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GMBHAL SOLUTIONS FOB TH8 MOMENTS
in eoMsmuous $&$&

3YN0P3I3

Formulas for final end moments of prismatic and non—prismatic

continuous i^ulti-span (up to four spans) beams were derived in this

report, basod on the moment distribution theory invented by Hardy

Cross in 1932. The moment distribution method i3 a process of per-

forming a series of cycles of "looking", "releasing", and "balancing"

of the unbalanced moments at joints of an indeterminate structure whose

moments are to be found, and the results are given at each completion

of cycle-performing, only at different accuracy, for the higher the

number of cycles performed the higher the accuracy of the results;

therefore tuo accuracy of the results depend entirely upon how many

cycles are performed by the designing engineer. In this report, each

of the fwwulli derived represents the result of an infinite number

of cycles of "locking", "releasing", and "distributing" of the un-

balanced moment at the joint. Therefore the accuracy now is at its

maximum j i.e., the actual results are obtained.

Since the moment distribution method is not self-chocked, so in

its long and tedious calculation process, it is difficult to keep

from introducing some erroneous values into the process of calcula-

tion; and, once this error i3 induced, the results will be all wrong.

Yet ju3t like accuracy of the results, the higher number of cycles

performed, the higher the possibility of errors being introduced. But

as for those formulas represented in this report, each requires only

the amount of labor for evaluation approximately equivalent to that

required for one cycle of the "locking", "releasing", and "distribut-

ing" process; i.e., it brings the possibility of getting erroneous

results to its minimal degree.

When the moment distribution method i3 applied to solve x'or
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moments of certain structure*, the properties of the structure should

iiown beforehand. The prox>erties of the structure are several

constants such as fixed end moment, sti.. factor and ca-ry-ovor

factor, etc. These are availahlo in a fairly .ride range in the

pamphlet, "Handbook, of Frame Constants", published by the Portland

Cement Association. Therefore, with the aid of this ijamphlot, a great

variety of continuous beams (up to four-span) can be solved accurately

and easily by employing these formulas. As for continuous beams with

span number over four, although the formulas for moments were not

derived in the report, they are readily to be derived based on formulas

for four-span continuous beams available in this report and introducing

imaginary joints in the manner presented in this report.

One of the most important things to a designing engineer of a con-

tinuous structure (usually bridges) is the influence line of the struc-

ture, for it shows the stress distribution (so is the requirement of

distribution of material) throughout the whole structure, thus it ren-

ders the engineer economising his structure of adequate safety possible

to the degree aosired. The formulas represented in this report are

found o_'
,

jr.;at use in constructing the influence lino? as mentioned

before, they rsquire less labor for calculation and give exact results.

There are three numerical examples in this report illustrating the

application of these formulas, both finding the final moments of the

beams and tearing the influence line for the whole structure. The first

example is a two-span continuous beam of variable I throughout the

structure. Second and third are three and four-span continuous beams of

variable I throughout the structure, and again, the beams in these

examples are haunched near the supports.
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Izvfcroducod by Prof. Hardy Cross's classic paper "Analysis of Con-

tinuous Frails by Distribution of Fixed-End Moments" in 1932, the

moment distribution method is now a favorite tool of structural en-

gineers in structural design. This method is used for finding moments

in continuous beams and frames by succesive approximations. That is,

it's practical a process of successively "locking", "releasing", and

"balancing" the unbalanced moments at each joint of an indeterminate

structure. Therefore, the degree of accuracy of final moments found by

this mothod depends solely upon the number of cycles of operation of

this approximation process. This operation aay be discontinued at any

number of cycles or continued to any degree of precision that the en-

gineer may desire. When the process of successively operating the un-

balanced moments at joints progresses to quite a few numbers of oyclos,

an interesting fact is discovered that the sum of the distribution moments

at any joint is in the form of an infinite series:

a + ar + ar + + ar
n

» r" " ""
( l)l—

r

x '

as this principle is introduced into the mothod of ...oment distribution,

the general solutions of final moments in continuous beams, both prism. -

tic and non-prismatic, are obtained, iiach general solution derived will

be able to give the final moments, which is equivalent performed. Since

these general solutions are functions of th d—ond moments, the

carry-over factors, and the stiffness factors of the member, then when-

ever those factors are available, the final moments of the member can

easily be found by means of these general solutions.

