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SUMMARY

This study is concerned with the vibrations problem con-

nected with variable-thickness plate structures. The method of

analysis employed in this study was first introduced by John C.

Koubolt (1) in his doctoral thesis. This method utilizes finite-

difference equations in conjunction with the principle of mini-

mum potential energy. High-speed computing equipment is a neces-

sity if this method is to be used to its full potential.

The applications consisted of computing the natural frequen-

cies for a series of cantilevered triangular variable-thickness

plates. The nodal patterns were computed for the purpose of com-

parison with present and future experimental results. Computed

frequencies and nodal patterns for the first five modes of vibra-

tion are shown. Experimental results from other investigations

are compared with computed results whenever possible. On the

basis of these comparisons, it is concluded that the method is

accurate in approximating natural frequencies and nodal patterns

for the type of plates analyzed and further applications are sug-

gested.

Appendix C is devoted to computing procedures used in con-

junction with the high-speed computing equipment. Actual compu-

ter programs written specifically for this paper are presented

and discussed.

Appendix B contains computed nodal patterns for which exper-

imental confirmation is not presently available."



INTRODUCTION

At the present time there is very little information avail-

able to insure proper usage of tapered sheet material being pro-

duced for the aircraft and missile industry. V/ithin the last

decade tapered sheet material has become available in great

quantity and therefore characteristics of tapered plates are In

demand. This study provides information concerning the charac-

teristics of vibrating tapered triangular plates.

Although literature on the flexure of variable-thickness

plate structures has been in existence since about 1930, it has

not been until the recent missile age that work has been done on

the vibrations problem connected with these structures. Along

with the space and missile age has come the high-speed computing

equipment which now makes it possible to solve these complex

problems. John C. Houbolt (1), in his doctoral thesis, proposed

an approximate technique well adapted for use with high-speed

computers which is directly applicable to calculating plate

bending. In principle, the technique consists of approximating

partial differential equations by finite-difference equations

in conjunction with the principle of minimum potential energy

and may be applied to plates of any planform or taper ratio.

William Walton (2) reviewed Houbolt 's method and extended

it to the vibrations problem but restricted his work to uniform-

thickness plates. This paper is concerned with the application

of the same basic method but to variable-thickness plates.
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Applications consist of calculations of the natural frequencies

and nodal patterns of several triangular tapered plates.

As a basis for evaluating the method, computed results are

compared with experimental results from other investigations when-

ever possible. As a means of checking computer programs, com-

puted values for the first frequencies of a series of square

plates are compared with values found by another approximate

technique (3).

The computer programs used in this study are presented and

discussed in Appendix C.



REVIEW OF LITERATURE

In 1951, M. V. Barton (4) investigated the natural vibra-

tions problem connected with rectangular and skew cantilevered

plates. In his work Barton used a Ritz approximation technique

to find values for the natural frequencies and their correspon-

ding nodal patterns. This work was restricted to homogeneous

uniform thickness elastic plates corresponding to ordinary thin

plate theory.

In 1952, J. W. Dalley and E. A. Ripperger (5) experimented

with plates of the same type. In their investigations resonant

frequencies were obtained by observing the forced oscillations

of a plate when a pulsating air stream was directed normal to

it. Electronic devices v;ere used to record these resonant fre-

quencies.

Another experimental study of the natural vibrations of thin

plates was conducted in 1953 by P. N. Gustafson, VJ. F. Stokey,

and C. F. Zorowski (6). Their investigations considered trian-

gular shaped plates. By use of a simple electromagnetic driving

mechanism and other electronic devices they were able to obtain

values for the first six natural frequencies as well as the cor-

responding nodal patterns.

In his doctoral thesis in 1957, John C. Houbolt (1) intro-

duced a method of calculating plate bending. This method utili-

zes finite-difference approximations in conjunction with a varia-

tional principle. However, Houbolt restricted his work with this

method to the calculation of moments and deflections for uniform-
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thickness plate structures. VJilliam Walton (2) in 1958 applied

this method to the vibrations problem of plates. He used Houbolt's

method to compute approximate values for the first six natural fre-

quencies and their corresponding nodal patterns for a series of

cantilevered plates. Although he extended Koubolt's method in

general terras, Walton limited his work to the uniform-thickness

problem.

Fred Appl and N. R. Byers (3), ih 1964, used a bounding tech-

nique to find both upper and lower bounds for the fundamental

frequency of several variable-thickness rectangular plates. This

bounding technique was found to be very accurate.



REVIEW OF HOUBOLT'S METHOD OF ANALYSIS

Let V/(x,y) describe local deflections of a plate at equi-

librium under a load p(x,y) acting normal to the coordinate plane

of the plate. Then following ordinary thin plate theory, the

total potential energy, denoted as U, is given by the equation

U = D(x,y)

.,a.„, (0ix^)|poi^).(iM|^;

- p(x,y)W(x,y) Vdx dy (1)

v;hich can be written in the form

U = rr B(x,y)dx dy + //^ C(x,y)dx dy (lA)

in which

B(x.y) = £i§^ '0^] '
^ (0^

+ 2 „
(0Oi^)(|iwO<^) - p(x)W(x,y)

and

0(x,y).£%^ =a-")(|^21^)

(2)

(3)



where

Obtaining an exact solution to equation (1) is not a simple

task. Therefore, an approximate solution will be used.

The energy integral U is evaluated approximately in terras

of the unknown deflections at a finite number of points in the

coordinate plane called grid points. Minimization of the result-

ing expression for U leads to a set of simultaneous equations in-

volving the deflections at the grid points, ...
Grid points are located at the intersection of regular grid

lines as shown in Figure 1. They are identified by numbering in

any convenient order from 1 to NT,

In order to discuss the approximation and subsequent mini-

mization of the energy Integral, Figures 1 and 2 illustrate some

notation relating to the grid points. About every central grid

point where the unknown deflection, W, is to be calculated there

is a cluster of grid points with subscripts showing their direc-

tional relationship to that central point. However, the direc-

tional subscripts are not limited to deflections alone. They are

used to specify any values necessary in the discussion.

