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Abstract

The goal for this paper is to present material from Gilbarg and Trudinger’s Elliptic

Partial Differential Equations of Second Order chapter 7 on Sobolev spaces, in a manner

easily accessible to a beginning graduate student. The properties of weak derivatives and

there relationship to conventional concepts from calculus are the main focus, that is when do

weak and strong derivatives coincide. To enable the progression into the primary focus, the

process of mollification is presented and is widely used in estimations. Imbedding theorems

and compactness results are briefly covered in the final sections. Finally, we add some

exercises at the end to illustrate the use of the ideas presented throughout the paper.
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Chapter 1

Sobolev Spaces

The motivation to the theory of this chapter comes from wanting a different approach to

Poisson’s equation. By the divergence theorem, a C2(Ω) solution of ∆u = f satisfies the

integral identity ∫
Ω

Du ·Dϕdx = −
∫
Ω

fϕdxfor allϕ ∈ C1
0(Ω) (1.1)

The bilinear form

(u, ϕ) =

∫
Ω

Du ·Dϕdx (1.2)

is an inner product on the space C1
0(Ω) and the completion of C1

0(Ω) under the metric

induced by (1.2) is consequently a Hilbert space, which we call W 1,2
0 (Ω).

Furthermore, for appropriate f the linear functional F defined by F (ϕ) = −
∫

Ω
fϕdx

may be extended to a bounded linear functional on W 1,2
0 (Ω) satisfying (u, ϕ) = F (ϕ) for all

ϕεC1
0(Ω). Therefore, a generalized solution to the Dirichlet problem, ∆u = f ,u = 0 on ∂Ω,

is readily established. The question of classical existence is accordingly transformed into

the question of regularity of generalized solutions under the appropriately smooth boundary

conditions. We need to examine the class of Sobolev spaces, that is, the W k,p(Ω) and

W k,p
0 (Ω) spaces of which the space W 1,2

0 (Ω) is a member. Some of the inequalities we treat
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will also be necessary for the development of the theory of quasilinear equations.

1.1 Lp Spaces
1 Throughout this chapter Ω will denote a bounded domain in Rn. By a measurable function

on Ω we shall mean an equivalence class of measurable functions on Ω which differ only on

a subset of measure zero. Any pointwise property attributed to a measurable function will

thus be understood to hold in the usual sense for some function in the same equivalence

class. The supremum and infimum of a measurable function will then be understood as

the essential supremum and infimum. We will now introduce the main inequalities used

throughout this chapter.

For p ≥ 1, we let Lp(Ω) denote the classical Banach space consisting of measurable

functions on Ω that are p-integrable. The norm in Lp(Ω) is defined by

‖u‖Lp(Ω) =

∫
Ω

|u|pdx

1/p

(1.3)

When u is a vector or matrix function the same notation will be used, the norm |u|

denoting the usual Euclidean norm. For p =∞,L∞(Ω) denotes the Banach space of bounded

functions on Ω with the norm

‖u‖∞;Ω = ‖u‖L∞(Ω) = sup
Ω
|u| (1.4)

In the following we shall use ‖u‖p for ‖u‖Lp(Ω) when there is no ambiguity. We shall need

the following inequalities in dealing with integral estimates: Young’s inequality.

ab ≤ ap

p
+
bp

q
; (1.5)
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this holds for positive real numbers a, b, p, q satisfying 1
p

+ 1
q

= 1.

Proof.

ab = exp(log(ab))

= exp(
1

p
log(ap) +

1

q
log(bq))

≤ 1

p
exp(log(ap)) +

1

q
exp(log(bq)) by convexity of exp

=
ap

p
+
bq

q

The case p = q = 2 of inequality (1.5) is known as Cauchy’s inequality. Replacing a by

ε1/pa, b by ε−1/pb for positive ε, we obtain a useful interpolation inequality

ab ≤ εap

p
+
ε−q/pbq

q

≤ εap

p
+
εap

q
+
ε−q/pbq

q
+
ε−q/pbq

p

= (
1

p
+

1

q
)(εap) + (

1

p
+

1

q
)(ε−q/pbq)

= εap + ε−q/pbq

(1.6)

The following equation is commonly known as Hölder’s inequality,

∫
Ω

uvdx ≤ ‖u‖p‖v‖q; (1.7)

this holds for functions u ∈ Lp(Ω), v ∈ Lq(Ω), 1/p + 1/q = 1 and is a consequence of

Young’s inequality. When p = q = 2, Hölder’s inequality reduces to the well known Schwarz

inequality. The reason that the expression (1.3) defines a norm on Lp(Ω) is a consequence
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of Hölder’s inequality.

|Ω|−1/p‖u‖p ≤ |Ω|−1/q‖u‖q for u ∈ Lq(Ω), p ≤ q (1.8)

A useful application of Hölder’s inequality and LP spaces results in the following inequality:

‖u‖q ≤ ‖u‖λp‖u‖1−λ
r for u ∈ Lr(Ω), where p ≤ q ≤ r and 1/q = λ/p+ (1− λ)/r (1.9)

Proof.

‖u‖qq =

∫
Ω

|u|qdx

=

∫
Ω

|u|q−α · |u|αdx where we will choose α later

≤

∫
Ω

|u|
(q−α)p
λq dx


λq
p
∫

Ω

|u|
αr

(1−λ)q dx


(1−λ)q
r

by Hölder

=

∫
Ω

|u|pdx


λq
p
∫

Ω

|u|rdx


(1−λ)q
r

letting α = (1− λ)q

= ‖u‖λqp ‖u‖(1−λ)q
r

Combining inequalities (1.6) and (1.9), we obtain and interpolation inequality for Lp

norms, namely,

‖u‖q ≤ ε‖u‖r + ε−µ‖u‖p, where µ =
1/p− 1/q

1/q − 1/r
(1.10)

Proof. From (1.9) if we let ‖u‖λp = b and ‖u‖1−λ
r = a then from (1.6) there exists m, l ∈ R

such that ab ≤ εal + ε−m/lbm. Letting m = 1
λ

and l = 1
1−λ then µ = m/l = 1−λ

λ
and from

(1.9) we have λ = pr−pq
qr−qp and 1− λ = qr−pr

qr−pq so that µ = qr−pr
pr−pq =

(
q−p
pq

)(
qr
r−q

)
= 1/p−1/q

1/q−1/r
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We shall also have occasion to use a generalization of Hölder’s inequality to m functions,

u1, . . . , um, lying respectively in spaces Lp1 , . . . ,Lpm , where 1/p1 + · · · + 1/pm = 1. The

resulting inequality, obtainable from the case m = 2 by and induction argument, is then

∫
Ω

u1 · · ·umdx ≤ ‖u1‖p1 · · · ‖um‖pm (1.11)

It is also of interest to study the Lp norm as a function of p. Writing

Φp(u) =

 1

|Ω|

∫
Ω

|u|pdx

1/p

(1.12)

for p > 0, we see that Φ is non-decreasing in p for fixed u, by inequality (1.8), while

the inequality (1.9) shows that Φ is logarithmically convex in p−1. Note that Φp(u) =

|Ω|−1/p‖u‖p for p ≥ 1. Although the functional Φ does not extend the Lp norm as a norm

for values of p less than one, it will nevertheless be useful for later purposes.

We also note here some of the well known functional analytic properties of the LP spaces.

The space Lp(Ω) is separable for p < ∞, C0(Ω̄) being in particular a dense subspace. The

dual space of Lp(Ω) is isomorphic to Lq(Ω) provided 1/p+1/q = 1 and p <∞. Hence Lp(Ω)

is reflexive for 1 < p <∞. The number q, the Hölder conjugate of p, will often be denoted

p′. Finally, L2(Ω) is a Hilbert space under the scalar product

(u, v) =

∫
Ω

uvdx (1.13)

5



1.2 Regularization and Approximation by Smooth Func-

tions

Let us define local analogues of the Lp(Ω) spaces by letting Lploc(Ω) denote the linear space

of measurable functions locally p-integrable in Ω. Although they are not normed spaces are

readily topologized. Namely, a sequence {um} converges to u in the sense of Lploc(Ω) if {um}

converges to u in Lp(Ω′) for each Ω′ ⊂⊂ Ω.

