZE=50

ISIZE=1000

NLIST=0

ISLIST=20

kkkkkgkkkkkkkkkfkkkkkkkkkkkkkakdkikkkikkikkk
THE SIZE OF IPTABL,ISPACE,IALIST SHOULD BE MADE LARGE
ENOUGH FOR THE LISP PROGRAM WITHIN THE RESTRICTIONS OF
THE PARTITION ALLOCATED. IF THE PROGRAM STOPS DUE TO AN
OVERFLOW OF MEMORY SIZE, THE SIZE OF PARTITION FOR THE
FROGRAM WILL HAVE TO BE ALLOCATED LARGER AND THE ABOVE
VARIABLES WILL HAVE TO BE RESET.
sk ke dedkokok ke kok ek kokokok kak ko okkok ok kok gk okk
RETURK

END

60

SUBROUTINE STORE (IBIT,IWORD,NUM,IA)

COMMON/SPACB/IPTABL (50) , ISPACE (2000)

1,IPUSED, IPREE,IPSIZE,ISIZE

COMMON /IAL/IALIST (20) ,NLIST,ISLIST

DIMEN SION IWORD(80) ,IBIT (80)

IA=IGTBLK (NUM)

JDATA=IALIST (IA) +2 + NOUM

JUSE=IALIST (IR)+2

2 o e e ok ok e ok o ok ek ok ok ek el ok ke ok ke ke okok ek ckakokok
CHECK THE DATA TO SEE IF IT IS A POINTER. A POINTER
MUST HAVE A "1" AS ITS LAST DIGIT.
ok sk 2 3 o ke ok ok o 3k o ok ok o ok ol e ook ek el ke ke ik sk kel ke gk e

po 10 I=1,NUN

M=JUSE+I

N=JDATA+I

ISPACE (M) =IBIT (I)

ISPACE(N) =IWORD (I)

WRITE (6,20) I, IBIT (I)
20 FORMAT (* *,'IBIT (*,I2,') IS = TO ',I1)

IP(IBIT(I) .EQ. 1)GO TO 40

WRITE (6, 25) I, IWORD (I)

25 FORMAT (' ', 'IWNORD(',I2,') IS = TO ',Al)
GO TO 10

40 WRITE (6, 45) I,IWORD (I)

4s FORMAT(®' ','IWORD(',I2,') IS = TO ',I8)

10 CONTINUE
RETURN

END

101

10
15
25
30

SUBROUTINE OUTPUT (IWORD, IBIT,IA,ISTART,ISTOP)
COMMON /SPACE /IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE,ISIZE
COMMON/IAL/IALIST (20),NLIST, ISLIST
DIMENSION IWORD(80),IBIT (80)
IF(ISTART .NE. 0)GO TO 1
IBLK=IALIST(IA)

LENGT H=ISPACE (IBLK)

NWORDS= (LENGTH-3) /2
ISTRT=IBLK+3+NWORDS
ISTP=ISTRT+NWORDS-1

DO 101 I=1,NWORDS

IP (IBIT(I) .EQ. 1)GO TO 25
CONTINUE

GO TO 10

ISTRT=ISTART

ISTP=ISTOP

WRITE (6,15) (ISPACE (M) ,M=ISTRT,ISTP)
FORMAT (' ','THE VALUE IS ',20A4)
WRITE (6, 30) (ISPACE (M) ,M=ISTRT,ISTP)
FORMAT(' *,'THE VALUE IS ',10I8)
RETURN

END

61

kR ERKERARRRKRRREERE ERERERRR KRR
*ERERKRERRE kR R RkkkR %k PREED *%**
R Y T e e T TR
SUBROUTINE FREED (I)

COMMON/IAL/IALIST (20) ,NLIST,ISLIST

e ook ok ook ook ek gk ko dfe sk ok o ok ok e o ke ke

62

THIS ROUTINE FPREES THE BLOCK IN MEMORY. IF IT IS ROT

FOINTED TO BY ANOTHER BLOCK IT CAN BE COLLECTED BY THE

GARBAGE COLLECTOR OR PUT BACK ON THE AVAIL LIST
LINKS ARE USED.
e ok ke e ok e e o sl e o e 2l 2 o ok ok sl e afe ok ok s 3 o o ok o ok o ok ok

IF (IALIST(I) .EQ. 0) RETOURN

IF(I .GT. NLIST) RETURH

DO 10 M=I,NLIST

IALIST (I)=IALIST (I+1)
10 CONTINUE

NLIST=NLIST-1

RETURN

END

IF

63
SUBROUTINE READER (IWORD, NUK)
*dokkkkkkkokkkkkkokkkkkkokkkkkkk kdokkkok
THIS ROUTINE IS DESIGNED TO READ IN SOURCE-CODE OR DATA
AND CODE‘FROH THE EXECUTOR.
kkkkkkRrkkRkrrkirkkkkhkrkkrkdkiokk
DIMEN SION IWORD (80)
po 10 1=1,80
READ(5,10,END=15) INORD (I)
NOE=I
10 FORMAT (A1)
15 RETURN

END

64
SUBROUTINE READRO(IWORD, NUMN)
DIMEN SION IRORD (18)

kdkkkkkkkkkhfkkkkkkkkkkkfkhkkkkkiokkk

THIS MODULE READS IN DIGITIZED CODE FROM THE EXECUTOR.
dkFkkkkkkkkkkkkkkkkkk ok kkkkkkkkkikkEk
READ(5,19,END=25) IRORD
NUM=I
19 FORMA T (6 (I8,2X))
25 RETURN

END

65
APPENDIX C

AR REK KRR RRRRR AR R RRRARRRR AR R AR AR RERRkE AR kEkEX

FhEEFRREEFRAEEFERRREERRRER TGTBLE *k*kkkkxkkkdkd
IF SPACE IS NOT AVAILABLE AT THE TIME CALLED IT WILL
CALL THE REGENERATE MODULE TO SEE IF SPACE CAN BE
COLLECTED THAT IS NOT IN USE.IF SPACE IS NOT AVAILABLE
AN ERROR MESSAGE WILL BE PRINTED.

