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Abstract

The main focus of this work is to study the classical Calderón-Zygmund theory and

its recent developments. An attempt has been made to study some of its theory in more

generality in the context of a nonhomogeneous space equipped with a measure which is not

necessarily doubling.

We establish a Hedberg type inequality associated to a non-doubling measure which

connects two famous theorems of Harmonic Analysis-the Hardy-Littlewood-Weiner maxi-

mal theorem and the Hardy-Sobolev integral theorem. Hedberg inequalities give pointwise

estimates of the Riesz potentials in terms of an appropriate maximal function. We also

establish a good lambda inequality relating the distribution function of the Riesz potential

and the fractional maximal function in (Rn, dµ), where µ is a positive Radon measure which

is not necessarily doubling. Finally, we also derive potential inequalities as an application.
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Preface

The area of this work falls in Harmonic Analysis. The space of homogeneous type has

been one of the most important tools of Harmonic Analysis for more than last three decades.

These spaces were formally introduced in [15] by R. Coifmann and G. Weiss. The space

of homogeneous type is a metric space equipped with a measure µ satisfying the so-called

“doubling condition”, which means that there exists a constant C = C(µ) ≥ 1, such that,

for every ball B(x, r) of center x and radius r

µ (B(x, 2r)) ≤ Cµ (B(x, r)) . (1)

It was believed that space of homogeneous type was the base for the optimal level of general-

ity to study harmonic analysis. The reason for its success is that E. M. Stein chose space of

homogeneous type to develop the basic fundamental theory of harmonic analysis ([43], [42]).

In recent years it has been ascertained that central results of classical Calderón-Zygmund

Theory hold true in a very general situation in which the underlying measure is not neces-

sarily doubling but only satisfies a mild condition, known as the growth condition. It came

as surprise to many when F. Nazarov, S. Treil and A. Volberg announced that “The doubling

condition is superfluous for most of the classical theory of harmonic analysis” ([50]). They

meant that a rather complete theory of Calderón-Zygmund operators could be developed if,

in some sense, condition (1) is replaced by the following condition: A Borel measure µ on a

measure metric space (X, d) is said to satisfy the growth condition if

µ (B(x, r)) ≤ CrN (2)

where the constant C is independent of x and r. This allows, in particular, non-doubling

measures. Sometimes we shall refer to condition (2) by saying that the measure µ is N-

dimensional. Some other prominent mathematician working on this area are X. Tolsa ([47]),

ix



J. Verdera ([54]), C. Peréz ([39]) J. Mateu, P. Matila, A. Nicolau , J. Orobitg ([38]), Y.

Sawano, H. Tanaka ([40] and José Garćıa-Cuerva, A. Eduardo Gatto ([23]).

The list of results that one can establish without resorting to the doubling condition is

quite amazing and encouraging for further research in this area. For example, the T(b)-

Theorem ([17] and [49]), the Calderón-Zygmund decomposition and the derivative of weak

L1 and Lp bounds, 1 < p <∞, from L2 bounds ([50], [46], and [48]), Cotlar’s inequality for

the maximal singular integral ([50], and [45]) and many others ([38], [39], and [24]). This is

the motivating factor of this work.

The first chapter deals with some basics of our work. We discuss maximal functions with

their variations and introduce non-doubling measures with examples.

Chapter 2 deals with the Riesz potentials and its estimates by maximal functions. In

the sequel, we generalize the well known Hedberg inequality associated to non-doubling

measures. Finally, we give an application of this deriving an exponential inequality.

In Chapter 3, we review the well known good-lambda inequalities and its variations. We

generalize this associated to a non-doubling measure with applications.

In Chapter 4, we conclude our work with motivation to future work.

x



Chapter 1

Maximal Function in Non-doubling
Metric Measure Space.

1.1 Introduction.

In this chapter, we will review the history of the Hardy-Littlewood maximal operator. It

was first introduced in 1930 by G. H. Hardy and J. E. Littlewood [27] in R in order to apply

this as a tool in the theory of Complex analysis. Then N. Weiner [55] in 1939 introduced

this operator in higher dimensions Rn(n > 1). The purpose was to apply this in Ergodic

theory. Since then the operator has been widely studied and used. One of its applications

is Lebesgue’s differentiation theorem which can be deduced from the boundedness of the

maximal operator. The generalization of the differentiation theorem to averages over a va-

riety of families of sets leads to the definition of several variants of the Hardy-Littlewood

maximal operator ([20]). Important cases are averages over balls or cubes (the usual Hardy-

Littlewood maximal function), averages over rectangles with sides parallel to the coordi-

nate axes, and averages over arbitrary rectangles. In 1971, R. Coifman and G. Weiss [15]

introduced the maximal operator on a quasi-metric measure space satisfying the doubling

condition which we call homogeneous space. It was in 1998, F. Nazarov, S. Treil and A. Vol-

berg [50] introduced modified Hardy-Littlewood maximal operators on quasi-metric spaces

possessing a Radon measure that do not necessarily satisfy a doubling condition which we
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call nonhomogeneous spaces.

In recent years it has been ascertained that the central results of classical Calderón-

Zygmund Theory hold true in very general situations in which the standard doubling

condition on the underlying measure is not satisfied. This came as great surprise to the

authors who felt that homogeneous spaces were not only a convenient setting for devel-

oping Calderón-Zygmund Theory, but that they were essentially the right context. The

T(b)-theorem ([17]), the Calderón-Zygmund decomposition and the derivation of L1 and Lp

bounds, 1 < p < ∞, from L2 bounds ([50], [46], [48] ), Cotlar’s inequality for the maximal

singular integral ([50], [45]) and many others ([38], [39], [24]) are among those theorems

which hold without resorting to the doubling condition.

1.2 Some Useful Definitions

Definition 1. Let (X, µ) and (Y, ν) be measure spaces, and let T be an operator from

Lp(X, µ) into the space of measurable functions from Y to C. We say that T is weak (p,q),

q <∞, if there exists a constant C such that for every λ > 0,

ν ({y ∈ Y : |Tf(y)| > λ}) ≤
(
C‖f‖p
λ

)q
,

and we say that it is weak (p,∞) if it is bounded operator from Lp(X, µ) to L∞(Y, ν). We

say that T is strong (p,q) if it is bounded from Lp(X, µ) to Lq(Y, ν).

Remark 2. If T is strong (p,q) then it is weak (p,q).

Proof. Let Eλ = {y ∈ Y : |Tf(y)| > λ}. Then

ν(Eλ) =

∫
Eλ

dν ≤
∫
Eλ

∣∣∣∣Tf(x)

λ

∣∣∣∣q dν ≤ ‖Tf‖qqλq
≤
(
C‖f‖p
λ

)q
.

2



If (X, µ) = (Y, ν) and T is the identity operator then the weak (p, p) inequality is the

classical Chebyshev inequality.

Definition 3. A measure µ in a metric space is called doubling if balls have finite and

positive measure and there is a constant C = C(µ) ≥ 1 such that

µ(2B) ≤ Cµ(B) (1.1)

for all balls B. The constant C is independent of the center and radius of the balls in X. We

also call a metric space (X, µ) doubling or homogeneous if µ is a doubling measure. Note

that if µ is a doubling measure then

µ(λB) ≤ C(µ, λ)µ(B)

for all λ ≥ 1.

Example 4. Lebesgue measure in Rn is doubling. In general dµ(x) = |x|adx, a > −n is a

doubling measure in Rn.

Proof. The condition a > −n ensures that the measure under consideration is finite in Rn.

Let νn denote the volume of the unit ball in Rn. We divide the balls B(x0, R) in Rn into

two categories as follows:

T1 = {B(x0, R) : |x0| ≥ 3R} , and

T2 = {B(x0, R) : |x0| < 3R} .

For balls in T1 we have |x0| ≥ 3R. It follows that

|x0|+ 2R ≤ 4(|x0| −R), and |x0| − 2R ≥ 1

4
(|x0|+R). (1.2)

For balls in T1 and a ≥ 0,

µ (B(x0, 2R)) =

∫
B(x0,2R)

|x|adx ≤ (|x0|+ 2R)a |B(x0, 2R)| = νn(2R)n (|x0|+ 2R)a , (1.3)
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and

µ (B(x0, R)) =

∫
B(x0,R)

|x|adx ≥ (|x0| −R)a νnR
n. (1.4)

Combining the inequalities (1.2),(1.3), and (1.4) we obtain

µ (B(x0, 2R)) ≤ Cµ (B(x0, R)) (1.5)

where C = 23n4|a|. Similarly, for the balls in T1 and a < 0, we obtain the following inequalities

µ (B(x0, 2R)) ≤ (|x0| − 2R)a νn(2R)n,

and

µ (B(x0, R)) ≥ (|x0|+R)a νnR
n.

Combining the above two inequalities with (1.2) we obtain the same (1.5) inequality.

Note that B(x0, 2R) ⊆ B(0, 5R) for |x0| < 3R. So, for the balls in T2 we

µ (B(x0, 2R)) =

∫
B(x0,2R)

|x|adx ≤
∫
|x|≤5R

|x|adx ≤ (5R)aνn(5R)n = CnR
n+a.

Also note that the function |x|a is radially increasing for a ≥ 0 and radially decreasing for

a < 0. So, we have ∫
B(x0,R)

|x|adx ≥

{∫
B(0,R)

|x|adx, when a ≥ 0,∫
B(3R

x0
|x0|

,R)
|x|adx when a < 0.

(1.6)

For x ∈ B
(

3R x0

|x0| , R
)

we must have |x| ≥ 2R. Thus both integrals in the inequality (1.6)

are at least a multiple of Rn+a. This establishes the doubling condition (1.5) for the balls

in T2. This completes the proof.

Definition 5. Let (X, µ) be a metric measure space. The Hardy-Littlewood Maximal func-

tion of a locally integrable function f on X is defined by

M(f)(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dµ(y).

4



Theorem 6. let µ be a Lebesgue measure in Rn. If f ∈ L1(Rn, µ) and is not identically 0,

then Mf /∈ L1(Rn, µ).

This is true in any Euclidean space Rn. But it is not true in arbitrary metric spaces.

We can see this by the following example:

Example 7. Let X = [0, 1] and let µ be a Lebesgue measure on X. Then Mf ∈ L1
loc(X, µ)

for any f ∈ L1
loc(X, µ).

The integrability of Mf in the above remark fails at infinity, and does not exclude local

integrability. However, the following example shows that even local integrability can fail.

Example 8. Let

f(x) =

{
1

x(log x)2
, if 0 < x ≤ 1/2;

0, otherwise

The local integrability of Mf fails for this function.

The following theorem provides a partial converse of the Theorem 6 that characterizes

when Mf is locally integrable.

Theorem 9. ([19]) If f is an integrable function supported on a compact set B, then

Mf ∈ L1(B) if and only if f log+ f ∈ L1(B).

In a metric measure space (X, d, µ) with µ (X) < ∞ we can find an integrable function

such that its maximal function is also integrable. For example, any constant function defined

on X has this property. It is remarkable to find such a function when µ (X) =∞. Consider

the following example:

Example 10. Let dµ(x) = e|x|dx, f(x) = χ(−1,1)(x), x ∈ R.

Clearly, µ (R) = ∞ and f ∈ L1(µ). Let x /∈ (−1, 1). We may take x > 1 and let

B = B(x,R) be a ball with center at x and radius R. For x−R ≥ 0,

µ(B) =

∫ x+R

x−R
e|y|dy =

∫ x+R

x−R
eydy = ex+R − ex−R.

5



For x−R < 0,

µ(B) =

∫ x+R

x−R
e|y|dy =

∫ 0

x−R
e−ydy +

∫ x+R

o

eydye = eR−x + eR+x − 2.

Next we compute
∫
B
χ(−1,1)(y)e|y|dy. For x−R ≥ 0,

∫
B

χ(−1,1)(y)e|y|dy =

∫ 1

x−R
eydy = e− ex−R.

For x−R < 0, ∫
B

χ(−1,1)(y)e|y|dy =

∫ 0

x−R
e−ydy +

∫ 1

0

eydy = eR−x + e− 2.

Let

g(R) =
1

µ(B)

∫
B

χ(−1,1)(y)e|y|dy.

Note that Mf(x) = supR>0 g(R). We also note that x − 1 ≤ R ≤ x + 1. So, Mf(x) =

maxx−1≤R≤x+1 g(R). From the above computation, we see that

g(R) =


e− ex−R

ex+R − ex−R
if x−R ≥ 0,

eR−x + e− 2

eR−x + eR+x − 2
if x−R < 0.

Note that e−ex−R, ex+R−ex−R, eR−x+e−2, and eR−x+eR+x−2 are all increasing functions

of R. Because of the inequality x− 1 ≤ R ≤ x+ 1,

e− ex−R ≤ e− ex−(x+1) = e− e−1,

ex+R − ex−R ≥ e2x−1 − e,

eR−x + e− 2 ≤ 2e− 2, and

eR−x + eR+x − 2 ≥ e2x−1 − 2 + e−1.

Thus

g(R) =
e− ex−R

ex+R − ex−R
≤ 1− e−2

e2x − 1
for x−R ≥ 0,

6



and

g(R) =
eR−x + e− 2

eR−x + eR+x − 2
≤ 2e(e− 1)

e2x − 2e+ 1

for x−R < 0. We also note that

1− e−2 ≤ 2e(e− 1)

and

e2x − 2e+ 1 ≤ e2x − 1.

Therefore, for every R ∈ [x− 1, x+ 1]

g(R) ≤ 2e− 1

e2x − 2e+ 1
≤ 2e(e− 1)

e2x − 5
.

This means that

Mf(x) ≤ 2e(e− 1)

e2x − 5
.

By symmetry ∫
x/∈(−1,1)

Mf(x)dµ(x) ≤ 2

∫ ∞
1

2e− 1

e2x − 5
exdx <∞.

For x ∈ (−1, 1), let B be a ball with center at x ∈ (−1, 1). Then,

1

µ(B)

∫
B

χ(−1,1)dµ(x) =
µ (B

⋂
(−1, 1))

µ(B)
≤ 1.

Therefore, we conclude that Mf ∈ L1(µ).

1.3 Covering and Interpolation Theorems

Dyadic Cubes in Rn:

Definition 11. (Dyadic Cubes in Rn) The unit cube in Rn, open on the right, is defined to

be [0, 1)n. Let Q0 be the collection of cubes in Rn which are congruent to [0, 1)n and whose

7



vertices lie in Zn. Let Qk = {2−kQ : Q ∈ Q0}, k ∈ Z. That is, Qk is the family of cubes,

open on the right, whose vertices are adjacent points of the lattice
(
2−kZ

)n
. The cubes in

Q := ∪kQk are called the dyadic cubes.

We get the following properties of the dyadic cubes from this construction:

(a) For every x ∈ Rn there exists a unique cube in Qk which contains it;

(b) Any two dyadic cubes are either disjoint or one is wholly contained in the other;

(c) A dyadic cube in Qk is contained in a unique cube of each family Qj, j < k, and contains

2n dyadic cubes of Qk+1.

The covering lemmas provide the standard approach to prove that the Hardy-Littlewood

maximal function in Rn is weak type (1,1). We state here very useful covering lemmas due to

Whitney, N. Weiner, A. Besicovitch and A. P. Morse. Note that for any ball B = B(x, r), t >

0 we mean by tB the ball concentric to B with radius tr. That is, tB = B(x, tr).

An arbitrary open set in Rn can be decomposed as a union of disjoint cubes whose

lengths are proportional to their distance from the boundary of the open set. For a given

Q in Rn, we will denote by `(Q) its length and by diam(Q) its diameter.