Expressing the energy in terms of the unknown deflections

is accomplished in the following four steps:

(1) By use of finite-difference expressions, B(x,y) is

evaluated at each grid point on the plate.
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A

TYPE I AREA ELEMENT

FIGURE 1. ILLUSTRATION OF A TYPE I AREA ELEMENT AND

THE CORRESPONDING NOTATION USED IN THE

APPROXIMATE INTEGRATION OP B(x,y)



y TYPE II AREA ELEMENT

FIGURE 2. ILLUSTRATION OP A TYPE II AREA ELEMENT AND

THE CORRESPONDING NOTATION USED IN THE

APPROXIMATE INTEGRATIONS OF C(x,y). NOTE

,-
: THAT HALF-STATION POINTS ARE USED.
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(2) The values of B(x,y) found in step (1) are used

in a numerical integration to approximate the

value of the first integral on the right in

equation (lA).

(3) C(x,y) is evaluated at half-stations but still is

expressed in terms of deflections at the grid

points.

(4) The values of C(x,y) found in step (3) are used

in a separate numerical integration to approxi-

mate the second integral in equation (lA).

The finite-difference expressions used are as follows:

82W(X ,y) S 1

_3X^
-/

'32w(x,y) 1

[ay- x^

's^vKx.y)"

-uTr-i / o

1

3X Jjy eX

WOE
Wg - 2Wq + W^

NE/2

Wne -
^"'N

-
''^E

*• ^^0

(4)

(5)

(6)

Substituting expressions (4), (5), and (6) into equation (2)

the value of B(x,y) at a typical grid point would be

Bn = r:^ ^(\'}^.j - 2Wo + We)2 ^^(Ws - 2Wo + Wn)'

•» 7?I^(%- 2Wo + W2)(Ws - 2Wo + Wj,) - ^O^^O
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A typical value of C(x,y) would be

^NE/2 " 2 ^(^^NE - '% - 'h ^ '^o)

At the edge of a plate, use of the finite-difference expres-

sions (4), (5), and (6) involve grid points lying off the plate

where V/(x,y) has no meaning. This leads to the introduction of

fictitious deflections at these off plate points just as though

the deflection surface were smoothly extended. These fictitious

deflections enter the energy approximation and are determined by

minimization just the same as the deflections of the grid points

on the plate.

In the approximate integration of 3(x,y), each grid point

on the plate is assigned an element of plate area. Figure 1

shows this type area designation (referred to as type 1 areas).

The contribution to the potential energy from a type 1 area ele-

ment is simply U = aeXB where aeX represents the area of the

element. Integration of C(x,y) requires a separate area break-

down of the plate as shown in Figure 2 (referred to as type 2

areas). The contribution to the potential energy of this type

area element is
°'jje/2^^'-'ne/2*

V/hen the results of the approximate integration of B(x,y)

and C(x,y) are substituted into equation (lA), U appears as a

function of the deflections at the grid points. Then by applying

the principle of minimum potential energy, a set of NRR simul-

taneous equations evolve. These simultaneous equations can be
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written In matrix form as

= eX ctp (7)

Thus far in the discussion no constraints have been placed

on the plate; that is all points have been free to deflect. Now

let us consider the case of a fixed edge \mere the boundary con-

ditions W(x,y) = and l'''(^tV^ = o must be satisfied. To obtain
a X

zero deflections at a fixed edge all that need be done is to sub-

stitute zero deflection into the energy expressions for those

grid points lying on that fixed edge. To simulate a zero slope

at a fixed edge simply assign the grid point one interval inside

the fixed edge the same deflection as the grid point one interval

outside the fixed edge. This eliminates the off plate points at

a fixed edge from the energy expressions. Off-plate points

eliminated in this manner are commonly called image points.

After applying the edge conditions, minimization of the

energy expressions proceeds as with the unconstrained plate and

a set of simultaneous equations is obtained.

If the plate is undergoing unforced flexural oscillations,

W(x,y) can be considered the mode shape if p(x,y) is replaced by

the inertial load of the plate, w^p (x,y)V/(x,y) . If this substi-

tution is made into equation (7) the following equation results.

W = eXw^ ap W (8)

Equation (8) is a characteristic-value, or eigenvalue, problem

which can be solved for the natural frequencies and their corres-
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ponding mode shapes. The method of solution used in this paper

utilizes electronic computers. The computer programs used are

shown in Appendix C.
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APPLICATIONS

In a series of applications the method introduced by Koubolt

(1) was used to approximate the natural frequencies and nodal pat-

terns of four sets of cantilevered triangular variable-thickness

plates. The planform and physical properties for each set are

shown in Figure 3. As with most finite difference techniques, a

fine grid point results in more accurate answers than a coarse

one. Due to limitations on the size of computer available each

plate in this study was divided into 28 finite areas. The plates

were divided in such a way that the regularly spaced grid points

are located at approximately the center of the areas. V/alton (2)

found that this arrangement of grid points was desirable from the

point of view of accuracy of the resulting frequency calculations.

Figures 6-9 (Appendix A) show the grid point location and corres-

ponding area breakdown for each set of plates analyzed.

The thickness of a plate at any point is given by the equation

h(x) = ho(l-Ti), where T is the taper ratio and L is the total

length of the plate perpendicular to the fixed edge. For each

planform five different taper ratios were used; namely 0.0, 0.2,

0.4, 0.6, and 0.8.

For identification purposes each plate is designated by a

two character code. The first character designates the planform

and the second character represents ten times the taper ratio.

For example, a plate having planform B and a taper ratio of 0,6

would be identified as plate B-6. '
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(a) Planform A

10"

(b) Planform B

10"

(c) Planform C

y 10"

(d) Planform D

E = 30 X 10" psi

u = 0.250

h = 0.061" (thickness at fixed edge)

FIGURE 3. PLANPORMS OF THE TRIANGULAR PLATES ANALYZED
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PRESENTATION AND DISCUSSION OF RESULTS

The results of applications made in this investigation are

presented in Tables 1, 2, and 3 and in Figures 4-5 and 10-27

#

Tables 1 and 2 and Figures 4 and 5 are presented to show the ac-

curacy of the method used in this analysis.

In Table 1 a comparison is made between computed and experi-

mental values for the frequencies of the first five modes of vi-

bration of triangular plates. It is seen that, in general, com-

puted values compare well with experimental values.

