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Abstract 

In a shipboard power system (SPS) there are many possible locations for faults along 

power lines. It is important to identify the location and isolate these faults in order to protect the 

equipment and loads. The shipboard systems represented in this research are based on an all-

electric ship that is presented by Corzine and a simplified version of the same ship. This research 

considers faults at the ends on the lines. Sensors collect data in order to determine where the fault 

has occurred. The fault location identification algorithm being presented uses data collected from 

simulations of different switch configurations and different loads. After the data is collected, 

Bayesian techniques are used to determine where the fault is located. An online training 

technique is presented to adjust to changes in loads over time to increase the accuracy of the 

algorithm. 
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Chapter 1 - Introduction 

 Electrical power has become one of the main necessities in the modern world today. A 

fault along that system, that could cause outages and damage, is one of the main problems in the 

system. It is important that the fault is located in the system so that it can be isolated. If the fault 

is not isolated, electrical equipment and other parts of the system could be damaged for the long 

term. 

 1.1 Fault Detection and Location 

Fault detection is a prerequisite for outage management in a shipboard power system. 

Outages on a power system cannot be fixed without the location of the fault. Grounded faults can 

cause major outages because of the effect on the power electronics that control the voltage and 

current [1]. There are various types of fault detection and location schemes or processes out there 

for alternating current (AC) and direct current (DC) power systems. 

In AC voltage power systems the fault can be located using many methods. The voltage 

and current measurements at local ends of transmission lines can be used to determine the 

location of the fault [2]. Phase measurement units can be used to determine the fault location 

along complex distribution systems [3]. Transients in measurements can be used in fault 

detection schemes [4]. Finally, tracing superimposed signals along the medium voltage railways 

can be used to find a fault [5]. Complex AC systems have plenty of parameters that can be used 

as is shown above, to find faults along a system. The main parameters that change during a fault 

include voltage and current magnitude and phase angle. 
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There are many types of DC voltage power systems high voltage direct current (HVDC) 

power systems and medium voltage direct current (MVDC) systems. Less research work has 

been done to determine faults in these systems.  This research work presents a MVDC shipboard 

power system. DC systems, as compared to AC power systems, have a minimal amount of 

parameters to consider when faults occur. These parameters include voltage and current 

magnitude.  

 1.2 Shipboard Power System 

The shipboard power system is the focus of this research. The U.S. Navy is looking at the 

next generation ship, which may include a DC power system that includes multiple power 

elements. These power elements include multiple generators, power lines or buses, and loads. 

The generators throughout the system generate AC power. This AC power is then converted to 

DC by three-level bridge converter. A voltage controller and current controller run this converter 

in order to keep the DC voltage at the required level.  

There are many situations that can cause a fault on a shipboard. These situations include 

being hit be artillery from enemy ships and daily wear and tear in the shipboard system. 

However, especially in naval battleships it is important to locate and isolate a fault so that further 

actions that need power, such as retreating or firing a rail gun, can be taken [6]. Some of the 

current techniques for locating faults are reviewed in Chapter 2. 

 1.3 High Impedance Faults 

The faults that are the hardest to locate are higher impedance faults that have less effect 

on the overall system. In this research, DC shipboard power systems are simulated with high 

impedance faults. Lower impedance faults are assumed to be found and isolated swiftly with 
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protection equipment before the high impedance fault location algorithm is required to locate the 

fault. Each simulation includes different configurations and load distributions. A method is 

introduced to correctly identify high impedance fault locations along power lines. This method is 

rigorously tested in order to justify choices. Additionally the described method is introduced to 

adapt to changes in the load during operation of the system. 

