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Abstract

This study explored the potential use of ANNSs for profiling and characterization of
various environmental sites. It investigates the following environmental site profiling cases:
1. Two-dimensional and three-dimensional characterizations of a hypothetical data-
rich site by various profiling methods
2. Two-dimensional characterizations of the inorganic materials (lead and copper) in
soil and groundwater at a landfill site
3. Three-dimensional, time-related profiling of explosive-related contaminants
(perchlorate) at the Massachusetts Military Reservation site
When examining the performance of various site profiling methodologies for a
comparative analysis, a static ANN with back-propagation algorithm was used to model the
environmental containment at a hypothetical data-rich contaminated site. The performance of the
ANN profiling model was then compared to the following profiling models: (1) Inverse Distance
to a Power, (2) Kriging, (3) Minimum Curvature, (4) Modified Shepard’s, (5) Nearest Neighbor,
(6) Polynomial Regression, (7) Radial Basis Function, and (8) Local Polynomial. The
comparison showed that the ANN-based models proved to yield the lowest error values in the 2-
D and 3-D comparison cases. The ANN-based profiling models also produced the best
contaminant distribution contour maps when compared to the actual maps. Along with the fact
that ANN is the only profiling methodology that allows for efficient 3-D profiling, this study
clearly demonstrates that ANN-based methodology, when properly used, has the potential to
provide the most accurate predictions and site profiling contour maps for a contaminated site.
ANN with a back-propagation learning algorithm was utilized in the site characterization

of contaminants at the Kansas City landfill. The use of ANN profiling models made it possible to



obtain reliable predictions about the location and concentration of lead and copper contamination
at the associated Kansas City landfill site. The resulting profiles can be used to determine
additional sampling locations, if needed, for both groundwater and soil in any contaminated
Zones.

Back-propagation networks were used to characterize the MMR Demo 1 site. The
purpose of the developed ANN models was to predict the concentrations of perchlorate at the
MMR from appropriate input parameters. To determine the most-appropriate input parameters
for this model, three different cases were investigated using nine potential input parameters.

Although the findings for seven-input and eight-input cases were somewhat comparable,
the nine-input case model outperformed the seven and the eight inputs case models, therefore
identifying it as the optimal ANN model for this study. It was determined that the optimal
network model for the MMR perchlorate prediction model contained nine input parameters, nine
hidden node, and one output parameter (9-9-1).

The ANN modeling used in this case demonstrates the neural network’s ability to
accurately predict perchlorate contamination using multiple variables. When comparing the
trends observed using the ANN-generated data and the actual trends identified in the MMR 2006
System Performance Monitoring Report, both agree that perchlorate levels are decreasing due to
the use of the ETR systems. This proves that the ETR systems were both effective and necessary
for the removal of perchlorate contamination at the Demo 1 site, as demonstrated in the contour
maps.

Using the knowledge obtained from the MMR perchlorate prediction model, a similar
ANN with a back-propagation learning algorithm was developed to model the data importance at

the Massachusetts Military Reservation site. In various testing trials, twenty-eight back-



propagation ANN models were developed, which excluded or included certain groundwater
monitoring wells. These models were then used to investigate the minimum number of
groundwater wells necessary to characterize the Demo 1 site accurately.

This research demonstrates the advantages of ANN site characterization modeling in
contrast with traditional modeling. First, no complex mathematical formulations were developed
to describe the behavior of the contaminants, and the ANN model was built up simply by
training on the available laboratory/analytical data. Second, the trained-ANN model can simulate
new scenarios without the need for any additional laboratory analytical-based information. Third,
the developed ANN model is convenient for practical usage by either acting as a standalone
simulator or by being implemented into another program (Microsoft Excel spreadsheet or Surfer
Program). Fourth, flexibility and generality characterized the generated ANN-based models.
Once a decision is made for what networks is to represent a site, this network can be readily used
to predict the contaminant values at any desired location—this demonstrates flexibility. The only
parameter a trained network needs in order to provide such predictions is the input data vector
such as (X, y, z) coordinates of the point at which a prediction is desired. Generality lies in
ANN’s power to capture the mode of change of a contaminant’s parameters based on all

available data.
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4. Two-dimensional and three-dimensional characterizations of a hypothetical data-
rich site by various profiling methods
5. Two-dimensional characterizations of the inorganic materials (lead and copper) in
soil and groundwater at a landfill site
6. Three-dimensional, time-related profiling of explosive-related contaminants
(perchlorate) at the Massachusetts Military Reservation site
When examining the performance of various site profiling methodologies for a
comparative analysis, a static ANN with back-propagation algorithm was used to model the
environmental containment at a hypothetical data-rich contaminated site. The performance of the
ANN profiling model was then compared to the following profiling models: (1) Inverse Distance
to a Power, (2) Kriging, (3) Minimum Curvature, (4) Modified Shepard’s, (5) Nearest Neighbor,
(6) Polynomial Regression, (7) Radial Basis Function, and (8) Local Polynomial. The
comparison showed that the ANN-based models proved to yield the lowest error values in the 2-
D and 3-D comparison cases. The ANN-based profiling models also produced the best
contaminant distribution contour maps when compared to the actual maps. Along with the fact
that ANN is the only profiling methodology that allows for efficient 3-D profiling, this study
clearly demonstrates that ANN-based methodology, when properly used, has the potential to
provide the most accurate predictions and site profiling contour maps for a contaminated site.
ANN with a back-propagation learning algorithm was utilized in the site characterization

of contaminants at the Kansas City landfill. The use of ANN profiling models made it possible to



obtain reliable predictions about the location and concentration of lead and copper contamination
at the associated Kansas City landfill site. The resulting profiles can be used to determine
additional sampling locations, if needed, for both groundwater and soil in any contaminated
Zones.

Back-propagation networks were used to characterize the MMR Demo 1 site. The
purpose of the developed ANN models was to predict the concentrations of perchlorate at the
MMR from appropriate input parameters. To determine the most-appropriate input parameters
for this model, three different cases were investigated using nine potential input parameters.

Although the findings for seven-input and eight-input cases were somewhat comparable,
the nine-input case model outperformed the seven and the eight inputs case models, therefore
identifying it as the optimal ANN model for this study. It was determined that the optimal
network model for the MMR perchlorate prediction model contained nine input parameters, nine
hidden node, and one output parameter (9-9-1).

The ANN modeling used in this case demonstrates the neural network’s ability to
accurately predict perchlorate contamination using multiple variables. When comparing the
trends observed using the ANN-generated data and the actual trends identified in the MMR 2006
System Performance Monitoring Report, both agree that perchlorate levels are decreasing due to
the use of the ETR systems. This proves that the ETR systems were both effective and necessary
for the removal of perchlorate contamination at the Demo 1 site, as demonstrated in the contour
maps.

Using the knowledge obtained from the MMR perchlorate prediction model, a similar
ANN with a back-propagation learning algorithm was developed to model the data importance at

the Massachusetts Military Reservation site. In various testing trials, twenty-eight back-



propagation ANN models were developed, which excluded or included certain groundwater
monitoring wells. These models were then used to investigate the minimum number of
groundwater wells necessary to characterize the Demo 1 site accurately.

This research demonstrates the advantages of ANN site characterization modeling in
contrast with traditional modeling. First, no complex mathematical formulations were developed
to describe the behavior of the contaminants, and the ANN model was built up simply by
training on the available laboratory/analytical data. Second, the trained-ANN model can simulate
new scenarios without the need for any additional laboratory analytical-based information. Third,
the developed ANN model is convenient for practical usage by either acting as a standalone
simulator or by being implemented into another program (Microsoft Excel spreadsheet or Surfer
Program). Fourth, flexibility and generality characterized the generated ANN-based models.
Once a decision is made for what networks is to represent a site, this network can be readily used
to predict the contaminant values at any desired location—this demonstrates flexibility. The only
parameter a trained network needs in order to provide such predictions is the input data vector
such as (X, y, z) coordinates of the point at which a prediction is desired. Generality lies in
ANN’s power to capture the mode of change of a contaminant’s parameters based on all
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CHAPTER 1 - Introduction

1.1 Overview

Environmental site characterization is one of the most crucial and often most expensive
components of any environmental remediation process. With the number of hazardous waste
sites reaching over 30,000 in the U.S., it is important to have a profiling system that is both
accurate and cost-effective. It is estimated that the Environmental Protection Agency (EPA)
spends over $150 billion for remediation purposes while the U.S. Department of Energy and
Defense will spend approximately $1 trillion over the next 20 to 30 years (Nielsen, 2005).

Environmental site characterization is the process by which a specified area is studied
and evaluated for environmental contaminants. This process is the cornerstone of any project,
whether it be for risk assessment, monitoring, or remediation purposes. Because of the nature of
the situation, it is important that the site characterization is carefully planned and implemented.
Inadequate site characterization can lead to a faulty remediation program. According to Nielsen
(2005), the most common reasons for the failure of conventional methods of environmental site
characterization programs are:

e Inexact or incomplete definition of site geology and hydrogeology, which results in
improper positioning of monitoring wells, or selection of inefficient remediation
methods.

e Poor definition of contaminant distribution, which results in placement of too few (or too

many) monitoring wells to accomplish project objectives, or incomplete site cleanup.



e Inadequate collection of chemical data (i.e., incorrect analyses or wrong detection limits),
resulting in monitoring for too few chemical parameters, selection of inappropriate

analytical methods, or selection of an inappropriate remedial approach.

Conventional methods of environmental site characterization for subsurface assessment
for remediation or monitoring purposes often involve field sampling and laboratory analyses of
soil and water samples for specific contaminants species. Even though these procedures are well
established and produce reliable results, they have a number of disadvantages. Among others,
they are not measured in real time, and they are sometimes destructive because excavations are
needed to obtain soil samples. Furthermore, the sampling and testing processes can be quite
laborious and expensive. Various investigations have been carried out to develop alternative,
nondestructive methods for such routine measurements. One possible method is the application
of artificial neural networks (ANN) in environmental site characterization. This method has
proved to be an effective modeling method for the prediction of migration paths of
environmental contaminants.

A new era of engineering modeling came with the introduction of the ANN technique at
the beginning of 1990s by Ghaboussi, et al. (1991). The ANN modeling approach has been
receiving increasing favor in the engineering area during the last 15 years. Its massively parallel
distributed structure and its ability to learn, and therefore generalize, gives the ANN-based
modeling approach the following advantages over a traditional modeling approach:

1. ANN can directly learn relationships and correlations implicitly contained in the data and
store the information in its connection weights, which avoids the difficulties arising from
the lack of theoretical principles, understanding of the mechanisms, and formulating

explicit mathematical expressions encountered in a traditional modeling approach.



2. ANN can describe highly nonlinear relationships.

3. ANN model can be easily improved by learning from new available data and expanding
the application scope without creating another model as traditional modeling does.

4. No calibration test is needed.

5. ANN has the ability to extract the correct information from the noisy data and perform

gracefully in case of partial damage. This feature is called fault tolerance.

However, the uses of ANN modeling for site characterization of inorganic materials such
as heavy metals (i.e. lead, copper) and explosives-related contaminants (i.e. perchlorate) in water
and soil have not been widely reported in the literature. For this reason, this research will explore
the potential use of neural network modeling for predicting the amount and distribution of

inorganic materials and explosives-related contaminants at contaminated sites.

1.2 Problem Statement

1.2.1 Two-dimensional and three-dimensional characterizations of a hypothetical
data-rich site by various methods

Over the years, many methods have been developed to profile environmental
contaminants in soil media and/or groundwater. These methods vary in their ability to make
precise and accurate predictions. This thesis investigates the differences between the following
nine profiling methodologies: Inverse Distance to a Power, Kriging, Minimum Curvature,
Modified Shepard’s, Nearest Neighbor, Polynomial Regression, Radial Basis Function, Local
Polynomial, and ANN. Because each method uses an individualized logic, the accuracy of the

methods’ predicted profiles is expected to vary. To illustrate this, a hypothetical data-rich



contaminated site measuring 1000 ft in the X direction by 1000 ft in the y direction will be used
for the purpose of the comparison. Accordingly, a small fraction of the available data (about 1%)
is presented to each method for site profiling. A comparative study of the models’ site profiling
outcomes/predictions is then performed in order to assess the most accurate site profiling

methodology.

1.2.2 Two-dimensional characterizations of the inorganic materials (lead and copper) in
soil and groundwater at a landfill site.

At the start of any remediation process, it is important to obtain accurate, in-depth
information regarding the extent of contamination at the investigated site. But this is not a
simple task. Each site differs in its geological and hydrological makeup, making it very difficult
to accurately predict the parameters of the contamination (Najjar, Reddi, & Basheer, 1996). Soil
type, characteristics of the underlying material composition, location and depth of groundwater
in relation to the investigation site, precipitation, and the topographical structure of the
investigated site must be taken into consideration by the investigative team. Most site
investigations begin by determining contamination by creating a grid of the area under
investigation and obtaining samples at locations in both the x and y directions across the site. In
theory, the most accurate information could be obtained by collecting samples at each
intersecting point on the grid throughout the entire site. This, however, is not economically
feasible.

In order to help investigators determine which locations should be sampled, a number of
mapping methodologies have been used. Most of these methods, however, have many
constraints that make it difficult to apply the model to more than one specific site. Many

different variables, such as temperature, precipitation, and so on, must be assessed and entered



into the model (Rizzo & Dougherty, 1994). Because of the complexity of the required variables,
the model must be recalibrated to each specific location. One model that does not require such
in-depth calibration is Back-propagation Artificial Neural Networks (BPANN).

BPANN is a system that learns by example. It has the ability to take known data and find
a relationship within the given parameters regardless of the complexity of the relationship
between the input and output data (Basheer, 1998). In this thesis, a BPANN model will be used
to predict the extent and location of lead and copper contaminants within the Kansas City landfill

arca.

1.2.3 Three-dimensional time-related profiling of explosive-related contaminants
(perchlorate) at the Massachusetts Military Reservation site

Due to the nature of its operations, the United States military has long been a major
contributor to the contamination of groundwater. With 10,444 operational ranges located in the
United States and its territories, the problem of contamination within military-owned land has
become worrisome. One of these ranges is Camp Edwards, located on the Massachusetts
Military Reservation (MMR). Camp Edwards has been used for military mortar and artillery
training exercises since the early 1900s. Because of the lack of environmental regulation prior to
1970, the use and disposal of military munitions went unmonitored, leading to the contamination
of Cape Cod’s primary source of drinking water, the Cape Cod Glacial Aquifer. However, in
1982, the Department of Defense (DOD) launched investigation and clean-up efforts of
contaminated groundwater and soil at the MMR. The investigators found that 79 different areas
on the MMR had potential environmental issues.

As of 2004, 77 out of the 79 sources have been addressed, but the cost of the

investigation has been devastating (Ogden, 1999.) The fiscal year 2005 budget for clean-up



efforts at the MMR was $25.8 million with a total estimated clean-up cost of $860 million. A
large portion of this expense is due to the collection and analysis of groundwater and soil
samples.

The cost of sample collection and analysis can vary greatly depending upon the
individual in charge of site remediation. Generally, sample locations are determined using the
professional judgment of the site investigator team (Najjar, Reddi, & Basheer, 1996). Because
each site is unique, there are no specific guidelines regarding the number or location of samples
to be obtained at any given site. This can lead to over-sampling in uncontaminated areas, hence
increasing the total cost of the remediation process. Fortunately, advances in information-based
technology are allowing scientists and engineers to perform their jobs in ways that are both more
time-efficient and cost-effective. One approach that is being utilized more frequently is ANN
modeling. Accordingly, ANN-based profiling models, once appropriately trained, can predict
areas of contamination at their specific site.

This thesis will discuss the development of a neural network model at the MMR site at
Camp Edwards. By taking known data from the Demo 1 site, which is located within Camp
Edwards, a model can be created to help predict the areas and extent of perchlorate
contamination. This information may decrease the number of unnecessary samples collected,

therefore potentially decreasing the cost of sample collection and analysis.

1.3  Objectives
The broad objective of this study is to explore the potential use of neural network
modeling to predict the migration path and concentration of any environmental contaminants.

The overall scope includes the following tasks:



1. Comparing the ANN profiling model performance to eight well-known profiling
methodologies.

2. Develop a BPANN for modeling the extent and location of lead and copper in soil and
groundwater within the Kansas City landfill area. This will be accomplished by:

1) Collecting and analyzing samples of groundwater and soil at various locations
throughout the landfill site.

i) Developing appropriate neural network-based profiling models using results
of samples from known locations.

1i1) Developing 2D Profiles that can accurately map the spatial concentration of a
specific contaminant.

3. Explore the potential use of neural network modeling for predicting the amount and
distribution of perchlorate at the MMR. Experience gained from modeling the lead and
copper profiles in soil and groundwater within the Kansas City landfill area will be
utilized to develop initial ANN-based models for the MMR site.

4. Utilize data collected in the MMR-DEMO 1 to assess the performance of ANNs for
predicting concentrations of perchlorate.

5. Evaluate various criteria for ANN model performance assessment in order to provide
useful guidance to water resource managers and others assessing the applicability of a

modeling strategy for highly variable water quality parameters.

1.4 Organization of Dissertation

The dissertation consists of nine chapters. Summary of each chapter is as follows:
Chapter 1-Introduction: This chapter presents a brief discussion on environmental site

characterization modeling using both a traditional modeling approach and ANN modeling
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approach. It addresses limitations and advantages of the traditional modeling approaches and the
ANN modeling approach. It presents research objectives and organization of dissertation.

Chapter 2-Literature Review: This chapter first presents a brief literature review for
several of the traditional environmental site characterization modeling approaches. The ANN
material modeling approach section highlights several publications on ANN modeling that
contribute significantly to the success of this research.

Chapter 3-Artificial Neural Network: This chapter presents the study of ANN-based
computational algorithms and discusses issues pertaining to the development of an efficient
ANN model.

Chapter 4-Two-dimensional and three-dimensional characterizations of a
hypothetical data-rich site by various methods: This chapter highlights the differences
between eight profiling methods and ANN methodology. This chapter uses a hypothetical data-
rich contaminated site to assess the most accurate site profiling method.

Chapter 5- Two-dimensional characterizations of the inorganic materials (lead and
copper) in soil and groundwater at a landfill site: This chapter presents in detail the
development of an ANN profiling system to investigate an abandoned landfill site in Kansas
City, KS. The developed ANN systems will be trained on existing data and then used to predict
the amounts and distribution of lead and copper contaminants within the landfill area.

Chapter 6- Study Area: the Massachusetts Military Reservations. This chapter
provides background information on the MMR. This chapter also provides background
information on perchlorate, including some of its chemical proprieties, health risks and

regulations.



Chapter 7- Three-Dimensional Characterization of the MMR Perchlorate
Contaminated Site. This chapter presents in detail the development of a neural network model
at the Demo 1 site at Camp Edwards. By taking known data from the Demo 1 site, a model will
be created to help predict the areas and extent of perchlorate contamination.

Chapter 8-ANN-Based Profiling: Data Importance. This chapter will explore the use
of ANN:Ss to predict the critical number of monitoring wells needed to accurately characterize the
extent of the perchlorate contaminations at the Demo 1 site. The purpose of the research in this
chapter is to develop a tool that can be used at some later time to evaluate the effectiveness of the
current groundwater monitoring network in regards to the Demo 1 explosive-related contaminant
plume.

Chapter 9-Summary, Conclusions and Recommendations: This chapter presents the
important conclusions obtained from this research study and points out few recommendations

for future research studies.



CHAPTER 2 - Literature Review

2.1 Application of Artificial Neural Networks in Environmental Site

Characterization

Modeling contaminant behavior constitutes a critical part in the design and analysis of
geoenvironmental systems. Several modeling methodologies have been (and continue to be)
developed to characterize complex contaminant behavior. The role of all these modeling
methodologies is to characterize multiple behaviors of contaminants such as inorganic materials
(i.e., lead, copper, and perchlorate), microbial indicators of fecal contamination, agricultural
contaminants and explosives-related contamination. The literature reviewed in this chapter
addresses several topics related to environmental site profiling modeling and ANNSs.

One of the first steps in the remediation process is to determine the characteristics of the
contaminated site. This includes not only obtaining historical and geological information about
the site but, most importantly, determining the location and concentrations of contaminants at the
site. This is done by collecting samples at selected points throughout the area of concern and
analyzing the samples to determine the concentration of the contaminants. Each sample will have
its own unique set of data, which includes the location of the sample (latitude, longitude and
depth) and a concentration. With this information, a detailed map of the contaminated site can be

created.

2.2  Traditional Methods

Over the years, traditional methods for environmental site characterization have been

relied upon to predict the amount and distribution of pollutants within the contaminated areas.
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One such profiling methodology commonly utilized is the resistivity method. Rosqvist et al.
(2003) employed this method for profiling leachate contamination at municipal landfill sites.
This method is based on the knowledge that leakage from municipal solid waste deposits tends to
have high ion concentrations and low resistivities, allowing for geoelectrical imaging. Along
with soil and water analysis, this method was used to study the geoelectrical measurements at
two landfill sites in South Africa and to map the leachate contamination of the sites. The
geoelectrical imaging technique used in the study was described as follows:

“The resistivity method is based on measurement of the potential distribution
arising when electric current is transmitted to the underground via electrodes. The data
acquisition was done as two-dimensional (2-D) resistivity imaging, using the ABEM
Lund Imaging System in a version that also allowed measurements of time-domain
induced polarization (IP) data in ten time windows. The system is computer controlled
and consists of a resistivity-IP instrument, a relay-switching unit, four electrode cables,
connectors and steel electrodes. The 2-D imaging layouts used comprise around 80
electrodes, and measurement lines can be expanded via a roll-along technique. A gradient
array electrode configuration was used in order to get good resolution (Dahlin & Zhou,
2003). The measured data was processed with inverse numerical modeling (inversion) to
produce model cross-sections of the resistivity and chargeability distribution of the
ground using software Res2dinv.”

After conducting studies at both landfill sites, the authors found that the maps of the
leachate plumes obtained by the resistivity measurements were in agreement with earlier studies
of the sites in terms of the extent of the plumes (Dahlin, 2004). Images created by the mapping

system showed the differentiation between the layers of soil as high resistivity, intermediate
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resistivity and low resistivity. The contents of each layer were confirmed by drilling surveys. The
authors found the mapping of the sub-surface leachate plume migration at the landfills to be
“successful” and “advantageous.” They wrote:

“The groundwater quality measurements correspond well to the geoelectrical

measurements, bringing together a good picture of the extent of the leachate plumes. The

leachate plumes clearly indicated by previous investigations have been confirmed by the
interpretation of the resistivity data at both sites. Also, the extent of the leachate plumes
as mapped by the geoelectrical imaging corresponds fairly well to the development of the
leachate plumes reported in previous investigations.”

From their studies, we can conclude that the resistivity method is one that could produce
reliable information for the remediation of leachate in plumes while saving time and money
when compared to traditional site sampling methods.

Another traditional methodology often utilized is Iso-Surface. This method can be used to
create contour maps of a contaminated site. Jones and Davis (1996) explored the use of an
interpolation scheme to generate a continuous 3-D function that represents a contaminated
plume. The function was of the form c=f(x,y,z), whereas, at any given location (x,y,z) the
function returns an estimate of the concentration of the contaminant at that point. These
estimated concentrations along with the sampling values could be entered into the nodes of a
three-dimensional grid, which can then be used to generate a three-dimensional plot of the plume
using a software program called Iso-Surface.

According to Jones and Davis (1996):

“Iso-surfaces are the three-dimensional equivalent of two-dimensional contour

lines. Just as a contour, or iS0-line, represents a constant value of a two-dimensional
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function, an iso-surface represents a constant value of a three-dimensional function. In
the case of plume characterization, a threshold concentration value is selected to compute
the iso-surface. The volume inside the surface represents the region where the
concentration is greater than the threshold value, and the volume outside the surface

represents the region where the concentration is less than the threshold value.”

When discussing how the Iso-Surface program functions, Jones and Davis (1996) state:
“Iso-surfaces are typically constructed using a “marching cubes” algorithm. A marching
cubes algorithm constructs an iso-surface by processing each cell in the three-
dimensional grid independently of the other cells. The concentration values at the eight
corners of the grid are compared to the iso-value to determine if they are greater, equal to,
or less than the iso-value. Depending on the status of the cell corners, a set of small
triangles representing a portion of the iso-surface is created and added to a list of
triangles. Once each of the cells has been processed, the iso-surface is represented by the

entire set of triangles generated in this fashion.”

Although programs such as Iso-Surface can be very beneficial in the mapping of
contaminants, it is essential that the interpolation algorithms be fully understood to ensure that
the data is interpreted correctly. Jones and Davis (1996) state:

“This interpolation process is the most critical step in the plume visualization process. In

most cases, the data are sparse and the choice of interpolation scheme can have a

dramatic effect on the results. There are several unique problems associated with three-

dimensional interpolation of contaminant data that must be understood in order to ensure
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that the resulting iso-surfaces are a reasonable and accurate interpretation of the measured
concentrations. These problems include improper inference of maximum concentrations,
negative concentrations, oscillations, data clustering, and problems associated with
Kriging.”

By being aware of such problems and making the necessary adjustments, programs such

as Iso-Surface can effectively and accurately plot the areas of contamination.

2.3 Artificial Neural Networks Methodology

Conventional methods of subsurface assessment for remediation or monitoring purposes
often involve field sampling and laboratory analyses of soil and water samples for specific
contaminant species. Even though these procedures are well established and produce reliable
results, they have a number of disadvantages. Among others, they are not measured in real time,
and they are sometimes destructive because excavations are needed to obtain soil samples.
Furthermore, the sampling and testing processes can be quite laborious and expensive. Various
investigations have been carried out to develop alternative, nondestructive methods for such
routine environmental site characterization. The application of ANNs in environmental site
characterization has proved to be an effective modeling method for the prediction of migration
paths of environmental contaminants. Therefore, many researchers are utilizing the ANN to
predict areas and the extent of contamination at a given site.

According to Adeli (2001), ANNs are becoming increasingly useful in Civil Engineering.
Adeli (2001, p.132) reviews many experiments in which ANNs have been particularly useful.
For instance, in 1994, Karanthi used ANNSs to successfully predict river flow (Adeli, 2001, p.
132); meanwhile, Du, et al., (1994) were able to use a back-propagation algorithm in their ANN

to predict solubilization levels of heavy metals in sewer sludge (Adeli, 2001, p. 132). Then, in
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1995, Grubert used an ANN to predict “the flow conditions at the interface of stratified estuaries
and fords.” Meanwhile, Crespo and Mora used ANNSs to help estimate the flow of streams and to
help predict carbon dioxide concentration (Adeli, 2001, p.133). Three years later, Thirumalaiha
and Deo used the ANN to forecast river flow in real time.

In 1996, Kao and Liao used an ANN to help select solid waste sites, and in 1997 Tawfik,
et al., used an ANN to model “stage-discharge relationships at stream gauging locations at the
Nile River (Adeli, 2001, p.132). During the same year, Deo et al. used ANNs to predict the
height of ocean waves over short periods of time.

Adeli also reports increasing use of ANNSs in the late nineties. In 1996, Basheer and
Najjar used the networks to “model fixed-bed absorber dynamics.” Meanwhile, Rodriguez and
Serodes used the back-propagation method to determine what dosage of disinfectant ought to be
applied to re-chlorinated water. In the same year, Maier and Dandy used ANNSs for a variety of
purposes, including water salinization prediction. Meanwhile, Deo and Chaudhari used the
networks to predict tides inside estuaries and bays (Adeli, 2001, p. 133).

Gangopadhyay, et al., used a graphic information system combined with a back-
propagation ANN to generate profiles of subsurfaces and to identify the distribution of
subsurface materials in 1999 bays (Adeli, 2001, p. 133). In 2000, Liu and James used a BPANN
to “estimate the discharge capacity” in two-stage channels. Guo used the ANN to model

watersheds for urban areas with small drainage areas. (Adeli, 2001, p.134).

2.3.1 ANN in Water Contamination Profiling

This following section will review the use of ANNSs for water contamination profiling.
Tabach used an ANN to analyze groundwater contamination in a road project (Tabach, 2007, p.

766). He did so by training the network to estimate the depth of the contaminated zone and the
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volume of soil pollution infiltration. Tabach built his database by using as inputs the following:
cover layer permeability, cover-layer thickness, water-table depth, and soil-pollutant contact
time. His outputs, then, are the depth of contaminated soil and infiltrated pollutant quantity
(Tabach, 2007, p. 767). Tabach’s model based on ANNSs is able to successfully assess the
contamination of unsaturated soil by a trichloroethylene spill in a road accident.

Besaw (2006) used an ANN as an alternative to traditional time-consuming Kriging
methods. In contrast to traditional methods, Besaw reports that ANNs are a cost-effective,
reasonably accurate, and speedy alternative. Rather than relying on linear, mathematical models,
Besaw creates non-linear maps of “statistical relationships between multiple variables” (2006, p.
5). Because traditional Kriging methods are complicated and time-consuming, adding input
variables can greatly increase the time needed to complete analysis. In contrast, Besaw found
that adding input to ANNs increases their performance.

According to Besaw, the ANN can make accurate predictions with only a limited amount
of data. To demonstrate this, the team created a counterpropagation ANN, which “self-adapts to
create statistical mappings of predictor and associated response vectors” (2006, p.1). Besaw and
his team trained their system with previously collected hydroconductivity data, using inputs of x
and y. Trained on the patterns from the hydroconductivity data, the system functions as a lookup
table, and is then able to create non-linear maps to predict future events. Besaw reports the ANN
to be sufficiently accurate.

Li (2006) used an ANN to address the problem of subsurface contamination by light non-
aqueous phase liquids (LNAPLSs). In his study, Li and his team use an ANN to simulate a
hydrocarbon recovery process at a petroleum-contaminated site. Traditionally, environmental

scientists use dual-phase or multiphase extraction methods to obtain samples, but such methods
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are time-consuming. Therefore, Li tested ANNSs as an alternative. The team used groundwater
extraction rate, vacuum pressure, and saturation hydraulic conductivity as inputs and cumulative
hydrocarbon recovery volume as an output. They used the data to train their network, “from
implementation of a multiphase flow model for dual phase remediation process under different
input variable conditions” (Li et al., 2006, p.1).

After training their model, Li and his team were able to forecast cumulative oil volume
under a variety of conditions. Using some data sets for training and others for verification, they
were able to ensure the accuracy of their model. Li’s team found that ANN was reasonably able

to detect contaminants (Li, et al., 2006, p.1).

2.3.2 ANN in Soil Contamination Profiling

The following section will review the use of ANNSs for soil contamination profiling.
Amegashie (2006) used an ANN to determine the locations of heavy metals, by using
permittivity measurements (Amegashie, et al., 2006, p.2). Because permittivity can be measured
over a large range of frequencies, large databases can be created from permittivity data, which an
ANN can then use to create maps and models (Amegashie, et al., 2006, p.2).