An influence lino is a curve whose ordinate (or abscissa) at any

point represents the value of some particular function due to a unit

load acting at that point. The drawing of an influence lino for a con-

tinuous structure subjected to moving live load is considered vitually

indispensable to structural engineers for design and analysis of stross



of the structure. As for drawing the influence linos, these general

solutions are found valuable on account of labor and time saving.

Before the general solutions to be derived, some basic terras and

values indispensable for the moment distribution method which the

derivation is based on, have to be introduced and defined in the

following chapter.

PHYSICAL PB01 I OF PHlSStAfIC ABJ HON-PEI3KATIC B2AMS

Introduction

It can be said that the moment distribution method is a secondary

method, as it can't be employed without the stiffness factors, carry-

over factors, and the fixed-end moments of the structure being deter-

mined beforehand.

As for the determination of these constants, a method called

"moment-area method" is usually employed. After those constants have

been evaluated, the moment distribution method can then be applied

to solve for the final moments,

otiffness Factor, Carry-Over Factor, and Fixod-Bnd

ixoments of Prismatio Members

The stiffness of a boa.; is the moment which can rotate an angle of

one radian of the simply supported end of a beam whose other end is

fixed (Fig. la). As the prismatic beam is of constant cross section

stiffness it is .__

s*-4jp~ (2)

and its carry-over factor, or the ratio of the moments induced at the

fixed end to the moment producing rotation at the simply supportod end,

is

•* (3)

The moment that can rotate one end an angle of one radian of a

simply supported beam is called modified stiffness (Fig. lb)

^"¥- (4)
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When one end of a beam movos a distance d normal to the original axi3,

the moment that can hold the ond tangent in its original direction

(Fig. Ic) is
6M- •=— (5)
IT

If both ends of a beam are completely fixed against rotation and

translation, moments will bo induced at ends when the beam is under-

loading. Those moments aro called fixed—end moments, and can be

evaluated by the momonts-area method. The fixed end moments induced

both by concentrated and uniform loads for boams of constant cross

section and straight axis are shown in Fig. Id and Ie.

Stiffnes3 Factors, Carry-Over Factors, and Fixed-iSnd

Moments of Won-pri3matic Members

The moments diagram of the continuous prismatic beams under uniform

loading shows that the negative moments at the supports are greater

than the positive moments near the center of the spans. Also the shoars

are greater near the supports than elsewhore in the span. For this

reason many continuous beams and girder bridges are haunohed, i.e.,

shallower near mid-span and deeper toward the supports.

When analyzing by method of momont distribution, the haunched, con-

tinuous (or non-pri3matic) beams can be treated in the same manner as

a prismatio beam, only the fixed-end moments, stiffness factors and

carry-ovor faotors aro of different valuos. The modiried stifi'ness

for a simply supported non-prismatic beam is

^
m

- «*-vw < 6 >

The fixed-ond moments, stifflaess factors and carry-over factors can

be evaluated by the moment—area nothod, but it is usually a tedious and

time-consuming task. Thanks are due to the structural engineers of the

Portland Cement Association for their kind contribution of the "Hand-

book of Frame Constants" which offers a wide range of those oonstants.

With the aid of this publication, a great variety of problems of non-

prismatic members can be easily solved by the moment distribution

method.



THE GliNSKAL SOLUTIONS FOB TIE FliiAL HOMERS OP CONTINUOUS B3AMS

Two-Span Continuous Beams

The general solutions for final moments t supports of a two-span

continuous boam subjected to any arbitrary loading are easily obtained

as shown in Fig. 2. tfhon the end of the continuous bear;; is hinged, its

fixed-end moment, just like the stiffness of the beam to be modified,

should bo cancellod and distributed before the general solutions are

applied*

^amplo 1. J)eteimlJM the bending moments at supports of the continuous

beam with parabolic haunches loaded as shown in Fig. 3.