 1.4 Thesis Objective 

The objective of this thesis is to develop a novel way to determine the location of high 

impedance faults in a shipboard power system. In order to collect fault data, shipboard power 

systems needs to be modeled and simulated. Each part of the system, generator, converter, power 

line, and load, need to be modeled in the selected simulation software. A method must be 

produced to accurately locate high impedance faults in the system. Bayesian methods are used to 

determine the location of the faults in the power system. The sensor currents, during the fault, are 

used as the input to the algorithm. Maximum a Posteriori and maximum likelihood estimates are 

then used to determine the fault location parameter. These methods should be able to adapt to 

normal changes in the load distribution and topology. An online method is proposed in this thesis 

to become more accurate during these load shifts. Test cases, such as random fault impedances 

and multiple locations, are used to fully test these methods throughout the process. 
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Chapter 2 - Review of Related Works 

The importance of fault detection and location in any system was discussed in the 

previous chapter. Various fault detection and location algorithms have been developed over the 

years. The following Chapter discusses the methods presented recently. 

 2.1 Fault Detection  

One of the ways to detect and locate faults includes measurements at the rectifier and 

converter ends of the power system as presented by Nanayakkara [7]. The algorithm takes as 

inputs the arrival times of the fault current effect at the ends. This method considers a simplified 

system with AC Systems on each end of a there line segments in series. When this system is 

compared to the proposed shipboard power systems, the line segments are longer in the 

terrestrial systems, which causes the time delay to the ends to determine the fault location. The 

implementation would also be more complex when adapting to the many line segment and 

intermittent loads in the system presented. 

In [8], a handshaking method is implemented to detect and isolate faults using AC circuit 

breakers behind DC converters along the system. Handshaking is a process of negotiation 

between different entities until they come to a consensus. This consensus in this case is the fault 

location in the power system. AC circuit breakers are placed intermittently in a DC system 

behind converters. Since DC breakers are more expensive, this paper proposes a more costly 

method with a multi-terminal system. The method used is a handshaking method between the 

breakers to use DC switches, faster than DC breakers, to isolate a fault.  

However, the fault could cause many problems to the power system protection equipment 

and loads over time [9] [10]. There are many techniques that have been developed to find high 
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impedance faults on power systems, including wavelet-based algorithms [11] and multi-layered 

perceptron neural networks [12]. The first method proposed, wavelet-based algorithm, is 

implemented for AC power systems and not adaptable to the DC shipboard power system. Multi-

layered perceptron neural networks accuracy falls when used in a more complex system like that 

used in this research.  Noise pattern analysis was not applicable in the system proposed because 

of the architecture of the shipboard system. 

Another paper [13], suggests using noise pattern recognition to locate faults in an 

ungrounded DC power system. The method uses pattern recognition of high-frequency noise due 

to switching events of converters. The noise patterns are recorded using phasor measurement 

units (PMUs) in order to record dynamic characteristics in terms of derivatives. The main 

drawback of this approach is the cost of PMUs.  

 2.2 Shipboard Power System Detection 

In [14], Kusic extends state estimation for AC shipboard power systems to fault 

detection. Sampled real time current and voltage data is collected and synchronized to estimate 

the state. Using magnitudes and phase angles at the buses and transmission lines the location of 

the fault can be found with accuracy. This paper goes into replacing missing data using nearby 

measurements to estimate the missing data. 

 A technique to determine the fault location using active impedance estimation is 

presented by Christopher [15]. In the paper, a short current spike is injected into the system and 

the voltage and current transients are recorded. These responses can then be used to the 

equivalent system impedance. Since the loads in a shipboard power system are usually much 

larger than the bus impedances, the fault impedance usually dominates the impedance estimation. 
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However, with increase in impedance of the fault the ability to find the fault with this method 

becomes less accurate. 

Another type of fault, usually bypassed by most protection methods, is an intermittent 

fault. Intermittent faults cause short duration transients in the power system. These faults are the 

most elusive and expensive faults to detect and locate. The method, provided in [16], injects a 

modulated signal at one location in a system. Then, comparing the signal at another location on 

the power system provides the fault diagnosis. 