Let ρ be a non-negative function in C∞(Rn) vanishing outside the unit ball B1(0) and

satisfying
∫
ρ dx = 1. Such a function is often called a mollifier. A typical example is the

function ρ given by

ρ(x) =


c exp

(
1

|x|2−1

)
for|x| ≤ 1

0 for|x| ≥ 1

where c is chosen so that
∫
ρ dx = 1 and whose graph has the familiar bell shape.

For u ∈ L1
loc(Ω) and h > 0, the regularization of u, denoted by uh, is then defined by

the convolution

uh(x) = h−n
∫
Ω

ρ

(
x− y
h

)
u(y) dy (1.14)

provided h <dist(x, ∂Ω). It is clear that uh belongs to C∞(Ω′) for any Ω′ ⊂⊂ Ω provided

h <dist(Ω′, ∂Ω). Furthermore, if u belongs to L1(Ω), Ω bounded, the uh lies in C∞0 (Rn)

for arbitrary h > 0. As h tends to zero, the function y 7→ h−nρ(x − y/h) tends to the

Dirac delta distribution at the point x. The significant feature of regularization, which we

partly explore now, is the sense in which uh approximates u as h tends to zero. It turns

out, roughly stated, that if u lies in a local space, then uh approximates u in the natural

topology of that space.

Definition For any domain Ω ∈ Rn we say Ω′ is strongly contained in Ω if Ω̄′ ⊂ Ω is

compact. For this we write Ω′ ⊂⊂ Ω.
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Lemma 1.2.1. Let u ∈ C0(Ω). Then uh converges to u uniformly on any domain Ω′ ⊂⊂

Ω

Proof. We have

uh(x) = h−n
∫

|x−y|≤h

ρ

(
x− y
h

)
u(y) dy

=

∫
|z|≤1

ρ(z)u(x− hz) dz putting z =
x− y
h

notice that the Jacobian, when making this change of variables, is hn hence eliminating the

h−n. Therefore, if Ω′ ⊂⊂ Ω and 2h < dist(Ω′, ∂Ω), we have |u− uh| = |
∫
|z|≤1

ρ(z)u(x) dz −∫
|z|≤1

ρ(z)u(x− hz) dz| ≤
∫
|z|≤1

ρ(z)|u(x)− u(x− hz)| dz so that

sup
Ω′
|u− uh| ≤ sup

x∈Ω′

∫
|z|≤1

ρ(z)|u(x)− u(x− hz)| dz

≤ sup
x∈Ω

sup
|z|≤1

|u(x)− u(x− hz)|.

Since u is uniformly continuous over the set Bh(Ω
′) = {x|dist(x,Ω′) < h}, uh tends to u

uniformly on Ω′.

The convergence in (1.2.1) would be uniform over all of Ω if u vanished continuously on

∂Ω. More generally if u ∈ C0(Ω) we can define an extension ũ of u such that ũ = u in Ω

and ũ ∈ C0(Ω̃) for some Ω̃ ⊃⊃ Ω. Then ũh, the regularization of ũ in Ω̃, converges to u

uniformly in Ω as h→ 0.

The process of regularization can also be used to approximate Hölder continuous func-

tions. In particular, if u ∈ Cα(Ω), 0 ≤ α ≤ 1, then

[uh]α;Ω′ ≤ [u]α;Ω′′ (1.15)
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where Ω′′ = Bh(Ω
′) and consequently uh tends to u in the sense of Cα′(Ω′) for every

α′ < α and Ω′ ⊂⊂ Ω,as h→ 0.

We turn our attention now to the approximation of functions in the Lploc(Ω) spaces.

Lemma 1.2.2. Let u ∈ Lploc(Ω)(Lp(Ω)), p< ∞. Then uh converges to u in the sense of

Lploc(Ω)(Lp(Ω)).

Proof. Using Holder’s inequality along with the change of variables from (1.2.1), we obtain

|uh(x)|p ≤

 ∫
|z|≤1

|ρ(z)| |u(x− hz)| dz


p

=

 ∫
|z|≤1

|ρ(z)|1/q |ρ(z)|1/p |u(x− hz)| dz


p

≤


 ∫
|z|≤1

|ρ(z)| dz


1/q ∫

|z|≤1

|ρ(z)| |u(x− hz)|p dz


1/p

p

=

∫
|z|≤1

p(z)|u(x− hz)|p dz since

∫
|z|≤1

|p(z)| dz = 1

so that if Ω′ ⊂⊂ Ω and 2h <dist(Ω′, ∂Ω),

∫
Ω′

|uh|p dx ≤
∫
Ω′

∫
|z|≤1

ρ(z)|u(x− hz)|p dz dx

=

∫
|z|≤1

ρ(z) dz

∫
Ω′

|u(x− hz)|p dx by Fubini

≤
∫

Bh(Ω′)

|u(x)|p dx
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where Bh(Ω
′) = {x|dist(x,Ω′) < h}. Consequently

‖uh‖Lp(Ω′) ≤ ‖u‖Lp(Ω′′), Ω′′ = Bh(Ω
′) (1.16)

The proof can now be completed by approximation based on (1.2.1) Choose ε > 0

together with a C0(Ω) function w satisfying ‖u − w‖Lp(Ω′′) ≤ ε where Ω′′ = Bh′(Ω
′) and

2h′ <dist(Ω′, ∂Ω). By virtue of (1.2.1), we have for sufficiently small h

‖w − wh‖Lp(Ω′) ≤ ε.

Applying the estimate (1.16) to the difference u− w, we therefore obtain

‖u− uh‖Lp(Ω′) ≤ ‖u− w‖Lp(Ω′) + ‖w − wh‖Lp(Ω′) + ‖uh − wh‖Lp(Ω′)

≤ 2ε+ ‖u− w‖Lp(Ω′′) ≤ 3ε

for small enough h ≤ h′. Hence uh converges to u in Lploc(Ω). The result for u ∈ Lp(Ω)

can then be obtained by extending u to be zero outside Ω and applying the result for

Lploc(Rn).

1.3 Weak Derivatives

Let u be locally integrable in Ω and α any multi-index. Then a locally integrable function

v is called the αth weak derivative of u if it satisfies

∫
Ω

φv dx = (−1)|α|
∫
Ω

uDαφ dx for all φ ∈ C
|α|
0 (Ω) (1.17)

We write v = Dαu and note that Dαu is uniquely determined up to sets of measure zero.

Pointwise relations involving weak derivatives will be accordingly understood to hold almost
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everywhere. We call a function weakly differentiable if all its weak derivatives of first order

exist and k times weakly differentiable if all its weak derivatives exist for orders up to and

including k. Let us denote the linear space of k times weakly differentiable functions by

W k(Ω). Clearly Ck(Ω) ⊂ W k(Ω). Therefore, the concepts of classical theory are still valid,

i.e integration by parts.

Lemma 1.3.1. Let u ∈ L1
loc(Ω), α a multi-index, and suppose that Dαu exists. Then if

dist(x, ∂Ω) > h, we have:

Dαuh(x) = (Dαu)h(x) (1.18)

Proof. From (1.14) we have Dαuh(x) = Dα h−n
∫
Ω

ρ
(
x−y
h

)
u(y) dy

Now since uh ∈ C∞(Ω) we may differentiate under the integral sign to obtain:

Dα h−n
∫
Ω

ρ

(
x− y
h

)
u(y) dy = h−n

∫
Ω

Dα
xρ

(
x− y
h

)
u(y) dy

= (−1)|α|h−n
∫
Ω

Dα
y ρ

(
x− y
h

)
u(y) dy switching derivatives

= h−n
∫
Ω

ρ

(
x− y
h

)
Dαu(y) dy by (1.17)

= (Dαu)h(x)

Theorem 1.3.2. Let u and v be locally integrable in Ω. Then v = Dαu if and only if there

exists a sequence of C∞(Ω) functions um converging to u in L1
loc(Ω) whose derivatives Dαum

converge to v in L1
loc(Ω).