TABLE 1

EXPERIMENTAL PLATE NATURAL FREQUENCIES
COMPARED WITH COMPUTED VALUES

NATURAL FREQUENCIES (CPS^
PLATE MODE EXPERIMENTAL (b) COMPUTED

A - 1 32.8 32.4

2 91 90

3 -164 164

4 181 .175
5 283 263
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Table 2 shov;s a comparison between two sets of computed val-

ues for the frequency of the first mode of vibration of a set of

variable thickness square plates simply-supported on all sides.

The results found by Houbolt's method shown in this table were

obtained only as a means of checking the computer programs writ-

ten by the author and are not the main interest of this study.

The results computed by Houbolt's method compare very favorably

with those found by Appl and Byers (3) using a bounding tech-

nique,

TABLE 2

COMPARISON OP VALUES OF THE FUNDAMENTAL
EIGENVALUE OP SQUARE SIMPLY-SUPPORTED PLATES WITH A

LINEAR THICKNESS VARIATION

EIGENVALUE (K) FOUND EIGENTALUii (K* ) xS^OIJND K
TAPER RATIO BY HOUBOLTS METHOD (1) BY APPL AND BYERS (3) (~K^)

0.0 376.7

0.2 455.0

0.4 •. 538.8

0.6 528.2

0.8 724.3

* The eigenvalues K and K' are related to the natural frequency

by the following equation

(2nf)2a**p^

389.6 .967

470.5 .967

557.2 .967

650.1 .966

748.2 .968

K = K' =
D
r

where "a" is the length of the plate.
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A term of the form f ^ . is used in the discussion of results.
Ij

Some explanation of this term is necessary. The f represents a

frequency, as described in the list of symbols, while the sub-

scripts i and j identify the frequency as belonging to a particu-

lar mode of vibration of a certain type of plate. The i signifies

which mode of vibration and the J signifies the taper ratio. Thus

f^ represents the frequency of the third mode of vibration of a

plate having a taper ratio of 0.6.

Nodal patterns for each plate were computed as another means

of checking results. In the process of calculating the eigen-

values the eigenvectors were also calculated. The nodal patterns

were then obtained from the eigenvectors, i.e. mode shapes, by

linear interpolation between the grid points. These interpolated

nodal patterns are shown in Figures 4 and 5 of the presentation

of results and Figures 10-28 shown in Appendix B, A comparison

between experimental nodal patterns and computed nodal patterns

Is shown for plates A-0 and B-0 in Figures 4 and 5.

The results shown in Table 3 (a) are the computed frequencies

for plates having planform A, The corresponding nodal patterns

are shown in Figures 4 and 10-13,

It can be seen from the table that the taper ratio has little

effect on the magnitude of the frequency of the first mode of vi-

bration until the taper ratio exceeds 0.6. This is indicated by

the fact that the total increase in the magnitude of the frequency

of the first mode between taper ratios of 0.0 and 0.6 is less than

3% while an increase of approximately 10^ is shown between taper

ratios of 0.6 and 0.8,
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TABLE 3

COMPUTED FREQUENCIES FOR TRIANGULAR PLATES

PLATE FREQUENCY (C]?S)

1 2 3 4 5

A - 32.4 90 164 175
'

263

A - 2 32.7 87 154 166 245

A - 4
.'

33.1 84 144 156 226

A - 6 33.8 81 133 146 206

A - 8 38.1 72 106 119 160

(a)

PLATE FREQUENCY (CPS)

1 2 3 1 5

B - 36.3 139 192 326 431

B - 2 36.8 133 184 305 . 402

B - 4 37.5 126 176 . 281 374

B - 6 38.3 119 167 255 . 338

B - 8 43.0 99 148 187 252

(b)
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TABLE 3 (cont.)

PLATE FREQUENCY (GPS)
. ..

1 2 3 4 5

C - 33.2 159 239 376 554

C - 2 38.7 150 232 348 520

C - 4 39.6 142 227 319 488

C - 6 40.6 132 219 287
'

444

C - 8 45.7 109 193 213 319

(c)

PLATE FREQUENCY (CPS)

1 2 3 4 5

D -
, 39.1 165 295 389 655

D - 2 39.7 156 289 360 606

D - 4 40.7 147 286 331 551

D - 6 41.8 136 274 299 488

D - 8 47.2 114 208 261 335

(d)
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As was the case with the frequencies of the first node the

taper ratio of the plate has little effect on the higher frequen-

cies of the second through fifth nodes if the ratio does not ex-

ceed 0.6. The differences between f and f . f and f , f
20 22 22 24 24

and f are 3-4^ respectively while an increase of 9-10% results
2o

between f ^ and f ^. This same trend is seen in the frequencies
26 28

of nodes 3, 4, and 5,

The pattern established by the frequencies of the first mode

of vibration is distinct from that of the frequencies of higher

modes. An increase in magnitude is shown in the frequency of the

first mode as the taper ratio increases while a corresponding

decrease in frequency is shown in modes two through five, This

increase in frequencies of the first mode was somewhat unexpected.

At first it was thought that computer round-off might be the

cause of this phenomena. However, after recomputing some of the

solutions using a different number of significant digits, it was

found that the results were the same to three significant figures

and therefore the round-off error explanation was discarded.

The pattern taken by the frequency of the first mode is not

restricted to the A-series alone. It occurs for series 3, C, and

D as well.

In Figure 4 experimental nodal patterns are plotted along

with the conputed nodal patterns for the uniform-thickness plate

A-0, Good agreement is shown between these two patterns.

Figures 10-13 show the computed nodal patterns for plates

A-2, A-4, A-6, and A-3, respectively. The taper ratio has small

effect on the nodal patterns in that there is very little dif-

ference between the nodal patterns of the uniform thickness
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(a) Calculated nodes
for node 2

(b) Calculated nodes
for mode 3

— Experimental (6)

O Computed

FIGURE 4. NODAL PATTERNS FOR PLATE A-0
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and those of the variable-thickness plates.

Table 3 (b) shows the computed frequencies for the 3 series

plates. Their corresponding nodal pattern are shown in Figures

5 and 14-17.