Some of the more novel ways of fault location is the method produced in [17], [18] and 

[19]. Reference [17] proposes the use of artificial neural networks to determine the location of 

the faults on the shipboard system. Transient properties of current and voltage signals are used as 

the input to determine the location of the fault in the system. Machine learning techniques are 

used to diagnose and locate faults in a shipboard power system in [18]. Finally, a genetic 

algorithm is proposed to determine the location of the fault in the power system [19]. Most of 

these estimations use their methods to find grounded faults. However, most have some concern 

when it comes to high impedance faults. 

Pan [20] describes an approach to finding high impedance faults in a shipboard power 

system. Much like [21], the paper proposes a novel way of noise pattern analysis. Repetitive 

switching in the conversion gear when a fault occurs causes the noise in the current signal. 

However, when later analyzing the proposed model for this thesis in the simulation, the noise 

patterns found in this paper are not found in the signals. The signals are not found because the 

model in the paper has more protection equipment than the models proposed in this thesis. 
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 2.3 Bayesian Fault Detection 

Bayesian methods are proposed for use in diagnosing and locating faults in an AC 

voltage power system in multiple papers [22-24]. These papers use previous data in order to 

compute the expected values of situations in the system. These situations include faults along the 

system as well as normal conditions. This is then compared to the computed results in order to 

predict the fault location in the power system. The advantage of using the Bayesian networks is 

that the method adjusts the parameters continuously. This allows for adaption to changes in the 

natural state of the system, such as load changes and switching topologies. This thesis adapts 

these methods to the DC power system in order to find faults in the shipboard power system.  

 2.4 Summary 

Many techniques have been developed for fault detection in power systems. However, 

there is a lack of development in fault detection for DC shipboard power systems. This is 

especially true with regards to high impedance faults on a power system. This thesis will look for 

a novel method to determine the high impedance fault location on a MVDC shipboard power 

system. 
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Chapter 3 - Models of the Shipboard Power System 

In this research, two shipboard power systems (SPS) models are presented. These models 

were provided by the United States Office of Naval Research for this work. The first is a simple 

model useful in formation and implementation of new, knowledgeable concepts. The second 

model is more complex and implemented to test those theories as a more realistic representation 

of the shipboard system. The systems are simulated in MATLAB Simulink using the 

SimPowerSystems toolbox. 

MATLAB is a numerical computing package that includes its own programing language. 

It was developed for the ease of use in numerical computing, including matrix calculations and 

plotting of data. It allows interfacing between itself and other programs written in different 

languages. MATLAB also includes an extension, Simulink, for graphical interface simulations. 

A toolbox that is included in Simulink, SimPowerSystems, allows the simulation of power 

equipment in the MATLAB environment. This toolbox is used to simulate the power system in 

this work. 

 3.1 Simplified Model of the Shipboard Power System 

The simple model of the shipboard system contains two generators, four load zones and 

two buses as presented in [25]. The generators, as shown in Figure 3.1 below, are located at both 

ends of the system. Each generator provides power to both buses in the shipboard power system. 

The main generator, shown on the right, operates at 8 MW and the distributed generator 

produces 6 MW [25].  
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Figure 3.1  Simplified Model of a Shipboard Power System [25] 

 
 

The generators are connected to the loads using two buses. These two buses are made up 

of power lines. There are two different varieties of power lines that appear in the SPS, one that 

connects the generators to the buses and another between the loads. These lines differ based upon 

the resistance of the lines. The value of resistance between the generator and buses is 1.85*10-3 

Ω. The power lines between the loads have 1.85*10-4 Ω of resistance [25]. 

The loads in the system represent motors, artillery and other equipment in the ship. There 

are four load zones in the model. Each load zone is connected to both buses. The load zones 

include three types of loads: vital, semi-vital, and non-vital. These priorities are added so that if a 

fault occurs, loads with higher priority can be given preferential treatment. The vital loads would 

include motors and artillery. Lower priority loads could include computer equipment, 

communication equipment, and personal use loads. In each load zone there are two non-vital 

loads, one connected to each bus, which consumes 0.5 MW [25]. Two switches connect the 

semi-vital and vital loads to each bus. The switches are considered to be mutually exclusive: 

meaning either connects the loads to the starboard or port side bus. The values of the semi-vital 

MG	
   DG	
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and vital loads are 1 MW and 0.5 MW, respectively [25]. The loads are represented as purely 

resistive and based on the AC/DC rectifiers keeping the voltage level constant. 