Amegashie’s team developed two models. They used one model, the ANN-MS, to detect
the presence of metals. The team trained the ANN with 164 samples and designed it to output
“yes” when heavy metals are present in a sample, and “no” when no metals are present. The
team found that the ANN-MS accurately classifies and detects copper, zinc and lead. Indeed,
Amegashie indicates that the ANN-MS is able to identify 46 of 52 samples lacking heavy metals
and 57 of 60 samples containing heavy metals (Amegashie, 2006, p.6). To design their network,
Amegashie’s team used 10 neurons in the ANN-M9’s input layer, eight in the hidden layer and

three sets of training datasets. According to Amegashie, the ANN-M9 (created to classify the
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type of each metal) is not as accurate as the ANN-MS. Nevertheless, the ANN-MO is still able to
correctly classify 13 out of 15 samples containing copper, 21 out of 25 samples of lead, and one
of two samples containing zinc (Amegashie, 2006, p.6).

Juang et al. (1997, p.168) designed an ANN to establish a “realistic working profile of
soil properties.” Because the number of boreholes and soil tests is limited, using traditional
methods can be inaccurate. Yet, Juang et al. concluded that an ANN can accurately predict SPT
N values based on data from limited boreholes (1997, p. 172). To train their network, Juang’s
team took data from six boreholes. They used the depth of standard penetration tests (SPTs) and
the locations of boreholes as input data, and SPT-N as the output (1997, p. 169). Then, they used
the back-propagation method to train the system. Through trial and error, Juang et al. decided
that the number of hidden neurons ought to be six. They used the Levenberg-Marquardt
algorithm to train their network, thereby training until they reached their error goal (Juang, et al.,
1997, p. 169).

Najjar took Juang’s ideas a step further. Rather than using SPT data, Najjar chose to test
the ability of the ANN to predict cone penetration test (CPT) results (Najjar 2002, p.901).
Although SPTs are used more often, CPTs, according to Najjar, are used for soft clays and
medium to coarse sands. These tests can provide data on the density, angle of friction, soil
stratification, and bearing capacity of an area (Najjar, 2002, p. 901).

Traditionally, scientists have used mathematical models to analyze such data, but these
models usually only allow the examination of one attribute at a time. This necessarily restricts
data that might be useful to environmental scientists. Specifically, says Najjar, they tend to
exclude what could be relevant data. Therefore, they are not suited for 3-D profiling. Najjar

offers the ANN as an alternative. The ANN, he says, can show changes along different soil
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stratification, while predicting more than one variable at a time. An ANN, he says, can also show
how one variable affects another (Najjar, 2002, p. 902).

Najjar takes data from CPT tests related to the following attributes: friction resistance, tip
resistance, and excess pore pressure. He then creates four different networks. Every network uses
xyz coordinates as its inputs, but each network has different outputs. NWA’s output is skin
friction, NWB’s is tip resistance, and NWC'’s is pore pressure. NWD, NWE and NWF are given
different combinations of outputs to demonstrate how variables might affect one another. By
experimenting in this manner, Najjar finds ANNs are able to accurately and simultaneously
predict values for skin resistance and pore pressure at any given point (Najjar, 2002, p. 903).

Buzewski and Kowalkowski (2006, p.598) used “perceptrons” combined with an ANN to
create a model for heavy metal transport.

For the input layers, Buzewski and Kowalkowski used the initial concentrations of
metals in a contamination solution, redox potential, and pH in acid rain, soil properties and TC
and IC carbon content in leakage. The outputs of the ANN are the concentrations of lead, nickel
and cadmium (Buzewski & Kowalkowski, 2006, p. 598). Buzewski and Kowalkowski (2006, p.
591) use 50% of the data as learning material and 25% for validation. The success of the ANN’s
identification leads Buzewski and Kowalkowski (2006, p. 596) to declare that, “The ANN seems

to be the future tool for modeling transport of inorganic substances in real soil profiles.”
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CHAPTER 3 - Artificial Neural Networks

3.1 Introduction

The concept of ANNs was first conceived in 1943 by Warren McCulloch. He was a
neuroscientist that studied how the brain could produce highly complex patterns by using many
basic cells that were connected together. Russell & Norvig (1995) identified the ANNSs as
mathematical models and algorithms designed to mimic the information processing and
knowledge acquisition of the human brain.

Basheer (1998) stated that ANNs are capable of learning by example. Especially when
there are highly nonlinear or complex unrecognized governing relations describing the available
data sets, parameters in the data might or might not be mathematically related to each other.
Fausett, (1994) indicated that an ANN has the ability to capture the relation among these
parameters regardless of how strongly they are related. In this case, ANN can dynamically
process and recognize complex patterns that relate the provided input data variables to the output
data variables, and then precisely provides an efficient input-output mapping. ANNs are often
good at solving problems that are too complex for conventional technologies (e.g., problems that
do not have an algorithmic solution or for which an algorithmic solution is too complex to be

found).

3.2 Elements of an Artificial Neural Network

The basic “architecture” of the neural network refers to its arrangement of

interconnections between the neurons and layers. Najjar, et al., (1996) categorized the typical
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arrangement of the neural network as follows: neuron, input layer, hidden layer(s), output layer,
and connection weights. A schematic architecture of ANN and its four parts is shown in Figure

3.1. A brief description of each part is given in this section.

3.2.1 Neuron

The basic building block of the network system is the neuron, the cell that communicates
information to and from the various parts of the body (Figure 3.2 shows a neuron with its
different constituents). Abrahart & See (2000) stated that that the biological neuron consists of
three main parts, namely:

e A cell body called the soma

e Several spine-like extensions of the cell body called dendrites

e A single nerve fiber called the axon that branches out from the soma and connects to many
other neurons

The axons and dendrites are considered to be responsible for transmitting signals to the
neuron. Figure 3.3 represents an artificial neuron in its simplest form. The incoming lines in
Figure 3.3 represent dendrites. Each line carries a signal from another neuron. The body
represents the soma and the output represents the axon, which in its turn branches to interconnect
with other neurons (Ham & Kostanic, 2000). All artificial neurons interconnect to each other
form what is called an ANN. The McCulloch-Pitts neuron (Figure 3.4) is the most commonly
used neuron model.

According to Ham & Kostanic (2001), each artificial neuron forms a node in the larger
neural network and is constructed of the following basic elements:

e Synapses or connection links send input from one node to another in an ANN. Each

synapse has its own weight or strength. A positive weight indicates an excitatory
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synapse; a negative weight indicates an inhibitory one.

e An adder or linear combiner sums the weighted input signals from other nodes
transmitted via the synaptic connections.

e The activation function limits the amplitude of the output of the artificial neuron. The
activation functions, which are described in greater detail in section 3.6, can be continuous-
values, binary (with range [0,1]) or bipolar (with range [-1,1])

e A bias (0;) may also be present. The bias increases or decreases the net input of the
activation function.

The neuron has one or more inputs and produces one output. The inputs simulate the
stimuli/signals that a neuron gets, while the output simulates the response/signal which the
neuron generates. The output is calculated by multiplying each input by a different number

(called weight), adding them all together, then scaling the total to a number between 0 and 1.

3.2.2 Input Layer

Anderson & McNeil (1992) indicated that the input layer is the least complex of all the
layers because no mathematical calculations occur at this level. Before beginning, the number of
inputs and relevance of the inputs must be decided. Inputs that are believed to have no relevance
on the output should be eliminated. Thus, available input data that affect the output are fed to the
network. The performance of the network depends on the number of inputs. The input layer

receives and processes information and forwards it to the hidden layer.

3.2.3 Hidden Layer(s)

It is at this layer that all the calculations occur. The numbers of hidden layers vary but
there is always at least one hidden layer in every network. Each layer is composed of a set of
neurons. Each layer is interconnected in such a way that the first layer passes information to the

second layer, the second layer to the third, and so forth (Huang & Dong, 1992). This is done via
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connection weights (Figure 3.5). Connection weights connect each neuron in a certain layer to
every single neuron in the next layer. The value of that weight is responsible for adjusting the

output value of the neuron.

Each processing element in a specific layer is fully or partially connected to many other
processing elements via weighted connections. The scalar weights determine the strength of the
connections between interconnected neurons. A zero weight refers to no connection between two
neurons and a negative weight refers to a prohibitive relationship. From many other processing
elements, an individual processing element receives its weighted inputs, which are summed, and
a bias unit or threshold is added or subtracted. The bias unit is used to scale the input to a useful
range to improve the convergence properties of the neural network. The result of this combined
summation is passed through a transfer function (e.g. logistic sigmoid or hyperbolic tangent) to

produce the output of the processing element.

3.2.4 Output Layer
Najjar & Basheer (1996) indicated that the output layer in a network is a layer containing
one or more output neurons. An output neuron will compute a value for a certain parameter or

variable.

Input value to node k: I, = Z:ijOj 3.1
j

The output values Oj that leave a node j on each of its outgoing links are multiplied by a
weight, wj. The input I to each node k in each middle and output layer is the sum of each of its

weighted inputs, wiO; from all nodes j providing inputs (linked) to node k.
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3.2.5 Connection Weights

Connection weights are the interconnecting links between the neurons in the layers
constituting the network. Each neuron in a certain layer should be connected to every single
neuron in the next layer by a connection weight. The value of that weight is responsible for
adjusting the output value of the neuron. The magnitude of the weighted connection is directly
related to the strength of that connection (Romaniuk, 1995). Signals travel between neurons over
weighted connection links. The weight assigned to the connection is multiplied to the signal that
is transmitted. Each connection link has an associated weight, which, in a typical neural network,
is multiplied to the signal that is transmitted. The process of training a neural network involves
the adjustment of the weights based on the given learning rule (Ham & Kostanic, 2000). The
overall net input consists of the sum of the weighted connections (product of the weight times the

signal).

3.3 Back-Propagation Neural Networks

Hertz & Palmer (1991) defined Back-Propagation Neural Networks (BPNN) as multi-
layered, feed-forward neural networks trained using a back-propagation of error algorithm.
BPNN development began in the 1970s, and it has become one of the most highly employed
systems among the engineering and scientific community. Data is entered into the program to
train it. Once the program has been trained, it can then be used to predict certain outcomes. This
ability to predict or simulate a given situation has led to an increased application of ANNS in the
areas of science and engineering (Sarle, 1994).

Figure 3.6 schematically illustrates the structure of a typical multilayer BPNN. In this
figure, BPNN consists of an input layer with three neurons, a hidden layer with two neurons and
output layer with two neurons. In order to calculate the output of a neuron at the output layer, the

24



input must pass through a Sigmoidal function (i.e., transfer function) that is the most widely used
function in various BPNN applications. The produced or obtained outputs are then compared to
actual outputs (i.e., target vectors) to evaluate the error. Consequently, this error is used to
calculate an error function (Hanson, 1995). The resulting error function is used to propagate the
error starting from the weights connected to the last layer (output layer) and backward to the
input layers (that’s the reason why it is called back-propagation of error) in order to modify the
weights. In other words, the error generated by a network is used to adjust the weights of the
connections.

The interconnection weights are not known initially, and thus are given some initial
random (guess) values. The solution obtained using these weights might be far from the target
values. Therefore, the correction propagates backward starting from the output layer and then
from that hidden layer backward to the input layer (Hanson, 1995). The input is forwarded once
again to produce new output values and consequently, new error is calculated to adjust the
connection weights. The procedure of forward activation of signals and the back-propagation of
errors is repeatedly carried out on all available training data sets until the error at the output side
reduces to a prespecified minimum or a permissible tolerance (Najjar et al., 1997; Najjar &
Zhang, 2000). The final connection weights are then stored to represent the network structure,
which can be used later to predict outputs when presented with new data sets where actual output

values are not available.

Feed-Forward Stage
Most applications of BPNN usually incorporate network architectures with only one

single hidden layer, because one hidden layer is found sufficient in providing continuous and
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nonlinear mapping between input and output patterns. When the network receives the input
signals through the input nodes, the normalized values of input parameters are forwarded to the
hidden layer. The same procedure is repeated from the hidden layer to the output layer. When the
signals from the hidden neurons reach the output layer, the accumulated weighted signals can be

obtained at output neuron. Then, the predicted normalized output(s) is (are) obtained.

3.4 Back-Propagation of Error

The objective of the training process is to adjust the connection weights in order to
minimize the Averaged Square Error (ASE). This can be accomplished by utilizing the back-
propagation algorithm, which provides a correction to every connection weight. Accordingly, the
final ASE values are used to compare the performance of the network after every specific
number of iterations; hence, the best performing network can be selected. Major features of the
back-propagation algorithm are:

1. Learning occurs during a training phase.

2. Each input pattern in a training set is applied to the input units and then propagated
forward.

3. The pattern of activation arriving at the output layer is then compared with the correct

(associated) output pattern to calculate an error signal.

4. The error signal for each such target output pattern is then back-propagated from the
outputs to the inputs in order to appropriately adjust the weights in each layer of the

network.
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3.5 Transfer Functions

The activation function, which is sometimes called the transfer or squashing function, is
applied to the net input received by a node. Activation functions can be linear or non-linear and
the output or range of the activation function is usually 0 to 1 or -1 to 1 (Haykin, 1994; Ham &
Kostanic, 2001; Masters, 1993). There are several types of activation functions available for use

in ANNs, and the commonly used ones are briefly discussed in this section.

3.5.1 Sigmoidal Function

Sigmoid, or S-shaped functions, are the most commonly used activation functions in ANNs
(Masters, 1993; Reed and Marks, 1999; Ham and Kostanic, 2001). It is a continuous activation
function, designed to respond relative to the amount of excitation received. This function is

schematically shown in Figure 3.7. Mathematically, it is represented by the following equation:

. 1
f(lnput)= W 3.2

3.5.2 Hard Limiter Function
A hard limiter function can have only two values: zero or one. This type of function is
used in applications where we only need ON/OFF or 1/0 outputs. This function is characterized

by a threshold value, v;. Mathematically, this function is represented as:

f(v) 1if v>0 33
=100 v <0

Figure 3.8 shows a plot of the hard limiter function.
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3.5.3 Threshold Logic Function

In this type of function, the output varies between zero and one, but the relation between

these two values is a linear one. The width of this interval is represented by a parameter « ; this

interval starts at ¢ and has a width of %[ (Zupan & Gasteiger, 1993) as shown in Figure 3.9.

3.6  Model Implementation

The implementation phase of model development consists of learning or training and
validation. Reed and Marks (1999) define training as the process by which the ANN adapts to
learn the relationship or mapping between inputs and outputs. Learning processes consist of
supervised, unsupervised, and reinforced learning and its success is typically measured by some
performance metric. Validation is the testing of the model with input data that was not used to
train the model in order to assess its ability to generalize the relationship between input and

output data.

3.6.1 Supervised Learning

In supervised learning, the network is provided with correct answers to the problem for
every input pattern. The connection weights of the network are adjusted to allow the network to
produce answers as close as possible to target (teacher) answers.

With supervised learning, the ANN must be trained before it becomes useful. (Babovic &
Bojkov, 2001) indicated that the training consists of presenting input and output data to the
network. This data is often referred to as a training data set. That is, for each input provided to
the network, the corresponding desired output set is provided as well. It is considered complete
when the neural network reaches a user-defined performance level. This level indicates that the

network has achieved the desired statistical accuracy as it produces the required outputs for a
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given sequence of inputs. When no further learning is necessary, the weights are typically frozen
for the application.

In supervised learning, there is an output or target specified for every input used in the
training process. Pairs or samples are used during training input-output. The input consists of
a vector of real numbers, with each element of the vector corresponding to an explanatory
variable (Rojas, 1996). For example, in a site profiling modeling application, the elements of
an input vector could be precipitation, groundwater elevation, and streamflow. Each input is
propagated through the ANN and the model output is compared to the target data. The target
data is also a vector of real numbers that gives the values of the variables being modeled by
the ANN. Unless the model is perfectly trained, there will be differences between target data
and the ANN output. The goal of the training process is to optimize the ANN to minimize the
differences between ANN output and target data values by adjusting or updating the weights

between nodes.

3.6.2 Unsupervised Learning

In unsupervised learning, during the training process no sample outputs are provided to
the network against which it can measure its predictive performance for a given vector of inputs
(Rojas, 1996). The network internally monitors its performance. It looks for regularities or trends
in the input data set, and makes adaptations accordingly. Even without being told whether it is
right or wrong, the network still must have some information about how to organize itself. This

information is built into the network topology and learning rules.
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3.6.3 Reinforcement Learning
The third type of learning is reinforcement learning. This is a special case of supervised
learning in which the network is provided only with a critique on the goodness of network

outputs for a given input pattern rather than true answers.

3.6.4 Training of a Network

The training of a network begins by:

1. Making an initial choice of the suitable neural network structure (or architecture),

2. Assigning initial random small values for the connection weights to calculate the
output

3. Finally, selecting a learning rate, which can appropriately control the adjustment
rate of the connection weights.

The training procedure is repeated until the actual and calculated outputs agree within
some pre-determined tolerance. In other words, the network stops learning when weight
adjustment produces no improvement in the output values. Training is performed in order to
determine the best possible values of connection weights for further use as a prediction tool
(Najjar, 1999; Najjar et al., 2000). In this research, the process of training and on-line testing was
repeated thousands of times for networks with different numbers of hidden nodes. Hundreds of
networks were developed and then compared in order to select the one with optimum
performance.

Neural Networks can reach a least-error structure by training, using examples related to
the problem under consideration. A least-error structure is the one responsible for producing
outputs very close or equal to the real desired values (Jain, et al., 1996). Reasonable training

input and output vectors should cover a wide range of the sampling domain. Deriving an
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appropriate and representative mapping between input and output vectors reflects the
effectiveness of neural networks. For proper modeling, a network should at least pass through
two stages, namely training and testing stages. Selected data with their input and output values
are introduced to a network (having a certain number of hidden nodes and layers) so that the
network trains itself to produce output values that are as close to the real values as possible. The
training is achieved by modifying the values of the connection weights. The network stops
learning when adjusting the weights produces no improvement in the output values. The same
network should be tested on data that was never used in training in order to verify the network’s
generalization capabilities. The procedures of training and testing should be repeated for
networks having different numbers of hidden layers and/or hidden nodes. Changing the input
parameters and the number of outputs also affects the performance of a network. This is why at
this stage, we will have hundreds or thousands of networks to compare and select the one with

the optimum performance.

3.7 Accuracy Measures

Generated networks are compared by their performance (i.e., accuracy) parameters.
These parameters are the Averaged Square Error (ASE), coefficient of determination, known as

R-square (R?), and the Mean Absolute Relative Error (MARE %). The ASE value can be

calculated by the formula:

LU 2
# of data sets

y' being the output generated by the network and y being the real value of the parameter.

The MARE value is calculated using the formula:
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2=

y
MARE(% )= 3.5
(%) (# of outputs) x (# of sets)

Generally, we search for the network that produces the minimum values of ASE and
MARE% and the highest R. Testing performance parameters should be considered to select the

best performing network. Training performance measure may used in special cases, if needed.
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Figure 3.1. A typical multi-layer ANN showing the input layer for ten different inputs, the

middle or hidden layer(s), and the output layer having three outputs
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Structure of a Typical Neuron
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Figure 3.2. The basic building block of the network system, the neuron
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Figure 3.3. Artificial neuron in its simplest form
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Figure 3.6. Diagram shows a back-propagation neural network
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Figure 3.9. Threshold logic function
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CHAPTER 4 - Two-dimensional and three-dimensional

characterizations of a hypothetical data-rich site by various methods

4.1 Introduction

Environmental contaminants in geologic media such as soil and groundwater are of great
concern in today’s society. Millions of dollars are spent each year on efforts to clean up areas
contaminated by pollutants from industrial and public waste such as solvents, fuels, and
processing waste. Before cleanup efforts can begin, the area and extent of contamination must
first be determined by using one of several profiling methodologies. In 2004, Chin, et al, stated
that typically, these methodologies take known data and use specific mathematical algorithms to
predict the areas and levels of contamination. In this chapter, the profiling performance of eight
well-known profiling methodologies and ANNs are compared.

When trying to identify an area of contamination, the most accurate and precise means is
to perform soil/groundwater sampling at designated regular intervals throughout the area in
question (Najjar & Mryyan, 2005). This, however, is not a practical method due to cost and time
constraints. Instead, a limited number of samples are collected throughout the area in question.
Many factors determine where and how samples are collected. Generally, sample locations are
determined using the professional judgment of a site investigation team. Once known data is
collected, one of several profiling methodologies can be used to predict areas of contamination.
Eight of the most often-used methodologies (available in Surfer® 8.0 Software:

http://www.goldensoftware.com) for 2-D profiling are: Inverse Distance to a Power, Kriging,

Minimum Curvature, Modified Shepard’s, Natural Neighbor, Polynomial Regression, Radial

Basis Function, and Local Polynomial.
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According to Golden (2007), all profiling methodologies function in a similar manner,
but some methodologies produce more accurate profiles than others. In order to utilize any
profiling methodology, a known set of data must be present. This research used a hypothetical
data-rich contaminated site scenario. Accordingly, data to compare pollution concentration

profiles for 2-D and 3-D cases was generated via different profiling methodologies.

4.2  Surfer® Profiling Methods

Golden (2007) pointed out that Surfer® is a contouring and 2-D surface mapping
program that quickly and easily transforms random surveying data into continuous curved face
contours using interpolation. In particular, the new version, Surfer® 8.0, provides more than
twelve interpolation methods, each having specific functions and related parameters. Below is a

brief description of the most popular methods.

4.2.1 Inverse Distance to a Power

The Inverse Distance to a Power gridding method is a weighted average interpolator and
can be either exact or smoothing. With this method, a weighting power is assigned to data that
defines how the factors will decline as distance from a grid node increases. The higher the
weighting power, the less effect there is on the estimation point further away from the initial grid

node point. Davis (1986) found that the equation used for Inverse Distance to a Power is:

4.1
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Where:

hij The effective separation distance between grid

(Y3541

node “5” and the neighboring point
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(1344

Z; The interpolated value for grid node
Z; The neighboring points

dij The distance between the grid node “j” and the
neighboring point “i”
B The weighting power (the Power parameter)

& The Smoothing parameter

Normally, Inverse Distance to a Power behaves as an exact interpolator. To calculate the
grid node, data points are assigned a fractional weight and the sums of all weights are equal to
1.0. When a known point aligns with a grid node, the distance between that known point and the
grid node is 0.0, and that known point is given a weight of 1.0, while all other points are given
weights of 0.0. Thus, the grid node is assigned the value of the known point (Franke, 1982). One
disadvantage is that the known points are not uniformly spaced among the interpolation points.
Because of this, some clusters of points tend to carry an unnaturally large weight. To minimize
this effect, no point is given an overpowering weight. No point is given a weighting factor equal

to 1.0.

4.2.2 Kriging

Kriging is a geostatistical gridding method that has proven useful and popular in many
fields. This method produces visually appealing maps from irregularly spaced data (Cressie,
1990). Kriging is a very flexible gridding method. Kriging defaults can be used to produce an

accurate grid of data, or Kriging can be custom-fit to a data set by specifying the appropriate
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variogram model. Within Surfer®, Kriging can be either an exact or a smoothing interpolator
depending on the user-specified parameters. It incorporates anisotropy and underlying trends in

an efficient and natural manner (Journel, 1989).

4.2.3 Minimum Curvature

Minimum Curvature is widely used in the earth sciences. The interpolated surface
generated by Minimum Curvature is analogous to a thin, linear elastic plate passing through each
of the data values with a minimum amount of bending. Minimum Curvature generates the
smoothest possible surface while attempting to honor the data as closely as possible. Minimum
Curvature is not an exact interpolator, however. This means that data are not always honored
exactly.

Minimum Curvature produces a grid by repeatedly applying an equation over the grid in
an attempt to smooth it. Each pass over the grid is counted as one iteration (Franke, 1982). The
grid node values are recalculated until successive changes in the values are less than the

Maximum Residuals value, or the maximum number of iterations is reached.

4.2.4 Modified Shepard’s
According to Shepard (1968), the Modified Shepard’s Method uses an inverse distance
weighted least squares method. As such, Modified Shepard’s is similar to the Inverse Distance to
a Power interpolator, but the use of local least squares eliminates or reduces the appearance of
the generated contours. Modified Shepard’s can be either an exact or a smoothing interpolator.
Franke and Nielson (1980) state that the Modified Shepard’s starts by computing a local

least square fit of a quadratic surface around each observation.
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4.2.5 Natural Neighbor

Sibson (1980) and (1981) reported that the Natural Neighbor gridding method is quite
popular in some fields. Natural Neighbor is as simple to use as Nearest Neighbor and provides
more precise results; however, it is only available for 2-D interpolations. Natural Neighbor
requires that a grid be defined.

Natural Neighbor interpolation is a weighted moving average technique that uses
geometric relationships in order to choose and weight nearby points. The equation for the
Natural Neighbor interpolation is (Isaaks & Sirvastava, 1989):

Zn:WiJ(XLYi)
G(x,y) = i 4.2

Where:

e G(X,Y) is the natural neighbor estimation at (X, Y);

e nis the number of nearest neighbors used for interpolation;

e f(Xi,Y;) is the observed value at (X;,y;); and

e W, is the weight associated with f(X;, ;)

According to the Surfer® Users Guide, sometimes with nearly complete grids of data,
there are areas of missing data that a user might want to exclude from the grid file. In this case,
the search ellipse can be set to a value so the areas of no data are assigned the blanking value in
the grid file. By setting the search ellipse radii to values less than the distance between data

values in the file, the blanking value is assigned at all grid nodes where data values do not exist.
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4.2.6 Polynomial Regression
Polynomial Regression is used to define large-scale trends and patterns in data.
Polynomial Regression is not really an interpolator because it does not attempt to predict

unknown Z values. Several options can be used to define the type of trend surface (Draper &

Smith, 1981).

4.2.7 Radial Basis Function

The Surfer® Users Guide states that the Radial Basis Function interpolation is a diverse
group of data interpolation methods. In terms of the ability to fit the data and to produce a
smooth surface, the multiquadric method is considered by many to be the best. Powell (1990)
noted that all of the Radial Basis Function methods are exact interpolators, so they attempt to
honor the data. A smoothing factor can be introduced to all the methods in an attempt to produce

a smoother surface.

4.2.8 Local Polynomial

Lee and Schachter (1980) stated that the Local Polynomial gridding method assigns
values to grid nodes by using a weighted least squares fit with data within the grid node’s search

ellipse.

4.3 Two-Dimensional Case

4.3.1 Mathematical Equation
In order to determine the distribution of contaminants at the hypothetical site, the
following mathematical equation (Equation 4.3) was developed in order to produce the pollutant

concentration value at any given (X, ) location:
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In Equation 4.3, V represents the contaminant concentration value. Note that X and y

coordinates used in this equation refer to the X and y distances (in feet) for the associated

observation point measured from a reference point (i.e., X =0 ft and y = 0 ft).

4.3.2 Databank

Two databases containing X, Yy, and V values were generated for two 2-D cases at various

locations across the site. The site size is 1000 ft in the X direction by 1000 ft in the y direction. To

achieve this objective, the hypothetical site was divided into two grid systems as follows:

1.

25-ft interval case: In this scenario, 25-ft intervals (i.e., AX = Ay = 25 ft) in both X (east) and y
(north) directions were used to generate a total of 1,681 sampling points. The X and y
coordinates and V values of 17 selected points (about 1% of the total sampling points), were
provided for the eight profiling methodologies available in Surfer® software. Each
methodology was then used to predict the corresponding contamination value (V) for the
1,681 designated X and y coordinates representing the site. The resulting data banks were
processed to construct 8 contamination distribution contour maps as well as to calculate the
corresponding Root Mean Squared Error (RMSE) value (using Equation 4.4) associated with
each profiling methodology.

10-ft interval case: Utilizing a 10-ft interval (i.e., AX = Ay = 10 ft) for both X (east) and y
(north) directions, it was possible to generate a total of 10,201 sampling points for the 1000 ft
x 1000 ft site. Similar to the 25-ft interval case, X and y coordinates and V values of 103
selected points (about 1% of the 10,201 total sampling points) depicted in Figure 4.1 were

provided for the eight profiling methodologies available in the Surfer® software. Each
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methodology was then used to predict the corresponding contamination value (V) for all
10,201 designated x and Yy coordinates representing the site. The resulting eight data banks
were processed to construct eight contamination distribution contour maps and to calculate

(using Equation 4.4) the corresponding RMSE value associated with each methodology.

4.3.3 ANN Model Development

Unlike Surfer® 8.0 methodologies, the ANN-based profiling model requires the user to
train or educate the network about the process it is to model. To train the network, a known set of
input data along with the desired outcome is used [Dowla & Rogers (1995), Mryyan & Najjar
(2005), Najjar & Itani (2000)]. The BPANN methodology [example, Najjar (1999)] using the
supervised training approach can be used to train the desired ANN models to produce output
values that are as close to the real values as possible via repeated modifications of the network’s
connection weights. This process typically continues until the error at the output layer is
minimal. Once this training process is complete, the developed model can then be used for
prediction tasks.

Neural Networks can reach a least-error structure by training, using examples related to
the problem under consideration. A least-error structure is the one responsible for producing
outputs very near or equal to the actual desired (target) values. Reasonable training input and
output vectors should cover a wide range of the sampling domain. Deriving an appropriate and
representative mapping between input and output vectors reflects the effectiveness of ANNSs. For
proper modeling, a network should pass through at least two stages, namely: training and testing
(Najjar, Reddi & Basheer, 1996). In the training stage, selected data with their input and output
values are introduced to a network (having a certain number of hidden nodes and layers) so that

the network trains itself to produce output values that are as close to the target values as possible.
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The training is achieved by modifying the values of the connection weights (Najjar & Basheer,
1996). The network stops learning when weight adjustment processes produce no improvement
in the output values. The same network should be tested on data not used in training to verify its
generalization capabilities. The procedure of training and testing should be repeated for various
networks having different numbers of hidden layers and/or hidden nodes.

Najjar (1999) explained, when developing any ANN model, it is important to determine
what input and output values will be used. For the hypothetical data-rich contaminated site case
considered herein, the x and y coordinates are used as the only input values for the model. The
pollution concentration value (V) is used as the output for their associated network model. In this
case, X and Yy coordinates refer to the x and y distances (in feet) for the associated observation
point, measured from a reference point (i.e., X =0 ft, y = 0 ft).

