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GENERAL SOFTWARE FOR TWO DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

1. INTRODUCTION

Very little general purpose software for the numerical solution of partial
differential equations (PDE's) now exists; so many of the time consuming and
difficult processes involved in solving PDE's numerically still remain. Until
recently all software was designed to solve specific problems or at best a small
class of related problems (4, 9, 10, 12, 14, 15]. However, robust software
developed by Madsen and Sincovec [8] is now available for the solution of a
moderately wide class of one dimensional initial value nonlinear PDE's. This
software utilizes the numerical method of lines [7]. Basically this method
consists of discretizing all but one of the independent variables (usually the
spatial variables). The resulting system of ordinary differential equations
(ODE's) (usually in time) is then solved by an ODE integrator. The moti-
vation for this approach is that the "state of the art" of the solution of
systems of ODE's is much more sophisticated than that for PDE's. Current
ODE integrators (Gear [1],Hindmarsh [2,3],Krogh [5],Shampine and Gordon [11])
can determine the solution of stiff nonlinear ODE's, provide dynamic capa-
bilities for altering step size and method order to maintain stability and
preserve a user specified accuracy. Therefore, by using the method of lines,
a large portion of the complexity of developing suitable general software
1s passed to the already developed robust integrator.

We have two basie purposes in this paper. The primary purpose is to
present a general software interface for two dimensional PDE's and discuss its
capabilities, limitations, and ease of use. The other purpose is to discuss
the matrix problem, related specifically to the numerical solution of two
dimensicnal PDE's. We include this because efficient solution of the matrix
problem is crucial in the solution of many nonlinear systems of PDE's.

The general software interface presented in Appendix A and described



in this paper is designed to simplify the solution of PDE's having one inde-
pendent variable in time and two independent spatial variables. No capable
robust software now exists for this problem. This software interface is a
natural extension of the software developed by Madsen and Sincovec [8]. The
extension consists of increasing the number of spatial variables to two and
changing from three point centered differencing to five point centered differ-
encing. Since many of the detailed comments in their paper are applicable

to our interface, the reader would be well advised to familiarize himself with
that paper. With this software interface, the user is required only to provide
the spatial mesh and define the problem to be evaluated. The interface will
then convert this system of PDE's into a system of ODE's which the ODE inte-
grator then solves.

For the solution of nonlinear problems a Jacobian matrix is required.

Since the resulting system of ODE's can become quite large for two dimensional
spatial meshes, an efficient method of generating the Jacobian 1s essential,.
Consequently we also include in this paper a discussion of the related matrix
problem., The Jacobian generated from five point differencing has a well defined
banded structure. The emphasis in this paper will be placed on optimizing the
number of function evaluations needed to generate this banded matrix. We

also provide a modification in Appendix B to improve the efficiency of omne

of the available robust integrators, GEARB by Hindmarsh [2].

This paper consists of seven main sections. In the following section we
defiﬁe the general class of PDE's allowed by this interface. Included in that
section are comments about some of the limitations of this class of PDE’s.
Section 3 defines the difference approximations used by the interface to convert
the system of PDE's to a system of ODE's. The efficient generation of the Jaco-

bian matrix in relation to this software interface is discussed in Section 4.

The fifth section provides the detailed description of the use of the interface.
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With the minimal effort described in that section one will be able to obtain
accurate results for a moderately wide class of PDE's. Section 6 lists some
nontrivial numerical examples designed.to indicate the capabilities, limita-
tions, and ease of use of the interface. We conclude with a section containing
general observations about the efficient use of the interface, comments about

its validity, and its space and time requirements.

2. GENERAL PDE DEFINITION

We now define the problem structure allowed by the software interface.
We believe this structure includes a reasonably wide range of the possible
PDE forms.

Let NPDE denote the number of PDE's over the region R for which a solu-

tion, uz(t,x,y) (¢ =1,2,...,NPDE) is desired. R is defined by R = {(x,y) [

a <x g_bl, a, 2y f-bz}' The coupled system of PDE's is defined as
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£ =1,2,... ,NPDE , t > t, ,

and initial conditions

(2.4) ug(to,x,y) = ¢L(x,y) , for (x,y) e R, & =1,2,...,NPDE .

All functions fz’DHE,k’ sz,k’ AV BVE’ CVI, AH , BH

least piecewise continuous functions of all their respective variables.

CHE and ¢£ are at

g’ L’ L’

DV (D ), the diffusion coefficient in the vertical (horizontal) direction

g,k Py x
is a function of t,x,y and . If BV2 # 0 (BHz # 0) then the boundary coef-

ficients, AV BVE and CVL (AHQ, BH, and CHg) may be functions of t,x,y and

L

)}, but otherwise they may only be functions of x,y and t.

2!
+=(
u = ul’u2""’uNPDE

All three types of boundary conditions, Dirichlet (BHE or BVE = 0), Neuman
(AHL or Av£ = 0) or mixed (AHL # 0, Avﬁ # 0, BHz # 0, BV£ # 0), are handled in
such a way that there is no need to distinguish between types. This allows
the flexibility of using any boundary type with each PDE and of changing the
type with respect to time. Also the initial conditions need not be consistent
with the boundary conditions (i.e. satisfy the boundary conditions as x or y
approaches a boundary).

One should be aware of some of the limitations of this problem definition.
As noted in the following section, the difference approximations for an ODE
depends on the location of the spatial mesh point associated with that ODE. To
minimize the complexity and overhead of the interface, the region R is restricted
to the shape of a rectangle. Also the difference approximations require the
mesh to be defined with a minimum of three mesh lines in each direction. Con-
sequently this interface can only be used to solve PDE's having one independent
variable in time and two independent spatial variables (i.e. a # b1 and a, #

bz). The other limitation we note is that no provision is made for terms of
2

X3y

the form Certainly even with these limitations, the problem (2.1)-(2.4)

stlll encompasses a reasonably wide class of PDE's.



3. SPATIAL VARIABLE DIFFERENCING

From the user defined problem (2.1)-(2.4), the software interface gen-
erates five point centered difference approximations to convert the system of
PDE's to a system of ODE's. This section provides the detailed definition
of these difference approximations. In order to obtain meaningful results
one does not need to understand the internal details. However we feel that
the better one understands our methods the better use he can make of the
interface.

The user definition includes the spatial mesh, the points where a function,
uz,i,j(t) approximates the true solution uz(t,xi,yj) to the system of PDE's.
This mesh consists of the intersection of a sequence of (NX) lines drawn
parallel to the horizontal axis with a sequence of (NY) lines drawn parallel
to the vertical axis. These lines intersect the axis at a) =X <Xy < ... <
N © bl and a, =y, D S S i b2 respectively. The mesh spacings

are defined as Axi = X - x, and ij = yj+1 - yj. Careful consideration is

i+l i
required in choosing the mesh as the accuracy of the solutions is dependent on
selecting a suitable mesh.

The differencing used to generate the ODE depends on the position of its
assoclated mesh point. The difference equations presented in this paper were
derived using an integration technique similar to that mentioned in Varga [13].
The differencing depends on whether the mesh point is 1) in the interior of
the mesh, 2) on a side of the mesh but not on a corner or 3) on a corner. We
will present each of these cases separately. In all cases we denote the approx-

imating function up g (t) by u
2 1

] L,1,3°

Case 1
We define first the approximating difference equations necessary to

evaluate (2.1) for the mesh point (xi,y ) when 1 <1 < NX and 1 < § < NY, This

3



requires approximating values for the arguments u, u s uy, = (DH

and %; (DV2 K %%) (k = 1,2,...,NPDE) of (2.1). The difference approximations

->

we use for the EEE PDE are:

(3.2a)

(3.2b)

(3.2¢)

(3.24d)

(3.2e)
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+ - |"1,1,341 UL UNPDE,1,j+1 T UNPDE,1,]
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Case 2

For the second case the approximating difference equations are defined for
a mesh boundary point (xi,yj) on either a horizontal (1 < i < NX, j =1 or
J = NY) or a vertical (i =1 or i = NX, 1 < j < NY) boundary. We will only
show the difference equations for a point on the lower horizontal boundary
(j = 1) as the equations for the upper horizontal boundary and both the left
and right vertical boundaries are completely analogous.

When constant boundary conditions (BHl = 0) exist at the point being eval-

CH
. 2
uated, uL,i,l is determined exactly from (2.2) by ul,i,l = Kﬁ; . Clearly no
differential equation needs to be generated in this case. However to preserve
du
[
the structure of the system of ODE's we define -EtiLl =0,

For a point on the lower boundary with changing boundary condition,

approximating equations are required for all the arguments of the function

_.’.
(2.1). u_ and %E DH, - auk remain the same as defined for a point in the
- .o
T 8x
center of the mesh. We will therefore only define equations for :, 3&, and

3 [DVz kauk] . For the EEE-PDE at (xi,yj), 1 <i<NX, j=1with BH, # 0,

oy ay

we use the approximations as follows:

(3-33) uk(t’x!Y) t uk i 1 ?

LR |



(3.3b) Uk,1,2 T Yk,
du, (t,x,y) A » BB =0, ki,
Uit 24 x ) )’1
dy
(3.3c) CHy — AUy 4.1 o & B
B x BH ;
{ k
(3.3d) 1
el -D .
y1+14 g yl ( E:k)i’1+!§ Vﬁ;ksjsl)
Y,i1,2 ~ Yk,1,1
Ay, !
3 au, (t,x,y) 1f B = 0y kAR
B g B k&
3y 2k Jy L
- 1u
(3. 3e) 1 D, L 4 ga “k,i,zA k,i,!
Y14 ~ N1 Pyt TE Y1
- CH — A i1
R-:k:isl BHk 2
if BH # 0 ,

where (k = 1,2,...,NPDE), DV are defined by (3.2f) with j = 1.

2,k,i,1+s Y14k

We note that the approximations (3.3b) and (3.3d) are not five point centered

difference equations. Clearly if BHk # 0, the boundary condition provides an

3
exact value to N in (3.3c) and (3.3e). However for the case BHk =0, k # %,
du
an approximation is needed for the argument sg— of the function fE' There-

fore these one-sided approximations (3.3b) and (3.3d) are required.

Case 3

The finél case is to evaluate (2.1) at (xi,yj) where 1 = 1 or 1 = NX
and j = 1 or J = NY, We will again only show the equations for one case
(x = 3 and y = yl) as the other three corners are completely analogous.

Since the point is affected by both the horizontal and vertical boundary



conditions we must consider the three possibilities: 1) when both are constant,
2) when only one is constant, and 3) when neither boundary condition is constant.
The first case is when constant horizontal and vertical boundary condi-

tions (BH1 = BV, = 0) are present at (xl,yl). To most nearly approximate

1
a realistic solution, an average of the two boundary conditions is taken.
Hence we define:

CH cv
3

+—==) , BH, =BV, =0 .

=Ll _2
(3.4a) Y2,1,1 T 2 ( AH, AV 3

Consider now (xl,yl) with one boundary condition constant and the other
changing. We assume that in a realistic sense the constant boundary condi-
tion is more apt to "dominate" the solution. Hence U1l is defined in this

- Il |

case to be the constant boundary condition, i.e. we define:

CHl

(3.4b) ul,l,l = E - BHQ =0, BV£?‘ o,
Cvg

(3.4c) 1..1.R”1’1 = HI 3 BHR. £ 0, BVE.= 0o .

For these first two cases we consider the approximations (3.4a)-(3.4c) to be

exact, so no ODE is required. As for Case 2, we set du£!1!1 =0 to pre-
dt

serve the structure of the system of ODE's.