The computed frequencies for the B-series follow the same

general pattern as those of the A-series. Again, the taper ratio

has a small effect on the magnitude of the frequencies of the

various modes of vibration until it exceeds 0.6. The difference

between the frequencies then becomes more pronounced. It should

be noted that the frequencies of the third and fourth modes tend

to approach one another as the taper ratio increases. The differ-

ence between f and f is 134 cps while the corresponding dif-

ference between f g and f is only 40 cps. This convergence

will be discussed further in connection with the plates of the C

and D series.

In Figure 5, experimental nodal patterns are plotted along

with the computed patterns for plate B-0. The agreement between

these two sets of patterns is quite good. Nodal patterns for the

variable-thickness plates of the B-series, Figures 14-17, show

only slight variation from those in Figure 5 for the uniform-

thickness plate. The only noticeable variation that does occur

is in mode 3. As the taper ratio increases the third mode seems

to become more of a tranverse mode.

The computed frequencies for the C-series plates are shown

In Table 3 (c). Their corresponding nodal patterns are shown in

Figures 18-22,
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(a) Calculated nodes for
mode 2

(b) Calculated nodes for
mode 3

Experimental (6)

Computed

(c) Calculated nodes for
mode 4

(d) Calculated nodes for
mode 5

FIGURE 5. NODAL PATTERNS FOR PLATE B-0
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Tne computed frequencies display patterns almost identical

to those of the B-series plates. However, the convergence of the

third and fourth modes is more pronounced for the C-series plates.

In fact, they converge to within 20 cps for the C-8 plate.

The nodal patterns also show a definite change for this

plate. Modes 3 and 4 seera to interchange. That is, mode 3 seems

to change from a primarily transverse mode to a primarily long-

itudinal mode while mode 4 changes from a primarily longitudinal

mode to a primarily transverse mode.
,

The computed results for the D-series plates. Table 3 (d),

follow the same general pattern as those of the C-series. The

convergence of the frequencies of the third and fourth mode which

occurred in the C-series occurs in the D-series as well, the

difference between f . and f
. , is only 25 cos. For olate D-4.

-50 4 o ' * *

f and f differ by 45 cps and for plate D-8, f and f differ
^

^ ^^ 38 48
by 53 cps. That is, the difference between the frequencies of

modes 3 and 4 converge to a rr.inimun at a taper ratio somewhere

around that of the 'D-G plate.

Prom the nodal patterns. Figures 23-27, it is seen that a

change occurs bet^^^een tne D-S plate '.and the D-8 plate. As was

the case with the C-8 plate, t;he tnird and fourth modes seem to

interchange. For the D-6 plate, node 3 is primarily a transverse

mode while mode 4 represents prir.ic.rily a longitudinal mode. For

the D-8 plate, hov;ev€r, mod-= 3 is irimarily a longitudinal node

while mode 4 becomes primar:.l7 a t}-ansverse mode. Thus it is

seen that the nodal patterns and tie computed frequencies agree

in that changes occur in bo'^h at approximately the sam.e taper

ratio for both tne C and D series of plates.
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CONCLUSIONS

In this study of the natural frequencies of tapered triangu-

lar plates, calculations were made for a series of plates having

varying taper ratios. Computed values for the first five natural

frequencies and nodal patterns were obtained. By comparing some

of these frequencies and nodal patterns with those found previ-

ously in other investigations it was found that Houbolt's method

is well adapted to computing the frequency of vibration for the

first five modes of vibration for tapered, triangular plates.

It was also found that the taper ratio has very little ef-

fect on the magnitude of the frequencies of the first five modes

of vibration if it is kept equal to, or less than, 0.6, The

nodal patterns have the same trend in that small variations result

if the taper ratio does not exceed 0.6. V/hen a taper ratio of

0.8 was used an exchange in nodal patterns occurs for the C and

D series plates.

Houbolt's method of analysis is quite versatile in that It

can be applied to problems having any planform or taper ratio as

well as to those having various boundary conditions. The fact

'that the solution can be completely computerized is of greatest

importance. With the present and increasing capability of elec-

tronic computers, there is almost no limit to the size of problem

which can be solved.



27

SUGGESTIONS FOR FURTHER RESEARCH

Further research with the natural vibrations problem con-

nected with thin plates is needed in many areas. Among these

areas are plates with longitudinal stiffeners, plates with holes

in them, and sandwich plates.

Houbolt's method of analysis should be directly applicable to

plates having lateral stiffeners and to plates having holes in

them. To solve the sandwich plate problem, however, a certain

amount of modification would have to be made to Houbolt's method

#

Research in all three of these areas is suggested.

Experimental work with the triangular tapered plates analyzed

In this study by Houbolt's method is needed to supplement the

computed results for the natural frequencies and nodal patterns.
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LIST OF SYMBOLS

A - Area of middle surface of plate

B(x,y) - Part of potential energy (See eq, 2)

C(x,y) - Part of potential energy (See eq, 3)

D(x,y) - Flexural rigidity of plate (See eq. 3A)

E(x,y) - Young's modulus of elasticity

h(x,y) - Plate thickness

K - Number of grid points at which load is finite

P(x,y) - Load per unit area of plate

NRR - Number of unknown deflections in the energy expressions

after conditions of constraint have been applied

NT - Total number of grid points

U - Total potential energy of the plate

W(x,y) - Bending deflections of plate

x,y - Cartesian coordinates .

a - Area weighting factor (unity for any rectangular area

in dimension)

e - Horizontal distance between grid lines

X - Vertical distance between grid lines

u - Poisson's ratio

p(x,y) - Mass of plate per unit area

w - Eigenvalue found by computer

f - Frequency in cycles per second

p - Reference value for the mass per unit area of plate

D - Reference value for plate rigidity



29

Matrices:

s - Square matrix NRR x NRR In dimension resulting from

minimization of energy expressions

- Any column matrix
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(a) Calculated nodes
• for mode 2

(b) Calculated nodes
for mode 3

(c) Calculated nodes
for mode ^

(d) Calculated nodes
for mode 5

FIGURE 10, NODAL PATTERNS FOR PLATE A-2
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(a) Calculated nodes
for mode 2

