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Abstract

In this report, we investigate a robust estimation of the number of components in the

mixture of regression models using trimmed information criterion. Compared to the tradi-

tional information criterion, the trimmed criterion is robust and not sensitive to outliers.

The superiority of the trimmed methods in comparison with the traditional information

criterion methods is illustrated through a simulation study. A real data application is also

used to illustrate the effectiveness of the trimmed model selection methods.
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Chapter 1

Introduction

Within the family of mixture models, the mixture of linear regression models has been

studied extensively. The mixture of linear regression models was first introduced by Goldfeld

and Quandt (1973) as a very general form of switching regression. The unknown parameters

were estimated based on moment-generating functions, from a likelihood point of view.

Jones and McLachlan (1992) applied the mixture of regressions in a data analysis and used

EM algorithm to fit these models.

Choosing the number of components for mixture models has long been considered as an

important but very difficult research problem. Many methods have been proposed. See,

for example, the AIC and BIC methods (Leroux, 1992), distance measures based methods

(Chen and Kalbfleisch, 1996; James et al., 2001; Charnigo and Sun, 2004; Woo and Sriram,

2006; Ray and Lindsay, 2008), and hypothesis testing based methods (Chen, Chen, and

Kalbfleisch, 2001, 2004). Hawkins et al. (2001) proposed choosing the number of compo-

nents in the mixture of linear regression models using the likelihood equations. Recently,

Chen and Li (2009) and Li and Chen (2010) proposed an EM test approach for testing the

order of finite mixtures.

However, most of the above model selection methods are not robust in the presence of

outliers. Even a single outlier can totally change the result. In this report, we mainly focus

on the information criteria based model selection methods for mixtures of regressions and

consider a robust version of these methods based on the trimmed likelihood estimate (TLE,
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Neykov et al., 2007). A simulation study and a real data application show that the new

robust model selection methods work comparably to traditional information criteria based

methods when the data are not contaminated but have superior performance when there

are outliers.

The rest of the report is organized as follows. In Chapter 2, we give an introduction

of four traditionally used information criteria for model selection and introduce their corre-

sponding robust versions based on TLE. In Chapter 3, we use a simulation study and a real

data application to demonstrate the effectiveness of the proposed robust model selection

methods. A discussion chapter ends the report.
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Chapter 2

Robust Model Selection Information
Criteria for Mixtures of Regression

2.1 Introduction of mixtures of regressions

Let Z be a latent class variable with P (Z = j|x) = πj, j = 1, · · · ,m, where x is a p-

dimensional vector and m is the number of components. Given Z = j, the response y

depends on the p−dimensional predictor x in a linear way:

y = xTβj + εj,

where βj = (β1j, · · · , βpj)T and εj ∼ N(0, σ2
j ). Here, we assume that x includes both the

constant 1 and predictors. The conditional distribution of Y given x without observing Z

can be written as:

f(y|x,θ) =
m∑
j=1

πjφ(y;xTβj, σ
2
j ), (2.1)

where φ(y;µ, σ2) denotes the normal density with mean µ and variance σ2, and θ =

(π1, σ
2
1,β1, · · · , πm, σ2

m,βm)T .

If the number of components m in the mixture of linear regression models were known,

θ could be estimated by maximizing the log-likelihood

`(θ;x) =
n∑
i=1

log
m∑
j=1

πjφ(yi;x
T
i βj, σ

2
j ). (2.2)
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That is,

θ̂ = arg max
θ

n∑
i=1

log

{
m∑
j=1

πjφ(yi;x
T
i βj, σ

2
j )

}
. (2.3)

Note that the maximizer of (2.3) does not have an explicit solution and is usually estimated

by the EM algorithm (Dempster et al., 1977).

2.2 Some information criteria for model selection

If the number of components m is unknown for mixture models, many methods have been

proposed to determine the order m. Among them, information criteria have been popularly

used to choose the number of components for mixture models due to their simplicity. If

the log-likelihood (2.2) is treated as an objective function, one might tend to choose the

model that maximizes the log-likelihood of the observed data. However, as pointed out by

Celeux and Soromenho (1996), the log-likelihood is an increasing function of m. Therefore,

the log-likelihood (2.2) can not be directly used to determine the number of components

for mixture models. Many papers, such as Akaike (1974), Bozdogan (1993), and Rissanen

(1986, 1987) have sought methods to remedy this problem by adding a penalty term to the

log-likelihood.

Akaika’s information criterion (AIC) is one of the most popular measures, and was

proposed by Bozdogan and Sclove(1984) and Sclove (1987) in the mixture context. It takes

the form:

AIC =− 2`(θ̂) + 2k,

where k is the number of parameters to be estimated and `(θ̂) is the maximized value of

the log-likelihood function for the estimated model.

Bozdogan (1992) provided an analytic extension of AIC, without violating Akaika’s prin-

ciple of minimizing the Kulback-Leibler information quantity. The new selection criterion,

called consistent AIC (CAIC), is defined as:

CAIC =− 2`(θ̂) + k(log n+ 1),
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where k is the number of free parameters to be estimated, and n is the sample size.