For the 25-ft interval case (i.e., AX = Ay = 25 ft), a network model was developed by
using the same 17 points used by the eight Surfer® Software methodologies. For the ANN case,
12 data sets were used for training and the remaining five data sets were used for testing
purposes. The best performing BPANN was determined by carrying out a number of adaptive
training and online testing trials [as indicated in Najjar (1999)] in order to arrive at the least error
on the testing data sets. According to Najjar (1999), overall BPANN is defined as the network
yielding the least error [in terms of Averaged Squared Error (ASE) value] on the testing data sets
from among all evaluated trial networks. In this case, overall BPANN was achieved at ASE
value of 0.010856 and a structure topology noted as 2-3-1 (i.e., 2 inputs representing X and Yy
coordinates, 3 hidden nodes, and 1 output denoting the associated value of the V variable). Once

this network was established, it was then used to predict the V values at all 1,681 location points
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for the site. The predicted values were used to construct a contamination distribution contour
map and to calculate the corresponding RMSE value for this network model.

In the 10-ft interval case (i.e., AX = Ay = 10 ft), a network model was developed by using
about 1% of the total 10,201 data points (i.e., the same 103 data points used by the Surfer®
Software methodologies). In this ANN development case, 75 data sets were used for training,
and the remaining 28 data sets were used for online testing purposes (Najjar, 1999). Figure 4.1
shows the locations of the selected training and testing data points. Various ANN work by Najjar
and his co-workers [Ali & Najjar (1998); Huang, et al. (2006); Mandavilli, et al. (2005); Mryyan
& Najjar (2006); and Najjar & Felker (2003)], points out that it is highly imperative that the
training data sets contain all data sets that have extreme attributes in terms of locations and
values. Accordingly, the developed ANN model will always operate in an interpolation mode
instead of an extrapolation mode. ANN-based prediction models are excellent when used in
interpolation tasks, but may be unreliable when used in extrapolation tasks. Therefore, it is very
important to appropriately select the distribution of the training and testing data sets. Following a
strategy similar to the one used for the 25-ft interval case, the overall BPANN was achieved at an
ASE value (on the testing data sets) of 0.000228 and a 2-2-1 network topology structure. Once
the 2-2-1 profiling network was established, it was then used to predict the V values at all 10,201
location points for the site. The predicted values were used to construct a contamination
distribution contour map and to calculate the corresponding RMSE value for this 10-ft interval
case.

By comparing ASE values for the 10-ft and 25-ft interval cases, it can be observed that
the ASE value for the 10-ft case was reduced by about 47-fold (i.e., 0.010856/0.000228) for the

corresponding six-fold increase in data richness (i.e., 103/17). This noted behavior is expected
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and logical. As more data become available, the profiling network should be able to characterize
the site more accurately. Therefore, the more data that are available, the more accurate the
developed profiling network will be. Moreover, it can be observed that the 10-ft interval network
only needed two hidden nodes to efficiently characterize the site, in comparison with the three
hidden nodes needed for the 25-ft interval network.

In order to compare (rank) the prediction accuracy of the profiling methodologies used

herein, the following Root Mean Squared Error (RMSE) accuracy measure was used:

4.4

Where

n = number of data sets used

y’ = the output generated by the model for the V variable

y = the actual value of the V variable

Accordingly, the best performing profiling methodology is the one yielding the least

RMSE value.

4.4 Three-Dimensional Case

One of the first steps in the remediation process of any site is to determine the
characteristics of the contaminated site. This includes not only obtaining historical and
geological information about the site, but, most importantly, determining the locations and
concentrations of contaminants in the site (Mryyan & Najjar, 2005). This is done by collecting

samples at selected points throughout the area of concern and analyzing the samples to determine
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the concentration of the contaminants. Each sample will have its own unique set of data that
includes the location of the sample (latitude, longitude, and depth) and concentration. With this

information, a detailed map of the contaminated site can be created (Najjar & Basheer, 1996).

4.4.1 Mathematical Equation

Unlike 2-D profiling methodologies available in the Surfer® Software, the ANN-based
approach appropriately allows for 3-D site profiling by utilizing X, Y, and z coordinates. In an
actual field situation, samples would be collected at various locations for lab analysis in order to
obtain the associated pollutant concentration values. For the purpose of this study, the following

equation (Equation 4.5) was used to represent the concentration of the pollutant across the 3-D

site (1000 ft x 1000 ft x 50 ft):

Xy 47 +50,000)
1000 45

Xy 2 (8 Y 1212y *2)E 43I
V=

In this case, x = east, y = north, and z = depth. Accordingly, at any given location (X, Y,
and z), Equation 4.5 will produce the associated pollutant concentration value (i.e., V value).
Note that X, y, and zZ coordinates refer to the X, Yy, and z distances (in feet) for the associated

observation point measured from a reference point (i.e., X =0 ft, y = 0 ft, and z = 0 ft).

4.4.2 ANN Model Development

A large database containing X, Y, Z, and associated V values was generated using Equation
4.5. Accordingly, the (1000 ft x 1000 ft x 50 ft) hypothetical site was divided into a grid system.
Grid lines were set at 25-ft intervals for both X (east) and y (north) directions (i.e., 2-D plane),
and at depths z =5, 15, 25, 35, and 45 ft. A total of 1,681 sampling points were generated in this
case at each depth. This produced a total of 8,405 points. In this case, X, Y, and z coordinates

were used to represent the ANN model’s input nodes, while the V variable is used to represent
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the output node. Eighty-five (85) data points (representing about 1% of the total 8,405 available
data points) were selected to train and test the desired ANN model in accordance with the
procedure outlined in Najjar (1999). In this case, 60 data points were used for training, while the
remaining 25 points were used for online testing in order to assess the generalization capability
of the trial networks. A procedure similar to the one used in the 2-D case was utilized herein to
arrive at the optimal 3-D ANN profiling model. The topology structure of the 3-3-1 BPANN
contained 3 input, 3 hidden, and 1 output node. This 3-3-1 BPANN model yielded an ASE on the
testing data sets with a value of about 0.000300. Note that this 0.000300 ASE value is slightly
higher than the one obtained for the 2-D 10-ft interval case discussed earlier. The resulting 3-3-1
ANN model was then used to predict the corresponding contamination values (V) for the 8,405
designated X, y, and z coordinates representing the site. The resulting data bank was processed to
construct various contamination distribution contour maps (at z =5, 15, 25, 35, and 45 ft) for the
hypothetical contaminated site. Moreover, the resulting data bank was used to compare the ANN
predicted values with the actual values at all 8,405 location points. The resulting RMSE value

calculated for the developed 3-D BPANN is about 6.38%.

4.4.3 Regression Model Development
Since none of the eight Surfer®-based methodologies can perform 3-D profiling using X,

y, and z, the following regression-based equation (Equation 4.6) was developed using the same

85 data points utilized in developing the BPANN model:

V =-4.11+ 0.0499x + 0.0766y + 7.60z 4.6
Where V represents the desired contaminant concentration value for given X, Yy, and z

coordinates within the site. The regression model (Equation 4.6) was then used to predict the
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corresponding contamination values (V) for the 8,405 designated X, Yy, and z coordinates
representing the site.

The resulting data bank was processed to construct various contamination distribution
contour maps (at z =5, 15, 25, 35, and 45 ft) of the hypothetical contaminated site. Similarly, the
data bank was used to compare the regression-based-model-predicted values with the actual

values at all 8,405 location points. The RMSE value obtained for this case is about 17.4% .

4.5 Results and Discussion

In order to compare the performance of all methodologies utilized herein, three
comparison strategies were utilized, namely:
=  Comparison using RMSE values
= Comparison using contour maps

= Forty-five-degree scatter graphs

4.5.1 Comparison Using RMSE Values

4511 Two-Dimensional Case

RMSE values obtained for both 2-D profiling cases and the nine profiling methodologies
(including the ANN method) are listed in Tables 4.1 and 4.2. By examining RMSE values listed
in table 4.1, it can be observed that for the 25-ft interval case, all nine methodologies attained
high RMSE values. The model achieving the least RMSE value is the ANN-based model. It
attains about a 19.17% RMSE. The second-most accurate methodology is the Local Polynomial,
with a 19.3% RMSE. When compared to ANN performance, this represents less than 1%

difference in prediction accuracy rate. The profiling methodology that produced the least
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accurate profile is the Inverse Distance to a Power method. It has an RMSE value of about
42.4%. This represents more than double the RMSE value attained by the 2-3-1 ANN model.

For the 10-ft interval case (Table 4.2), all nine methodologies attained lower RMSE
values than those obtained for the 25-ft interval case. This noted behavior is logical and
consistent with our intuition. As more data become available, models will become more accurate.
Again, the model with the least RMSE value is the ANN-based model. Its error rate is about
3.7%. The second most accurate methodology is the Radial Basis Function, with an error rate of
about 4.8%. When compared to ANN performance, this represents about a 30% difference in the
prediction accuracy rate. The profiling methodology that produced the least accurate profile is,
again, the Inverse Distance to a Power method, with an RMSE value of about 10.4%. This
represents about 2.8 times the RMSE value attained via the ANN model. The only constant in the
RMSE comparison listed in Tables 4.1 and 4.2 and Figures 4.1 and 4.3 is that ANN-based
profiling methodology is ranked best and the Inverse Distance to a Power methodology is ranked
worst. The other eight methods seem to vary in terms of their ranking. Therefore, in order to
assure that the best profiling methodology for 2-D cases is being used, the ANN-based profiling

methodology is recommended.

4.5.1.2 Three-Dimensional Case

When comparing the RMSE (Table 4.3 and Figure 4.4) value obtained using the 3-D
ANN-based model (with an RMSE value of 6.4%) with that obtained with the regression-based
model (with RMSE value of 17.4%), the ANN model significantly outperforms the regression
model. The error rate of the regression-based model is about 270% of that reported for the ANN
model. Note that the same 85 data points were used to develop both models. Moreover, knowing

that all eight Surfer®-based methodologies are suited only for 2-D profiling, and cannot perform
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3-D profiling, makes it clear that the ANN-based methodology is the one to use for efficient 3-D

profiling tasks.

4.5.2 Comparison Using Contour Maps

Contour maps were generated using the Surfer® 8.0 software program. This program was
used to produce contamination concentration contour maps for the hypothetical site using the
previously mentioned data banks. Contour maps were generated for the 2-D [i.e., 10-ft and 25-ft
interval scenarios] and 3-D cases discussed earlier. For contour maps comparison purposes, only

contour maps for the 2-D 10-ft interval case and 3-D z=25ft case will be discussed.

4.5.2.1 Two-Dimensional Case

For a visual comparison, a baseline contour map of the pollutant concentration
distribution of the site based on the actual 10,201 data points was generated, as depicted in
Figure 4.5. This map is used herein as a baseline contour map to compare the profiling accuracy
of the nine methods listed in Table 4.2. When comparing the contour maps of the nine profiling
methods (depicted in Figures 4.6 through 4.14), the ANN-based contour map (Figure 4.6) is
clearly the one that most closely resembles the baseline contour map shown in Figure 4.5. Note
that, as indicated in Table 4.2, the ANN-based method attained the lowest RMSE value (3.7%)
among all nine profiling methods. The remaining eight methods present lesser degrees of
similarity to the baseline map. Contour maps produced by the Natural Neighbor and Inverse
Distance to a Power methods (Figures 4.12 and 4.14, respectively) are the worst, compared with

the baseline map shown in Figure 4.5.
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Four of the contour maps, produced by the Radial Basis Function, Kriging, Modified
Shepard’s, and Minimum Curvature methods (Figures 4.7, 4.8, 4.9, and 4.11, respectively), show
in the northeast region areas of lower contamination levels where actually higher contamination
levels are present. The contour map produced by the Polynomial Regression method (Figure
4.13) is inadequate, because it is unable to capture the nonlinear spatial distribution of the
pollutant within the site. The Local Polynomial method seems to produce the best contour map,
as depicted in Figure 4.18, among all eight Surfer®-based profiling methods, even though its
RMSE value is not the minimum in this case. On the other hand, the performance of the ANN-
based method is very consistent. This method produces the best contour map as well as attaining
the least RMSE value among all nine methods listed in Table 4.2.

Therefore, the ANN-based method should be considered as the method of choice for any
2-D site profiling. One common observation among all models considered herein is that no
model was able to accurately characterize the actual (logarithmic) behavior of the variable V at
the south and west edges of the site. In order to account for this logarithmic behavior, more data
points taken from the south and west edges must be included in the models’ profile development

process.

4.5.2.2 Three-Dimensional Case

The baseline contour map for the distribution of the V variable at z = 25 ft is shown in
Figure 4.15. This map was generated based on 1,681 actual data points derived directly from
Equation 5. The corresponding ANN-based and regression-based contour maps at z =25 ft are
depicted in Figures 4.16 and 4.17, respectively. The RMSE values obtained in this case (6.4% for
the ANN-based model and 17.4% for the regression model (Table 4.3) are an accurate indication

of the degree of agreement between the profiles presented in Figures 4.16 and 4.17, with baseline
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contour maps shown in Figure 4.15. The ANN-based profile (even though it was developed
utilizing no more than 1% of the available data at the z = 25 ft level) presents a reasonable
agreement with the actual map. The profile generated from the regression model has a very low
degree of similarity with the actual profile shown in Figure 4.15. Similar to the 2-D case, no
model was able to accurately characterize the actual (logarithmic) behavior of the variable V at
the south and west edges of the site. To address this profiling deficiency, far more data points

(taken from the south and west edges) are needed to capture this logarithmic behavior.

4.5.3 Comparison Using Forty-Five-Degree Scatter Graphs

Forty-five-degree linear graphs were generated using the Microsoft Excel program. This
program was used to produce contamination concentration linear graphs for the hypothetical site
using the previously mentioned (X, Y, V, and Z when applicable) data banks. Graphs were
generated for each of the following:

e All 2-D methodologies at:

0 25-ftinterval case (Figures 4.18 through 4.26)

0 10-ft interval case (Figures 4.27 through 4.34 )
e ANN 3-D methodology at z =5, 15, 25, 35, and 45 ft ( Figure 4.35)
e Regression Analysis at z =35, 15, 25, 35, and 45 ft ( Figure 4.36)

Each graph contains the predicted value (V) via each methodology along the y-axis and
the actual data value (V) along the x-axis. These graphs provide a visual analysis of how closely
the predicted values match the actual data values.

For the 25-ft case (Figures 4.18 through 4.26), it can be noted that ANN was the best fit

model with R’=0.945 (Figure 4.18). The second best fit model is the Modified Shepard’s with
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R’=0.944 (Figure 4.20) and worst performing method is the Inverse Distance to a Power with
R?=0.762 (Figure 4.26).

For the 10-ft case (Figures 4.27 through 4.34), ANN attains the best fit model with
R?=0.986 (Figure 4.27), and the second best fit model is obtained using the Radial Basis Method
with R?*=0.977 (Figure 4.28). The worst performing method is the Inverse Distance Method with
R?=0.889 (Figure 4.34).

For the 3D case (Figures 4.35 through 4.36), the best fit method is again the ANN with
R*=0.997 (Figure 4.35). The Regression Based Method, the alternate method in this case, attains
R?=0.979 (Figure 4.36).

Overall, considering all scatter plots presented for 2D and 3D cases, it is clear that the

ANN-based models attain the best match between predicted and actual values.

4.6 Conclusion

The use of ANN-based methodology for contaminant profiling, demonstrated in this
study, provided the most reliable predictions about the location and extent of contamination for
the hypothetical site. The ANN-based models proved to yield the lowest RMSE values in the 2-D
and 3-D comparison cases. The ANN-based profiling models also produced the best contaminant
distribution contour maps and 45-degree scatter graphs for the 2-D and 3-D profiling cases.
Along with the fact that ANN is the only profiling methodology that allows for efficient 3-D
profiling, this study clearly demonstrates that ANN-based profiling methodology, when properly
used, has the potential to provide the most accurate predictions and site profiling contour maps
for a contaminated site.

Compared to the methods discussed herein, ANN-based methodology is characterized by

its flexibility and generality. Its flexibility is demonstrated by its potential to accurately predict
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values of a certain contaminant parameter at a specific location when only supplied with X, y, and
Z (for 3-D cases) coordinates. Its generality lies in its power to capture the mode of change in the
spatial distribution of a pollutant based on all available data. Accordingly, all available data at
various spatial locations can effectively be utilized by the ANN-profiling model in order to

efficiently capture the spatial distribution behavior for the parameter of interest.

Table 4.1 Profiling Methods and Their Corresponding RMSE Value for the 25-ft. Interval

Case
Method RMSE

1 ANN 19.16940%
2 Local Polynomial Contours 19.29668%
3 Modified Shepard’s Method 19.77924%
4 Minimum Curvature Contours | 20.39590%
5 Kriging Contours 23.66336%
6 Polynomial Regression 26.41865%
7 Nearest Neighbor 38.95251%
8 Radial Basis Function 38.95251%
9 Inverse Distance to a Power 42.38522%
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Table 4.2 Profiling Methods for the 10 ft interval case.

Method %RMSE
1 ANN 3.716%
2 Radial Basis Function 4.795%
3 Kriging Contours 4.994%
4 Modified Shepard's Method 4.999%
5 Local Polynomial Contours 5.153%
6 Minimum Curvature Contours 5.231%
7 Nearest Neighbor 8.022%
8 Polynomial Regression 8.710%
9 Inverse Distance to a Power 10.427%

Table 4.3 RMSE Values for Profiling Methods used to Predict (V) Values for 3D Case.

Method RMSE
ANN 6.389%
Regression 17.420%
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Figure 4.2. All of the profiling methods and their RMSE values (2-D and 25-ft interval case)
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Figure 4.3. All of the profiling methods and their RMSE values (2-D and 10-ft interval case)
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3-D case
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Figure 4.5. Baseline contour map of the pollutant V (for the 10-ft interval case), based on 10,201

actual data points
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Figure 4.6. Contour map based on ANN model 2-2-1 for the 10-ft interval case
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Figure 4.7. Contour map based on Radial Basis Function method for the 10-ft interval case
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Figure 4.8. Contour map based on Kriging method for the 10-ft interval case
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Figure 4.9. Contour map based on Modified Shepard’s method for the 10-ft interval case
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Figure 4.10. Contour map based on Local Polynomial method for the 10-ft interval case
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Figure 4.11 Contour map based on Minimum Curvature method for the 10-ft interval case
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Figure 4.12. Contour map based on Nearest Neighbor method for the 10-ft interval case
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Figure 4.13. Contour map based on Polynomial Regression method for the 10-ft interval case
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Figure 4.14. Contour map based on Inverse Distance Method for the 10-ft interval case
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Figure 4.15. Baseline contour map of the pollutant V (at z = 25 ft) based on 1,681 actual data

points (3-D case)
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Figure 4.16. Contour map based on ANN model 3-3-1 at z =25 ft (3-D case)
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Figure 4.17. Contour map for regression-based predicted concentration V at Z = 25 ft (3-D case)

76



200 ~

180 1

160 -

140 1

120 -

100 -

80 1

ANN Predicted Value V

60 -

40 A

20 A

R? = 0.9449

40 60 80 100 120

Actual value

140

160

180

200

Figure 4.18. Scatter plot of actual “V”” and “V” predicted by the neural network model (2-D and

25-ft interval case)
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Figure 4.19. Scatter plot of actual “V”’ and “V” predicted by the Local Polynomial Method, (2-D

and 25-ft interval case)

78



200 4

180 -

R’ =0.9444

160 +

140 -

120 4

100

80 -

60 -

Modified Shepard's Method Predicted Value V

40 1 -

20 A —--

0 20 40 60 80 100 120 140 160 180 200

Actual value

Figure 4.20. Scatter plot of actual “V” and “V” predicted by Modified Shepard’s method (2-D

and 25-ft interval case)
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Figure 4.21. Scatter plot of actual “V” and “V” predicted by Minimum Curvature method (2-D

and 25-ft interval case)
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Figure 4.22. Scatter plot of actual “V”” and “V” predicted by the Kriging method (2-D and 25-ft

interval case)
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Figure 4.23. Scatter plot of actual “V” and “V” predicted by Polynomial Regression (2-D and

25-ft interval case)
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Figure 4.24. Scatter plot of actual “V” and “V” predicted by Nearest Neighbor method

(2-D and 25-ft interval case)
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Figure 4.25. Scatter plot of actual “V” and “V” predicted by Radial Basis method (2-D and 25-ft

interval case)
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Figure 4.27. Scatter plot of actual “V” values and “V” values obtained by the Neural Network

model (2-D and 10-ft interval case)
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Figure 4.28. Scatter plot of actual “V” values and “V” values obtained by Radial Basis Function

(2-D and 10-ft interval case)
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Figure 4.29. Scatter plot of actual “V” values and “V” values obtained by Kriging Method (2-D

and 10-ft interval case)
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Figure 4.30. Scatter plot of actual “V” values and “V” values obtained by Modified Shepard's
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Figure 4.31. Scatter plot of actual “V” values and “V” values obtained by Local Polynomial (2-D

and 10-ft interval case)
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Figure 4.32. Scatter plot of actual “V” values and “V” values obtained by Nearest Neighbor (2-D

and 10-ft Interval Case)
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Figure 4.33. Scatter plot of actual “V” values and “V” values obtained by Polynomial Regression

(2-D and 10-ft interval case)
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Figure 4.34. Scatter plot of actual “V” values and “V” values obtained by Inverse Distance to a

Power (2-D and 10-ft interval case)
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CHAPTER 5 - Two-dimensional characterizations of the inorganic

materials (lead and copper) in soil and groundwater at a landfill site

5.1 Background Information

America is a throwaway society. With the conveniences of today’s world come added
waste: disposable items such as diapers, fast food packages and plastic bottles. All of these are
meant to help Americans live in today’s fast-paced society. In 1960, the average person produced
approximately 2.7 pounds of waste per day. In 2001, this number almost doubled to
approximately 4.4 pounds per day (USEPA, 2005). This adds up to over 229 million tons of
waste per year, which eventually ends up in landfills around the United States.

The concept of an organized method for solid waste disposal began in the early 1960s.
Prior to this, solid waste was disposed of by either burning or dumping of the waste into
unregulated open dumps. The development of landfills provided a means for the disposal of solid
waste, which was regulated and focused on the disposal of the waste in a manner that would
minimize the negative effects on public health and the environment. By 1989, 7,379 landfills
existed in the United States (BioCycle, 1999).

As time progressed, the number of landfills decreased due to the closure of older or filled
landfills and the consolidation of smaller landfills. By 1999 (see Figure 5.1), the number of
landfills had dropped to 2,216, while the amount of waste increased from 92 tons per day in 1989
to 300 tons per day (USEPA, 2005).

With the closure of over 5,000 landfills, new environmental regulations were necessary.
In the 1980s, Federal and State regulations were enacted which required the installation of liners
in landfills to help minimize the leakage of liquid waste materials into the groundwater system

96



(USEPA, 2005). Prior to this, landfills were unregulated and were built and operated without the
environmental controls and regulations of today (Grossman, 2002). Without liners in place,
precipitation and ground water will seep through the solid waste, producing contaminated water
referred to as leachate. The leachate then seeps into the groundwater beneath the landfill, causing
the groundwater to become contaminated. This contaminated groundwater is referred to as a
plume. Because of the normal flow of the groundwater, the plume extends away from the
landfill, causing further contamination. To determine the extent of the contamination, field
sampling and laboratory analyses of soil and water samples must be performed.

In Kansas City, Kansas, one such landfill has been at the center of controversy for years.
In 1951, this site was established to dispose of debris from the largest and most devastating flood
of the century. In a ten year period, between 1953 and 1963, a prominent fiberglass company
utilized the site for disposal of process wastes from the fiberglass production plant located in the
Fairfax Industrial District, approximately three miles to the east. A large but unknown amount of
waste fiberglass from the factory was buried in this landfill. In addition, other authorized and
possibly some unauthorized dumping took place. The City of Kansas City used cinders from the
local electric power plants as well as rock and soil to cover the waste material. The site was
closed in 1963 and contents of the dump covered with an unknown amount of local soil (KDHE,

1989).

5.2 Landfill Site Description

According to the Kansas Department of Health and Environment (KDHE) (1996), the
landfill is located near the intersection of North 18th Street and Ridge Avenue in Kansas City,
Kansas. It covers an area of about 5.5 acres and is located in the uplands adjacent to the north

flank of the Kansas River valley, within the city limits of Kansas City, Kansas. Drainage from
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the site empties into a storm sewer, which in turn empties into an intermittent stream located
adjacent to the southwest boundary of the property. Off-site drainage is south via this
intermittent creek to its confluence with the Kansas River, approximately one mile south of the
site.

Several years after the landfill opened, numerous complaints concerning odors and the
seepage of leachate into a ravine located southwest of the landfill were reported. As a result of
these complaints, the Wyandotte County Health Department recommended, in July 1958, that the
landfill be closed and also that future disposal of material by the fiberglass company be within a
tight clay soil in a sanitary landfill. However, both recommendations were rejected by the Kansas
City officials.

Complaints revolving around the landfill continued intermittently for more than 40 years.
These complaints remained unresolved, due to the fact that none of the entities involved in the
landfill could agree on who was at fault for the contamination. The fiberglass company
continued to utilize the landfill to dispose of their company’s waste. In 1992, litigation began in

an effort to resolve the issues surrounding the landfill site.

5.3 Site Investigation

In 1996, the investigation of the Kansas City landfill began. Records provided by the City
and the fiberglass company showed that the following waste products had been disposed of at the
landfill site (KDHE, 1996):

= Various metal sludge and grinding bottoms

= Solvents

= Phenolic resins
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= Adhesives consisting of approximately 70% phenol-formaldehyde and 30% Vinsol (a
by-product of turpentine formulation)
= Furnace refractory brick, demolition debris, asphalt, paper, and cinders from coal-
fired power plants
The landfill was built without a protective liner, as was the practice during that era.
Because of this, the previously mentioned waste products, along with other unauthorized waste

products, were able to seep into the groundwater and produce leachate.

5.3.1 Information Gathering

At the start of any remediation process, it is important to obtain accurate, in-depth
information regarding the extent of contamination at the investigated site (Itani & Najjar, 2000).
This is typically achieved by performing a sample collection and a site investigation analysis.
There are many factors that determine where and how samples are collected. Generally, sample
locations are determined using the professional judgment of the site investigation team (Mryyan
& Najjar, 2005). The investigation team should take into consideration the following factors
when deciding upon sample locations:

= Soil type and geotechnical properties of the landfill

= Size of the landfill

= History of the site

= Site-related risk factors

= Sampling expenses

Although the most accurate results would be obtained by collecting a large number of
samples from all areas of the landfill, this is not generally financially feasible (Najjar & Basheer,

1996). Alternatively, a small number of samples are normally collected at different points across
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the landfill site and then sent to the laboratory for chemical analysis. This field data, along with
the BPANN approach, were used herein to predict the extent and location of copper and lead

contaminates within the Kansas City landfill area.

5.4 Database

In order to determine the distribution of contaminants at the Kansas City landfill site,
samples of groundwater and soil were obtained at various locations throughout the landfill.
Groundwater sampling was performed by drilling and installing four monitoring wells at the site.
Well-related information (such as locations, depths, and so forth) are depicted in Table 5.1 and
Figure 5.2. The wells were installed to detect the presence and migration of contaminants from
the landfill site. Monitoring Well (MW) 1 was originally designated as the background well,
while MW-2, 3 and 4 were installed in the presumed, in relation to the dump site, down-gradient
direction (KDHE, 1996). Once the monitoring wells were in place, groundwater samples were
collected and sent to the laboratory for analysis.

Similar to the groundwater sampling procedure discussed previously, soil sampling was
conducted by collecting seven soil samples from depths varying from 0—12 inches from ground
surface. Information (such as number, location, and chemical analysis results) related to the
seven samples used herein in our ANN modeling task are given in Table 5.3 and 5.4 as well as

Figure 5.3.

5.4.1 Model Development

In order to utilize any ANN-based model, the program must be trained or educated about
the process it is supposed to model. To train the network, a known set of input data along with

the desired outcome is used. The BPANN methodology/program [Mryyan & Najjar (2007); Itani
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& Najjar (2000); Najjar & Basheer (1996); Itani (1996)] using the supervised training approach
is used to train the desired ANN models to produce output values that are as close to the real
values as possible via repeated modifications of the network’s connection weights. This process
continues until the error at the output layer is minimized. Once this training process has been
completed, the developed model can then be used for prediction tasks. Note that the accuracy of
the predicted values is dependent on the quality of the data used in the training phase. The better
the quality of the training sets, the greater the accuracy of the predicted values will be. For this
reason, the training sets (i.e., groundwater and soil data) used to build the desired network
models were of the utmost importance in this study.

When developing any ANN model, it is important to determine what input and output
values will be used (Dowla & Rogers, 1995). For the Kansas City landfill case, x and y
coordinates were used as the only input values to the model. The concentration value (V) of lead
or copper was used as the output for their associated network model. The x and y coordinates
refer to the x and y distances for the associated observation point, measured from a reference
point (i.e., x = 0, y = 0). The value of lead in soil network model was developed using five data
sets for training and the remaining two data sets for testing purposes. Best network and
associated number of hidden nodes were determined by training and online testing to achieve the
least error on the testing data sets. Accuracy measures used in this study are:

= ASE = Averaged squared error

= MARE =Mean Absolute Relative Error and

= R’ = Coefficient of Determination.

Best net is identified as the one having the least ASE and MARE and highest R”. In this

case, the number of hidden nodes needed to achieve this objective was found by the adaptive
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training approach. The final (best performing) net contained two input nodes representing the x
and y coordinates, two hidden nodes and one output node (i.e., value of lead). Similar modeling
processes (i.e., training, testing and evaluation) were carried out to select the best performing
network model for:

= Value of lead in groundwater table (GWT) at depth (Z) = 2 feet

=  Value of lead in GWT at Z = 4 feet

= Value of lead in soil

= Value of copper in soil

For all four networks developed herein, two hidden nodes were found adequate to

achieve the desired best performing net.

5.4.2 Databank Generation

A contaminated location, for the purposes of this study, is defined as any x and y
coordinate location that contains lead or copper value that is higher than the Maximum Allowed
Contamination Level (MACL). Table 5.5 lists the containment and their associated MACL
values. A sampling location that has been observed to have a concentration value higher than
MACL will be designated as a contaminated area or hot area, and therefore would require
remediation. On the other hand, any location having a concentration value less than MACL value
will be considered as an uncontaminated zone or safe area, and therefore requires no
remediation.

Four databases containing x, y and V values were generated via the developed ANN
models for each case at various locations across the site. To achieve this objective, the landfill
site was divided into a grid system. In this case, grid lines were set at 10-foot intervals for both x

(east) and y (north) directions. A total of 481 grid points were used for each case (See Figure
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5.4). The x and y coordinates were used as input values for each of the four developed ANN
profiling models. The developed models were then used to predict the corresponding
contamination value for the 481 designated x and y coordinates representing the site. This
produced four data banks containing 481 sets of x, y coordinates and their predicted V value for
each case. The resulting data banks were processed to construct various contamination

distribution maps of the landfill site.