(b) Calculated nodes
for mode 3

(c) Calculated nodes
for mode 4

(d) Calculated nodes
for mode 5

FIGURE 11. NODAL PATTERNS FOR PLATE A-4



ilO

(a) Calculated nodes
for mode 2

(b) Calculated nodes
for mode 3

(c) Calculated nodes
for mode 4

(d) Calculated nodes
for mode 5

FIGURE 12. NODAL PATTERNS FOR PLATE A-

6
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(a) Calculated nodes
for mode 2

(b) Calculated nodes
for mode 3

?-

(c) Calculated nodes
for mode 4

(d) Calculated nodes
for mode 5

FIGURE 13. NODAL PATTERNS FOR PLATE A-8
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^

(a) Calculated nodes for
mode 2

I
(b) Calculated nodes for

mode 3

I

(c) Calculated nodes for
mode 4

/
(d) Calculated nodes for

mode 5

FIGURE 14. NODAL PATTERNS FOR PLATE B-2
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(a) Calculated nodes for
mode 2

(b) Calculated nodes for
mode 3

(c) Calculated nodes for
node k

(d) Calculated nodes for
mode 5

FIGURE 15. NODAL PATTERNS FOR PLATE B-4
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(a) Calculated nodes for
mode 2

(b) Calculated nodes for
mode 3

(c) Calculated nodes for
mode 4

(d) Calculated nodes for
mode 5

FIGURE 16. NODAL PATTERNS FOR PLATE B-6
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(a) Calculated nodes for
mode 2

/

(b) Calculated nodes for
mode 3

/

(c) Calculated nodes for
mode 4

(d) Calculated nodes for
mode 5

FIGURE 17. NODAL PATTERNS FOR PLATE B-8
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DISCUSSION OF COilPUTER PROGRAMS

Due to limitations on the size of computers available, the

computer solution to the vibrations problem was broken down into

two programs. The first program solves for the coefficients of

the simultaneous equations resulting from the minimization of the

energy expression. This program is written for the IBM 1620

computer with 60,000 core storage locations. It takes about 5-7

minutes of actual computer time to solve for the coefficients of

a 28 X 28 set of equations as was used with the triangular

plates.

The second program takes the set of coefficients found by

program 1 and proceeds to find the eigenvalues and eigenvectors.

This program is written for an IBM 1410 computer and requires

60-75 minutes to solve for the eigenvalues and eigenvectors.

These eigenvalues are related to the natural frequencies by the

following equation.

w = 2e^(2nf )^Pt.
D

Where w is the eigenvalue found in the computer solution.

The corresponding eigenvectors found in the computer solu-

tion are an approximation to the mode shapes.

An example set of input data and output results are shown,
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LIST OF SYMBOLS FOR PROGRAMS 1 AND 2

NRR - Number of unknown deflections In the energy expressions

after conditions of constraint have been applied

K - Number of grid points at which load Is finite

LL - NRR - K

NT - Total number of grid points

U - Polsson's ratio

EOL - e/X - Ratio of horizontal distance between grid points

to vertical distance between grid points

N(I) - Number of the central grid point

A(I) - Type 1 area element for grid point "I"

AA(I) - Type 2 area element for grid point "I"

T(I) - Thickness at centroid of type I area at grid point "I"

TT(I) - Thickness -at centroid of type II area at grid point "I"

NE(I), NEE(I), NSE(I), . . . NW(I) - Directional grid point

locations from grid point "I"

S - Total coefficient matrix =

51 - K X K Symetric matrix

52 - K X LL Matrix

T
52 - Transpose of S2

53 - LL X LL Symetric matrix

Si

S2
T

S2

S3



FLOV/ DIAGRAM FOR PROGRAiM 1
59

READ

NRR, K, NT,
U, EOL

READ
N(I), A(I), AA(I),
T(I), TT(I), NE(I)J
NEE(I), . . . ,

NWW(I), NW(I)

COI'IPUTE

PUNCH

SI, S2, S3

( "^" )
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60

PROGRAM 1 CALCULATION OK COEFFICIENT MATRIX
DIMENSION N( 75) ,NNN(75) ,NNW(75) tNN ( 75 ) ,NNE ( 75 ) ,NWW(75)
DIMENSION NE(75) NEE (75) NSE ( 75 ) ,NS ( 75 ) ,NSW ( 75 ) ,NSS ( 75

)

DIMENSION AA(75) .T(75) TT{75) ,S(75),D(75) ,DD(75)
DIMENSION 52(30,30) ,53(30,30) .TIMES (36) ,NW{ 75) ,A( 75)

100 READ 1, U,EOL,NRR,K,NT
1 FORMAT (2F 5.3,31 3)

LLLN=0
PUNCH 444, NRR,<

444 FORMAT ( 13,13)
L=NRR-K
READ 2, (N( I ),A( I) ,AA( I ) ,T( I-,TT( I ) ,NE( I ) ,NEE( I ) ,N5E( I

)

1»NS( I ) ,N5W( I ) ,NSS( I ) ,NNN( I

)

»NNW( I ) ,NN( I ) ,NNE( I ) ,NWW{ I )

,

2NW( I ) ,I=1,NT)
2 FORMAT( I3,4F6.3,12I3)

DO 555 I=1,K
TIMES(I)= l./(SORTF(A(I )*T{ I ) ) )

555 CONTINUE
IF(NRR-K) 111,876,877 -

877 PUNCH 40, ( T IMES ( I ) , I =1 ,K

)

876 DO 3 1=1, NT
D( I )=A( I )*(T( I )**3)
DD( I )=AA( I ) *(TT( I )**3) . .

'

3 CONTINUE
E1=E0L
E2=EOL**2 .

E4=E0L**4
IF(NRR -K) 111,379,378

379 MJKL = K •,

•

GO TO 377 ' '

378 mjk:l=nrr
377 DC 4 I=1,MJKL

Al=u.O
A2=u.O
A3=u.O
A4=u.0
A 5 = 0.0 "

A 6= 0.0
A 7 = 0.0
A 8 = 0.0 .