Whitney Decomposition:

Theorem 12. (Whitney Decomposition) Let Ω be an open nonempty proper open subset of

Rn. Then there exists a family of dyadic cubes {Qj}j such that

(a) Ω =
⋃
j Qj where Qj’s have disjoint interiors.

(b) diam(Qj) ≤ dist(Qj,Ω
c) ≤ 4diam(Qj), for every j. That is,

√
n`(Q) ≤ dist(Qj,Ω

c) ≤ 4
√
n`(Q).

(c) If the boundaries of two cubes Qj and Qk touch, then

1

4
≤ `(Qj)

`(Qk)
≤ 4.

8



(d) For a given Qj, there exists at most 12n Qk’s that touch it.

The family of dyadic cubes {Qj}j as in the above theorem is known as a Whitney Decom-

position of Ω. ([25])

Remark 13. Let F = {Qj}j be a Whitney decomposition of a proper open subset Ω of

Rn. Fix 0 < ε < 1
4

and denote by Q∗k the cube with the same center as Qk but with side

length (1 + ε) times that of Qk.Then Qk and Qj touch if and only if Q∗k and Qj intersect.

Consequently, every point of Ω is contained in at most 12n cubes Q∗k. That is ,∑
k

χ(1+ε)Q(x) ≤ 12nχΩ(x)

([25])

Theorem 14. (Vitali Covering Lemma:)([20]) Let {Bj}j∈τ be a collection of balls in Rn.

Then there exists an at most countable sub-collection of disjoint balls {Bk} such that⋃
j∈τ

Bj ⊆
⋃
k

5Bk.

The next covering theorem is due independently to A. Besicovitch and A.P. Morse.

Besicovitch Covering Lemma:

Theorem 15. (Besicovitch Covering Lemma:)([20]) Let A be a bounded set in Rn, and

suppose that {Bx}x∈A is a collection of balls such that Bx = B(x, rx), rx > 0. Then there

exists an at most countable sub-collection of balls {Bj} and a constant Cn, depending only

on the dimension, such that

A ⊂
⋃
j

Bj and
∑
j

χBj(x) ≤ Cn.

The following theorem is a version of classical Besicovitch Covering Therem.

Theorem 16. ([30]) Let A be a bounded set in a metric space X and F be a collection of

balls centered at points of A. Then, there is a sub-collection G ⊂ F such that

A ⊂
⋃
B∈G

B

9



and that
1

5
G =

{
1

5
B : B ∈ G

}
is a disjointed family of balls. Moreover, if X carries a doubling measure, then G is countable,

and if X = Rn, then one can choose G such that∑
j

χB(x) ≤ C(n) <∞

for some dimensional constant C(n), where χE denotes the characteristic function of a set

E.

Next we state interpolation theorems. They are useful tools in proving the Lp bounded-

ness of maximal functions for 1 < p ≤ ∞.

Interpolation:

Theorem 17. (Riesz-Thorin Interpolation, [19]). Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and for 0 <

θ < 1 define p and q by

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

If T is a linear operator from Lp0 + Lp1 to Lq0 + Lq1 such that

‖Tf‖q0 ≤M0‖f‖p0 for f ∈ Lp0

and

‖Tf‖q1 ≤M1‖f‖p1 for f ∈ Lp1 ,

then

‖Tf‖q ≤M1−θ
0 M θ

1‖f‖p for f ∈ Lp.

Definition 18. Let (X, µ) be a measure space and let f : X −→ C be a measurable function.

We call the function af : (0,∞) −→ [0,∞], given by

af (λ) = µ ({x ∈ X : f(x) > λ}) ,

the distribution function of f associated with µ.

10



Note that the weak inequalities measure the size of the distribution function. The following

interpolation theorem which is due to Marcinkiewicz helps to deduce Lp boundedness from

weak inequalities. It applies to larger class of operators than linear ones. Note that maximal

functions are not linear but sublinear.

Definition 19. An operator T from a vector space of measurable functions to measurable

functions is sublinear if for every pair of measurable functions f and g and for every λ ∈ C

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|,

|T (λf)| = |λ||Tf |.

Theorem 20. (Marcinkiewicz Interpolation, [19]) Let (X, µ) and (Y, ν) be measure spaces,

1 ≤ p0 < p1 ≤ ∞ and let T be a sublinear operator from Lp0(X, µ) + Lp1(X, µ) to the

measurable functions on Y that is weak (p0, p0) and weak (p1, p1). Then T is strong (p, p)

for p0 < p < p1.

Definition 21. (Central and noncentral maximal function:) Let µ be a non-negative Borel

measure in Rn, n ≥ 1. If f ∈ L1
loc(µ), we define the maximal function

Mµf(x) = sup
B3x

1

µ(B)

∫
B

|f |(y)dµ(y)

where supremum is taken over all balls B containing x. Here B may be assumed open, closed,

or containing any µ-measurable part of its boundary. In this definition, x is not necessarily

at the center of the ball B. This is called noncentral maximal function of f . The maximal

function defined above is called a central maximal function if the supremum is taken over

only to the balls with center at x. It is denoted by M c
µ.

A natural question to ask is: For which µ is M c
µ a bounded operator on Lp(Rn, dµ)? It

follows from the Besicovitch Covering lemma and Marcinkiewicz interpolation theorem that

M c
µ is Lp bounded where 1 < p ≤ ∞.

Theorem 22. ([21], [22], [18]) Let µ be a nonnegative Borel measure in Rn, n ≥ 1. Then

11



(a) M c
µ is weak type (1, 1). That is

µ
(
{x ∈ Rn : M c

µf(x) > λ}
)
≤ C

λ
‖f‖L1(µ) ∀λ > 0.

(b) M c
µ is strong type (p, p) for 1 < p ≤ ∞.

Proof. (a) Let f ∈ Lloc(Rn) and λ > 0 be arbitrarily chosen, and let

Eλ = {x ∈ Rn : Mf(x) > λ}.

Let K be a bounded measurable set of Rn. For every x ∈ Eλ
⋂
K there exists an open

ball Bx = B(x, rx) centered at x and radius rx such that

1

µ(Bx)

∫
Bx

|f(y)|dµ(y) > λ.

Then the collection {Bx}x∈Eλ⋂K is an open covering of the set Eλ
⋂
K. Using the

Besicovitch Covering Lemma, there exists a sub-collection {Bj}∞j=1 of {Bx}x∈Eλ⋂K , and

a constant Cn, depending only on the dimension n, such that

Eλ
⋂

K ⊆
⋃
j

Bj and
∑
j

χBj(x) ≤ Cn.

Hence,

µ
(
Eλ
⋂

K
)
≤µ

(⋃
j

Bj

)
≤
∑
j

µ(Bj) ≤

≤1

λ

∑
j

∫
Bj

|f(y)|dµ(y) ≤

≤1

λ

∑
j

∫
Rn
χBj(y)|f(y)|dµ(y)

∑
j

χBj

=
1

λ

∫
Rn

∑
j

χBj(y)‖f(y)|dµ(y) ≤

≤Cn
λ
‖f‖L1(µ).

Since this estimate is independent of K, we obtain

µ(Eλ) ≤
C

λ
|f‖L1(µ)

for every λ > 0.

12



(b) It is clear that

|M c
µf | ≤ ‖f‖L∞(µ)

for every f ∈ L∞(µ). This implies that

‖M c
µf‖L∞(µ) ≤ ‖f‖L∞(µ).

Thus the centered Hardy-Littlewood maximal operator M c
µ is both weak type (1, 1)

and strong type (∞,∞). Therefore, by the Marcinkiewicz interpolation theorem, it

follows that the centered Hardy-Littlewood maximal operator M c
µ is strong type (p, p)

for 1 < p ≤ ∞.

Remark 23. The above theorem is not necessarily true for noncentral maximal function

Mµ.The following theorem reveals this fact:

Theorem 24. ([41])Let µ be a nonnegative Borel measure in Rn, n ≥ 1.

(a) For n = 1,Mµ is weak type (1, 1) and strong type (p, p) for 1 < p ≤ ∞.

(b) For n = 2, there is a measure µ for which Mµ doesn’t map L1(µ) into weak L1(µ). The

situation is the same if the balls in the definition of Mµ are replaced by squares parallel

to the axes.

Proof. (a) Without loss of generality, we may assume that 0 ≤ f ∈ L1(µ) and let λ > 0.

Let Eλ = {x : Mµf(x) > λ}. Then for every x ∈ Eλ there exists an interval Ix 3 x such

that

0 < µ(Ix) <
1

λ

∫
Ix

f(y)dµ(y).

Let F be the set of these intervals. Clearly µ(I) < 1
λ

∫
I
f(y)dµ(y) for every I ∈ F .

That is µ(I) is bounded for every I ∈ F . Next we extract a family of disjoint intervals

from F in the following way: Having chosen I1, . . . , Ij−1, j ≥ 1 let Ij be an interval in

F disjoint from I1, . . . , Ij−1, if any, such that

2µ(Ij) > sup{µ(I) : I ∈ F , I disjoint from I1, . . . , Ij−1}.
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The disjoint condition is void for j = 1. This selection either stops at some j or gives

an infinite sequence. Note that the collection {I1, I2, I3, . . . , Ij, . . .} doesn’t necessarily

cover Eλ. Then

∑
j

µ(Ij) ≤
1

λ

∑
j

∫
Ij

f(y)dµ(y) ≤ 1

λ

∫
Rn
f(y)dµ(y) <∞. (1.7)

So µ(Ij) −→ 0 as n → ∞ in the case when there are infinitely many disjoint intervals

Ij’s. Now we enlarge each Ij. Let aj and bj denote the left and right end points of Ij

respectively. Define,

a∗j = inf{x : x ≤ aj and µ((x, aj]) < 2µ(Ij)}

and

b∗j = sup{y : y ≥ bj and µ([bj, y)) < 2µ(Ij)}

and let I∗j = (a∗j , b
∗
j). Then I∗j ⊃ Ij and µ(I∗j ) ≤ 5µ(Ij). Let I ∈ F and I 6= Ij for

every j. Then I must intersect some Ij. If Ij is the first one which intersects I then

µ(I) < 2µ(Ij) because of the selection process of Ij’s. But then I ⊂ I∗j , and therefore

Eλ ⊂
⋃
j I
∗
j . this implies that

µ(Eλ) ≤ 5
∑
j

µ(Ij) ≤ 5
1

λ

∫
Rn
f(y)dµ(y).

Clearly ‖Mµf‖L∞(µ) ≤ ‖f‖L∞(µ). Therefore, part (a) follows from Marcinkiewicz inter-

polation theorem.

(b) (Two-dimensional counter example:) Consider the standard Gaussian measure µ where

dµ(x, y) = e−(x2+y2)/2dxdy. Let the maximal function Mµ be defined with disks. Then

Mµ is not weak (1, 1).( See [41], [5])

Proof. Here we take as µ the standard Gaussian measure dµ(x, y) = e−(x2+y2)/2dxdy. Con-

sider that the non-centered maximal functions Mµ are defined with disks. By a simple

limiting argument, a weak type (1, 1) estimate for Mµ would imply a weak L1 estimate
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for the maximal function Mµλ of a finite measure λ, which it is enough to disprove. Let

us take λ as a unit mass at (0, a + 1), a > 0 large. Consider a unit disk Bs centered at

(s, a+ 1), |s| < 1. Observe that

(x− s)2 + [y − (a+ 1)]2 = 1

implies that

y > a+
(x− s)2

2
.

So, the ball Bs ⊆ {(x, y) : y > a+ (x−s)2
2
}. Using also the fact that∫ ∞

x

e−t
2/2dt ∼ 1

x
e−x

2/2 (1.8)

for large x, we obtain

µ(Bs) ≤
∫ 1

−1

dx

∫ ∞
a+x2/2

e−y
2/2dy ≤ C

a

∫ 1

−1

e−(a+x2/2)2/2dx

≤ C

a
e−a

2/2

∫ 1

−1

e−ax
2/2dx ≤ C

a
√
a
e−a

2/2.

Here the constant C denote various positive constants. Hence, Mµλ ≥ Ca
√
aea

2/2 in the set

{(x, y) : |x| < 1, a < y < a+ 2}. This set has µ-measure at least Ca−1e−a
2/2 because of the

relation (1.8). As a→∞, this disproves the weak (1, 1) estimate.

Remark 25. If µ satisfies the doubling condition, then Mµ is always of weak type (1, 1).

The following theorem reveals this fact:

Theorem 26. Let µ be nonnegative Borel measure in Rn satisfying the doubling condition

1.1. Then the noncentral maximal function Mµ satisfies the weak (1, 1) inequality.

Proof. Let Eλ = {x ∈ Rn : Mµf(x) > λ}, λ > 0. Then for every x ∈ Eλ there exists a ball

Bx containing x such that

µ(Bx) <
1

λ

∫
Bx

|f |(y)dµ(y).
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Let F be the collection of such balls Bx’s. Then by the Vitali-type covering lemma due to

N. Wiener (Theorem 14), there exists an at most countable sub-collection of disjoint balls

{Bk} such that

Eλ ⊆
⋃
B∈F

B ⊆
⋃
k

5Bk.

Then

µ(Eλ) ≤
∑
k

µ(5Bk) <
C

λ

∑
k

∫
Bk

|f |(y)dµ(y) =
C

λ

∫
⋃
k Bk

|f |(y)dµ(y) ≤ C

λ
‖f‖L1(µ).

We saw that, for n = 1, Mµ always maps L1(dµ) into L1,∞(dµ), no matter what µ is. In

Rn, and if µ is a doubling measure, then Mµ is of weak type (1, 1). For n = 2, we saw that

the maximal operator associated with the measure dµ(x) = e−|x|
2/2dx does not have the

same boundedness property. So, there are two questions that arise from these observations:

(1) Is there any non-doubling measure µ in Rn, n > 1, such that Mµ is weak (1, 1) ?

(2) How can we know whether or not a measure µ provides a weak type (1, 1) operator ?

For certain kinds of measures, a weaker hypothesis than doubling implies that Mµ is

weak (1, 1). The following theorem characterizes the measures µ for which Mµ is bounded

from L1(dµ) to L1,∞(dµ). This answers the second question.

Theorem 27. ([53]) Let µ be a rotation invariant and strictly increasing measure on Rn

which is finite on compact sets. The following assertions are equivalent:

(a) Mµ : L1(dµ)→ L1,∞(dµ) is bounded.

(b) There exists a constant C such that for all r ≤ 10a,

µ ({a < |x| < a+ 3r/2}) ≤ Cµ ({a+ r/2 < |x| < a+ 2r}) .
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(c) µ is a doubling measure away from the origin, that is,

µ (B(x0, 2s)) ≤ Cµ (B(x0, s))

for all s ≤ |x0|/4, with C independent of s and x0.

Example 28. dµ(x) = (1 + |x|α)−1 dx is doubling away from the origin. So, Mµ is of weak

type (1, 1). But if α ≥ n, dµ is not a doubling measure. This example provides an affirmative

answer to the first question.

For the case of a measure dµ(x) = g(|x|)dx with g monotonic, (b) has even simpler

statement:

Corollary 29. (A. M. Vargas [53]) Let dµ(x) = g(|x|)dx be a measure in Rn with g mono-

tonic and strictly positive on (0,∞). Then Mµ is of weak type (1, 1) if and only if there are

some constants ck > 0, k ∈ Z and C > 0 such that

ck ≤ g(r) ≤ Cck

for 2k−1 ≤ r ≤ 2k+1.

1.4 Non-doubling Measures

We are interested in measures weaker than doubling measures. In this section, we introduce

non-doubling measures with some examples.