Proof. If u is weakly differentiable and v = Dαu, then from (1.3.1), we can construct such

a sequence, and thus we have (Dαu)h(x) → Dαu ∈ L1
loc. Conversely, suppose that such a

sequence exists, namely um → u in L1
loc(Ω) as m → ∞ and Dαum → Dαu = v in L1

loc(Ω).
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Then we have ∫
Ω

umϕ dx→
∫
Ω

uϕ dx for all ϕ ∈ C0(Ω)

since if K = supp(ϕ) ⊂⊂ Ω

∣∣∣∣∣∣
∫
Ω

(um − u)ϕ dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
K

(um − u)ϕ dx

∣∣∣∣∣∣
≤ sup

K
|ϕ|
∫
K

|um − u|dx→ 0

Hence, for any ϕ ∈ C∞0 (Ω) the L1
loc(Ω) convergence of um and Dαum gives the following:

∫
Ω

uDαϕ dx = lim
m→∞

∫
Ω

umD
αϕ dx

= (−1)|α| lim
m→∞

∫
Ω

Dαumϕ dx

= (−1)|α|
∫
Ω

Dαuϕ dx

therefore, u is weakly differentiable and Dαu = v.

The results stemming from (1.3.2), allows most of the applications from the classical

theory of differential calculus to be extended to weak derivatives simply by approximation.

In particular, we have the product formula:

D(uv) = uDv + vDu (1.19)

which holds for all u, v ∈ W 1(Ω) such that uv, uDv + vDu ∈ L1
loc(Ω).(See problem 4)

Another part of classical theory is the change of variables formula, that is, if ψ maps Ω onto

a domain Ω̃ ⊂ Rn with ψ ∈ C1(Ω) and ψ−1 ∈ C1(Ω̃) and if u ∈ W 1(Ω), v = u ◦ ψ−1, then
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v ∈ W 1(Ω̃) and we have the formula:

Diu(x) =
∂yj
∂xi

Dyjv(y) (1.20)

which holds for almost every x ∈ Ω, y ∈ Ω̃, y = ψ(x).

One more thing to note is that locally uniformly Lipschitz continuous functions are

weakly differentiable, that is, C0,1(Ω) ⊂ W 1(Ω). This is justified by observing that any

function in C0,1(Ω) will be absolutely continuous on any line segment in Ω, and furthermore,

its partial derivatives exist almost everywhere and satisfy (1.17). Therefore, they coincide

almost everywhere with the weak derivatives. Using regularization, we can prove that a

function is weakly differentiable if and only if it is equivalent to a function that is absolutely

continuous on almost all line segments in Ω parallel to the coordinate axis and whose partial

derivatives are locally integrable.(See problem 5) This gives one an alternate way of deriving

the preceding and following sections properties of weak derivatives.

1.4 The Chain Rule

We will now consider a simple type of chain rule for weak derivatives.

Lemma 1.4.1. Let f ∈ C1(R), f ′ ∈ L∞(R) and u ∈ W 1(Ω). Then the composite function

f ◦ u ∈ W 1(Ω) and D(f ◦ u) = f ′(u) Du.

Proof. Let um, m = 1, 2, . . . ∈ C1(Ω), such that {um} → u, {Dum} → Du in L1
loc(Ω). Then

12



for Ω′ ⊂⊂ Ω, we have:

∫
Ω′

|f(um(x))− f(u(x))|dx =

∫
Ω′

|f(um(x))− f(u(x))|
|um(x)− u(x)|

|um(x)− u(x)|dx

=

∫
Ω′

|f ′(ξ)||um(x)− u(x)|dx

≤ sup |f ′|
∫
Ω′

|um(x)− u(x)|dx→ 0 since um → u as m→∞

and

∫
Ω′

|f ′(um(x))Dum(x)− f ′(u(x))Du(x)|dx =

=

∫
Ω′

|f ′(um(x))Dum(x)− f ′(um(x))Du(x) + f ′(um(x))Du(x)− f ′(u(x))Du(x)|dx

≤
∫
Ω′

|f ′(um(x))Dum(x)− f ′(um(x))Du(x)|dx+

∫
Ω′

|f ′(um(x))Du(x)− f ′(u(x))Du(x)|dx

≤ sup |f ′|
∫
Ω′

|Dum(x)−Du(x)|dx+

∫
Ω′

|f ′(um(x))− f ′(u(x))||Du(x)|dx

Passing to a subsequence, say {umk}, which must converge a.e. in Ω′ to u. We have, by

continuity of f ′, that {f ′(umk)} converges to f ′(u) a.e. in Ω′. Therefore, the last integral

tends to 0 by dominated convergence. Giving that {f(um)} → f(u) and {f ′(um)Dum} →

f ′(u)Du establishing the formula.

The positive and negative parts of a function are defined by

u+ = max{u, 0}, u− = min{u, 0}

Moreover, we have u = u+ + u− and |u| = u+ − u−. Using the previous lemma, we can

derive a chain rule for these functions as well.
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Lemma 1.4.2. Let u ∈ W 1(Ω); then u+, u−, |u| ∈ W 1(Ω) and

Du+ =


Du if u > 0

0 if u ≤ 0

Du− =


0 if u ≥ 0

Du if u < 0

D|u| =


Du if u > 0

0 if u = 0

−Du if u < 0

(1.21)

Proof. Let ε > 0 be given, and define

fε(u) =


(u2 + ε2)1/2 if u > 0

0 if u ≤ 0

so that lim
ε→0

fε(u) = u+. Applying (1.4.1), we have, for any ϕ ∈ C1
0(Ω)

∫
Ω

fε(u)Dϕ dx = −
∫
u>0

ϕ
uDu

(u2 + ε2)1/2
dx

taking ε to zero, we obtain

∫
Ω

u+Dϕ dx = −
∫
u>0

ϕDu dx

14



thus establishing (1.21) for u+. Now for u− it follows from the previous since u− = −(−u)+,

and |u| = u+ − u−.

Lemma 1.4.3. Let u ∈ W 1(Ω). Then Du = 0 a.e. on any set where u is constant.

Proof. This is a trivial consequence of (1.4.2), since Du = Du+ +Du− and if u is constant

on some set Du+ = 0 and Du− = 0 but weak derivatives are only determined up to sets of

measure zero, hence Du = 0 a.e. on that set.

We call a function piecewise smooth if it is continuous and has piecewise continuous first

derivatives. We now introduce the following generalization of the previous two lemmas.

Theorem 1.4.4. Let f be a piecewise smooth function on R with f ′ ∈ L∞(R). Then if

u ∈ W 1(Ω), we have f ◦ u ∈ W 1(Ω). Furthermore, letting L denote the set of corner points

of f , we have

D(f ◦ u) =


f ′(u)Du if u 6∈ L

0 if u ∈ L
(1.22)

Proof. By induction, we may consider the case of only one corner point. Without loss of

generality we may take it a the origin. Let f1, f2 ∈ C(R) be functions satisfying the following

conditions

1. f ′1, f
′
2 ∈ L∞(R)

2. f1(u) = f(u) for u ≥ 0

3. f2(u) = f(u) for u ≤ 0

Then we have f(u) = f1(u+)+f2(u−) and the result follows from (1.4.1) and (1.4.2).
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1.5 The W k,p Spaces

We will now classify the W k,p(Ω) spaces and their norm. Theses spaces are Banach spaces

analogous to Ck,α(Ω̄) spaces in a certain sense. The changes that are necessary are the

following: continuous differentiability is replaced by weak differentiability, and Hölder con-

tinuity by p-integrability.

Definition For p ≥ 1 and k a non-negative integer, we let

W k,p(Ω) = {u ∈ W k(Ω); Dαu ∈ Lp(Ω) for all |α| ≤ k}

These spaces are linear and a norm is introduced by defining

‖u‖k,p;Ω = ‖u‖Wk,p(Ω) =

∫
Ω

∑
|α|≤k

|Dαu|pdx

1/p

(1.23)

We shall use ‖u‖k,p for ‖u‖k,p;Ω when there is no ambiguity. Also, and equivalent norm on

W k,p(Ω) would be

‖u‖Wk,p(Ω) =
∑
|α|≤k

‖Dαu‖p. (1.24)

The verification that W k,p(Ω) is a Banach space under (1.23) can be seen in the next chap-

ter, problem 9.