A9=0.0
A10=0.0
A11=0.0
A12=0.0
AAl=0.u
AA2=0.0
AA3=0.u
AA4=0.0
AA5=0.0
AA6=0.0
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89

AA7
AA8
AA9
AAl
AAl
AAl
DC
S(J

C

Kl =

K2 =

K3 =

K.^ =

K5 =

1^6 =

.K7 =

K8 =

1^9 =

KIO
Kli
K12
IF(
Al =

AAl
GO
Al =

AAl
57 IF(

59 A2 =

AA2
GC

58 A2 =

AA2
60 IF(

62 A3 =

AA3
GC TC 63

61 A3=0.0
AA3=0.0

63 IF(K4)111,6^,65
65 A4=D(K4)

AA4=DD(K4)
GC TC 67

64 A4=U.O
AA4=U.O

67 IF(K5)111,68,69
69 A5=D(K5)

AA5=DD(K5 )

GC TC 80
68 A5=0.0

AA5=0.0

55

56

0.0
= 0,0
= 0.0
= 0.0

1 = 0.0
2=0.0 ••

89 J=1,NRR
)=0.0
CNTINUE
NNN( I

)

NNW( I

)

NN(I)
NNE( I

)

NWW(I)
NW ( I )

NE(I)
NE£( I

)

NSE ( I )

=NS( I )

= NSW( I )

=NSS( I )

Kl)lll,56,55
D(K1 )

=DD(K1)
TC 57
0.0
= 0.0
<2)111,58,59
D(K2)
= DD(K-i)
TC 60
0.0
= 0.0
K3)lll,61»62
D(K3 )

=DD(K3)



62

80 IF(K6)111,81 ,82
82 A6=D(K6)

AA6=DD(K6)
GO TC 83 .: :

8 1 A6=0.C
AA6=0,u

83 IF(K7)lll,84,d5
85 A7 = L)(K7)

AA7=DD(K7)
GC TO a6 .

84 A7=0.0
AA7=0.U

86 IF(K8)113.,107,108
108 A8=D(K8)

AA8=DD(K8) ;>
.

':

\ -"'\,.A ' • ._.-

GC TO 109 '

,

'

''"'""'
'--

107 A8 = 0.0 . .

'•'

AA8=0.u
109 I F(K9) 11 1,110, 121
121 A9=D(K9)

AA9=DD{K9 )

GC TC 122
"

110 A9=0.0
AA9=G.0

122 IF(KIO) 111,123,124
124 A10=D(K10)

AA1.0 = OD(K1C)
GC TC 125

123 A10=0,0 •

A10=0.U
125 IF(K11 ) 111,126,127
127 A11=D(K11 )

AA11=DD{K11)
GC TC 128

126 A11=0.U
AA11=0.0

128 IF(K12) 111 ,129,130
130 A12=D(K12)

AA12=0D{K12)
GC TC 28

129 A 12 = 0.0
AA12=0.0

28IF(K1)5,6,41
41 IF(i^l-NKR)5,5,6
5 S( Kl)= 2.*E4*A3
6 IF(K2)7,8,42

42 IF(K2-NRR)7,7,8
7 S( K2)=2.*U*E2*(A6+A3)+4.*( l.-U)*E2*AA6
8 IF(K3)9,10,43

43 IF(K3-NRR)9,9,10
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9 S( K3 )=--!»

10 IF(K4)12,1
4A IF(K4-NRR)
n S( KA)=?.
1? IF(K5)13,I
45 IF(K5-NRR)
13 S( K5 )=2.
14 IF(K6) 15,1
46 IF(K6-NRR)
15 S( K6)=-4
16 Y=2.*(t4*

(

Z=4.*{ 1 .-U
S( I )=2.*
IF(K7)17,1

47 IF(:<7-NkR)
17 S(K7)=-4.*
18 IF(K8)19,2
48 IF(;<8-NRR)
19 S( <8 )=2.
2 t' I F ( < 1 1 ) 2 1 ,

4 9 IF(K11-NRR
21 S( Kll )=

22 IF(i<;iO)2 3,
34 IF(K1G-NRR
23 S( K10)=-

lAAll )

24 IF(K9)25,2
35 IF(K9-NRR)
25 5( K9)=2.
26 IF(<12)37,
36 IF(K12-NRR
27 S( <12 )=2

37 IF{I-K)773
773 IF{iMRR-K)l
567 LLLN=LLLN+

DC 729 IJ<
S( IJ<)=5(

I

729 CCf TINUE
PUNCH 40,
GC TO 4

221 PUNCH 4C,
00 222 JJJ
KKK=K+JJJ
S2( I ,JJJ) =

222 CONTINUE
GO TO 4

224 DO 223 JJJ
KKK=K+JJJ
LLL=I-K
S3(LLL,JJJ

223 CONTINUE

.*( F4+U*E2 )<^(D( I )+A3)-4.*( 1 .-U ) *E2* ( DD ( I )+AA6)
2,44
11,11,12
*U*F2*(A7+A3)+4.*( l.-U)*E2*DD( I

)

4,45
13,13,14
«A6
6,46
15,15,16
.*( 1.+U*t2 )*( A6 + D(9 ) )-4.*( i.-U)*(AA6+AAll)*E2
A3+4.*D( I )+A10)

)

)*E2*(DD( I )+AA6+ A111+ AAIO)
A6+8.*D( I )+2.*A7+Y+16.*U*E2*D( I)+Z
8,47
17,17,18
( l.+U*F2)* (D( I )+A7—4.*( l.-U)*F2*(DD( I

)

+AA10)
0,48
19,19,20
*A7 .