Definition 30. We say that a Borel measure µ on a metric space (X, d) satisfies a growth

condition if there exists a constant C > 0 and N > 0 such that

µ (B(x, r)) ≤ CrN , x ∈ X, r > 0. (1.9)

This inequality is known as a growth condition for µ.

Example 31. The following are some examples of non-doubling measures:
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(i) The Lebesgue measure in Rn.

(ii) The gaussian measure dµ(x) = e−|x|
2
dx in Rn.

(iii) In general, dµ(x) = w(x)dx in Rn with a bounded density w.

(iv) Let Q = [−1, 1]× [−1, 1] ⊂ R2 and I = Q ∩ R. Then dµ = χQ(x, y)dxdy + χI(x)dx is

a non-doubling measure in R2. In fact, if B is the disk centered at (x, y) ∈ Q, y > 0,

of radius y, then µ(B) = πy2 while µ(2B) ≈ y.

Note that some doubling measures are non-doubling as well. For example, the Lebesgue

measure in Rn is doubling and non-doubling as well. But every doubling measure is not

necessarily non-doubling. The following examples reveals this fact:

Example 32. Consider the doubling measure dµ(x) = 2xdx in (R, |.|). Let B be a ball with

center y > 0 and radius r in R. Then

µ(B) =

∫ y+r

y−r
2xdx = 4yr.

Clearly µ(B) ≤ CrN is false for any pair of constants C and N because µ(B) can be made

as large as possible by taking y > 0 sufficiently large.

In this sense, the non-doubling measures are weaker than the doubling measure.
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Chapter 2

Estimates for Riesz Potentials by
Maximal Function

2.1 Introduction

In this chapter we generalize the Hedberg type inequalities to a metric apace (X, d, µ)

endowed with a Radon measure µ satisfying the following growth condition: For every ball

B(x, r) there exists a constant C independent of x and r such that

µ(B(x, r)) ≤ CrN , (2.1)

This allows, in particular, non-doubling measures. Sometimes we shall refer to condition

(2.1) by saying that the measure µ is N -dimensional.

Hedberg inequalities are point-wise estimates of potentials in terms of maximal functions.

In the sequel, we will define modified maximal functions which are bounded operators on

Lp(X, µ) for 1 < p ≤ ∞ and apply these maximal functions to obtain exponential inequalities

involving Riesz potentials. It was V. I. Yudovich [56] in 1961 who first announced these

estimate. N. S. Trudinger [51] in 1967, J. A. Hempel, G. R. Morris and N. S. Trudinger

[34] in 1970, and R.S. Strichartz [44] in 1972 provide generalization and extension of such

inequality. The latest known development with correct limiting exponent is due to L. I.

Hedberg [28] in 1972.
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2.2 Generalization of the Hedberg Inequalities

Definition 33. Let (X, d, µ) be a metric measure space, and let 0 < α < N . The fractional

integral Iα associated to the measure µ satisfying the growth condition (2.1) is defined, for

appropriate function f on X as

Iαf(x) =

∫
X

f(y)

d(x, y)N−α
dµ(y).

This definition makes sense when f is bounded and has bounded support because the

function f 7→ 1

d(x, y)N−α
is locally integrable. This follows from the lemmas that follow the

next definition.

Definition 34. Let (X, d) be a metric space, µ be a Borel measure on X and f be a locally

integrable function on X. The maximal function of f,M(f), is defined by

M(f)(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dµ(y).

The fractional maximal function of f is defined for 0 < α < N by

Mα(f)(x) = sup
r>0

1

µ(B(x, r))
N−α
N

∫
B(x,r)

|f(y)|dµ(y).

Theorem 35. In an Euclidean space Rn there exists a constant C such that

Mα(f) ≤ CIα(f)

for all f ≥ 0 where

Iαf(x) =

∫
Rn

f(x− y)dy

|y|n−α
.

Then, Mα maps Lp to Lq whenever Iα does.

Proof. Without loss of generality, we may assume that f ≥ 0. For |y| ≤ t and 0 ≤ α < n it

follows that

1 ≤
(
t

|y|

)n−α
= tn−α|y|α−n.
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Therefore,

1

(νntn)
n−α
n

∫
|y|≤t
|f(x− y)|dy ≤ 1

(νntn)
n−α
n

∫
|y|≤t
|f(x− y)||y|−n+αtn−αdy

=
1

ν
n−α
n

n

Iα(f)(x).

Now taking supremum over all t > 0 yields

Mα(f)(x) ≤ CIα(f)(x)

for every x and for every f ≥ 0. Therefore,

Mα(f) ≤ CIα(f)

for every f ≥ 0. Next, suppose that Iα maps Lp to Lq. This means that

‖Iα(f)‖Lq ≤ C‖f‖Lp f ∈ Lp.

Then for any f ∈ Lp,

‖Mα(f)‖Lp =

(∫
Rn
|Mα(f)(x)|pdx

) 1
p

≤
(∫

Rn
|CIα(f)(x)|pdx

) 1
p

= C‖Iα(f)‖Lp

≤ C̃‖f‖Lq .

Therefore, Mα maps Lp to Lq whenever Iα does.

Now we state the following two classical theorems from Harmonic Analysis:

Theorem 36 (Hardy-Littlewood-Weiner Maximal Theorem). For every 1 < p ≤ ∞

M : Lp(Rn,R) −→ Lp(Rn,R)

is continuous. That is

‖Mf‖Lp(Rn,R) ≤ C‖f‖Lp(Rn,R)

For p = 1 the Hardy-Littlewood maximal operator M is weak type (1,1).
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Theorem 37 ( Hardy-Littlewood-Sobolev Fractional Integral Theorem ). If 1 < p < q <

∞, 1

q
=

1

p
− α

n
and 0 < α < n then

Iα : Lp(Rn,R) −→ Lq(Rn,R)

is continuous. That is, there exists a constant C > 0 such that for every f ∈ Lp(Rn,R)

‖Iαf‖Lq(Rn,R) ≤ C‖f‖Lp(Rn,R).

These two classical theorems stated above are linked by an inequality due to L. R.

Hedberg [28] which states that

|Iαf(x)| ≤ Ap,q(α)[Mf(x)]p/q‖f‖Lp(Rn,R)
1−p/q, x ∈ Rn (2.2)

for every f ∈ Lp(Rn,R) where 1 ≤ p < q < ∞, 1

q
=

1

p
− α

n
and the constant Ap,q(α) is

independent of f . This was first introduced by L. R. Hedberg in 1972. D. R. Adams in 1975

[2] extends the Hedberg inequality for a fractional maximal operator. This is summarized

in the following theorem:

Theorem 38. [2] Let α > 0, 1 < p <
n

α
, α ≤ q ≤ ∞ be such that

1

r
=

1

p
− α

n
+
αp

nq
.

Then there exists a constant C > 0 (depending on the previous parameters) such that for all

positive functions f we have

Iαf(x) ≤ CMn/p(f)(x)
αp
n M0(f)(x)1−αp

n .

This yields

‖Iα(f)‖Lr ≤ C‖Mn/p(f)‖
αp
n
Lq ‖f‖

αp
n
Lp (2.3)

Proof. For f 6= 0, set

Iα(f)(x) =

∫
Rn
f(x− y)|y|−n+αdy

=

∫
Rn
f(y)|x− y|−n+αdy

=: I + II,
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where,

I =

∫
|x−y|≤δ

f(y)

|x− y|n−α
dy,

II =

∫
|x−y|>δ

f(y)

|x− y|n−α
dy

For every k ∈ Z define

ak(x) = {y : 2kδ ≤ |x− y| < 2k+1δ}.

Then,

|I| =

∣∣∣∣∣
∞∑
k=1

∫
a−k(x)

f(y)|x− y|−n+αdy

∣∣∣∣∣
≤

∞∑
k=1

∫
2−kδ≤|x−y|<2−k+1δ

f(y)|x− y|−n+αdy

≤
∞∑
k=1

(2−kδ)−n+α

∫
|x−y|<2−k+1δ

f(y)dy.

≤
∞∑
k=1

(2−kδ)−n+α(2−k+1δ)nM0f(x).

= CδαM0(f)(x),

since 0 < α < n. Similarly,
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|II| ≤

∣∣∣∣∣
∞∑
k=0

∫
ak(x)

f(y)|x− y|−n+αdy

∣∣∣∣∣
=

∞∑
k=0

∫
2kδ≤|x−y|<2k+1δ

f(y)|x− y|−n+αdy

≤
∞∑
k=0

(2kδ)α−n
∫
|x−y|<2k+1δ

|f(y)|dy

=
∞∑
k=0

(2kδ)α−n(2k+1δ)n−
n
p (2k+1δ)−(n−n

p
)

∫
|x−y|<2k+1δ

|f(y)|dy

= 2n−
n
p δα−

n
p

∞∑
k=0

2k(α−n
p

)Mn
p
(f)(x)

≤ Cδα−
n
pMn

p
(f)(x).

Thus,

Iα(f)(x) ≤ C
(
δαM0(f)(x) + δα−

n
pMn

p
(f)(x)

)
.

To minimize this expression, we choose

δ =

[
Mn

p
(f)

M0(f)

] p
n

.

Then we obtain,

Iα(f)(x) ≤ CMn
p
(f)

αp
n M0(f)1−αp

n .

We have
1

r
=

1

p
− α

n
+
αp

nq
,

which yields
rαp

nq
+
r(n− αp)

pn
= 1.

This means that

(
nq

rαp
,

pn

r(n− αp)

)
is a conjugate pair. Using Hölder’s inequality for this

conjugate pair, we get
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‖Iα(f)‖rLr ≤ C

∫
Rn
M

n
p (f)

rαp
n (x)M0(f)r(1−

αp
n

)(x)dx

≤ C‖Mn
p
(f)

rαp
n ‖

L
nq
rαp
‖M0(f)r(1−

αp
n

)‖
L

pn
r(n−αp)

= C‖Mn
p
(f)‖

rαp
n
Lq ‖M0(f)‖r(1−

αp
n

)

Lp .

Therefore,

‖Iα(f)‖Lr ≤ C‖Mn
p
(f)‖

αp
n
Lq ‖M0(f)‖(1−αp

n
)

Lp .

We note that M0 is the classical maximal function M which maps Lp to itself. Hence,

‖Iα(f)‖Lr ≤ C̃‖Mn
p
(f)‖

αp
n
Lq ‖f‖

(1−αp
n

)

Lp .

Note that since Mn/pf ≤ C(Mn|f |p)1/p the inequality (2.3) becomes the familiar Sobolev

inequality when q = ∞. M. Martin and P. Szeptycky in 1997 [32] give a generalization of

the Hedberg inequality. We summarize this in the following theorem. Let k : Rn −→ R

be defined by k(tx) = t−κnk(x), x ∈ Rn \ {0}, 0 < κ < 1 and t ∈ (0,∞). The convolution

operator T associated with k is defined as

Tf(x) = k ∗ f(x) =

∫
Rn
k(y)f(x− y)dy, x ∈ Rn.

The maximal function associated to k is defined as

Mf(x) = sup
t>0

1

vol(tX)

∫
tX

|f(x− y)|dy, x ∈ Rn

where

X ={x ∈ Rn \ {0} : |k(x)| ≥ 1}
⋃
{0}

tX ={tx : x ∈ X}, t ∈ (0,∞).

It is assumed that vol.(tX) 6= 0. We observe that T and M become the classical Riesz

potential Iα and the classical maximal function M respectively by taking k(x) = |x|α−n

where 0 < α < n. The following theorem is the generalization of the Hedberg inequality:
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Theorem 39. [32] Suppose that 1 ≤ p < (1− κ)−1. Then

|Tf(x)| ≤ A (Mf(x))1−(1−κ)p ‖f‖(1−κ)p
p , (2.4)

for every f ∈ Lp(Rn) and almost all x ∈ Rn, with

A = A(k, p) =
1

1− κ

[
κp

1− (1− κ)p
vol(X)

]κ
. (2.5)

Moreover the inequality (2.4) is sharp.

Note that the Hedberg inequality (2.2) follows from (2.4) by taking q−1 = p−1− (1− κ).

The best value of Ap.q in (2.2) follows from (2.5) which is

Ap,q =
q

q − p

[
pq − q + p

p
vol.(Bn)

]1−p−1+q−1

. (2.6)

Theorem 39 thus provides an improvement and generalization of the Hedberg inequality

(2.2). The improvement amounts to determining the best value of the constant Ap,q(α),

and the generalization is achieved by replacing the kernel function kα with a broader class

of homogeneous kernels, and providing the sharp form of the inequalities derived for these

kernels. M. Martin and P. Szeptycki [33] in 2004 completely characterize the kernel function

on Rn with the property that the associated convolution operators are controlled by certain

maximal operators, in a way similar to Hedberg’s inequality (2.2). Let X and Y be two

metric measure spaces equipped with positive Borel measure. Let K : X× Y −→ [−∞,∞]

be a measurable function on X × Y. Let TK denote the integral operator associated to K

given by

TKf(x) =

∫
Y
K(x, y)f(y)dy, x ∈ X

and defined for measurable function f : Y −→ R such that the integral above exists for

almost all x ∈ X. Let

Σ = {(x, y) ∈ X× Y : |K(x, y)| =∞}

and assume that Σ has measure 0 with respect to the product measure on the product

measure space X × Y. Now for x ∈ X and 0 < t < ∞ define the set Ω[x, t] = {y ∈ Y :
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|K(x, y)| ≥ t} and let ω : (0,∞) :−→ [0,∞] be the function defined by ω(x, t) = measure

Ω[x, t]. That is ω(x, .) : (0,∞) −→ [0,∞] is the distribution function corresponding to the

measurable function K(x, .) : Y −→ R. We always assume that ω(x, t) < ∞. For every

measurable function f : Y −→ R we associate its maximal function mK on X by setting

mK(x) = sup
t>0

1

ω(x, t)

∫
Ω[x,t]

|f(y)dy, x ∈ X.

We set
1

ω(x, t)

∫
Ω[x,t]
|f(y)|dy = 0 if Ω[x, t] = 0. Now we state the theorem due to M. Martin

and P. Szeptycki [33] which provides Hedberg’s inequality in its most general form.

Theorem 40. [33] Suppose 1 < κ <∞. The following two statements are equivalent:

(i) If 1 ≤ p < ∞ and q−1 = p−1 − 1 + κ−1, then for every x ∈ X there exists a positive

constant Ap,q(K, x) such that

|TKf(x)| ≤ Ap,q(K, x)[mKf(x)]p/q‖f‖
1−

1

q
p , (2.7)

for every f ∈ Lp(Y,R).

(ii) There exists a measurable function λ :−→ [0,∞] such that

ωK(x, t) ≤ λ(x)t−κ, x ∈ X, 0 < t <∞. (2.8)

Whenever (i) or (ii) is true, and λ(x) in (2.8) is defined as

λ(x) = sup
t>0

tκω(x, t), x ∈ X, (2.9)

a possible value of Ap,q(K, x) in (2.7) is given by

Ap,q(K, x) =
q

q − p

[
pq − q + p

p
.λ(x)

]1−p−1+q−1

. (2.10)

Moreover, at points x ∈ X where (2.8) is an equality for all t ∈ (0,∞), the value of Ap,q(K, x)

in (2.10) is the best constant in inequality (2.7).
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The above discussion is a short description of the improvement and generalization of Hed-

berg’s inequality. Next follows the generalization of the Hedberg type inequalities presented

in Chapter 3 of [4] to a metric measure space endowed with a Radon measure satisfying the

growth condition (2.1). For this we start with the following two useful lemmas.