By taking the closure of Ck
0 (Ω) in W k,p(Ω), we obtain another Banach space which we

call W k,p
0 (Ω). However, the spaces W k,p(Ω) and W k,p

0 (Ω) do not coincide for bounded Ω.

The relation to the Hilbert spaces,Hk(Ω) and Hk
0 (Ω), are a from the case p = 2 under the

scalar product

(u, v)k =

∫
Ω

∑
|α|≤k

DαuDαv dx (1.25)
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Further functional analytic properties of W k,p(Ω) and W k,p
0 (Ω) follow by considering

their natural imbedding into the product of Nk copies of Lp(Ω), where Nk is the number of

multi-indices α satisfying |α| ≤ k.

The chain rule of (1.4.4) also extends to the spaces W 1,p(Ω) and W 1,p
0 (Ω). In fact, a

consequence of (1.4.4) and the definition of these two spaces, we have that W 1(Ω) can be

replaced by W 1,p(Ω), and by W 1,p
0 (Ω) if we add the stipulation that f(0) = 0.

We define local spaces, W k,p
loc (Ω), to consist of functions belonging to W k,p(Ω′) for all

Ω′ ⊂⊂ Ω. Also,(1.3.2) shows that functions in W k,p
loc (Ω) with compact support will in fact

belong to W k,p
0 (Ω).

1.6 Density Theorems

Definition2 Let U be any subset of Rn and let G be a collection of open sets in Rn which

cover U, that is, U ⊂ ∪Gj∈GGj. A collection Ψ of functions ψ ∈ C∞0 (Rn) having the following

properties:

(i) For every ψ ∈ Ψ and every x ∈ Rn, 0 ≤ ψ(x) ≤ 1.

(ii) If K ⊂⊂ U, all but finitely many ψ ∈ Ψ vanish identically on K.

(iii) For every ψ ∈ Ψ there exists Gj ∈ G such that supp(ψ) ⊂ Gj.

(iv) For every x ∈ U we have
∑
ψ∈Ψ

ψ(x) = 1.

is called a C∞-partition of unity for U subordinate to G.

From (1.2.2) and (1.3.1), we have that if u lies in W k,p(Ω), then Dαuh tends to Dαu in

the sense of Lploc(Ω) as h goes to zero and for all multi-indices α satisfying |α| ≤ k. Using

this, we can obtain a global approximation result.

Theorem 1.6.1. The subspace C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).
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Proof. Recall that Ω is bounded in Rn, therefore if Ω is closed then it is compact and any

cover will work. So suppose Ω is open. Then let Ωj j = 1, 2, . . . be subsets of Ω such that

Ωj ⊂⊂ Ωj+1 for all j = 1, 2, . . . and ∪jΩj = Ω. Let ψj, j = 0, 1, 2, . . . be a partition of unity

subordinate to the covering {Ωj+1−Ωj−1}, where Ω0 and Ω−1 are defined to be empty sets.

That is supp(ψj) ⊆ {Ωj+1 − Ωj−1} for all j = 0, 1, . . .. Now with this partition of unity, we

have, for any arbitrary u ∈ W k,p(Ω) and ε > 0 we can choose hj, j = 1, 2, . . . satisfying


hj ≤ dist(Ωj, ∂Ωj+1), j ≥ 1

||(ψju)hj − ψju||Wk,p(Ω) ≤ ε
2j

(1.26)

Writing vj = (ψju)hj , from (1.26) we have that only a finite number of vj are non-

vanishing on any given Ω′ ⊂⊂ Ω. As a consequence, the function

v =
∞∑
j=1

vj belongs to C∞(Ω).

Furthermore,

‖u− v‖Wk,p(Ω) ≤
∑
‖vj − ψju‖Wk,p(Ω) ≤ ε.

This completes the proof.

Theorem (1.6.1) shows that W k,p(Ω) could have been characterized as the completion of

C∞(Ω) under the norm (1.23), and in many cases this is a convenient definition.

1.7 Imbedding Theorems

This and the following section are concerned with the connection between pointwise and

integrability properties of weakly differentiable functions and the integrability properties of

their derivatives. One of the most simple but amazing results, is that weakly differentiable
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functions of one variable must be absolutely continuous. This section is aimed at proving

the well known Sobolev inequalities for functions in W k,p
0 (Ω).

Before getting to the main focus in this section, we introduce the following lemma that will

be used:

Lemma 1.7.1. 3 Let N ≥ 2 and let f1, f2, . . . , fN ∈ LN−1(RN−1). For x ∈ RN and

1 ≤ i ≤ N set

x̃i = (x1, x2, . . . , xi−1, xi+1, . . . , xN) ∈ RN−1,

Then the function

f(x) = f1(x̃1)f2(x̃2) · · · fN(x̃N), x ∈ RN

belongs to L1(RN) and

‖f‖L1(RN ) ≤
N∏
i=1

‖fi‖LN−1(RN−1)

Proof. The case N = 2 is straight forward. Consider the case N = 3 then we have,

∫
R3

|f(x)|dx =

∫
R

∫
R

∫
R

|f1(x2, x3)||f2(x1, x3)||f3(x1, x2)|dx1dx2dx3

=

∫
R

∫
R

|f1(x2, x3)|

∫
R

|f2(x1, x3)||f3(x1, x2)|dx1

 dx2dx3

≤
∫
R

∫
R

|f1(x2, x3)|

∫
R

|f2(x1, x3)|2dx1

1/2 ∫
R

|f3(x1, x2)|2dx1

1/2

dx2dx3

=

∫
R

∫
R

|f2(x1, x3)|2dx1

1/2
∫
R

|f1(x2, x3)|

∫
R

|f3(x1, x2)|2dx1

1/2

dx2

 dx3
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≤
∫
R

∫
R

|f2(x1, x3)|2dx1

1/2 ∫
R

|f1(x2, x3)|2dx2

1/2 ∫
R

∫
R

|f3(x1, x2)|2dx1dx2

1/2

dx3

≤

∫
R

∫
R

|f3(x1, x2)|2dx1dx2

1/2 ∫
R

∫
R

|f2(x1, x3)|2dx1dx3

1/2 ∫
R

∫
R

|f1(x2, x3)|2dx2dx3

1/2

= ‖f1‖L2(R2)‖f2‖L2(R2)‖f3‖L2(R2)

The general case follows by induction, that is, assume it is true for N . Fix xN+1 ∈ R, then

by applying Hölder’s inequality with p = N and q = N
N−1

we obtain

∫
RN

|f(x)|dx1dx2 · · · dxN ≤ ‖fN+1‖LN (RN )

∫
RN

|f1f2 · · · fN |qdx1 · · · dxN

1/q

Now applying the induction assumption, we have

∫
RN

|f1|q|f2|q · · · |fN |qdx1 · · · dxN

1/q

≤

[
N∏
i=1

‖fi‖qLN (RN−1)

]1/q

so that ∫
RN

|f(x)|dx1 · · · dxN ≤ ‖fN+1‖LN (RN )

N∏
i=1

‖fi‖LN (RN−1)

Now by integrating with respect to xN+1 we have

∫
RN+1

|f(x)|dx1dx2 · · · dxNdxN+1 ≤ ‖fN+1‖LN (RN )

∫
R

[
N∏
i=1

‖fi‖LN (RN−1)dxN+1

]

≤
N+1∏
i=1

‖fi‖LN (RN )
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Theorem 1.7.2.

W 1,p
0 (Ω) ⊂


Lnp/(n−p)(Ω) for p < n

C0(Ω̄) for p > n

Furthermore, there exists a constant C depending only on n and p, such that for any u ∈

W 1,p
0 (Ω),

‖u‖np/(n−p) ≤ C‖Du‖p for p < n,

sup
Ω
|u| ≤ C|Ω|1/n−1/p‖Du‖p for p > n.