5.5 Results and Analysis

The initial soil and groundwater samples indicated levels of copper and lead above the
MACL. These findings were significant because both metals can have harmful effects on humans
and animals with extended exposure. The data generated by the ANN models were processed via
a software program called Surfer® 8.0. This program was used herein to produce contamination
concentration contour maps for the landfill site using the previously mentioned x, y and V data
banks. In doing so, two types of contamination distribution maps were produced for each case. A
total of eight maps were produced for the four cases considered in this study. The produced maps
can easily be used to identify hot (areas whose concentration is above MACL) and relatively safe

zones (where concentration is below MACL).

5.5.1 Soil-Based Maps

Figures 5.5 through 5.8 show the generated maps for the soil case. Based on these
figures, it can be observed that the greatest degree of copper and lead concentrations is located in
the areas spanning the northeast corner of the landfill and down through to the southwest corner.

Note that most of the original soil samples (whose concentration values are higher than MACL)
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fall within the area of high contamination levels, which is predicted via the developed ANN-

based profiling models.

5.5.2 Groundwater-Based Maps

Figures 5.9 through 5.12 show the generated maps for the groundwater cases. According
to Figures 5.9 through 5.12, the greatest degree of lead concentration occurs diagonally from the
upper northwest corner to the lower southeast corner. The entire area in the southwest corner of
the landfill is contaminated. As was observed in the soil case, most of the original groundwater
sample points (containing values above MACL) fall also within the contaminated area predicted
by the groundwater-based network models. Comparing the groundwater contamination maps
(i.e., Figures 5.9 and 5.11) obtained at depths of 2 and 4 feet, it can be observed that there is a
clear difference in the spatial distribution of the contaminate. There is a lesser degree of
contamination at 4 feet depth. This indicates that the majority of the contamination remains
closer to the surface. This observation is of great importance, because it limits the depth that
needs to be reached during the remediation process. As a result, this will yield substantial

reduction in the associated cost needed for the remediation phase.

5.6 Concluding Remarks

The proper use of ANN methodology for contaminate profiling, demonstrated in this
study, made it possible to obtain logical predictions about the location and extent of lead and
copper contamination at the associated Kansas City landfill site. The resulting profiles can be
used to determine additional sampling locations, if needed, for both groundwater and soil hot
zones. Moreover, extent of remediation zones can be assessed properly, thereby reducing the

associated cost needed for further sampling purposes and/or remediation tasks.
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Table 5.1 Monitoring Wells Related Information

Well No. | Location Depth of Well and Well Log Description
Screen Interval
MW-1 North side of | 42.5 ft; 0-33 ft misc. rock, cinder fill and
the landfill screen depth 3242 ft fiberglass fill, 33-37ft, medium
brown silty clay
MW-2 West side of | 42.5 ft; 0-7 ft misc. rock, sand, and
landfill screen depth 27-37 ft cinder fill, 7-42.5ft, medium
blackish-brown silty clay
MW-3 Southwest 15 ft; 0-7 ft misc. rock and black
side of landfill | screen depth 5-15 ft cinder fill, 7-14 ft, loose, wet,
black silty clay
MW-4 South side of | 39 ft; 0-7 ft misc. rock, cinder and
landfill screen depth 29 -39 ft | trash fill. 7-39 ft. medium brown

silty clay
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Table 5.2 Metal Data from Groundwater Samples (Z= depth, in feet, from groundwater

table level)

Metal MW-1 MW-1 | MW-2 | MW-2 | MW-3 | MW-3 | MW-4 | MW-4 | Unit

(Z=2) Z=4) |(Z=2) |(Z=4) |(Z=2) |(Z=4) |(Z=2) |(Z=4) |used
Aluminum | 9700 16000 | 40000 | 51000 |43000 |48000 | 120000 | 97000 | ug/l
Antimony | 1.2 2.5 1.8 1.8 2 2.4 2.6 34 pg/l
Arsenic 7.6 10 24 27 30 36 30 26 ng/l
Cadmium | 1.5 1.6 29 3.6 3 3.7 5 4 ng/l
Chromium | 10 59 54 68 60 63 82 35 ng/l
Cobalt 5.5 7 26 34 27 29 37 22 pg/l
Copper 14 33 50 63 53 57 160 130 ng/l
Iron 1200 160 11200 | 14700 | 12000 | 13600 | 36000 | 11000 | pg/l
Lead 30 25 52 69 64 71 96 68 ng/l
Magnesium | 190 70 600 780 670 690 15000 | 111000 | pg/l
Selenium | 0.8 23 4.5 14 3.2 2.8 7 5 ng/l
Vanadium | 110 11 77 100 92 97 115 109 pg/l
Barium 650 270 290 330 460 360 2200 1500 ng/l

Table 5.3 Soil Sample Number and Location

Sample Number Sample Location
A96015-1 West facing slope
A96016-2 West facing slope
A96017-3 West facing slope
A96018-4 Southwest corner
A96019-5 South facing slope
A96020-6 South facing slope
A96021-7 Background
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Table 5.4 Metals Data from the Soil Samples in Milligrams per Kilograms (PPM or mg/kg)

Analysis A96-1 | A96-2 A96-3 A96-4 A96-5 A96-6 A96-7 | Unit Used
Aluminum | 27659 46034 | 29412 35961 35300 26410 | 23329 mg/kg
Antimony 5 5 5 5 5 5 5 mg/kg
Arsenic 11 17 18 23 16 12 9 mg/kg
Barium 272 433 251 118 115 254 304 mg/kg
Beryllium 3 9 7 7 7 1 1 mg/kg
Boron 33 99 88 120 115 20 22 mg/kg
Cadmium 1 1 1 1 1 1 1 mg/kg
Cobalt 16 32 23 35 34 10 13 mg/kg
Copper 33 68 54 74 66 21 26 mg/kg
Iron 57799 | 150282 | 94778 117332 119261 20765 | 27707 mg/kg
Lead 68 81 135 136 92 49 28 mg/kg
Magnesium 3257 3578 2338 2362 2107 4023 4728 mg/kg
Manganese 646 715 394 396 344 938 595 mg/kg

Table 5.5 Maximum Allowed Contamination Level VValues

Contaminant MACL

Copper in groundwater 1 PPB (Part per billion)
Copper in Soil 11PPM (Part per million)
Lead in soil 50 PPM

Lead in groundwater 5 PPB
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Source: BioCycle Magazine, April 1999

Figure 5.1. Number of landfills in the U.S. as of 1999

108



“BH-2
Undeveloped
(LF #2) A
3
| H
e—— [)11 S

Ap;uwduu o Hcmmhry ud]'m:m—]nd slml i.andrll =

'|Lu

Residential

r\

] Seep Area

P UST .' Shop
i h .L.. (OMS-T)
O )

g T

| || Parking Lot National |
" i Guard
| Waste (4l AST AITIIOI'}'
and Drum Shed;

G']’:‘gmm‘c.I\lancmali.’}u ? "_!_

Vehicle Lot AN

Former f0 haintence

| MWNHI ol Sunmg |

E Parade Grounds/Ball Fields

18th Street

= WS- ;@l - r

| B “Residential

20h Streer

Bunker Avenue

il

Residential

no0ogY

Not to Scale

@ = Bore Hols
A - Monitoring Well

Kansas City, Wyandotte County, Kansas

Figure 5.2. Location of monitoring wells used in this study

109




Undeveloped
(LE #2)

B!
l

22nd Street

R4

Residemial

1=

e..jl

3‘

[onooon”

|| Residenial
.l i

Lot

] | Parkin Natiomal |
i MWL Guard
— ® Armory Parade Grounds/Ball Fields
,| | Waste il AST|
—TTw.sz ; H .mmuu—n Shed I
Ceachate National Guar
Seep Area \‘Ch""’]c Lat ]mwmm
£ Maiziance
] 'IJ5T Slmp
h _ﬁ[ ¥ (OMET)
Q Formes Arch uf |
ol Sulnkg
i, o0/ 0o0=
. ™ T Residential 2

Residential

00 ofl4” 000!

=

Funker Avenue

18th Strest

Not to Scale
B soils Samples

Source: Wyandotte County Planning Office, Acrials, 1986

N

A

Kansas City, Wyandotle County, Kansas

Figure 5.3. Location of soil samples used in this study

110

MNovember, 1985




;OME W W O OB ¥ M o W N M N W N M G M ke W W

P T S R S T T RS S GRS SR S S S S

*

R X w
¥ F % %

# O K M K E
¥ ¥k

*

A

#*

S

# %

ES

I S

F ¥ OE F O O ¥ ¥ F O ¥ ¥ ¥ & 4 ¥ ¥ & ¥ ¥ o ¥

# O W N OH W O¥F W R OB O N OE O N OHE OE O W OE W ¥

¥ ¥ W ¥

#:

N

A O ¥ O K ¥ ¥

ES

w %
F ¥ O+ F F ok F ¥ F Ok F F F F F F F ¥ o oF K 4

#

¥

#H O#H O E K * OF Ok W

O O K

R T

ftﬂﬁf{?:ﬁ*ﬂz%i*&:ﬂiﬁﬁ:ﬁi*%ﬂ:*%

*

* * # w % #F

O X W

* ¥ xR E

A S

x ¥ ¥ ¥ X ¥ ¥ ¥ £ ¥ ¥ F ¥ X ¥ * ¥ ¥ ¥ £ ¥ %

#

#

I S

180

¥ Concentration paint 1o be predicted by ANN,

Figure 5.4. X and Y grid used by the ANN models to predict corresponding contamination

value (V)

111



450

400

20

300 250
X (East)
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Figure 5.9. Contour map showing the distribution of lead in groundwater at Z =2 ft
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Figure 5.11. Contour map showing the distribution of lead in groundwater at Z =4 ft
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CHAPTER 6 - Study Area: the Massachusetts Military Reservations

6.1 Background

Due to the nature of its operations, the United States military has long been a major
contributor to the contamination of groundwater. With 10,444 operational ranges located in the
United States and its territories, the problem of contamination within military-owned land has
become worrisome. One of these ranges is Camp Edwards, located on the Massachusetts
Military Reservation (MMR). Camp Edwards has been used for military mortar and artillery
training exercises since the early 1900s. Because of the lack of environmental regulation prior to
1970, the use and disposal of military munitions went unmonitored, leading to the contamination
of Cape Cod’s primary source of drinking water, the Cape Cod glacial aquifer. However, in
1982, the DOD launched investigation and clean-up efforts of contaminated groundwater and
soil at the MMR. The investigators found that 79 different areas on the MMR had potential
environmental issues.

The research discussed in this chapter and in Chapters 7 and 8 will expand on the
concepts of using ANNs for contamination modeling as explored in Chapter 4. Specifically, the
research will utilize explosive-related contaminant data collected in the MMR- DEMO 1, in
Massachusetts, to assess the performance of ANNs for predicting concentrations of

environmental contaminants, specifically perchlorate.

6.2 Study Area

According to the Air Force Center for Excellence (2004) the MMR is a military training

facility located on the upper western portion of Cape Cod (see Figure 6.1), immediately south of
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the Cape Cod Canal in Barnstable County, Massachusetts. It includes parts of the towns of
Bourne, Mashpee, and Sandwich, and abuts the town of Falmouth (see Figure 6.2). The MMR
covers nearly 21,000 acres. Ogden (1999) identified the three main areas that make up the MMR.
They are the following:
* The industrial area in the southern part of the reservation where the U.S. Coast
Guard, Army National Guard, and Air National Guard facilities are located.
= Aircraft runways, maintenance areas, access roads, housing, and support facilities.
= The northern 14,700-acre area, also known as Camp Edwards, which is used
primarily by the Army National Guard. This area contains the 2,200-acre Impact
Area, associated military training ranges, and the U.S. Coast Guard.
= The 750-acre Veterans Administration Cemetery, located in the southwestern

corner of the reservation.

6.2.1 Location and description of Demolition Area One (Demo 1)

According to MAARNG (2000) Demo 1 is located on Camp Edwards, north of
Forestdale Road and south of the Impact Area, near the current H Range at MMR (Figure 6.3). It
is a kettle-hole of approximately 7.4 acres, with its base covering approximately 1 acre. The base
is approximately 45 feet below the surrounding grade. Groundwater is located approximately
44 ft from the base of the depression (Ogden, 1999). The bottom of the kettle-hole is flat with
numerous craters, so it remains wet for a great deal of the year.

The entire MMR 1is located over the recharge area of the Sagamore Lens (Figure 6.4), and
above the sole-source aquifer supplying drinking water for the western part of Cape Cod. The
Sagamore Lens is a large, 300-foot-thick layer of groundwater (Pike, 2006). In general, soils in

the vicinity of MMR are sandy, permeable and permit rapid groundwater movement. The
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Sagamore Lens is recharged or replenished by rainwater that seeps through the sandy soil into
the aquifer.

Because Demo 1 is located directly above the Sagamore Lens, any contamination found
on the site is able to leach directly into the Cape Cod aquifer. Therefore, the prospect of

explosives-related contamination in Demo 1’°s groundwater is worrisome.

6.2.2 Hydrology of Cape Cod

Cape Cod extends approximately 40 miles into the Atlantic Ocean and has a maximum
altitude of 309 feet above sea level. There is one main aquifer system that runs under Cape Cod,
which is known as the Cape Cod glacial aquifer (USGS, 2002). This aquifer is an unconfined
system and is therefore recharged by infiltration from precipitation (Figure 6.5). In 2005, the
USGS reported that because of the geographic make-up of the cape, approximately 45% of the
roughly 40 inches of yearly rainfall and snow are absorbed to recharge the aquifer. The other
55% of precipitation is evapotranspired. Less than one percent runs off directly to streams,
ponds, lakes, or saltwater bodies.

According to Masterson & Portnoy (2006), the Cape Cod glacial aquifer is bounded by
the ocean on three sides, with groundwater discharging into the Nantucket Sound on the south,
Buzzard’s Bay on the west, and Cape Cod Bay on the north. The Bass River in Yarmouth forms
the eastern lateral aquifer boundary. Cape Cod aquifers are comprised of six groundwater lenses:
Sagamore, Monomoy, Nauset, Chequesset, Pamet, and Pilgrim (Consortium for Atlantic
Regional Assessment, 2005). These lenses are elevated areas of groundwater, which have a
shape similar to a convex lens and are separated by ocean inlets or narrows that act as discharge
areas. The two largest lenses are the Sagamore and Monomoy (Figure 6.4), which provide water

for the majority of Cape Cod’s population. Each lens is a hydraulically independent ground-flow
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system, which remains steady, due to ground-water recharge and discharge. Approximately 270
million gallons of water per day flow through the six lenses combined (USGS, 2005). Water
within these lenses slowly moves toward the coast at a rate of about one to two feet per day from
the highest point of the water table, where it discharges into the ocean (Masterson & Portnoy,
2006).

Along with the groundwater lenses, Cape Cod’s aquifer system is recharged by numerous
kettle-hole ponds. Newman (2001) defined kettle-hole ponds as areas that were formed by blocks
of ice stranded by retreating ice sheets and were buried under sand and gravel. Once the ice
blocks melted, the sand and gravel covering and surrounding the ice blocks collapsed, leaving a
depression in the ground. Over the years, these depressions filled with water and fed directly into
the Cape Code glacial aquifer.

AMEC (2001) indicated that the Cape Cod glacial aquifer provides drinking water to the
residents of Cape Cod with an average daily water demand of approximately 6.4 million gallons.
The daily demand fluctuates depending upon the season. During the summer, the daily demand
increases to approximately 10.1 million gallons per day due to tourism. During the remaining
months, the daily demand lowers to 5.2 million gallons per day (USGS, 2002). Each
groundwater lens of the aquifer provides a portion of the total water supply, and the main

contributors are the Sagamore and Monomoy lenses (see Table 6.1).

6.2.3 Geology of Cape Cod

Cape Cod came into existence approximately 25,000 years ago with the advance and
retreat of the last continental ice sheet, the Laurentide. Newman (2001) indicated that this ice
sheet was divided into three lobes:

e The Buzzards Bay Moraine (BBM)
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e The Sandwich Moraine (SM)
e The Mashpee Pitted Plain (MPP)
The BBM and the SM lie along the western and northern edges of western Cape Cod.
The MMP lies between the BBM and SM. The majority of the MMR lies within the Mashpee
Pitted Plain. MAARNG (2000) describes the geology of the MMR as follows:
“The MPP, which consists of fine to coarse-grained sands forming a broad outwash plain,
lies between the two moraines. Underlying the MPP are fine-grained, glaciolacustrine
sediments and basal till at the base of the unconsolidated sediments. The BBM and SM
are composed of ablation till, which is unsorted material ranging from clay to boulder
size that was deposited at the leading edge of two lobes of the Wisconsonian glacier at its
furthest advance. These moraines form hummocky ridges.”
These materials cover a layer of bedrock that is 285 to 365 ft below ground surface and

considered impermeable.

6.2.4 History of the MMR

Due to the nature of their operations, explosives-related contamination at military
installations is common. Over the last several decades, the DOD has tested and fired munitions
on more than 24 million acres of operational ranges. In April 2003, the DOD counted 10,444
operational ranges located in the United States and its territories. The DOD defines “operational
range” as “an area used to conduct research, develop and test military munitions, or train military
personnel” (U.S. Government Accountability Office, 2004).

Although many of the operational ranges are being studied for the presence of perchlorate
contamination, only one installation has been studied in-depth. This is Camp Edwards, located

within the MMR, in Cape Cod, Massachusetts. The MMR has been used for mortar and artillery
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training since 1908. In 1935, the U.S. Army established Camp Edwards used it for military
training purposes. Camp Edwards Training Ranges and Impact Area make up approximately
14,000 acres of the MMR (MAARNG, 2000). Over the years, Camp Edwards has been used for
activities that include small arms, machine gun, artillery, mortar, ground to ground rocket, air to
ground rocket, open burning/open detonation of explosive ordinance and pyrotechnics training.
The firing of high explosive artillery rounds continued at MMR until 1989.

Otis Air Force Base was also located on the MMR and used by the Air Force from 1948
until 1973. During this period, the Air Force disposed of pollutants and hazardous materials such
as petroleum products, fuels, motor oils, and cleaning solvents in landfills, drywells, sumps, and
the sewage treatment plant (MAARNG, 2000). Currently, the MMR is used by the
Massachusetts Air National Guard, Otis ANG Base, Massachusetts Army National Guard, Camp

Edwards, the U.S. Air Force, and the U.S. Department of Agriculture.

6.2.5 Explosive Related Contamination at Demo 1
In the mid 1970s, the U.S. Army established Demo 1 as an ordnance disposal and

demolition training site. The army continued to use Demo 1 until the late 1980s. During this
time, various types of ordnance were used and destroyed at this site, including the following
(USEPA, 1997):

e Explosive charges of plastic explosives (C-4)

e TNT (2,4,6-trinitrotoluene)

e Detonation cord with a weight limit of 40 pounds

e Bangalore torpedoes

e C(Claymore mines
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On April 10, 1997, the USEPA ordered the Massachusetts Army National Guard to stop
all training activities at Camp Edwards that release contaminants into the air, soil or water. This
came after the USEPA’s Feb. 27 administrative order, which required the National Guard to do
the following (USEPA, 1997, p. 11):

(1) undertake a comprehensive study of groundwater related to the
training range and impact area

(2) provide information to USEPA about possible contamination in the
impact area

(3) develop a proposal for pollution control measures

(4) coordinate with a community-based oversight group

While clean-up efforts continue to this day, the Massachusetts Army National Guard
(MANG) began their investigation of Demo 1 in 1997. Ogden (1999) reported that during
MANG investigation, they recovered following items: chunks of C4 and other residual
munitions, steel [-beams and plates, miscellaneous metal items, ash, burnt-out small arms
cartridge casings (5.56mm, 7.62mm, 50 caliber), pyrotechnics, fuses, thermal batteries, rocket
bodies, spent 20 mm practice rounds and smoke flares, hand grenades, rifle grenades, 2.36-inch
rocket, 90mm dragon, TOW mortar, 81mm mortar and 4.2-inch projectile. Many of these
munitions contain Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), TNT and perchlorate

(ClOy).
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6.3 Perchlorate

6.3.1 Background

Perchlorate is a naturally occurring manmade anion that has been used in the production
of missile and rocket fuels as an explosive propellant for decades. Perchlorate is the salts of
perchloric acid (HCIO4) (USEPA, 2002). When combined with ammonium, potassium,
magnesium or sodium salts, they form compounds that are powerful oxidizers. Perchlorate salts
are highly soluble in water and do not adhere well to minerals or organic materials. When a
compound such as ammonium perchlorate is released into the environment, the ammonium
portions biodegrade, but the perchlorate dissolves. This allows the perchlorate to enter surface
and subsurface aqueous systems where it can remain for long periods of time (USEPA, 2007).

Ammonium perchlorate (NH4ClO4 or AP) is commonly used as an energetic booster in
rocket fuels and potassium perchlorate (KClO4 or KP) is used as a solid oxidant for rocket
propulsion (Roote, 2001). Perchlorates are also found in common items such as fireworks, road
flares, airbag inflators and other explosives as well as some pharmaceutical products.
Perchlorates are used in over 250 types of munitions. It is the use of these munitions, along with
the production of perchlorate-containing materials, which has led to the contamination of
groundwater throughout the United States.

Perchlorate salts are widely used in solid rocket propellants, matches, signal flares,
fireworks, explosives, additives, chemical analytical agents, automobile air bag inflators, and
others by the aerospace, defense, and chemical industries (Motzer, 2001).

Perchlorate was first manufactured in commercial quantities in Masebo, Sweden in the
1890s by Stockholm’s Superfostfat Fabrisk AB. Commercial production elsewhere in Europe

and the United States followed shortly thereafter. In the United States, perchlorate was first
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produced in 1908 by Oldbury Electrochemical plant in Niagara Falls. The mass production of
perchlorate began in the 1940s during the early part of WWII (Brandhuber & Clark, 2005).

In 1945, the DOD began using the chemical in the production of military munitions items
as part of its national defense system. Along with this and the advancements in NASA’s
aerospace program came an increased need for the production of perchlorate (ITRC, 2008).
Before the 1970s, several companies existed that produced ammonium perchlorate. Between
1975 and 1998, this number dropped to only two plants: American Pacific and Kerr-McGee. In
April 2003, there were more than 100 perchlorate users located in 40 states (Figure 6.6).

Although perchlorate contamination has existed for decades, widespread perchlorate
contamination in the United States was not observed until after the spring of 1997, when an
analytical method with a reporting limit of 4 ppb was developed. Since then, methods have been
developed that can detect concentrations of 1 ppb and lower. Monitoring for perchlorate
contamination has been done throughout the United States over the last several years. Indeed,
ITRC (2008) states the following: “USEPA has monitored for perchlorate in public drinking
water systems through the Unregulated Contaminant Monitoring Rule (UCMR) program. Under
UCMR 1, detections of perchlorate were analyzed using USEPA Method 314.0, at
approximately 2,800 large public water systems (see Figure 6.7) and a representative sample of
800 (out of 66,000) small public water systems. As of January 2005, perchlorate had been
detected in 153 public water systems and 25 states across the United States (Figure 6.8).”

Geographically, the highest densities of perchlorate detection are in southern California,
west central Texas, along the east coast between New Jersey and Long Island, and in
Massachusetts (Figure 6.8). The apparent absence of perchlorate occurrence in some regions may

merely be because relatively few sources have been sampled. More intensive sampling,
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particularly of small systems, may detect perchlorate-contaminated drinking water sources in
these regions (Brandhuber & Clark 2005). As noted in Figure 6.8, a great deal of the production
of perchlorate compounds has been used in defense activities and the aerospace industry.

The USDOD (2007) reported the following: Past and present activities at DOD industry
facilities that may have contributed to environmental releases of perchlorate include, but are not
limited to, chemical manufacture of perchlorate materials, manufacture and maintenance of
missiles, rockets, and munitions items containing perchlorate, open burning and open detonation
of munitions items, the use of perchlorate-containing munitions for weapon system testing and
military training (e.g., smoke grenades), ordnance testing and development, rocket motor
maintenance and testing, demilitarization of perchlorate-containing munitions items using
techniques such as high-pressure water jet washout of rockets and missiles containing solid
propellant.

Reported perchlorate contamination in surface and ground water in the U.S. ranged from
ppb (WL) to ppm (m/L) levels, which affects the drinking water source of 15 million people
(Logan, et al., 2001). Approximately 150 perchlorate manufacturers and users have been
identified in 44 states, and this number is still increasing. California, Nevada, Massachusetts and
Utah are the most affected states, and 18 states, including Arizona, Texas, New York, Maryland,
and Arkansas, have reported perchlorate releases (Damian & Pontius, 1999; Logan, 2001). In
addition, the Colorado River, which provides drinking water and irrigation water for millions of

people, currently has low levels of perchlorate from Lake Mead to Mexico (Logan, 2001).

6.3.2 Dangers
Perchlorate is highly toxic (Table 6.2 lists some properties of perchlorate compounds).

When perchlorate enters the human body through drinking water or food grown in soil which is
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high in perchlorate, the production of thyroid hormone is disrupted. This can create a condition
called hypothyroidism (Urbansky, 2000). Hypothyroidism has the potential to affect metabolism
and normal growth and development, which could result in brain damage. The impacts of
disrupting thyroid hormone synthesis are greatest on pregnant women and their developing
fetuses, infants, children, and individuals who have low levels of thyroid hormones. Impaired
brain development and lower 1Q are associated with children born to mothers who are iodine
deficient. Tests on rats and mice at high dosage have caused benign tumor growths (Motzer,
2001). Meanwhile, scientists are concerned about the carcinogenic, developmental, reproductive,
and immunotoxic effects of perchlorate as well (Nerenberg et al., 2002). Although
hypothyroidism itself is treatable with medication, the secondary effects, such as brain
development, are irreversible. The health effects of long-term low dose exposure are being

investigated (Herman and Frankenberger, 1999; Logan, 2001).

6.3.3 Hypothyroidism Explained

Perchlorate blocks the uptake of iodide in the body. Iodide is needed to produce the two
thyroid hormones triodothyronine (T3) and thyroxine (T4) (Urbansky, 2000). These hormones
control physical growth and regulate the body’s metabolism. If the thyroid continues to lack
iodide, the pituitary gland and the hypothalamus, which regulate the thyroid hormones, will
increase their own hormone production to compensate for the lowered levels of T3 and T4.
Symptoms of hypothyroidism include the following (Norman Endocrine Surgery Clinic, 2005):
fatigue, weakness, weight gain or increased difficulty losing weight, coarse, dry hair, dry, rough
pale skin, hair loss, cold intolerance, muscle cramps and frequent muscle aches, constipation,

depression, memory loss and abnormal menstrual cycles
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6.3.4 Perchlorate and the law

High instances of perchlorate contamination are mainly due to the legal disposal practices
of past decades that allowed unregulated waste effluents containing perchlorate into the
environment (Motzer, 2001).

Perchlorate is not currently regulated in the Safe Drinking Water Act, but state advisories
vary from 1-18 ppb, and Texas Commission on Environmental Quality is adopting an interim
action level of 4 ppb. A federal drinking water limitation as low as 1 ppb may be adopted in the
near future.

According to data compiled by the California Department of Health Services, perchlorate
has been detected in 80 of 912 public water supplies tested in the state, and 292 of 5,205 private
drinking water sources sampled contained measurable levels of the pollutant (CalEPA, 2002).

In 1985, the Region 9 office of the USEPA first became aware of the presence of
perchlorate in wells. Due to the lack of knowledge regarding the toxicity of this chemical and
absence of a valid analytical method, the USEPA focused on other more known threats. In the
early 1990s, discovery of perchlorate contamination in water supplies in California continued,
prompting the USEPA Superfund Technical Support Center to issue a provisional oral reference
dose (RfD) for perchlorate. An oral reference dose is an estimate of the daily exposure of
perchlorate to the human population (including sensitive subgroups) that is likely to be without
appreciable risk of adverse effects over a lifetime (USEPA, 2002). This dose is given as the
perchlorate anion since perchlorate salts readily dissolve in aqueous solutions and it is the anion
that is detected in environmental samples. The basis of this RfD was an acute study in which
single doses of potassium perchlorate were given to patients suffering from Graves’ disease, an

autoimmune condition that results in hyperthyroidism. Assuming factors of 70 kilograms of body
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weight and 2 liters of water consumption per day, the USEPA converted this RfD value into a
drinking water equivalent level (DWEL), stating that a range of 4 to 18 ppb of perchlorate was
acceptable in drinking water. In January 1997, based on the upper level of this provisional RfD,
the California Department of Health Services adopted an action level of 18 ppb for perchlorate.
New York, Arizona, and Texas also initially adopted this 18 ppb action level for perchlorate in
drinking water. Based on current data, in April 2007 Massachusetts has established a provisional
action level of 1 pg/L for perchlorate in drinking water. Several other states, including Nevada,
Maryland, and Texas, have also instituted advisory levels for the oxidant, and other states may
follow suit.

In summary, perchlorate (CIOj4) in surface and groundwater has become an ever-
increasing water quality concern in the United States during the last decade. Perchlorate was first
detected in groundwater in California and Nevada in the early-to mid-1980s (Urbansky &
Schock, 1999). However, only after the development of a more sensitive analytical method that
lowered the detection limit to 1 ppb (1pug/L) in 1997, was the extent and severity of the problem

gradually recognized.
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Table 6.1 Average Amount of Water Drawn off of the Groundwater Lenses of the Cape

Cod Aquifer
Water Volume Area .
Lens Towns - .. | Maximum
Withdrawn (mgd) | (sq mi) Elevation (ft)
Bourne, Sandwich Falmouth, 25 (summer)
Sagamore Mashpee Barnstable, 165 70
13 (off-season)
Yarmouth
Dennis, Brewster, Harwich, 12 (summer)
Monomoy Chatham, Orleans 5 (off-season) 66 30
Nauset Eastham, South Wellfleet 2.0/.8 estimate 15 15
Chequesset | Wellfleet, South Truro 1.5/.5 17 8
Pamet Truro 1.3/.6 11 6
Pilgrim Provincetown N/A 4 5
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Table 6.2 Properties of Perchlorate Compounds

Ammonium Potassium Sodium )
Properties* perchlorate perchlorate perchlorate Pe-rchlorlc

(NH,CIO.) (KCIO,) (NaClO.) acid (HCIO04)
CAS# 7790-98-9 7778-74-7 7601-89-0 7601-90-3
Molecular weight | 117.49 138.55 122.44 100.47
Color/form White Colorless White Colorless oily

orthorhombic orthorhombic orthorhombic liquid

crystal crystal or white deliquescent

crystalline crystal
powder
Taste/odor Odorless Slightly salty Odorless Strong odor
Density/specific 1.95 g/cm3 2.53 g/cm3 2.52 g/cm3 1.77 g/cm3
gravity
Solubility 200 g/L water at | 15 g/L water at 2096 g/L water | Miscible in
cold

25°C 25°C at 25°C water
Sorption capacity | Very low Very low Very low Very low
Volatility Nonvolatile Nonvolatile Nonvolatile Volatile
Octanol/H20 -5.84 -7.18 -7.18 -4.63
partition
coefficient
(log Kow)
Vapor density No information 4.8 No information | 3.5
(air=1)
pH 5.5-6.5 6.0-8.5 7.0 Highly acidic
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Figure 6.3. Photograph of demolition area one at Camp Edwards
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Figure 6.6. Perchlorate users in the U.S.
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Figure 6.7. Perchlorate in public water systems

141

Legend
Perchlorate Detections at:
@ A Department of Defense (DOD) Facilities
© A Other Federal Agency Facilities:
Department of Energy (DOE)
National Aeronautics and Space Agency (NASA)
Department of the Interior (DOI)
@ A Privately-owned Sites
@ A Unregulated Contaminant Monitoring Rule (UCMR) Detections
© A Texas Tech University-West Texas Study Detections.
O Point Contains One Site
A\ Point Contains Multiple Sites

Map source: EPA



Figure 1: Maximum Perchlorate Concentrations Repotrted in any Media and Number of Sites, January 2005
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Figure 6.8. National perchlorate detections as of September 2004
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CHAPTER 7 - Three-dimensional time-related profiling of explosive-
related contaminants (perchlorate) at the Massachusetts Military

Reservation site

7.1 Introduction

Testing and training ranges are essential to maintaining the readiness of the armed forces
of the United States. Recently, concerns have arisen over potential environmental contamination
from residues of energetic materials at impact ranges. Jenkins, et al. (2001) concluded that the
current state of knowledge concerning the nature, extent, and fate of contamination is inadequate
to ensure sound management of ranges as sustainable resources. The potential for environmental
impacts, including contamination of drinking water supplies, mandates that the DOD
demonstrate responsible management of these facilities in order to continue testing and training
activities.