Bayesian information criterion (BIC), proposed by Schwarz (1978), is another commonly

used criterion, an approximation to twice the log Bayes factor (Fraley and Raftery, 1998).

The approximation relies on regularity conditions that do not hold in the mixture mod-

els setting, but BIC has been shown to provide a consistent estimate of the number of

components in mixture models (Keribin, 2000). It is defined by

BIC =− 2`(θ̂) + k log n,

where n is the number of observations, or equivalently, the sample size.

AIC and BIC are typically derived from approximations based on asymptotic arguments

(Kass and Raftery, 1995). They penalize the log-likelihood by an additive factor and are

relatively simple to implement. Although there are theoretical limitations on the applica-

bility of these two methods, they have been proven to work quite well for model selection

in mixture models.

BIC works well with the case that each mixture component corresponds to a separate

cluster. However, if the number of clusters in the data set is different from the number

of components, Biernacki et al. (2000) proposed the integrated complete likelihood (ICL)

criterion as a modification. Let zij be the component label indicator,

zij =

{
1, if ith observation is from jth component;
0, otherwise.

Then, the complete-data is xc = (x, z) and its complete log-likelihood is given by:

`c(θ;x, z) =
n∑
i=1

log
m∏
j=1

{
πjφ(yi;x

T
i βj, σ

2
j )
}zij

=
n∑
i=1

m∑
j=1

zij log
{
πjφ(yi;x

T
i βj, σ

2
j )
}
.

ICL criterion penalizes the complexity of the mixture model, thus ensuring the partitioning

of data with the greatest evidence.

ICL = −2`c(θ̂|x, ẑ) + k log n,

where the missing data z have been replaced by their most probable values ẑ, given the

parameter estimate θ̂. In the BIC approach, only the observed likelihood is maximized,
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however, in the ICL approach, the complete log-likelihood is used. ICL appears to be more

robust than BIC to the violation of some of mixture model assumptions and can select a

number of clusters leading to a sensible partition of the data.

The “mixtools” package (Benaglia et al., 2009) provides a set of functions to analyze

various finite mixture models. These functions include both traditional methods like EM

algorithms for univariate and multivariate normal mixtures, and newer methods reflecting

recent research in finite mixture models. The basic goal of the tools in “mixtools” package is

to discern subgroups of individuals by examining a sample of measurements. The command

“regmixmodel.sel” in R package “mixtools” uses the above four information criteria to select

the number of components for mixture models. In our examples of Chapter 3, we used

“mixtools” to implement the above four information criteria.

2.3 Trimmed information criteria

It is well known that the maximum likelihood estimate (MLE) via the expectation-maximization

(EM) algorithm works well for the finite mixture of distributions. However, it is sensitive to

outliers. Even a single outlier can cause at least one of the component parameters to become

arbitrarily large. Therefore, the traditional information criteria are sensitive to outliers in

the data set. In this section, we consider a trimmed version of those information criteria to

robustify the model selection procedures.

Assume that (1−α)× 100% of the observations in the data set are regular observations,

and the remaining α × 100% are unpredictable outliers. The trimmed likelihood estimate

(TLE) of mixture models, proposed by Neykov et al. (2007), only uses (1 − α) × 100% of

the data to fit the model, and removes the remaining α×100% observations that are highly

unlikely to occur if the fitted model were true. That is,

max
Iα

max
θ

∑
i∈Iα

f(yi|θ), (2.4)

where f(y | θ) is the density defined in (2.1), and Iα is the subset of {1, . . . , n} and only
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contains bn(1− α)c distinct elements of {1, . . . , n}.

By combining the ideas of the trimmed likelihood estimate and the information criteria

introduced in Section 2.2, we consider the trimmed versions of AIC, BIC, ICL, and CAIC to

robustly estimate the number of components for the mixture of regression models as follows:

TAIC = −2
∑
i∈Îα

f(yi|θ̂) + 2k, (2.5)

TBIC = −2
∑
i∈Îα

f(yi|θ̂) + k log n, (2.6)

TICL = −2
∑
i∈Îα

fc(yi|θ̂, ẑ) + k log n, (2.7)

TCAIC = −2
∑
i∈Îα

f(yi|θ̂) + k(log n+ 1), (2.8)

where θ̂ is the trimmed likelihood estimator, Îα is the corresponding index set, and fc(yi|θ, z) =∑m
j=1 zij log

{
πjφ(yi;x

T
i βj, σ

2
j )
}

.

The combinatorial nature of the TLE, that is, all possible
(

n
bn(1−α)c

)
partitions of the data

have to be fitted by the MLE, makes the TLE computationally expensive, and infeasible for

large data sets. The FAST-TLE algorithm (Müller and Neykov, 2003; Neykov et al., 2007)

was proposed to obtain an approximative TLE solution, which involves repeated iterations

of a two-step procedure: a trial step followed by a refinement step. Next, we give the

computation procedure to calculate (2.5)-(2.8) using FAST-TLE (Neykov et al., 2007).

1. Find an initial value for θ, denoted by θ0. The initial value θ0 might be found by

fitting the mixture of linear regressions to a random subsample of size d from the data,

where d is a value larger than k. In our report, we tried 40 initial values in total.