Lemma 41. For every γ > 0 ∫
B(x,r)

1

d(x, y)N−γ
dµ(y) ≤ Crγ,

where C is a constant.

Proof. Suppose N ≤ γ. Then d(x, y) ≤ r implies that
1

d(x, y)N−γ
≤ rγ−N . Using the

condition (2.1) we obtain∫
B(x,r)

1

d(x, y)N−γ
dµ(y) ≤ rγ−NCrN = Crγ.

Next suppose that γ < N and let

Bk(x) = {y : 2−k−1r ≤ d(x, y) < 2−kr}, k = 1, 2, 3, . . .

Then B(x, r) =
⋃∞
k=0Bk(x) a disjoint union. Also note that Bk ⊂ B(x, 2−kr) for every

k = 0, 1, 2 . . . Now using these remarks and the condition (2.1), we obtain∫
B(x,r)

1

d(x, y)N−γ
dµ(y) =

∞∑
k=0

∫
Bk

1

d(x, y)N−γ
dµ(y)

≤
∞∑
k=0

1

(2−k−1r)N−γ
µ(B(x, 2−kr))

≤
∞∑
k=0

2(k+1)(N−γ)

rN−γ
C(2−kr)N

=C

(
2N

2γ − 1

)
rγ = Crγ

We also have
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Lemma 42. For every γ > 0∫
X\B(x,r)

1

d(x, y)N+γ
dµ(y) ≤ Cr−γ,

where C is a constant.

Proof. Let Bk(x) = {y : 2kr ≤ d(x, y) < 2k+1r}, k = 0, 1, 2, . . . . Then B(x, r) =
⋃∞
k=0 Bk(x).

Then ∫
X\B(x,r)

1

d(x, y)N+γ
dµ(y) =

∞∑
k=0

∫
Bk(x)

1

d(x, y)N+γ
dµ(y)

≤
∞∑
k=0

µ
(
B(x, 2k+1r)

)
(2kr)N+γ

≤C
∞∑
k=0

(2k+1r)N

(2kr)N+γ

=C
∞∑
k=0

2−γkr−γ = Cr−γ

Lemma 43. Let µ be a measure on a metric space (X, d) which satisfies the growth condition

(2.1) and let f be a function on X which is either a nonnegative measurable function or

f ∈ L1
loc(X). Let 0 < α < N . Then,

(a)
∫
d(x,y)<δ

f(y)

d(x, y)N−α
dµ(y) = (N−α)

∫ δ
0

(∫
B(x,r)

f(y)dµ(y)
) 1

rN−α+1
dr+

1

δN−α
∫
B(x,δ)

f(y)dµ(y).

(b)
∫
d(x,y)<δ

log
1

d(x, y)
f(y)dµ(y) =

∫ δ
0

(∫
B(x,r)

f(y)dµ(y)
) dr
r

+
(∫

B(x,δ)
f(y)dµ(y)

)
log(

1

δ
)

(c)
∫
d(x,y)≥δ

f(y)

d(x, y)N−α
dµ(y) = (N−α)

∫∞
δ

(∫
B(x,r)

f(y)dµ(y)
) 1

rN−α+1
dr− 1

δN−α
∫
B(x,δ)

f(y)dµ(y).
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Proof. (a) Using Fubini, we get

(N − α)

∫ δ

0

(∫
B(x,r)

f(y)dµ(y)

)
1

rN−α+1
dr

= (N − α)

∫
B(x,δ)

f(y)

(∫ δ

d(x,y)

dr

rN−α+1

)
dµ(y)

=

∫
B(x,δ)

f(y)

(
1

d(x, y)N−α
− 1

δN−α

)
dµ(y)

=

∫
B(x,δ)

f(y)dµ(y)

d(x, y)N−α
− 1

δN−α

∫
B(x,δ)

f(y)dµ(y)

(b) Using Fubini, we get∫ δ

0

(∫
B(x,r)

f(y)dµ(y)

)
dr

r

=

∫
B(x,δ)

(∫ δ

d(x,y)

dr

r

)
f(y)dµ(y)

=

∫
B(x,δ)

(
log

1

d(x, y)
− log

1

δ

)
f(y)dµ(y)

=

∫
B(x,δ)

log
1

d(x, y)
f(y)dµ(y)− log

1

δ

∫
B(x,δ)

f(y)dµ(y).

(c) Using Fubini, we get

(N − α)

∫ ∞
δ

(∫
B(x,r)

f(y)dµ(y)

)
1

rN−α+1
dr

=(N − α)

∫
B(x,δ)

(∫ δ

0

dr

rN−α+1

)
f(y)dµ(y) + (N − α)

∫
B(x,δ)c

(∫ ∞
d(x,y)

dr

rN−α+1

)
f(y)dµ(y)

=(N − α)

∫
B(x,δ)

[
− 1

N − α
.

1

rN−α

]∞
δ

f(y)dµ(y) + (N − α)

∫
B(x,δ)c

[
− 1

N − α
.

1

rN−α

]∞
d(x,y)

f(y)dµ(y)

=

∫
B(x,δ)

1

δN−α
f(y)dµ(y) +

∫
B(x,δ)c

f(y)dµ(y)

d(x, y)N−α
.

Proposition 44. Let µ be a measure on a metric space (X, d) which satisfies the growth

condition (2.1). For 0 < α < N, 1 ≤ p < ∞, there exists a constant A = A(α, p,N) such

that for any measurable function f ≥ 0 and x ∈ X

(a) Iαf(x) ≤ A‖f‖αp/np Mf(x)1−αp
N 1 ≤ p <

N

α
.
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(b) Iαθf(x) ≤ A (Iαf(x))θMf(x)1−θ 0 < θ < 1.

(c) Iαθf(x) ≤ AMαf(x)θMf(x)1−θ 0 < θ < 1.

Proof. (a) We claim that

(1)
∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α
≤ AδαMf(x).

(2)
∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α
≤ Aδα−N/p‖f‖Lp .

Proof of (1). Using the part (a) of Lemma 43, we obtain∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α
=(N − α)

∫ δ

0

(∫
B(x,r)

f(y)dµ(y)

)
1

rN−α+1
dr +

1

δN−α

∫
B(x,δ)

f(y)dµ(y)

≤(N − α)Mf(x)

∫ δ

0

µ(B(x, r))

rN−α+1
dr +

1

δN−α
Mf(x)µ(B(x, δ))

≤(N − α)Mf(x)

∫ δ

0

crN

rN−α+1
+

1

δN−α
Mf(x)CδN

=(N − α)Mf(x)

∫ δ

0

rα−1dr + CδαMf(x)

=C(
N − α
α

)Mf(x)δα + CδαMf(x)

=CMf(x)δα
(
N − α
α

+ 1

)
=AδαMf(x).

Proof of (2). We observe that (N − α)
p

p− 1
= N +

(
N

p
− α

)
p

p− 1
. Now, using Hölder’s

inequality and Lemma 42, we obtain∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α

≤‖f‖p

(∫
d(x,y)≥δ

dµ(y)

d(x, y)(N−α) p
p−1

) p−1
p

≤‖f‖p

(∫
d(x,y)≥δ

dµ(y)

d(x, y)N+(N
p
−α) p

p−1

) p−1
p

=‖f‖pCδ−(N
p
−α)

=Aδα−N/p‖f‖p.
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Now, using the claims (1) and (2) we obtain

Iαf(x) =

∫
X

f(y) dµ(y)

d(x, y)N−α

=

∫
d(x,y)<δ

f(y) dµ(y)

d(x, y)N−α
+

∫
d(x,y)≥δ

f(y) dµ(y)

d(x, y)N−α

≤ AδαM(f)(x) + Aδα−N/p‖f‖p.

Then by taking δ = δ(x) =

(
‖f‖p
Mf(x)

)p/N
we obtain,

Iαf(x) ≤ A

(
‖f‖p

M(f)(x)

)αp/N
+ A

(
‖f‖p

M(f)(x)

) p

N
(α−

N

p
)

‖f‖p

=A‖f‖αp/Np M(f)(x)1−αp/N + A‖f‖αp/Np M(f)(x)1−αp/N

=C‖f‖αp/Np M(f)(x)1−αp/N

Proof of (b):

Note that 0 < αθ < N for 0 < α < N and 0 < θ < 1. So we can replace α by αθ in claim

(1) of part (a) in Proposition 44 and get∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−αθ
≤ AδαθM(f)(x). (2.11)

Note that

N − αθ = (N − α) + (α− αθ).

So, d(x, y) ≥ δ implies that(
1

d(x, y)

)α−αθ
≤
(

1

δ

)α−αθ
= δαθ−α. (2.12)

Now, using the inequalities (2.11) and (2.12), we obtain

Iαθf(x) =

∫
X

f(y)dµ(y)

d(x, y)N−αθ

=

∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−αθ
+

∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−αθ

≤ δαθ−α
∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α
+

∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−αθ

≤ A
(
δαθ−αIαf(x) + δαθMf(x)

)
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Now we choose δ =

(
Iαf(x)

Mf(x)

)1/α

and obtain,

Iαθf(x) =

∫
X

f(y) dµ(y)

d(x, y)n−αθ

= A

(
Iαf(x)

M(f)(x)

)θ−1

Iαf(x) + A

(
Iαf(x)

M(f)(x)

)θ
Mα(f)(x)

≤ A (Iαf(x))θM(f)(x)1−θ

Proof of (c): We claim that∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−αθ
≤ Aδαθ−αMαf(x).

Proof of the Claim:∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−αθ

=

∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)(N−α)+(α−αθ)

≤ δαθ−αδα−N
∫
d(x,y)≥δ

f(y)dµ(y)

= δαθ−αδα−Nµ(B(x, δ))
N−α
N

1

µ(B(x, δ))
N−α
N

∫
d(x,y)≥δ

f(y)dµ(y)

≤ Aδαθ−αMα(f)(x).

We also have, ∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−αθ
≤ AδαθM(f)(x).

Now taking

δ =

(
Mα(f)(x)

M(f)(x)

)1/α

we obtain the desired inequality.
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2.3 Modified Centered Maximal Function

Definition 45. Set (X, d) be a metric space endowed with a Radon measure µ such that

µ(B) > 0 for all ball B with positive radius. Such balls are called non-degenerate. We

define the k times modified centered Hardy-Littlewood maximal operator as follows:

Mkf(x) = sup
r>0

1

µ (B(x, kr))

∫
B(x,r)

|f(y)|dµ(y).

Lemma 46. Let µ be a Radon measure which satisfies the growth condition (2.1).Then for

any measurable function f on X∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α
≤ AδαMkf(x).

Proof. Without loss of generality, we may assume that f ≥ 0. By part (a) of lemma 43,∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α

= (N − α)

∫ δ

0

(∫
B(x,r)

f(y)dµ(y)

)
1

rN−α+1
dr +

1

δN−α

∫
B(x,δ)

f(y)dµ(y).

= (N − α)

∫ δ

0

µ (B(x, kr))Mkf(x).
1

rN−α+1
dr +

1

δN−α
µ (B(x, kδ))Mkf(x).

≤ (N − α)CkNMkf(x)

∫ δ

o

rN
1

N − α + 1
dr +

1

δN−α
CkNδNMkf(x).

= CkNδαMkf(x)

(
N − α
α

+ 1

)
.

= AδαMkf(x).

Lemma 47. Let µ be a Radon measure which satisfies the growth condition (2.1).Then∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α
≤ Aδα−N/p‖f‖Lp(X,µ).
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Proof. Note that (N − α)
p

p− 1
= N +

(
N

p
− α

)
.
p

p− 1
. Using the Hölder’s inequality and

Lemma 41, we get

∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α
≤ ‖f‖Lp(X,µ)

(∫
d(x,y)≥δ

dµ(y)

d(x, y)(N−α)( p
p−1

)

) p−1
p

≤ ‖f‖Lp(X,µ)

(∫
d(x,y)≥δ

dµ(y)

d(x, y)N+(N/p−α) p
p−1

) p−1
p

.

≤ ‖f‖Lp(X,µ)Cδ
−(N

p
−α)

= Aδα−N/p‖f‖Lp(X,µ).

Proposition 48. For 0 < α < N, 1 ≤ p <∞, there exists a constant A = A(α, p,N) such

that for any measurable function f ≥ 0 and x ∈ X

Iαf(x) ≤ A‖f‖αp/Np Mkf(x)1−αp/N

where 1 ≤ p <
N

α
.

Proof. The proof follows from the above two lemmas and by taking δ = δ(x) =

(
‖f‖p

Mkf(x)

)p/N
.

Lemma 49. Let (X, d, µ) be a metric measure space and let W ⊆
⋃N
i=1 B(xi, ri). Then there

exists a set S ⊆ {1, 2, 3, . . . , N} such that

(a) the balls {B(xi, ri) : i ∈ S} are disjoint, and

(b) W ⊆
⋃
i∈S B(xi, 3ri).

Proof. Without loss of generality, we can reorder the balls Bi = B(xi, ri) in such a way that

r1 ≥ r2 ≥ r3 ≥ . . . ≥ rN . Let i1 = 1 and consider the ball B(xi1 , ri1). We discard all Bj that

intersect Bi1 . Let i2 be the smallest index among the remaining balls. That is B(xi2 , ri2) is

the largest ball disjoint from B(xi1 , ri1). Now we discard all Bj with j > i2 that intersect
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Bi2 . Let Bi3 be the first of the remaining balls. We proceed as long as possible. The process

stops after a finite number of steps, say t, and gives S = {i1, i2, . . . , it}. Part (a) follows

from the way the balls have been constructed.

Next we show that part (b) holds. For this let x ∈ W . Then x ∈ B(xj, rj) for some

j ∈ {1, 2, 3, . . . , N}. If x ∈ B(xj, rj) is one of B(xik , rik) for some ik ∈ S then we are done.

Suppose B(xj, rj) 6= B(xik , rik) for every ik ∈ S. Then B(xj, rj) is one of the balls Bj

discarded at some stage. That is

B(xj, rj) ∩B(xik , rik) 6= φ for some ik ∈ S

with rik ≥ rj. Then B(xj, rj) ⊆ B(xik , 3rik). That is x ∈ B(xik , 3rik) for some ik ∈ S. This

proves part (b).

Theorem 50. Let (X, d) be a metric space endowed with a Radon measure µ. Then the

modified 3-times Hardy Littlewood maximal operator M3 defined by

M3f(x) = sup
r>0

1

µ(B(x, 3r))

∫
B(x,r)

|f(y)|dµ(y)

is weak-(1,1). Namely,

µ ({x : M3f(x) > λ}) ≤ 1

λ

∫
B(x,r)

|f(y)|dµ(y)

for every f ∈ L1(X, µ).

Proof. Let Eλ = {x : M3f(x) > λ}. We first prove that the set Eλ is open. Choose x0 ∈ Eλ.

Then there exists r > 0 such that

1

µ(B(x0, 3r))

∫
B(x0,r)

|f(y)|dµ(y) > λ.

By the absolute continuity of the integral, there exists a compact set K ⊂ B(x0, r) such

that
1

µ(B(x0, 3r))

∫
K

|f(y)|dµ(y) > λ.

36



If we take δ > 0 sufficiently small, then for any y satisfying |y − x0| < δ, it holds that

K ⊆ B(y, r) and that

λ <
1

µ(B(y, 3r))

∫
K

|f(y)|dµ(y) ≤ 1

µ(B(y, 3r))

∫
B(y,r)

|f(y)|dµ(y).

Therefore the set Eλ is an open set.