The application of ANNSs in environmental site characterization has proven to be an
effective modeling method for the prediction of migration paths of environmental contaminants
(Mryyan & Najjar, 2005, Dowla & Rogers, 1995; Rizzo, et al., 1996). However, the uses of
ANN modeling for the migration of explosives-related contaminants (in particular perchlorate) in
water and soil have not been reported in the literature. For this reason, Chapters 7 & 8 will
explore the potential use of neural network modeling for predicting the amount and distribution
of perchlorate at military installations, specifically the Massachusetts Military Reservation

(MMR), site described in Chapter 6.
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7.2  Groundwater contamination

Groundwater contamination is not a new phenomenon. Indeed, naturally occurring
inorganic contaminants, such as salts, metals, and radioactive materials have contaminated
groundwater for centuries. However, the development of man-made chemicals and technological
developments have introduced new ways for water to become contaminated. The leaching of
chemical contaminants into the groundwater supply of the U.S. is a source of great concern to the
nation. According to Groundwater Foundation (2006), 50% of the nation’s population depends
on groundwater for daily drinking water. When humans ingest contaminated drinking water, it
can lead to such diseases as hepatitis, hypothyroidism, and cancer (Johnson & Rogers, 1995).
Therefore, it is essential to take steps that ensure that America’s water supply is as pollutant-free
as possible. In an effort to minimize water contamination and to clean up existing contamination,
Congress approved the Clean Water Act.

Sources of groundwater contamination are often difficult to describe. In industrial areas, a
lack of historical information is fairly common (Gailey, et al. 1991). Land use may have
changed many times: pumping and/or injection wells may have created complex and transient
flow gradients, and local industries may be unable or reluctant to describe what they have
contributed to contamination. Often, if the sources are unknown or hard to quantify, the best
characterization or current snapshot of the plume can be achieved through soil sediment and
groundwater sampling (Dougherty & Marryott, 1991).

Known sources are often classified as point or distributed sources. Hunt, et al. (1988)

classified point sources as localized sources such as landfills, underground storage tanks, waste
disposal wells, leaking pipelines (these may be line rather than point sources), industrial spills,

and holding ponds or lagoons. Distributed sources are spread over large parts of the
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contaminated area. Examples are agricultural and urban use of pesticides, fertilizers and manure,
transportation chemicals (road salt, tar), sewage and septic systems, nuclear fallout, and urban
storm-water runoff. Poorly constructed or abandoned wells may increase contamination from

surface sources.

7.3 Monitoring Groundwater

Federal, state, and local governmental organizations collect water samples for laboratory
analysis. Research organizations, community action groups, and private citizens may perform
their own monitoring of groundwater. The EPA publishes standardized water quality analysis
procedures and grants certification to laboratories that apply them appropriately. To collect a
representative sample of aquifer water quality, monitor wells are installed. Where contamination
is suspected, baseline quality is assessed by placing monitor wells upgradient and downgradient
from suspected contamination (Ahlfeld, 1990). Extensive drilling, testing, and geophysical
logging are usually necessary to ensure proper monitor well placement, even if the source loca-
tion is known. Many factors may contribute to difficulty in intercepting contaminated
groundwater, including unexpected barriers or enhancements to flow (e.g., fractures, fault
zones), changes in predicted flow direction by undocumented well pumping, and denser-than-
water contaminants moving downward (Bredehoeft & Young, 1983). The high costs of installing
and operating monitor wells in addition to the concern for increasing contamination of aquifers at

multiple levels encourages minimal monitoring.
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7.4  Background of Study Area

MMR is a site that has been associated with military operations for several decades. This
site was utilized for many purposes, one of which led to the presence of perchlorate in soil,
sediments, surface water, and groundwater. The data contained in this chapter were obtained
from this site.

Although the MMR is a large area of land, the area of concern is only 7.4 acres. This site
is referred to as Demo 1 and is located on Camp Edwards, approximately 2 miles northeast of the
Otis Rotary in Bourne, Massachusetts. Demo 1 is located in a natural topographic depression that
covers approximately one acre at its base and lies 45 ft below the surrounding grade.

Demo 1 was established in its current location between 1986 and 1989 as a heavy
demolition site. Its primary use was for training engineer and explosive ordnance disposal units
and for the destruction of various types of unexploded ordnance. Such ordnance (including
perchlorate) included explosive charges of C-4, 2,4,6-trinitrotoluene (TNT), and det-cord with a
weight limit of 40 Ibs, Bangalore torpedoes, and claymore mines (AMEC, 2001). According to
Pennington, Brannon & Mirecki (2002):

In January, 2000, the U.S. EPA Region I issued an Administrative Order for Response

Action in the matter of Training Range and Impact Area, Massachusetts Military

Reservation to the Massachusetts National Guard. The purpose of the Order was to

require the respondents to undertake Rapid Response Actions and Feasibility Studies,

Design and Remedial Actions to abate the threat to public health presented by the

contamination from past and present activities and sources at and emanating from the

(MMR) Training Range and Impact Area.
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In 2004, the MMR implemented a program to correct the negative impacts of perchlorate
contamination at the Demo 1 site. Two extraction, treatment, and recharge (ETR) systems were
installed within the area of contamination. These wells pump the contaminated groundwater out,
remove explosives and perchlorate contamination from the water, and then reinject the treated
water back into the wells. This is done at a rate of 110 gallons per minute (USACE, 2006). This

process continues to date.

7.5 Pre-Existing Data

At the start of this research, perchlorate laboratory analysis data were available for the
years 2000-2005. The ANN model was developed, tested, and calibrated using the available data
from the MMR facility. A total of 459 samples were collected and analyzed at the Demo 1.

In accordance with the Administrative Order for Response Action, the U.S. Army
Environmental Center (EC) collected water quality samples at 41 monitoring wells in 33
locations (Figure 7.1). Site investigations at and down gradient (west) of Demo 1 included the
collection of approximately 650 soil samples and the installation of monitoring wells in 33
locations (USACE, 2006). Data from all monitoring wells were utilized in this study. Water
quality samples were collected by the EC between March 2000 and December 2005. These
samples were analyzed for over 200 compounds to include explosives, volatile organic
compounds, semi-volatile organic compounds, pesticides and herbicides, polychlorinated

biphenyls (PCBs), polychlorinated naphthalenes, dioxins, and heavy metals.
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7.6 Model Development

Back-propagation networks were developed using the TR-SEQ1, a three-layered ANN
training software package developed by Najjar (2001). The purpose of the ANN model is to

predict the concentrations of perchlorate at the MMR from appropriate input parameters.

7.6.1 Determination of Appropriate Model Inputs

This section will discuss the process used to determine the selection of input parameters
for the ANN models. The determination of the appropriate model inputs is a process that requires
a great deal of consideration. Huang (2006) states, “Whereas in physically-based models the
necessary input parameters are specified by the equations that describe the physical, chemical, or
biological process being simulated, there is no such specification in ANN models.” Because of
this, it is imperative that there be an adequate amount of relevant input data to train the ANN
model.

Based on the available MMR data, back-propagation neural network was chosen as the
most-appropriate ANN for developing the site profiling prediction model. The back-propagation
approach used by Mryyan & Najjar (2007 & 2005) and Dowlas & Rogers (1995) has proven
successful in past environmental site profiling because of its ability to accurately predict the
amount and distribution of environmental contaminants at a given site.

As mentioned in Chapter 3, the performance of a network is dependent on the following
factors:

e The number of hidden layers and nodes. For ANN mapping, one hidden layer was used
between the input layer and output layer. The number of hidden nodes in the hidden layer
was determined by adaptive training and online monitoring of accuracy measures on the
testing datasets. This was done by varying the number of initial hidden nodes, in the hidden
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layer, until the network was able to best learn the patterns involved in the testing datasets.

Fully connected internal structure was used (every node in one layer connects to all the nodes

in the next layer). It is worth mentioning that the input domain of the network was

determined based on cause-effect principle along with a trial-and-error approach, because

there are no references in the literature that could provide guidance for selection of the inputs

(Ali & Najjar, 1998).

e The number and type of nodes in the input layer. Given the MMR data, the following nine

potential input parameters were considered:

1.

2.

X-Coordinates (East)
Y-Coordinates (North)
Sample depth from sea level (Z)

Groundwater elevation (G)

. Cumulative number of days since 1/1/2000 (T)

Cumulative amount of rain since 1/1/2000 (R)

Amount of water injected back to groundwater at the Pew Road well (INJ1) since April
2004

Amount of water injected back to groundwater at the Perking Road well 2 (INJ2) since
April 2004

Amount of water injected back to groundwater at the Perking Road well 3 (INJ3) since

April 2004

e In order to determine the domain of input parameters for the optimal ANN model, the effect

of input parameters on the output and the performance evaluation criteria (statistical accuracy

measures and graphical evaluation) are utilized to identify and distinguish the most important
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parameters that contribute to the best perchlorate prediction. Various training and testing
trials, eliminating different input parameters, were conducted in order to identify the most
important input parameters. In the initial step, all nine potential input parameters (X, Y, G, Z,
T, R, INJ1, INJ2 and INJ3) were used to develop the desired perchlorate prediction model. In
the second step, one parameter was eliminated to arrive at eight inputs (X, Y, Z, T, R, INJ1,
INJ2 and INJ3). Groundwater (G) parameter was not included. In the final step, seven input
parameters were used (X, Y, Z, T, INJ1, INJ2 and INJ3). Rain (R) and groundwater (G)
parameters were not included (See Table 7.1).

Based on previous environmental site profiling knowledge (Mryyan & Najjar, 2005;
Mryyan & Najjar, 2006 and Mryyan & Najjar, 2007), input(s) with minimal impact on the
accuracy of ANN model prediction were eliminated from the input domain in trial cases. If the
statistical accuracy measures were improved by eliminating one input parameter, the effect of
eliminating two input parameters at the same time was investigated further. This procedure was
repeated until the statistical accuracy measures did not improve by eliminating more input
parameters. The purpose of this procedure was to obtain the optimal ANN model—the highest
statistical accuracy with the least number of input parameters. In this study, based on the two
stages approach, it was determined that all of the nine potential input parameters (X, Y, G, Z, T,
R, INJ1, INJ2 and INJ3) were necessary to accurately predict the amount and the distribution of
perchlorate at Demol. Tables 7.2 to 7.4 show the statistical accuracy for each of the three trial

cascs.

7.6.2 Model Training and Testing

In order to obtain the best perchlorate prediction model, the database used for training

should represent all possible features and sub-features that the network is required to learn. This
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study adopted a two-stage training methodology for every ANN model trial structure. In the first
stage, the entire database was divided into training, testing and validation sub-databases at the
ratio of about 50%: 25%: 25%. The training sub-database contained all the datasets with the
maximum or minimum value of each input and output parameter. Using the training and testing
datasets for training and testing respectively, the least-error-structure is selected based on the
following statistical accuracy measures (Tables 7.2, 7.3 and 7.4): Averaged Squared Error
(ASE), Mean Absolute Relative Error (MARE) and Coefficient of Determination (R?) on the
testing datasets. Then the network was trained, tested, and validated at its least-error structure
with the corresponding sub-databases.

Felker (2005) reported that if the statistical accuracy measures at the least-error structure
for training, testing, and validation data sets were found to be comparable, then the second stage
of training is not necessary. Otherwise, this indicates that the developed net does not recognize
some of the features in the database. In this case, the second stage training was carried out. In the
second stage, all datasets in the database were used to re-train the least-error structure identified
in stage one. A total of three cases were investigated in order to obtain the optimal ANN model

for perchlorate prediction. The optimal ANN structures for all cases are listed in Table 7.1.

7.6.3 Model Selection

The best model is considered as the one with the highest statistical accuracy. Statistical
(MARE, R? and ASE) accuracy measures were adopted to select the optimal network models.
Tables 7.2 to 7.4 show the accuracy measure obtained for each trial case. The statistical accuracy
measures, ASE and R?, were improved by training on all data at its optimal ANN structure
(obtained from Stage I). It was found that the seven-inputs model and the eight-inputs model are

comparable; however, the nine-inputs model outperformed the seven- and the eight-inputs
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models in the value of ASE for the stage II trials. It was then decided to select the nine-inputs
model as the optimal ANN model for this study.

In summary, for the MMR perchlorate prediction model, it was determined that the
optimal network model contained nine-inputs parameters, nine hidden nodes, and one output
parameter (9-9-1). The corresponding accuracy measures for this network based on Stage 11

training is listed in Table 7.2.

7.7 Data Banks

Once the optimal network model was determined to represent the MMR site, the network
was used to predict the values of perchlorate contamination at any desired location. The only
parameter required in order to provide needed predictions is the input data vector (X, Y, G, Z, T,
R, INJ1, INJ2, and INJ3).

The Demo 1 site was divided in the x, y, and z directions using Ax = Ay = 25 ft. The grid
system generated in the (X, y) plane produced 4,527 grid points (Figure 7.2). These coordinates
were used for z =-50 ft, -25 ft, 0 ft, 25 ft and 50 ft, generating a total of 22,637 grid points. For
each of the generated grid points, the perchlorate concentration values were predicted using the
corresponding (X, y, z) coordinates via the optimized 9-9-1 networks (Table 7.2). Predictions
were made using data representing one specific date in time. This means that values for the
parameters G, Z, R, INJ 1, INJ 2, and INJ3 remained constant for a specific time, although z

varied for any given x and y coordinate.

7.8  Excel Application

Once the ANN model was developed, the optimal network (9-9-1) was used to create an

Excel and Visual Basic software program called MMR perchlorate level determination (MMR-
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PLD). To make the program user-friendly, a graphical user interface (GUI) was developed (See
Figure 7.3). To find the perchlorate level at any certain x and y coordinate throughout the Demo
1 site, all the user need to do is enter the desired date (t) and desired depth (z). The program will

then return the perchlorate level for that x, y and z coordinate.

7.9 Contour Maps

It is often difficult to analyze large amounts of contaminant data in relation to a specific
area such as Demo 1. By taking known data and creating a contour map, a visual graph of the
study area can be created. This allows for easier interpretation and comparison of given data. For
this reason, contour maps of the Demo 1 site were created using version 8 of Surfer” software
(2007) to assist in the visualization of perchlorate contamination from years 2000 through 2005.
This was done using the results obtained from the 9-9-1 ANN model, as described previously.

The contour maps had (X, y) as a variable and (z) as a constant. Figures 7.4 through 7.8
indicate perchlorate concentrations at z = -50 ft, -25 ft, 0 ft, 25 ft and 50 ft for years 2000 to
2005. By creating contour maps for each year and each depth, trends in the concentration of
perchlorate contamination over time and at different depths can be tracked easily. Such images
also allow for easy identification of contaminated areas.

In all contour maps (Figures 7.4 through 7.8), a red color reflects a high value of
perchlorate and a light color represents a low perchlorate value. Consequently, a red color means
a high value of perchlorate concentrations above the regulatory limit of 1 part per billion, and a
white color indicates no perchlorate concentration. Color ramp is used between the red and white
colors to map intermediate perchlorate concentration values according to the scale shown on the

figures.
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As stated before, 3-D contour maps were generated at depths of -50 ft, -25 ft, O ft, 25 ft
and 50 ft for the years 2000 through 2005. For the purposes of comparison, these depths will be
divided into three categories: below sea level (-50 ft and -25 ft), sea level (0 ft) and above sea
level (25 ft and 50 ft).

Before the implementation of the extraction, treatment and recharge (ETR) methods in
April 2004, high levels of perchlorate were noted in groundwater samples as demonstrated in the
contour maps for years 2000 through 2003. This finding is consistent with known natural
migration patterns of perchlorate in groundwater. The highest levels of contamination for these
years were noted below sea level, as shown in Figures 7.4a through 7.4c and 7.5a through 7.5c.
At sea level and above, levels of contamination decreased but were still present, as shown in
Figures 7.6a through 7.16¢, 7.7a through 7.7c, and 7.8a through 7.8c.

With the implementation of the ETR methods, the pattern of perchlorate contamination
changes. Groundwater that has been drawn off and treated by the ETR system no longer contains
perchlorate. When this treated water is reinjected into the wells, it is reinjected below sea level.
2005, at a level 50 ft below sea level (Figures 7.4e & 7.4f), there is no evidence of perchlorate
contamination. At -25 ft, levels of perchlorate contamination begin to increase (Figures 7.5¢

& 7.51), with the greatest amount noted at 25 ft above sea level (Figures 7.7¢ & 7.71).

7.10 Concluding Remarks

The ANN-modeling used in this research demonstrates the neural network’s ability to
accurately predict perchlorate contamination using multiple variables or inputs. To determine the
most appropriate input parameters for this model, three different cases were investigated using

nine potential input parameters.
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In the initial case, all nine potential input parameters (X, Y, G, Z, T, R, INJ1, INJ2 and
INJ3) were used to develop the desired perchlorate prediction model. This model produced an
ASE value of 0.0025 and R’ value of 0.607.

In the second case, one parameter (G) was eliminated to arrive at eight inputs (X, Y, Z, T,
R, INJ1, INJ2 and INJ3). This model produced an ASE value of 0.0030 and R* value of 0.57. In
the final case, two parameters (R and G) were eliminated to arrive at seven input parameters (X,
Y, Z, T, INJ1, INJ2 and INJ3). This model produced an ASE value of 0.0032 and R*value of
0.503.

When comparing the three cases, the following was observed:

e The eight-inputs case produced an ASE value 20% greater than the nine-inputs
case, while the R? value decreased by 6.5%.

e The seven-inputs case produced an ASE value 28% greater than the nine-inputs
case, while the R* decreased by 17%.

e The nine-inputs models outperformed the eight-inputs models in the value of ASE
for the stage II trials therefore identified the nine-input model as the optimal ANN
model for this study.

Using the data generated from the 9-9-1 ANN model and the MMR-PLD Excel program,
contour maps were generated and compared for levels above, at, and below sea level for the
years 2000 through 2005. Contour maps generated using data prior to the implementation of the
ETR (actual) system in 2004 indicate higher levels of perchlorate below sea level for the years
2000 through 2003. Contour maps generated using data after the implementation of the ETR

system indicate decreased levels of perchlorate below sea level. Perchlorate levels at and above
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sea level increased during this period; however, this was to be expected due to the reinjection
process.

When comparing the trends observed using the ANN-generated data and the actual trends
identified in the MMR 2006 System Performance Monitoring Report, both agree that perchlorate
levels are decreasing due to the use of the ETR systems. This proves that the ETR systems were
both effective and necessary for the removal of perchlorate contamination at the Demo 1 site, as
demonstrated in the contour maps.

This study has proven that it is possible to use back-propagation ANN-modeling to
accurately predict groundwater and soil contamination using limited known data. By utilizing

ANN methodology, more in-depth studies of a similar site type can be performed.
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Table 7.1 Optimal Structures of All Trial Cases

ANN Structure 9-inputs | 8-inputs | 7-inputs
Initial number of HN 1 2 2
Maximum # of iterations at 1000 1000 4000
optimal structure

# of HN at optimal structure 9 8 6

8-inputs (rain parameters not included)

9-inputs (all potential parameters included)

Table 7.2 Statistical Accuracy Measure for the Nine-Inputs Network

7-inputs (rain and groundwater elevation parameters are not included)

MARE%

RZ

9-inputs network ASE
Stages  [Itr [HN|TrainingTesting|Validations|Training|Testing|validations|Training [Testing |Validations
stage [-A|100019 [116 136 |[NA 0.434 1[0.63 |NA 0.0042 (0.0018 |NA
stage I-B [100019 [116 NA 124 0434 |NA |o.28 0.0042 |NA 0.0046
stage II  |100019 |139 NA |NA 0.607 [NA |NA 0.0025 [NA NA
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Table 7.3 Statistical Accuracy Measures for the Eight-Inputs network

8-inputs network MARE% R’ ASE
Stages [Itr [HN|TrainingTesting/Validations|Training/Testing|Validations|Training/Testing/Validations
stage [-A |1000[8 [140 138 |NA 046 [0.63 [NA 0.004 10.002 NA
stage [-B [1000[8 (140 NA  [141 046 |[NA |0.39 0.004 [NA |0.004
stage Il (10008 (118 NA NA 0.57 NA NA 0.003 [NA NA
Table 7.4 Statistical Accuracy Measures for the Seven-Inputs Network

7- inputs network MARE% R’ ASE
Stages  [Itr  |HN|Training|Testing [Validations |Training |Testing [Validations |Training [Testing [Validations
stage I-A 4000 |6 [149 142 NA 0.502 0.54 NA 0.003 0.0022 |[NA
stage I-B  [4000 |6 [149 NA 155 0.502 NA 0.302 0.003 NA 0.00476
stage II 4000 |6 (123 NA NA 0.503 NA NA 0.0032 |[NA NA

HN: Optimal Number of Hidden Nodes
MARE: Mean Absolute Relative Error %
NA: Not applicable

ASE: Averaged Square Error

Itr: Iterations
R?: Coefficient of determination

_ J=(Predicted — Actual )

#of data

sets
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Figure 7.1. Locations of groundwater monitoring wells at Demo 1 site
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Figure 7.3. Interface of Excel application for ANN profiling model

161



Y- Coordinates (North)

4617000 B
4616800 B
4616600 -

4616400 B

— 1

\ \ \ \ \ \
368000 368500 369000 369500 370000 370500 371000

X-Coordinates (East)
Figure 7.4a. Contour map showing the distribution of perchlorate in groundwater in 2000 at

Z=-50ft

Y- Coordinates (North)

\ \ \ \ \ \
368000 368500 369000 369500 370000 370500 371000

X-Coordinates (East)
o [ee]
Lo - < i o

Figure 7.4b. Contour map showing the distribution of perchlorate in groundwater in 2001 at

Z=-50 ft
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Figure 7.4c. Contour map showing the distribution of perchlorate in groundwater in 2002 at
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Figure 7.4d. Contour map showing the distribution of perchlorate in groundwater in 2003 at
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Figure 7.4e. Contour map showing the distribution of perchlorate in groundwater in 2004 at
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Figure 7.4f. Contour map showing the distribution of perchlorate in groundwater in 2005 at
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Figure 7.5a. Contour map showing the distribution of perchlorate in groundwater in 2000 at
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Figure 7.5b. Contour map showing the distribution of perchlorate in groundwater in 2001 at

Z=-251t
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Figure 7.5c. Contour map showing the distribution of perchlorate in groundwater in 2002 at

Z=-251t
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Figure 7.5d. Contour map showing the distribution of perchlorate in groundwater in 2003 at

Z=-251t
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Figure 7.5¢. Contour map showing the distribution of perchlorate in groundwater in 2004 at
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Figure 7.5f. Contour map showing the distribution of perchlorate in groundwater in 2005 at
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Figure 7.6a. Contour map showing the distribution of perchlorate in groundwater in 2000 at
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Figure 7.6b. Contour map showing the distribution of perchlorate in groundwater in 2001 at

Z=0ft
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Figure 7.6c. Contour map showing the distribution of perchlorate in groundwater in 2002 at
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Figure 7.6 d. Contour map showing the distribution of perchlorate in groundwater in 2003 at
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Figure 7.6e. Contour map showing the distribution of perchlorate in groundwater in 2004

atZ=0ft

Y-Coordinates (North)
A

4617000 B

4616800 = =

4616600~ / i

4616400 B

v

\ \ \ \ \ \ \
368000 368500 369000 369500 370000 370500 371000
X-Coordinates (East)
Figure 7.6f. Contour map showing the distribution of perchlorate in groundwater in 2005
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Figure 7.7a. Contour map showing the distribution of perchlorate in groundwater in 2000

atZ=25ft
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Figure 7.7b. Contour map showing the distribution of perchlorate in groundwater in 2001

at Z =25 ft
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Figure 7.7c. Contour map showing the distribution of perchlorate in groundwater in 2002
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Figure 7.7d. Contour map showing the distribution of perchlorate in groundwater in 2003

at Z =25 ft
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Figure 7.7e. Contour map showing the distribution of perchlorate in groundwater in 2004

at Z =25 ft
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Figure 7.7f. Contour map showing the distribution of perchlorate in groundwater in 2005
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Figure 7.8a. Contour map showing the distribution of perchlorate in groundwater in 2000

at Z =150 ft
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Figure 7.8b. Contour map showing the distribution of perchlorate in groundwater in 2001

at Z =150 ft
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Figure 7.8c. Contour map showing the distribution of perchlorate in groundwater in 2002

at Z =150 ft
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Figure 7.8d. Contour map showing the distribution of perchlorate in groundwater in 2003
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Figure 7.8e. Contour map showing the distribution of perchlorate in groundwater in 2004
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Figure 7.8f. Contour map showing the distribution of perchlorate in groundwater in 2005
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CHAPTER 8 - ANN-Based Profiling: Data Importance

8.1 Introduction

Neural network models were initially formed to solve real-life problems. They were
generated to function like the human brain, and consequently to produce reasonable outputs.
Testing the performance capability is the first step in the development of any network that is to
be used in field applications. Once a network shows a good performance for certain data, its
structure might be used for other similar applications with similar databases. If the data values
provided for the new application fall in the same range of the original data used for developing
the network, then the developed network might be directly used with no modification. On the
other hand, if the new data have a different range for their parameters, then the previously
developed network could be used as a guide to develop new networks. In such a case, the inputs
and outputs of the old structure might be used in developing new networks.

In Chapter 7, neural networks were used to predict the perchlorate concentration values at
any desired (x, y, z) point at MMR-Demo 1. In this chapter, similar procedures will be carried
out to highlight the critical number (importance) of monitoring wells needed to examine the

extent of the perchlorate contamination.

8.2 MMR-Demo 1 Groundwater Monitoring Network

According to Ogden (1999), the MMR-Demo 1 groundwater monitoring network is
composed of a total of 41 monitoring wells, which are installed throughout the Demo 1 site
(Figure 8.1). Each monitoring well has been sampled from one to eight times depending on when

it was installed. These samples were analyzed for over 200 compounds to include explosives,
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volatile organic compounds, semi-volatile organic compounds, pesticides and herbicides,
polychlorinated biphenyls (PCBs), polychlorinated naphthalenes, dioxins, and heavy metals
(USACE, 1999). Groundwater analytical results for all sampling rounds conducted from January
2000 through December 2005 are provided in Appendix A and will be utilized in this study.
Amegashie, et al., (2006) stated that the groundwater site characterization investigation
consisted of groundwater profiling and installation of monitoring wells upgradient and
downgradient from contaminant source plume. Ogden (1999) reported that a total of six
monitoring well triplets were installed. Well locations MW-74 through MW-78 were established
along a transect perpendicular to the plume, approximately 1700 ft downgradient of the source
area represented by MW-19. A total of 15 wells were installed at these five locations to delineate
the lateral and vertical extent of perchlorate in groundwater. Three wells were also installed at
MW-709, east of the source area, to evaluate upgradient groundwater quality. Shallow monitoring
well MW-73S was installed to provide additional characterization of groundwater at the water

table in the source area (Clausen, et, al. 2004).

8.3  ANN Model Development

The data of the MMR groundwater monitoring wells network (Appendix A) was utilized
herein to fully investigate the data importance aspect of this research study.

Based on the available MMR-Demo 1 groundwater monitoring network data and other
environmental site profiling studies, such as the ones conducted by Mryyan & Najjar in 2005,
Mryyan & Najjar in 2006 and Dowla & Rogers in 1991, back-propagation neural network was
chosen as the most-appropriate ANN for developing the groundwater site characterization
prediction model. Back-propagation networks were developed using the TR-SEQ1, a three-

layered ANN training software package developed by Najjar (2001). The purpose of the ANN
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model is to predict the concentrations of perchlorate at the MMR from appropriate input
parameters and to predict the impact of exclusion and/or inclusion of any monitoring wells from
the Demo 1 site groundwater monitoring wells network. In this chapter, twenty-eight back-
propagation neural network models were trained and tested, because the inclusion or exclusion of

certain monitoring wells variables could influence the ANN model prediction results.

8.3.1 Determination of Appropriate Model Inputs

This chapter uses the same methodology used in Chapter 7 to determine the appropriate
number of input parameters. As in Chapter 7, all of the nine potential input parameters (X, Y, G,
Z, T, R, INJ1, INJ2 and INJ3) were necessary to accurately predict the amount and the
distribution of perchlorate at Demo 1 and the minimum number of monitoring wells necessary to

accurately characterize the Demo 1 site.

8.3.2 Data Banks and Model Selection

The optimal network model for the prediction of perchlorate at the MMR was determined
to contain nine input parameters, nine hidden nodes, and one output parameter (9-9-1). Once this
was determined, the network was used to model the impact of exclusion/inclusion of monitoring
wells from the network. The only parameter required in order to provide needed predictions is
the input data vector (X, Y, G, Z, T, R, INJ1, INJ2, and INJ3).