 3.2 Corzine Model of the Shipboard Power System 

The second model, presented by Corzine, adds more complexity to the model [26]. It 

adds two more generators, a main generator and distributed generator.  The total number of 

generators equals four now, with the two distributed generators producing 4 MW and the two 

main generators operating at 6 MW [26]. 

This model has five load zones that, as before, contain two non-vital loads, one semi-vital 

load, and one vital load. There are switches that connect the higher priority loads to either the 

starboard or port side bus. There are also two new load zones added between a generator and a 

bus, as seen below in Figure 3.2. These two new loads are inserted into the model to represent 

the motors of the SPS. The motors are represented single vital load and are connected to one bus 

and a generator through switches. The power dissipated by each of the load priorities are the 

same as the previously presented load. 

 

Figure 3.2 Simplified Model of a Shipboard Power System (adapted from [26])
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 3.2 Simulation of the Power Systems 

MATLAB Simulink was chosen to simulate the two models presented by this research. 

The power electronics were simulated using the SimPowerSystems toolbox. This could allow for 

future use with real time simulators, such as OPAL-RT. 

3.2.1 Simulations of Generator and AC to Controlled DC Converter 

The generator and AC/DC converter are all integrated into one subsystem in the 

simulation, shown below in Figure 3.3. In the Figure, the power system elements are colored 

blue with black outlines and the control system is in yellow. A simplified synchronous machine 

model is used to simulate the mechanical power produced. The default parameters are used 

except for the nominal power and the voltage. After the machine, a filter is attached to clean up 

the noise that may be caused from the power electronics or loads down the line. A transformer is 

then added to step down the voltage to the needed voltage. Another filter is added in the lines 

again after the transformer. 

 

Figure 3.3 Generator and AC to Controlled DC Converter in Simulink 
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The AC/DC converter has three main parts: a controller, a three-level bridge and filters. 

A current regulator and a voltage regulator control the three level bridges. The controller keeps 

the voltage after the bridge at 4.15 kV. The filter after the bridge cleans up the voltage so that it 

will stay within ±5% of the previously stated value.  

3.2.2 Simulations of Loads in the Shipboard Power System 

The loads in the system, as stated above, are represented as purely resistive. This is a 

simplification of a load that probably contains an AC load and an AC to DC converter to connect 

the load to the DC bus. The loads are constant resistances based on the assumption that the 

controlled DC voltage stays at the per unit level. The loads are shown below in Figure 3.4, as 

before the control signals are in yellow and the power system is in blue. Ideal switches are used 

to connect the vital and semi-vital loads to the two buses. The logical operator is used to help 

simplify the simulation so that one signal is only needed to control the switches. This also 

prevents the high priority loads from connecting to both buses and prevents a loop in the SPS.  
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Figure 3.3 Load Zones Represented in Simulink

 

3.2.3 Simulations of Power Lines in the Shipboard Power System 

 The power lines have three main components in this model: the resistance of the power 

lines, the current sensors at the ends of the lines, and the faults at the end of the lines. The faults 

are connected to the line using switches that are controlled by a signal that can be changed 

during the simulations. The power line model is shown below in Figure 3.4. 
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Figure 3.4 Load Zones Represented in Simulink

 

 The fault impedance is a key aspect in this research. In order to determine the impedance 

range for testing, simulations are run to determine which impedances affect the system and can 

be easily found. The other end of the spectrum, simulations are run to determine how high the 

impedance can be increased in order to determine when the fault has no visual effect on the 

current levels. The range of impedance that is high enough to no longer affect the power 

electronics and still affect the current levels is 100*R to 1000*R. The R in this range is the 

power line resistance. 