DECLARATION OF VARIABLES

NUMTOT —- NUMBER OF WORDS IN THE BLOCK

IGTBLK -- THE FUNCTION WHICH RETURNS THE ADDRESS OF TEHE

ELOCK

KWORDS -— NUMBER OF WORDS REQUESTED BY THE CALLING
ROUTINE

IUSE —— WORD TO REPRESENT THE USE - EITHER DATA OR
FOINTER

3k 3 3k sk ok 3 o ok skl e e ake ok ok dk sk ok 3 3k oke 3 e e ke ok sk 3k 3 2k 3 3k o o 3k ke ke 3l ool e e ok ke e e e o o ok e

FUNCTION IGTBLK (NWORDS)
COMMON/SPACE/IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE,ISIZE
COMMON /IAL/IALIST (20) ,NLIST,ISLIST
sk dfefe 3 e o ok ok o o o e o o ofe o o ok e sk 2 ofe ok o e ok ok ok 3 ook e ke ok %k
FIND THE FIRST AVAILABLE SPACE ON THE TALIST. IF THE
LIST IS FOULL PRINT OUT AN OVERFLOW MESSAGE.
ko gk kokokkokokok koo okdkadkok kkk ko okkkkkkkkkk
DO 1 I=1,ISLIST
IF(IALIST(I) .EQ. 0) GO TO 6
1 CONTINUE
WRITE (6, 5)

] FORMAT(* ','INITIAL ADDRESS LIST IS FULL-UNABLE

66
10

1 CONTINUE')
IGTBLK=0
GO TO 99
B 3 e s sl ade ook ok ol ok 3 afe e ok sk e e s o ak ake e sl ke ofe ok ol ol ok ke o ek kool ook ook
THE TOTAL NUMBER IN THE BLOCK 1S EQUAL TO THE SUM OF
THE DATA WORDS, USEBITS,LENGTH,POINT, AND MARK FIELDS.
ko kdkkkkkok kkkkkkkkk kg kkkk kb kkkkkkkkkkkk
6 NUMTOT=NWORDS#*2+3
ek kokkakokk ok ok kkokkkkokdk kkdkokkkkkkkkkkkkkkk
IF THE sﬁa BLOCK EXCEEDS THE AVAILABLE SPACE, START
REGENERATION, OTHERWISE ALLOCATE THE SPACE.
a6 e 2 e e s o e sk 3k 2 e o e sfe ok sfe ok o e o e e sk 3k e 3 e afe e 3ie o e e e sk ke ok okeok
IF ((NUMTOT+IFREE) .LE. (ISIZE+1)) GO TO 15
CALL REGEN1
Fkkkkkkfkkkkkkkkgkkkkkkkkkfkkkkkkkkkkkkkkk
CHECK TO SEE IF SPACE WAS MADE AVAILABLE BY GARBAGE
COLLECTION IF AVAILABLE THEN ALLOCATE, ELSE PRINT
OVERFLOW MESSAGE.
3 3 3k sk ok s e ok ol 3k ke ok o afe e e sl sk e sl sk sk afe o e ok ok 3 ok o ok ske kol gk ke ok
IF ((NOMTOT+IFREE) .LE. (ISIZE+1)) GO TO 15
WRITE (6, 10)
10 FORMAT (' ',"SPACE OVERFLOW - UNABLE TO CONTINUE')
Fekdfeokk ko okk kR kkkk ko kkk kkkkkkkkkkkk
1F SPACE OVERFLOW STOP THE RUN HERE AS TOO MANY MODULES
CAN CALL THIS MODULE AND ANY FURTHER PROCESSING WOULD
BE INEFFICIENT.
e 3 ok 2 2k sl ok e e ok ok ke ok ake 3k 2 ok 3 ok ok ok e e ok e sk o e e ke e ol e o ok ok ok ook ok ok ko kg

GO0 TO 99

67
RETURN
ek dkkk ko kk koo okkokkkkokkkkokk gk kkkkkkkokkk
ALLOCATE THE BLOCK AND INITIALIZE THE HEADER 1. ASSIGN
A SPACE ON THE IALISE. 2. PUT THE ADDRESS OF THE BLOCK
IN THE IALIST. 3. ASSIGN THE LENGTH FIELD AND
INITIALIZE THE POINT AND MARK FIELDS TO ZERO.
3% 3k 3 e dfesie e she e Aol ke 3 3 e obe e sk e e o e ok e o ok e e e ol e o ok sk ook o ke ok ke ke ok
15 FLIST=I
IGTBLK=NLIST
IALIST(NLIST) =IFREE
ISPACE (IFREE) =NUMTOT
ISPACE (IFREE+1)=0
ISPACE (IFREE+2) =0
e o3k e sl s e s sk ok ke e sle o ok ke s ke sk ook ek bk ke ko sk sk kkok ok k ok
WORDS HAVE BEEN USED TO INDICATE WHETHER A WORD IS DATA
OR A POINTER . FOR EFFICIENCY THESE WORDS SHOULD BE
REPLACED BY BITS. EACH OF THESE BITS SHOULD BE
INITIALIZED TO ZERO.
ook ok sk e o ale ok ale s ek ok sk ok sk ok e e sk e ool o ke sk kel ke e ek ok kel sk ke ke 3k
DO 20 ICOUNT=1,NWORDS
IUSE=IFREE+ICOUNT+2
20 ISPACE (IUSE) =0
3k 3 ek sl sk e ok s ok 3k 3k e ke o ok e ok ok e ok e e o sk e ol ok ok ok ok e ok s ok e sk ke ke ek
SET IFREE TO POINT TO THE NEXT BLOCK.
a8 e Jede e ok o alealk o o ok 3k ofe e afe e o e e e e ofe e ok s e ke e oo dle e ke ok e e e ek
IFREE=IFREE+NUNTOT
RETURN
99 STOP

END

68

kkkkkkkkkkkkkkkrkkdkhkkkkkkkkk COMPAC ¥FEkkkkkkkkkkkkk
THIS ROUTINE RELOCATES THE BLOCKS THAT ARE BEING USED
IN THE ALLOCATABLE PORTION OF MEMORY. IT CALLS NO
NODULES AND IT IS CALLED BY REGEN.
DECLARATION OF VARIABLES
IFREE1 -- LOCAL USE OF IFREE
LENGTH —- LENGTH OF THE BLOCK
IHMARK —— THE MARK BIT OF THE BLOCK
IPOINT —- FIELD USED IN MARKING ARD RELCCATION
NLIST -— RUMBER OF ELEMENTS ON TEE INITIAL ADDRESS LIST
IADRES -- INITIAL ADDRESS OF THE BLOCK
ILEN —— VALUE PLACED IN LENGTH
IDATWD -— VARIABLE USED TO IDENTIFY THE SPECIFIC DATA
WORD
Aok ke ek deokok ok ok ok dkokok kol ok kokokok kk kk ok bk k ke kR kkkkkkdkk
SUBROUTINE COMPAC
COMMON/SPACE/IPTABL (50) , ISPACE (2000)
1,IPUSED,IFREE,IPSIZE,ISIZE
COMMON/IAL/IALIST (20) ,NLIST,ISLIST
o ol e oo o 2k o o ok o ook o e o o ok ook ale ok ok ofe e o ok ok o ke ek Ak e ke ok
COMPUTE NEW BLOCK ADDRESSES AND START THE COMPACTION BY
POINTING TO THE FIRST BLOCK.
2 3k ok ok ook o e ok o ake o ok ok ok ok sk sk ok ke ok e ke 3 e o e g ok ok o ok o ok ok ok ok ok
IFREE 1=1
I=1
3 3 3 2k ok 3 s ok dokofe 3 ok o ok ofe o e o o ok 2 e ok e kol e ok e o ok ke e ok o ok ok ok kokok ok
DEFINE THE LENGTH, POINT, AND MARK FIELD.
kkkkkkkhkkkkkkkkhkkhhkhkkkk ke ke hhkkkkkkkkkkk