Twenty-eight models were developed by various testing trials through the exclusion or
inclusion of certain groundwater monitoring wells. These models were then used to identify the
minimum groundwater wells necessary to accurately characterize the Demo 1 site. A brief

description of three out of the twenty-eight models developed is presented below.
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Model 1. (Baseline model). The baseline model adopted the two-stage training
methodology. In the first stage, which was completed in Chapter 7, [for the MMR perchlorate
prediction model, it was determined that the optimal network model contained nine input
parameters, nine hidden nodes, and one output parameter (9-9-1)] all 41 well data sets (459 data
sets are listed in Appendix A) were used to develop the desired perchlorate prediction model. In
this model, the database used for training represents all possible features and sub-features that
the network is required to learn. In the first stage, the entire database was divided into training,
testing and validation sub-databases at the ratio of about 50%: 25%: 25%. The training sub-
database contained all the datasets with the maximum or minimum value of each input and
output parameter. Using the training and testing datasets, the least-error-structure is selected
based on the following statistical accuracy measures (Tables 8.1): Averaged Squared Error
(ASE), Mean Absolute Relative Error (MARE) and Coefficient of Determination (R?) on the
testing datasets. Then the network was retrained at its least-error structure (defined from stage I)
9-9-1 on all data sets.

Model 2. In this model, well 165 data (20 data sets) were eliminated from the data bank
to arrive at 40 wells and 439 data sets. Accordingly, the least-error-structure was determined.
Following that, the second stage re-training on the least error structure (9-7-1) was conducted.
Related statistical accuracy measures (for stage I and II) for model 2 are summarized in Table
8.2.

Model 3. In this model, well 32 data sets (24 data sets) were eliminated from the data
bank to arrive at 40 wells and 435 data sets. Similarly, the least-error-structure (i.e., 9-8-1) was
determined. Corresponding statistical accuracy measures for stage I and II are shown in Table

8.3.
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For each of the three models mentioned above, once the ANN model was executed and
perchlorate concentrations were predicted, contour maps were generated (Figures 8.2a through
8.2¢ described Model 1 through 4 for the year 2000; Figures 8.3a through 8.3¢ described Model
1 through 4 for the year 2001; Figures 8.4a through 8.4c described Model 1 through 4 for the
year 2002; Figures 8.5a through 8.5¢ described Model 1 through 4 for the year 2003; Figures
8.6a through 8.6¢ described Model 1 through 4 for the year 2004, and Figures 8.7a through 8.7c
described Model 1 through 4 for the year 2005). Also, network accuracy statistics, specifically
the Averaged Squared Error (ASE), Mean Absolute Relative Error (MARE %), and Coefficient
of Determination (R”) were determined. Tables 8.4 show the network accuracy statistics for all
twenty-eight groundwater ANN-based site characterization models. Note that all ASE, MARE%

and R? values reported are the ones obtained from the stage Il modeling.

8.4 Contour Maps

Once a decision is made about what network is used to represent a site, this network can
be used to predict the perchlorate values at any desired location. The only thing a trained
network needs in order to provide such predictions is the input data vector. In this site
characterization study, the only input data needed is the (x, y, z) coordinates of the point at which
a prediction is desired.

In this chapter, the Demo 1 site was divided in the X, y, and z directions using
Ax = Ay = 25 ft. The grid system generated in the (X, y) plane produced 4,527 grid points (Figure
8.1). These coordinates were used for z = 0 ft. For each of the generated grid points, the
perchlorate concentration values were predicted using the corresponding (X, y, z) coordinates via
the least-error structure (optimized) networks. Predictions were made using data representing one
specific date.
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In all contour maps (Figures 8.2 through 8.7), a red color reflects a high perchlorate value
and a light color represents a low perchlorate value. Consequently, a red color indicates a high
value of perchlorate concentrations above the regulatory limit of 1 part per billion, and a white
color indicates no perchlorate concentration. Color ramp is used between the red and white
colors to map intermediate perchlorate concentration values according to the scale shown on the

figures.

8.5 Results and Discussion

In order to compare the performance of the groundwater site characterization models utilized
herein, two comparison strategies were utilized, namely:
= Comparison using ASE values

= Comparison using contour maps

8.5.1 Comparison Using ASE Values

ASE values obtained for all of the twenty-eight groundwater site characterization models
(one-well exclusion cases) are listed in Tables 8.4. By examining ASE values listed in these
tables, it can be observed that the exclusion of any well will have a great impact on the ANN
model accuracy. Note that if the deviation is negative, then the data associated with the excluded
well is considered of low importance. On the other hand, if the deviation is positive, then the
data associated with the excluded well is considered of high importance. For example, excluding
data of well #114 produces a deviation of -34%, while excluding data of well #162 yields about
+130% deviation. These means that the data of well #114 can be considered of lower importance
in comparison to data associated with well #162. Accordingly, the network that produced the

least ASE value is the one excluding the well #114 data, while the highest ASE value was
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obtained when the data of well # 162 was excluded. In other words, reducing our database by
only 11 data sets (data of well #162) produced the worst performing model. Alternatively,
reducing our database by 23 data sets (data of well # 114) actually enhanced our modeling
ability. Based on this logic, it can be concluded that elimination of data associated with wells
#114, 19, 129, 73, 225, & 139 actually increases the accuracy of the profiling networks.
Similarly, eliminating data associated with wells # 35, 173, 165, 74 214, 75, 76, 172, 210, 250,
33,252, 341, 78, 258, 231, and 162 will produce models with lower accuracy performance.
Based on deviation values presented in Table 8.4, we may advocate that data from few
wells (such as well #114 or #19) maybe recommended to be taken out of the database.
Moreover, data from such well may not need to be collected during future years (i.e., beyond
2005). These wells produce data that seems to corrupt the modeling tasks which is evident from
the low ASE values obtained when their data was excluded. In contract to that, data from other
wells such as well #162 and #231 seems to contribute significantly to the accuracy of the
developed models. This means that their associated data is of high importance to the modeling
processes. Accordingly, more data may need to be collected from these wells due to the
importance of their data. Therefore, such a study will help in re-allocating future resources where

more data can be collected, reduced or even eliminated.

8.5.2 Comparison Using Contour Maps

Contour maps for the Demo 1 site were generated using the Surfer® software program to
assist in the visualization of perchlorate contamination from years 2000 through 2005 and the
impact of data reduction via exclusion of specific monitoring wells. This was done using the
results obtained from the 9-9-1 ANN model and the data banks, as described previously. Contour

maps were generated for all four groundwater site characterizations models, described herein.
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For a visual comparison, perchlorate pollutant concentration distribution contour maps
for the site were generated. The contour maps had (X, y) coordinates as a variables and (z=0) as a
constant. Figures 8.2 through 8.7 show perchlorate distributions at z = 0 ft for years 2000 to 2005
by all four models. By creating contour maps for each year, trends in the concentration of
perchlorate contamination over time can be tracked easily. Such images also allow us to easily
identify contaminated areas above or below the perchlorate regularly limits of 1 part per billion
(PPB). These maps are used herein to compare the accuracy of the four (i.e. model 1, 2, and 3)

groundwater monitoring site characterizations models described before.

8.6  Discussion

The impact of monitoring wells exclusion/inclusion on perchlorate spatial distribution for

the years 2000 through 2005 obtained via models 1, 2, and 3 will be discussed herein.

8.6.1 Contour maps generated for year 2000

The contour map generated for Model 1 (baseline model) for year 2000 shows highest
concentration levels of perchlorate contamination at x = 368250, y = 4616900 to about
x = 370000, y =4616600. The contour maps generated for Model 2 for the year 2000 (Figure
8.2b) show the highest concentration levels of perchlorate contamination at x = 367500,
y =4616950 to about x = 368000, y = 4617000. The contour maps generated for Model 3 for the
year 2000 (Figure 8.2¢) show the highest concentration levels of perchlorate contamination at
x =367500, y =4617000 to about x = 369500, y =4617000.

Comparing the Model 1 baseline contour map (Figure 8.2a) to the Model 2 contour map
(Figure 8. 2b) reveals an obvious difference. The map for Model 2 shows only a trace of

contamination in the upper northwest corner of the site, while the baseline area of high
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contamination (over 50 PPB) extends almost the entire length of the site (east to west) and
halfway down the site toward the south. Not only are the actual levels in Model 1 much greater
in general, the high concentrations in Model 2 do not coincide with those in Model 1. When
comparing the Model 1 baseline contour map (Figure 8.2a) to the Model 3 contour map (Figure
8.2¢), the areas of high concentration do not overlap. In fact, Model 3 contains a large band of
contamination that begins in the northeast corner of the site and extends toward the middle of the
site. This shows the contamination to be on the opposite site of where the actual contamination is

located.

8.6.2 Contour maps generated for year 2001

The contour map generated for Model 1 (baseline model) for year 2001 show the highest
concentration levels of perchlorate contamination at x = 367750, y = 4617000 to about
x =370500, y =4616700. The contour maps generated for Model 2 for the year 2001 (Figure
8.3b) show the highest concentration levels of perchlorate contamination at x = 368000,
y =4616400 to about x = 363720, y = 4617000. The contour maps generated for Model 3 for the
year 2001 (Figure 8.3¢) show highest concentration levels of perchlorate contamination at
x = 369600, y = 4616600 to about x = 371500, y =4617000.

Comparing the Model 1 baseline contour map for the year 2001 (Figure 8.3a) to the
Model 2 contour map for the year 2001(Figure 8.3b) once again reveals an obvious difference.
The map for Model 2 shows a band of contamination beginning in the upper northeast corner of
the site that extends toward the middle of the site, while the actual (baseline) area of high
contamination (over 50 PPB) extends % of the length of the site from east to west while
gradually extending down at a diagonal toward the southwest corner of the site. The area of

contamination on Model 1 is approximately half of the entire site. Not only are the levels in
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Model 1 are much greater in general, but the high concentration areas in Model 2 do not coincide
with those depicted in Model 1.

When comparing the Model 1 baseline contour map (Figure 8.3a) to the Model 3 contour
map (Figure. 8.3c), once again there are similar differences. Model 3 contains a large band of
contamination that begins in the northeast corner of the site and extends toward the middle of the
site. This shows the contamination to be on the opposite side of the site where the actual

contamination is located.

8.6.3 Contour maps generated for year 2002

The contour maps generated for Model 2 for the year 2002 (Figure8.4b) show highest
concentration levels of perchlorate contamination at x = 369900, y = 4616950 to about
x =371500, y =4617000. The contour maps generated for Model 3 for the year 2002 (Figure
8.4c) show highest concentration levels of perchlorate contamination at x = 370000, y = 4616700
to about x = 372000, y =4617000. The contour maps generated for Model 4 for the year 2002
(Figure 8.4d) show highest concentration levels of perchlorate contamination at x = 369800,
y =4616600 to about x = 371500, y =4617000.

A comparison of the Model 1 contour map for the year 2002 (Figure 8.4a) with the
Model 2 contour map for the year 2002 (Figure 8.4b) reveals some similarities. The map for
Model 2 shows only a small band of contamination that begins in the upper northwest corner of
the site and extends toward the middle of the site, while the model 1 high contamination area is
identified as a small band that begins in the northeast upper region and extends to the center of
the site. The contamination does not extend all the way to the northeast corner of the site as in
Model 2. In addition, a small area of contamination is identified in the upper northwestern area

of the site by Model 1 that is not present in any of the other models.
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When comparing the Model 1 baseline contour map (Figure 8.4a) to the Model 3 contour
map (Figure. 8.4c), the areas of high concentration are similar but do not completely overlap. As
in Model 2, a small band of contamination begins in the upper northeast corner of the site and
extends toward the center. This band is slightly wider than the one identified in Model 2. As in

Model 2, no other area of contamination is identified (unlike in Model 1).

8.6.4 Contour maps generated for year 2003

The contour maps generated for Model 1 for year 2003 show the highest concentration
levels of perchlorate contamination at x = 368250, y = 4616900 to about x = 370000, y =
4616600. The contour maps generated for Model 2 for the year 2003 (Figure 8.5b) show the
highest concentration levels of perchlorate contamination at x = 367500, y = 4616950 to about x
= 368000, y = 4617000. The contour map generated for Model 3 for the year 2003 (Figure 8.5¢c)
show highest concentration levels of perchlorate contamination at x = 369500, y = 4617000 to
about x = 371500, y =4617000. The contour map generated for Model 4 for the year 2003
(Figure 8.5d) show the highest concentration levels of perchlorate contamination at x = 370500,
y =4616800 to about x = 371500, y =4617000.

Comparing the Model 1 baseline contour map for the year 2003 (Figure 8.5a) to the
Model 2 contour maps for the year 2003 (Figure 8.5b) reveals some similarities. The map for
Model 2 shows only a small band of contamination that begins in the upper northwest corner of
the site and extends toward the middle, while the baseline area of high contamination is
identified as a small band that begins in the northeast upper region and extends to the center of
the site. The contamination does not extend all the way to the northeast corner of the site as in

Model 2.
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When comparing the Model 1 baseline contour map (Figure 8.5a) to the Model 3 contour
map (Figure. 8.5¢) the areas of high concentration are similar, but do not completely overlap. As
in Model 2, a small band of contamination begins in the upper northeast corner of the site and
extends toward the center. This band is slightly wider than the one identified in Model 2. The

contamination in Model 1 is much more centrally located than that shown in Model 3.

8.6.5 Contour maps generated for year 2004

A comparison of the Model 1 baseline contour map for the year 2004 (Figure 8.6a) to the
Model 2 contour maps for the year 2004 (Figure 8.6b) reveals some similarities. The map for
Model 2 shows only a small band of contamination that begins in the upper northwest corner of
the site and extends toward the middle of the site, while the baseline area of contamination is
identified as a small band that begins in the northeast upper region and extends to the center of
the site. The contamination does not extend all the way to the northeast corner of the site as in
Model 2. The highest concentrations of contamination in Model 2 are located in the uppermost
northeast corner of the site, while the areas of highest contamination on Model 1 are located
toward the middle of the site.

When comparing the Model 1 baseline contour map (Figure 8.6a) to the Model 3 contour
map (Figure. 8.6¢) it is evident that the areas of high concentration are again similar but not
exact. As in Model 2, a small band of high contamination begins in the upper northeast corner of
the site and extends toward the center. Unlike in Model 2, Model 3 has a much higher area of
lower concentration contaminants present that extends all the way to the bottom of the site in a
diagonal fashion. Although this area of lower concentration of contamination exists in Model 1,

it is a much smaller area than the one represented in Model 3.
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8.6.6 Contour maps generated for year 2005

Comparing the Model 1 baseline contour map for the year 2005 (Figure 8.7a) to the
Model 2 contour maps for the year 2005 (Figure 8.7b) reveals only small similarities. The map
for Model 2 shows only a small band of low contamination that begins in the upper northwest
corner of the site and extends toward the middle of the site, while the baseline area of
contamination is identified as a small band of both higher and lower concentrations of
contamination that begins in the northeast upper region and extends to the center of the site.
Model 2 does not contain any areas of high contamination.

When comparing the Model 1 baseline contour map (Figure 8.7a) to the Model 3 contour
map (Figure. 8.7¢), the areas of high concentration are again similar but not exact. Model 3
shows a small band of high contamination that begins in the upper northeast corner of the site
and extends toward the center. Unlike in Model 2, Model 3 has a small area of higher

concentration contaminants present in the uppermost northeastern corner of the site.

8.7 Conclusion

Contour maps generated from ANN-based models can significantly help in 3-D
subsurface site visualization tasks or understand data importance for the MMR-Demo 1
Groundwater Monitoring Network. They allow for better visualization of the underlying
contaminant behavior and can help interpret the significance of certain groundwater wells within
the MMR Groundwater Monitoring Network. They can be used as an assistive device in the
determination of the effectiveness of the existing groundwater network and the need for the
addition or removal of groundwater wells.

In the previous chapters, the ANN-based modeling methodology has proven to be an
effective means for the prediction of contaminants in groundwater and soil. The research in this
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chapter demonstrates how ANN can be used to investigate the data importance for a specific site
such as the MMR-Demol site.

Using the previously developed 9-9-1 ANN network, an additional thirty-two time-
dependent models were developed and compared to baseline model for years 2000 through 2005.
These models were developed using all known data minus the data associated with one or more
groundwater wells. Contour maps were then generated and compared. After comparing the ASE
values and the contour maps of Models 2 through 4 to the baseline contour map (Model 1) it is
evident that data from few wells (i.e., wells # 114 & #19) may not be necessary in order to make
accurate predictions regarding the extent of perchlorate contamination at the MMR-Demo 1.

When comparing contour maps for Models 2 and 3 for all years with Model 1 baseline
maps, obvious differences were noted. In the earlier years, the areas of high contamination
predicted via Models 2 or 3 were inverted from the actual area of contamination predicated by
model 1. All baseline model maps showed significantly higher levels of contamination than those
predicted by Models 2 or 3. This observation supports our belief that even the removal of data
from one well may impact the site profile. Sampling errors associated with data obtained from
specific wells may negatively impact the prediction accuracy which could lead to millions of
dollars in wasted remediation costs. Although ANN is an accurate profiling methodology when
provided with sufficient and accurate data, this study demonstrates that few of the MMR-Demo 1
groundwater monitoring wells may not be needed for an accurate site characterization

assessment.
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Table 8.1 - Network Statistical Accuracy Measure for the Baseline 9-Input Model (Model 1)

9-Inputs Network MARE% R? ASE
Stages| Itr] HN| Training| Testing| Validations| Training| Testing|Validations| Training| Testing| Validations
stage [-A| 1000[ 9 116 136 NA| 0434 0.63 NA| 0.0042| 0.0018 NA]
stage [-B| 1000 9 116 NA 124/ 0434 NA 0.28] 0.0042 NA 0.0046
stage 11| 1000 9 139 NA NA 0.607 NA] NA| 0.0025 NA NA]
HN: Optimal Number of Hidden Nodes Itr: Iterations
MARE: %Mean Absolute Relative Error R%: Coefficient of determination
NA: Not Applicable
; 2
Predicted — Actual
ASE= 2( )
# of data sets
Table 8.2 - Network Statistical Accuracy Measures for Model 2
Model 2
Excluding well 165 MARE% R’ ASE
Stages| Itr] HN| Training| Testing| Validations| Training| Testing|Validations| Training| Testing| Validations
stage [I-A| 1000 7 121 139 NA 0.376] 0.355 NA|[ 0.0039(0.00189 NA
stage [-B| 1000] 7 121 NA 143 0.376 NA 0.324] 0.0039 NA 0.0039
stage II| 1000 7 123 NA NA| 0.501 NA NA| 0.00296 NA NA
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Table 8.3 - Network Statistical Accuracy Measures for Model 3

Model 3
Excluding well 32 MARE% R’ ASE
Stages| Itrl HN| Training| Testing| Validations| Training| Testing|Validations| Training| Testing| Validations
stage [-A| 1000 8 153 183 NA| 0.446] 0.567 NA| 0.0041| 0.0021 NA|
stage I-B| 1000| 8 153 NA 174  0.446 NA 0.267| 0.0041 NA 0.0053
stage II| 1000| 8 170 NA NA|  0.601 NA NA| 0.0026 NA NA|
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Table 8.4 - Network Statistical Accuracy Measures for ANN-Based Profiling Models.

Well ) Number of % Deviatiop in ASE
Excluded MARE% | R ASE data Sets from Baseline model
(Model 1)

f/[a(fgglne 139 0.607 |0.0025 | NA 0%

114 124.9 0.7403 | 0.00166 |23 -34%

19 105.9 0.63429 | 0.00181 |8 -28%

129 110.1 0.75209 | 0.0019 32 -24%

73 114.1 0.69979 | 0.00197 |7 -21%

225 106.5 0.75184 | 0.00208 |9 -17%

139 105.3 0.72045 | 0.00209 | 18 -16%

211 117.3 0.65601 | 0.00229 | 13 -8%

34 112.2 0.63787 | 0.00238 | 30 -5%

32 170 0.601 0.0026 24 4%

31 119.4 0.5836 | 0.00282 |26 13%

35 152.6 0.56111 | 0.00288 | 4 15%

173 184.3 0.55706 | 0.00295 | 13 18%

165 123 0.5017 ]0.00296 |20 18%

74 127.5 0.5529 |0.00299 |11 20%

214 198 0.54355 1 0.00299 |5 20%

75 135.7 0.54431 | 0.00304 |22 22%

76 136.2 0.54433 | 0.00309 | 33 24%
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Well Number of % Deviation in ASE
MARE% | R? ASE from Baseline model
Excluded data Sets
(Model 1)
172 136.7 0.53071 | 0.00313 | 12 25%
210 125.044 | 0.4977 | 0.003877 | 25 55%
250 125.401 | 0.47629 | 0.003894 | 31 56%
33 141.5 0.59699 | 0.00397 | 30 59%
252 118.325 | 0.46988 | 0.004041 | 23 62%
341 128.908 | 0.49049 | 0.004141 | 12 66%
78 152.736 | 0.44467 | 0.004163 | 16 67%
258 149.632 | 0.38847 | 0.004387 | 33 75%
231 155.208 | 0.38529 | 0.004675 | 29 87%
162 99.9 0.08392 |1 0.00576 | 11 130%
% Deviation from baseline model = ‘w‘ x100
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at Z =0 ft and well number 165 excluded (Model 2)
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Figure 8.2c. Contour map showing the distribution of perchlorate in groundwater in 2000

at Z =0 ft and well number 32 excluded (Model 3)
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2001 at Z =0 ft (Model 1)
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Figure 8.5a. Baseline contour map showing the distribution of perchlorate in groundwater in

2003 at Z = 0 ft. (Model 1)
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Figure 8.5c. Contour map showing the distribution of perchlorate in groundwater in 2003

at Z = 0 ft and well number 32 excluded (Model 3)
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Figure 8.6a. Baseline contour map showing the distribution of perchlorate in groundwater in

2004 at Z = 0 ft. (Model 1)

202



Y- Coordinates (North)
A

4617000 -

4616800 -

4616600 — -

4616400 n

P

I I I I I I I
368000 368500 369000 369500 370000 370500 371000
X-Coordinates (East)
Figure 8.6b. Contour map showing the distribution of perchlorate in groundwater in 2004 at

Z =0 ft and well number 165 excluded (Model 2)

Y- Coordinates (North)

A

4617000~ ‘/

4616800 -
4616600 L

4616400 -

v

v

\ \ \ \ \ \ \
368000 368500 369000 369500 370000 370500 371000
X-Coordinates (East)
Figure 8.6c. Contour map showing the distribution of perchlorate in groundwater in 2004

at Z = 0 ft and well number 32 excluded (Model 3)

203



Y- Coordinates (North)
A

4617000 -

4616800 — -

4616600 <::::::::::::::::::::iijiz> |

4616400 -

I I I I I I I
368000 368500 369000 369500 370000 370500 371000
X-Coordinates (East)
Figure 8.7a. Baseline Contour map showing the distribution of perchlorate in groundwater in
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CHAPTER 9 - Summary, Conclusions and Recommendations

9.1 Summary

This study explored the potential use of ANNs for profiling and characterization of
various environmental sites. It investigates the following environmental site profiling cases:
1. Two-dimensional and three-dimensional characterizations of a hypothetical
data-rich site by various profiling methods
2. Two-dimensional characterizations of the inorganic materials (lead and copper) in
soil and groundwater at a landfill site
3. Three-dimensional, time-related profiling of explosive-related contaminants
(perchlorate) at the Massachusetts Military Reservation site
When examining the performance of various site profiling methodologies for a
comparative analysis, a static ANN with back-propagation algorithm was used to model the
environmental containment at a hypothetical data-rich contaminated site. The performance of the
ANN profiling model was then compared to the following profiling models: Inverse Distance to
a Power, Kriging, Minimum Curvature, Modified Shepard’s, Nearest Neighbor, Polynomial
Regression, Radial Basis Function, and Local Polynomial. The comparison showed that the
ANN-based models proved to yield the lowest RMSE values in the 2-D and 3-D comparison
cases (YoORMSE is 19.1% for the 25-ft interval, 3.7% for the 10-ft interval, and 6.4% for the 3-D
case). The ANN-based profiling models also produced the best contaminant distribution contour
maps when compared to the actual maps. Along with the fact that ANN is the only profiling
methodology that allows for efficient 3-D profiling, this study clearly demonstrates that ANN-
based methodology, when properly used, has the potential to provide the most accurate
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predictions and site profiling contour maps for a contaminated site. Its flexibility is demonstrated
by its potential to accurately predict values of a certain contaminant parameter at a specific
location, when only supplied with X, y, and z (for 3-D cases) coordinates. In addition, the ANN
model provided the most reliable predictions about the location and extent of contamination for
the hypothetical site.

The environmental site profiling in the comparative study proved the feasibility of ANN-
based methodology to profile a contaminated site. Based on this fact, ANN with a back-
propagation learning algorithm was utilized in the site characterization of contaminants at the
Kansas City landfill. The use of ANN profiling models made it possible to obtain reliable
predictions about the location and concentration of lead and copper contamination at the
associated Kansas City landfill site. The resulting profiles can be used to determine additional
sampling locations, if needed, for both groundwater and soil in any contaminated zones.

Moreover, the extent of the remediation zones can be properly assessed, reducing the
associated cost of further sampling and/or remediation. As a result of this research, the site
investigating team was able to capitalize on the information that the developed ANN models
generated in order to determine the strategic locations for further testing. This increased
efficiency reduced the need for sampling and testing in the relatively uncontaminated zones,
which translated into significant cost and time savings.

ANN:-based profiling models proved to be a successful profiling methodology to
accurately predict the amount and distribution of environmental contaminants at the Kansas City
landfill site. As a result of these findings, ANN-based models were applied to a complex

contaminated site to determine their effectiveness.
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Back-propagation networks were developed for the MMR Demo 1 site using the TR-
SEQI, a three-layered ANN training software package developed by Najjar (2001). The purpose
of the ANN model was to predict the concentrations of perchlorate at the MMR from appropriate
input parameters. To determine the most-appropriate input parameters for this model, three
different cases were investigated using nine potential input parameters.

In the initial case, all nine potential input parameters (X, Y, G, Z, T, R, INJ1, INJ2 and
INJ3) were used to develop the desired perchlorate prediction model. This model produced an
ASE value of 0.0025 and R? value of 0.607. In the second case, one parameter (G) was
eliminated to arrive at eight inputs (X, Y, Z, T, R, INJ1, INJ2 and INJ3). This model produced an
ASE value of 0.0030 and R value of 0.57. In the final case, two parameters (R and G) were
eliminated to arrive at seven input parameters (X, Y, Z, T, INJ1, INJ2 and INJ3). This model
produced an ASE value of 0.0032 and R*value of 0.503.

When comparing the three cases, it was observed that the eight inputs case produced an
ASE value 20% greater than the nine inputs case while the R value decreased by 6.5%. The
seven inputs case produced an ASE value 28% greater than the nine inputs case while the R
decreased by 17%.

Although the finding for seven inputs case and eight inputs case were somewhat
comparable, the nine inputs case model outperformed the seven and the eight inputs case models,
trials therefore identifying it as the optimal ANN model for this study. It was determined that the
optimal network model for the MMR perchlorate prediction model contained nine input
parameters, nine hidden node, and one output parameter (9-9-1).

The ANN modeling used in this case demonstrates the neural network’s ability to

accurately predict perchlorate contamination using multiple variables. When comparing the
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trends observed using the ANN-generated data and the actual trends identified in the MMR 2006
System Performance Monitoring Report, both agree that perchlorate levels are decreasing due to
the use of the ETR systems. This proves that the ETR systems were both effective and necessary
for the removal of perchlorate contamination at the Demo 1 site, as demonstrated in the contour
maps.

Using the knowledge obtained from the MMR perchlorate prediction model, a similar
ANN with a back-propagation learning algorithm was developed to model the data importance at
the Massachusetts Military Reservation site. In various testing trials, twenty-eight back-
propagation ANN models were developed, which excluded or included certain groundwater
monitoring wells. These models were then used to investigate the minimum number of
groundwater wells necessary to characterize the Demo 1 site accurately.

After comparing the ASE value and the contour maps of all of the exclusion or inclusion
of certain groundwater monitoring wells models to the baseline contour map (Model 1), it is
apparent that sampling errors associated with data obtained from specific wells may negatively
impact the prediction accuracy which could lead to millions of dollars in wasted remediation
costs. Although ANN is an accurate profiling methodology when provided with sufficient and
accurate data, this study demonstrates that few of the MMR-Demo 1 groundwater monitoring

wells may not be needed for an accurate site characterization assessment.

9.2 Conclusions

This research demonstrates the advantages of ANN site characterization modeling in
contrast with traditional modeling. First, no complex mathematical formulations were developed
to describe the behavior of the contaminants, and the ANN model was built up simply by

training on the available laboratory/analytical data. Second, the trained-ANN model can simulate
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new scenarios without the need for any additional laboratory analytical-based information. Third,
the developed ANN model is convenient for practical usage by either acting as a standalone
simulator or by being implemented into another program (Microsoft Excel spreadsheet or Surfer
Program). Fourth, flexibility and generality characterized the generated ANN-based models.
Once a decision is made for what networks is to represent a site, this network can be readily used
to predict the contaminant values at any desired location—this demonstrates flexibility. The only
parameter a trained network needs in order to provide such predictions is the input data vector
such as (x, y, z) coordinates of the point at which a prediction is desired. Generality lies in
ANN’s power to capture the mode of change of a contaminant’s parameters based on all
available data.

As was noted out in this site characterization study, it is necessary to mention that the
accuracy of the developed neural network depends on the accuracy of the database used. If the
database contains a significant amount of erroneous data, or if the database is too small to
capture the features that the neural network is aimed to predict, the neural network will generate
significantly incorrect predictions.

Finally, site characterization has posed an everlasting problem in regard to the accuracy
of sampling and testing. This is due mainly to the effect of sample size and the practically
unattainable and unknown exact (actual) variability of the contaminants’ behavior. In all cases of
site profiling, the predicted distribution might be far from the actual distribution (although actual
distribution may not be known). Therefore, site characterization using any model involving the
neural network approach should not be considered final. In other words, the profiling obtained
via such methodology (or any other methodology) should be regarded as a decision-making tool

that may lead to conducting a more thorough, but focused sampling strategy.

210



The major conclusions obtained from the present study can be summarized as follows:
Characterization task-related uncertainties of site contaminations were curtailed by the use of
ANN-based models.

Use of ANNSs in site characterization tasks demonstrates their prevalence over currently used
site characterization methods.

ANN-based models are distinguished by simplicity and flexibility.

Visualization of the site by means of contour maps can be achieved after employing the
database generated from ANN-based models.

The structure of ANN-based models developed in this study can be used as a guide for future
investigation to train and test new models on new data.

3-D visualization of the contaminants helps identify contaminated zones and select additional
sampling locations, if warranted.

In order to determine the input domain, ANN can be used to study the effect of each
independent input parameter on the output. This capability also could be used to optimize the
network design of groundwater monitoring wells.