The last possibility, when both boundary conditions are not constant,

requires the interface to evaluate (2.1), i.e. find approximating values for
->
du

-
du du
£,k oy

> > B
u
ax

u, u
nxsy

BH, # 0, and BV, # O these approximations are:

d 9 th _ _
i 5;( DHE,k ) and 3;( DV ). For the 2—PDE at x = %5 Y =Y

(3.44d) uk(t,x.y) i uk,l,l
uk,_z,l - uk,l,l . ka =0, k#2,
u (t,x,y) A%y
(3.4e) 2 (E,%,y) ﬁ
X CVk - AVkuk ' BV 40,
= k
ka




=10~

’
Yk,1,2 7 Yk,1,1 BH =0, k # ¢,
Ay
(3.4£) du (t,x,y) " 1
3y -
CHy =AY 1.1, BH. # 0,
BH k
k
r L (DH DH )
— 1 -
xl+’4 X, 2,k,1+5,1 £,k,1,1
Y%,2,1 ~ Yk,1,1 ,
Axl
2u (,%,7) if BV, =0, k 42,
(3.4g) 2 |pun i Sadiddd A
18 ax | 2,k ox y u
1 - k,2,1 "k,1,1
X T % 2,k,1#5,1 Axl
- OV = BVl 4 4
%,k,1,1 | BV,
\ if BV, # 0,
( 1
:"1_}4& - yl (sz,k,1,1+!5 - Dvg-,k-sls]-)
Y,1,2 uk,l,l]
Ayl
3 (o500 if BHk=0,k7!l,
(3.4h) I P Shiddisid BN
' ay E)k ay u =u
1 - T 0.2 00
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2,k,1,1 BH, J ’
| if BH_# 0,
where DH sz,k,1,1+14 and y1+1§ are defined by (3.2f) with 1 =1

2,k,145,1° *143
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and § = 1.

The motivation for handling the three possibilities differently is to
keep the interface simple and yet provide the same general boundary conditions
(2.2)-(2.3) at the corners. We feel that knowledge and judicious use of these
three possibilities will allow the user to define boundary conditions con-
sistent with physically realistic situations.

The spatial variable differencing results in the system of ODE's of the

form:
dui!j = + - -+ >
- =
N NS I R R RO SRR R U R U

1=2,3,...,8x -1, §=2,3,...,N¥ -1 ,

2,m,j m,j’ “mn,j’ “m,j+1° “m,j-1

(3.5b) T?;l"i = f (e, B 11 3 iy

2,3,.::,NY-1 ,

(m=1, mn=2) or (m=NX, mn=NX-1), j

(3.5¢) d:i’m B E2.,i,m (e, 3i,m’ l-;’.:i.,mn’ 3i+1,m’ l.:l)'.:l_-—l,m) ’
(m=1,mn=2) or (m=NY, mn=NY -1), 1i=2,3,...,Nk-1 ,
dum 1 = -+ -+ -
(3.5d) —E?A“ = fi.m,l (t, um,l‘ umn,l’ um,Z) ’
(m=1, mm=2) or (m=NX, mn = NX - 1)
(3.5€) E;%;HX = EL,m,NY (t, aﬁ,NY’ Gﬁn,NY’ Il1“111,NY-1) ¥

(m=1, mn=2) or (m=NX, mn =NX - 1)

for & = 1,2,...,NPDE, £t =
E, where Ui,j (ul,i,j’ u2,i,j""’ uNPDE,i,j) ;



] G

The usefulness of the method of lines approach can now be realized because
the resulting system of ODE's can be solved using the powerful and advantageous
capabilities already develcped in ODE integrators. Present ODE integrators
automatically select step size and up to twentieth order methods to maintain
stability [1, 6]. They can also solve stiff nonlinear ODE's to a user speci-
fied accuracy [1, 2, 3]. Certainly to implement these capabilities would take
a considerable amount of time and effort. We refer the reader to [8] for a
detalled discussion of interfacing with the ODE integrator.

In summary, there are three basic steps in the solution of a system of PDE's.
First the user defines his problem and sets up a spatial mesh. Then by using
five point centered differencing at each mesh point, the software interface
generates a system of ODE's. These approximations depend on whether the point
is an interior mesh point, a boundary mesh point, or a corner mesh point. Then

the final solution is determined as the ODE integrator solves the system of ODE's.

4. THE MATRIX PROBLEM

The differencing discussed in the previous section results in a system of
(NODE = NPDE x NX x NY) ODE's. The solution of nonlinear problems often requires
the use of the Jacobian matrix, J = 9f/du = (3, /3u) (1, = 1,2,...,NODE) with

fi defined in (3.5) and u, denoting the current solution for one PDE at one mesh

B
point, Clearly this matrix can become quite large (NODE,NODE) for even rela-
tively few mesh lines. Also note that the generation of the matrix requires a
large fraction of the function calls in the solution of the problem. Therefore
the efficiency of any general software for two dimensional PDE's hinges on the
efficient generation of the matrix. Efficiency is related to the number of mesh

points since increasing the number of mesh points iIncreases the time of each

function evaluation. Consequently since accuracy often depends on the number of
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mesh points, the number of function evaluations (NFE) necessary to generate the
Jacobian should be independent of the number of mesh points.

Before we can efficlently generate the Jacobian we need to know its struc-—
ture. Five point differencing results in the well defined banded structure shown
in Figure 1. Because it assumes the matrix has a banded structure, GEARB is
especially useful for our interface. We will be primarily referring to GEARB
in the remainder of our discussion.

PSETM, the routine we present in this paper for the generation of the Jaco-
bian is a modification of PSETB, the routine used in GEARB for generating the

matrix., PSETB uses the approximating equations,

of
i .
{(4.1) 3;; v (fi(uj + rej) - fi(uj))d, (i, =1,2,...,NODE), d a small number
where r is a small increment and e, denotes the standard unit vector, to approx-

3

imate entries in the Jacobian matrix. For robustness PSETB evaluates the Jaco-

bian as a fully banded matrix (i.e. f ). From

i = (uinL""’ui""’ui+MU
Figure 1 the upper (MU) and lower (ML) band widths can be figured to be ML =
MU = NPDE x (NX + 1) - 1. Clearly the Jacobian evaluation can be improved by
evaluating (4.1) for only the nonzero entries in the matrix (i.e. fi = (uL, ues
uU) where uy is the NPDE entries in the lower band, Ue is the 3 x NPDE entries

in the center band, and u, is the NPDE entries in the upper band of Figure 1).

1)
We can optimize the number of function evaluations for five point differencing
by simultaneously evaluating in one function call, (4.1), for all those points of

the mesh in the pattern indicated in Figure 2. This is possible because f, depends

i
on at most one of these points. It is easily verified that six function calls

(NFE = 6), regardless of the size of the mesh, is all that 1s required to eval-
uvate the Jacobian for each PDE. Consequently the total number of function eval-

uations is NPDE x 6, PSETM can be used In conjunction with GEARB in order to

optimize the Jacoblan generation for five point centered differencing metheds.
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Figure 1

The Structure of the Jacobian Matrix

The Jacobian 1s a block-tridiagonal matrix of size NY blocks by NY blocks.

It has the structure:

1 Y
2 G Uy
Ly €3 Uq

Lyy Svy Umy

Lyy Cwy

.

J
where MY = NY - 1. The blocks Cj’ Lj and Uj in the th row of the Jacobian

contain all the entries generated for the approximating ODE's (3.5) at x
(1 =1,2,...,8X) and y = yj.

= X
i
Each block is a square matrix of size NX blocks

by NX blocks where Cj is block-tridiagonal and L, and U

j j are block diagonal,
r 5
d) ¢
8y d; &
83 d3 o3
C = L] L]
h |
£ d
Mx ‘Mx Emx
L Byx dnx ‘
r 5 r b
& By
a2 b2
- by
Lj = . and Uj -
ax bux
L X L °Nx

where MX = NX - 1.
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(Figure 1 continued)

j° Lj and Uj are full NPDE by NPDE matrices.
+-_
j? Lj and Uj' Let £ = (fl, £
-+ >+
fi defined by (3.5), u = (ul, u2""’uNODE) and (af/au)ii,jj denote the

All blocks contained in C

Consider the :L—t-l—1 blocks of C ) with

2""’EN0DE

partial of t at x = x, and y =y, with respect to U at x = X4y and y = yjj

i 3
(i1 = 1, 141 and jj = j, j*1). The entries contained in the iEh'blocks of

C,, L, and U, are generated from the approximating ODE, fg (3.5) at x = x,

i’ 73 3

and y = Yj’ where:

;
( the g.Ell block of C, ) i y
* 3 (3u) 1-1,3

(3F)
]
su) 1,3

( the diEE block of Cj )

“

{ the eiEE block of C. )
J 1+1,]

!

( the aill-h block of L. )
J ouj 1,j-1

( the biEE block of U, )
1,5+1
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Figure 2

The Generation of the Jacobian

(i-2,j+2) (i+1,3+2) (i+3,j+42)
L] * - - * L] - *
(1-33 j ) ( i s j ) (i+3 s j )
* L] - * L ] . * -
(i_zsj_?-) (i+lsj"2) (i+3 sj_z)
[ ] * . L] * - L] *

The * denotes the mesh points for which the partials (4.1) may be
simultaneously evaluated. The rectangle denotes the six points requiring

separate function calls to the interface.
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We refer the reader to the listing of PSETM in Appendix B.
For a comparison between PSETM and PSETB, we consider the number of Jacobian
entries determined by each of these routines in one function call. Since this

determines the number of function calls necessary to generate the matrix, it is

a useful comparison. With each function call PSETM determines E§~§—EX points

NX % NY x NPDE ~ 1
2((NX + 1) x NPDE) - 1) + 1 °

it turns out, the number of points determined by PSETB is only slightly dependent

As

in the Jacobian while PSETB evaluates at best

on NPDE. We therefore now make some specific comparisons between PSETB and PSETM
independent of NPDE. For a 3x3 spatial mesh, PSETB needs about 30% more function
calls, for a 10x10 mesh it needs about 3.6 times more function calls, and for a
100x100 mesh, PSETB turns ocut to need over 33 times more function calls than PSETM.
Clearly this is important since as the number of mesh points increases so does

the time for each function evaluation. Since the time requirements are very
dependent on the number of function evaluations, PSETM will significantly improve

the efficiency of the generation of the Jacobian.

5. USER DEFINITION OF THE PROBLEM

This section presents the minimal effort required by the user to make use
of the software interface. The problem is completely defined by a small main
program and five subroutines, BNDRYH, BNDRYV, DV, DH and F. The main program
defines the mesh, sets the initial conditions, provides the interface to the
integrator and prints or plots all the output. The routines BNDRYH and BNDRYV
define the horizontal and vertical boundaries respectively, DH and DV define the
horizontal and vertical diffusion coefficients respectively, and F defines the
PDE.

For the routine constructions that follow, T is the current time, X and

Y define the position in the spatial mesh for the horizontal and vertical direc-
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tions, and U 1s the current solution of the PDE's at the point defined by X and
Y. We will show a detailed description of the construction of each of these
routines. In each case we include the appropriate dimension statements and pa-

rameter lists.

a4, The main program is constructed as follows:

COMMON /MESH1/ XMESH ( * )
COMMON /MESH2/ YMESH ( #** )
COMMON /MESH3/ NPDE, NX, NY

DIMENSION UQ ( *** | * %% )

For the dimensions above enter the actual numerical values for * = NX,
*% = NY and *** = NPDE. Define in this routine the mesh spacing (i.e.
XMESH(1), XMESH(2),..., XMESH(NX) and YMESH(1), YMESH(2),..., YMESH(NY),
NX > 3, and NY > 3) and NPDE. The initial conditions (2.4) should be
defined in U0 such that UO0(L,i,j) = ¢£(Xi’yj) for (¢ =1,2,...,NPDE), (i =
1,2,...,8X) and (j = 1,2,...,NY). 1In order to interface with an integra-
tor one usually also specifies the desired output times, the desired ac-
curacy, the initial step size and the type of integration desired. The

integrator will return the solutions to this routine.
STOP
END
b. The constructions of the boundary subroutines, BNDRYH and BNDRYV are analo-

gous. The construction of BNDRYH is the following:

SUBROUTINE BNDRYH (T,X,Y,U,AH,BH,CH,NPDE)



T

DIMENSION U(NPDE), AH(NPDE), BH(NPDE), CH(NPDE)

The values for the coefficients of (2.2) are defined in this routine.
X is any point of XMESH(K), K = 1,2,..., NX and Y is either YMESH(l) or
YMESH(NY). Define then AH(K), BH(K), and CH(K) (K = 1,2,...,NPDE) for the

lower (Y = YMESH(1l)) and upper (Y = YMESH(NY)) boundaries.