Let K be a compact set and K ⊆ B(x, r) such that µ (B(x, r) \K) < δ. On the other

hand, given ε > 0 there exists δ > 0 such that for every measurable set E

µ(E) < δ implies that

∫
E

f(y)dµ(y) < ε.

Therefore, ∫
B(x,r)\K

f(y)dµ(y) < ε. (2.13)

Since K ⊆ B(x, r) there exists η > 0 such that d (K,B(x, r)c) > η. Pick a z ∈ X such that

d(z, x) <
η

2
. Now we claim that

K ⊆ B(z, r − η

2
) ⊆ B(x, r).

Note that K ⊆
⋃∞
n=1 B(x, r − 1

n
) and K is compact. So there exists a natural number N

such that K ⊆ B(x, r − 1

N
). Without loss of generality, we may choose η sufficiently small

so that N <
1

η
. Thus, K ⊆ B(x, r − 1

N
) ⊆ B(z, r − η

2
) and therefore our claim follows.

Now, using these inclusions and the inequality (2.13), it follows that

M3f(z) ≥ 1

µ
(
B(z, 3(r − η

2
))
) ∫

B(z,r−
η

2
)

|f(y)|dµ(y)

≥ 1

µ (B(x, 3r))

[∫
K

|f(y)dµ(y)−
∫
B(x,r)

|f(y)dµ(y) +

∫
B(x,r)

|f(y)|dµ(y)

]
=− 1

µ (B(x, 3r))

∫
B(x,r)\K

|f(y)|dµ(y) +
1

µ (B(x, 3r))

∫
B(x,r)

|f(y)|dµ(y)

>− ε

µ (B(x, 3r))
+ λ.

This is true for every ε > 0. Therefore M3f(z) > λ. This proves that M3 is lower semi-

continuous and therefore the set Eλ is open. Finally, we prove that µ is weak-(1,1). Because
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µ is Radon measure and Eλ is open

µ(Eλ) = sup{µ(K) : K ⊆ E,Kis compact}.

Let K ⊆ Eλ and K be compact. Then for every x ∈ K there exists rx > 0 such that

1

µ (B(x, 3rx))

∫
B(x,rx)

|f(y)|dµ(y) > λ.

Then the collection {B(x, rx) : x ∈ K} is an open covering of K. So there exists a finite

subcover

B(xj, rj) j = 1, 2, 3 . . . N

which also cover K. That is K ⊆
⋃j
j=1B(xj, rj). By above lemma there exists S ⊆

{1, 2, 3, . . . , N} such that the collection of the ball {B(xt, rt) : t ∈ S} is disjoint and

K ⊆
⋃
t∈S B(xt, 3rt). Then

µ(K) ≤
∑
t∈S

µ (B(xt, 3rt))

≤1

λ

∑
t∈S

∫
B(xt,rt)

|f(y)|dµ(y)

≤1

λ
‖f‖L1(X,µ).

With stronger hypothesis on the metric measure space (X, µ) a little more can be said.

The following theorem on nonhomogeneous space is due to Y. Terasawa.

Theorem 51. Let X be a metric space possessing a non-degenerate Radon measure µ such

that µ(B(x, r)) is continuous in the variable r > 0 when x ∈ X is fixed. Then Mkf(x) =

supr>0

1

µ (B(x, kr))

∫
B(x,r)

|f(y)|dµ(y) is weak-(1, 1) bounded with constant 1 when k ≥ 2.

Namely,

µ ({x : Mkf(x) > λ}) ≤ 1

λ

∫
X
|f(y)|dµ(y)

for any f ∈ L1(X, µ) when k ≥ 2.
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Remark 52. Obviously, Mk : L∞(X, µ) → L∞(X, µ).We know from above theorem that

Mk(k ≥ 2) is weak-(1, 1). Therefore by the Marcinkiewicz interpolation theorem it follows

that Mk : Lp(X, µ)→ Lp(X, µ) is continuous for k ≥ 2 and 1 < p ≤ ∞, that is, there exists

a constant C = C(p, k) such that

‖Mk(f)‖Lp(X,µ) ≤ C‖f‖Lp(X,µ).

Theorem 53. Let X be a metric space , 0 < α < N, 1 < p < q <∞, and 1/q = 1/p− α/N

where N is the dimension of the growth condition (2.1). Then there exists a constant A =

A(p, k) such that

‖Iα(f)‖Lq(X,µ) ≤ A‖f‖Lp(X,µ).

Proof. We observe that q
(

1− αp

N

)
= p. Then by using Proposition 48 and the Remark 52

we obtain,

‖Iα(f)‖qLq =

∫
X
|Iα(f)(x)|qdµ(x)

≤
∫

X
|A‖f‖αp/Np Mkf(x)1−αp/N |qdµ(x)

=Aq
∫

X
‖f‖qαp/Np Mkf(x)q(1−αp/N)dµ(x)

=Aq‖f‖
αpq
N
Lp

∫
X
Mk(f)(x)pdµ(x)

=Aq‖f‖
αpq
N
Lp ‖Mkf‖pLp

≤CAq‖f‖
αp
Nq

Lp ‖f‖
p
Lp

=CAq‖f‖q−pLp ‖f‖
p
Lp

=CA‖f‖qLp .

Therefore the theorem follows.

Proposition 54. Let (X, d) be a metric space and µ be a Radon measure on X with

µ (B(x, r)) ≤ CrN , for every r > 0, x ∈ X, 1 ≤ p <∞, αp = N.
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Then there exists a constant A = A(α, p) such that for every ε > 0 and any nonnegative

function f ∈ Lp(X, µ) with support in the ball B(x0, R) and ‖f‖Lp(µ) = 1,

(Iαf(x)− ε)p
′

+ ≤ C

(
1 + log+

ARNMk(f)(x)p

εp

)
, x ∈ B(x0, R).

Proof. Let x ∈ B(0, R) and δ < 2R. For
1

p
+

1

p′
= 1 and αp =N it follows that (N − α)p′

=N. Now using this and Hölder’s inequality we get

∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α
=

∫
δ≤d(x,y)≤2R

f(y)dµ(y)

d(x, y)N−α

≤
(∫

δ≤d(x,y)≤2R

dµ(y)

d(x, y)(N−α)p′

)1/p′ (∫
δ≤d(x,y)≤2R

|f |pdµ(y)

)1/p

≤
(∫

δ≤d(x,y)≤2R

dµ(y)

d(x, y)N

)1/p′

‖f‖p

=

(∫
δ≤d(x,y)≤2R

dµ(y)

d(x, y)N

)1/p′

Now,∫ 2R

δ

µ(B(x, r))

rN
dr

r
=

∫ 2R

δ

1

rN

∫
B(x,r)

dµ(y)
dr

r

=

∫ 2R

δ

∫
B(x,r)

1

rN+1
dµ(y)dr

=

∫
B(x,δ)

(∫ 2R

δ

1

rN+1
dr

)
dµ(y) +

∫
B(x,2R)\B(x,δ)

(∫ 2R

d(x,y)

1

rN+1
dr

)
dµ(y)

=

∫
B(x,δ)

(
1

NδN
− 1

N(2R)N

)
dµ(y) +

∫
B(x,2R)\B(x,δ)

1

N

(
1

d(x, y)N
− 1

(2R)N

)
dµ(y)

=
µ(B(x, δ))

NδN
−
(
µ(B(x, δ)) + µ(B(x, 2R) \B(x, δ))

N(2R)N

)
+

1

N

∫
B(x,2R)\B(x,δ)

dµ(y)

d(x, y)N

=
µ(B(x, δ))

NδN
− µ(B(X, 2R))

N(2R)N
+

1

N

∫
B(x,2R)\B(x,δ)

dµ(y)

d(x, y)N

Therefore,∫
B(x,2R)\B(x,δ)

dµ(y)

d(x, y)N
= N

∫ 2R

δ

µ(B(x, r))

rN
dr

r
− µ(B(x, δ))

δN
+
µ(B(X, 2R))

(2R)N
.
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Because µ(B(x, r)) ≤ CRN , it follows that∫
B(x,2R)\B(x,δ)

dµ(y)

d(x, y)N
≤ C + CN log(

2R

δ
).

From Lemma 46 we know that if k ≥ 2 then∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α
≤ A1δ

αMk(f)(x).

Let

δα = min { ε

A1Mk(f)(x)
, (2R)α}.

Suppose δα =
ε

A1Mk(f)(x)
. Then,

∫
B(x0,R)

f(y)dµ(y)

d(x, y)N−α
=

∫
d(x,y)<δ

f(y)dµ(y)

d(x, y)N−α
+

∫
d(x,y)≥δ

f(y)dµ(y)

d(x, y)N−α

≤ A1δ
αMk(f)(x) +

(
C + CN log(

2R

δ
)

)1/p′

= ε+ C1/p′
(

1 + log+

ARNMk(f)(x)p

εp

)1/p′

Therefore,

(Iαf(x)− ε)p
′

+ ≤ C

(
1 + log+

ARNMk(f)(x)p

εp

)
.

Next suppose δα = (2R)α ≤ ε

A1M(f)(x)
. Then δ = 2R. This yields,

∫
B(x0,R)

f(y)dµ(y)

d(x, y)N−α
≤ ε+ C1/p′

This implies that

(Iαf(x)− ε)p
′
≤ C.

Therefore the desired inequality follows because log+

(
ARNMk(f)(x)p

εp

)
≥ 0.

Theorem 55. (a) Let f ∈ L1(X), and 0 < α < N. Then

µ ({x : |Iαf(x)| > λ}) ≤ A
(
λ−1‖f‖L1

)N/N−α
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(b) Let f ∈ Lp(X), 0 < α < N, 1 < p < N/α,. Set p∗ = Np/(N − αp). Then

‖Iαf‖Lp∗ ≤ A‖f‖p.

Theorem 56. Let f ∈ Lp(RN, µ), 0 < α < N, p = N/α where the measure µ is non-doubling

satisfying the growth condition (2.1). Assume that supp(f) ⊆ B(0, R), and ‖f‖Lp(µ) = 1.

Then ∫
B(0,R)

exp (β|Iαf(x)|p) dµ(x) ≤ ARN ,

whenever β < β0 =
γ−p

′
α N

ωN−1

where ωN−1 is the area of (N − 1)-dimensional unit sphere.

Proof. We know that for any c < 1 and ε > 0 there is a constant A such that

cxp
′ ≤ (x− ε)p′ + A for all x ≥ ε. (2.14)

First, assume that Iαf(x) ≥ ε. Then from the inequality (2.14) for given c =
β

β0

< 1 and

ε > 0 there exists a constant A such that

c|Iαf(x)|p′ ≤ (Iαf(x)− ε)p
′

+ + A

β|Iαf(x)|p′ ≤ β0 (Iαf(x)− ε)p
′

+ + Aβ0

≤ β0

(
1 + log+

ARNMk(f)(x)p

εp

)
+ Aβ0

= log+

(
ARNMk(f)(x)p

εp

)β0

+ (A+ 1)β0.

Therefore,∫
B(0,R)

exp
(
β|Iαf(x)|p′

)
dµ(x) ≤

∫
B(0,R)

exp
(
1 + AC−1

) [ARNMk(f)(x)p

εp

]
dµ(x)

≤ ARN‖f‖pLp(µ) = ARN .

Finally, assume that Iαf(x) < ε. Then∫
B(0,R)

exp
(
β|Iαf(x)|p′

)
dµ(x) ≤

∫
B(0,R)

eβε
p′

dµ(x) ≤ ARN .
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Chapter 3

Good Lambda Inequality

3.1 Introduction

A good λ inequality is a principle which allows us to derive a local or pointwise estimate

of one operator in terms of another provided they satisfy an a priori relation of measure

theoretic nature. In this chapter, we establish a good lambda inequality relating the dis-

tribution functions of Riesz potential and the fractional maximal function on Rn, dµ, where

µ is a positive Radon measure which doesn’t necessarily satisfy a doubling condition. This

is extended to weights w in A∞(µ) associated to the measure µ. We also derive potential

inequalities as an application.

Definition 57. Let µ be a positive, regular Borel measure on Rn and let T1 and T2 be

positive sublinear operators on Rn. We say that T1 and T2 satisfy the good λ inequality if

the following two conditions hold:

(i) {T1f > t} is an open set of finite Lebesgue measure for each f in C∞0 (Rn) and t > 0.

(ii) If a ball B contains a set {x : T1f(x) ≤ λ}, then to each 0 < γ < 1 there exists

ε = γ(T1, T2, ε) independent of λ,B and f so that µ({y ∈ B : T1f > λ, T2f(y) ≤

ελ}) ≤ γµ(B).

The so called ”good-λ inequality” was first used by D. L. Burkholder and R. F. Gundy in

1970 ([12]). LetXt be a continuous martingale starting at 0 and setX∗t = sup0<s<t |Xs|, X∗ =
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supt>0 |Xt|, St (X) =
√
〈X〉t and S (X) =

√
〈X〉∞, where 〈X〉t is the quadratic vari-

ation process of Xt at time t. In their ground-breaking paper ([12]), D. L. Burkholder

and R. F. Gundy showed that the random variables X? and S(X) satisfy certain in-

equalities relating their distributions. These are now commonly called good-λ inequali-

ties. In the harmonic function setting the first good-λ inequalities were also proved by

Burkholder and Gundy [13]. They were subsequently improved and refined by, among

others, Burkholder [11], Dahlberg [16], Fefferman, Gundy, Silverstein and Stein [26]. The

variations of good-λ inequalities and their applications can be found in the work of B. Muck-

enhoupt and R. L. Wheeden ([37]), S. D. Jaka ([31]), D. L. Burkholder ([10]), R. Bañuelos

([7]), and R. F. Bass ([6]). A fair amount of deal about such inequalities is found in the book

by Rodrigo Bañuelos and Charles N. Moore ([8]). Let us recall the classical good lambda

inequalities of Burkholder and Gundy [12] for continuous time martingales.

Theorem 58. Let Xt be a continuous time martingale with maximal function X? and square

function S(X). Then for all 0 < ε < 1, δ > 0 and λ > 0,

P {X? > δλ, S(X) ≤ ελ} ≤ ε2

(δ − 1)2
P{X? > λ} (3.1)

and

P {S(X) > δλ,X? ≤ ελ} ≤ ε2

(δ − 1)2
P{S(X) > λ} (3.2)

The most commonly used form of the good lambda inequality is stated below:

Definition 59. A pair of nonnegative measurable functions f and g defined on R are said

to satisfy a good-λ inequality if there exists constants δ > 1, 0 < ε0 ≤ 1 such that for every

λ > 0, 0 < ε < ε0, we have

|{x ∈ R : f(x) > δλ, g(x) < ελ}| ≤ b(ε)|{x ∈ R : f(x) > λ}|, (3.3)

where b(ε)→ 0 as ε→ 0.

As they are expressed here, these are actually a refinement, due to Burkholder ([9]), of

the inequalities of [12]. The usefulness of such inequalities is already amply demonstrated by
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the following lemma, which is but one of the many applications of these type of inequalities.

For this lemma we consider a non-decreasing function Φ defined on [0,∞] with Φ(0) = 0, Φ

is not identically 0, and which satisfies the condition Φ(2λ) ≤ cΦ(λ) for every λ > 0, where

c is a fixed constant. This lemma is from [9].