1 LENGTH=ISPACE (I)

69
IPOINT=ISPACE (I+1)
IMARK =ISPACE (I+2)
kg kkkkkfkkkk kg kb kkkkkkkkk
IF THE BLOCK IS MARKED IT SHOULD BE RELOCATED IF THERE
ARE ANY UNUSED BLOCKS IN FRONT OF IT.
kb kfkokkkkk kk R kkhkkkkkkkkkkkkhkkkkkkkkkkk/
IF (IMARK .NE. 1) GO TO 5
kdkokk kkkkkkok kb kg kekokok ke kg kk kg kkkkk
THE BLOCK IS IN USE. PUT THE NEW ADDRESS OF THE BLOCK
IN THE POINT FIELD. CHANGE IFPREE1 TO POINT TO THE NEXT
PLOCK.
gk hfokokkkkkhkkkkokkkkkkkkkkkkkkkkkkkkkkkkik
ISPACE (I+1) =IFREE1
IFREE 1=IFREE 1+LENGTH
o 2 o s e o aleale ofe s ok oo ok ok o o ke ok ok ok ok ofe afe o sl e s ke ok e ke e ok sk ok ke ok ok ke ke ok
THE BLOCK WAS NOT IN USE SO IFREE1 REMAINS UNCHANGED AS
IT IS STILL THE POSITION OF THE NEXT USED BLOCK. MOVE
10 THE NEXT BLOCK TO SEE IF IT IS IN USE IF IT IS LESS
THAN IPREE.
ddkdkok ko kkkkk ko kokdkkkokdkkokokokk kkokkkokdkkkkkkkkkkkkEkkk
5 I=I+LENGTH
IF(I .LT. IFREE) GO TO 1
UPDATE BLOCK POINTERS REFERENCED BY THE IAL
DO 20 I=1,NLIST
kk
THE NEW LOCATION OF THE BLOCK IS IN THE POINT FIELD.
PUT ITS LOCATION IN THE IALIST SPACE.

Mk kR kkk Rk kkkkkk kR ko ko ko kkkkkkikk

IADRES=IALIST (I)

20

70
IPOINT=ISPACE (IADRES+1)
IALIST (I)=IPOINT

CONTINUE

UPDATE THE BLOCK POINTERS WITHIN THE BLOCK DATA FIELDS

30

I=1
ILEN=ISPACE (I)
HWORDS=(ILEN-3) /2
DO 40 J=I,NWORDS

T T T T e

DEFINE THE USE AND DATA FIELDS

CHECK

sk skdkok ok k ok ok kkkokkkkokk kk ke kkkakkkkkkokkk
IUSE=ISPACE (J+3)
IDATH D=J+34NWORDS
IDATA =ISPACE (IDATWD)
e 3 3 e e o 3 e 3k ok s ofe ok e ok o e ok ok ke sk e ek sk kb ko dk ko ke ok kX

TO SEE IF THE DATAR FIELD CONTAINS A POINTER

(VALUE OF 1)

CHECK

Fkkkkkkkrkkkkkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkkkk

IP (IUSE .NE. 1) GO TO 40

ek ok kb kR kb ok kojeokokodok Rk ko ko okok ok kR ok ok ok ok

TO SEE IF TEE POINTER IS NULL.

RkdokERkkkk kR Rk Rk kR kR ARk kR kR Rk kR kkk
IF (IDATA .EQ. 0) GO TO 40

NEWBLK=IDATA

IPOINT=ISPACE (NEWBLK+1)

ISPACE (IDATWD)=IPOINT

Rk kkkkk kR kR kR k kR kRkkk

THE DATA FIELD CONTAINED BITHER DATA OR A NULL POINTER

- MOVE TO THE NEXT FIELD.

A

EERRREREXFRE RIS RRFRERER R E TR SR AR ERR KK k%
40 CONTINUE
EREERFREREEREERERERERR R RERRRERR R RE R R H R
THE PREVIOUS BLOCK HAS BEEN COMPLETELY PROCESSED MOVE
IHE POINTER TO THE NEXT BLOCK.
R EREEEEEERRFEEE IR FRBREERR R R FRhKk kR Rk *
LENGT H=ISPACE (I)
I=I+LENGTH
knkkkkkkkkkkkkk Rk b kkkkk kkhkk kR kkEhkkokkkk
IF THE NEW BLOCK RESIDES 1IN THE PORTION PREVIOUSLY
LLLOCATED; PROCESS THE BLOCK.
EEFFEEFERERRFRREFERRERRE XK B RFF R AR R R R
IF(I .LT. IFREE) GO TO 30
BELOCATE THE BLOCKS
IFREE 1=1
I=1
50 LENGTH=ISPACE (I)
Aok akkookd ko ok ok ok kokokok dk ok ok kokok okl ok ok koK
IF THE BLOCK IS NOT MARKED - DO NOT RELOCATE —-MOVE TO
THE NEXT BLOCK.

2 3k 3k ook ok g ok ook e ok e ok ok ok sk ook o sk kol 3 ok e o o ok ok sk ok ook ok ok sk ok

IF (ISPACE (I+2) .NE. 1) GO TO 60
kkk
THE BLOCK WAS MARKED — SET THE MARK FIELD BACK TO ZERO
ANRD MOVE THE IFREE1 POINTER TO THE END OF THIS BLOCK.
MOVE THE BLOCK INDICATOR TO THE NEXT BLOCK TO BE
PROCESSED.

ik kpk kR kb kR ke kk ke kk Rk kkkkkkkkk

ISPACE (I+2) =0

72

DO 55 K=I,LENGTH

ISPACE (IFREE1)=ISPACE (K)

IFREE 1=IFREE 1+1
55 CONTINUE
€0 I=I+LENGTH

Ak ok Rkkkkkkkkdkkkkkkkkkkhkkkkkkkkkkk

CONTINUE UNTIL ALL PREVIOUSLY ALLOCATED BLOCKS HAVE
EEEN MOVED OR FREED.

dkkpdckkkkkd kR kkkkkk kR kkkkkkkkkkkkkkkkkkk

IF(I .LT. IFREE) GO TO 50

kdkkk kkkrkkkk kR kkkkkdkkk kkkkk bk Ehkkkk ek ke
UPDATE FREE. ALL ELOCKS THAT ARE IN USE HAVE BEEN MOVED
70 THE LOW END OF STORAGE. THE POINTER “FREE" CAN NOW
BE MOVED BACK TO THE FIRST AVAILABLE BLOCK TO ALLOW
FURTHER MEMORY ALLOCATION.