RETURN

END

¢. The subroutines DH and DV defining the diffusion coefficients are also

analogous. We construct DH as:

SUBROUTINE DH (T,X,Y,U,DVALH,NPDE)

DIMENSION U(NPDE),DVALH(NPDE,NPDE)

Define in this routine DVALH(L,XK) (L,K = 1,2,...,NPDE), the DHE K
3
coefficients of (2.1). X and Y denote either a boundary point or an

averaged value between two mesh points (3.2f). All matrix entries of

DVALH mush be defined even if they are zero.
RETURN
END

d. The subroutine F is constructed as follows:

SUBROUTINE F (T,X,Y,U,UX,UY,DUXX,DUYY,UDOT ,NPDE)
DIMENSION U(NPDE), UX(NPDE), UY(NPDE), DUXX(NPDE,NPDE), DUYY(NPDE,NPDE),

UDOT (NPDE)

In this routine, the incoming values X and Y represent the mesh point
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%ﬁ) in approximating the arguments of fg in (2.1). The PDE's (fl,E 2 120wy

NPDE) are defined in terms of the incoming parameters in UDOT(L) (L 1,2,...,

NPDE) .

RETURN

END

We note that there is a modification necessary in the main routine when
the problem defines a constant, time dependent boundary condition. The integra-
tor generally does not determine the solution at the time specified by the user
and so it interpolates the solution back to the time specified. Therefore to
obtain the solution at the constant, time dependent boundaries, the user must
call the éppropriate boundary routines from the main routine. An example of
this case is presented in the next section along with a complete listing of the
user defined routines.

Note that these six routines, BNDRYH, BNDRYV, DV, DH, F and the main program
completely define the problem. We can now visualize the relationship of all the
routines as shown in Figure 3. The main program initializes the solution process,
passing the required parameters to the integrator and passing the necessary in-
formation to PDEIWO through common blocks. The integrator consists of several
routines. If PSETM is used it replaces one of these routines. The integrator
then calls PDETWO which evaluates the right hand side of the semidiscrete ap-
proximating ODE system (3.5). The integrator makes calls to PDETWO for each
time step and in order to evaluate the Jacobian matrix (if required). PDETWO in
turn calls BNDRYH, BNDRYV, DV, DH and F in approximating (3.5). After the in-
tegrator has determined the selution for the user specified time and accuracy,

it returns the solution to the main program to be printed or plotted.
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For further clarification of the use of PDETWO, we provide in the next
section the complete listing of the user defined routines for one of the examples

presented there.

Figure 3

The Relatlonship of the Routines

Main Program

Initialization

Calls Integrator

Outputs Results

ODE Integrator
May include PSETM

’ PDETWO

Discretizes the

i Spatial Variables

DH v BNDRYH BNDRYV
defines DHR,k deflnes sz‘k defines AHQ’ defines AVL’
in (2.1 i : i

n (2.1) n (2.1) BHE’ CHL in BVE’ cvz in
(2.1) (2.1)
E
defines f2
in (2.1)
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6. NUMERICAL EXAMPLES

It has proven to be a very difficult task to find good test problems for our
software interface. Because of the infant state of general purpose software for
two dimensional PDE's, few good test problems are available. For our situation
a good test problem would be a moderately difficult PDE or system of PDE's for
which the actual solution is known. In this section we present examples which
we feel will at least demonstrate the potential usefulness of our software

interface.

The first example we present is an Elliptic PDE which represents a parallel

plate heated by a nearly oblong object. The PDE is:

3u = 3%+ 3%u - bxye el (xy + x +y - 3)
at 2 2
5x° a3y

with boundary conditions
u(t,x,y) =0
and initial conditions

¢,(0,x,y) =0.

-

For this problem the actual solution is 3exey(x - xz)(y - yz). By integrating
to a steady state solution we obtain the solution to the original problem since
the problem's solution is independent of time. We chose the region to be 0 <
Xx <1l and 0 <y <1 with a uniformly spaced 5 x 5 spatial mesh. The initial
time step is 10—7 and the error tolerance is 10'-§ Using a modified Newton's

method in the ODE integrator, the results presented in the following table were
obtained. TIME is the specified output time. NSTEPS 1is the total number of

steps taken by the integrator to reach the specified time. NFE is the



total number of steps taken by the integrator to reach the specified time. NFE
is the total number of calls to PDETWO required and NJE is the number of Jacobian

evaluations, ERROR indicates the maximum error over the region.

TIME NSTEPS NFE NJE ERROR
.001 7 36 2 .294
.01 19 94 5 .439
o | 50 165 7 .099

1.0 108 301 13 .016

10.0 129 377 17 .016

As seen from the ERROR column, the solution has reached a steady state by a time
of 1.0 . The observed error is larger than the error tolerance because the error
tolerance affects only the error in the time integration. Therefore the observed
error is due to the spatial discretization. This error could be reduced by
choosing a finer mesh. This is demonstrated by using a uniformly spaced 10x10

mesh in place of the 5x5 mesh. The results from this change are as follows:

TIME NSTEPS NFE NJE ERROR
.001 9 82 3 .548
.01 28 161 5 .468
.1 70 276 8 .081

1.0 130 474 14 .0034

10.0 143 560 17 .0034

Note that the error is reduced by approximately 1/4 indicating that the error

is resulting from the spatial discretization.

We have also solved a Hyperbolic PDE with our interface. The following
PDE represents the flow of a chemical reaction through a parallel plate. The

equatioﬁ is:
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2
du 3_;_2500x(1-x)3‘-1+100u
ax o

2

with boundary conditions

and initial conditions

0.0 when x # 0

¢ (0,x,y)

1.0 .

Il

¢ (0,0,y)

This PDE represents the flow of the reaction in the y direction. It is derived

assuming (i) no diffusion in the y direction, (ii) the reactor length is infi-

2
nitely long, (iii) the coefficients of A—% and u2 are constant and (iv) the

90X

coefficient of %3 is a function of x alone.

We used the region 0 < x <1 and 0 <y <1 to obtain our solution. We
chose a spatial mesh with 10 uniformly space intervals in the x-direction (NX=11)
and 30 uniformly spaced intervals in the y-direction (NY=31). The error toler-
ance was 10_4 and the initial step size was 10-6. We solved this problem using
a modified Newton's method and using functional iteration in the ODE integrator.

Our results are as follows:

ITERATION NEWTON'S

TIME NSTEPS NFE TIME NSTEPS NFE NJE
«1E-6 1 2 +1E-6 1 9 1
«1E-5 4 5 «1E-5 4 20 2
+1E-4 5 6 +1E-4 5 22 2
.1E-3 10 14 . 1E-3 11 41 3

The transient nature of the solution causes the error to be determined by the

time step. It also causes the Jacobian to be outdated quickly. Consequently
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Newton's method proved to be less efficient than functional iteration. We note
that the output times are small but they are relative to the speed of the reac-
tion. For this equation, the wave had moved approximately 1/4 of the way across

the mesh by the final output time.

Our final example is a problem that has been contrived to demonstrate the
use and some of the capabilities of our software. Since we know the actual
solution, the capabilities of our software interface can be more easily under-

stood. The problem is:

du 3u u 3u u 3u
1 _ 3 1 3 1 3 2 5 _ gL _ 1
5t - ox Mgk Yt N )t (U " Tk Ty
du du 3u du
2 _ 3 2 1 3 2 2. ~2t1 t -t 2,
5c - e (Uiax 0T Iy (u, 3y ) ~ 2xy“e e 2e (u, + 2e y)-u,

with vertical boundary conditions

ul(t,O,y) =0, ;;— =2xe’ " atx=0 3

Uy +-;;l = 2e-ty s u, = e"t(x2 + y2) atx =1,
horizontal boundary conditions

3“1 . Bu2 _

35— =e x, u, + Ty =e x aty=20,

i B e-txy ’ ;;3 = 2ye aty =1,

and initial conditions

UI(O.X,Y) = Xy , uz(o,x,y) = x2 + yz .

The actual solution is:
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u =e txy 5 u, = e t(x +vy) .

Note that this problem is a coupled system of nonlinear PDE's having Neuman,
Dirichlet and mixed boundary conditions. We have solved this problem using a
modified Newton's method with a uniform 5x5 spatial mesh over the region 0 < x
< 1 and 0 <y< 1 with an initial step size of 10—7 and an error tolerance
for the time integration of 10-?. We obtained the following results where

NFE(PSETIB) indicates the number of function evaluations if PSETB in GEARB is

used and NFE(PSETM) indicates the number of function evaluations if PSETM is

used.
TIME NSTEPS NFE(PSETR) NFE (PSETM) NJE ERROR U(1) ERROR U(2)
«1E-4 4 55 35 2 « 749E-5 . 134E-4
.1E-3 8 84 53 3 . 748E~4 . 134E-3
«1E-2 15 142 89 5 « 734E-3 .132E-2
.1E-1 37 316 197 11 .608E~2 .118E-1
1EO 142 1056 662 36 .202E-1 +555E-1

In this table, the ERROR columns indicate the maximum error found in the interior
of the mesh. Since the solution of Uy and u, increases with x and y, this max-
imum error was found at the mesh point (4,4). Clearly, since the initial condi-
tions are defined consistent with the original problem, the error for small time
( up to .1E-2) is dependent on the time truncation error. With a large enough
time (.1E-1) the spatial discretization error can be observed. We did not pursue
this since we observed this error in the first example.

We also provide a complete listing of the user defined routines

required to interface with our software interface. It is as follows:
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THIS IS A LISTING GF ALL THE USER DEFINEC RCUTINES NECESSARY
TO SOLVE THE THIRD EXAPMFLE.

CCMMCN BLOCK €EARS PROVILCES INFORMATION FROM THE INTEGRATOR.

HUSEC IS THE SIZE COF TIME STEP USEC IN THE INTEGRATOR,

NSTEP IS THE NUMBER CF STEPS USEC EY THE INTEGRATCR TO OBTAIN THE
SOLUTICN AT THE SPECIFIEC CUTPLT TIME.

NFE IS THE TOTAL NUMBER OF FUNCTION EVALUATITUNS REQUIRED.

NJE IS THE TOTAL NUMBER CF JACCUBIAN EVALUATICNS REQUIREEC.

THE VARIABLES USEC ARE AS FOLLCHWS..

NX IS THE NUMBER QF HORIZONTAL MESH PCINTS.,

NY IS THE NUMBER CF VERTICAL MESH PGINTS.

MF DETERMINES THE TIME INTEGRATICN METHCD.

NPOE IS THE NUMBER CF PARTIAL CIFFERENTIAL EQUATICNS.
INCEX=1 INCICATES THIS IS THE FIRST CALL TO THE INTECRATOR.

N IS THE TOTAL NUMBER OF COE*S GENERATEC (N=NX*NY*NPCE).
T0 IS THE INITIAL TIME.

H IS THE INITIAL TIVME STEP.

EPS IS T+HE ERRCR TOLERANCE,

uo IS THE CURRENT SCLUTICN AT THE MESH PCINTS.

AUl,AUZ ARE THE ACTUAL VALUES OF THE SCLUTICN AT THE MESH FCINTS.

€l,E2 ARE THE ERRORS BETWEEN THE CALCULATED VALUE AND THE ACTUAL
VALUE AT THE MESH PCINTS.

XMESH CCNTAINS THE MESH SPACING IN THE HORIZCNTAL OIRECTICH.

YMESH CCATAINS THE MESE SPACINCG IN THE VERTICAL DIRECTICN.

CIMENSICN U01{255,5),AU1(5,5),AU2(5,5),E1(5,5),E2(5,5)
DIMENSICN ALFHAH(2),BETAH(Z2)4GAMMAH(2),ALPHAV(2),BETAV(2),
* GAMMAV(2)
CCMMCN /MESH1/ XMESKH(S)
CCMMCN /MESH2/ YMESH(S)
COMMCON /MESH3/ NPDEsNX,NY
CCMMCN /GEAR9/ HUSEL,NCUSED,NSTEP+NFE,NJE
READ (5410) NXyNY.MF,NPDE,INDEX
10 FCRMAT (513)

DEFINE THE MESH SPACINC.

CX = 1.C+CC/(NX~-1.0+00)

CO 2C K=1,NX
XMESH(K)
YMESH(K)
20 CONTINUE

(K-1)*0X
XMESH(K)

DEFINE THE UPPER AND LCWER EBAND WICTHS FCR THE JACCRBIAN.

MU=NPDEX {NX+1)-1
ML=MU
READ (5,3C) NyTGC,F,EPS
30 FCORMAT ( 12,F7.2,E7.1,E7.1)

DEFINE THE INITIAL CCNDITICNS,
CO 40 J2=1,NY

DC 40 J3=1,NX
UC(1,J2,42) = XMESH(J3)*YMESH(J2)
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U0(25Jd3,J2) = XMESH{J3)*XMESH(J2) + YMESK(J2)#YMESH(J2)
40 CONTINUE
WRITE (€450) NyTOsHsEPS,MF,UC
50 FCRMAT (3K N 4I2,4H TO 4F9¢232H H sE841,5H EPS ,E8.1,4H MF ,
¥ [244H LC +(/1H 510E11.2))

SPECIFY THE CUTPLUT TIWME.