Lemma 60. Suppose that f and g are nonnegative measurable functions on a measurable

space (Y,A, µ), and δ > 1, 0 < ε < 1, and 0 < γ < 1 are real numbers such that

µ{g > δλ, f ≤ ελ} ≤ γµ{g > λ} (3.4)

for every λ > 0. Let ρ and ν be real numbers which satisfy

Φ(δλ) ≤ ρΦ(λ), Φ(ε−1λ) ≤ νΦ(λ) (3.5)

for every λ > 0. Finally, suppose ργ < 1 and
∫

Φ(min{1, g})dµ <∞. Then∫
Y

Φ(g)dµ ≤ ρν

1− ργ

∫
Y

Φ(f)dµ. (3.6)

Proof. We first claim that we may assume that
∫

Y Φ(g)dµ < ∞. In order to establish this

claim, consider

hn(x) = min{n, g(x)} for every n ∈ N.

If λ ≥ n then

µ{x ∈ R : hn(x) > λ} = 0,

and

µ{x ∈ R : hn(x) > δλ, f(x) ≤ ελ} = 0

for δ > 1. Next, let 0 < λ < n. Then g(x) > λ if and only if hn(x) > λ. So,

µ{x ∈ R : hn(x) > δλ, f(x) ≤ ελ} = µ{x ∈ R : g(x) > δλ, f(x) ≤ ελ}

and

µ{x ∈ R : g(x) > λ} = µ{x ∈ R : hn(x) > λ}.
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Also note that
∫

Y Φ (min{n, g}) dµ < ∞ for every n ∈ N since
∫

Y Φ (min{1, g}) dµ < ∞.

Using the fact that limn→∞ hn(x) = g(x) and an application of Fatou’s lemma it follows

that the inequality (3.6) is true for f and g whenever it holds for hn and f .

Let dΦ denote the Lebesgue-Stieltjes measure satisfying
∫

[a,b]
dΦ(λ) = Φ(b)−Φ(a) when-

ever 0 ≤ a ≤ b ≤ ∞. This is a positive σ- finite Borel measure on [0,∞). Furthermore, an

elementary Fubini theorem argument shows that if h ≥ 0 is measurable function on Y then∫
Y

Φ(h)dµ =

∫ ∞
0

µ{h > λ}dΦ(λ).

From inequality (3.4) we get

µ{g > δλ} = µ{g > δλ, f ≤ ελ}+ µ{g > δλ, f > ελ}

≤ γµ{g > λ}+ µ{f > ελ}.

Consequently, ∫
Y

Φ
(g
δ

)
dµ ≤ γ

∫
Y

Φ(g)dµ+

∫
Y

Φ

(
f

ε

)
dµ. (3.7)

But using the inequality (3.5) we have∫
Y

Φ(g)dµ =

∫
Y

Φ
(
δ
(g
δ

))
dµ ≤ ρ

∫
Y

Φ
(g
δ

)
dµ. (3.8)

Combining the inequalities (3.5), (3.7) and (3.8) we obtain∫
Y

Φ(g)dµ ≤ ρ

∫
Y

Φ
(g
δ

)
dµ ≤ ργ

∫
Y

Φ(g)dµ+ ρν

∫
Y

Φ(f)dµ.

Now subtracting the finite quantity ργ
∫

Y Φ(g)dµ from both sides and dividing by 1−ργ we

obtain the desired inequality (3.6). This proves the lemma.

Next, we look at some examples:

Example 61. Let Y = R, µ = Lebesgue measure in R and Φ(λ) = λp for 0 < p <∞.

Then Φ satisfies all the condition of the Lemma 60. From the conditions in inequality

(3.5) we may choose C = 2p, ρ = δp where δ > 1. We usually obtain γ = γ(ε) = c1e
−
c2

ε2
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for some positive constants c1 and c2. We may choose ε small enough so that γρ < 1. A

straightforward computation with δ = 2c1 yields ε =
C√
p+ 1

where the constant C depends

on c1, c2 and δ. For,

ργ = δpe−
c2
ε2 ≤ 1

2
< 1

implies that

e−
c2
ε2 ≤ 1

2δpc1

.

Taking natural log on both sides and δ = 2c1, we obtain,

ε2 ≤ c2

(p+ 1) ln δ

Therefore,

ε =
C√
p+ 1

.

Thus if f and g satisfy the good lambda inequality (3.4) then the Lemma 60 yields

||g||p ≤ C||f ||p.

Definition 62. The cone of aperture α > 0 and vertex at x ∈ Rn is defined by

Γα(x) = {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

Let u be a harmonic function defined on Rn+1
+ . We set

Nαu(x) = sup{|u(t, y)| : (t, y) ∈ Γα(x)}.

If u is of the form u(x, t) = ϕt ∗ f(x) for some ϕ ∈ L1(Rn) and f ∈ Lp(Rn), 1 ≤ p ≤ ∞, we

will often write Nαf instead of Nαu. This is called the non-tangential maximal function of

u (or f).

Definition 63. Let α > 0 and u be a harmonic function on Rn+1
+ . For x ∈ Rn we define

Aαu(x) =

(∫
Γα(x)

| 5 u(s, t)|2t1−ndsdt
)1

2
.

The function Aαf is called the Lusin area function of f, or the square function of f .
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Example 64. D. L. Burkholder and R. F. Gundy in [13] proved that there exists a good-λ

inequality between Nαu(x) and Aαu(x). Consequently,

||Nαu||p ≤ C||Aαu||p,

and

||Aαu|| ≤ C||Nαu||p.

Definition 65. A function u(x, t) defined on Rn+1 is said to be caloric function if it satisfies

the heat equation ut = 4u. Caloric functions are also sometimes called parabolic functions.

For x ∈ Rn we define the parabolic cone in Rn+1
+ with vertex at x and aperture α > 0 by

Pα(x) = {(y, s) ∈ Rn+1
+ : |x− y|2 < α2s}

and for a caloric function u its parabolic Lusin area function and parabolic non-tangential

maximal functions are respectively given by

PAαu(x) =

(∫
Pα(x)

s
−
n

2∇yu(y, s)|2dyds

)1

2

and

PNαu(x) = sup{|u(x, s)| : (y, s) ∈ Pα(x)}.

Example 66. A. P. Calderon and A. Torchinsky in [14] proved that good-λ inequalities

exist between PNαu(x) and PAαu(x).

Good λ inequality and Potentials in Rn:

Theorem 67. Let µ be a positive Radon measure on Rn and Iαµ(x) =
∫

Rn
dµ(y)

|x− y|n−α
. Then

there exists a > 1 and b > 0 such that for every λ > 0 and for every ε, 0 < ε ≤ 1,

|{x : Iαµ(x) > aλ}| ≤ bεn/n−α|{x : Iαµ(x) > λ}|+ |{x : Mαµ(x) > ελ}|.

Equivalently,

|{x : Iαf > aλ,Mαf < ελ}| ≤ Cε

N

N − α |{x : Iαf(x) > λ}|.
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Proof. Let Eλ = {x : Iα ? µ(x) > λ} and observe that this set is open. So, there exists a

family of dyadic cubes {Qj}∞1 , called Whitney cubes such that

Eλ =
∞⋃
j=1

Qj,

and

diam(Qj) ≤ dist(Qj, E
c
λ) ≤ 4diam(Qj) (3.9)

for every j. This means that for every j there exists x ∈ Ec
λ such that

d(x,Qj) ≤ 4diam(Qj) and Iα ? µ(x) ≤ λ.

Fix a cube Q ∈ {Qj} and a > 1. Consider the set {x ∈ Q : Iαµ(x) > aλ}, λ > 0. Let

M = {x : Mαµ(x) ≤ ελ} and let x0 ∈ Q
⋂
M . Let P be the ball concentric to the cube

Q with radius 6diam(Q). Let µ1 be the restriction of µ on P , and µ2 = µ − µ1. Note that

Mαµ(x) ≤ Iαµ(x). Therefore by the Theorem 55, we obtain∣∣∣∣{x : Iαµ1(x) >
aλ

2

}∣∣∣∣ ≤ ( 1

aλ

∫
Rn
dµ1

) n
n−α

. (3.10)

Let x0 ∈ Q
⋂
M. Let B denote the ball with center at x0 and radius 8diam(Q). Then

P ⊆ B,and ∫
Rn
dµ1 =

∫
P

dµ ≤
∫
B

dµ ≤ AMαµ(x0)|B|
n

n−α ≤ Aελ|B|
n

n−α (3.11)

Combining the above two inequalities we see that there exists a constant b such that∣∣∣∣{x : Iαµ1(x) >
aλ

2

}∣∣∣∣ ≤ bε
n−α
n . (3.12)

The inequality 3.10 and the construction of the ball P allows us to choose a point x1 in P

with d(x1, Q) ≤ 4diam(Q). The for every x ∈ Q and y ∈ P c

|x1 − y| ≤ |x1 − x|+ |x− y| ≤ Cdiam(Q) + |x− y| ≤ L|x− y|. (3.13)
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If, in addition, Iαµ(x1) ≤ λ, then

Iαµ2(x) =

∫
Rn

1

|x− y|n−α
dµ2(y)

≤Ln−α
∫

Rn

1

|x1 − y|n−α
dµ(y)

≤Ln−αIαµ2(x1)

≤Ln−αλ.

Thus, if a is chosen so that a ≥ 2Ln−α, then Iαµ2(x) ≤ aλ
2
. Hence if Iαµ(x) > aλ, it follows

that

Iαµ1(x) = Iαµ(x)− Iαµ2(x) > aλ− aλ

2
=
aλ

2
.

This implies that

{x ∈ Q : Iαµ(x) > aλ} ⊆
{
x : Iαµ1(x) >

aλ

2

}
. (3.14)

Thus either

Q ⊆ {x : Mαµ(x) > ελ}

or,

{x ∈ Q : Iαµ(x) > aλ} ⊆
{
x : Iαµ(x) >

aλ

2

}
.

This implies that

|{x ∈ Q : Iαµ(x) > aλ}| ≤
∣∣∣∣{x : Iαµ(x) >

aλ

2

}∣∣∣∣+ |{x : Mαµ(x) > ελ}| .

That is,

|{x ∈ Q : Iαµ(x) > aλ}| ≤ bε
n

n−α |Q|+ |{x : Mαµ(x) > ελ}| . (3.15)

The desired inequality follows by summing the above inequality over all Q ∈ {Qj}∞1 .

Note that in the above theorem we do not require that the Radon measure µ satisfy the

doubling condition or the growth condition (2.1). It is also noteworthy that the same

inequality is true if dµ(y) is replaced by f(y)dm(y) where m is a Lebesgue measure. We

formulate this fact in the following theorem:
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Theorem 68. Let 0 < α < N. For measurable function f on Rn define Iαf(x) =
∫

Rn
f(y)dy
|x−y|N−α

and Mαf(x) = supr>0
1

|B(x,r)|
N−α
N

∫
B(x,r)

|f(y)|dy. Then there exists constants a > 1 and b

such that for every λ > 0 and 0 < ε ≤ 1,

|{x : Iαf(x) > aλ,Mαf(x) < ελ}| ≤ bε
N

N−α |{x : Iαf(x) > λ}| .

In general the inequality is true for any doubling Radon measure µ in Rn. This is

established in the following theorem.

Some Notations:

By a “cube” Q ⊂ Rn we mean a closed cube having sides parallel to the axes. Its side length

will be denoted by `(Q). By Qx we also denote the cube centered at x and side length `(Q)

unless otherwise specified. For ρ > 0, ρQ means a cube concentric to Q with side length

ρ`(Q).

Theorem 69. Let µ be a positive Radon measure satisfying the doubling condition (1.1)

and 0 < α < N,
1

q
= 1− α

N
. For measurable function f on Rn define

Iαf(x) =

∫
Rn

f(y)dµ(y)

|x− y|N−α

Then there exists constants a > 1, b > 0 (independent of f) such that whenever 0 < ε ≤ 1

and λ > 0 we have

µ ({x : Iαf(x) > aλ}) ≤ bεN/N−αµ ({x : Iαf(x) > λ}) + µ ({x : Mαf(x) > ελ}) .

Proof. We first observe that Iαf is lower semi-continuous whenever f ≥ 0. Indeed, if xj → x,

then |xj − y|α−Nf(y)→ |x− y|α−Nf(y) for every y ∈ Rn. Then by Fatou’s lemma

lim
j→∞

Iαf(xj) ≥ lim inf
j→∞

∫
Rn

f(y)dµ(y)

|xj − y|N−α

≥
∫

Rn
lim inf
j→∞

f(y)dµ(y)

|xj − y|N−α

=

∫
Rn

f(y)dµ(y)

|x− y|N−α
= Iαf(x).
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Therefore, Eλ := {x : Iαf(x) > λ} is open. Then by Whitney Decomposition (Theorem 12)

there exists a countable collection of dyadic cubes {Qj}∞j with disjoint interiors, such that

Eλ =
⋃
j Qj and

diam(Qj) ≤ dist (Qj, E
c
λ) ≤ 4diam(Qj) (3.16)

for every j.

Fix a Whitney cube Q ∈ {Qj}∞j and a constant a > 1. Consider the set {x ∈ Q :

Iαf(x) > aλ}. Suppose that Q
⋂
{x : Mα(f)(x) ≤ ελ} is nonempty. Let P be a ball

concentric to the cube Q with radius 6diam(Q).

Now we decompose f as f = f1 + f2 where f1 = χPf. Then Iαf1 is weak type (1, 1) and

µ

({
x : Iαf1(x) >

aλ

2

})
≤
(

1

aλ

∫
Rn
|f1(y)|dµ(y)

)N/N−α
. (3.17)

Next we estimate the integral on the right side of the inequality (3.17). For this, choose a

point x0 ∈ Q
⋂
{x : Mα(f)(x) ≤ ελ}. Consider a ball B center at x0 and radius 8diam(Q).

Then B ⊇ P and P ⊇ Q. We observe that there exists a constant C depending on n such

that CQ ⊇ B ⊇ Q. It suffices to take C ≥ 17
√
n + 1. Then by monotonicity and the

doubling condition (1.1) we get µ (B) ≤ Cµ (Q). Now,∫
Rn
|f1(y)|dµ(y) ≤

∫
P

|f(y)|dµ(y)

≤
∫
B

|f(y)|dµ(y)

≤ µ(B)N/N−αMαf(x0)

≤ µ (B (x0, 8diam(Q)))N−α/N ελ.

Applying the above inequality to (3.17) yields

µ

({
x : Iαf1(x) >

aλ

2

})
≤
(

1

aλ

∫
Rn
|f1(y)|dµ(y)

)N/N−α
≤ (µ (B(x0, 8diam(Q))) ελ)N/N−α

≤
( ε
a

) N
N−α

Cµ(Q)

≤ CεN/N−αµ(Q).
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On the other hand, let x1 ∈ P
⋂
Ec
λ such that

d(x1, Q) ≤ 4diam(Q).

This is possible by the choice of P . Then for every x ∈ Q and y ∈ P c and using the

inequality (3.16) there exists a constant L depending on the dimension n such

|x1 − y| ≤ L|x− y|.

Therefore,
1

|x− y|
≤ L

|x1 − y|
.

Note that Iαf(x1) < λ because x1 ∈ Ec
λ. Then

Iαf2(x) =

∫
Rn

f2(y)

|x− y|N−α
dµ(y)

≤LN−α
∫

Rn

f(y)

|x1 − y|N−α
dµ(y)

=LN−αIαf(x1)

≤LN−αλ.

Now, choose a so that a ≥ 2LN−α. Then Iαf2(x) ≤ aλ

2
. Hence if Iαf(x) > aλ, it follows

that Iαf1(x) >
aλ

2
. This implies that

{x ∈ Q : Iαf(x) > aλ} ⊆
{
x : Iαf1(x) >

aλ

2

}
.

whenever Q
⋂
{x : Mα(f)(x) > ελ} is nonempty. Thus either

Q ⊆ {x : Mα(f)(x) > ελ},

or,

{x ∈ Q : Iαf(x) > aλ} ⊆
{
x : Iαf1(x) >

aλ

2

}
.