dokkdok ko kkkok R kRkddokdokkokor kk ki Rdkokkkokkkkk ok kkk
UPDATE FREE

IFREE=IFREE1

RETURN

END

73

5 3% 3 3 2 3 o ok e 2 o e e ok ok o 3k e e e e ke ke ek 3ok o e ok ok ok age e o ol e ok o e s ok ok ok ok ok ok
o ok o o e sk ok e ke ok sk a3 o Al ok e afe e ok o ofe 3 o e ke sk ok ok BEGENi 3 2% e o o o ok e o o e e ek
THIS MODULE IS CALLED BY IGTBLK TO REGENERATE SPACE, IT
CALLS THE MARK AND COMPAC ROUTINES. IT STARTS THE
MARKING PROCESS BY TAKING THE ELEMENTS OF THE INITIAL
ADDRESS LIST AND PASSING THEM TO THE MARK ROUTINE.
CONTROL IS RETURNED TO IGTBLK AFTER CALLING COMPAC
e o sfe o ok ek s e 3k o ok ok 3 ke e o ok s e e o e afe sl e o ol ok e ke ok e ok ook

SUBROUTINE REGENT

COMMON /SPACE /IPTABL (50) , ISPACE (2000)

1,IPUSED, IFREE,IPSIZE,ISIZE

COMMOR /IAL/IALIST (20) ,NLIST,ISLIST

kdkkkkkkkkkkkkkkkkkkkkkkkpkhkkkkkkkkkkk
MARK aiL BLOCKS REFERENCED BY THE IAL
sk kokkdkkdk ok k fekakokkdrkkdkkak kkokok kR kkkkkkk

DO 10 I=1,NLIST

IADRES=IALIST (I)

IF (IADRES .EQ. 0) GO TO 10

IBLK=IADRES

CALL MARK(IBLEK)
10 CONTINUE

tt*#t****t**t*t*t**;**#*#***##***#*****#*

ALL BLOCKS HAVE BEEN MARKED. RELOCATE ALL USED BLOCKS
70 THE LOWER PORTION OF ALLOCATAELE MEMORY.

o 3k sk ok afesfe s ofe 3k ok ok ke 3 o o o 3 3 3k e 3 e ok e ok e o e ke okl Sk ok ok ke ek ki

CALL COMPAC

RETURN

END

4

ek o ok ook bk ok ok o skl ke ke okok ok sk ok ok ek sk ko sk ok ok ke bk ek ok ok ok k ok ¥
Frddkckokokdk koo dekkckkkkkkdk MARK *kkkkkfdkkkkkgkikk
THIS MODULE IS USED TO MARK ALL BLOCKS THAT ARE IN USE
IN THE ALLOCATABLE PORTION OF MEMORY. IT IS CALLED BY
REGEN1, AND IT DOES NOT CALL ANY OTHER MODULE.
Skkdgkkkdkkkdkkkkkkkkgkkkkkkkkkk kR ki kR kkkkkkk
VARIABLES USED
1A -- THE CURRENT BLOCK BEING PROCESSED
IB —- A TEMPORARY BLOCK USED IN TRAVERSING
IC -- A TEMPORARY BLOCK USED IN TRAVERSING
IPOINT —- PIELD USED FOR RELOCATION AND TRAVERSING
TUSEBT —- VARIABLE TO SHOW THE USE — DATA OR POINTER
IDATWD -- SUBSCRIPT TO IDENTIFY A SPECIFIC A DATA WORD
IMARK -- THE MARK FIELD
IDATAB -- VARIABLE USED WITH THE DATA PIELD OF BLOCK IB
Seakaedf ook okokok ek ko ok kR ok dkokok sk ks ok ok ok ke ko ek kk
SUBROUTINE MARK (N)
COMMON /SPACE /IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE, ISIZE
IA=N |
IPOIN T=ISPACE (IA+1)
IMARK =ISPACE (IA+2)
LENGT H=ISPACE (IA)
e ek 3 2k 3k e ok ok ok 3 3 s a3 3 o 3k e e e 3 ob s o ol 3k e ook ke ok kol ek ek ok
IP THE BLOCK IS NOT MARKED, THEN MARK IT AND SET THE
FOINT FIELD.
bk kkkkkkkkkkkkkkkkkkk kb kkk ok kkkkkkkk ¥k
NWORD S=(LENGTE-3) /2

IF (ISPACE(I2+2) .EQ. 1) GO TO 30

75
ISPACE (IA+1) =1
ISPACE(IA+2)=1
IPOINT=ISPACE (IA+1)
IMABK =ISPACE (IA+2)
LENGTH=I SPACE (IA)

dedede ddkiokkk ok ko ok ko k kR kk kokkkkokkkokkokdokk ki ik

INITIALIZE THE TEMPORARY BLOCKS - B AND C.
ddkkkkkkkrkkrrkrrkhkkk krkhkerrhepiokkkkk
IB=0
IC=0
SEARCH
10 CONTINUE
kkdk Rk RkEkk Rk Rhk R kkkk Rk kk bk kR dkkkkk
CHECK THE USE BIT TC SEE IF THE RORD IN MEHORY IS DATA
OR A POINTER. DATA IS REPRESENTED BY AR O, AND A POINTER
IS REPRESENTED BY A 1.
AR AR AR R AR R R R R R
JUSEBT=IA+2+IPOINT
IUSE=ISPACE (IUSEBT)
IF(IUSE .NE. 1) GO TO 20

e T e T T R T T P LY e

THE WORD IS A POINTER. NOW CHECK TO SEE IF IT IS NULL.
2 3 3k 3 ok ok e e 2k o ok o o s ke e o sl ok sk ook ook e ok e o ol e e ks ke ok ok ok
LENGT E=ISPACE (I2)
NWORD S= (LENG TH-3) /2
IDATWD=IA+2+NWORDS+IPOINT
IDATA =ISPACE (IDATWD)

IF(IDATA .EQ. 0) GO TO 20

Fodedeokdk ke ko ko kk ok kokkokk bk kk ko kkkdokkkkkkik

76
THE POINTER IS NOT NOULL. CHECK THE BLOCK THAT IT POINTS
AT TO SEE IF IT IS MARKED,
% 3 s dkeake o ok ol ook o e ke ook sk e el oo ke e ke ek e e e e sk e ke el e e okl
IF (ISPACE (IDATA) .EQ. 0) GO TO 19
IMARK=ISPACE (IDATA+2)
IF(IMARK .NE. 0) GO TO 20
sk sk de sk deokok e sk e sk ek ok ok ko s dke e ok ko ke ok ok sl oo ok ke ok sk ok ok sk ke ok ke ke e ok
DESCEND AS FAR AS POSSIBLE I.E., TRAVERSE THE USE BITS
IN EACH BLOCK UNTIL A POINTER IS IDENTIFIED - THEN GO
T0 THE BLOCK POINTED TO AND START THE TRAVERSE ON IT.
******;*it**#**#******##***#****#****#******#***
ASSIGN THE PRESENT ADDRESS OF THE A BLOCK TO B THEN
CHANGE A TO POINT TO THE BLOCK IDENTIFIED BY THE
FEOINTER IN THE DATA FIELD.
Sk e e otk sk koo ke sk ek e sk ke kol ok ok sk ok ko ok ok ek ok sk ok kb ke ke
DESCEND
IB=IA
IA=IDATA
e e o 2 o ke 3 ok ok s ok o ok Sk e sk e ke ok el ook dedk sk ook ke ek o ke sk o ko e ke ok ke ke
THE BLOCK IDENTIFIED BY THE POINTER IS NOW POINTED TO
BEY "A" SO CHANGE THE POINTER TO POINT TOC C.
kkkkkdkk ko kb pkkkkkk kR kkk kR kk kg
IDATRD=IB+2+K¥ORDS+IPOINT
ISPACE(IDATHD)=IC
IDATAB=ISPACE (ICATWD)

kol ok koo ok o o ok ok o ok koo ol 3 ok skok kokokok kR ok ok ok ko

EARK THE BLOCK AND SET THE POINT FIELD.