Solution: from the ••Handbook of Frame Constants", the folio- ring values

are obtained:

C
ab * Cba - °' 694 C*,- 0.334 C

cb ' '910

K
ab

" *ba * 12-°# Sc- 14 ' 6# •

Kcb'5.3#

4b " 4a * °- 1025'«l2 4c " °' 2l^L 4b " °«°742PL

3*, - ~f§^<l - 0.334 X 0.910) - 0.50731

\&
- 0-442 2^ - 0.55S

C
ab " Gba " °' 694 °bo " °- 334 G

cb ' °- 910

; £ " "*£• D °' 1025 i/L2 " 0' 1025 x 1 x 900 » 92.25
k""1

K* - 0.213a x 20 x 20 - c
cb

i/
b

65-52 - 0.9M x (-29. 60) 112.54

= -0.0742 x 20 x 20 = -29.68
k""1

mJ - M*
a

* mJ, -92.25 112.54 - 20.29

After the above values are substituted into the general solutions

for two—span continuous beam, the final moments at supports are:

-ab
" 4b " 42baCba " 92 ' 25 " ( 20 - 29)(0.442)(0.694) - 86.04
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FIG. 3 MOMBHT DIAGHAM OP THiiJ TWO-SPAS COiiTlxJUOUS flOH-PflldMATIC BiiAH
EXAMPLE 1
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"b.
" <• - V£ = "92 ' 25 " (°'442)(20.29 ) - -101.2

*T>o
" 4c " D

bc
I,J

b
= 112,M "" (°*538)( 20.29) - 101.2

: cb-°

Throe-Span Continuous Beams

Derivation of the general solution for a three-span continuous beam

is complicated. The process of derivation in detail is presented in

Fig. 4 and 5. In this process, it is seen that all the distributed moments

are in the form of a simple infinite series:

Ko 4 - ^c' 1 * S
'bo * P

bo * •- * Fbo )

fo.u + F
bo

F
b * 4 >

whero It is the final moment at end "b'» of span be due to the unbalanced
DC.,,

moment Mr at support "b". Since F is less than unity, when n approaches

to infinite, F" approaches to aero. This means the above series is con-

vergent. Therefore

4 - 4 - >&.-*£• • "fc.-Ac " < -*^°- (6)

In the same manner, other general solutions are obtained and presented

in Fie. 4.

As for m , the unbalanced moment at support "c" is distributed in the
£ f

same way as for MT. The general solutions for final moments due to M

are pros antod in Fig. 5*

Sxample 2. For the non-prismatic continuous beam shown in Fig. 6.

Find 1. The influence line for ft

2. The influence line for M
a

3. Tho influence lino foflf B.

Solutions from tho "Handbook of Framo Constants"

C
ab

- 0.329 C
dc " °' 766 c

bc
= °' 62<j

G
ba " °* 648 C

cd
- 0.611 c

cb
= °' 678
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I,

S
ab " n ' 07f ^c " 7 - 92T 3

od - >'HP

*ba " 14 - X# J
cb

'- 3# 3
dc ' **HF

MM support "d» is Mnjrt, therefore 3^d
J
cdU- c

ac
G
cd^

= °' 53l3
cd

Jubstituting I and L into stii- ,, the fO&OVlag values are

obtained;

*ab
a °' 065 *o ^c - ' 112 h S

cd • °'°77 h

^ba " °*m *c
S
eb

" 0.1037 JL
C

h* ' °' 429 ^c
= **& D

ob ' °- 931 ^cd " °'°^

^bc " Vbc - °- 359 ^cb ^cb
G
cb

°- 631

F - 3, 1 . - o.2265
bo bo ob

1-P
bc

« 0.7735

ho - \, • °'345 3
cb - F

bc " °' 7°5

The ordinatos of influence) line Tor M, , M. . , 1 and iL. obtained

by substitution of the fixed-end laoiaonta from "Handbook of Frames Con-

stants" into the general solutions presented in Pig. 4 and 5f are

shown in Table I, II, III and IV.