(1.27)

Proof. We start by proving it for the case u ∈ C1
0(Ω) and p = 1. For any u ∈ C1

0(Ω) and i,

1 ≤ i ≤ n we have

|u(x)| = |
xi∫

−∞

∂u

∂xi
(x1, . . . , xi−1, t, xi+1, . . . , xn)|dt

≤
∞∫

−∞

| ∂u
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn)|dt

Define these integrals as follows

ui(x̃i) ≡
∞∫

−∞

| ∂u
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn)|dt

Then

|u(x)|n ≤
n∏
i=1

ui(x̃i)

So that when we apply (1.7.1) to
∫
Ω

|u(x)|n/(n−1)dx and obtain

∫
Ω

|u(x)|n/(n−1)dx ≤
n∏
i=1

∫
Ω

|Diu|dx

1/(n−1)
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Now using the fact that the geometric mean is dominated by the arithmetic mean, that is

for any set of positive numbers say aj

(
n∏
j=1

aj

)1/n

≤ 1

n

n∑
j=1

aj

We can now obtain the result for p = 1 by raising each side to the n−1
n

power, giving

‖u‖n/(n−1) ≤
n∏
i=1

∫
Ω

|Diu|dx

1/n

≤ 1

n

∫
Ω

n∑
i=1

|Diu|dx

≤
√
n

n
‖Du‖1

To obtain the result in full generality, replace |u| by powers of |u|. Hence if q > 1

‖|u|q‖n/(n−1) ≤
√
n

n

∫
Ω

|D(|u|q)|dx

≤ q

√
n

n

∫
Ω

|u|q−1|Du|dx

≤ q
√
n

n
‖|u|q−1‖p′‖Du‖p by Hölder’s inequality

Letting q = (n−1)p
n−p we obtain the desired result for 1 ≤ p < n. To extend this to functions

u ∈ W 1,p
0 (Ω), let {ui} be a sequence of C∞0 (Ω) functions converging strongly to u in W 1,p

0 (Ω).

Then an application of the inequality to ui − uj yields

‖ui − uj‖np/(n−p) ≤ C‖ui − uj‖1,p

Whence ui −→ u in Lnp/(n−p)(Ω), so by density of these functions and this convergence, the

22



result follows for the case 1 ≤ p < n.

For the case p > n, let ũ = |u|
√
n

‖Du‖p . We will first assume |Ω| = 1 (valid since Ω is bounded

subset of Rn).

‖ũη‖n/(n−1) ≤ η‖ũη−1‖p/(p−1)

so that

‖ũ‖η(n/(n−1)) ≤ η1/η‖ũ‖1−1/η
(p/(p−1))(η−1)

≤ η1/η‖ũ‖1−1/η
η(p/(p−1)) since |Ω| = 1

Let δ = n(p−1)
p(n−1)

> 1 and substitute δν for η where ν = 1, 2, . . . to obtain

‖ũ‖(n/(n−1))δν ≤ δνδ
−ν‖ũ‖1−δ−ν

(n/(n−1))δν−1 for ν = 1, 2, . . .

Iterating from ν = 1 and using the process from the previous case, we get for any ν

‖ũ‖δν ≤ δ
∑
νδ−ν ≡ χ

Using problem 1 from the next chapter, we have as ν −→∞

ess sup
Ω
ũ ≤ χ

Replacing ũ with |u|
√
n

‖Du‖p gives the desired inequality

ess sup
Ω
|u| ≤ χ√

n
‖Du‖p
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To eliminate the restriction |Ω| = 1, we consider the mapping yi 7→ |Ω|1/nxi giving

ess sup
Ω
|u| ≤ χ√

n
|Ω|1/n−1/p‖Du‖p

Remark. The best constant C satisfying (1.27) for the case p < n was calculated by

Rodemich, who showed that

C =
1

n
√
π

(
n!Γ(n/2)

2Γ(n/p)Γ(n+ 1− n/p)

)1/n

γ1−1/p,where γ =
n(p− 1)

n− p

When p = 1, this number reduces to the well known isoperimetric constant

n−1(ωn)−1/n

A Banach space B1 is said to be continuously imbedded in a Banach space B2, if there

exists a bounded, linear, one-to-one mapping I : B1 −→ B2. Therefore Theorem 1.7.1 may

be expressed as W 1,p
0 (Ω) −→ Lnp/(n−p)(Ω) if p < n, and −→ C0(Ω̄) if p > n. If we then

iterate the result of Theorem 1.7.1 k times, we can then obtain the following Corollary for

extensions of W k,p
0 (Ω).

Corollary 1.7.3.

W k,p
0 (Ω) −→


Lnp/(n−kp)(Ω) for kp < n

Cm(Ω̄) for 0 ≤ m < k − n
p

The second case is a consequence of the first, together with the case p > n in the previous

theorem. The estimates (1.27) and their extension to the spaces W k,p
0 (Ω) also show that a
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norm on W k,p
0 (Ω) equivalent to (1.23) may be defined by

‖u‖Wk,p
0 (Ω) =

∫
Ω

∑
|α|=k

|Dαu|pdx

1/p

(1.28)

In general, W k,p
0 (Ω) cannot be replaced by W k,p(Ω) in the previous Corollary. However, this

replacement can be made for a large class of domains Ω, which includes for example domains

with Lipschitz continuous boundaries. More generally, if Ω satisfies a uniform interior cone

condition then there is an imbedding

W k,p(Ω) −→


Lnp/(n−kp)(Ω) for kp < n

CmB (Ω) for 0 ≤ m < k − n
p

(1.29)

where CmB (Ω) = {u ∈ Cm(Ω)|Dαu ∈ L∞(Ω) for |α| ≤ m}.

1.8 Potential Estimates and Imbedding Theorems

The imbedding results of the preceding section can be alternatively derived and improved

upon with the use of potential estimates. Let µ ∈ (0, 1] and define the operator Vµ on L1(Ω)

by the Riesz potential

(Vµf)(x) =

∫
Ω

|x− y|n(µ−1)f(y)dy (1.30)

The fact that Vµ is well defined and maps L1(Ω) into itself will appear as a result of the

next lemma.

Lemma 1.8.1. The operator Vµ maps Lp(Ω) continuously into Lq(Ω) for any q, 1 ≤ q ≤ ∞

satisfying

0 ≤ δ = δ(p, q) = p−1 − q−1 < µ (1.31)
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Furthermore, for any f ∈ Lp(Ω),

‖Vµf‖q ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
n |Ω|µ−δ‖f‖p. (1.32)

The case p > n of the Sobolev imbedding theorem from the previous section may be fine

tuned through the following lemma.

Lemma 1.8.2. Let Ω be convex and u ∈ W 1,1(Ω). Then

|u(x)− uS| ≤
dn

n|S|

∫
Ω

|x− y|1−n|Du(y)|dy a.e. in Ω (1.33)

where

uS =
1

|S|

∫
S

u dx, d = diamΩ

and S is any measurable subset of Ω

Proof. By (1.6.1), it is enough to show (1.33) for u ∈ C1(Ω). We then have for x, y ∈ Ω by

the fundamental theorem of Calculus,

u(x)− u(y) = −
|x−y|∫
0

Dru(x+ rω)dr, ω =
y − x
|y − x|

Now integrate this with respect to y over the set S to obtain on the left hand side

∫
S

(u(x)− u(y))dy =

∫
S

u(x)dy −
∫
S

u(y)dy

= u(x)

∫
S

dy −
∫
S

u(y)dy = |S|u(x)− |S|
|S|

∫
S

u(y)dy

= |S|[u(x)− uS]
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The RHS doesn’t depend on y, therefore we have

|S|[u(x)− uS] = −
∫
S

dy

|x−y|∫
0

Dru(x+ rω)dr

Define

V (x) =


|Dru(x)| x ∈ Ω

0 x 6∈ Ω

With this new function V defined on all of Rn we have

|u(x)− uS| ≤
1

|S|

∫
|x−y|<d

dy

∞∫
0

V (x+ rω)dr

=
1

|S|

∞∫
0

∫
|ω|=1

d∫
0

V (x+ rω)ρn−1 dρ dω dr

=
dn

n|S|

∞∫
0

∫
ω=1

V (x+ rω)dω dr

=
dn

n|S|

∫
Ω

|x− y|1−n|Dru(y)|dy

We now prove the imbedding theorem of Morrey

Theorem 1.8.3. Let u ∈ W 1,p
0 (Ω), p > n. Then u ∈ Cγ(Ω̄), where γ = 1 − n/p. Further-

more, for any ball B

osc
Ω∩B

u ≤ CRγ‖Du‖p (1.34)

where C = C(n, p).