3 3k 3 3 3ok 3k ok ok ke ok ok 3 o o S o o ke ook e e e o e oo e sl ok e kool e ok ke

IC=18B

17
ISPACE (IA+2) =1
IMARK=ISPACE (IA+2)
ISPACE (IA+1)=1
IPOIN T=ISPACE (IA+1)
GO TO 30
3k ok o e e o e o ol 3 e ok ok ok sl afe ol sk ok e ksl ok ke ofe ok s ok e ok dfe ok ook ok ek ke
MOVE THE POINTER TO CHECK THE NEXT USE BIT. ASCEND A
LEVEL IF POSSIBLE.
ok e ok e ke o e 2 e e s o ae e e o e 3 o e o ok e oke afe ol e ol e o ol dle e sk ko e sk e ok ek ok
19 WRITE (6, 18) IDATA
20 IPOINT=ISPACE (IA+1)
18 FORMAT(' ','BLOCK REFERENCED BY ',I8,' IS
INVALID.').
IPOIN T=IPOINT+1
ISPACE(IA+1) =IPOINT
LENGTH=ISPACE (IA)
NWORD S= (LENG TH-3) /2
30 IF (IPOINT .LE. NWORDS)GO TO 10
ASCEND
IF (IB .EQ. 0)GO TO 40
IPOINT=ISPACE (IB+1)
IDATHD=IB+2+NWORDS+IPOINT
Rkkkkkkkkkk ki kkkkkkkkkkkkkkkdkkkk ko kkkkkxk
CEANGE C TO POINT TO THE BLOCK IDENTIFIED BY THE
B-BLOCK DATA FIELD. THIS IS A BLOCK THAT WAS PREVIOUSLY
MARKED ON THE DESCENT.
ok ok ok sk kok **_*******#******#** sk ok okokokok koo ook dkok ok ok
IDATAB=ISPACE (IDATWD)

IC=IDATAB

78
e R R P P e s 2
CHANGE THE POINTER IN THE B-BLOCK th& FIELD TO POINT
TC THE CURRENT BLOCK OF A WHICH IS THE BLOCK 1IT
PREVIOUSLY POINTED AT.
e e e e e S e
IDATAB=I2A
Sk okdok Rk ik Rk bk kR ok Rk R dkokk ok kR k FRkkkk R kK
MOVE BACK UP TO PREVIOUSLY CONSIDERED BLOCKS
kxkkkkE kR kkk kR RRkkkk ko kk Rk kR Rk kR Rk Rk
IA=IB
IB=IC
ok ok ok gk ook koo sk ok ook o ok kool ok ok sk ok ok okl
INCREMENT THE POINTER SO THAT THE REMAINING USE BITS
CAN BE CHECKED.
Rk ekkkkkkkokkfokkk Rk Rk dokokokok ok ko ok dokdok ok kokdkokok
IPOINT=ISPACE (TA+1)
IPOINT=TPOINT+1
ISPACE(IA+1)=IPOINT
LENGTH=ISPACE (I2)
NWORD S=(LENGTH-3) /2
Sk gk kkdokiokkkkkkkkdkiokkkk kkkkkkkkkkikkkkiokkkk
IF IPOINT IS KOT GREATER THAN THE LENGTH THEN THE
ENTIRE BLOCK HAS NOT BEEN CHECKED. CONTINUE PROCESSING
THE USE BITS AND DATA FIELDS.
Rk ok kR ok ok Rk Rk ok dkok Rk kR ok kok ok ok kok kK
IF(IPOINT .LE. NWORDS)GO TO 10
40 RETURN

END

79
APPENDIX D
SUBROUTINE GETBLK (NWORDS,IADDRS,LOCK)
sk 3 e aeale e ok e oo ok dfe s ok sk ok e djeakok ek ek ke ki ok sk sk sk ko e dkeok ek 3k
THIS IS A MEMORY MANAGEMENT ROUTINE WHICH PROVIDES
SEQUENTIAL ALLOCATION OF MEMORY.
DEFINITION OF VARIABLES
ISPACE -- USED FOR ALLOCATED BLOCKS OF SPACE
IPTABL -- POINTER TABLE FOR INDIRECT BLOCK POINTERS
IFREE -- POINTS TO THE FIRST CHARACTER IN ISPACE WHICH
IS AVAILABLE FOR ALLOCATION.
ISIZE -— MAXIMUM SIZE OF MEMORY SPACE
IPSIZE -- MAXIMOM SIZE OF THE PTABLE
IPUSED -- POINTER TO THE LAST ALLOCATED INDIRECT BLOCK
POINTER
ko drakok ok ok ook skok ok sk kol sk ok ok kR dedk ok ok ke kk kR kkk
COMMON/SPACE/IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE,ISIZE
WRITE (6,5) IFREE, IPTABL (1)
5 FORMAT(* ', 'IFREE = ',I2,' IPTABL(1) = ',13)
e e 33k 2k e sk e ok 3k o 3 o 3k e o o ok 3k ok ok ok o e e afe o ok o o e ok ook ok ke ok
ASSIGK THE FIRST UNUSED INDIRECT BLCCK POINTER TO I.
ok e ok e o ok ok e s ok e e 3k e ok ok ok e ke ok ke ale ok ok s o sk ofe ok ok o ke o e o e ofe ook ke
I=PUSED+1
DO 10 I=1,IPSIZE
IF(IPTABL(I) .EQ. 0) GO TO 20
10 CONTI NUE
20 IF(I .NE. (IPSIZE+1)) GO TO 50

3 e afeoke sk o e o e e o o el o e e e ol ok ok ol ok ool ok e o sl ok ok ok ok s ok ok ok dkok