2. (a) For a given estimator θ̂, sort f(y|θ̂) as f(yν(1)|θ̂) ≥ f(yν(2)|θ̂) ≥ · · · ≥ f(yν(n)|θ̂),

then {ν(1), · · · , ν(bn(1− α)c)} forms the index set Îα.

(b) Given an index set Îα, update the estimator of θ, which maximizes
∑

i∈Îα f(yi|θ).

(c) Iterate (a)-(b) until convergence.
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3. Repeat 1 and 2.

4. Apply θ̂ and Îα to (2.5)-(2.8) to estimate the number of components.

We want to point out that we are not the first ones to use the trimmed information

criteria. Neykov et al. (2007) have briefly discussed the trimmed BIC in their simula-

tion study. Based on their limited empirical experience, the trimmed BIC works well and

could robustly estimate the number of mixture components. In this report, we extend such

trimmed idea to some other commonly used information criteria and give more simulation

study and a real data application in next chapter to demonstrate the effectiveness of the

trimmed information criteria.
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Chapter 3

Simulation Study and Real Data
Application

3.1 Simulation study

In this chapter, we investigate the effectiveness of the trimmed information criteria and com-

pare them with the traditional information criteria for model selection for mixture models

when outliers are present. To be more specific, the following four new methods are consid-

ered: trimmed AIC (TAIC), trimmed BIC (TBIC), trimmed CAIC (TCAIC), and trimmed

ICL (TICL). The performance of the new methods are compared to AIC, BIC, CAIC, and

ICL, whose likelihoods are calculated based on the maximum likelihood estimate (MLE).

The trimming proportion α is set to be 5% for all information criteria. Similar to TLE, the

proportion α is an important tuning parameter. Usually a conservative α is desired. In our

simulation study, the proportion of outliers is never greater than 0.05. In Section 3.2, we

use a real data set to illustrate how to data adaptively choose the α using the graphical tool

proposed in Neykov et al. (2007).

To compare the performance of different model selection methods, we report the per-

centage of times when the number of components is correctly estimated. In addition, we

also report the lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the

estimated number of components for each method.

We consider the following two mixture of linear regression models:
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Example 1 :

Y =

{
0 +X1 +X2 + ε1, if Z = 1,
0−X1 −X2 + ε2, if Z = 2.

Example 2 :

Y =


3 + 3X1 + 4X2 + ε1, if Z = 1,
1 +X1 +X2 + ε2, if Z = 2,
−1−X1 −X2 + ε3, if Z = 3,
−3− 3X1 − 4X2 + ε4, if Z = 4.

The mixing proportions are 0.4 and 0.6 in Example 1, and are all equal to 0.25 in Example

2. In both examples, X1 ∼ N(0, 1) and X2 ∼ N(0, 1) are uncorrelated, and the errors

have the same distribution as ε ∼ N(0, 1). The sample sizes n = 100 and n = 200 are

conducted over 200 repetitions, and the proportions of outliers are α = 0.05, α = 0.03, and

α = 0.01. Note that the trimming proportion is 0.05 for all trimmed information criteria.

Using the above three proportions of outliers, we can check how the trimmed information

criteria work for both the cases where the trimming proportions are correct and the cases

where the trimming proportions are conservative.

Table 3.1 reports the percentage of times when the number of components in the mixture

of linear regression models is correctly estimated. From Table 3.1, we can see that the

percentages of correct estimates of number of components by TBIC, TCAIC, and TICL

are much higher than the four traditional methods and TAIC. Therefore, both AIC and

its trimmed version largely fail to estimate the correct number of components. But the

trimmed versions of BIC, CAIC, and ICL can greatly improve the performance of their

original versions when there are outliers. In addition, to our surprise, the traditional methods

perform better when the sample size is small in our examples, but TBIC, TCAIC, and TICL

show better results when the sample size is large.

To understand better how the methods perform, we also report the lower quartile, the

median, and the upper quartile of the estimated numbers of components, in Table 3.2 and

Table 3.3 for n = 100 and n = 200, respectively. Clearly, TBIC, TCAIC, and TICL give

much better performance than the other methods. In addition, AIC, BIC, CAIC, ICL, and

TAIC tend to overestimate the number of components.
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n = 100 n = 200

α = 0.05 α = 0.03 α = 0.01 α = 0.05 α = 0.03 α = 0.01

Example 1

AIC 0% 0% 1.4% 0% 0% 2.5%

BIC 3.6% 3.4% 19.4% 0% 0% 5%

CAIC 6.6% 6% 24.6% 1% 0% 8.5%

ICL 2.4% 3% 18.4% 0% 0% 5%

TAIC 0% 0% 0% 4.5% 0% 0%

TBIC 94% 92.4% 85.4% 99.5% 99.5% 99%

TCAIC 96.4% 93.2% 90.2% 100% 100% 99.5%

TICL 93% 90.6% 82.6% 99.5% 99% 97.5%

Example 2

AIC 5.5% 0% 2.5% 3% 0% 0%

BIC 23% 7.5% 9% 20% 2% 0%

CAIC 27.5% 10.5% 14% 25% 4% 0.5%

ICL 23.5% 7.5% 9% 19.5% 2% 0%

TAIC 2% 2% 1% 28% 21% 5%

TBIC 86% 83% 75.5% 98.5% 99% 99%

TCAIC 91% 85% 73.5% 100% 99% 98.5%

TICL 86% 82% 74.5% 98.5% 99% 99%

Table 3.1: Percentages of times when the number of components in the mixture of regression
models is correctly estimated.
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α = 0.05 α = 0.03 α = 0.01