The influence lines are drawn and presented in Pig. 6.

Four-Span Continuous Beams

The derivation of general solutions for the final moments of the

four—span continuous beam will be very complicated ..ithout some assump-

tion made beforehand. Horo an imaginary rigid joint at "d" is intro-

duced, which makos rotation of the joint impossible (Fig. 7). Then

the four-span coutxnuous beam becomes a three—span continuous beam

a-b-c-d and a flroj ond single-span beam d—e.

Three-span continuous boon a—b—c—d can be treated with the general

solutions for throe-span continuous beam already derived (Fig. 4 and

5). Firstly i^ i3 applied and distributed throughout the beam a-b-c-d.

Then the imaginary rigid joint at support "d" is removed and introduced

to support "b". Ifow the unbalanced moment
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< - ujo.
1-F, To dc

b0 X
store at support "d", duo to distribution of MT, is distributed in

this now threo-span continuous beam b-c-d-e. Then tho imaginary rigid

joint is transferred from ,ro" back to "d" 1jTtf*»j and tho unbalanced

moment
g

-

stored at "b'», due to the distribution of Mr" (J i3 again distributed

etc. In this manner the supports "d" and "b" are introduced

the imaginary rigid joint alternately, then the unbalanced moments at

"b" and "d" are distributed accordingly. This process is shown in Pig.

7, 8 and 9. It is seen that the sum of moments distributed is also in

tho form of an infinite series

""b
• 4 +

*boi
+
"ua

+ I4
bc3

+ Sm +

- 4 - <G
bc t» + GdAc + 44 + 44 + >

* dc^c i* + ^c^c + 44 + 44 + •—

>

tfhen n approaches inx'inito, IL will be

<.-£-'£-£°bc
" "dc \o

dc DC

after substitution of the values of G, , G, and R, made in tho above
dc DC DC

expression, simplified, it beco.

. , -. D. (1 - P .) - P.

<.-<,- < r. Fb .\,
bc

<7)
be cd

In tho same manner the general solutions for other moments due to

MT are obtained and presented in Pig. 10.

Also similarly, the general solutions for final moments due to tho
funbalanced moment k, at support "d", are obtained and presented in

Pig. 11. Ao for hi , the unbalanced moment support "c'*, the general

solutions for final moments are derived with the four-span continuous

beam restrained as shown in Pig. 12. ifeke use of the general solution



%
r

J

o

A
I

ll

a
O (Ju

VIT3

il

V
II

w"
8

H H rt

•8

I

1 I

« v

T3

^
A

I

1

I*
fit.

J.

V
II

J

s

o

a*

Y Y
J

5V
ll

I
fit.

J? .

1
t

f

JO

o
fix

•o
u

1

s

p*

o

Vs V
II II

J
v^-Imw -

o
II

-w^T^vrw



17

§

s

H

1H

15

5

n

o
3

9

s

O

O

I
I
«M

I

e

a
a

c

s

T3
s

M
O

v^k«Y>,i,^



18

o
\\\\\w\

9

J

V
II

O
JO

-5
^^i .

n H

7R X
O

J* «8

Y y

I

V

fr-

93
4*

© o

Y y
J

X3

u o

V5 V
II

II

-i o
X

II

«l

^ §

I

o

\

t

P

a

g



iS

•ok

T3
OQ I*,

J 1

I
•a Um
a 1M H

". VV

-JO 1M h

> 1

Io fc
.0 1M H

^ V

Vs

,

I!

•a
^°
1

5a
IH

i

o
I

1

V* Vs

.0 a

^

.O a)

1
t

1

^

u

1

T5
B

r

r

V

J3

1
\ I

«

^ V



20

\\\\\,v-»

V, •
<D

J O

% 1

ri, J«M^ U.
1

• JP Ha
^ tj ^x°

O

1
o
M

to
i

.1
V

*

M

1

^ V

J oM &4

J* '*

•a l!
oM rt

M *±.*o

43 =fV

t

w

t
2

II *HTJ

-o TV

II

X

V

1
*

jo

•a

J

JB

t 8
43 ^1 1Q o

^M00 4i
a ^

.'O 1w" r-\

-"- v
•o_o

Y

*

i

sO

a,

5

s

oMH

o
CO

M
s

O

CQM
|to
S

&

I

Si



v*VyXV>.VWV

1

u.