ALL INDIRECT BLOCK POINTERS ARE 1IN USE. REGENERATE

80
MEMORY. _
kkkk dkk kR k R Rk Rk kkRk Rk Rk Rk Rk kkkkkkkkkk
CALL REGEN
I=1
e e et e o ok o ook e o o e ook oK o ok o ok ok o ok ok ok koK ok
FIND THE FIRST AVAILAELE INDIRECT BLOCK POINTER.
e dokok kkkokkkok gk kdkgokkdkokk ok kadkok k& ok KRk kK kK
DO 30 K=1,IPSIZE
IP(IPTABL(K) .EQ. 0) GO TO 50
30 CONTINUE
40 IFP(I .NE. (IPSIZE+1)) GO TO 50
REkRk kR Rk kkkkkkkk kR kR k kR Rk r Rk Rk
THE PTABLE IS FULL. PRINT AN OVERFLOW MESSAGE.
#***#tt***t**t*t*#**tt*t***ttttt*#**t*#**tt
WRITE (6, 45)
45 FORMAT({' ', 'PTAELE IS FULL--UNABLE TO CONTINUE')
RETURN
50 IPUSED=I1
ko ddok ko k Rk ko ko ek kR dkofok Kok koK k ok B Rk ok kok ok ok kok
ALLOCATE A BLOCK OF SFPACE.
e R e e e e
IF ((IFREE+2+NWORDS) .LE. (ISIZE+1)) GO TO 60
e kokokok dokok ok ok o kok ok dk kA ok ok ok ko Rk ok ok ok Bk dOK KRk
SPACE IS FULL. REGENERATE MEMORY.
Rk kkk Rk kR kR kR R Rkk Rk ok kk kR hkk kR kk Rk
CALL REGEN
IF((IFREE+2+NWORDS) .LE. (ISIZE+1)) GO TO 60
ERKEEEERERER KR KRR RRKFRKER FRER KR ERRERRER KRR KKK

ATTEMPT TO REGENERATRE WAS UNSUCCESSFUL. PRINT OVERFLOW

81
MESSAGE.
#*****#*******************;##*#*********
WRITE (6, 55)
55 FORMAT (' ', 'SPACE IS FULL--UNABLE TO CONTINUE')
RETURN
a4 3 e 3k 2 o 3 2 o 3 3 3 s 3k ok 3 e 3k ok o s ok v e ke sfe 3k A e sfe ke e e ofe e o ok ok ek
CREATE THE HEADER AND INDIRECT BLOCK POINTER. THE FIRST
IS USED TO INDICATE THE LENGTH OF THE BLOCK, AND THE
SECOND IS USED TO INDICATE THE PTABLE POINTER. IF THE
10CK IS SET TO ZERO A CONTIGUOUS BLOCK IS DESIRED WHERE
} HEADER IS ONLY CREATED AT THE FIRST OF THE BLOCK.
3 3 ok ok ok ok e ofe o o ofe o ke ok e ok i ok e sl ek sk ol ok ke ok ke ke etk ke ke
60 IF (LOCK .EQ. 0) GO TO 70
IF (IFLAG .EQ. 0)GO TO 80
ISPACE (IFREE) =NWORDS
ISPACE (IFREE+1)=I
IPTABL (I) =IFREE
IFREE=IFREE+2+NWORDS
IADDRS=IFREE-NWORDS
RETURN
2 3 ok 2k ok ok ko ok vk o o ol o ol 2 sk o ok ok sk e e e e sie ol o ok ok ok ok o el e ok ok Ak e ko
PASS THE START POINT OF THE AVAILABLE BLOCK TO THE
CALLING ROUTINE.
dkdeckkokkk ok kokkkkkkkp kg kkkkkk kkokkk k ko kkkok ek kkkk
THE LOCK IS ZERO MEANING THAT A CONTIGUOUS BLOCK IS
WANTED. ASSIGN THE SPACE AND DO NOT CHANGE THE HEADER.

Tk kkkkkokkokokkokdokok ko kR kkkkkkkkkkkkkkkk

70 IF (IFLAG .EQ. 0)GO TO 80

L 222 E 222222 R EE LS RS 22 R 2 R R L2 2 2T LS

82
THE FLAG WAS NOT PREVIOUSLY SET, SO THIS IS THE FIRST
BREQUEST FOR STORAGE WITHIN THIS CONTIGUOUS BLOCK RECORD
THE START POINT OF THE BLOCK OF THE BLOCK AND START A
TALLY ON THE NUMBER OF WORDS.
e 3 aje e e ok o 3 3 ok o 2k o o o o o ok 3k ok ok ok e ok ok sk ofe gk o sk ke ke ok ok
IFLAG=0
ISTART=IFREE
ISPACE (ISTART+1) =I
IPTABL (I) =ISTART
IFREE=IFREE+2+NWORDS
IADDRS=IFREE-NWORDS
ITOTAL=NWORDS
RETURN
80 IP (LOCK .EQ. 1)GO TO 90
koo ook ok ook ok ok kol ok okok ke k ok ook ak ok kakokk ¥k
THE LOCK HAS NOT CHANGED. ASSIGH MORE STORAGE IN THIS
ELOCK AND UPDATE THE NUMBER OF WORDS.
fokkokokkkokok ok ok okokok sk kk kkkkkkkkkkkkkkk
IFREE=IFREE + NWORDS
IADDR S=IFREE- NWORDS
ITOTAL=ITOTAL+NWORDS
RETURN

90 IFLAG=1

. EAERRERK R AR EEREERRR R R R TR R T SRR R
THE BLOCK SHOULD NOW BE CLOSED. PUT THE NUMBER OF WORDS
IN THE HEADER.

EREEREERERERERRRRERR KRR A S EF RS SREE K

ITOTAL=ITOTAL+NWORDS

IFPREE=IFREE+NWORDS

83

ISPACE(ISTART)=ITOTAL

RETURN

END

SUﬁBOBTIEE REGEN

*hkkkhkkkkkrkkk ek kkkkkkkkkkkkkkkhkkk

THIS ROUTINE CHECKS THE INDIRECT POINTER TABLE AND THE
AVAILABLE MEMOBY TO SEE IF SPACE EXISTS. IF EITHER OF
THE TRO ARE FULL, A MESSAGE IS PRINTED STATIRG WHICH
AREA IS FULL ALOKG WITH THE FACT THAT THE PROGRAM
CANNOT CONTINUE. IF SPACE EXISTS IN TEE TWO THE
GARBAGE COLLECTOR IS CALLED AND HMEMORY IS THEN
COMPACTED BY THIS ROUTINE. FOR MORE EFFICIENT OPERATION
THE COMPACTION PORTION MAY BE REMOVED BY LINKING THE
"GARBAGE CELLS". COMPACTION WAS CH&SER INITIALLY FOR
EASE IN MANIPULATING LARGE CONTIGUOUS BLOCKS.