22,49
)21, 21,22
2.*U*E2*( A6+A1U ) +4 . * ( 1 . -U ) *E2*AA1

1

24,34
) 2 3 , 2 3 , 2 4

4.*(E4+U*E2)*(D( I )+ AID) -4.*(l.-U)*E2*(AA10+

6,35
25,25,26
*U*F2*-(A7 +AlC)+4.*( l.-U) *E2*AA10
37,36
) 2 7, 2 7, 3

7

.*E4*A10
,7 73,224
11,567,221 .,

'

1 ^

'

= 1,K
JK)*TIMES(LLLN)*TIMES( I JK)

(S( I II ) , II 1 = 1 ,K)

(S( I I I ) , I I 1 = 1, K)
= ] ,L

S(KKK)

= 1,L

)=S(:<KK )



6H

4 CONTINUE
PUKH 880

880 FORMAT ( 12H+++++++++ ++

)

40 F0RMAT(6E13.6)
IF(NRR-K) 100»100,376

3 76 PUNCH40,( ( S2 ( I , J ) , J= 1 , L) » I = 1 . K

)

PUNCH 40, ( (S3( I ,J) ,J = 1 .L) ,I = 1»L)
GO TO 100

111 STOP
END



FLOW DIAGRAM FOR PROGRAM 2 65

READ

NRR, K

READ

SI, S2, S3

COMPUTE

EIGENMATRIX

COMPUTE EIGENVALUES
& EIGENVECTORS BY A
VARIATION OF THE
JACOBIAN METHOD

WRITE
EIGENVALUES

EIGENVECTORS

C HALT
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PROGRAM
MCNii
MCNJi
MCNIS
MCNJS
MCN3,$
MCNSS
niMENSICN
t IMENSICN

2 SOLVES
JOB

FOR EIGENVALUES AND EIGENVECTORS

1

4

55
99

333
337
702
802
811

737

719

720

760

779
78
785

800
805

140

200
260

COMT 15»10, PAGES, ,D1LLAS
ASGN MJB»12
ASGN MG0.16
MODE GO, TEST
EXEQ FORTRAN, ,,8,4,, ,EIGN
IPIV0T(38) ,INDEX(38,2 )

A(38,38),D(38) , DUMMY (38)

K.OERNER CIVIL ENGG

F0RMAT(2F1C.7)
F0RMAT{4F18.5)
F0RMAT(E16.6)
F0RMAT(I3)
F0RMAT(13H EIGENVALUES)
F0RMAT(15H EIGENVECTORS)
FORMAT( 13, 13)
F0RMAT{6E13.6)
RFAD{1,702) (NRR,K )

READ (1,1) (E1,F2)
LL=NRR-K
IF (LL)388,738,737
RFAD(1,80 2)(( A(I,J),J=1,LL), I=1,K)
RFU'IND 5

DO 719 1=1,

K

WRITE(5) (A( I ,J) ,J=1,LL)
CONTINUE
READ(1,80 2)( ( A(I,J),J=1,LL),I=1,LL)
N = LL
DO 720 J=1,N
IPIVOT( J) =0
DO 550 1=1,

N

AMAX=0.0
DO 8 05 J=1,N
IF( IPIV0T( J)-l )760,805,760 ;

DO 800 KKK=1 ,N
I F( IPIV0T(KKK)-1 ) 779,800,740
LLLL=1
IF(ABS (AMAX)-ABS ( A ( J , KKK ) ) ) 785 ,800 ,800
IROW=J
ICOLUM=KKK
AMAX= A( J,KKK)
CONTINUE
CONTINUE
IPIV0T( IC0LUM)=IPIV0T( IC0LUM)+1
I F( IROW- I COLUM) 140,260,140
DO 200 L=1,N
cwAP= A( IROW,L)
A(IROW,L)= A(ICOLUM,L)
A( ICOLUM,L)=SWAP
INDEX( I ,1)=IR0W
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INDEX( I »2)=ICGLUM
DUMMY(I)= A( ICCLUM* ICCLUM)
A{ ICCLUiM, ICCLUM)=1.U

DC 350 L=l »N

350 A(ICCLUM,L)= A ( I CCLUM.L ) /DUMMY ( I

)

DC 550 L1=1.N
I F(Ll-ICCLUM) 400 55 0*400

400 T= A{Ll»ICCLUM)
A(L1 »ICCLUM)=0,C

DC 450 L=1,N
450 A(L1.L)= A(L1»L)- A ( I CCLUM, L ) *T
550 CCNTINUE

DC 710 1=1, N

L=N+1-I
IF( INDEX(L,1 )-INDEX(L,2))630, 710,630

630 JRGW=Ii\DEX( L,l )

JCGLUM=INDEX(L,2)
DC 705 KKK=1,N
SWAP= A(KKK, JRCW)
A(KKK,JRCW)= A(KKK,JCCLUM)
A(KK<,JCGLUM)=SWAP

705 CCNTINUE
710 CCNTINUE
74 JDUM=1

REWIND 4

M3 = LL
REWIND 5

500 DC 501 1=1, K

READ(5) (D( IMJ) IMJ=1,LL)
PC 502 J=1,M3
iUM=0.0
DC 503 JJ = 1,LL ..

'

;v

SUM =SUM+D{ JJ)*A( JJ»J)
503 CCNTINUE

DUMMY( J)=SUM
502 CCNTINUE

WRITE(4) (DUMMY( IMJ) ,IMJ=1,M3)
501 CCNTINUE

JDUM=JDUM-1
REWIND 4

IF(JDUM)506, 504,888
504 REWIND 5

REWIND 4

DC 505 J=1,K
READ(4) (DUMMY! I

)

,I=1,M3)
WRITE(5) (DUMMY( I )

,

I=1,M3)
505 CCNTINUE

REWIND 4
REWIND 5

M3 = K
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GO TC 500
506 READ(l,8u2) (OUMMY( I ) ,I = l,i<)

738 DC 998 1=1,

K

READ(1,8U2) ( A{ I ,J) ,J=1 ,K)
998 CONTINUE

IF(LL)b88,741,742
742 DC 712 I=1,K

READ(4) (D( IMJ) ,IMJ=1,K)
DC 7]2 J=1,K
A( I ,J)=A( I ,J)-D( J)
A{ I J) = A( I ,J)*DUMMY( I )*DUMMY< J)

712 CONTINUE
741 N=K

M = N-1
I JKK=0"
REWIND 5

'

20 I 1 = 1

JJ = 2 •

1=1
J = l

98 J=J+1
IF(ABS (A( I , J) )-Fn 103,109,109

103 IF( J-N)98,1G4,104
104 IF{ I-M) 105,110,110 ,

105 1=1+1
J = I

GO TC 98
110 IF{E1-E2)40,40,111
111 E1=E1* .5

GO TO 20
109 II=I

JJ = J

GO TO 106
106 IF(A{ I I , II )-A( JJ,JJ) ) 12,13,12
12 GAiM = A( I I ,JJ) /(2.*(A( I I , I I ) -A ( JJ , J J ) ) )