1

fl

«

o -

o

\

o o>

a
V

•o
T3 o« u<
I iA o

>-> x>
T3 ^U l

M3 H
II «h'o

O 1

O tj
a

o
o O

T 1*

i
\o JO
e Pm

• Q ^
i| ja

.O V 91
o_oa

o

i
ft,

T

H

U4

«^
^.;

u



22

for three-span continuous boa.., tho moment storud at tho imaginary

ri^id joint "b" is»

T)o c 1-F ,

cd

and this moment is then distributed by means of the general solutions

for four-span continuous beam for Mjj, as presented in Fig. 12. The

result, after simplification, is / -, ~ \

-c .jWTl 1
. (8)

similarly, the moment at any support now is the sum of moment in the

restrained three-span continuous beam due to if plus the moment in

four—span continuous beam due to the moment stored at the imaginary

rigid joint "b", such as

•<„-< l-?"-F
b° 0»

CD ° 1 x
bc od

In the same maimer, other general solutions are obtained and

presented in Fig. 12.

Uzample 3. Draw an influence line for M, of the beam shown in Fi;.

13. Solution: from the "Handbook of Frame Constants", tho following

values are obtained:

°ab
= 0.829 c. - 0.648

oa
C. » 0.628
DC

C . - 0.678
CD

C
od

- 0.611 G
dc

0.766 C
dQ

- 0.615 C
ed " ' 917

ab
= U.07JP

IX
Sa = u'Wr *bc

= 7 - 92f K
cb " 7 ' 3#

K
cd

- 9.9657 K
dc " ? ' 9# K

de
17 - 02r K

cd ~ n-^
J
ab

=* 0.065 '%a - -#* ^oc ' °- 112 s
cb

- 0.104

3
cd

0.144 3
dc " °- 115 3

de * °' 172 S
ed " 0a15



TABLii I - IH8LUB8CB LI -^ (*0J .
PLd 2)

Span Itom 0.1L ~-.3L 0.5L 0.7L 0.9L

ab < - -4 0.21 3.48 10.05 11.73 4.83

*

0.09 1.55 4.48 5.32 2.15

4 6.54 13.83 11.05 4.16 0.20

-4 0.28 3.79 10.27 13. 44 6.69

be 0.55*4 3.62 7.66 6.12 2.30 0.11

-°-35<»&, 0.10 1.33 3.59 4.70 2.34

*& 3.72 8.99 9.71 7.00 2.45

4 0.07 1.50 5.20 7.40 3.81

^ G

,

do do
0.05 1.15 3.98 5.67 2.92

od
<d 3.88 9.09 7.35 2.87 0.14

-ST 1.38 3.58 4.03 3.00 1.07

* *bc " °' 446
"b

** M^ - 0.5^4 nj| - 0.350 /
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SASH II - IHFUUffllCB U 08 M , (FOR iSXAij^LJ 2)
•ob

Sjp .- — w 3.31 Q* JL 0.9L

•3,
f f

-.21 J. 10.05 11.73 -

0.01 0.21 w.oO u.'/o 0.29

£ 6.54 13.83 11.05 4.16 0.20

ob
0.2o k19 10.27 13.44 6.69

bo 0.0 0.03 0.34 0.91 1.20 0.60

O.Oo-..
1

0.39 0.83 0.66 0.25 0.00

•**

0.42 1.17 1.57 1.45 o.60

do
0.0? loO 5.20 7.40 3.ol

]4°do 0.05 1.15 3.98 5.67 2.92

cd
' cd

}.8fl 9.09 7.53 2. 0.14

r
3.93 10.24 11.51 B.54 3.06

-ob
;... 9.33 10.

i , re 2.79

•X a
ob

-0.0

ob * " '
"' -' " "

***... - -0.911
OD O
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fifiUS III - I u „.. .-.; . . . ia?£9 i\<~ .. (FUR J JkHM8 2)
•

> «

t/m l%m J-.1L 0.5L Q.7S* 0.9L

1 . .
1

.
i .j r 1

~ ' __________—
„ ,. .