Sk ek kkkkkkkkdkekkkkdkkk kkkkkkkkkkkkkkkkkkf

COMMON/SPACE/IPTABL (50) , ISPACE (2000)

1,IPUSED,IFREE,IPSIZE,ISIZE

I=1 *¥kdkkkdkkdkkkkkiokkdkdedkok dkokkkakdk kb kkkkokok gk kiokk ok Kk

LET FREE1 EOINT TO THE FIRST CELL IN THE ALLOCATABLE
MEMORY. ASSIGN IFREE2 THE VALUE OF (IFREE - 1) FOR THE
PURPOSE OF USING THIS VALUE IN DO-LOOPS.
kkkkkEkFhkEkkkkkkkkkkkkrxkkkrkkkkkkkkkkkk
IFREE 1=1

IFREE2=IFREE-1

kkdkkkkkx kb kkkkkkkkkkkkkkkkk bk kkkkkkkkkkkk

DO WHILE I IS LESS THAN FREE DO 15 I=1,IFREE2

dcde ook kool F ko ok ok ok bk akk oKk skok ok ok ko okokokok ok ke ko

USING THE HBADER INFO ASSIGN THE LENGTH AND INDIRECT

84
ELOCK POINTER TO THE VARIABLES - LEN,AND IBP,
a3 ke e 2 3 o sk ol 2 e o 2 2 e ok e o ok ok o e e 2k e ke o ok e ke 3c ok e e ok ek ek ek

1 LEN=TISPACE (I)

IBP=T SPACE (I+1)

IF (LEN .GE. 0) GO TO 5

3 o ok e ol el e ek ke e ke sk ke e Sk sk ko ke ke skl dkak ok e sk ke sk ok ok ok ok ke
BLOCK IS MARKED. CHANGE ITS INDIRECT PCINTER TO POINT
70 ITS NEW LOCATION.

kkdkkE

IPTABL (IBP) =IFREE1

IPREE1=IFREE1+LEF+2

3 o e el ok ook o o o ok o ok ok ool afe o ok e e ke ok ok ke ok ok ok ko ok sk ki ook

BLOCK I IS NOT MARKED. SET ITS INDIRECT POINTER TO 0.
Fkkkkhkfkkkk kb kkkkkhkkkkdkkkkkkkkkgkkkkkkkk
Go TO 15
5 IPTABL (IBP) =0
15 I=I+LEN+2
IF(I .LE. IFREE2) GO TO 1
ok sk 3k e sk sk ok okak o ok o e 3k ok o ok e sk ok o kol ok ke ok ok s ale ofe ok sk ok ek ksl ofe e ook ko ek
KOVE THE BLOCKS TO A NEW LOCATION IF COMPACTION IS TO
EE USED.
o s 3k o o ofe s ok ok o o ofe o ok koo e e kol ok sk ok ek ok ak sk ok e ke ok ok k%
I=1
IFREE 1=1
16 LEN=ISPACE(I}
IF (LEN .GE. 0) GO TO 30
kokkkkkkkkkkkkikkkkkkkkk kkkkkdkokkkikkkkkkkk
THE BLOCK IS MARKED. RELOCATE THE BLOCK. UNMARK THE

HEADER.

85

e v ke A 3k e ok 3k 3k ok 3k Aok e e s ok o e ke ok ok e e o ok ok o 3 ke ok ok kol e ok ek ok
ISPACE(I) =-LEN
LENGT B=ISPACE (I) +2
DO 20 K=I,LENGTH
ISPACE(IFREE1) =ISPACE (K)
IPREE1=IFREE1+1
20 CONTINUE
30 I=I+LEN+2
IF(I .LE. IFREE2) GO TO 16
a8 e oo e ok o zfesfe e e e ke e ok e s o o e ook ook ok ke sk e sk sk ok ke
UPDATE FREE
e ek ke ek d ofe e Aok dkkeooke ke sk sk ok e s ke s e ok ak sk sk e ke ek ok
IPREE=IFREE1
RETURN

END

86

BLOCK DATA

hkfkkkkkr kb kok ki ok kkk kR Rk kkkkk

THIS ROUTINE INITIALIZES THE TABLES USED BY THE LISP

INTERPRETER. THE LENGTHS OF THE VARIOUS ARRAYS HAVE

BEEN SET SMALL FOR DESIGN AND TESTING, AND THEY WILL

HAVE TO

FOR THE

MEMORY

BE SET TO THE DESIRED SIZE FOR ACTUAL USE.
Nkkkdokkkrdokdkkkkkbrhkkk ek kR rkikkk

DECLARATIOR OF VARIABLES

FUNCT — VARIAELE FOR FUNCTIONS AND SYMBOLS

IARG - VARIABLE FOR THE NUMBER OF ARGUMENTS

FORCT

IPTABL - IKDIRECT POINTER TABLE

ISPACE — ALLOCATABLE SPACE CELLS IN MEMORY

IPUSED - POINTS TO LAST USED CELL IN IPTABL

IFREE - POINTS TO THE FIRST AVAILABLE CELL IN

IPSIZE - SIZE OF THE IPTABL
ISIZE - SIZE OF ALLOCATAELE MEMORY

Sedfeole ook s ok ok ok ke ko ek ok bk kok ok ok kR kg

INTEGER*2 IARG

DOUBLE PRECISION FUNCT

COMMON /TABLE /FUNCT (8 ,24) ,XARG (8,2U)

COMMON /SPACE/IPTABL (50) , ISPACE (2000)

1,IPUSED,IFREE,IPSIZE,ISIZE

COMMON/IAL/IALIST (20) ,NLIST,ISLIST

DATA

FURCT/* (*,'GO*,*CAR','ADD1*,YEQUAL','ABSVAL"', " NUMBERP',

1'UNSPECIAY,"')','EQ',*CDR", "ATON"', *EVENP"', *DEFINE-

', "REVERSE',

87

2'DIFFEREN','$*,'OR',"HOT"',"EVAL' ,"FLOAT' ,'ENTIER-

', YEVALQUOT ",

3'EVALQUOT', *+','<',*SIN', 'FIXP','LABLE", '"FLOATP'-

« YUNTRACE"',

4*GREATERP', "-",'<"','GET"' ,"NULL', " MACRO' ,*LENGTH'-

+YMRPLIST',

SYINTERSEC','."','<',"MAX','PRIN',"PRIN1', *MINUSP'-

« "REMPROP?Y,

6'LEFTSBEIF', ', ",*<',"MIN','SQRT','PRINT',*RETURN"'-

1<ty

7*QUOTIENT', /"', '<','SET','SUB1', '"QUOTE"', *APPEND'-

[] '<'l

B*REMAINDE', "

', *POT' ,'CONS ', "RECIP','"DELETE', '<"',

9Y FACTORIA',*&','<","AND"', "CSET"', "TRACE"', "DIVIDE"'-

l'<'f

1'FUNCTION',*]",'<',*MAX"' ,'EXPT',"ZEROP','EXPAND'-

1<, 1KY,

211,04,
31,0,
grge, e,
510,10,
6T<, <1,
7r<r, 1<,

at(l'l<l'