LQ MD UQ LQ MD UQ LQ MD UQ

m = 2

AIC 3 4 7 5 8 9 5 8 9

BIC 3 3 3 3 3 3 3 3 3

CAIC 3 3 3 3 3 3 2 3 3

ICL 3 3 3 3 3 3 3 3 3

TAIC 10 10 10 10 10 10 10 10 10

TBIC 2 2 2 2 2 2 2 2 2

TCAIC 2 2 2 2 2 2 2 2 2

TICL 2 2 2 2 2 2 2 2 2

m = 4

AIC 5 5 7 5 6 8 5 6 7

BIC 4 5 5 5 5 6 5 5 5

CAIC 4 5 5 5 5 5 5 5 5

ICL 4 5 5 5 5 6 5 5 5

TAIC 9 10 10 9 10 10 9 10 10

TBIC 4 4 4 4 4 4 4 4 4

TCAIC 4 4 4 4 4 4 4 4 4

TICL 4 4 4 4 4 4 4 4 4

Table 3.2: The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when n = 100.
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α = 0.05 α = 0.03 α = 0.01

LQ MD UQ LQ MD UQ LQ MD UQ

Example 1 (m = 2)

AIC 3 3 5 3 3 5 3 5 8

BIC 3 3 3 3 3 3 3 3 4

CAIC 3 3 3 3 3 3 3 3 4

ICL 3 3 3 3 3 3 3 3 4

TAIC 9 10 10 10 10 10 10 10 10

TBIC 2 2 2 2 2 2 2 2 2

TCAIC 2 2 2 2 2 2 2 2 2

TICL 2 2 2 2 2 2 2 2 2

Example 2 (m = 4)

AIC 5 5 7 5 5 6 5 5.5 6

BIC 4 5 5 5 5 5 5 5 6

CAIC 4 5 5 5 5 5 5 5 6

ICL 5 5 5 5 5 5 5 5 6

TAIC 4 7 9 5 9 10 8 10 10

TBIC 4 4 4 4 4 4 4 4 4

TCAIC 4 4 4 4 4 4 4 4 4

TICL 4 4 4 4 4 4 4 4 4

Table 3.3: The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when n = 200.
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3.2 Real data analysis

Next, we use the crabs data from R-package “MASS” as an example to compare different in-

formation criteria and their trimmed versions. Five morphological measurements were taken

from 200 crabs of the species Leptograpsus variegatus, collected at Fremantle, Australia.

Following Garćıa-Escudero et al. (2010), here we only focus on analyzing two variables,

RW (rear width in mm) and CL (carapace length mm), with the objective of distinguishing

between the two crabs sexes, without the other variables. The variable CL is considered as

the response variable while RW is considered as the explanatory variable. The scatter plot

of the data is shown in Figure 3.1, where squares and circles denote the two groups of crabs

based on their sexes.

Let us suppose that the sexes of the crabs were unknown, and then estimate the number

of components. The results are reported in the first row of Table 3.4 (α = 0, without

outliers). It can be seen that all methods, except for TAIC, provide correct estimates of the

number of components, when there are no outliers in the data.

To check the robustness of different model selection methods, similar to McLachlan

and Peel (2000), we artificially add some outliers to the original data set, for example, we

randomly add 1%, 3% and 5% outliers into the original data set. Figure 3.1 shows an

example when 5% outliers, denoted by dots, were added into the data. The model selection

results are also reported in Table 3.4, from which we can see that our proposed TBIC,

TCAIC, and TICL perform much better than the rest of the methods. In addition, it can

be seen that AIC and TAIC tend to overestimate the number of components, which is

consistent with the simulation results.

In all the above examples, we have fixed α in advance. To explore how to data adaptively

select the trimming proportions in practical problems, we apply the graphical tool proposed

in Neykov et al. (2007), that is, we fit the crabs data with a 2-component mixture of

linear regression models using a grid points of α values, ranging from 0% to 50% in steps

of 1%. Figure 3.2 shows the trimmed likelihood versus α’s, when the actual percentages of

14



Table 3.4: The estimated number of components for crabs data when using traditional and
trimmed information criteria.

AIC BIC CAIC ICL TAIC TBIC TCAIC TICL

α0=0 2 2 2 2 4 2 2 2

α0=0.01 5 3 3 3 2 2 2 2

α0=0.03 6 3 3 3 9 2 2 2

α0=0.05 5 3 3 3 7 2 2 2
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Figure 3.1: Crabs data: squares and circles denote the two groups of crabs based on their
sexes, and dots denote the randomly generated outliers.

outliers are 1%, 3%, 5% and 10%, respectively, denoted by the vertical lines. The percentage

of outliers can be estimated by the largest α at which the slope of curves changes. From

Figure 3.2, we can see that the slope-changing locations are very close to the true percentages

of outliers (corresponding to the vertical lines).
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Figure 3.2: Plot of trimmed likelihood versus the trimming proportion. The vertical line
corresponds to the true percentages of outliers.
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Chapter 4

Discussion

In this report, we investigated some trimmed versions of information criteria to robustly

estimate the number of components for mixtures of linear regression models when outliers

are present in the data set. We demonstrated the superiority of the trimmed methods in

comparison with the traditional methods when the data are contaminated using a simulation

study and a real data example.