Proof. Using the estimates from (1.32) and (1.33) for S = Ω = B, q = ∞ and µ = n−1 we
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have

|u(x)− uB| ≤ C(n, p)Rγ‖Du‖p a.e. on Ω ∩B

The result now follows since

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB| ≤ 2C(n, p)Rγ‖Du‖p a.e. on Ω ∩B

1.9 Compactness Results

Let B1 be a Banach space continuously imbedded in a Banach space B2. Then B1 is

compactly imbedded in B2 if the imbedding operator I : B1 → B2 is compact, that is, if

the images of bounded sets in B1 are precompact in B2. Let us now prove the Kondrachov

compactness theorem for the spaces W 1,p
0 (Ω).

Theorem 1.9.1. The spaces W 1,p
0 (Ω) are compactly imbedded (i) in the spaces Lq(Ω) for

any q < np/(n− p), if p < n, and (ii) in C0(Ω̄) if p > n.

Proof. We prove part (i) as part (ii) is a direct consequence of Morrey’s theorem and Arzela’s

theorem on equicontinuous families of functions. We prove the initial case when q = 1. Let

A be a bounded set in W 1,p
0 (Ω), without loss of generality, we may assume that A ∈ C1

0(Ω)

and ‖u‖1,p;Ω ≤ 1 for all u ∈ A. For h > 0 define Ah = {uh|u ∈ A} where uh is the

regularization of u. We wish to show that A is precompact in L1(Ω).

If u ∈ A we have

|uh(x)| ≤
∫
|z|=1

ρ(z)|u(x− hz)|dz ≤ h−n sup ρ‖u‖1
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and

|Duh(x)| ≤ h−1

∫
|z|≤1

|Dρ(z)||u(x− hz)|dz ≤ h−n−1 sup |Dρ|‖u‖1

so that Ah is a bounded, equicontinuous subset of C0(Ω̄) and hence precompact in L1(Ω).

Now estimating for u ∈ A we have

|u(x)− uh(x)| ≤
∫
|z|≤1

ρ(z)|u(x)− u(x− hz)|dz

≤
∫
|z|≤1

ρ(z)

h|z|∫
0

|Dru(x− rω)|dr dz where ω =
z

|z|

now integrating over x, we obtain

∫
Ω

|u(x)− uh(x)|dx ≤ h

∫
Ω

|Du|dx ≤ h|Ω|1−1/p

consequently uh is uniformly close to u in L1(Ω) relative to A. Since we have shown that Ah

is totally bounded in L1(Ω) for all h > 0, it follows that A is also totally bounded in L1(Ω)

and hence precompact. This proves the case q = 1, to extend this result to all q < np/(n−p)

we estimate using (1.9)

‖u‖q ≤ ‖u‖λ1‖u‖1−λ
np/(n−p) where λ+ (1− λ)

(
1

p
− 1

n

)
=

1

q

≤ ‖u‖λ1(C‖Du‖p)1−λ by Theorem (1.7.2)

Consequently, a bounded set in W 1,p
0 (Ω) must be precompact in Lq(Ω) for q > 1
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1.10 Difference Quotients

In partial differential equations, the weak or classic differentiability of functions may often

be deduced through a consideration of their difference quotients. Let u be a function on a

domain Ω ⊂ Rn and denote by ei the unit coordinate vector in the xi direction. We define

the difference quotient in the direction ei by

∆hu(x) = ∆h
i u(x) =

u(x+ hei)− u(x)

h
, h 6= 0 (1.35)

The following lemmas deal with difference quotients of functions in Sobolev spaces.

Lemma 1.10.1. Let u ∈ W 1,p(Ω). Then ∆hu ∈ Lp(Ω′) for any Ω′ ⊂⊂ Ω satisfying 0 <

h < dist(Ω′, ∂Ω), and we have

‖∆hu‖Lp(Ω′) ≤ ‖Diu‖Lp(Ω).

Proof. We will use the fact that C1(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω). Therefore, suppose

u ∈ C1(Ω) ∩W 1,p(Ω). Then

∆hu(x) =
u(x+ hei)− u(x)

h

=

h∫
0

1

h
Diu(x1, . . . , xi−1, xi + ξ, xi+1, . . . , xn)dξ
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now we apply Hölder’s inequality to obtain

|∆hu(x)| = |1
h
| |

h∫
0

Diu(x1, . . . , xi−1, xi + ξ, xi+1, . . . , xn) dξ|

≤ 1

h

h∫
0

|Diu(x1, . . . , xi−1, xi + ξ, xi+1, . . . , xn)| dξ by

≤ 1

h

 h∫
0

dξ

1/q h∫
0

|Diu|p dξ

1/p

where 1/p+ 1/q = 1

=
h1/q

h

 h∫
0

|Diu|p dξ

1/p

= h1/q−1

 h∫
0

|Diu|p dξ

1/p

so that raising both sides to the p power, we have (using that 1/q − 1 = −1/p)

|∆hu(x)|p ≤ 1

h

h∫
0

|Diu|pdξ

now integrating both sides over Ω′ we get

∫
Ω′

|∆hu(x)|p dx ≤ 1

h

∫
Ω′

h∫
0

|Diu|p dξ dx

≤ 1

h

∫
Bh(Ω′)

h∫
0

|Diu|p dξ dx

=
1

h

h∫
0

∫
Bh(Ω′)

|Diu|p dx dξ by Fubini

≤
∫
Ω

|Diu|p dx
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Finally, taking each side to the 1/p power gives the desired inequality. Generalizing this to

arbitrary functions in W 1,p(Ω) follows by density of such functions in which we just used.

Lemma 1.10.2. Let u ∈ Lp(Ω), 1 < p <∞, and suppose there exists a constant K such that

∆hu ∈ Lp(Ω′) and ‖∆hu‖Lp(Ω′) ≤ K for all h > 0 and Ω′ ⊂⊂ Ω satisfying h < dist(Ω′, ∂Ω).

Then the weak derivative Diu exists and satisfies ‖Diu‖Lp(Ω) ≤ K.

Proof. By weak compactness of bounded sets in Lp(Ω′), there exists a sequence {hm} tending

to zero and a function v ∈ Lp(Ω) with ‖v‖p ≤ K that satisfies, for all ϕ ∈ C1
0(Ω),

∫
Ω

ϕ∆hmu dx −→
∫
Ω

ϕv dx

Now suppose hm < dist(suppϕ, ∂Ω), we have

∫
Ω

ϕ∆hmu dx = −
∫
Ω

u∆−hmϕ dx −→ −
∫
Ω

uDiϕ dx

Hence ∫
Ω

ϕv dx = −
∫
Ω

uDiϕ dx

and we have established that v = Diu.
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Chapter 2

Problems

1. Let Ω be a bounded domain of Rn. If u is a measurable function on Ω such that

|u|p ∈ L1(Ω) for some p ∈ R, we define

Φp(u) =

 1

|Ω|

∫
Ω

|u|pdx

1/p

Show that:

(i) lim
p→∞

Φp(u) = ess sup
Ω
|u|;

(ii) lim
p→−∞

Φp(u) = ess inf
Ω
|u|;

(iii) lim
p→0

Φp(u) = exp

[
1
|Ω|

∫
Ω

log |u| dx
]
.

Solution.

(i) Since |u|p ∈ L1(Ω) for some p ∈ R we have
∫
Ω

|u|p dx < ∞ for this p. Also, Ω is
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bounded in Rn, hence |Ω| <∞ also. Let δ > 0 be given and define the set

Uδ = {x : |u(x)| ≥ ess sup
Ω
|u| − δ} forδ < ess sup

Ω
|u|.