The ANN-based models proved to yield the lowest RMSE values in the 2-D and 3-D
comparison cases

The ANN-based profiling models produced the best contaminant distribution contour maps
and 45-degree scatter graphs for the 2-D and 3-D profiling cases

ANN is the only profiling methodology that allows for efficient 3-D profiling

ANN-based profiling methodology, when properly used, has the potential to provide the most

accurate predictions and site profiling contour maps for a contaminated site.
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It is possible to use back-propagation ANN-modeling to accurately predict groundwater and
soil contamination using limited known data

Contour maps generated from ANN-based models can significantly help in the 3-D
subsurface site visualization tasks and data importance of the MMR-Demo 1 Groundwater
Monitoring Network

ANN based modeling methodology can be used as an assistive device in the determination of
the effectiveness of the existing groundwater network and the need for the addition or
removal of groundwater wells.

This study demonstrates the ease, flexibility and robustness of ANN in modeling complex
contaminated sites.

ANN back-propagation modeling can be used to accurately predict groundwater and soil
contamination using limited known data. This allows for the study of not only small sites, but
larger areas such as Demo 1.

ANN methodology provides for more in-depth site characterizations at a lower cost, due to

the decreased need for sampling and testing data.

Recommendations

This study is among a relatively limited number of research efforts looking specifically at

the use of ANNSs for predicting the behavior of environmental contaminants in site

characterization. As a result, it provides an important development in the understanding of the

applicability, strengths, and limitations of this modeling approach. Based on results of this study,

the following basic recommendations are made for future research on the feasibility of using

multi-layer feed-forward ANNSs in site characterization modeling:
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Results achieved in this study can form the basis for other researchers to explore and uncover
other disguised capabilities for ANN.

Decisions to include ANN-based models in site characterization tasks prior to selecting the
location of samples are crucial.

Vectors (inputs) used in the ANN-based models generated herein could be modified to
include additional parameters to examine their effect on the predicted outputs.

Additional, similar investigations to further verify this promising approach are needed.
Dynamic ANN profiling methods need to be explored for their viability in future

characterization tasks.
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Appendix A Groundwater Analytical Results

Well# | X Y G Depth | Z T R P INJ1 INJ INJ 3
19 371303.388 | 4616957.897 | 65.94 68.14 | 220 | 33.05 | 104 0 0 0
19 371303.388 | 4616957.897 | 65.44 | 5 68.14 | 342 | 44.16 | 12 0 0 0
19 371303.388 | 4616957.897 | 65.96 | 5 68.14 | 534 | 74.89 | 41 0 0 0
19 371303.388 | 4616957.897 | 66.14 | 5 68.14 | 601 | 8501 |849 |0 0 0
19 371303.388 | 4616957.897 | 64.74 | 5 68.14 | 726 | 9597 | 186 |0 0 0
19 371303.388 | 4616957.897 | 63.4 |5 68.14 | 879 | 115.28 | 5.2 0 0 0
19 371303.388 | 4616957.897 | 63.14 | 5 68.14 | 949 | 120.69 | 4.1 0 0 0
19 371303.388 | 4616957.897 | 6542 | 5 68.14 | 1613 | 227.04 | 1.86 | 0 0 0
31 371140.0511 | 4616924.767 | 65.39 | 33 32.39 | 221 | 33.05 |46 0 0 0
31 371140.0511 | 4616924.767 | 65.39 | 15.5 55.13 | 221 |33.05 |43 0 0 0
31 371140.0511 | 4616924.767 | 64.39 | 15.5 55.13 | 342 | 44.16 |30 0 0 0
31 371140.0511 | 4616924.767 | 64.94 | 15.5 55.13 | 487 | 67.82 |20 0 0 0
31 371140.0511 | 4616924.767 | 65.21 | 33 32.21 | 508 | 68.59 |19 0 0 0
31 371140.0511 | 4616924.767 | 65.57 | 15.5 55.13 | 601 | 8501 |162 |0 0 0
31 371140.0511 | 4616924.767 | 64.14 | 33 31.14 | 734 | 9597 |1.66 |0 0 0
31 371140.0511 | 4616924.767 | 64.23 | 15.5 55.13 | 734 | 9597 | 125 |0 0 0
31 371140.0511 | 4616924.767 | 65.74 | 33 32.74 | 842 | 107.79 | 298 |0 0 0
31 371140.0511 | 4616924.767 | 65.74 | 33 32.74 | 842 | 107.79 | 3.04 | 0 0 0
31 371140.0511 | 4616924.767 | 62.95 | 15.5 55.13 | 879 | 115.28 | 12 0 0 0
31 371140.0511 | 4616924.767 | 62.34 | 33 29.34 | 949 | 120.69 | 10 0 0 0
31 371140.0511 | 4616924.767 | 62.41 | 15.5 55.13 | 949 | 120.69 | 7.2 0 0 0
31 371140.0511 | 4616924.767 | 61.69 | 33 28.69 | 1049 | 132.67 | 5.2 0 0 0
31 371140.0511 | 4616924.767 | 61.7 | 15.5 55.13 | 1049 | 132.67 | 4.9 0 0 0
31 371140.0511 | 4616924.767 | 62.5 | 33 29.5 1182 | 154.00 | 1.8 0 0 0
31 371140.0511 | 4616924.767 | 62.41 | 15.5 55.13 | 1185 | 154.00 | 10 0 0 0
31 371140.0511 | 4616924.767 | 65.54 | 33 32.54 | 1365 | 188.45 | 2.9 0 0 0
31 371140.0511 | 4616924.767 | 65.53 | 15.5 55.13 | 1365 | 188.45 | 4.6 0 0 0
31 371140.0511 | 4616924.767 | 65.53 | 15.5 55.13 | 1365 | 188.45 | 5.3 0 0 0
31 371140.0511 | 4616924.767 | 64.93 | 33 31.93 | 1519 | 21249 | 0.68 | O 0 0
31 371140.0511 | 4616924.767 | 649 | 15.5 55.13 | 1519 | 212.49 | 7.7 0 0 0
31 371140.0511 | 4616924.767 | 64.99 | 33 31.99 | 1573 | 221.79 | 0474 | O 0 0
31 371140.0511 | 4616924.767 | 64.98 | 15.5 55.13 | 1592 | 22494 | 5.02 | 0 0 0
31 371140.0511 | 4616924.767 | 64.3 | 33 313 1761 | 237.67 | 7.44 | 7.06 4.58 4.58
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
31 371140.0511 | 4616924.767 | 64.3 | 15.5 55.13 | 1761 | 244.92 | 4.7 7.06 4.58 4.58
32 370281.3369 | 4616896.876 | 61.13 | 80 18.41 | 842 | 107.79 | 0.64 |0 0 0
32 370281.3369 | 4616896.876 | 61.1 | 70 -094 | 842 | 107.79 | 1.97 |0 0 0
32 370281.3369 | 4616896.876 | 61.12 | 52.5 16.64 | 843 | 10783 | 1.38 | 0 0 0
32 370281.3369 | 4616896.876 | 61.14 | 80 -8.41 | 1060 | 146.06 | 0.66 | O 0 0
32 370281.3369 | 4616896.876 | 60.14 | 70 -094 | 1124 | 146.06 | 2.3 0 0 0
32 370281.3369 | 4616896.876 | 60.14 | 70 -18.41 | 1124 | 146.06 | 2.3 0 0 0
32 370281.3369 | 4616896.876 | 60.16 | 52.5 16.64 | 1124 | 146.06 | 2.1 0 0 0
32 370281.3369 | 4616896.876 | 60.14 | 80 -18.41 | 1185 | 157.01 | 044 | O 0 0
32 370281.3369 | 4616896.876 | 56.02 | 70 -0.94 | 1185 | 157.01 | 2.5 0 0 0
32 370281.3369 | 4616896.876 | 60.64 | 52.5 16.64 | 1185 | 157.01 | 1.5 0 0 0
32 370281.3369 | 4616896.876 | 65.76 | 80 -18.41 | 1417 | 195.87 | 2.2 0 0 0
32 370281.3369 | 4616896.876 | 65.71 | 70 -0.94 | 1417 | 196.30 | 2.6 0 0 0
32 370281.3369 | 4616896.876 | 65.71 | 70 -18.41 | 1417 | 196.30 | 2.8 0 0 0
32 370281.3369 | 4616896.876 | 65.16 | 70 -0.94 | 1524 | 212.52 | 393 | 0 0 0
32 370281.3369 | 4616896.876 | 64.42 | 52.5 16.64 | 1524 | 21252 1 1.69 |0 0 0
32 370281.3369 | 4616896.876 | 65.35 | 80 -18.41 | 1530 | 213.12 | 2.2 0 0 0
32 370281.3369 | 4616896.876 | 65.34 | 80 -18.41 | 1572 | 221.79 | 235 | 0 0 0
32 370281.3369 | 4616896.876 | 65.26 | 70 -0.94 | 1572 | 221.79 | 4.14 | 0 0 0
32 370281.3369 | 4616896.876 | 65.39 | 52.5 16.64 | 1572 | 221.79 | 1.04 |0 0 0
32 370281.3369 | 4616896.876 | 65.14 | 80 -18.41 | 1676 | 231.62 | 4.78 | 0 0 0
32 370281.3369 | 4616896.876 | 64.82 | 70 -0.94 | 1676 | 231.62 | 421 |0 0 0
32 370281.3369 | 4616896.876 | 64.82 | 70 -18.41 | 1677 | 231.62 | 4.03 | 0 0 0
32 370281.3369 | 4616896.876 | 65.12 | 52.5 16.64 | 1677 | 231.62 | 1.26 | 0 0 0
32 370281.3369 | 4616896.876 | 64.12 | 80 -18.41 | 1810 | 252.71 | 0.71 | 14.11 | 1232 | 12.32
33 370236.8868 | 4616850.825 | 62.15 | 87.5 -17.95 | 725 9597 | 154 |0 0 0
33 370236.8868 | 4616850.825 | 62.63 | 70 -042 | 725 9597 | 138 |0 0 0
33 370236.8868 | 4616850.825 | 60.73 | 87.5 -17.95 | 843 | 107.83 | 2.02 |0 0 0
33 370236.8868 | 4616850.825 | 61.03 | 70 -042 | 843 | 107.83 | 1.72 |0 0 0
33 370236.8868 | 4616850.825 | 61.04 | 52.5 17.04 | 843 | 10783 | 1.72 | 0 0 0
33 370236.8868 | 4616850.825 | 60.4 | 70 -0.42 | 950 | 120.69 | 2.1 0 0 0
33 370236.8868 | 4616850.825 | 60.36 | 52.5 17.04 | 950 | 120.69 | 1.6 0 0 0
33 370236.8868 | 4616850.825 | 59.65 | 87.5 -17.95 | 1049 | 132.67 | 2.2 0 0 0
33 370236.8868 | 4616850.825 | 59.65 | 87.5 -17.95 | 1049 | 132.67 | 2.2 0 0 0
33 370236.8868 | 4616850.825 | 59.66 | 70 -0.42 | 1049 | 135.11 | 1.9 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
33 370236.8868 | 4616850.825 | 59.65 | 52.5 17.04 | 1052 | 135.11 | 1.6 0 0 0
33 370236.8868 | 4616850.825 | 59.8 | 87.5 -17.95 | 1132 | 146.92 | 3 0 0 0
33 370236.8868 | 4616850.825 | 59.92 | 70 -042 | 1132 | 14692 | 1.7 0 0 0
33 370236.8868 | 4616850.825 | 59.84 | 52.5 17.04 | 1132 | 14692 | 1.3 0 0 0
33 370236.8868 | 4616850.825 | 60.47 | 87.5 -17.95 | 1185 | 157.01 | 1.6 0 0 0
33 370236.8868 | 4616850.825 | 60.54 | 70 -042 | 1185 | 157.01 | 1.5 0 0 0
33 370236.8868 | 4616850.825 | 60.49 | 52.5 17.04 | 1185 | 157.01 | 1.3 0 0 0
33 370236.8868 | 4616850.825 | 65.79 | 87.5 -17.95 | 1432 | 196.30 | 1.1 0 0 0
33 370236.8868 | 4616850.825 | 65.82 | 70 -0.42 | 1432 | 197.54 | 1.1 0 0 0
33 370236.8868 | 4616850.825 | 65.76 | 52.5 17.04 | 1432 | 197.54 | 0.56 | O 0 0
33 370236.8868 | 4616850.825 | 65.47 | 87.5 -17.95 | 1523 | 21252 1 089 |0 0 0
33 370236.8868 | 4616850.825 | 65.5 | 70 -0.42 | 1524 | 212.52 | 1.06 | 0 0 0
33 370236.8868 | 4616850.825 | 65.48 | 87.5 -17.95 | 1570 | 221.79 | 0.47 | 0 0 0
33 370236.8868 | 4616850.825 | 65.52 | 70 -0.42 | 1572 221.79 | 048 |0 0 0
33 370236.8868 | 4616850.825 | 65.52 | 70 -0.42 | 1572 1 221.79 | 041 | O 0 0
33 370236.8868 | 4616850.825 | 65.31 | 87.5 -17.95 | 1675 | 231.62 | 0.83 | 0 0 0
33 370236.8868 | 4616850.825 | 65.34 | 70 -0.42 | 1676 | 231.62 | 0.76 | 0 0 0
33 370236.8868 | 4616850.825 | 65.3 | 52.5 17.04 | 1676 | 231.62 | 0.442 | 0 0 0
33 370236.8868 | 4616850.825 | 64.3 | 87.5 -17.95 | 1803 | 251.66 | 1.1 13.10 | 11.22 | 11.22
33 370236.8868 | 4616850.825 | 65.53 | 70 -0.42 | 1938 | 274.50 | 0.64 | 32.54 | 32.55 | 32.55
34 370534.0266 | 4616835.848 | 62.75 | 58 8.55 222 | 33.85 |56 0 0 0
34 370534.0266 | 4616835.848 | 63.39 | 78 -11.61 | 352 | 47.57 | 109 0 0 0
34 370534.0266 | 4616835.848 | 63.35 | 58 8.55 352 | 47.57 | 34 0 0 0
34 370534.0266 | 4616835.848 | 63.61 | 58 8.55 486 | 67.82 | 28 0 0 0
34 370534.0266 | 4616835.848 | 63.59 | 78 -11.61 | 490 | 67.83 | 46 0 0 0
34 370534.0266 | 4616835.848 | 64.1 | 58 8.55 576 | 79.68 | 162 |0 0 0
34 370534.0266 | 4616835.848 | 64.19 | 78 -11.61 | 577 | 79.68 |30.8 |0 0 0
34 370534.0266 | 4616835.848 | 64.19 | 78 -11.61 | 577 | 79.68 |31.4 |0 0 0
34 370534.0266 | 4616835.848 | 62.99 | 78 -11.61 | 725 | 9597 | 177 |0 0 0
34 370534.0266 | 4616835.848 | 62.95 | 58 8.55 725 19597 | 5.8 0 0 0
34 370534.0266 | 4616835.848 | 61.46 | 78 -11.61 | 844 | 107.83 | 7.9 0 0 0
34 370534.0266 | 4616835.848 | 61.62 | 58 8.55 844 | 107.83 | 19.6 |0 0 0
34 370534.0266 | 4616835.848 | 60.99 | 78 -11.61 | 962 | 120.69 | 7.1 0 0 0
34 370534.0266 | 4616835.848 | 60.99 | 78 -11.61 | 962 | 120.69 | 7.3 0 0 0
34 370534.0266 | 4616835.848 | 61 58 8.55 962 | 120.69 | 17 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
34 370534.0266 | 4616835.848 | 60.3 | 78 -11.61 | 1049 | 132.67 0 0 0
34 370534.0266 | 4616835.848 | 60.27 | 58 8.55 1049 | 132.67 | 14 0 0 0
34 370534.0266 | 4616835.848 | 60.98 | 78 -11.61 | 1178 | 153.90 | 8 0 0 0
34 370534.0266 | 4616835.848 | 60.99 | 58 8.55 1178 | 153.90 | 10 0 0 0
34 370534.0266 | 4616835.848 | 62.95 | 78 -11.61 | 1411 | 19143 | 6.9 0 0 0
34 370534.0266 | 4616835.848 | 63.9 | 58 8.55 1411 | 195.84 | 7.3 0 0 0
34 370534.0266 | 4616835.848 | 63.53 | 78 -11.61 | 1525 | 212.61 | 343 |0 0 0
34 370534.0266 | 4616835.848 | 63.43 | 58 8.55 1525 | 212.61 | 7.02 |0 0 0
34 370534.0266 | 4616835.848 | 63.46 | 78 -11.61 | 1595 | 224.94 | 528 | 0 0 0
34 370534.0266 | 4616835.848 | 63.62 | 58 8.55 1595 | 22494 | 523 |0 0 0
34 370534.0266 | 4616835.848 | 63.33 | 78 -11.61 | 1678 | 232.20 | 3.32 | 0 0 0
34 370534.0266 | 4616835.848 | 63.33 | 78 -11.61 | 1678 | 232.20 | 3.1 0 0 0
34 370534.0266 | 4616835.848 | 63.3 | 58 8.55 1678 | 232.20 | 587 | 0 0 0
34 370534.0266 | 4616835.848 | 63.44 | 78 -11.61 | 1937 | 274.39 | 3.1 3240 | 3239 | 32.39
34 370534.0266 | 4616835.848 | 63.43 | 58 8.55 1937 | 274.50 | 3.9 3240 | 3239 | 32.39
35 370325.7406 | 4616814.787 | 63.08 | 73 -6.37 | 489 |67.82 |4 0 0 0
35 370325.7406 | 4616814.787 | 63.78 | 73 -6.37 | 580 | 80.07 |54 0 0 0
35 370325.7406 | 4616814.787 | 62.43 | 73 -6.37 | 720 | 95.17 | 634 |0 0 0
35 370325.7406 | 4616814.787 | 61.13 | 73 -6.37 | 844 | 107.83 | 644 |0 0 0
35 370325.7406 | 4616814.787 | 59.79 | 73 -6.37 | 1052 | 135.11 | 4.2 0 0 0
35 370325.7406 | 4616814.787 | 60.8 | 73 -6.37 | 1223 | 158.11 | 3.9 0 0 0
35 370325.7406 | 4616814.787 | 62.61 | 73 -6.37 | 1698 | 235.74 | 6 0 0 0
36 370552.3802 | 4616858.569 | 62.93 | 59 7.03 738 196.70 | 1.86 |0 0 0
36 370552.3802 | 4616858.569 | 62.93 | 59 7.03 738 | 96.70 | 216 |0 0 0
36 370552.3802 | 4616858.569 | 61.85 | 59 7.03 844 | 107.83 | 344 |0 0 0
36 370552.3802 | 4616858.569 | 61.23 | 59 7.03 950 | 120.69 | 4 0 0 0
36 370552.3802 | 4616858.569 | 60.47 | 59 7.03 1052 | 135.11 | 4.2 0 0 0
36 370552.3802 | 4616858.569 | 61.11 | 59 7.03 1179 | 153.90 | 3.7 0 0 0
36 370552.3802 | 4616858.569 | 64.13 | 59 7.03 1411 | 195.84 | 4.8 0 0 0
36 370552.3802 | 4616858.569 | 63.68 | 59 7.03 1522 | 212.49 | 3.13 |0 0 0
36 370552.3802 | 4616858.569 | 63.68 | 59 7.03 1523 | 212.52 1 3.09 |0 0 0
36 370552.3802 | 4616858.569 | 63.68 | 59 7.03 1573 | 221.79 | 1.9 0 0 0
36 370552.3802 | 4616858.569 | 63.38 | 59 7.03 1676 | 231.62 | 2.9 0 0 0
36 370552.3802 | 4616858.569 | 63.55 | 59 7.03 1937 | 274.50 | 5.3 3240 | 3239 | 32.39
73 371281.9525 | 4616942.268 | 68.03 | 5 67.78 | 353 | 47.57 |6 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
73 371281.9525 | 4616942.268 | 68.03 67.78 | 530 | 72.62 | 10 0 0 0
73 371281.9525 | 4616942.268 | 68.03 | 5 67.78 | 741 | 97.01 |33 0 0 0
73 371281.9525 | 4616942.268 | 65.71 | 5 67.78 | 962 | 120.69 | 1.9 0 0 0
73 371281.9525 | 4616942.268 | 66.01 | 5 67.78 | 1365 | 188.45 | 3.9 0 0 0
73 371281.9525 | 4616942.268 | 65.38 | 5 67.78 | 1519 | 21249 | 3 0 0 0
73 371281.9525 | 4616942.268 | 65.36 | 5 67.78 | 1606 | 22540 | 246 |0 0 0
74 370870.0287 | 4616969.526 | 64.28 | 36 32.13 | 845 | 109.04 | 0.73 | O 0 0
74 370870.0287 | 4616969.526 | 62.54 | 36 32.13 | 850 | 109.16 | 045 | O 0 0
74 370870.0287 | 4616969.526 | 61.77 | 81 -129 | 1179 | 15390 | 049 | 0 0 0
74 370870.0287 | 4616969.526 | 64.56 | 81 -12.9 | 1433 | 197.54 | 0.9 0 0 0
74 370870.0287 | 4616969.526 | 64.61 | 36 32.13 | 1433 | 197.54 | 0.39 | 0 0 0
74 370870.0287 | 4616969.526 | 64.61 | 36 32.13 | 1433 | 197.54 | 041 | O 0 0
74 370870.0287 | 4616969.526 | 64.4 | 81 -12.9 | 1521 | 21249 | 042 | 0O 0 0
74 370870.0287 | 4616969.526 | 64.33 | 36 32.13 | 1522 ] 21249 | 039 |0 0 0
74 370870.0287 | 4616969.526 | 64.13 | 36 32.13 | 1676 | 231.62 | 0.56 | 0 0 0
74 370870.0287 | 4616969.526 | 62.84 | 36 32.13 | 1803 | 251.66 | 0.56 | 13.10 | 11.22 | 11.22
74 370870.0287 | 4616969.526 | 62.84 | 36 32.13 | 1803 | 251.66 | 0.55 | 13.104 | 11.218 | 11.218
75 370877.7201 | 4616923.479 | 65.15 | 39 2936 | 586 | 80.25 | 624 |0 0 0
75 370877.7201 | 4616923.479 | 63.66 | 39 2936 | 737 | 9647 |4.08 |0 0 0
75 370877.7201 | 4616923.479 | 62.58 | 64 4.26 844 | 107.83 | 0.57 |0 0 0
75 370877.7201 | 4616923.479 | 62.57 | 39 29.36 | 845 | 109.04 | 489 |0 0 0
75 370877.7201 | 4616923.479 | 61.85 | 39 29.36 | 961 | 120.69 | 2.8 0 0 0
75 370877.7201 | 4616923.479 | 61.85 | 39 29.36 | 961 | 120.69 | 3.2 0 0 0
75 370877.7201 | 4616923.479 | 61.15 | 39 29.36 | 1052 | 135.11 | 3.6 0 0 0
75 370877.7201 | 4616923.479 | 61.93 | 39 29.36 | 1180 | 153.90 | 6.8 0 0 0
75 370877.7201 | 4616923.479 | 64.61 | 64 4.26 1432 | 197.54 | 0.61 |0 0 0
75 370877.7201 | 4616923.479 | 64.54 | 39 2936 | 494 | 6783 |9 0 0 0
75 370877.7201 | 4616923.479 | 64.63 | 39 29.36 | 1433 | 197.54 | 4.2 0 0 0
75 370877.7201 | 4616923.479 | 643 | 64 4.26 1516 | 212.49 | 037 | 0 0 0
75 370877.7201 | 4616923.479 | 64.36 | 39 29.36 | 1516 | 212.49 | 3.08 | O 0 0
75 370877.7201 | 4616923.479 | 64.63 | 39 29.36 | 1516 | 212.49 | 284 | 0 0 0
75 370877.7201 | 4616923.479 | 63.86 | 64 4.26 1558 | 218.44 | 0.5 0 0 0
75 370877.7201 | 4616923.479 | 64.24 | 39 29.36 | 1558 | 218.44 | 259 | 0 0 0
75 370877.7201 | 4616923.479 | 64.24 | 39 29.36 | 1558 | 218.44 | 246 | 0 0 0
75 370877.7201 | 4616923.479 | 64.54 | 39 2936 | 494 | 6783 |9 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
75 370877.7201 | 4616923.479 | 64.21 | 39 29.36 | 1676 | 231.62 | 1.1 0 0 0
75 370877.7201 | 4616923.479 | 64.21 | 39 29.36 | 1676 | 231.62 | 1.1 0 0 0
75 370877.7201 | 4616923.479 | 63.15 | 64 4.26 1803 | 251.66 | 0.356 | 13.10 | 11.22 | 11.22
75 370877.7201 | 4616923.479 | 63.59 | 39 2936 | 1931 | 27435 | 1.9 31.54 | 3144 | 31.44
76 370894.2912 | 4616832.476 | 64.48 | 63 5.28 492 | 6783 |8 0 0 0
76 370894.2912 | 4616832.476 | 64.53 | 43 2536 | 492 | 67.83 | 17 0 0 0
76 370894.2912 | 4616832.476 | 64.53 | 23 4536 | 492 | 6783 |7 0 0 0
76 370894.2912 | 4616832.476 | 65.1 | 23 4536 | 587 | 81.19 | 133 |0 0 0
76 370894.2912 | 4616832.476 | 65.16 | 63 5.28 590 | 84.41 |16 0 0 0
76 370894.2912 | 4616832.476 | 61.07 | 63 5.28 1052 | 135.11 | 11 0 0 0
76 370894.2912 | 4616832.476 | 65.08 | 43 2536 | 590 | 8441 |22.1 |0 0 0
76 370894.2912 | 4616832.476 | 65.08 | 43 2536 | 590 | 8441 |225 |0 0 0
76 370894.2912 | 4616832.476 | 63.48 | 63 5.28 727 19597 306 |0 0 0
76 370894.2912 | 4616832.476 | 63.56 | 23 4536 | 727 | 9597 | 412 |0 0 0
76 370894.2912 | 4616832.476 | 63.56 | 43 2536 | 737 | 96.47 | 126 0 0 0
76 370894.2912 | 4616832.476 | 62.53 | 63 5.28 844 | 107.83 | 153 |0 0 0
76 370894.2912 | 4616832.476 | 64.46 | 43 2536 | 340 | 44.13 | 11 0 0 0
76 370894.2912 | 4616832.476 | 62.51 | 43 2536 | 844 | 107.83 | 174 0 0 0
76 370894.2912 | 4616832.476 | 62.52 | 23 4536 | 844 | 107.83 | 175 0 0 0
76 370894.2912 | 4616832.476 | 61.79 | 63 5.28 961 | 120.69 | 3.1 0 0 0
76 370894.2912 | 4616832.476 | 61.8 | 23 4536 | 962 | 120.69 | 88 0 0 0
76 370894.2912 | 4616832.476 | 61.11 | 23 4536 | 1052 | 135.11 | 26 0 0 0
76 370894.2912 | 4616832.476 | 61.87 | 63 5.28 1180 | 153.9 | 200 0 0 0
76 370894.2912 | 4616832.476 | 65.05 | 63 5.28 1365 | 188.45 | 97 0 0 0
76 370894.2912 | 4616832.476 | 65.01 | 23 4536 | 1365 | 188.45 | 19 0 0 0
76 370894.2912 | 4616832.476 | 64.33 | 63 5.28 1515 | 212.46 | 164 | 0 0 0
76 370894.2912 | 4616832.476 | 64.16 | 43 2536 | 1515 | 212.49 | 115 0 0 0
76 370894.2912 | 4616832.476 | 64.26 | 23 4536 | 151521249 | 19.1 |0 0 0
76 370894.2912 | 4616832.476 | 64.35 | 63 5.28 1572 1 22179 | 179 |0 0 0
76 370894.2912 | 4616832.476 | 64.37 | 23 4536 | 157222179 | 11.3 | O 0 0
76 370894.2912 | 4616832.476 | 64.36 | 43 2536 | 1573 | 221.79 | 93.1 |0 0 0
76 370894.2912 | 4616832.476 | 64.08 | 63 5.28 1679 | 23220 | 473 | 0 0 0
76 370894.2912 | 4616832.476 | 64.01 | 43 2536 | 1684 | 23220 | 57.2 |0 0 0
76 370894.2912 | 4616832.476 | 64.06 | 23 4536 | 1684 | 23220 | 2.11 | O 0 0
76 370894.2912 | 4616832.476 | 64.05 | 43 25.36 | 1929 | 27435 | 25 31.25 | 31.13 | 31.13
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
76 370894.2912 | 4616832.476 | 64.07 | 23 4536 | 1929 | 27435 | 3.2 31.25 | 31.13 | 31.13
76 370894.2912 | 4616832.476 | 64.1 | 63 5.28 1930 | 27435 | 1.6 31.39 | 31.28 | 31.28
77 370884.0444 | 4616878.785 | 64.41 | 43 2591 | 340 | 44.13 | 28 0 0 0
77 370884.0444 | 4616878.785 | 64.52 | 43 2591 | 495 |67.83 | 16 0 0 0
77 370884.0444 | 4616878.785 | 65.12 | 43 2591 | 587 | 81.19 | 139 |0 0 0
77 370884.0444 | 4616878.785 | 63.67 | 103 -34.13 | 725 | 9597 (044 |0 0 0
77 370884.0444 | 4616878.785 | 63.81 | 43 2591 | 725 | 9597 | 123 |0 0 0
77 370884.0444 | 4616878.785 | 62.58 | 43 2591 | 844 | 107.83 | 8.01 | O 0 0
77 370884.0444 | 4616878.785 | 61.96 | 43 2591 | 949 | 120.69 | 7.2 0 0 0
77 370884.0444 | 4616878.785 | 61.1 | 43 2591 | 1052 | 135.12 | 7.2 0 0 0
77 370884.0444 | 4616878.785 | 61.91 | 43 2591 | 1180 | 153.90 | 5.4 0 0 0
77 370884.0444 | 4616878.785 | 65.06 | 103 -34.13 | 1365 | 188.45 | 0.81 | O 0 0
77 370884.0444 | 4616878.785 | 65.08 | 43 2591 | 1365 | 188.45 | 9.1 0 0 0
77 370884.0444 | 4616878.785 | 64.5 | 43 2591 | 1503 | 212.38 | 532 | 0 0 0
77 370884.0444 | 4616878.785 | 64.23 | 43 2591 | 1553 | 218.01 | 5.7 0 0 0
77 370884.0444 | 4616878.785 | 64.1 | 43 2591 | 1670 | 231.16 | 5.1 0 0 0
77 370884.0444 | 4616878.785 | 64.1 | 43 2591 | 1670 | 231.16 | 5.1 0 0 0
77 370884.0444 | 4616878.785 | 64.25 | 43 2591 | 1936 | 27439 | 7 3226 | 3223 | 3223
78 370909.8458 | 4616791.326 | 64.37 | 43 25.67 | 340 | 44.13 | 19 0 0 0
78 370909.8458 | 4616791.326 | 64.81 | 43 25.67 | 592 | 8442 | 114 |0 0 0
78 370909.8458 | 4616791.326 | 63.71 | 63 591 726 | 9597 |04 0 0 0
78 370909.8458 | 4616791.326 | 63.67 | 43 25.67 | 727 | 9597 | 443 |0 0 0
78 370909.8458 | 4616791.326 | 57.58 | 63 591 845 | 109.04 | 2.07 |0 0 0
78 370909.8458 | 4616791.326 | 62.55 | 43 25.67 | 845 | 109.04 | 475 |0 0 0
78 370909.8458 | 4616791.326 | 61.79 | 63 591 962 | 120.69 | 4.6 0 0 0
78 370909.8458 | 4616791.326 | 61.79 | 63 591 962 | 120.69 | 3 0 0 0
78 370909.8458 | 4616791.326 | 61.77 | 43 25.67 | 962 | 120.69 | 6.3 0 0 0
78 370909.8458 | 4616791.326 | 61.07 | 63 591 1054 | 135.12 | 4.1 0 0 0
78 370909.8458 | 4616791.326 | 61.06 | 43 25.67 | 1054 | 135.12 | 8.7 0 0 0
78 370909.8458 | 4616791.326 | 61.96 | 63 591 1181 | 153.90 | 4.9 0 0 0
78 370909.8458 | 4616791.326 | 64.44 | 43 25.67 | 495 | 6783 |9 0 0 0
78 370909.8458 | 4616791.326 | 61.95 | 43 25.67 | 1181 | 154.00 | 4.7 0 0 0
78 370909.8458 | 4616791.326 | 64.57 | 63 591 1433 | 197.54 | 5.3 0 0 0
78 370909.8458 | 4616791.326 | 64.46 | 63 591 1514 | 21238 | 483 | 0 0 0
78 370909.8458 | 4616791.326 | 64.34 | 43 25.67 | 1515 212.49 | 834 |0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
78 370909.8458 | 4616791.326 | 64.53 | 43 25.67 | 1433 | 197.54 | 11 0 0 0
78 370909.8458 | 4616791.326 | 64.34 | 43 25.67 | 1515 | 212.49 | 8.18 |0 0 0
78 370909.8458 | 4616791.326 | 64.84 | 63 591 1556 | 218.44 | 437 | 0 0 0
78 370909.8458 | 4616791.326 | 64.21 | 43 25.67 | 1557 | 218.44 | 8.2 0 0 0
78 370909.8458 | 4616791.326 | 63.98 | 63 591 1684 | 232.20 | 2.84 | 0 0 0
78 370909.8458 | 4616791.326 | 63.96 | 43 25.67 | 1685 | 23220 | 6.48 |0 0 0
78 370909.8458 | 4616791.326 | 64.3 | 63 591 1936 | 274.39 | 2.1 3226 | 3223 | 3223
78 370909.8458 | 4616791.326 | 64.29 | 43 25.67 | 1936 | 27439 | 3.5 3226 | 3223 | 3223
114 370554.3323 | 4616779.681 | 64.03 | 101 -35.65 | 362 | 48.01 |11 0 0 0
114 370554.3323 | 4616779.681 | 68.85 | 101 -35.65 | 438 | 57.62 | 13 0 0 0
114 370554.3323 | 4616779.681 | 64.11 | 101 -35.65 | 534 | 74.89 | 10 0 0 0
114 370554.3323 | 4616779.681 | 62.15 | 101 -35.65 | 1047 | 132.67 | 11 0 0 0
114 370554.3323 | 4616779.681 | 63.05 | 101 -35.65| 720 | 9517 |221 |0 0 0
114 370554.3323 | 4616779.681 | 63.87 | 44 2737 | 740 | 96.71 | 127 0 0 0
114 370554.3323 | 4616779.681 | 61.69 | 44 2737 | 879 | 11528 | 72 0 0 0
114 370554.3323 | 4616779.681 | 61.39 | 101 -35.65 902 | 119.23 | 12 0 0 0
114 370554.3323 | 4616779.681 | 61.12 | 101 -35.65 | 951 | 120.69 | 14 0 0 0
114 370554.3323 | 4616779.681 | 61.14 | 44 27.37 | 951 | 120.69 | 64 0 0 0
114 370554.3323 | 4616779.681 | 62.15 | 44 27.37 | 1047 | 132.67 | 71 0 0 0
114 370554.3323 | 4616779.681 | 62.86 | 101 -35.65 | 1242 | 166.35 | 9.6 0 0 0
114 370554.3323 | 4616779.681 | 62.86 | 44 27.37 | 1258 | 166.35 | 56 0 0 0
114 370554.3323 | 4616779.681 | 64.34 | 44 27.37 | 1369 | 188.45 | 52 0 0 0
114 370554.3323 | 4616779.681 | 64.25 | 101 -35.65 | 1370 | 188.65 | 7.7 0 0 0
114 370554.3323 | 4616779.681 | 63.68 | 101 -35.65 | 1500 | 212.37 | 13.4 | 0 0 0
114 370554.3323 | 4616779.681 | 63.68 | 44 27.37 | 1500 | 212.38 | 423 | 0 0 0
114 370554.3323 | 4616779.681 | 63.56 | 101 -35.65 | 1570 | 221.79 | 9.67 | 0 0 0
114 370554.3323 | 4616779.681 | 63.62 | 44 2737 | 1570 | 221.79 | 37.7 | 0 0 0
114 370554.3323 | 4616779.681 | 63.4 | 101 -35.65 | 1672 | 231.62 | 436 |0 0 0
114 370554.3323 | 4616779.681 | 63.41 | 44 2737 | 1672 | 231.62 | 40.8 | 0 0 0
114 370554.3323 | 4616779.681 | 63.32 | 101 -35.65 | 1929 | 27435 | 1.7 31.25 | 31.13 | 31.13
114 370554.3323 | 4616779.681 | 63.4 | 44 2737 | 1929 | 27435 | 54 31.25 | 31.13 | 31.13
129 370565.5007 | 4616722.093 | 63.18 | 61 5.12 367 | 48.61 | 10 0 0 0
129 370565.5007 | 4616722.093 | 62.82 | 61 5.12 438 | 57.62 |9 0 0 0
129 370565.5007 | 4616722.093 | 62.79 | 51 14.89 | 438 | 57.62 |6 0 0 0
129 370565.5007 | 4616722.093 | 64.12 | 61 5.12 535 | 74.89 |6 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
129 370565.5007 | 4616722.093 | 64.14 | 51 14.89 | 536 | 74.89 | 8 0 0 0
129 370565.5007 | 4616722.093 | 62.98 | 61 5.12 720 | 95.17 592 |0 0 0
129 370565.5007 | 4616722.093 | 63.09 | 51 1489 | 720 | 95.17 693 |0 0 0
129 370565.5007 | 4616722.093 | 64.88 | 61 5.12 832 | 107.37 | 4.63 |0 0 0
129 370565.5007 | 4616722.093 | 64.89 | 51 14.89 | 832 | 10737 10.72 |0 0 0
129 370565.5007 | 4616722.093 | 61.74 | 31 3485 | 835 | 107.54 | 0.69 | O 0 0
129 370565.5007 | 4616722.093 | 61.03 | 61 5.12 961 | 120.69 | 1.9 0 0 0
129 370565.5007 | 4616722.093 | 61.04 | 51 14.89 | 961 | 120.69 | 13 0 0 0
129 370565.5007 | 4616722.093 | 61.13 | 31 34.85 | 961 | 120.69 | 1.5 0 0 0
129 370565.5007 | 4616722.093 | 60.38 | 61 5.12 1047 | 132.67 | 2.2 0 0 0
129 370565.5007 | 4616722.093 | 61.04 | 51 14.89 | 1047 | 132.67 | 16 0 0 0
129 370565.5007 | 4616722.093 | 60.43 | 51 14.89 | 1047 | 132.67 | 15 0 0 0
129 370565.5007 | 4616722.093 | 64.43 | 31 34.85 | 1047 | 132.67 | 0.7 0 0 0
129 370565.5007 | 4616722.093 | 61.12 | 61 5.12 1178 | 153.87 | 5.9 0 0 0
129 370565.5007 | 4616722.093 | 61.11 | 51 14.89 | 1178 | 153.90 | 14 0 0 0
129 370565.5007 | 4616722.093 | 64.29 | 61 5.12 1370 | 188.72 | 8.5 0 0 0
129 370565.5007 | 4616722.093 | 64.23 | 51 14.89 | 1370 | 188.72 | 6.7 0 0 0
129 370565.5007 | 4616722.093 | 64.33 | 31 34.85 | 1370 | 188.72 | 0.59 | O 0 0
129 370565.5007 | 4616722.093 | 63.77 | 61 5.12 1501 | 212.38 | 6.62 | 0 0 0
129 370565.5007 | 4616722.093 | 63.89 | 51 14.89 | 1501 | 212.38 | 5.13 | 0 0 0
129 370565.5007 | 4616722.093 | 63.48 | 61 5.12 1557 | 218.44 | 6.54 | 0 0 0
129 370565.5007 | 4616722.093 | 63.49 | 51 14.89 | 1558 | 218.44 | 527 | 0 0 0
129 370565.5007 | 4616722.093 | 63.12 | 61 5.12 1679 | 232.20 | 3.68 | 0 0 0
129 370565.5007 | 4616722.093 | 63.44 | 51 14.89 | 1679 | 23220 | 474 | 0 0 0
129 370565.5007 | 4616722.093 | 63.41 | 31 3485 | 1679 | 232.20 | 0.36 | 0 0 0
129 370565.5007 | 4616722.093 | 62.27 | 31 34.85 | 1802 | 251.63 | 1.2 1296 | 11.06 | 11.06
129 370565.5007 | 4616722.093 | 63.2 | 61 5.12 1921 | 27433 | 1.5 30.10 | 29.86 | 29.86
129 370565.5007 | 4616722.093 | 63.17 | 51 14.89 | 1921 | 27433 | 4.5 30.10 | 29.86 | 29.86
139 370336.7162 | 4616757.016 | 62.71 | 75 -10.43 | 363 | 48.01 |8 0 0 0
139 370336.7162 | 4616757.016 | 63.53 | 75 -10.43 | 536 | 74.89 |3 0 0 0
139 370336.7162 | 4616757.016 | 61.2 | 115 -50.52 | 837 | 107.59 | 1.86 | 0 0 0
139 370336.7162 | 4616757.016 | 60.89 | 75 -10.43 | 837 | 107.59 | 2.77 |0 0 0
139 370336.7162 | 4616757.016 | 60.66 | 115 -50.52 | 951 | 120.69 | 1.6 0 0 0
139 370336.7162 | 4616757.016 | 60.62 | 75 -10.43 | 951 | 120.69 | 1.2 0 0 0
139 370336.7162 | 4616757.016 | 60.62 | 75 -10.43 | 951 | 120.69 | 1.3 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
139 370336.7162 | 4616757.016 | 59.78 | 115 -50.52 | 1038 | 132.67 | 1.4 0 0 0
139 370336.7162 | 4616757.016 | 60.63 | 115 -50.52 | 1182 | 154.00 | 0.65 | O 0 0
139 370336.7162 | 4616757.016 | 62.19 | 75 -10.43 | 439 | 57.62 | 11 0 0 0
139 370336.7162 | 4616757.016 | 63.64 | 115 -50.52 | 1378 | 188.72 | 042 | 0 0 0
139 370336.7162 | 4616757.016 | 63.67 | 75 -10.43 | 1378 | 189.04 | 13 0 0 0
139 370336.7162 | 4616757.016 | 63.02 | 115 -50.52 | 1518 | 212.49 | 0.401 | O 0 0
139 370336.7162 | 4616757.016 | 62.99 | 115 -50.52 | 1592 | 224.94 | 0.595 | 0 0 0
139 370336.7162 | 4616757.016 | 62.99 | 75 -10.43 | 1595 | 224.94 | 0.6 0 0 0
139 370336.7162 | 4616757.016 | 62.79 | 115 -50.52 | 1677 | 231.62 | 0.505 | 0 0 0
139 370336.7162 | 4616757.016 | 62.82 | 75 -10.43 | 1677 | 231.62 | 3.5 0 0 0
139 370336.7162 | 4616757.016 | 62.51 | 75 -10.43 | 1923 | 27433 | 2.94 | 30.38 | 30.18 | 30.18
162 370681.3427 | 4616701.79 | 64.0 | 54.28 | 9.25 748 19824 | 155 |0 0 0
162 370681.3427 | 4616701.79 | 61.54 | 54.28 | 9.25 838 | 107.59 | 2.03 |0 0 0
162 370681.3427 | 4616701.79 | 61.33 | 54.28 | 9.25 950 | 120.69 | 2.4 0 0 0
162 370681.3427 | 4616701.79 | 60.60 | 54.28 | 9.25 1048 | 132.67 | 1.9 0 0 0
162 370681.3427 | 4616701.79 | 61.36 | 54.28 | 9.25 1181 | 154.00 | 3.5 0 0 0
162 370681.3427 | 4616701.79 | 61.36 | 54.28 | 9.25 1181 | 154.00 | 3.4 0 0 0
162 370681.3427 | 4616701.79 | 64.43 | 54.28 | 9.25 1378 | 189.04 | 4.4 0 0 0
162 370681.3427 | 4616701.79 | 63.86 | 54.28 | 9.25 1521 | 212.49 | 391 |0 0 0
162 370681.3427 | 4616701.79 | 63.75 | 54.28 | 9.25 1560 | 218.44 | 4.11 |0 0 0
162 370681.3427 | 4616701.79 | 63.55 | 54.28 | 9.25 1670 | 231.16 | 6.2 0 0 0
162 370681.3427 | 4616701.79 | 62.4 | 54.28 | 9.25 1802 | 251.63 | 10 1296 | 11.06 | 11.06
165 370226.6833 | 4616698.383 | 63.03 | 51 13.23 | 493 | 67.83 | 122 0 0 0
165 370226.6833 | 4616698.383 | 63.51 | 51 13.23 | 593 | 8442 | 102 0 0 0
165 370226.6833 | 4616698.383 | 62.03 | 51 1323 | 740 | 96.71 | 812 |0 0 0
165 370226.6833 | 4616698.383 | 60.96 | 51 13.23 | 838 | 107.59 | 83.5 |0 0 0
165 370226.6833 | 4616698.383 | 60.42 | 51 13.23 | 952 | 120.69 | 64 0 0 0
165 370226.6833 | 4616698.383 | 59.57 | 51 13.23 | 1060 | 135.82 | 78 0 0 0
165 370226.6833 | 4616698.383 | 60.47 | 111 -46.78 | 1181 | 154.00 | 4 0 0 0
165 370226.6833 | 4616698.383 | 60.38 | 51 13.23 | 1181 | 154.00 | 110 0 0 0
165 370226.6833 | 4616698.383 | 63.64 | 111 -46.78 | 1349 | 187.54 | 2.5 0 0 0
165 370226.6833 | 4616698.383 | 63.58 | 51 13.23 | 1349 | 187.54 | 57 0 0 0
165 370226.6833 | 4616698.383 | 63.58 | 51 13.23 | 1362 | 187.54 | 58 0 0 0
165 370226.6833 | 4616698.383 | 63.84 | 111 -46.78 | 1519 | 21249 | 3.15 | 0 0 0
165 370226.6833 | 4616698.383 | 62.81 | 51 13.23 | 1521 | 212.49 | 509 |0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
165 370226.6833 | 4616698.383 | 62.81 | 51 13.23 | 1521 | 212.49 | 509 |0 0 0
165 370226.6833 | 4616698.383 | 62.73 | 111 -46.78 | 1558 | 218.44 | 3.05 | 0 0 0
165 370226.6833 | 4616698.383 | 62.63 | 51 13.23 | 1560 | 218.44 | 39 0 0 0
165 370226.6833 | 4616698.383 | 62.62 | 111 -46.78 | 1678 | 232.20 | 3.54 | 0 0 0
165 370226.6833 | 4616698.383 | 61.33 | 51 13.23 | 1679 | 232.20 | 413 | 0 0 0
165 370226.6833 | 4616698.383 | 61.33 | 51 13.23 | 1802 | 250.36 | 94 1296 | 11.06 | 11.06
165 370226.6833 | 4616698.383 | 62.28 | 51 13.23 | 1930 | 274.35 | 9.8 31.39 | 31.28 | 31.28
172 370223.4066 | 4616613.115 | 60.09 | 109 -46.49 | 537 | 74.89 |3 0 0 0
172 370223.4066 | 4616613.115 | 62.94 | 109 -46.49 | 629 | 87.43 |3.394 | 0 0 0
172 370223.4066 | 4616613.115 | 61.3 | 109 -46.49 | 769 | 99.63 |545 |0 0 0
172 370223.4066 | 4616613.115 | 59.18 | 109 -46.49 | 968 | 123.84 | 7.1 0 0 0
172 370223.4066 | 4616613.115 | 59.23 | 109 -46.49 | 1054 | 135.82 | 6.8 0 0 0
172 370223.4066 | 4616613.115 | 60.14 | 109 -46.49 | 1182 | 154.00 | 6.8 0 0 0
172 370223.4066 | 4616613.115 | 63.24 | 109 -46.49 | 1383 | 189.04 | 6.8 0 0 0
172 370223.4066 | 4616613.115 | 62.61 | 109 -46.49 | 1501 | 212.38 | 445 |0 0 0
172 370223.4066 | 4616613.115 | 62.61 | 109 -46.49 | 1501 | 212.38 | 444 | 0 0 0
172 370223.4066 | 4616613.115 | 61.47 | 109 -46.49 | 1570 | 221.79 | 439 | 0 0 0
172 370223.4066 | 4616613.115 | 62.36 | 109 -46.49 | 1613 | 227.04 | 4.1 0 0 0
172 370223.4066 | 4616613.115 | 61.88 | 109 -46.49 | 1921 | 274.33 | 2.1 30.10 | 29.86 | 29.86
173 369355.6014 | 4616669.876 | 57.85 | 57.2 5.18 755 | 98.85 |0.632 |0 0 0
173 369355.6014 | 4616669.876 | 59.65 | 57.2 5.18 801 | 100.11 | 0.672 | O 0 0
173 369355.6014 | 4616669.876 | 56.4 | 57.2 5.18 839 | 107.79 | 0.88 | 0 0 0
173 369355.6014 | 4616669.876 | 56.45 | 57.2 5.18 951 | 120.69 | 0.7 0 0 0
173 369355.6014 | 4616669.876 | 58.56 | 57.2 5.18 1048 | 132.67 | 0.48 | 0 0 0
173 369355.6014 | 4616669.876 | 58.56 | 57.2 5.18 1242 | 166.35 | 1.1 0 0 0
173 369355.6014 | 4616669.876 | 61.75 | 57.2 5.18 1413 | 19584 | 0.65 | 0 0 0
173 369355.6014 | 4616669.876 | 61.75 | 57.2 5.18 1413 | 195.87 | 0.602 | 0 0 0
173 369355.6014 | 4616669.876 | 61.35 | 57.2 5.18 1502 | 212.38 | 0.842 | 0 0 0
173 369355.6014 | 4616669.876 | 52.13 | 57.2 5.18 1567 | 221.79 1 0.75 | 0 0 0
173 369355.6014 | 4616669.876 | 52.13 | 57.2 5.18 1570 | 221.79 | 0.532 | 0 0 0
173 369355.6014 | 4616669.876 | 61.25 | 57.2 5.18 1671 | 231.62 | 0.621 | 0 0 0
173 369355.6014 | 4616669.876 | 61.15 | 57.2 5.18 1934 | 274.35 | 0.45 | 31.97 |31.92 | 3192
210 369996.6187 | 4616665.601 | 59.82 | 59.69 | -0.1 887 | 117.19 | 12 0 0 0
210 369996.6187 | 4616665.601 | 59.04 | 59.69 | -0.1 1031 | 129.84 | 993 | 0 0 0
210 369996.6187 | 4616665.601 | 59.15 | 59.69 | -0.1 1154 | 150.90 | 12 0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
210 369996.6187 | 4616665.601 | 62.02 | 59.69 | -0.1 1496 | 211.17 | 19 0 0 0
210 369996.6187 | 4616665.601 | 61.91 | 59.69 | -0.1 1531 | 213.12 | 23 0 0 0
210 369996.6187 | 4616665.601 | 61.93 | 59.69 | -0.1 1595 | 224.94 | 44 0 0 0
210 369996.6187 | 4616665.601 | 61.94 | 59.69 | -0.1 1601 | 225.15 | 43 0 0 0
210 369996.6187 | 4616665.601 | 61.78 | 59.69 | -0.1 1677 | 231.62 | 59 0 0 0
210 369996.6187 | 4616665.601 | 59.82 | 59.69 | -0.1 887 | 117.19 | 11 0 0 0
210 369996.6187 | 4616665.601 | 60.55 | 59.69 | -0.1 1801 | 250.36 | 56 12.82 | 10.90 | 10.90
211 369353.6537 | 4616562.439 | 56.13 | 34.7 -3.6 887 | 117.19 | 3 0 0 0
211 369353.6537 | 4616562.439 | 56.4 | 60 -3.6 991 | 129.84 | 051 |0 0 0
211 369353.6537 | 4616562.439 | 55.96 | 34.7 -3.6 1031 | 129.84 | 3.02 | 0 0 0
211 369353.6537 | 4616562.439 | 56.22 | 34.7 -3.6 1153 | 150.90 | 3.5 0 0 0
211 369353.6537 | 4616562.439 | 60.15 | 60 -3.6 1601 | 225.15 | 11 0 0 0
211 369353.6537 | 4616562.439 | 59.94 | 60 -3.6 1495 | 211.17 | 5.6 0 0 0
211 369353.6537 | 4616562.439 | 60.01 | 60 -3.6 1525 | 212.61 | 9.8 0 0 0
211 369353.6537 | 4616562.439 | 60.18 | 60 -3.6 1672 | 231.62 | 13 0 0 0
211 369353.6537 | 4616562.439 | 58.44 | 60 -3.6 1801 | 244.92 | 33 12.82 | 10.90 | 10.90
211 369353.6537 | 4616562.439 | 60 34.7 -3.6 1801 | 250.36 | 0.72 | 12.82 | 10.90 | 10.90
211 369353.6537 | 4616562.439 | 58.44 | 34.7 -3.6 1801 | 250.36 | 0.66 | 12.82 | 10.90 | 10.90
211 369353.6537 | 4616562.439 | 58.44 | 60 -3.6 1921 | 252.77 | 25 30.10 | 29.86 | 29.86
211 369353.6537 | 4616562.439 | 58.71 | 34.7 -3.6 1921 | 27433 | 3 30.10 | 29.86 | 29.86
214 370181.7339 | 4616541.333 | 59.21 | 83.45 | -23.19 | 1032 | 129.89 | 0.6 0 0 0
214 370181.7339 | 4616541.333 | 59.54 | 83.45 | -23.19 | 1124 | 146.92 | 0.72 | O 0 0
214 370181.7339 | 4616541.333 | 62.21 | 83.45 | -23.19 | 1535 | 213.12 | 0.65 | O 0 0
214 370181.7339 | 4616541.333 | 62.36 | 83.45 | -23.19 | 1602 | 225.15 | 0.35 | O 0 0
214 370181.7339 | 4616541.333 | 62.07 | 83.45 | -23.19 | 1672 | 231.62 | 0.61 | O 0 0
225 368970.7769 | 4616538.54 | 53.37 | 31.48 | 21.89 | 948 | 120.69 | 2.9 0 0 0
225 368970.7769 | 4616538.54 | 52.55 | 31.48 | 21.89 | 1047 | 132.67 | 1.5 0 0 0
225 368970.7769 | 4616538.54 | 53.15 | 31.48 | 21.89 | 1132 | 150.90 | 0.62 | O 0 0
225 368970.7769 | 4616538.54 | 55.21 | 31.48 | 21.89 | 1495 | 210.57 | 1.9 0 0 0
225 368970.7769 | 4616538.54 | 55.31 | 31.48 | 21.89 | 1531 | 213.12 | 2.5 0 0 0
225 368970.7769 | 4616538.54 | 55.39 | 31.48 | 21.89 | 1602 | 225.15 | 2.62 | O 0 0
225 368970.7769 | 4616538.54 | 55.19 | 31.48 | 21.89 | 1678 | 232.20 | 2.1 0 0 0
225 368970.7769 | 4616538.54 | 54.1 | 31.48 | 21.89 | 1803 | 251.63 | 3.2 13.10 | 11.22 | 11.22
225 368970.7769 | 4616538.54 | 5535 | 31.48 | 21.89 | 1922 | 27433 | 7.7 30.24 | 30.02 | 30.02
231 368986.0277 | 4616432.219 | 54.23 | 109.15 | -55.42 | 968 | 120.69 | 0.51 | O 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
231 368986.0277 | 4616432.219 | 52.9 | 63.33 | -10.26 | 1048 | 132.67 | 045 | O 0 0