However, in this report, we mainly focus on the information criteria based on model

selection methods. It requires more research to see whether we can use similar trimmed

idea to robustify some other model selection methods, such as EM test (Chen and Li,

2009; Li and Chen, 2010). Chen and Khalili (2009) used a penalized likelihood to do order

selection for mixture models. It will be interesting to see whether we can achieve robust

order selection if we apply similar penalty functions to some robust mixtures of regression

models (Neykov et al. 2007; Bai et al. 2012; Bashir and Carter, 2012; Yao et al. 2014; Song

et al. 2014).

We have applied the graphical tool proposed in Neykov et al. (2007) to choose the

trimming proportion α in the crabs data application. However, as pointed out by Neykov

et al. (2007), such estimated trimming proportions tend to underestimate the true values

in some cases. Therefore, it requires further study about how to data adaptively choose an

optimal or a conservative trimming proportion α.
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Appendix A

R-Programs

rm(list=ls())

library(MASS)

library(gregmisc)

library(robustbase)

library(mixtools)

regmixEM<-function(y, x, lambda = NULL, beta = NULL, sigma = NULL, k = 2,

addintercept = TRUE, arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,

maxit = 10000, verb = FALSE)

{

if (arbmean == FALSE && arbvar == FALSE) {

stop(paste("Must change constraints on beta and/or sigma!",

"\n"))

}

s = sigma

if (addintercept) {

x = cbind(1, x)

}

n <- length(y)
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p <- ncol(x)

tmp <- regmix.init(y = y, x = x, lambda = lambda, beta = beta,

s = s, k = k, addintercept = addintercept, arbmean = arbmean,

arbvar = arbvar)

lambda <- tmp$lambda

beta <- tmp$beta

s <- tmp$s

k <- tmp$k

diff <- 1

iter <- 0

xbeta <- x %*% beta

res <- (y - xbeta)^2

if (arbmean == FALSE) {

res <- sapply(1:k, function(i) res)

}

comp <- t((lambda/sqrt(2 * pi * s^2)) * t(exp(-t(t(res)/(2 *

s^2)))))

obsloglik <- sum(log(apply(comp, 1, sum)))

ll <- obsloglik

z = matrix(nrow = n, ncol = k)

restarts <- 0

while (diff > epsilon && iter < maxit) {

for (i in 1:n) {

for (j in 1:k) {

z.denom = c()

for (h in 1:k) {

z.denom = c(z.denom, (lambda[h]/lambda[j]) *
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(s[j * arbvar + (1 - arbvar)]/s[h * arbvar +

(1 - arbvar)]) * exp(-0.5 * ((1/s[h * arbvar +

(1 - arbvar)]^2) * res[i, h] - (1/s[j * arbvar +

(1 - arbvar)]^2) * res[i, j])))

}

z[i, j] = 1/sum(z.denom)

}

}

z = z/apply(z, 1, sum)

lambda.new <- apply(z, 2, mean)

if (sum(lambda.new < 1e-08) > 0 || is.na(sum(lambda.new))) {

sing <- 1

}

else {

if (arbmean == FALSE) {

if (addintercept) {

beta.new <- lm(y ~ x[, -1], weights = apply(t(t(z)/(s^2)),

1, sum))$coef

}

else beta.new <- lm(y ~ x - 1, weights = apply(t(t(z)/(s^2)),

1, sum))$coef

}

else {

if (addintercept) {

lm.out <- lapply(1:k, function(i) lm(y ~ x[,

-1], weights = z[, i]))

}
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else lm.out <- lapply(1:k, function(i) lm(y ~

x - 1, weights = z[, i]))

beta.new <- sapply(lm.out, coef)

}

xbeta.new <- x %*% beta.new

res <- (y - xbeta.new)^2

if (arbmean == FALSE) {

res <- sapply(1:k, function(i) res)

}

if (arbvar) {

s.new <- sqrt(sapply(1:k, function(i) sum(z[,

i] * (res[, i]))/sum(z[, i])))

}

else s.new <- sqrt(sum(z * res)/n)

lambda <- lambda.new

beta <- beta.new

xbeta <- x %*% beta

s <- s.new

sing <- sum(s < 1e-08)

comp <- lapply(1:k, function(i) lambda[i] * dnorm(y,

xbeta[, i * arbmean + (1 - arbmean)], s[i * arbvar +

(1 - arbvar)]))

comp <- sapply(comp, cbind)

compsum <- apply(comp, 1, sum)

newobsloglik <- sum(log(compsum))

}

if (sing > 0 || is.na(newobsloglik) || newobsloglik <
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obsloglik || abs(newobsloglik) == Inf) {

cat("Need new starting values due to singularity...",

"\n")

restarts <- restarts + 1

if (restarts > 50)

stop("Too many tries!")