M9 0»1 2.24 2. 1*06

I
ab 0.01 fell 0.30 0.35 0,15

M -0.04 -0.67 -1.94 -2.27 -0.93

•*

0© 3.5 10.

5

17.5 10.

5

3.5

- - . -3.50 -I.23

be M%| -0.21 -0.5? -0.73 -O.30

~, I. ... 5.41 11.85 6,27 1.97

0.69 1.76 .32 1.50 0.54

0.5. 1.79 4.67 5.25 .39 1.40

1.10 2.92 -.23 2.39 0,
p

* JL. is obtained iTosa tabla II.

*• »M i« tltt Mftant o£ siaply supported boas bo,
«J

and *•£ are aauuaod

to bo xoc&ia&anta. 30 only *iu«i load i&ovoa in span bo ft is aot soro.



TAELii iv - imxnssGs una qrdjiisss for i^ (fob isxai-iple 2)

iipaa Item 0.1L 0.3L 0.5L 0.7L 0.9L

E
ob

0.10 0.30 0.50 0.70 0.90

«*/*> 0.00 0.03 0.09 0.11 0.04

ab
<»bo

+
"S)/70 0.00 0.03 0.07 0.08 0.04

*b
0.10 0.36 0.66 0.88 0.98

*ob
0.90 0.70 O.50 0.30 0.10

V5° 0.07 0.16 0.19 0.10 0.04

DC

^c- 2bb )/70 0.02 0.10 0.10 0.08 0.01

H 0.99 0.96 0.81 O.48 0.06

-*ba/5°
0.03 0.07 0.08 0.06 0.02

cd -<V K
cb)/

70 .0.07 0.18 0.21 0.15 0.06

-*b
0.10 0.25 0.29 0.21 0.08

* fi
ob

*s OD '

tain0<i by assuming that M , M? and M
1
are redundants.

** M , is obtained from Table II.
ob



TABLiS V - XWWW01 Un OHDINATBS FOB M^ (fQS KJJRU 3)

Span Item 0.1L 0.3L 0.5L 0.7L 0.9L

ab < 0.21 3.48 10.05 11.73 4.83

% 0.11 1.79 5.18 6.05 2.49

6.53 13.82 11.05 4.15 0.20

-

"-co
0.28 3.79 10.25 13.43 6.69

bo 0.51514 3.36 7.12 5.69 2.14 0.10

-0.15414 0.04 0.58 I.58 2.07 1.03

-«ba
3.40 7.70 7.27 4.21 1.13

4 3.68 9.09 7.53 2.88 0.14

"do
0.07 1.50 5.20 7.40 3.82

od 0.15414 0.60 1.40 1.16 0.44 0.02

-0.069,4 0.00 0.10 O.36 0.51 0.26

%• 0.60 1.50 1.52 0.95 0.28

dc il
d6-

5.62 13.60 12.66 4.10 0.16

-I4
ba

0.39 0.95 0.87 0.28 0.01
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OI

3.40

7.70

7.27

4.21

.13

O)

U1

ro

a

B
o

o
K

6

6



IS

D, - 0.429
Da

J
bc

" 0.571 D
cb

« 0. 419 J>
cd

O.50I

D^ - 0.401 ^de 0.599

\o " a
bc

C
bc

- 0.278 J

ob
- 0.353 S

do
°- 284

£
od " °' 355 J

do " °'W 1 » 0.369

be ho cb
- 0.102

-
F
od

= 0.109 1 -
. r, - f ,

» 0.789
be cd

Substitution of the above valuoa into corresponding general solutions

presented in Fig. 10, 11 and 12 gives

*ba " %a ~ °-^l
'i

* °' 06^ + °' 154iC

when load is in span ab,

ha a -0-515^

when load is in span "be"

K
bft

- -O.515< 0.1544

when load is la span "cd"

\* * ' 154<d - °- 069ML
when load is in span "do"

"ba
" -°.069h£

The ordinatas of the influence line for M. are obtained and shown

in Table V., and the influence line is drawn and shown in Fig. 13.