55 REAL (5,60,END=180) TCUT
60 FCRMAT (F11.7)

WRITE (€&€,7C) TOUT
T0 FCRMAT (6H TOUT 4E15.¢€)

CALL THE INTEGRATOR.

CALL DRIVEB (NyTOsH,UO,TCUT,EPS,MF, INCEX ML ,MU)
WRITE (6480) HUSED,NQUSEDNSTEP NFE ,NJE
80 FCRMAT (7H HUSED +E10.4,7H CRCER +13,7H NSTEP ,1&,5KH NFE ,15,
% 5H NJE ,1%)

DEFINE THE CCRRECT SGLUTICNS FOR CCNSTANT TIME DEPENDENT BOUNCARIES.

CC 82 J1=2,NX
CALL BNDRYH({T X(JL)osY(NY)U(LyJL1sNY},ALPEAH,BETAH,GAMMAK,NPDE)
CALL BNDRYV(T,X(NX),Y(J1),U(24NXyJ1},ALPHAV, BETAV,GAFMAV,NPDE)
DC 682 K1=1,NPDE
IF (BETAV(K1) .EQe. C.0) U(KL,NX,J1)=GAMMAV(K1)/ALPHAV (K1)
IF (BETAH(K1} <EQ. 0.0) U(K1,J1,NY})=GAMMAH(K1)/ALPHAH(K]1)
82 CONTINUE

PRINT THE RESULTS.

WRITE (6,SC)
90 FCRMAT {/9H U VALUES)

WRITE (£4100) (((UC(IX53IY,12)41Y=14NAX)e1Z=14NY),IX=1,2)
100 FCRMAT { 1H,10E13.6)

DETERMINE THE ACTUAL SCLUTICN.
DC 110 K2=1,NY

DO 110 K1=1,NX
CET = DEXP{-TOUT)

AUL(K],K2) = DET*XMESH(KL1)}*YMESF(K2)
AUZ2(K1,4K2) = DET*(XMESH(K1)*XMESH(KL) +YMESH(K2) *YMESH(K2))
110 CONTINUE

WRITE (€,120)

120 FCRMAT (23H ACTUAL SOLUTION FOR U1l )
WRITE (6,100) ALl
WRITE (&,130)

130 FCRMAT (23K ACTUAL SOLUTICN FCR Uz )
WRITE (&,1C0) AU2

DETERMINE THE ERROR.

CO 140 K2=1,NY
DC 140 Kl=1,4NX
EL(K1,K2)=UC(14K1lyK2)-AUL(KL 4K2)
E2(K1,K2)=U0(2,K1,K2)-AU2(K1,K2)
140 CCNTINUE
WRITE (€4150)
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FCRMAT (/13H ERRCR FCR Ul )
WRITE (&,1C0) E1
WRITE (6,160}
FORMAT (/13H ERRGR FCR U2 )
WRITE (6,4100) E2
COCNTINUE
GC TO 55
sSTOP
END

SUBRCUT INE BNCRYV (T,X,YsUyAV,BV,CV,NPDE)}

DEFINE THE VERTICAL BCUNCARIES.

10

IMPLICIT REAL*8 (A-H,C-1)
DIMENSICN U(CNPDE) ,AV(NPDE) yBVINFDE) ,CV(NPDE)
IF (X «CT. .5) CCTO 10

AV(1) = 1.D+00C

EV(1l) = 0.0

Cv(l) = 0.0

aAv(2) = (.0

Ev(2) = 1.C+00

CV(2) = C.0

RETURN

CCNT INUE

AV{l) = 1.0+CC

Bvil) = 1.0D+00

CV(l) = DEXP{-T)*Y*2.,C+C0
AV(2) = 1.D+CO

BVI2) = 0.0

Cv(2) = DEXP(-T)*({1.C+00 + Y*Y)
RETURN

END

SUBROUT INE BNDRYH (T4X,Y,UyAH,BH,CH,NPDE)

C DEFINE THE HCRIZCNTAL BCUNCARIES.

C

10

IMPLICIT REAL*8 (A-H,(-2)
CIMENSION U(NPDE) yAHE{NPDE)BH(NFDE} ,CH(NPCE)
IF (Y «CTe «5) GC TO 10

AH{1l) = 0.0

BH(1} = 1.D+30

CH(1) = DEXP(-T)*X
AH(2) = 1.D+00

BH{2) = 1.C+G0O

CH(2) = DEXP{-T)*X*X
RETURN

CCNTINU

AH{1) = 1.0+00

EH(1) = C.0

CH{1) = DEXP(-T)*X=xY
AH{2) = GC.0

EF(2) = 1.C+0C

CH(2) = 2.C+00*Y*DEXP(-T)
RETURN

END
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SUBRCUTINE CH (T4XsY,U,0VAL,NPDE)

C
C DEFINE THEE FORIZONTAL DIFFLSICN CCEFFICIENTS.
C
I¥PLICIT REAL*8 (A-F,Q-2)
DIMENSION U(NPDE) ,CVAL(NPDE 4NPDE)
CVALI(1,1) = U(2)
DVAL(1,2) = U(1)
CVAL(Z2,1) = C.0
DVAL(2,2) = U(1l)*U(1l)
RETURN
END
SUBROUTINE DV (TysX+YyLUysDVAL4NPDE)
C
C DEFINE THE VERTICAL DIFFUSICN CCEFFICIENTS.
c
IMPLICIT REAL*8 (A-F,C-2)
CIMENSION U(NPDE),DVAL(NPDE4NPDE)
CVAL(1,1) = U(2)
DVAL(1,2) = Q.0
CVAL(2,1) = 0.0
CviL(2,2} = UlL2)
REYURN
END
SUBROUTINE F(T4Xe YLy UX,LY,DUXX,DLYY,UDOT 4NPDE)
IMPLICIT REAL*8 (A-+,Q-1)
c
C DEFINE THE PDE*S,
£

DIMENSICN UCNPDE) JUX(NPLE)} UY (NPCE) CUXX(NPTE4NPCE),
* DUYY(NPDE,NPDE) ,UDCT(NPDE})
DET = DEXP(-T)

UDCT(Ll) = DUXX{141)+DUYY(1y1)+0UXX(142)-4.D+00*CET=Y*UX(2)-Y*UY(1)

UDOT(2) = CUXX(2,2)14DUYY(2,2)-2. %Xk Y% Y*DET*DET®UX{1)-2. *DET*(U(2)
* +2¥DETHY*Y )-U(2)

RETURN

END
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7. COMMENTS AND OBSERVATIONS

The numerical method of lines has been used for some time now and has
proven to be powerful, versatile and easy to use. The successes obtained
from the implementation of the method of lines developed by Sincovec and Mad-
sen [8], certainly increases our confidence in this approach. In light of
their success, we have developed and presented an extension of their software
to solve PDE's with two independent spatial variables as well as an independent
variable in time.

The infant state of general purpose software for two dimensional PDE's
has made testing of our interface very difficult. The wide class of PDE's
which the interface is capable of solving, also makes it difficult to com-
pletely test. Since few good test problems for two dimensional PDE's ;re
available, we have solved a limited number of PDE's using our software inter-
face. Héwever these PDE's encompass a representative set of the possible
problems allowed by our interface. Also since our interface represents an
extension of proven methods, we have confidence in its validity.

The numerical solution of two dimensional PDE's depends heavily on the
efficiency of the methods used to solve them. We have already made comments
concerning the Jacobian generation in Section 4. We will now determine in
some meaningful sense, the space and time requirements of the solution process.
Since no other general software exists no comparison of these requirements
to other methods can be made.

The time requirements are largely determined by the number of function
evaluations (i.e. the number of times the interface, PDETWO is called). Each
time the approximating ODE's for a spatial mesh point (all PDE's) are gener-
ated by PDETWO, it requires one evaluation of DH, one evaluation of DV and

one evaluation of F. Of course for boundary points, it also requires eval-
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uvations of BNDRYH or BNDRYV or both. To approximate UX, UY, DUXX and DUYY,
the interface makes approximately (5 + 6 x NPDE) multiplications in addition
to the above mentloned evaluations. Time requirements will then be primarily
based on NPDE, the size of the mesh and the complexity of the diffusion co-
efficients. Clearly as NPDE gets large the multiplications in the interface
will take a large fraction of the time. Recall that the efficient genera-
tion of the Jacobian in PSETM requires six function calls to PDETWO per PDE
(NFE = 6 x NPDE). These calls increase considerably the time requirements

in obtaining a solution to a problem. To alleviate the time constraints,

the user may choose an alternative. One alternative 1s for the user to ex-
plicitly define the matrix in another subroutine, This approach may reduce
the time requirements. However it is not always easy to define the matrix and
unfortunately this approach requires the user to completely understand our
interface. The other approach is to use functional iteration and avoid the
matrix problem completely. However functional iteration methods often re-
quire very small time steps in order to maintain stability and acecuracy. This
makes them inadequate for many problems.

The storage requirement is largely determined by the storage for the
interface and the storage for the integrator. The space requirement of the
interface is primarily for three arrays, DVALS{(NPDE,NPDE,NX,2), U(NODE)
and UDOT(NODE)} (Recall that NODE = NPDE x NX x NY). This is small in compar-
ison with the requirements of the integrator. GEARB, for instance, requires
8ix arrays of dimension NODE, Y(NODE,M) (M = 2,3,...,13, depending on the order
of time integration method used), plus the Jacobian which requires NODE x
(3 x ML + 1) locations (ML = (NX + 1)NPDE - 1). The Jacoblan storage is some-
what deceptive since ML x NODE locations are required for pivoting. Of the

remaining (2 x ML + 1) x NODE locations at most 5(NPDE x NODE) - 2(NX x NPDE)
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of the Jacobian entries are nonzero. The remaining locations fill in during
the factorization of the Jacobian matrix by Gaussian elimination. The user
should note that the width of the band in the Jacoblan is dependent on NX and
independent of NY. Clearly then to conserve storage, the mesh should be de-
fined and the problem oriented so that NX < NY.

To make the storage requirements clearer, we present two examples. For
a 10x10 spatial mesh with one PDE the interface requires about 220 locations.
Assuming Y(NODE,6), the integrator uses about 4300 locations, 3100 of which are
for the Jacobian. One thousand of these are reserved for pivoting and at most
480 of the Jacobian entries are nonzero. For a 10x10 mesh with 5 NPDE the
interface requires approximately 1500 locations and the integrator approx-
imately 87,500, of which 81,500 are for the Jacobian. Of the 81,500 for the
Jacobian, 27,000 are required for pivoting but no more than 12,400 are actually
nonzero entries. Clearly, the direct solution of the Jacobian is the primary
factor in the space requirements for the solution of two dimensional PDE's.

Since the direct solution of the Jacobian may have large storage require-
ments, the user could consider the alternative of using iterative methods to
solve the matrix problem [16]. The advantage of these methods is that they
require only the nonzero entries of the Jacobian in solving the matrix. How-
ever these methods require additional knowledge about the iteration para-
meters (i.e. convergence tests, when to update, etc.). The user could also
use functional iteration and completely eliminate the storage for the Jacobian.
However as pointed out before, functional iteration may require small time
steps to maintain stability. It is also worth pointing out that if there is
an iterative method for solving the matrix, which is particularly well suited
to the problem being solved, the user may also use that method. With that
approach, the routines in the integrator which solve the matrix by Gaussian

elimination would be replaced by the routines for the iterative method.
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In considering the time and space tradeoffs for the solution of a system
of PDE's, it has been our experience that time tends to be a greater restric-
tion on the solution than space. As noted previously, the time requirement
stems directly from the solution of the Jacobian matrix. With the develop-
ment of much faster methods for solving the matrix problem, the combination
of our interface, the integrator and the faster methods for solving the matrix
would be a very robust package. The interface will do all the work of discreti-
zing the spatial variables to form approximating ODE's., Then the integrator
with the help of a fast method for solving the matrix problem could deter-
mine the solution for a large class of PDE's. So, even in view of its limita-
tions, we feel that the software interface presented in this paper is a sig-
nificant first step in the development of robust general software for two

dimensional PDE's.
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APPENDIX A

SUBROUT INE PDETWO (N,T,U,UDOT)
IMPLICIT REAL*8 (A-FH,C-Z)

PDETWO IS AN INTERFACE DESIGNED TO BE USED IN CCNJUNCTION WITH AN
ODE INTEGRATCR (SUCH AS GEARB) TC SOLVE A SYSTEM OF TWO-DIMENSIONAL
PDE*S, IT IS AN EXTENSICN OF PDECNE, AN INTERFACE CEVELCPED BY
SINCOVEC ANC MADSEN USED FOR THE SCLUTICN OF ONE-DIMENSIONAL
SYSTEMS OF PDE*S.