Then we have

1

|Ω|1/p

∫
Ω

|u|p dx

1/p

≥ 1

|Ω|1/p

∫
Uδ

(ess sup
Ω
|u| − δ)p dx

1/p

=
1

|Ω|1/p
(ess sup

Ω
|u| − δ)|(Uδ)|1/p

Now since |(Uδ)| is finite and positive, we get

lim inf
p→∞

1

|Ω|1/p

∫
Ω

|u|p dx

1/p

≥ lim inf
p→∞

1

|Ω|1/p
(ess sup

Ω
|u| − δ)µ(Uδ)

1/p

= ess sup
Ω
|u| − δ ≥ ess sup

Ω
|u|

Now we need to show the reverse inequality, we do this by noting that since

|u(x)| ≤ ess sup
Ω
|u| for a.e. x ∈ Ω then for p > q we have,

1

|Ω|1/p

∫
Ω

|u|p dx

1/p

=
1

|Ω|1/p

∫
Ω

|u|p−q|u|q dx

1/p

≤ 1

|Ω|1/p
ess sup

Ω
|u|

p−q
p

∫
Ω

|u|q dx

1/p

So that taking the lim sup of both sides yields

lim sup
p→∞

1

|Ω|1/p

∫
Ω

|u|p dx

1/p

≤ ess sup
Ω
|u|
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Since lim
p→∞

p−q
p
−→ 1 and 1/p −→ 0. The equality is now established.

(ii) Assume |u|p ∈ Lp(Ω) for some p ∈ R−. Let p̃ = −p and v = 1
|u| , then we have

v ∈ Lp̃(Ω) for p̃ ∈ R+ and based on part (i) we have

lim p→ −∞

 1

|Ω|

∫
Ω

|u|p dx

1/p

= lim
p→∞

 1

|Ω|

∫
Ω

(
1

|u|

)−p
dx

−1/−p

= lim
p̃→∞

 1

|Ω|

∫
Ω

vp̃dx

−1/p̃

= (ess sup
Ω

v)−1 by part (i)

=
1

1/ess inf
Ω
|u|

= ess inf
Ω
|u|

(iii) Assume |u|p ∈ L1(Ω) for 0 < p < 1. Using Jensen’s inequality with the convex

function xs/r with 0 < r < s < 1 we have

∫
Ω

|u|rdx

s/r

≤
∫
Ω

|u|sdx

hence ‖u‖r ≤ ‖u‖s. Also if 0 < p < 1, another application of Jensen’s inequality

will show
∫
Ω

log |u| dx ≤ log ‖u‖p. Therefore, log ‖u‖1/n is decreasing and bounded

below. To find the limit we use another useful inequality

log(a) ≤ n(a1/n − 1) with a =

∫
Ω

|u|1/ndx

n

By assumption we have |u|
1/n−1
1/n

≤ |u|p−1
p

for the p such that |u|p ∈ L1(Ω). So
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taking the limit as n→∞ and dominated convergence, we obtain

lim
n→∞

log ‖u‖1/n ≤
∫
Ω

log |u|dx

lim
n→∞

log ‖u‖1/n =

∫
Ω

log |u|dx by the squeeze theorem

Finally, since log is continuous, we have

lim
n→∞

‖u‖1/n = exp

∫
Ω

log |u|dx


The weighted norm will now follow as 1

|Ω| is just a scaling of the previous argu-

ment.

2. Show that a function u is weakly differentiable in a domain Ω if and only if it is weakly

differentiable in a neighborhood of every point in Ω.

Solution:

Since Ω is a domain in Rn, it is open and bounded. Suppose a function u is weakly

differentiable in Ω, then there exists a function v with the property that for any

ϕ ∈ C|α|0 (Ω) we have

∫
Ω

ϕv dx = (−1)|α|
∫
Ω

uDαϕ dx (by(1.17))

For every x ∈ Ω there exists an ε > 0 so that Bε(x) ⊂ Ω. Since weak derivatives are

unique up to sets of measure zero, u is weakly differentiable in a neighborhood of x.

Hence u is weakly differentiable in a neighborhood of every point in Ω.
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Conversely, suppose u is weakly differentiable in a neighborhood of every point x ∈ Ω.

Let {Ωn}n∈N be the connected components of Ω. Then without loss of generality, we

may work on one connected component, say Ω1. Fix x0 ∈ Ω1, then for any x ∈ Ω1

there exists, by connectedness of Ω1, a sequence {xk}nk=1 such that the neighbor-

hoods, say Bεk(xk), in which u is weakly differentiable, have the following properties:

|Bεk(xk)∩Bεk+1
(xk+1)| 6= 0 for 0 ≤ k ≤ n and |Bεn(xn)∩Bε(x)| 6= 0. Hence, by unique-

ness of weak derivatives up to sets of measure zero, Dαu is the same weak derivative

in every Bεk(xk) as well as in Bε(x). Since x was arbitrary, this process will work for

every x ∈ Ω1. Hence creating a cover of Ω1 in which u is weakly differentiable. Thus

showing u is weakly differentiable in Ω1. Continuing this process on every connected

component of Ω give the final result.

3. Let α, β be multi-indices and u be a locally integrable function on a domain Ω. Show

that provided any two of the weak derivatives Dα+βu, Dα(Dβu), Dβ(Dαu) exist, they

all exist and coincide a.e. in Ω.

Solution:

Suppose, with out loss of generality, Dα+βu and Dα(Dβu) exist. Then for any test
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function ϕ ∈ C∞0 we have Dαϕ ∈ C∞0 is also a test function, therefore

∫
Ω

DβuDαϕ dx = (−1)|β|
∫
Ω

uDα+βϕ dx

= (−1)|β|(−1)|α+β|
∫
Ω

Dα+βuϕ dx

= (−1)2|β|+|α|
∫
Ω

Dα+βuϕ dx

= (−1)|α|
∫
Ω

Dα+βuϕ dx

= (−1)|α|(−1)|β|
∫
Ω

DαuDβϕ dx

= (−1)|α|
∫
Ω

Dβ(Dαu)ϕ dx

Which gives that Dβ(Dαu) exists and all three are equal a.e in Ω. A similar argument

will follow given the other two combinations of the weak derivatives.

4. Let u, v ∈ W 1(Ω)∩L∞(Ω). Prove that uv ∈ W 1(Ω)∪L∞(Ω) and D(uv) = uDv+vDu.

Sol.

Since u and v are in W 1(Ω), by Theorem 1.3.2 there exists sequences {un} and {vn} ∈

C∞(Ω) such that un → u and vn → v in L1
loc(Ω) whose derivatives also converge in

L1
loc(Ω). Let ω ⊂⊂ Ω and supp(φ) ⊂ ω̄. Fix m ∈ N then we have

∫
Ω

uvmDφ dx = lim
n→∞

∫
ω̄

unvmDφ dx = − lim
n→∞

∫
ω̄

(unDvm + vmDun)φ dx

= −
∫
Ω

(uDvm + vmDu)φ dx

now using the fact that u is bounded, and the convergence of vm and Dvm in L1
loc(Ω)
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we have lim
m→∞

∫
Ω

uDvmφ dx =
∫
Ω

uDvφ dx, and since ‖vm‖∞ ≤ ‖v‖∞ by dominated

convergence we have

∫
Ω

uvDφ dx =

∫
Ω

(uDv + vDu)φ dx

5. Show that a function u is weakly differentiable in a domain Ω ⊂ Rn if and only if it is

equivalent to a function ū that is absolutely continuous on almost all line segments in

Ω parallel to the coordinate axes and whose partial derivatives are locally integrable

in Ω.