This implies that

µ ({x ∈ Q : Iαf(x) > aλ}) ≤µ
({

x ∈ Q : Iαf1(x) >
aλ

2

})
+ µ ({x : Mα(f)(x) > ελ})

≤bε
N

N−αµ(Q) + µ ({x : Mα(f)(x) > ελ}) .
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That is,

µ ({x ∈ Q : Iαf(x) > aλ,Mα(f)(x) > ελ}) ≤ bεN/N−αµ(Q)

for every Q ∈ {Qj}∞j . Finally, the desired inequality follows from summing over all Q ∈

{Qj}∞j .

Definition 70. (X. Tolsa [48]) Let Q(µ) = {Q ⊂ Rn : µ(Q) > 0}. Given α > 1 and

β > αN , we say that some Q ⊂ Rn is (α, β)-doubling if µ(αQ) ≤ βµ(Q). If α and β are not

specified then by a doubling cube we mean a (2, 2N+1)-doubling cube.

Here we state some remarks about the existence of doubling cubes. (X. Tolsa [48], [47])

Remark 71. Due to the fact that µ satisfies the growth condition (2.1), there are lots of

”big” doubling cubes. Precisely speaking, given any point x ∈ supp (µ) and c > 0, there

exists some (α, β)-doubling cube Q centered at x with `(Q) ≥ c. This follows from (2.1) and

the fact that β > αN . Indeed, if there are no doubling cubes centered at x with `(Q) ≥ c, then

µ(αmQ) > βmµ(Q) for every m, and letting m → ∞ it follows that the growth condition

(2.1) can not hold.

Remark 72. There are a lot of ”small” doubling cubes too. Precisely speaking, if β > αN ,

then for µ-a.e x ∈ Rn there exists a sequence of (α, β)-doubling cubes {Qk}k centered at x

with `(Qk)→ 0 as k →∞. This is a property that any Radon measure on Rn satisfies (the

growth condition (2.1) is not necessary in this argument).

The next theorem extends the above with non-doubling measure µ.

Theorem 73. Let µ be a positive measure on Rn which satisfies the growth condition (2.1).

Then there exist constants k, C such that for every λ > 0 and 0 < ε < 1,

µ ({x : Iαf(x) > kλ,Mαf(x) < ελ}) ≤ Cε
N

N−αµ ({x : Iαf(x) > λ}) .

Proof. Note that the set Ωλ = {x ∈ Rn : Iαf(x) > kλ} is open because of the lower semi-

continuity of the Riesz potential Iαf . Then it has a Whitney decomposition into a family
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of dyadic cubes {Qj}∞j=1 with disjoint interiors such that for every j

diam(Qj) ≤ dist(Qj,Ω
c
λ) ≤ 4diam(Qj).

For such a Whitney cube Q let `(Q) denote its side length. Fix 0 < δ <
1

4
. In particular,

we may choose δ = 1
8
. Then (1 + δ)Q = 9

8
Q ⊆ Ωλ, and

∑
Q

χ 9
8
Q(x) ≤ 12nχΩλ(x)

for every x ∈ Ωλ. This implies that

∑
Q

µ

(
9

8
Q

)
≤ 12nµ(Ωλ). (3.18)

Fix a dyadic cube Q. Suppose x ∈ Q and that Mαf(x) < ελ. Let Qx be the cube with side

length δ`(Q) centered at x. Then Qx ⊆ (1+δ)Q and 16Qx ⊇ 2Q. Let k = 2, β = 2n+ε, ε > 0.

Consider
1

2
Qx,

1

22
Qx,

1

23
Qx, . . .. Take first which is doubling. Let the first doubling cube in

the sequence be Q̂x :=
1

2m+1
Qx where m depends on x. So Q̂x ⊆

1

2
Qx and

µ(2Q̂x) = µ

(
2.

1

2m+1
Qx

)
≤ βµ

(
1

2m+1
Qx

)
= βµ(Q̂x)

whereas

µ

(
2.

1

2j+1
Qx

)
≥ βµ

(
1

2j+1
Qx

)
for every j < m.

Thus, ⋃
x∈{Mαf<ελ}

Q̂x ⊇ {x ∈ Q : Iαf(x) > kλ,Mαf(x) < ελ}

The Besicovitch Covering Lemma implies that there exists Q̂xj , j = 1, 2, 3, . . . such that

⋃
j

Q̂xj ⊇ {x ∈ Q : Iαf > kλ,Mαf < ελ}

and
∑
χQ̂xj

≤ 4nχ4Q. Let f = f1 + f2 where f1 = χ2Qf and f2 = f − f1. Then

{x ∈ Q : Iαf1(x) > kλ,Mαf(x) < ελ} ⊆
⋃
j

{x ∈ Q̂xj : Iαf1(x) > kλ,Mαf(x) < ελ}.
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Fix a Qxj . Write f1 = χ2Q̂xj
f1 + f1χ(2Q̂xj )c = f11 + f12. Then,

µ
(
{x ∈ 2Q̂xj : Iαf11 > kλ}

)
≤
(

1

kλ
‖f11‖1

)N/N−α
=

(
1

kλ

∫
2Q̂xj

|f1(x)|dµ(x)

)N/N−α

=

(
1

kλ
µ(2Q̂xj)

N−α
N

1

µ(2Q̂xj)
N−α
N

∫
2Q̂xj

|f1(x)|dµ(x)

)N/N−α

=

(
1

kλ

) N
N−α

µ(2Q̂xj)Mαf1(xj)
N/N−α

≤ CεN/N−αµ(Q̂xj).

Now since for any cube Q, µ(Q) ≤ c`(Q)N , then

(
c

µ(Q)

)N−α
N

≥ 1

`(Q)N−α
. Also,

µ(Qxj) ≥ βµ

(
1

2
Qxj

)
≥ . . . > βiµ

(
1

2i
Qxj

)
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where i < m. This follows by the choice of our Qxj ’s. So, if x ∈ Q̂xj

Iαf12(x) =

∫
(2Q̂xj )c

f1(y)

d(x, y)N−α
dµ(y)

≤
m−1∑
k=0

∫
1

2k
Qxj \

1

2k+1Qxj

|f1(y)|
d(x, y)N−α

dµ(y) +

∫
2Q\Qxj

|f1|(y)dµ(y)

d(x, y)N−α

≤
m−1∑
k=0

C

`(
1

2k
Qxj)

N−α

∫
1

2k
Qxj \

1

2k+1
Qxj

|f1(y)|dµ(y) +
C

`(8Qxj)
N−α

∫
2Q\Qxj

f1(y)dµ(y)

≤
m−1∑
k=0

2k(N−α)

`(Qxj)
N−α

∫
1

2k
Qxj \

1

2k+1
Qxj

|f1(y)|dµ(y) +
C

µ(8Qxj)
(N−α)/N

∫
2Q\Qxj

f1(y)dµ(y)

≤
m−1∑
k=0

C2k(N−α) 1

µ(QxJ )
N−α
N

∫
1

2k
Qxj \

1

2k+1
Qxj

|f1(y)|dµ(y) + CMαf1(xj)

≤
m−1∑
k=0

C2k(N−α) 1

βkµ(
1

2k
Qxj)

N−α
N

∫
1

2k
Qxj \

1

2k+1
Qxj

|f1(y)|dµ(y) + Cλ

≤
m−1∑
k=0

C
2k(N−α)

β
k
N

(N−α)
Mαf1(xj) + Cλ

= C
m−1∑
k=0

(
2N−α

2N−α2ε(
N−α
N

)

)k
Mαf1(xj) + Cλ

= C
m−1∑
k=0

2−ε(
N−α
N

)kMαf1(xj) + Cλ

= CN,αMαf1(xj) ≤ CN,α = Cλ.

Note that the constant C in different occurrences above are not necessarily the same. We

also have ∑
χQ̂xj

(x) ≤ 4nχ 9
8
Q

This implies that

µ

(⋃
j

Q̂xj

)
=

∫
Q

∑
χQ̂xj

(x)dµ ≤ 4n
∫
Q

χ2Qdµ = 4nµ(Q).

Take a point x ∈ Q. Consider the ball B = B(x, 6diam(Q)) which contains 2Q. Let x0 be
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a point in B ∩ Ωc
λ such that

diam(Q) ≤ dist(Q, x0) ≤ 4diam(Q).

Then for any y ∈ (2Q)c

d(x0, y) ≤ d(x, x0) + d(x, y) ≤ Cdiam(Q) + d(x, y) ≤ Cd(x, y) + d(x, y).

That is , for some constant C,

d(x0, y) ≤ Cd(x, y).

So,

Iαf2(x) =

∫
(2Q)c

f(y)dµ(y)

d(x, y)N−α
≤ C

∫
(2Q)c

f(y)dµ(y)

d(x0, y)N−α
≤ CIαf(x0) < Cλ

Now choose k̃ such that k̃ − 2C > k. Then, summing over all Whitney cubes we obtain

µ ({x : Iαf(x) > kλ,Mαf(x) < ελ})

=
∑
Q

µ ({x ∈ Q : Iαf(x) > kλ,Mαf(x) < ελ})

=
∑

Q:∃x∈Q
Mαf<ελ

µ ({x ∈ Q : Iαf1 + Iαf2 > kλ,Mαf < ελ})

≤
∑

Q:∃x∈Q
Mαf<ελ

µ ({x ∈ Q : Iαf1 > (k − C)λ,Mαf < ελ})

=
∑
Q

∑
j

µ
(
{x ∈ Q̂xj : Iαf1 > (k − C)λ,Mαf < ελ}

)
=
∑
Q

∑
j

µ
(
{x ∈ Q̂xj : Iαf11 + Iαf12 > (k − C)λ,Mαf < ελ}

)
<
∑
Q

∑
j

µ
(
{x ∈ Q̂xj : Iαf11 > (k − 2C)λ,Mαf < ελ}

)
≤
∑
Q

∑
j

CεN/N−αµ(Q̂xj)

≤
∑
Q

CεN/N−α4nµ(
9

8
Q)

= 4N12nCεN/N−αµ({Iαf > λ}).
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Finally,

µ ({x : Iαf > kλ}) ≤ µ ({Iαf > kλ,Mαf ≤ ελ}) + µ ({Mαf > ελ})

≤ CεN/N−αµ ({Iαf > λ}) + µ ({Mαf > ελ}) .

Remark 74. We observe From the proof of the above theorem that for every Whitney cube

Q, we have

µ ({x ∈ Q : Iαf(x) > kλ,Mαf(x) < ελ}) ≤ CεN/(N−α)µ

(
9

8
Q

)
.

Potentials and Maximal functions:

Note that for 0 < α < N, f ≥ 0 and r > 0∫
X

f(y)dµ(y)

d(x, y)N−α
≥
∫
d(x,y)≤r

f(y)dµ(y)

d(x, y)N−α
≥ 1

rN−α

∫
B(x,r)

|f(y)|dµ(y)

Theorem 75. Let 1 < p < ∞ and 0 < α < N . Then there is a constant A such that for

any Lebesgue measurable function f on X and any non-doubling measure µ

A−1‖Mαf‖p ≤ ‖Iαf‖p ≤ A‖Mαf‖p.

Proof. We assume that µ has compact support. The right hand inequality is a consequence

of ”good lambda inequality”. Multiplying the good lambda inequality by λp−1, we obtain

for any positive R,∫ R

0

µ({x :Iαf(x) > kλ})λp−1dλ

≤ bεN/N−α
∫ R

0

µ({x : Iαf(x) > λ})λp−1dλ+

∫ R

0

µ({x : Mα(f)(x) > ελ})λp−1dλ.

After changing variables we obtain,

k−p
∫ kR

0

µ({Iαf(x) > λ})λp−1dλ

≤ 1

2
k−p

∫ R

0

µ({Iαf(x) > λ})λp−1dµ+ ε−p
∫ kR

0

µ({Mα(f)(x) > λ})λp−1dλ.
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That is,

k−p
∫ kR

0

µ({Iαf(x) > λ})λp−1dλ ≤ 2ε−p
∫ kR

0

µ({Mα(f)(x) > λ})λp−1dλ.

Letting R → ∞ and using the definition
∫
X
|f |pdµ = p

∫∞
0
tp−1µ({x : f(x) > t})dt we

obtain,

k−p
∫
X

|Iαf(x)|pdµ(x) ≤ 2ε−p
∫
X

|Mα(f)(x)|pdµ

This yields the right hand inequality. If µ doesn’t have compact support, we let µn be the

restriction of µ to the ball B(x0, n) for n = 1, 2, 3, . . . where x0 is some point in X. Then

‖Iαf‖Lp(X,µn) ≤ A‖Mαf‖Lp(X,µn) for all n, where A is independent of n. The theorem then

follows by the Monotone Convergence theorem.

3.2 The Ap Weights

A weight is a nonnegative locally integrable function w on Rn such that w(x) ∈ (0,∞) a.e.

x ∈ Rn. Every weight w gives rise to a measure on the measurable subsets of Rn through

integration. This measure will also be denoted by w. Thus, w(E) =
∫
E
w(x)dx for every

measurable subset of Rn.

Definition 76. Let w be a weight, and let Ω be an open subset of Rn. For 0 < p <∞, we

define Lpw(Ω) as the set of measurable functions f on Ω such that

||f ||Lpw(Ω) =

(∫
Ω

|f |pwdx
)1/p

<∞.

We also define weak-L1
w(Ω) as the set of all measurable functions f on Ω satisfying

||f ||wk−L1
w(Ω) = sup

λ>0
λw ({x ∈ Ω : |f(x)| > λ}) <∞.

The class of Ap weights was introduced by B. Muckenhoupt in [35], where it is shown that the

Ap weights are precisely those weights w for which the Hardy-Littlewood maximal operator

is bounded from Lpw(Rn) to Lpw(Rn), when 1 < p < ∞, and from L1
w(Rn) to wk − L1

w(Rn),

when p = 1.
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Definition 77. Let 1 ≤ p < ∞. A weight w is said to be an Ap weight, if there exists a

positive constant A such that, for every ball B ⊂ Rn,(
1

|B|

∫
B

wdx

)(
1

|B|

∫
B

w−1/(p−1)

)p−1

≤ A,

if p > 1, or (
1

|B|

∫
B

wdx

)
ess.sup
x∈B

1

w(x)
≤ A,

if p = 1. The infimum over all such constants A is called the Ap constant of w. We denote

by Ap, 1 ≤ ∞, the set of all Ap weights.

Definition 78. ([19]) We say that a weight w is an A∞ weight if there exists two positive

constants C and δ such that
w(E)

w(Q)
≤ C

(
|E|
|Q|

)δ
for every cube Q and every measurable subset E of Q. The constants C and δ are called

A∞ constants of w and the set A∞ weights is denoted by A∞.

The relationship between Ap and A∞ is given by ([35] and [36])

A∞ =
⋃

1≤p<∞

Ap.

Thus, if w satisfies the Ap condition then W satisfies the A∞ condition. As an application

of the Theorem 68, we prove the following theorem:

Theorem 79. Let dµ(x) = w(x)dx satisfies the A∞ condition. Let 0 < α < N, 1
q

=

1− α
N

. For measurable function f on Rn define Iαf(x) =
∫

Rn
f(y)dµ(y)

|x− y|N−α
. Then there exists

constants a > 1, b > 0 (independent of f) such that whenever 0 < ε ≤ 1 and λ > 0 we have

µ ({x : Iαf(x) > aλ}) ≤ bεN/(N−α)µ ({x : Iαf(x) > aλ}) + µ ({x : Mαf(x) > ελ}) .