FDETWC USES FIVE POINT CENTEREE DIFFERENCING TC CCNVERT A TwWO-
DIMENSICNAL SYSTEM OF PDE*S TO A SYSTEM CF CDE*S OF THE FORM,
UCCT = F(TsX,Y,U).

PDETWO IS CALLED BY THE INTEGRATCR (STIFFBE IN GEARB) TO GENERATE
THE SYSTEM CF ODE%*S TC BE SCLVED. IF A JACCBIAN MATRIX IS REQUIREC
PDETWO IS ALSO CALLED IN CRDER TGO GENERATE THIS MATRIX (PSETB IN
GEARE CR PSETM THE MCDIFIEC VERSICN CF PSETB MAKE THESE CALLS).

REFERENCES

1. A. C. HFINCMARSH, CEAR.. ORDINARY DIFFERENTIAL EQUATICGN
SYSTEM SCLVERy UCID-30001 REV. 3y LAWRENCE LIVERMORE
LABURATORY, P.G.BCX 8CE8, LIVERMCRE, CA 94550, OEC. 1974,

2e A. (. HINCMARSF, CEARB.. SCLUTICN CF CRCINARY
DIFFERENTIAL EQUATIONS HAVING BANDEC JACCEIAN,
UCIC-30059 REV. 1y LeloLay MARCH 1S7%.

3¢ RoF. SINCOVEC AND N.K. MACSEN, SOFTWARE FCR NCNLINMNEAR
PARTIAL DIFFERENTIAL EQUATIONS, ACM TRANSACTIONS ON MATH-
EMATICAL SOFTWARE, SEPTEMBER 1S75, FFf., 232-269,

4e R.F., SINCOVEC ANC N.Kao MALSEN, ALGCRITHM 494 PDEONE,
SOLUTIONS OF SYSTEMS CF PARTIAL DIFFERENTIAL EQUATIONS,
ACM TRANSACTICNS ON MATHEEMATICAL SOFTwWARE, SEPTEMBER 1675,
PP. 262"263.

THE INPUT PARAMETERS ..

N THE NUMBER OF ODE*S GENERATED BY PDETWC AND PASSED
TO THE INTEGRATOR. N IS EQUAL TO NX*NY®NPDE (SEE THE
VARIABLE EXPLANATICNS BELOK).

T TFE CURRENT TIME.

U AN ARRAY CF SIZE NPLE BY NX BY NY CCONTAININC THE
CURRENT SOLUTICN VALULES FOR ALL THE MESH PCINTS.

THE CUTPUT PARAMETER IS..

uoct THE SYSTEM CF NFDE EY NX BY NY ODE'S PASSED 7O THE
INTEGRATCR.,

THE VARIABLES ..
CVALVS SAVES THE DIFFUSICN CCEFFICIENTS FCR FUTURE

EVALUATICNS.
OVALH RETURNS FRCM CH THE HCRIZCONTAL CIFFUSICN COEFFI-
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DVALV

ALPHAH,BETAH,
CANMAH

ALPHAV,BETAV,
GAMMAYV

UX,UuYy
DXI +DXIR4DXIC
XAVG

UDVA,UDVB,
UCHR s UDHL

UAVGHs UAVGYV

Y=
CIENTS ANLC CCNTAINS CUXX ON CALLS TG F.
(SEE EXPLANATICN CF CH AND Fla
RETURNS FRCM DV THE VERTICAL DIFFLSICN CCEFFI-
CIENTS AND CCNTAINS CUYY ON CALLS TC F.
(SEE EXPLANATICN CF CV AND F).

CCNTAIN THE HCRIZCNTAL BCUNCARY CCEFFICIENTS
PASSED TO PDETWO FRCM BNCRYH (SEE EXPLANATICN OF
ENCRYF).

CCONTAIN THE VERTICAL BCUNLCARY CCEFFICIENTS
PASSEC TO PDETWO FROM ENCRYV (SEE EXPLANATION OF
BNCRYV).

STORE THE DU/DX AND DU/DY EVALUATICNS RESFECTIVELY.
STCRE THE HCRIZCNTAL MESH SPACING.

STORES THE AVERACE BETWEEN TwC MESH PCINTS CN
HORIZCNTAL AXIS.

TEE

STORE THE DIFFERENCING FOR APPRCXIMATING CUXX

AND CUYY.
CCNTAIN U AVERAGES FCR APPRCXIMATING THE CIFFUSION

COEFFICIENTS AT THE MESH MID-PCINTS.

THE COMMON BLCCK VARIABLES..

X (MESH1) IS THE MESH SPACING IN THE HGRIZCNTAL DIRECTION.

Y (MESH2) IS THE HMESH SPACING IN THE VERTICAL DIRECTICN.

NPCE (MESH3) IS THE NUMBER OF PARTIAL DIFFERENTIAL EQUATIONS.

NY IS THE NUMBER OF MESH PCINTS IN THE VERTICAL
DIRECTICN.

NX IS THE NUMBER CF MESHK POINTS IN THE HORIZCNTAL
DIRECTICN.

THE USER OCEFINEC RGUTINES CALLEC BY FDETKC..

BNDRYH (T4XsYsUyALPHAH,BETAH,GAMNAF,NPLE) DEFINES THE COEFFICIENTS,
ALPHAH,BETAH AND GAMMAK LSED TC CGENERATE THE HORIZCN-
TAL BCUNCARY CONCITICN ALPHAH*U+BETAH®LY = GAMMAH
IN PDETWC.

BNCRYV (T,X,Y,UsALPHAV,GETAV,GAMMAV,NPCE) DEFINES THE COEFFICIENTS,
ALPHAV,CETAV ANC GAMMAV USED TO GENERATE THE VERTI-
CAL BOUNCARY CCNDITICN ALPHAVHU+BETAVXUY = GAMMAV
IN PDETWO.

CH (TyXsYyL,CVALK,NPDE) CEFINES THE KCRIZONTAL CIFFUSICN COEFFI-
CIENTS DVALH USED IN AFPRCXIMATING THE TERM DUXX (THE
TERM INVCLVING THE SECGNC PARTIAL CF U AND THE
DIFFUSICN CCEFFICIENT WITH RESPECT TC X).

DV (TyX+Y,U,CVALV,NPDE) DEFINES THE VERTICAL DIFFUSICN COEFFI-
CIENTS OVALV USEC IN APPROXIMATING THE TERM DUYY (THE
TERM INVCLVING THE SECCND PARTIAL CF U ANC TEE
CIFFUSION CCEFFICIENT WITH RESPECT TQ Yl

F (TsXsYsU UX,UY,DVALH,DVALV,UDCT) DEFINES THE PCE*S TO BE SCLVED IN
TERMS CF XsY,U,UX (DL/DX),UY(DL/DY) 4DVALH{DUXX) ANC
CVALV(CUYY) AND RETURNS THE ODE*S, UCOT, ASSOCIATED
RITH ThHE MESH PCINT (X,Y).

THE USER MUST INCLUDE IN PDETWO A CIMENSION STATEMENT AS FCLLOWS..
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DIMENSICN DVALVS (NPDE,NPDEsNX,2),DVALV (NPLCE.NPCE),

CVALH (NPDEsNPDEs2)sU (NPDEJNXsNY) X (NX),Y (NY),

ALPHAH (NPDE),EETAF (NPDE) CEAMMAH (NPDE), ALFHAV (NPDE),
BETAV (NPCE),GAMMAV (NPDE) sUX (NFDE) ,UY (NFDE) s DXI (NX},
CXIR (AX),DXIC (NX)4sXAVG (NX)4UDVA (NPDE,NX),UDHR (NPDE),
ubv8 (NPDE) oUDHL (NPGE),UAVGh (NFCE) UAVCEV (NPLE),

UDOT (NPDEsNX,NY)

WHERE THE ACTUAL NUMERICAL VALUES MUST BE SUBSTITUTEC IN FCR NPDE,

NX

AND NY.

CETERMINE THE MESH SPACING ALONG THE FORIZONTAL AXIS

10

DXI(l)=1./7({X(2)-%X(1))

CXIR{1)=CXI(1)

CXIC(1)=2%CXI(1)

XAVGIL)=.5*(X(2)+X(1))

ILI¥M=NX-1

ILIMY=NY-1

DO 10 I=2,ILIM
XAVG(I)=o5%(X(I+41)4X(1))
DXI{Idi=1a/7(X(I+1)-X(I-1))
DXIR(INI=1./7(X(I+1)=-X(1})
EXIC(I)=2%CXI(I)

DXI(NX)=DXIR(ILIM}

DXICINX)=2%DXI(NX)

THE FOLLOWING LOCP DETERMINES THE U APPRCXIMATICAS FCF THE EBCTTCM
AND TCP BOUNCARIES. IC FAS THE VALUE OF 1 FOR TFE TGP AND 2 FOR THE
BOTTCM

20

30

CC 410 IC=1,2
IF {(IC .EQ. 1) GC TC 20

M=1

18=1

MN=2

GO TO 3¢

M=NY

MN=ILIMY

IS=-1
DYI=1./(Y(M¥N)-Y(M))}Xx]S
DYIA=DYI

CYIC=2z*DYI

YANG=5*%(Y (M) +Y(¥N))

C CETERMINE THE BOUNCARY CONDITICNS (LEFT CCRNER)

c

35

CALL BNDRYH (TyX(Z2}yY(M)sU(1y324M) JALPHAH,BETAH ,GAMMAH 4NPDE)
CALL BNDRYV (ToeX(1),Y(MN),U(1y1,MN},ALPHAV,BETAV,GAMMAY,NPDE)
DG 35 K=1,APDE
IF (BETAH(K) <EQe Ca0) U(K$2,M)=GAMMAH(K) /ALFHAHI(K)
IF (BETAVIK) +EQ. 0.0) U(Ky1yMN)=CAMMAV (K)/ALPHAV(K)
CONTINUE
CALL BNCRYE (TyX(1)yY{(M),U(1s41,M),ALPHAH,BETAK ,GAMMAH,NPDE)
CALL BNDRYV (ToX(1)oY(M)sU(191,F) 4ALPFAV,BETAV,GAMMAV,NPDE)
ITEST=C
DC 70 k=1,NPDE
IF (BETAV(K) .NE. 0.0 +ANC. BETAH(K) .NE. 0.0) GC TC 70
IF (BETAE(K) .EQ. 0.C oAND. BETAV(K) .NE. 0.C) GC TC 40
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IF (BETAH(K)} +NE. C+0 +ANC. BETAV(K) +EC. 0.0} GC TC 50
UKy 1y M)}=(GAMMAF(K) /ALPHAH(K)+GAMMAV(K) /ALPHAVIK) )*.5
ITEST=ITEST+1

GO TO 60
40 UlKyl,M)=CGAMMAL (K} /ALPHAH(K)
GO TO €0
50 U(Ky1l4M)=GAMMAV(K) /ALPHAV (K]
60 CCNT INUE
10 CONTINUE

IF (ITEST «.EQ. NPDE) GG TO 13C
CALL BNDRYH (T,X(1),Y(M),U(1,1,¥),ALPHAH,BETAH,GAMMAH,NPDE)
CALL BNDRYV (TeX(1)sY(M),U(1ly1l,s¥} ALPHAV,BETAV,CAMMAV,NPDE)

EVALUATE THE D CCEFFICIENTS (LEFT CCRNMNER)

80 CALL CF (TyX(1l)eY(M}sU(141,4F),DVALH,NPDE)
CALL OV (T4X(1),Y{(M),U(1l,1,F),DVALV,NPDE)

EVALULATE LCU/DX ANC CU/CY (LEFT CCENER)
DO 120 K=1,NPDE

IF (BETAVI(K) .NE. C.0) GC TG SO
UX({K)I=DXT(1)}*(U(Kys2,M)-U{Ky1,¥)})