Sol.4

First suppose u is weakly differentiable. Consider a rectangular cell in Ω of the form

R ≡ [a1, b1]x · · · x[an, bn]

whose side lengths are rational. We have seen in the previous chapter that the regular-

izers of u converge to u in the local norm. Define x ∈ R as x = (x̃, xi) where x̃ ∈ Rn−1

and xi ∈ [ai, bi] for 1 ≤ i ≤ n, then from Fubini’s theorem there is a sequence {εk} → 0

such that

lim
εk→0

bi∫
ai

|uεk(x̃, xi)− u(x̃, xi)|+ |Duεk(x̃, xi)−Du(x̃, xi)|dxi = 0

for almost all x̃. Since uεk is smooth, for each such x̃ and for every η > 0, there is
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M > 0 such that for b ∈ [ai, bi] and k > M

|uεk(x̃, b)− uεk(x̃, ai)| ≤
bi∫

ai

|Duεk(x̃, xi)dxi

≤
bi∫

ai

|Du(x̃, xi)dxi + η

If {uεk(x̃, ai)} converges as εk → 0 (which may be assumed without loss of generality),

this shows that the sequence {uεk} is uniformly bounded on [ai, bi]. Moreover, as a

function of xi, the uεk are absolutely continuous, uniformly with respect to εk, because

the L1 convergence of Duεk to Du implies that for each ε > 0, there is a δ > 0 such

that ∫
E

|Duεk(x̃, xi)|dxi < ε whenever |E| < δ

Thus, by Arzela-Ascoli theorem, {uεk} converges uniformly on [ai, bi] to an absolutely

continuous function that agrees almost everywhere with u. The general case follows

by the familiar diagonalization process.

Now suppose u has such a representative ū. Then ūϕ also possesses the absolute

continuity properties of ū, whenever ϕ ∈ C∞0 (Ω). Hence, for 1 ≤ i ≤ n it follows that

∫
Ω

ūDiϕ dx = −
∫
Ω

Diūϕ dx

on almost every line segment in Ω whose end-points belong to Rn − suppϕ and is

parallel to the ith coordinate axis. Applying Fubini implies that the weak derivative

Diu has Diū as a representative.
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6. Let Ω be a domain in Rn containing the origin. Show that the function γ given by

γ(x) = |x|−α belongs to W k(Ω) provided k + α < n.

Sol.

First we will show γ(x) is weakly differentiable if α+ 1 < n the main result will follow

by induction on k. Let φε(x) ∈ C∞0 (Rn) be a cut-off function such that φε(x) = 1 in

Bε(0), φε(x) = 0 outside B2ε(0) and |∂iφε(x)| ≤ C/ε.

Define

γε(x) =
1− φε(x)

|x|α
∈ C∞

where γε = γ in |x| ≥ 2ε. Integration by parts yields

∫
Ω

[∂iγ
ε(x)]ϕ dx = −

∫
Ω

γε(x)(∂iϕ)dx

and

∂iγ
ε(x) =

−α
|x|α+1

xi
|x|

[1− φε(x)]− 1

|x|α
∂iφ

ε(x)

We have |∂iφε| ≤ C/ε and |∂iφε| = 0 if |x| ≤ ε and |x| ≥ 2ε, therefore |∂iφε| ≤ C/|x|

so that |∂iγε| ≤ α
|x|α+1 − C

|x|α+1 = C′

|x|α+1 . Also lim
ε→0+

∂iγ
ε(x) = −α

|x|α+1
xi
|x| pointwise a.e. By

dominated convergence, we have

∂iγ(x) =
−α
|x|α+1

xi
|x|

if α + 1 < n

The main result now follows by induction on k.

7. Let Ω be a domain in Rn. Show that a function u ∈ C0,1(Ω) if and only if u is weakly

differentiable with locally bounded weak derivatives.

Sol.

Assume, first that u ∈ C0,1(Ω). Then there exists a constant C ∈ R such that for a.e.
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x, y ∈ Ω we have |u(x)− u(y)| ≤ C|x− y|. Using difference quotients we have for all

φ ∈ C1
0(Ω)

∫
Ω

u(x+ hei)− u(x)

h
φ(x) dx =

∫
Ω

u(x)
φ(x− hei)− φ(x)

h
dx

The right hand side converges as h→ 0 by dominated convergence theorem to

−
∫
Ω

u(x)Diφ(x) dx

Therefore the left hand side also converges. We need to show that this is indeed a

function in L∞(Ω). For any ϕ ∈ C1
0(Ω) define the functional T (ϕ) by

T (φ) := lim
h→0

∫
Ω

u(x+ hei)− u(x)

h
ϕ dx

Then T is linear (trivial consequence since derivatives and limits are linear) and

|T (ϕ)| ≤ ‖ϕ‖1 since

for all h > 0|T (ϕ)| ≤
∫

suppϕ

|ϕ|dx = ‖ϕ‖1

⇒ |T (ϕ)| ≤ ‖ϕ‖1

There for T is a bounded linear functional. Applying Reisz representation theorem,

we have

there exists a unique bounded v ∈ L∞ such that T (ϕ) ≡
∫
Ω

vϕ dx for all

ϕ ∈ L∞ ⊂ C1
0(Ω)

Therefore, for ϕ ∈ C1
0(Ω) we have −

∫
Ω

uDiϕ dx = T (ϕ) =
∫
Ω

vϕ dx. Hence v = Diu.

42



Now assume u is weakly differentiable with locally bounded weak derivatives. Let uε

be the usual mollification of u. Then uε → u a.e. in Ω as ε→ 0 and ‖Duε‖∞ ≤ ‖Du‖∞.

Choose any two points x, y ∈ Ω with x 6= y then,

uε(x)− uε(y) =

1∫
0

d

dt
uε(tx+ (1− t)y)dt

=

1∫
0

Duε(tx+ (1− t)y)dt(x− y)

Taking absolute values gives

|uε(x)− uε(y)| ≤ ‖Duε‖∞|x− y| ≤ ‖Du‖∞|x− y|

Letting ε→ 0 we have the desired result, that is u is Lipschitz.

8. Show that the norms (1.23) and (1.24) are equivalent norms on W k,p(Ω).

Sol.

Using the fact that all norms on Rn are equivalent, consider the following inequality

C1

N∑
j=1

|aj| ≤

(
N∑
j=1

|aj|p
)1/p

≤ C2

N∑
j=1

|aj|

This will hold for all (a1, . . . , aN) ∈ RN and some constants C1, C2. Now let N be the

number of indices α such that |α| ≤ k and applying the inequality to

(∫
Ω

|Dαu|p dx
)1/p

we have

C1

∑
|α|≤k

‖Dαu‖p ≤

 N∑
j=1

∫
Ω

|Dαu|p dx

1/p

≤ C2

∑
|α|≤k

‖Dαu‖p

for some constants C1 and C2. Thus proving equivalence.

43



9. Prove that the space W k,p(Ω) is complete under either of the norms (1.23), (1.24).

Sol.

Since in problem 8, we have established equivalence of these two norms, it is sufficient

to prove this for either norm. Let {un} be a Cauchy sequence in W k,p(Ω), then for

|α| ≤ k we have Dαun is also a Cauchy sequence in Lp(Ω) by completeness of Lp(Ω).

Let un → u and Dαun = vn → v in Lp(Ω). We wish to show that u ∈ W k,p(Ω).

Using the definition of weak derivative, we have

∫
Ω

unD
αφ dx = (−1)|α|

∫
Ω

vnφ dx

for φ ∈ C∞0 (Ω). Applying Holder to the differences we wish to calculate yields

∫
Ω

(un − u)Dαφ dx ≤ ‖un − u‖p‖Dαφ‖q → 0

∫
Ω

(vn − v)φ dx ≤ ‖vn − v‖p‖φ‖q → 0

These two equations hold since vn, un converge in Lp to v, u resp. and for any smooth

test functions Lq norms will be bounded. Therefore we have the following

lim
n→∞

∫
Ω

unD
αφ dx =

∫
Ω

uDαφ dx

lim
n→∞

∫
Ω

vnφ dx =

∫
Ω

vφ dx

and

∫
Ω

uDαφ dx = lim
n→∞

∫
Ω

unD
αφ dx = lim

n→∞
(−1)|α|

∫
Ω

vnφ dx = (−1)α
∫
Ω

vφ dx

Hence f ∈ W k,p(Ω).
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