CONCLUSION

These general solutions presented in this report are derived from

the principle ox" the moment distribution method After a number of cycles

of performing "locking", "releasing" and "distribution" operations of

moment—distribution, it is found that the distributed moments are in

the form of an infinite series:

2 n
a + ar + ar + ar +



This series will be convergent if r is smaller than unity. Based on

this fact, the successively distributing of unbalanced moments moans

consecutive approximation achieved toward the limits of series, as it

ia known that r is less than unity *» moment distribution process? and

when moments at joints are completely balanced, it means that the limit

of the series is reached.

It is known that the moment distribution method is not self-check-

able | onoe an error has been introduced during the calculating process,

it will then be undetectable distributed throughout the whole structure

just a3 any other moment. Especially when higher accuracy of the final

moments is required, the possibility of error-inducing i3 increased

accordingly, since mox-a cycles of distribution are required for higher

accuracy results and the possibility of introduction of errors is

proportional to the cycles performed. But t-;is possibility is decreased

to its minimum when those general solutions aro employed* meanwhile

the maximum accuracy is required.

Por finding the values of final moments and drawing influence line3,

these general solutions are found effective for ti...o-javing purposes.

They require loss than two-thirds of the time for determining the

ordinates of an influence lino than the conventional method requires,

and much less time for finding final moments, for highest accuracy.

All these general solutions are functions of carry-over factors,

stiffness factors aid fi;:ed-ond moments. Therfore when those values

are available, olio final moments of the subject structure can easily

be determined by means of those general solutions. Before these general

solutions are employed, a little time in required to determine the

values of several terms of the general solutions, but the time required

for evaluating tiie results of general solutions is little. The general

solutions therefore are found of special use when the final moments

are required for one structure under several different loading conditions.

The general solution for three- and four-3pan continuous beams can

again be used for derivation of that for multi-span continuous beams

when tho imaginary rigid joints are introduced.
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APPSH2IX H0TAI10NS

C , Carry-over factor from "a" to "b"

D , Distribution factor at end "a" of boam "ab", or spaa "ab"
ao

E Modulus of Elasticity of a beam

I Moment of inortia of a beam

L Span length

M Bonding moment of a beam

M^, Fixed 2nd Moment of beam at end "a" of span "ab"

.Z Sum of the fixed end moments and unbalanced external moments at
joint "b"

P Concentrated load

3 h
Stiffness factor of end "a" of beam "ab" or span "ab"

8 , C , x D .

ab ab ab

F
ab

E
ab

x ^a
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This papal1 is to it a sot of general solutions for prismatic

and non-prismatic continuous beams, which are in the form of formulas,

derived from the principle of the mociont distribution method.

The principle of the moment distribution method is to assume oaoh

joint (excluding the built-in ends) of the indeterminate structure

being considered can be repeatly "locked", then "released", and finally

the unbalanced moment accumulated at that joint "distribute I '. ..'here-

fore it -3 actually a method of uuccossivo approximations. But now in

this report, these formulas will give exact results, since MWfa formula

represents an infinite umber of repetitions of performing these "lock-

ing", "releasing", arid "distributing" operations. Therefore when these

formulas arc employed, not only considerable labor for calculation will

be saved than would be required for moment distribution method, but also

the high tendency of introducing errors in computation of the moment

distribution method will bo brought to its minimum.

jince these general solutions wero obtained on tho samo basis of

..oment distribution method, the structure constants should be known

prior to tho application of these formulas. The structure constants are

availablo in a ;o in the pamphlet "handbook of Frame Constants"

published by the Portland Cement Association.

There are also throe numerical examples given in this report illus-

trating the application of those formulas for both finding final moments

of the continuous members and determining the influence lino ordinates.