GC TG 100
S0 UX{K)={GAMMAV(K)-ALPHAVI(K)}*U{Ks1,VN))/BETAV(K)
100 IF (BETAH(K) .NE. 0.0) GO TC 11¢C
LY(K)=DYI*(U(K,1,MN)-U(Ks1,yM))*IS
¢0 TO 120
110 UY (K)=({GAMMAH (K }-ALPHAH(K)#U(K, 1,M) ) /BETAH(K)
120 CONTINUE

CALCULATE THE U AVERACGES (LEFT CCENER)

130 DO 140 K=1,ANPDE
UAVGHIK)=o5*(U(K324M)}+U(Ky14M)}
UAVGVI(K)=o5%(U{Ks1,M)+U(K,1,MN)})
UCHR(K)=(U(Ky24¥)-U{Ky1,M))I*DXIR( 1)
UCVA(Ks1)=(U(K414MN)-U(KylsM¥))I*LYIA*IS

140 CONTINUE

CALCULATE THE L CCEFFICIENTS AT THE MICFCINTS CF THE INTERVALS
BETWEEN THE LEFT CCRNER AND THE NEIGHBORING FPCINTS

CALL OV (T+X(1),YAVGyUAVGV,CVALVS(1l4141,IC)4NPCE}
CALL DH (ToXAVG(1)4Y(M),UAVGH,DVALH(1,1,2) 4ANPDE)
IF {ITEST .EQ. NPCE) CGC TC 160

CALCULATE DUXX AND DUYY (LEFT CORNER)
DO 150 L=1,NPDE

CO 15C K=1,NPDE
DVALH{K L s1 }=CXIC(L)* (CVALH(K L 42)*UDFR{(L )-CVALK(KysL,y1)

* *Ux(L))
DVALV{KsL)=DYIC*(CVALVS(KsL1,ICI*UDVA(L,1)-DVALV(K,L)
% *LY(L))*IS
150 CONTINUE

EVALUATE THE RIGHT SIDE CF PCE (LEFT CGRNER)

CALL F (ToX(1)pY(F)U(1,414M)yUXsUYsCVALKE,CVALV,UDGT(1y1,M),
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SET UDCT = ¢ FCR KNCWK BOUNCARY CCNLCITICNS

16¢C DC 17C k=1,NPCE
IF (BETAH(K) <.EC. C.0 «CRe BETAV(K) .EQ. 0oC) UDCT(Ky1,M)=0.0

170 CONTINUE
EVALUATE THE RIGHT CORNER BOUNDARY CCANDITIONS

CALL BNDEYH (TaX(NX)oY(M),U(LyNX,M) ALPHAH,BETAH,GAMMAH,NFPDE)
CALL ENDRYV (TyXUINX)pY(M),U[LyNX,M),ALPHAV,BETAV,GAMMAV,NPDE)
ITEST = O
CO 21C K=1,NPDE
IF {BETAV(K) «NE. 0.0 .AND. BETAH(K} NE. 0.C) GO TO 210
IF (BETAH(K) .EC. 0.0 +ANC. BETAV(K} .NE. 0.0) GC TC 180
IF (BETAH(K) .NE. 0.0 .ANC. BETAV(K) .EQ. C.C) GC TC 190
UKy NXyM)=( GAMMAV (K)/ALPHAV (K )4+CAMMAH(K ) /ALPFRAH(K))*.5
ITEST=1TEST+1

GC 7C ZzocC
180 U(KyNXyM)=CAMMAL (K) /ALPHAL(K)
GO TO 200
190 UIKsNX M) =CAMMAV (K) /ALPFAV(K)
200 CONTINUE
210 CCNTINUE
IBCK=1
IFWD=2

LCCF CN THE HCRIZCNTAL BCUNCARY MESF FOINTS FRCM X(2) TO X(NX-1}

DC 300 1=2,1ILTIM
K=IBCK
IBCK=1FWD
IFWD=K

EVALUATE THE +ORIZONTAL BOUNDARY CONDITICNS

CALL BNDRYH (ToX(I+1)+Y(M),U(1,1+41,M),ALPHA}F,BETAH,GAMMAH,
* NPLE)
CQ 215 Kk=1,NPDE
IF (BETAH(K) .EQ. C.0) U(K,I+1,M)=CAMMAH(K)/ALPHAH(K]}
215 CCNTINUE
CALL BNDRYH (T4X{I},Y(M), U(1s1I,VF) ALPHAF,BETAl,GAMMAH,NPDE)
ITESTR=0
CC 220 K=1,NPDE
IF (BETAH(K) .NE. 0.0) GC TC 220
UGKy Iy M)I=CAMMAL (K) /ALPHAH(K)
ITESTR=ITESTR+1
220 CONTINUE
IF (ITESTR .EQ. NPCE} GO TO 2é€0
IF (ITESTR .EQ. 0.0) GO TC 230
CALL BNDRYH (TsX{(I},Y(M),U{LlyI,¥),ALPHAH ,BETAH,GAMMAH,NFDE)

CALCULATE DU/CX AND DU/DY (HORIZCANTAL BCUNCARY)

230 DO 25C K=1,NPDE
UX(K)=(U(KyI+14M)-U(KsI-1,M})}*CXI(I)
IF (BETAH(K) .NE. 0.0) GC TC 240
UY(K)=(U(Ky Iy MN}-UIKs I,M))}*DYI*IS
GC 70 250
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240 UY(K)=(GAMMAK(K)—-ALPHAH(K)*L{K,I4M))/BETAH(K)
250 CCNTINUE

DETERMINE U AVERAGE (HCRIZGONTAL BCUNDARY)

260 DG 27C K=1,4NPDE
UAVEVIK)I=(U(K, I, M)FULK,I,MN))*.5
UAVGH(K)=(U{K, 141 ,F)+U(K, I, M)} }*.5
UGHL (K)=UDHR (K)
UCHRI(K}={U(K 4 I+14MI-U(KsI,M))¥DXIR(T)
UDVA(K I)=(U(KyTyNN)-U(KyT40M))*DYIA*IS

270 CCNT INUE

EVALUATE THE D CCEFFICIENTS (HORIZONTAL BCUNCARY)

CALL CV (TX(I),YAVG,UAVGV,CVALVS(l,1,1,1IC)4NPDE)
CALL OK (T,XAVG(I),Y(M) UAVGH,DVALH(1,1,IFWLC),NPCE}
IF (ITESTR .EQ. NPEE) GO TO 290

CALL DOV (T4X(I},Y(M)oU(L,1I,¥),OVALV,NPCE}

EVALLATE CUXX ANC CUYY (HCRIZCNTAL ECUNLCARY)
CO 28C L=1,NPDE

DC 280 k=1,NFCE
DVALH(K 4L » IBCK)=DXIC(I}*(CVALH{KsLs IFWC)*UDHR(L)~-

* DVALH{K,L, IBCK)*UDHLI(L))
CVALVI(KsL)=CYIC*(CVALVS(K,L+I,IC)I*UDVA(L,I)-DVALV(K,sL)
* *UY(L))I*IS
280 CCNTINUE

EVALUATE THE RIGHT SIDE CF THE PDE (HCRIZCNTAL ECUNCARY)

CALL F (TeX(I)sY(M)U(CL XM} UXUYsDVALE(1419IBCK]),
* DVALV.,UDOT(1,14¥) ,NPDE)

SET UBCT = 0 FCR KNOWN BCUNDARY CCNCITICAS

290 LC 300 K=1,NPCE
IF (BETAH(K) <EC. Ce0) UDCT(K4I,M)=0.0
300 CONTINUE

CCMPLETE EVALUATING THE RICGHT CCRNER

CALL ENDRYV (ToX(NX)yY(MN),U(LyMXyMN)yALPHAV,BETAV,GAMMAV,NPDE)
00 30t K=1,NPDE
IF (BETAV(K) +ECe Ca0) UIKsNXsMN)=GAMMAV(K) /ALPHAV(K)
305 CONTINUE
IF (ITEST .EQ. NPCE) GC TO 2¢&C
CALL BNDRYH (TyX(NX)oY{M)yU(14NX,M),ALPHAH,BETAH,GAMMAH,NPDE)
CALL BNDRYV (ToX{NX),Y(M) U(1,NXyN;),ALPHAV,BETAV,GAMMAV,NPDE)

EVALULATE THE C CCEFFICIENTS (RIGHT CCENER)

310 CALL CH (ToXINX)oY(M) U(LyNXsM),DVALH(1,1,IBCK),NPDE)
CALL DV (T,X(NX),Y(M),U{1,NXy¥),DVALV,NPDE)

EVALUATE DU/LCX AND DU/DY (RICHT CCRNER)

DO 350 k=1,NPCE
IF (BETAV(K) «KE. 0.C) GC TC 220
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UXEKY=DXTINXI2IULKINXsM)-U(K, ILIM,M))

GC TCQ 230
320 UXIK)}=(GAMMAV(K)}-ALPHAVIK)}*UlKsNkX,M} )} /BETAV{K)
230 IF (BETAH{K) .NE. 0.0) €O TO 24C

UY(K}=DYTI*{ UL(KsANXyMN)=U(K,NXsF) ) *TS

GC 10 350
340 LY(K)=(GAMMAH({ K)—=ALPHAH (K)FU(KsNX M) ) /BETAH(K)
350 CONT INUE

EVALUATE THE VERTICAL U AVERAGE (RIGHT CCRNER)

360 DC 37C k=1.NPCE
CAVGV(K)=(U(K NXsM}+U(KsNX,¥N)}*.5
UCVALK,NXI= (UK sNX s MN)-U(K s NX M) 4DYI*IS
270 CONTINUE

EVALUATE THE VERTICAL U CCEFFICIENT {ABCVE THE RIGHT CORNER)

CALL OV (T X(NX)sYAVG,UAVGV+DVALVE(1414NX,IC] +NPDE)
IF (ITEST .EQ. NPDE) GC TC 390

EVALUATE DUXX AND DUYY (RIGHT CORNER)
DC 38C L=14NPDE

CC 38C K=1,NPDE
DVALH(K 4L o IBCK)=DXIC(NX )* (DVALKE(KsL o+ IBCK)}*UX(L)-

* DVALH{K;L,IFRD)*UDHR(L})])
DVALV(K,L)=DYIC*(DVALVS{K,L ¢NXy IC)*UDVA(L +NX)-DVALVIK,L)
* *UY(L})*IS
3280 CONTINGE

EVALUATE THE RIGHT SIDE CF THE PDE (RIGFT CORNER)

CALL F (ToX{NX)sY(MI UCL,NX M) LXsLY,DVALH(1,1,1IBCK),CVALV,
* UDGBT(1,NXsM},NPDE)
390 OC 400 K=14NPDE
IF (BETAHIK) <EQs 0.0 <OR. BETAV(K) .EQ. C.0) UDOT(K4NXsM}I=0.0
4G0 CCNTINUE
410 CONTINUE

DETERMINE THE U VALUES FCR THE J-TH RCW

IC 1S USED TD DETERMINE IF THE LAST RCW IS TC BE CETERMINEG, IF SO TEE
C CCEFFICIENTS HAVE ALREACY EBEEN CETERMINED FROM THE BOUNDARY SOLVED
EARLIER S0 IT IS A SPECIAL CASE

IC=2

CC 78C J=2,ILINMY
IF (J .NE. ILIMY) GO TC 50¢C
1C=1

5CC DYI=1a/(Y(J4#+1)-Y(I-1)])

DYIC=2%0Y1
DYIB=DYIA
DYIA=1./(Y(J*1i-Y(J])
YAVG=(Y{J+1)}+Y(J) )%, 5

CETERMINE THE LEFT BOUNCARY (J-TH RCW)

IfF (IC .EQ. 1} GC TG 50¢
CALL BNDERYV (TyX{1),Y{J+1),U{151,4+1),ALPHAV,BETAV,GANMAV,NPDE)
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DC 50% k=1,NPDE
IF (BETAVIK) .EQe C.0) U(1y1,1+1)=GAMMAV(K) /ALPHAVI(K)
5C5 CONTINLE
5C6 CONTINUE
CALL ENDFRYV (ToX(1)s¥Y(J),U(1e1lsd),ALPHAV,BETAV,GAMMAY,NPDE}
ITESTJ=C(
DC 510 K=1,NPCE
IF (BETAV(K) «NE. 0.0) GC TC 510
U(Ky15sJ)=CAMMAV(K]) /ALPHAV (K]
ITESTJ=ITESTJ+1
£10 CCNTINLUE
IF {ITESTY .EQ. NPDE) GO TO 5é&Q
IF (ITESTJ .ECe 0) CGC TC 52¢C
CALL BNDRYV (TeX(1),Y(J)yU{Lls1,J) ,ALPHAV,BETAV,CAMMAV,NPDE}