tmp <- regmix.init(y = y, x = x, k = k, addintercept = addintercept,

arbmean = arbmean, arbvar = arbvar)

lambda <- tmp$lambda

beta <- tmp$beta

s <- tmp$s

k <- tmp$k

diff <- 1

iter <- 0

xbeta <- x %*% beta

res <- (y - xbeta)^2

if (arbmean == FALSE) {

res <- sapply(1:k, function(i) res)

}

comp <- t((lambda/sqrt(2 * pi * s^2)) * t(exp(-t(t(res)/(2 *

s^2)))))

obsloglik <- sum(log(apply(comp, 1, sum)))

ll <- obsloglik

}

else {

diff <- newobsloglik - obsloglik

obsloglik <- newobsloglik
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ll <- c(ll, obsloglik)

iter <- iter + 1

if (verb) {

cat("iteration=", iter, "diff=", diff, "log-likelihood",

obsloglik, "\n")

}

}

}

scale.order = order(s)

sigma.min = min(s)

if (iter == maxit) {

cat("WARNING! NOT CONVERGENT!", "\n")

}

cat("number of iterations=", iter, "\n")

if (arbmean == FALSE) {

z = z[, scale.order]

names(beta) <- c(paste("beta", ".", 0:(p - 1), sep = ""))

colnames(z) <- c(paste("comp", ".", 1:k, sep = ""))

a = list(x = x, y = y, lambda = lambda[scale.order],

beta = beta, sigma = sigma.min, scale = s[scale.order]/sigma.min,

loglik = obsloglik, posterior = z[, scale.order],

all.loglik = ll, restarts = restarts, ft = "regmixEM")

class(a) = "mixEM"

a

}

else {

rownames(beta) <- c(paste("beta", ".", 0:(p - 1), sep = ""))
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colnames(beta) <- c(paste("comp", ".", 1:k, sep = ""))

colnames(z) <- c(paste("comp", ".", 1:k, sep = ""))

a = list(x = x, y = y, lambda = lambda, beta = beta,

sigma = s, loglik = obsloglik, posterior = z, all.loglik = ll,

restarts = restarts, ft = "regmixEM")

class(a) = "mixEM"

a

}

}

mixreg<-function(x,y,k, maxit=200){

if(k>1){

est=regmixEM(y,x,k=k,arbvar = 0,epsilon = 1e-08,maxit=maxit)

}

else{

X=cbind(1,x);

bet=ginv(t(X)%*%X)%*%t(X)%*%y;

err=y-X%*%bet;sigma=sqrt(mean(err^2));

lambda=1;

est=list(beta=bet,sigma=sigma,lambda=lambda)

}

est

}

mixlinone<-function(x,y,bet,sig,pr,m=2, maxit=200)

{
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run=0;n=length(y);

X=cbind(rep(1,n),x);

if(length(sig)>1){ # unequal variances

r=matrix(rep(0,m*n),nrow=n);pk=r;lh=0;

for(j in 1:m){ # calculate likelihood: lh

r[,j]=y-X%*%bet[j,];lh=lh+pr[j]*dnorm(r[,j],0,sig[j]);

}

lh=sum(log(lh));

#E-steps

repeat{

prest=c(bet,sig,pr);run=run+1;plh=lh;

for(j in seq(m)){

pk[,j]=pr[j]*pmax(10^(-300),dnorm(r[,j],0,sig[j]))

}

pk=pk/matrix(rep(apply(pk,1,sum),m),nrow=n); # z_ij clasification probability

#M-steps

np=apply(pk,2,sum);pr=np/n;lh=0;

for(j in seq(m)){

w=diag(pk[,j]);

bet[j,]=ginv(t(X)%*%w%*%X)%*%t(X)%*%w%*%y; #beta_j

r[,j]= y-X%*%bet[j,];

sig[j]=sqrt(t(pk[,j])%*%(r[,j]^2)/np[j]); # sigma_j

lh=lh+pr[j]*dnorm(r[,j],0,sig[j]);

}

lh=sum(log(lh));dif=lh-plh;
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if(dif<10^(-5)|run>maxit){

break

}

}

}

else{ # equal variances

r=matrix(rep(0,m*n),nrow=n);pk=r; lh=0

for(j in seq(m)){

r[,j]=y-X%*%bet[j,];lh=lh+pr[j]*dnorm(r[,j],0,sig);

}

lh=sum(log(lh));

#E-steps

repeat{

prest=c(bet,sig,pr);run=run+1;plh=lh;

for(j in seq(m)){

pk[,j]=pr[j]* pmax(10^(-300),dnorm(r[,j],0,sig))

}

pk=pk/matrix(rep(apply(pk,1,sum),m),nrow=n);

#M-steps

np=apply(pk,2,sum);pr=np/n;

for(j in seq(m)){

w=diag(pk[,j]);

bet[j,]=ginv(t(X)%*%w%*%X)%*%t(X)%*%w%*%y;

r[,j]= y-X%*%bet[j,];

}
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sig=sqrt(sum(pk*(r^2))/n);lh=0;

for(j in seq(m)){

lh=lh+pr[j]*dnorm(r[,j],0,sig);