231 368986.0277 | 4616432.219 | 53.02 | 63.33 | -10.26 | 1131 | 146.92 | 0.6 0 0 0

231 368986.0277 | 4616432.219 | 55.58 | 63.33 | -10.26 | 1490 | 197.54 | 0.58 | O 0 0

231 368986.0277 | 4616432.219 | 61.3 | 63.33 | -10.26 | 1530 | 213.12 | 0.63 | O 0 0

231 368986.0277 | 4616432.219 | 57 63.33 | -10.26 | 1671 | 231.62 | 0.71 | O 0 0

231 368986.0277 | 4616432.219 | 58.3 | 63.33 | -10.26 | 1804 | 251.66 | 0.663 | 13.25 | 11.38 | 11.38
231 368986.0277 | 4616432.219 | 58 63.33 | -10.26 | 1928 | 274.33 | 0.76 | 31.104 | 30.968 | 30.968
240 368936.5251 | 4616632.908 | 63.65 | 31.45 | 20.55 | 1804 | 251.66 | 0.35 | 13.25 | 11.38 | 11.38
252 368590.8485 | 4616334.163 | 52.35 | 6.63 4136 | 1242 | 163.21 | 055 |0 0 0

252 368590.8485 | 4616334.163 | 51.97 | 6.63 4136 | 1539 | 213.75 | 041 | O 0 0

252 368590.8485 | 4616334.163 | 52.17 | 65.6 -17.59 | 1671 | 231.62 | 0.4 0 0 0

252 368590.8485 | 4616334.163 | 52.17 | 6.63 4136 | 1671 | 231.62 | 043 |0 0 0

252 368590.8485 | 4616334.163 | 53.42 | 65.6 -17.59 | 1936 | 274.35 | 0.41 | 32.26 | 3223 | 32.23
255 370285.5839 | 4616964.46 | 60.53 | 65.43 | -4.9 1193 | 157.01 | 054 | O 0 0

255 370285.5839 | 4616964.46 | 649 | 65.43 | -4.9 1348 | 178.56 | 1.1 0 0 0

255 370285.5839 | 4616964.46 | 64.74 | 65.43 | -4.9 1432 | 197.54 | 036 |0 0 0

258 368514.469 | 4616575.047 | 47.31 | 44.7 2.61 1154 | 152.80 | 0.408 | 0 0 0

258 368514.469 | 4616575.047 | 47.31 | 44.7 2.61 1161 | 152.80 | 3 0 0 0

258 368514.469 | 4616575.047 | 47.28 | 34.75 | 12.53 | 1161 | 152.80 | 049 | 0 0 0

258 368514.469 | 4616575.047 | 47.28 | 34.75 | 12.53 | 1175 | 152.80 | 1.9 0 0 0

258 368514.469 | 4616575.047 | 51.99 | 44.7 2.61 1307 | 169.09 | 0.4 0 0 0

258 368514.469 | 4616575.047 | 51.73 | 69.1 -21.95 | 1362 | 188.45 | 036 |0 0 0

258 368514.469 | 4616575.047 | 51.78 | 44.7 2.61 1365 | 188.45 | 0.51 |0 0 0

258 368514.469 | 4616575.047 | 50.96 | 44.7 2.61 1552 | 21591 | 0.9 0 0 0

258 368514.469 | 4616575.047 | 50.97 | 69.1 -21.95 | 1670 | 231.16 | 0.39 | 0 0 0

258 368514.469 | 4616575.047 | 51.13 | 44.7 2.61 1671 | 231.62 | 1.4 0 0 0

258 368514.469 | 4616575.047 | 51.08 | 34.75 | 12.53 | 1671 | 231.62 | 0.73 | O 0 0

258 368514.469 | 4616575.047 | 49.74 | 69.1 -21.95 | 1804 | 251.66 | 0.456 | 13.25 | 11.38 | 11.38
258 368514.469 | 4616575.047 | 51.03 | 44.7 2.61 1804 | 251.66 | 1.62 | 13.25 | 11.38 | 11.38
258 368514.469 | 4616575.047 | 49.96 | 34.75 | 12.53 | 1804 | 251.66 | 1.01 | 13.25 | 11.38 | 11.38
258 368514.469 | 4616575.047 | 53.7 | 69.1 -15.4 | 1985 | 274.52 | 0.68 | 39.31 | 39.97 | 39.97
258 368514.469 | 4616575.047 | 53.73 | 44.7 2.61 1985 | 283.75 | 4 39.312 | 39.974 | 39.974
258 368514.469 | 4616575.047 | 53.74 | 34.75 | 12.53 | 1985 | 283.75 | 1.9 39.312 | 39.974 | 39.974
258 368514.469 | 4616575.047 | 53.73 | 34.75 | 12.53 | 1985 | 283.75 | 1.9 39.312 | 39.974 | 39.974
341 369354.7273 | 4616497.089 | 59.02 | 55.66 | 3.86 1691 | 23220 | 295 |0 0 0
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Well # | X Y G Depth | Z T R P INJ1 INJ INJ 3
341 369354.7273 | 4616497.089 | 58.29 | 25.16 | 33.76 | 1704 | 236.21 | 14.7 | 0.00 0 0

341 369354.7273 | 4616497.089 | 57.15 | 108.16 | -49 1805 | 251.66 | 0.428 | 13.39 | 11.53 | 11.53
341 369354.7273 | 4616497.089 | 57.83 | 55.66 | 3.86 1805 | 252.71 | 15.5 | 13.39 | 11.53 | 11.53
341 369354.7273 | 4616497.089 | 57.23 | 25.16 | 33.76 | 1805 | 252.71 | 0.442 | 13.39 | 11.53 | 11.53
341 369354.7273 | 4616497.089 | 58.5 | 108.16 | -49 1934 | 27435 | 0.56 | 31.97 | 31.92 | 31.92
341 369354.7273 | 4616497.089 | 59.11 | 55.66 | 3.86 1934 | 274.35 | 40 31.97 | 3192 | 3192
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