EVALUATE DU/CX AND CU/DY (LEFT BCUNCARY4J-TH RCw)
520 BC 55C K=1,NPCE

IF (BETAV(K)} .NE. 0.0} GC TC S53C
UX(K)=(U(Ky 29 J)-U(Kslyed)}*DXIR(])

GC TC 540
£30 UX{K)=(GANMMAV(K)}-ALPHAV(K)}*L(k,1,J))/BETAV(K]
540 UYIK)=(U{Ks 1,J+1)-U{K,1,J-1))%DYI
550 CCNTINCE

EVALUATE THE FCRIZCONTAL U AVERACE (J-TH RCW)

560 00 570 K=1,NPDE
UAVGHIK)}=(U(K,2,J)4U(Ky1,0))%.5
UDHR{K}=(U(Ks24J}-U{Ky1,J))*CXIR(1)
UCVE(K)=UCVA(K,1)}
UCVA(K$1)=(U(Ks1,J41)~U(K,1,J))40YIA

570 CCNTINUE

EVALUATE THE D CCEFFICIENTS (LEFT BCUNDARY,J-TH RCW)

CC 580 L=1,NPLE
CO S5EC K=1,.NPDE
DVALVIK,LY=CVALVS(K L1421
£80 COCNTINUE
CALL Ok (TyX{1),Y(J)sUl{1ly1,4J),DVALH,NPCE)
CALL CH (T,XAVG(1)sY(J),UAVGH,DVALH(1,1,2),NPDE)
IF (IC .EQ. 1) GC TC 590

EVALUATE THE VERTICAL U AVERAGE (J-TH RCwW)

00 585 K=1,NPDE
UAVGV (K)=(U(Ks1l4J4+1)+U(KylsJ) 12,5
EES CONTINUE
CALL CV (T4X(1),YAVC,UAVGV,DVALVS(1,1,1,2) NPDE)

EVALUATE DUXX AND DLYY (LEFT BOUNCARY,J-TF RCW)

550 IF (ITESTJ .EC. NFDE) GC TC 610
DO &0C L=1,NPDE
CO 600 K=1,NFOE
DVALH{KsL,1)=DXIC(1)* (DVALH(K L 2)*UDKER(L)~
* DVALH(K,L,1)*LX(L))
DVALV(K L)=CYIC*(DVALVS(KyL,1,1C)I*UDVA(L,y1}-DVALV(K,L)
* *LAVB(L)}



GO OO0

N aNeNel aNeNel OO0

OO0

OO0

—38-
600 CONTINUE

EVALUATE THE RIGHT SIDE CF THE PDE (LEFT BOUNDARY,J-TH RCHW)

CALL F (ToX(1)s¥(JDoltlelosS)q LX LY,DVALF,CVALV,UDCT(Ls1,J),NPDE}

SET LCCT = C FCR KNCWN LEFT BCUNEC2RY CCNDITICAS
610 CC 620 Kk=1,4NPCE

IF (BETAVIK) <EQe CoC) UDCTIK4l,J)=Cal
€20 CCNTINLE

EVALUATE THE RIGHT BOUNCARY FOR THE J-TE ROW

CALL BNORYV (ToX(KNX}s¥Y{JIUCLyNX,J}ALPHAV,BETAYV,GAMMAV NFDE)

ITESTJ=0
DC €3C K=1,NPDE
IF (BETAVIK} .NE. C.C) GO TC €3¢
U(KsMNX3J)=GAMMAV (K]} /ALPHAVI(K)
ITESTJ=ITESTJ+1
630 CCNTINUE

LOOP TO EVALUATE U IN THE CENTER OF THE GRID (2<I<NX-1,2<J<hY-1}

18Ck=1

IFWD=2

DC 68C I=2,ILIM
K=IBCK
IBCK=IFWD
IFWE=K

CALCULATE THE HORIZONTAL U AVERAGE, DL/DX AND DL/DY
(I-TH PCINT OF THE J-TH RIw)

DO &€4C K=1,NPDE
UAVGH(K)=(U(kyI+L4J)+U(KyI,Jd))%.5
UX(KI=(U(KeI+14Jd)-U(K3I-1,J))30XI(I)
UYIK)=(U{KeI4J+1)}-UlK,I,4J-1))20YI

£4C CCNTINUE

EVALUATE THE € COEFFICIENTS (I-TH PCINT GF THE J-TE ROW)

DO €5C L=1,NPDE
DC 650 K=1,NPOE
DVALVIKsL)=CVALVS(K,L,1,2)
650 CONTINUE
CALL DH (T+XAVC(I)sY(J)sUAVCH,DVALH(1,1,IFWC),NPCE)
IF (IC .EQ. 1) GO TO &6C
CC €55 K=1,NPCE
UAVGVIKI=(U(KyI 4J+1)+U(Ks1I,J) }*.5
655 CONTINUE
CALL TV (T4X{I),YAVG,UAVCVY,CVALYVS(1,1,1,2),NPDE)

EVALUATE DUXX AND DUYY (I-TH POINT CF THE J-TH RCh}

&6C DG €7C L=1,NPDE
UCEL(L j=UDHR{L}
UCHR(LY=(U{L,I414J)-UlLsI+J))RCXIR(I)
UCOVBIL)I=UDVA(L,I)
UCVA(L s I)=(UIL s I4J+1)-UlLyI,J))3DYIA
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DC 670 K=1,NPCE
ODVALHI{K Lo IBCK}=DXIC(I)*(CVALH(KyLy IFWD}*UDHR{L)—
CVALHE(KsL, IBCK)*UDFL(L )]
DVALV(K,L)=DYIC*(DVALVS{(K,L 4T,ICI*ULVA(L,1)-DVALV(K,L)
FUCVELL) )
CCNTINUE

EVALUATE THE RIGHT SIDE OF TKFE PCE (I-T+ POINT QF TEE J~TH ROW)

€80

CALL F (ToX(I}sY(J)sU(Lls14J)sUX,LUY,DVALH(1,1,IBCK},CVALV,
UDOT(1,1+J)4NPDE}
CONTINMLE

EVALUATE THE RIGHT BOUNCARY FCR TKE J-TE ROW

6ES
€86

IF (IC .EQ. 1) GO TO 6E6
CALL BNDRYV (T X(NX)sY(J+1),U(L4NXyJ+1)yALPHAV,BETAV,GAMMAYV,
NPDE)

BC 685 K=1,NPDE
IF (BETAVI(K) .EC. C.0) U(KyNXJ+1)=GAMMAV(K)/ALPHAVIK)
CONTINUE

CCNTINUE

IF (ITESTYS «EQ. NPDE)} GC TC 730

IF (ITESTJ .EQ. €) GO TO 69C

CALL BNDRYV (To¢XUINX),Y(J) U(L14NXyJ)sALPHAV,BETAV,GAMMAV,NPDE}

EVALUATE DU/DX AND DU/DY (RIGHT BCUNDARY,J-TH RCk]}

E£90

700
710

DC 71C x=1,NPDE
UY(K}=(U(KeNXy J+1)-U(K,NXyJ-11}3DYI
IF (BETAV(K) .NE. G.0) GC TC 70C
UX(K)=(U{KyNXy J)=L(KyILIM4J) ) *DXTR(ILIM)
¢d 7C 710
UX{K)={GAMMAV(K)-2ALPHAVIK)}*U(KsAX J))/BETAV(K)
CCNT INUE

EVALUATE THE © CCEFFICIENTS (RIGHT BCUNCARY,J-Tk RCW)

120

730

140

750

DC 726 L=1,NPDE
B0 720 K=1,.NPDE
CVALV(K L )=CVALVSI(K,L,NX,y2)
CCNTINUE
CALL CH (ToX{NX)sY(J)s+U(1,NXsd),DVALH{1,1,1IBCK),NPCE)
DC 740 ¥=1,NPDE
UAVGVIK) = (UIKoNX, JH+1)+U(K,KX,J) )*,5
UCVE(K)=UDVA(K,4NX)
UDVAUK gNXI=(U(KoMXsJ+1)} =U(KsNX,J)I*DYIA
COCNTINUE
IfF (IC .EQ. 1) GC TC 750
CALL OV (T X(NX) ¢YAVGsUAVGV,DVALYS({1,14NX,2)4NPCE)
IF (ITESTJ .EQ. NPDE) GO TO 770

EVALUATE DUXX AND DUYY (RIGHT BCUNDARY,J-TH ROW)

D8 T6C L=1,NPDE
CO 76C K=1,NPDE
PVALHE(K,LyJBCK}=CXICINX)2(DVALH(K,L s IBCK)®UX{L)-
DVALH(K, Ly IFWC)*UCHR({L))
DVALV (KoL )=DYIC*(DVALVS(K.L yNX,ICI*UDVA{L ;NX}-DVALV(K,L)
*UCVE(L))
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760 CCNTINUE

EVALUATE THE RIGHT SIDE CF THE PDE (RIGHT BCUNCARY,J-TH ROW)

CALL F (T XINX) oY UJ)sULL e NXsJ},UXsUY,DVALKE(Ys1,1BCK)y EVALY,
* UDOT(14NXyJ)+NPDE)

SET uUpOo7 0 FCR KNCWN EBCUNLCARY VALUES
770 DC 780 K=14NPCE
IF (BETAV(K) .EC. 0.0) UDCT(KyNXy4)=0.0
780 CONTINUE
RETUEN
END
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APPENDIX B

SLBROLTINE PSETM (Y,NO,CON,MITER,IER)

PSETM 1S SPECIFICALLY DESIGNEC TC REPLACE THE ROUTINE PSETB
USEC IN CEARB. IT IS INTENDED TO BE LSEC WITH PDETWC WHICH USES
FIVE PCOINT CENTERED DIFFERENCING TC CENERATE A SYSTEM OF ODE=*S.
PSETM CPTIMIZES THE NUMBER OF FUNCTICN EVALUATICAS NEEDED TO
GENERATE THE JACCBIAN MATRIX.

PSETM IS CALLED BY STIFFB IN GEARE WHEN TRE INTEGRATICN METHOC
(MITER=1 OR 2) REQUIRES A JACOBIAN MATRIX. IT CCMPLTES AND PROCESSES
THE MATRIX P=I-H*EL(1}*J, WHERE J IS THE JACGBIAN. J IS CALCULATED BY
USING A USER-SUPPLIED ROUTINE POB (MITER = 1) CR BY USING FINITE
CIFFERENCING (MITER = 2). IF MITER = 1, PSETM CGENERATES THE JACOBIAN
WITH A USER SUPFLIED RCUTINE. THIS METECC IS USUALLY AVCICEC SINCE
IT REQUIRES THE USER TC CCMPLETELY UNCERSTAND PDETWC. IF FITER = 2,
J IS AFPFROXIMATEC BY (LCCT(Y+R)-UDCT(Y))*D. UCCT(Y)} IS SUPPLIED
BY STIFFB THROUGE THE COMMCN BLCCK GEAR4., D IS A SMALL NUMBER
CALCULATED IN PSETM. PSETM DETERMINES T+HE MESH POINTS FOR WHICH
UDCT(Y+R) IS EVALUATED IN EACH CALL TC PCETWO. AFTER THE CALL TO
PDETWO, THE ASSOCIATED ENTRIES IN THE JACOBIAN ARE THEN EVALUATED.
PSETM USES SIX CALLS TC PCETWO FOR EACH PDE IN CRDER TO GENERATE THE
JACOBIAN. EACH CALL DETERMINES UCCT(Y+R)} FCR THE MESH PCINTS IN
THE FCLLOWING PATTERN..

CXxCXXxa0
X XX X X XX
¥C x XC XX
XX X xx XX
CXX0XXC

WHERE O REPRESENTS THE PCINTS FOR WHICE UDOT(Y+R) IS EVALLATED.
ASSCCIATED WITH EACH MESKH PCINT ( C CR X ) IS A SOLUTION FOR EACH
OF THE PDE®*S, THEREFCRE TO COMPLETELY EVALUATE Js TEHE PATTERN
SHCWN ABGVE MUST B8E EVALUATED FOR EACH PCE.