IF(ABS (GAM)-. 4142 )71, 72, 72
71 F= 2. *GAM/( l.+GAM*GAM)

(= ( l.-GAM*GAM) /( l.+GAM*GAM)
GO TO 14

72 IF(GAM-. 4142)73, 13, 13
73 S=-. 70710678

C= .70710678
GO TC 14

13 C=. 70710678
S=. 70710678

14 DO 57 1=1,

N

3B = C*A( I I ,1 )+S*A(JJ, I )

A(JJ,I )=-s*A( I I ,1 )+C*A( JJ, I )

A( II ,1 )=8B
57 CONTINUE
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61 DC 58 1=1, N
BB = C*A( I ,1 I )+S*A( I ,JJ)
A( I ,JJ)=-S*A( I , I I )+C*A{ I ,JJ)
A( I ,11 )=6t>

58 CONTINUE
IJi<K=IJ<K+l
WRITE(5) IJKK,I I ,JJ,C,S
1 = 1 I

J =JJ
GC TC 103
WRITE(2,333)
WRITE(2,55) ( A( I , I ) ,I=1,K)
DC 301 1=1, N

DC 302 J=1,N
A ( I , J ) = U ,

CONTINUE
A ( I , I ) = 1 .

CONTINUE
l^ = IJKK
f EWIND 5

READ(5) IJKK, I I ,JJ,C,S
DC 303 1 = 1,

N

BB=C*A( I ,11 )+S*A( I ,JJ)
A( I ,JJ)=-S^fA( I ,1 I )+C*A( I,JJ)
Ad ,11 )=BB

303 CONTINUE
I F{M- IJKK) 886,887,88 5

887 WRITE(2,337)
DO 307 J=1,N
BB=A(1,J)
DC 308 1=1, N

A ( I ,J)=A( I ,J)/BB
CONTINUE
WRITE (2,99) J ':,

WRITE(2,4) (A( I ,J) , I = 1,N )

CONTINUE

40

997

302

301

886
885

308

307

888
GC TC 811
STOP
END

MCNSi EXEQ LINKLCAD
CALL EIGN

MONiS EXEQ EIGN,MJB
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U = .25 ECL 1.0 NRR = 25 K = 10 NT 32

.25 1. 25 10
1 1 .0 .125
2 1 .0 .875
3 1 . .125
4 1 . 1.0
5 ] .0 .875
6 1 . c .125
7 1 .0 1.0
8 1 . C' 1.0
9 1 .0 .875

10 1 .02 5 .125
U
1 2

1 3

14
15 •

16
17
1 8

19
7

71
72 .375
73 .5j
24 .5u
25 .5u
76 .50
77 0,,0 0.0
78 1.,75 .125
79 2,,0 .875
^0 2.,0 1.0
^1 2.,0 1.0
^2 7.,0 1.0

32
14 15 3 2 30 4 11 28 12 13 29
3 16 5 4 31 7 12 29 1 14 30

16 17 6 5 4 8 13 1 14 15 30 2
5 6 8 7 32 25 1 30 2 3 31
6 18 9 8 7 24 14 2 3 16 31 4

18 19 ]0 9 8 23 15 3 16 17 4 5

8 9 24 25 26 2 31 4 5 32
9 10 23 24 25 3 4 5 6 32 7

10 20 22 23 24 16 5 6 18 7 8
20 21 22 23 17 6 18 19 8 9

13 12 28 1 27
13 ]4 1 29 2 27 11 00 28

15 14 1 3 11 28 12
15 16 3 2 5 12 13 29 1

17 16 3 6 13 1 14
17 ]8 6 5 9 14 15 2 3

19 18 6 10 15 3 16
19 20 10 9 22 16 17 5 6

- 20 10 21 17 n 6 18
a 21 22 18 19 9 10

19 10- 20 23 22
21 18 9 10 20 24 23
22 21 6 8 9 10 25 24
23 22 5 7 8 9 26 25
24 23 4 32 7 8 26
25 24 31 32 7



EIGENVALUES

EXAr/PLE OUTPUT FROM PROGRAM 2

71

.314837E

.865329E

.627289t

.l3lb693E

.114C69E

.284834E

.18A671E

.A10978E

.395978E

.209339E

02
G2
02
02
02
02
02
2

01
02

EIGENVECTORS

10

l.OOU
-2.720

.504
-1.458

3.919
3.838

-4.702
.328

-.293
-4.791

1.000
1.389

-2.267
-1.2G3

2.144
1.881

2.594
-.935

-2.472
.349

1.000
-.937

-1.415
.122

.516
-1.2 06

.539

.945
.784

-.501

l.GOO
1.812

-.805
3.692

1.902
-.682

-2.127
-.684

-.257
1.023

i.ouo
-1.008

2.814
.852

1.612
-1.167

2.353
-3.037

.777
-1.364

l.CGO
1.054

.189

.159
-.951
-.066

.064

.256
-.340

-1.275

l.OCO
1.193

1.276
-1.7]0

1.219
-.967

-.516
.904

.310

.958

1 . GGo
-.160

-.302
-.331

-.546
.567

-.294
-.782

.777

.564

l.CGU
-4.998

-3.817
-6.692

-3.626
-]2.323

-7.821
-9.772

-12.734
-.368

1.000 .

-1.032
.748
.605

-.249
.383

.176

.781
-1.08 8

.740
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The natural frequencies and mode shapes for a series

of cantilevered triangular tapered plates were computed

by a method first introduced by John Houbolt in his doc-

toral thesis. This method of analysis utilizes finite-

difference equations in conjunction with the principle of

minimum potential energy. To be used to its full potential

Houbolt 's method of analysis requires the use of high-

speed computing equipment.

Applications were made to cantilevered triangular

tapered plates having four different planforms. Five

different taper ratios were investigated for each r>lanform.

Computed results are compared with results from pre-

vious investigations whenever possible. The computed

results compare very well with those found in previous

investigations.

It v/as found that the taper ratio has little effect

on the magnitude of the first five natural frequencies if

it does not exceed 0.6. The same is. true for the nodal

patterns. A definite change occurs only when the outer

end of the plate gets relatively thin, as compared to the

thickness at the fixed edge.