'<*',"MAPC!,'CSETQ"', "MAPCAR"', '<", <,
'<','PLUS',"LESSP"', "MEMBER"', "<, <",
¢!, "PROG' ,"NCONC"' ,"RPLACA','<','<',
<!, YSETQ', 'PROG2"',*RPLACD','<','<"*,
'<','PROP','TIMES', '"GENSYN "', <", <,
<',"READ','SUBST',"TEREAD', '<", '<",

'<','COND',"RATONM','TERPRI','<','<"',

93%*¢' 'LIST', "LOGOR', "LOGAND"',6*'<",'"PROGN', ' LOG-

XOR',7*1<"*,

1*SELECTY, 7%t "', *LAMBDA, 18*'<"/

DATA

88 |
IARG/24%0,1,2,4,21%0,4%1,5%2,3,4,4,12%0,9%1,7%2,3,0,4,-
4, u4%0,

113%1,7%*2,3,0,4,4,6%1,9%2 ,4%0,3%4 ,2%0,4%1,2,2, 18%-
0,1,7*2,2*1,1“*0/

DATA
IPTABL/50%*0/,ISPACE/2000%0/,IPUSED/O/,IFREE/1/,IPSIZE/~
50/,

1ISIZE 200/
DATA IALIST/20%0/,NLIST/0/,ISLIST/20/

END

89
APPENDIX E
SUBROUTINE TEST1
COMMON /SPACE /IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE,ISIZE
kb kkkkkfhk kb kR kk kR bk bk pkk
THIS MODULE WAS USED AS A TEST TO SEE THAT DATA WAS
BEING STORED 1IN THE USE AND DATA BITS. IT SHOULD BE
REMOVED BEFORE ACTUAL IMPLEMEMTATION.
3 e e e ok o 3 ale o e ale e ok e e ofe e s ol 3 oo o ol ok ok o o ke ok ek
I=IGTBLK (70)
ISPACE(5) =1
ISPACE(75) =144
ISPACE (7) =1
ISPACE(77) =1
RETURN

ERD

90

SUBROUTINE TEST2

couuou/spncnxxpTABL(soy,IspACE(EOOO)

1,IPUSED,IFREE,IPSIZE

¥kkkkkkkkkkkgkkkkkkkkkkkkkkhkkkdkkkkkik
THIS MODULE WAS USED AS A TEST TO SEE IF SUCCESSIVE
CALLS FOR STORAGE WERE PROCESSED CORRECTLY. IT ALSO
CHECKED THE POINTER AND DATA FIELDS TO SEE THAT DATA
WAS CORRECTLY INSERTED. THIS MNODULE SHOULD BE REMOVED
BEFORE IMPLEMEMTATION
skkkdkakkkkdeokkkkokkkkkkk ok okkkkkkgkkkkk

J=IGTBLK (10)

ISPACE (147)=1

ISPACE (157)=167

ISPACE(152) =1

ISPACE(162) =144

K=IGTBLK (10)

ISPACE (174)=1

ISPACE (184) =1

RETURN

END

91
SUBROUTINE TEST3
COMMON /SPACE /IPTABL (50) , ISPACE (2000)
1,IPUSED, IFREE,IPSIZE
L=IGTBLK (20)
ke kdok ek okokaksksdkokokakokdk ko dkesk ok kb kokokdk k
FHIS MODULE WAS USED TO CHECK THE GARBAGE COLLECTOR.
THIS MODULE SHOULD BE REMOVED EEFORE IMPLEMENTATION.
THIS REQUEST SHOULD OVERFLOW MEMORY AND REQUIRE A
GARBAGE COLLECTION.
feofe 3 vhe e el e o 3k e ofe ade 3k ok o ek sk ook ook ke oo sk ke ke afeck ek ok
RETURN

EED

10

12

1

24

25

20

21

30

40

15

50

SUBROUTINE TEST4

COMMON /SPACE /IPTABL (50) , ISPACE (2000) ,
1IPUSED,IFREE,IPSIZE,ISIZE
coﬁHON/IAL/IALIST(zo),NLIST,ISLIST
DIMENSION IWORD (80),IBIT (80)

DO 50 K=1,4

NUM=4

DO 40 I=1,NUM

READ(5,10,END=15) IBIT (I)

FORMAT (I1)

WRITE (6, 12) I, IBIT (I)

FORMAT(" ', 'IBIT(',I2,') IS = TO ',I1)
IF(IBIT(I) .EQ. 1)GO TO 21

READ (5,20,END=15) IWORD(I)

WRITE (6, 24) I, IWORD (I)

FORMAT(' ', 'IWORD(',I2,') IS EQUAL TO ',Al)
FORMAT(' ','IWNORD(',I2,') IS EQUAL TO ', I8)
FORMAT (AU)

GO TO 40

READ(5,30,END=15) INORD (I)

WRITE (6,25) I, IWORD (I)

FORMA T (I8)

CONTINUE

CALL STORE (IBIT,IWORD,NUN,IR)

ISTART=0

ISTOP=0

CALL OUTPUT (IWORD,IBIT,IA,ISTART,ISTOP)
CONTI NUE

CALL FREED (3)

92

70

120

80
95

93
DO 70 I=1,NLIST
IA=I
CALL OUTPUT (IWORD,IBIT,IA,ISTART,ISTOP)
CONTINUE
IFREE=1999
Do 80 I=1,NUM
READ(5,10,END=95) IBIT (I)
IB=IBIT (I)
IF (IBIT(I) .EQ. 1)G0 TO 120
READ(S, 20,END=95) IWORD (I)
WRITE (6,24) I, IHORD (I)
GO TO 80
READ({5,30,END=95) IHORD (I)
WRITE (6, 25) I, IWORD (I)
CONTINUE
CALL STORE (IBIT,IWORD,NUM,IA)
CALL OUTPUT (IWORD,IBIT,IA,ISTART,ISTOP)
RETURN

END

THE DESIGN AND IMPLEMENTATION OF
MEMORY MANAGEMENT AND INITIALIZATION MODULES
FOR A LISP INTERPRETER

by
1EE ROY WHITLEY

B.S., Texas Technological University, 1961

ABSTRACT OF A MASTER'S REPORT
submitted-in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

A LISP Interpreter 1is a program which interprets
strings. This paper describes the design and implementation
of two parts of LISP Interpreter. The parts included are
the memory management and output.

All parts are written in the FORTRAN V programming
language and have been tested on the INTERDATA 8/32 computer.
The memory management module. consists of two different
systems. One system provides'for largerblocks of contiguous
storage and uses only small headers for management. The
second system provides for recursion with varying size cells.
Both systems allocate space dynamically. The output module
prints the user's program and result., The code for all
modules completed and discussed as a part of this report are
included in Appendices to the report.

The output and memory management modules are to be
combined with input, scan, interpreter, and executor modules
to form an efficient high level language interpreter for use
on minicomputers. These other modules are the subjects of
other reports by different authors. To insure compatability
the modules in this report are designed for maximum

portability with minimum adaption.