THE TOTAL MNUMBER OF FUNCTICN EVALUATIGAS FCR PSETM IS THEN NPOE®*6
AS CGPPCSED TO MW CALLS BY PSETB (SEE Mw EXPLANATICN BELCW).

REFERENCES

l. A. Co HINCMARSFH, CEAR.. CRDINARY CIFFERENTIAL EQUATION
SYSTEM SOLVER, UCID-300C1 REV. 3, LAWRENCE LIVERMCRE
LABORATORY, P.G.BOX 8(8, LIVERMCRE, CA $455C, DEC. 1974.

2e A. C. HINDMARSHy GEARB.. SOLUTICN CF CRCINARY
DIFFERENTIAL FQUATIONS HAVING BANDEC JACCBI AN,
LCID-30C5% REV. 1y Lelol.y MARCH 1675.

THE INPUT FARAMETERS..

Y CCNTAINS THE CURRENT SCLUTICNS CF THE CRDINARY
CIFFERENTIAL ECUATIONS.

NO IS THE NUMBER GF CRCINARY CIFFERENTIAL ECUATICNS.

CON IS THE CCNSTANT (—H*EL(1)).

MITER INCICATES THE TYPE CF ITERATICAN METHOD BEINC USED

BY THE INTEGRATCR.
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MITER = 0 MEANS FUNCTICNAL ITERATICN.
MITER = 1 MEANS THE CHCRD METHCC wWITHE AN ANALYTIC
JACOBIAN SUPPLIED IN THE USER DEFINED
RCUTINE PLCE.
MITER = 2 MEANS THE CHCRD METHCD WITH THE JACGBIAN
CALCULATEC IN PSETM.
MITER = 3 MEANS THE CHCRC METHCD wITH THE JACGBIAN
REPLACED BY A DIAGCNAL APPROXINATICN
BASEC CN A CIRECTICNAL CERIVATIVE.
THIS METHCC IS IN GEARE, BUT IS NOT USEFUL
IN SOLVING PLE*S.
IER IS AN ERROR INDICATCR USED IN THE RCUTINE CECB.
THE VARTABLES ..
R IS A SMALL INCREMENT LSED IN EVALUATING TEE

FUNCTICN NEAR THE CURRENT SOLUTICN Y ( 1.E.
LDOT(Y+R)} ).

RO IS A LOWER BOUNC ON TEE SIZE CF R.
D IS A SMALL NUMBER USEC TC APPRCXIMATE THE
CERIVATIVE.

THE CCMMCN BLOCK VARIAEBLES ..

URCUND {GEARL) IS THE UNIT RCUNCOFF CF THE MACEKINE.

YMAX (GEAR2) IS THE MAXIMUM Y VALUES, WHICE ARE USED TC SCALE
THE VALUE IN R AND FCR ERRCR CCNTRCL 1IN GEARB.

ERRGR (GEAR3) IS A TEMFCRY STGRE FOR Y VALUES.

SAVE1l (GEAR4) IS THE VALUE CF UDOT(Y#R) PASSEC BACK FROM PDETHWO.

SAVEZ2 {CE2RS} IS THE CURRENT VALUE CF UDCT(Y) PASSED FROM STIFFB.

PW (GEARE) STORES J AKD RETURNS F WHEN RETURNING TC STIFFB.

My (GEARS) I£ NO - 1.

EPSJ IS SQRT(URCUND}.

MW IS THE BAND WICTH COF THE JACCEIAN (ML+MU+1).

ML IS THE WIDTH OF THE LCWER HALF CF THE BAND. ML =
(NX +# 1} * NPDE - 1).

MU IS THE wIDTH OF THE UPPER HALF CF THE BANL. MU =

(NX + 1) * NFDE - 1l)e.
MW ML AND MU ARE USECL IN THE CIRECT SOLUTICN OF J 1IN

DECB .

NPLCE (MESE3} IS THE NUMBER CF PARTIAL DIFFERENTIAL EQUATICNS.

NY IS THE NUMBER CF MESH PCINTS IN THE VERTICAL
CIRECTICN.

NX IS THE NMUMBER COF MESH PCINTS IN THE HGRIZCNTAL
DIRECTICN.

THE RCUTINES CALLED BY FSETM..

PCE(Ns T4YsPK,NOsML, MU} IS A USER DEFINEC ROUTINE WHICH OEFINES J IN
PW IF MITER = 1l.

DECE(NOyNsML,MU,PH, IPIV, IER) COMPUTES THE LU DECCMPCSITION OF J USED
FCR THE CIRECT SCLUTICN CF J.

PDETWO (N,T,Y,SAVE) IS THE INTERFACE WHICKH CCNVERTS A THWO
CIMENSICNAL SYSTEM OF PDE#S INTC A SYSTEM CF ODE=*S.

NCTE: 1IF THE USER WANTS TO KNOW ThHE NULMBER OF FUNCTICN EVALUATICNS
WHEN USING PSETM HE MULST FRCVICE HIS OwN CCUNTER AS NFE PRCOVIDED IN
CCMMCN BLOCK CEARS IS NC LCNGER CCRRECT.
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INTECER NOJMITERyIER N, IDUMMY ,IPIVyML yMU MH ¢NM]L JNCML 4NOW,
* I!J!KHAX,KfJI'JJ!Il]IIZ,II

COUBLE PRECISION Y, ,CON,ToH,DUMMY LRCUND ,YMAX,ERRLE,
* SAVE1,SAVE2,PHW,EPSJsCsRO,YM,R

DIMENSICN Y(NC,1)

COMMCN /CEARL/ TyH,CUMMY( 3} ;URCUND N, IDUMNY {2}

CCMMEN /CEARZ2/ YMAX(1)

CCMMCN /GEAR3/ ERRCRI(1)

CCMMCN /CEAR4/ SAVEL(1)

COMMCN /CEARS/ SAVE2(1)

COMMCN /GEARS/ PW(1600)

CCMMCN /CEART/ IPIVI(1)

CCGMMCN /GEARB/ EPSJsMLyMUSMW,NM1 s NOKFL ,NOW

CCMMCN /PRT/ IPNT

CCMMCN /MESH3/ NPLDENXsAhY

IF MITER = 1, CALL PDB TO GENERATE TFE JACOBIAN

(e NaNel

IF (MITER .EQ. 2) GC TC 20
CALL PCE (N, Ty Y, PWy, NOs ML, MU)
CC 10 1 = 1,NCH
10 PR(I) = PW(I)*CON
€C TC 230

c
C 1IF MITER = 2, APPRCXIMATE J WITH FINITE CIFFERENCING
c

20 O = C.DC
CC 30 I = 1,N
30 D =D + SAVE2(I)**2
RC = CABS(H)*DSQRT(LC)*1.D03*URCULND
c
C THE ¥Y{,1) VALUES ARE SAVED TEMPGRARILY INM ERRCR.
C
CC 40 1 = 1,N
4C ERROR(I} = Y(I,1)
c
C UP TC THIS PCINT, FSETE ANC PSETM ARE ICENTICAL.
c
IN3=3*NPCE
IN2M¥=2%NPDE-1
ISTART = INZM*NQ
MA=NX*NFLE
NANM=NFE1*NFDE
ID=(NPDE~1)*NC
IA=NN*NQ
NROWZ=Nh*2
NP=NC*(NRCW2+IN2M]}
CC 45 I1=1,NP
45 PH(II)=C.C

C
C EVALUATE THE MESK FOR EACH PCE.
c
DO 160 IPLE=1,NPDE

IPCEM=IFDE~1

IPIN=NM1XIPDEM
C
C PRCVIOCE THE SIX FUNCTICN EVALUATICANS NECESSARY FOR EACH PDEe
C

CC 15C K4=1,2
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DO 14C K3=1.IMA3,NPDE
Is=1
IF (K3 .EQC. 2*NPDE+1) IS=-2
I1=1PDEN+K3+ (K4-1)%NN
12=NN*K4
ISV=ISTART

SELECT THE MESE POINTS FOR WHICH UDOTU(Y+R) IS TO BE EVALUATED.

DG €C K2=K44NY,2
EC 50 K1=11,12,41IN3
R = DMAX1(EPSJ*YMAX(KL)}+RC}
Y{K1ls1¥=Y(K1l,1)+R
ISV=1ISV+1l
PW{ISV)=K1
50 CONTIMUE
I11=I1+NRCW2+IS*NPDE
12=12+NROK2
60 I18=-1S

EVALUATE UDCT(Y+R)
CALL DIFFLN (N,T4Y,SAVEL)

GENERATE THE JACCBIAN BY EVALUATINC (UCCT(Y+R)}-UCOT(Y))*D.

THE ENTRIES IN THE JACCBIAN ARE FIRST CETERMINEC FCR THE CENTER BAND,
THEN THE UPPER BANC ANC FINALLY THE LCWER BAND. THIS IS REPEATED
FOR ALL PDE*S, THE FIMNAL STEP THEN IS TC ZERG THE APPROPRIATE
ENTRIES CAUSED BY THE VERTICAL BCUNDARIES.

J1=IS5TART+1

OC 130 IC=J1l.1ISV
JJ=PW(IC)
R=CMAX1 (EFSJ*YMAX(JJ) 4RO}
C=CON/R
I1I=TA+IC+JJ+]IPIN
IF (JJ .LE. NPDE) GE TC 7C
TI=TT+NNM
11=JJ-IPDEM-NPDE
12=11+IN3-1
IF (JJ «GT. NC-NPDE) 12=1IZ-MPCE
GC TG 80

7C 11=1

12=2*NPDE

CENERATE ENTRIES FOR THE FMIGCLE EANC

80 CC 90 I=I1,12
PW(IT)=(SAVEL(I}-SAVEZ(I})=*D
SC II=1I-NNM1

IF {(JJ «GT. NC-NN) GG TC 11C
[I=ID+JJ+NN+IFIN
[11=JJ-IPDE¥+NN

12=114NPDE-1

CENERATE ENTRIES FOR THE UPPER BANC
DC 100 I=11,12

Pw{II)=({SAVEL(I)-SAVEZ(I)}*D
160 II=T11-NN1
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IF (JJ4 «LE. NN) GC TC 13¢C
110 I11=1ID+42%1A+JJ-NN+IPIN
11=JJ-IPDEFM-AR
12=11+NPDE-1

GENERATE ENTRIES FCR THE LOWER EANCD.

CC 12C I=11,12
PR(II)=(SAVEL(I)-SAVEZ2(I)}*C

120 I1=1I-NM1
130 Y(JJe1)=ERRCER(JJ)
ERRGR(JJ) = C.DO
140 CONT INUE
150 CCNTINUE
160 CONTINUE
ISN=-NO

DC 2C€0 14=1,2
112=14+10+1
DC 19C I3=1,IN2¥
I12=112+ISN
I11=112
DG 180 I2=2,NY
II1=I11+NN
[110=111+I3-1

ZERO APPROPRIATE ENTRIES IN THE CENTER EBAND

CC 170 1I=111,110

170 Pu{I1)=0C.0

180 CCNTINUE

150 CONTINUE
ISA=NM1

200 CCNTIMUE
I1=ISTART+1
[12=11+.34%N0
0DC 220 1I=11,12

220 PW{Il)=C.0

THE REMAINCER CF PSETM IS THE SAME AS FSETB,.
ACC TRE IDENTITY MATRIX.

230 DC 24C I = 14N

240 PW(NOML+I) PR{NCML+TI) + 1.DC

DC THE LU CECCMPCSITICAN CN P.
CALL CECEB {NOs Ny ¥L, MU, PW, IFIV, IER)

RETURN
END
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GENERAL SOFTWARE FOR TWO DIMENSIONAL
PARTIAL DIFFERENTIAL EQUATIONS

David K. Melgaard, Kansas State University

ABSTRACT

The numerical solution of partial differential equations (PDE's) is
generally not only a complicated process but is highly problem dependent
as well, requiring the long and difficult task of developing new software
for each problem. Recently, easy to use, portable and efficient general
software for the solution of one dimensional PDE's has become available,
In this paper, we present a software interface, which is an extension
of this existing software, to solve PDE's with one dimension in time
and two spatial dimensions. The software interface employs the method
of lines technique whereby centered differencing of the spatial vari-
ables results in a system of time dependent ordinary differential equa-
tions (ODE's) which are then solved using one of the already developed
robust ODE integrators. Included in this paper will be a detailed
description of the use of the interface. We also discuss the efficient
generation of the Jacobian matrix. Representative examples will be
given to demonstrate the use, validity, capabilities, and limitations

of the software interface.