}

lh=sum(log(lh));dif=lh-plh;

if(dif<10^(-5)|run>maxit){

break

}

}

sig=sig*rep(1,m)

}

est=list(theta=matrix(c(bet,sig,pr),nrow=m),likelihood=lh,run=run,diflh=dif)

est

}

##############################

#trimmed likelihood estimator

###################################

trimmixone<-function(x,y,k=2,alpha=0.9,bet,sig,pr){

n=length(y);n1=round(n*alpha);

x=matrix(x,nrow=n);a=dim(x);p=a[2]+1;

X=cbind(rep(1,n),x);

if(dim(bet)[2]==k) bet=t(bet);

lh=0;

for (i in seq(k)) {

lh=lh+pr[i]*dnorm(y-X%*%bet[i,],0,sig[1])

}
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ind=order(-lh);run=0;acc=10^(-4);

obj=sum(log(lh[ind[1:n1]]));

repeat

{pobj=obj;run=run+1;

x1=x[ind[1:n1],];y1=y[ind[1:n1]];

fit=mixlinone(x1,y1,bet,sig,pr,k, maxit=200);fit=fit$theta;

bet=matrix(fit[1:(p*k)],nrow=k);sig=fit[p*k+1];

pr=fit[(p*k+k+1):(p*k+2*k)];lh=0;

for(i in seq(k))

{lh=lh+pr[i]*dnorm(y-X%*%bet[i,],0,sig[1]);

}

ind=order(-lh);obj=sum(log(lh[ind[1:n1]]));dif=obj-pobj;

if(dif<acc|run>300){break}

}

if(length(sig)<2) sig=rep(sig,k);

#theta=c(bet,sig,pr);

est=list(beta=bet,lambda=pr,sigma=sig,loglik=obj,dif=dif,run=run)

est

}

trimmix <-function(x,y,k=2,alpha=0.9,numini=20){

n=length(y); x=matrix(x,nrow=n)

a=dim(x);p=a[2]+1; n1=2*p;

#temp=roblga(x,y,k,alpha,numstart=100);

#bet=matrix(temp[1:(p*k)],nrow=k);

#sig=mean(temp[(p*k+1):(p*k+k)]);

#pr=temp[(p*k+k+1):(p*k+2*k)];
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#est=trimmixone(x,y,k,alpha,bet,sig,pr);

#lh=est$likelihood;obj=rep(0,numini+1);obj[1]=lh;

X=cbind(rep(1,n),x);

tmp<- regmix.init(y,X,k = k,arbvar = 0)

pr<- tmp$lambda

bet<- tmp$beta

sig<- tmp$s

#pest=est;plh=lh;

est=trimmixone(x,y,k,alpha,bet,sig,pr);

lh=est$loglik;obj=rep(0,numini+1);obj[1]=lh;

#if(lh<plh){est=pest;lh=plh;}

for(i in seq(numini))

{bet= matrix(rep(0,k*p),nrow=k);sig=0;

for(j in seq(k))

{ind=sample(1:n,n1); X=cbind(rep(1,n1),x[ind,]);

bet[j,]=ginv(t(X)%*%X)%*%t(X) %*%y[ind];

sig=sig+sum((y[ind] -X%*%bet[j,])^2);

}

pr=rep(1/k,k);sig=sig/n1/k;

pest=est;plh=lh;

est=trimmixone(x,y,k,alpha,bet,sig,pr);

lh=est$loglik;obj[i+1]=lh;

if(lh<plh){est=pest;lh=plh;}

}

#est=list(theta=est$theta,loglik=est$likelihood,run=est$run,obj=obj)

est$obj=obj

33



est

}

robregmixmodel.sel<-function (x, y, k = 2, alpha=0.9,numini=10)

{

aic <- NULL

bic <- NULL

caic<- NULL

icl <- NULL

AIC <- function(emout, p) {

emout$loglik - (p - 1)

}

BIC <- function(emout, p, n) {

emout$loglik - log(n) * (p - 1)/2

}

CAIC <- function(emout, p, n) {

emout$loglik - (log(n) + 1) * (p - 1)/2

}

ICL <- function(emout, p, n) {

BIC(emout, p, n) - sum(emout$lambda * log(emout$lambda))

}

n <- length(y)

for (i in 1:k) {

if (i == 1) {

a <- ltsReg(x,y,nsamp=100,alpha=alpha)

beta <- matrix(a$coef, ncol = 1)
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sd=sqrt(var(a$residuals[a$best]))

loglik <- log(prod(dnorm(y[a$best], mean = a$fitted.values[a$best], sd = sd)))

emout <- list(beta = beta, sigma = sd,

lambda = 1, loglik = loglik)

}

else emout <- trimmix(x,y,k=i,alpha=alpha,numini=numini)

P = length(emout$beta)+1+i

aic[i] <- AIC(emout, p = P)

bic[i] <- BIC(emout, p = P, n = n)

caic[i] <- CAIC(emout, p = P, n = n)

icl[i] <- ICL(emout, p = P, n = n)

}

out = rbind(aic, bic, caic, icl)