Proof. From the inequality 3.15 , it follows that

|{x ∈ Qj : Iαf > aλ,Mαf < ελ}|
|Qj|

≤ bεN/(N−α)
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where the Qj’s are the dyadic cubes from the proof of the theorem 73. From the definition

78 of A∞ weight, it follows that there exists two constants C and δ such that

µ ({x ∈ Qj : Iαf > aλ,Mαf < ελ})
µ (Qj)

≤ C
(
bεN/(N−α)

)δ
The desired inequality follows by taking the sum over all Qj ∈ {Qj}∞1 in the above inequality.

Next we discuss Ap weights adapted to more general measure µ ([39]). We denote by

Q a dyadic cube sides parallel to the coordinate axes such that µ(∂Q) = 0 where µ is a

non-doubling measure that satisfies a Calderón-Zygmund decomposition. (Lemma 2.1 in

[39]).

Definition 80. Let 1 < p <∞ and
1

p
+

1

p′
= 1. We say that a weight w satisfies the Ap(µ)

condition if there exists a constant K such that for all cubes Q(
1

µ(B)

∫
B

wdµ

)(
1

µ(B)

∫
B

w−
1
p−1dµ

)p−1

≤ K.

We define the A∞(µ) class as A∞(µ) =
⋃
p>1Ap(µ). We also say that w satisfies A1(µ)

condition if there exists a constant K such that such that for all cubes Q,

1

µ(Q)

∫
Q

wdµ ≤ K ess.sup
x∈Q

w(x).

Finally, we define the A∞(µ) =
⋃
p>1Ap(µ).

Remark 81. A1(µ) ⊂ Ap(µ) for every p > 1 and Ap(µ) ⊂ Aq(µ) for every p < q.

Note that we use the standard notation w(E) =
∫
E
wdµ, for every measurable set E.

Lemma 82. ([39]) For a weight w the following conditions are equivalent:

(a) w ∈ A∞(µ).

(b) For every cube Q
1

µ(Q)

∫
Q

wdµ ≈ exp

(
1

µ(Q)

∫
Q

logwdµ

)
.
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(c) There are constants 0 < α, β < 1 such that for every cube Q

µ ({x ∈ Q : w(x) ≤ βwQ}) ≤ αµ(Q).

(d) There are positive constants C and β such that for every cube Q and for every λ > wQ

w ({x ∈ Q : w(x) > λ}) ≤ Cλµ ({x ∈ Q : w(x) > βλ}) .

(e) w satisfies a reverse Holder inequality. Namely, there are positive constants c and δ

such that for every cube Q and measurable set E contained in Q,(
1

µ(Q)

∫
Q

w1+δdµ

) 1
1+δ

≤ c

µ(Q)

∫
Q

wdµ.

(f) There are positive constants c and ρ such that, for any cube Q and any measurable set

E contained in Q,
w(E)

w(Q)
≤ c

(
µ(E)

µ(Q)

)ρ
.

(g) w satisfies the following condition: there exists positive constants α, β, 1 such that when-

ever E is a measurable set of a cube Q

µ(E)

µ(Q)
< α implies

w(E)

w(Q)
< β.

The following theorem is an extension of the good lambda inequality adapted to weight

w to a more general measure discussed in this section.

Theorem 83. Let w ∈ A∞(µ), and let α > 0. Then there exists a positive constant a > 1

such that for every 0 < ε ≤ 1, there exists η > 0 such that the inequality

w ({x ∈ Rn : Iαf(x) > aλ}) ≤ ηw ({x ∈ Rn : Iαf(x) > λ}) + w ({x ∈ Rn : Mαf(x) > ελ})

holds for every λ > 0.
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Proof. Let Eλ = {x ∈ Rn : Iαf(x) > λ}, λ > 0. Then Eλ is open because Iαf is lower

semi-continuous. Then there exists a family of dyadic cubes {Qj}, called Whitney cubes,

such that Eλ =
⋃
j Qj and

diam(Qj) ≤ dist(Qj, Eλ) ≤ 4diam(Qj).

Because w ∈ A∞(µ), it follows that, for every η > 0, there is a δ such that if Q is a cube

and E is a measurable subset of Q then there is a constant C such that

w(E)

w(Q)
≤ C

(
µ(E)

µ(Q)

)δ
.

That is for every Q ∈ {Qj}, using the Remark 74, we get

w ({x ∈ Q : Iαf(x) > kλ,Mα(f)(x) < ελ})
w(Q)

≤
(
µ ({x ∈ Q : Iαf(x) > kλ,Mα(f)(x) < ελ})

µ(Q)

)δ
≤
(
CεN/N−α

)δ
.

This implies that

w ({x ∈ Q : Iαf(x) > kλ,Mα(f)(x) < ελ}) ≤ Cε(N/N−α)δw(Q).

It then follows that

w ({x ∈ Q : Iαf(x) > kλ}) ≤ Cε(N/N−α)δw(Q) + w ({x ∈ Q : Mα(f)(x) > ελ}) .

The theorem now follows from summing over all Q ∈ {Qj}.

Next we establish a norm inequality for fractional integrals and maximal function.

Theorem 84. Let w ∈ A∞(µ), 0 < α < N , and let 0 < p <∞. Then there exists a positive

constant C, that only depends on N, p, and A∞(µ) constants of w, such that∫
Rn
|Iαf |pwdµ ≤ C

∫
Rn

(Mα(f))pwdµ

for every measurable function f .
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Proof. Without loss of generality, we may assume that f ≥ 0. From theorem 83 we have

weighted good lambda inequality given by

w ({x ∈ Rn : Iαf(x) > aλ}) ≤ ηw ({x ∈ Rn : Iαf(x) > λ}) + w ({x ∈ Rn : Mαf(x) > ελ})

We multiply this inequality by pλp−1 and integrate from 0 to R (R > 0) with respect to λ

a to obtain∫ R

0

w ({x ∈ Rn : Iαf(x) > aλ}) pλp−1dλ

≤η
∫ R

0

w ({x ∈ Rn : Iαf(x) > λ}) pλp−1dλ+

∫ R

0

w ({x ∈ Rn : Mαf(x) > ελ}) pλp−1dλ.

Applying change of variable and a > 1 yields

a−p
∫ aR

0

w
(
{x ∈ RN : Iαf(x) > λ}

)
λp−1dλ

≤ η

∫ aR

0

w ({x ∈ Rn : Iαf(x) > λ})λp−1dλ

+ ε−p
∫ εR

0

w ({x ∈ Rn : Mαf(x) > λ})λp−1dλ.

Now we choose η ≤ 1

2
a−p. This yields

a−p
∫ aR

0

w ({x ∈ Rn : Iαf(x) > λ})λp−1dλ

≤2ε−p
∫ εR

0

w ({x ∈ Rn : Mαf(x) > λ})λp−1dλ. (3.19)

Now let

χ(x, λ) =

{
1, if Iαf(x) > λ > 0;

0, otherwise

Then,∫ aR

0

w ({x ∈ Rn : Iαf(x) > λ})λp−1dλ. =

∫ aR

0

(∫
{x∈Rn:Iαf(x)>λ}

w(x)dµ(x)

)
λp−1dλ.

=

∫ aR

0

(∫
Rn
χ(x, λ)w(x)dµ(x)

)
λp−1dλ.

=

∫
Rn
w(x)

∫ min{aR,Iαf(x)}

0

λp−1dλdµ

=

∫
Rn

(min{aR, Iαf(x)})pw(x)dµ(x).
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Similarly,∫ εR

0

w ({x ∈ Rn : Mα(f)(x) > λ})λp−1dλ =

∫
Rn

(min{εR,Mα(f)(x)})pw(x)dµ(x).

Therefore,∫ aR

0

w ({x ∈ Rn : Iαf(x) > λ})λp−1dλ ≤ C

∫
Rn

(min{aR, Iαf(x)})pw(x)dµ(x).

Using Fatou’s lemma,∫
Rn

(Iαf(x))pw(x)dµ(x) =

∫
Rn

lim inf
R→∞

(min{aR, Iαf(x)})pw(x)dµ(x)

≤ lim inf
R→∞

∫
Rn

(min{aR, Iαf(x)})pw(x)dµ(x)

≤ C lim inf
R→∞

∫
Rn

(min{εR,Mα(f)(x)})pw(x)dµ(x)

≤
∫

Rn
(Mα(f)(x))pw(x)dµ(x).

This completes the proof.
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Chapter 4

Future Motivation

In this chapter we indicate some application and future motivation of our work.

Generalization of the Sobolev Imbedding Theorem:

Definition 85. Suppose f and g are two locally integrable functions on Rn. Then we say

that ∂αf
∂xα

= g in the weak sense if∫
Rn
f(x)

∂αϕ

∂xα
(x)dx = (−1)|α|

∫
Rn
g(x)ϕ(x)dx, for all ϕ ∈ D

where D denote the space of indefinitely differentiable functions with compact support,
∂α

∂xα
=

∂α1+α2+...+αn

∂xα1
1 + ∂xα2

2 . . . ∂xαnn
, and |α| = α1 + α2 + . . .+ αn.

Definition 86. For any non-negative integer k, the Sobolev space Lpk(Rn), is defined as the

space of functions f , with f ∈ Lpk(Rn) and where where all ∂αf
∂xα

exists and ∂αf
∂xα
∈ Lp(Rn) in

the weak sense whenever |α| ≤ k.

The usual version of the Sobolev Imbedding theorem is:

Theorem 87. ([42]) Suppose α is a positive integer, and 1/q = 1/p− α/n. Then

(i) If q < ∞ (i.e. p < n/α), then Lpk(Rn) ⊆ Lq(Rn) and the natural inclusion map is

continuous.
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(ii) If q = ∞ (i.e. p = n/α ), then the restriction of an f ∈ Lpk(Rn) to a compact subset

of Rn belongs to Lr(Rn), for every r <∞.

(iii) If p > n/α, then every f ∈ Lpk(Rn)can be modified on a set of zero measure so that the

resulting function is continuous.

B. Muckenhoupt and R. L. Wheeden [37] establish a good-λ inequality associated to

Lebesgue measure and prove as an application a weighted version of a part of the Sobolev

Imbedding theorem stated below:

Theorem 88. If 1 < p < n, 1/q = 1/p− 1/n and V (x) is a nonnegative function satisfying(
1

|Q|

∫
Q

[V (x)]q
)1/q (

1

|Q|

∫
Q

[V (x)]p/(p−1)dx

)1−1/p

≤ K,

then

‖f(x)V (x)‖q ≤ C

(
‖f(x)V (x)‖p +

n∑
j=1

∥∥∥∥∂f(x)

∂xj
V (x)

∥∥∥∥
p

)
where C is independent of f and ∂f(x)/∂xj is taken in the sense of distributions.

Following their footprints, it is expected to obtain the Sobolev imbedding theorem in

the more general context associated to a Radon measure which satisfies either the growth

condition (2) or the doubling condition (1). This will open a wide range of spectrum for the

future research on this line.

Wolff Type Inequality

Definition 89. Let 0 < α < n, µ be a measure on Rn, and 0 < ρ < ∞. Then the

inhomogeneous Riesz potential of µ, denoted by Iαµ, is given by

Iα,ρµ(x) =

∫
B(x,ρ)

dµ(y)

|x− y|N−α

and the inhomogeneous maximal function, denoted by Mα,ρµ, is defined by

Mα,ρµ(x) = sup
0<r<ρ

1

rN−α

∫
B(x,r)

dµ(y).
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If du = fdx where f is a measurable function on Rn, then the inhomogeneous Riesz potential

of µ and the inhomogeneous maximal function of µ are respectively denoted by Iαf and Mαf .

There is a good-λ inequality associated to inhomogeneous Riesz potential ([52]). The

proof is a modification of the proof of the Theorem 67. The Riesz potential of a function

is controlled in norm by the corresponding fractional maximal function. The corresponding

inequality between inhomogeneous Riesz potential and inhomogeneous maximal function is

the main ingredient in the proof of the following Wolff type inequality ([52]).

C1

∫
RnV µ

ρ dµ ≤
∫

Rn
W µ
ρ dµ ≤ C2

∫
Rn
V µ
ρ dµ

where C1 and C2 are constants,

V µ
ρ (x) = Iα,ρ

(
(Iα,ρµ)1/p−1w−1/p−1

)
is the nonlinear potential of measure µ on Rn, and

W µ
ρ (x) =

∫ ρ

0

(
tαρµ(Bt(x))

w(Bt(x))

)1/p−1
dt

t
, x ∈ Rn.

It can be expected to extend the good-λ inequality relating the inhomogeneous Riesz

potential and inhomogeneous maximal function associated to a measure doubling or non-

doubling. This will lead to the potential inequalities between inhomogeneous Riesz potential

and the inhomogeneous maximal function. This, in turn, can be applied to extend the Wolff

type inequality for such measures. See, for example, D. R. Adams ([1], [3]), and L. I.

Hedberg and T. H. Wolff ([29]).

Riesz and Bessel Capacities

Definition 90. Let 0 < α < n, 1 < p < ∞, and 0 < ρ < ∞, and let E ⊂ Rn. We define

the Riesz capacity of E, denoted by Rα.p;ρ(E), by

Rα.p;ρ(E) = inf
{
‖f‖pLp(Rn) : f ≥ 0 and Iα,ρ(x) ≥ 1 for every x ∈ E

}
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and the Bessel capacity of E, denoted by Bα,p(E), is defined by

Bα,p(E) = inf
{
‖f‖pLp(Rn) : f ∈ Lp(Rn)+ and Gαf(x) ≥ 1 for every x ∈ E

}
.

If we replace Lp(Rn) by Lpw(Rn) (w being a weight function on Rn) in the above definitions

then these are respectively known as the weighted Riesz capacity and the weighted Bessel

capacity and are denoted by Rw
α,p;ρ and Bw

α,p respectively.

It is well known that Bessel and Riesz capacities occur naturally in the study of deeper

properties of Sobolev space Wm,p
w (Rn) for 1 < p <∞. In the case of Lebesgue measure, it has

been shown that that the Bessel and Riesz capacities are equivalent (B. O. Turesson [52]).

We can expect to establish Riesz potential type inequalities between Bessel potentials and

inhomogeneous maximal functions. We may go further to establish that the Bessel capacity

and the inhomogeneous Riesz capacity are equivalent.
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on nonhomogeneous space, Internet Math. Res. Notices 9 (1998), 463–487.

[51] N. S. Trudinger, On embedding into Orlicz spaces and some applications, J. Math.

Mech. 17 (1967), 473–483.

[52] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes

in Mathematics 1736, Springer, 2000.

[53] A. Vargas, On the maximal function for rotation invariant measure in Rn, Studia Math.

110, 9–17.

[54] J. Verdera, The fall of the doubling condition in Calderón-Zygmund theory, Publ. Mat.,

Proceedings of the 6th International Conference on Harmonic Analysis and Partial

Differential Equations, El Escorial (2002.), 275–292.

[55] N. Wiener, The Ergodic Theorem, Duke Math. J. 5 (1939), 1–18.

[56] V. I. Yudovich, English translation: Some estimates connected with integral operators

and with solutions of elliptic equations, Soviet Math 2 (1961), 746–749.

75



Appendix A

Notations

N: Natural Numbers

Z: Integers

R: RealNumbers

RN: Euclidean N-space

|E|, dm, dx: Lebesgue measure

χE: Characteristic function of E

ωN−1: area of (N − 1)-dimensional unit sphere.
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