Winner = apply(out, 1, function(x) (1:length(x))[x == max(x)])

colnames(out) = 1:k

rownames(out) = c("AIC", "BIC", "CAIC", "ICL")

cbind(out, Winner)

}

#######

#Simulation study when there are m=4 components

###########################

set.seed(10^8)

bt=Sys.time()

repnum=200; m=4;

n=100; #n=200;

alpha=0.99 #trim proportion, alpha=0.97, alpha=0.99
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numoutlier=round(n*(1-alpha))

bet=matrix(c(3,1,-1,-3,3,1,-1,-3,4,1,-1,-4),nrow=4);p=3;

pr=c(0.25,0.25,0.25,0.25); upk=10;

numcompaic=rep(0,repnum);numcompbic=numcompaic;

numcompcaic=numcompaic;numcompicl=numcompaic;

numcompaic1=rep(0,repnum);numcompbic1=numcompaic;

numcompcaic1=numcompaic;numcompicl1=numcompaic;

time1=c();time2=c();

save.image("E:\\Dropbox\\student\\Mengli\\simulation\\ex61.RData")

for(i in 1:repnum){

print(i)

sig=1;e=rnorm(n,0,sig);

#u=runif(n,0,1);e=(u<=0.95)*rnorm(n,0,1)+(u>0.95)*rnorm(n,0,5);

sig=1.4826*median(abs(e-median(e)))

#v=1; e=rt(n,v); sig=1.4826*median(abs(e-median(e)));

u=runif(n,0,1);x=cbind(rnorm(n,0,1),rnorm(n,0,1));

y=(u<=pr[1])*(bet[1,1]+bet[1,2]*x[,1]+bet[1,3]*x[,2]+e)+(u>pr[1]&u<pr[1]

+pr[2])*(bet[2,1]+bet[2,2]*x[,1]+bet[2,3]*x[,2]+e)+(u>pr[1]

+pr[2]&u<1-pr[4])*(bet[3,1]+bet[3,2]*x[,1]

+bet[3,3]*x[,2]+e)+(u>1-pr[4])*(bet[4,1]+bet[4,2]*x[,1]+bet[4,3]*x[,2]+e)

y[1:numoutlier]=y[1:numoutlier]+runif(numoutlier,20,30)

bt=Sys.time();est1=regmixmodel.sel(x,y,k=upk, arbvar = 0, maxit=200);

time1[i]=Sys.time()-bt

numcompaic[i]=est1[1,upk+1];numcompbic[i]=est1[2,upk+1];

numcompcaic[i]=est1[3,upk+1];numcompicl[i]=est1[4,upk+1];

bt=Sys.time();est2=robregmixmodel.sel(x,y,k=upk,alpha=0.95,numini=40);

time2[i]=Sys.time()-bt
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numcompaic1[i]=est2[1,upk+1];numcompbic1[i]=est2[2,upk+1];

numcompcaic1[i]=est2[3,upk+1];numcompicl1[i]=est2[4,upk+1];

}

time=Sys.time()-bt

#######

#Simulation study m=2

###########################

set.seed(10^8)

bt=Sys.time()

repnum=200;n=200;m=2;

alpha=0.95 #trim proportion

numoutlier=round(n*(1-alpha))

bet=matrix(c(0,0,1,-1,1,-1),nrow=2);p=3;

pr=c(0.4,0.6); upk=10;

numcompaic=rep(0,repnum);numcompbic=numcompaic;

numcompcaic=numcompaic;numcompicl=numcompaic;

numcompaic1=rep(0,repnum);numcompbic1=numcompaic;

numcompcaic1=numcompaic;numcompicl1=numcompaic;

time1=c();time2=c();

for(i in seq(repnum)){

print(i)

sig=1;e=rnorm(n,0,sig);

#u=runif(n,0,1);e=(u<=0.95)*rnorm(n,0,1)+(u>0.95)*rnorm(n,0,5);

sig=1.4826*median(abs(e-median(e)))

#v=1; e=rt(n,v); sig=1.4826*median(abs(e-median(e)));

u=runif(n,0,1);x=cbind(rnorm(n,0,1),rnorm(n,0,1));
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y=(u<=pr[1])*(bet[1,1]+bet[1,2]*x[,1]+bet[1,3]*x[,2]+e)+(u>pr[1])*(bet[2,1]

+bet[2,2]*x[,1]+bet[2,3]*x[,2]+e)

y[1:numoutlier]=y[1:numoutlier]+runif(numoutlier,7,10)

bt=Sys.time();est1=regmixmodel.sel(x,y,k=upk, arbvar = 0, maxit=200);

time1[i]=Sys.time()-bt

numcompaic[i]=est1[1,upk+1];numcompbic[i]=est1[2,upk+1];

numcompcaic[i]=est1[3,upk+1];numcompicl[i]=est1[4,upk+1];

bt=Sys.time();est2=robregmixmodel.sel(x,y,k=upk,alpha=0.95,numini=40);

time2[i]=Sys.time()-bt

numcompaic1[i]=est2[1,upk+1];numcompbic1[i]=est2[2,upk+1];

numcompcaic1[i]=est2[3,upk+1];numcompicl1[i]=est2[4,upk+1];

}

time=Sys.time()-bt
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