 3.3 Current Data and Sensor Collection 

After all the models have been developed, it is time to collect and analyze the data. The 

goal of this analysis is to determine if there is an easy way to determine the location of the fault.  
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3.3.1 Sensor Location on the Power Systems 

 The sensor placement is important to the correct identification of a fault location. The 

placements that were chosen in this project were at the ends of the lines. Since the fault locations 

are on the transmission lines, this seems like a logical placement. The placements on both the 

Corzine and Simple Model can be seen below in Figure 3.5 and Figure 3.6, respectively. The 

Corzine model has a total of 32 sensors and the simplified model has 20. However, in the future 

that number may reduce because of the minimal difference in the current readings of the sensors 

on the same line. This minimal difference may be due to the very small resistance of the power 

lines. 

Figure 3.5 Sensor Placements in the Corzine Model

 

Figure 3.6 Sensor Placements in the Simple Model
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3.3.2 Current Data Collection 

The current data collection is a very pivotal step in this study. There are many important 

aspects to consider when choosing how to collect the current data. The placement of the sensors 

and sampling rate of the sensors are among them. The sampling rate being too long could slow 

the algorithm down and the electric power system could be negatively affected. However, the 

sampling should not be too slow, because the location prediction could be incorrect; this is 

shown in Figure 3.7. The figure shows that if you sample faster than the current, data could be 

off. If you sample at a more correct rate, 80 ms, you could get more accurate data. In the figure 

the fault occurs at 40 ms and stays on the line until 50 ms. 

Figure 3.7 Sensor Current in the Simple Model 
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3.3.3 Analysis of Current Data 

 The sensor current data is collected for all single faults and all switching configurations. 

The simple model data histogram, below in Figures 3.8 and Figure 3.9, resembles mostly that of 

a Gaussian distribution. The difference between 100*R and 1000*R is that as the fault 

impedance grows the distribution of current moves toward the normal. This reason for this 

movement is the higher impedance causes less current in the system. This thought will be 

explored in Section 5.2. 

The data for the Corzine ship shows that there are two main divisions in the data. One of 

these situations includes where the combination of a switching configuration and a fault do not 

affect the SPS enough that the fault currents at some sensors lie within the normal current 

regions. These regions are shown in an example, in Figure 3.10 and Figure 3.11, in red. As seen, 

the Histogram shows two regions and one region falls under the normal region. This is because 

of the high impedance and the switch configuration coincides so that the impact is minimal. The 

plots show that the high impedance faults that affect the system show a distribution that 

resembles a Gaussian distribution. 
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Figure 3.8 Sensor Current Histograms in the Simple Model (100R) 

 

Figure 3.9 Sensor Current Histograms in the Simple Model (1000R) 
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Figure 3.10 Sensor Current Histograms in the Corzine Model (100R)  

 

Figure 3.11 Sensor Current Histograms in the Corzine Model (1000R)
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The distributions of the faults for sensor 8 and 100*R fault impedance, in the middle of 

the bus, can be seen in Figure 3.12 below. As you can see the currents for some faults, especially 

ones on the same line, have similar distributions to other faults. This is where sensor data fusion 

techniques can be applied to determine the likely fault location. However, the Corzine model 

presents a problem as bimodal distributions are formed. The second of the two distributions look 

similar to the normal distributions, as shown in Figure 3.13. These faults that occur in this range 

have limited effect on the system because the power equipment is meant to handle this type of 

current levels. Therefore, the faults that lie outside the normal distributions are used to determine 

the classification of the fault location. 

 

Figure 3.12 Distributions of Sensor fault Currents in the Corzine Model (100R)
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Figure 3.13 Comparison of Sensor Fault Current to the Normal Current Distributions

 

 

 3.4 Summary 

This chapter presented two models, the simple model and the Corzine model. The simple 

model is presented for development of methods and the Corzine is implemented to further test 

and develop those methods. Each model was simulated in MATLAB Simulink. The fault current 

data was collected and the distributions of the currents were analyzed. The next step is to 

develop the method to find the location of the faults in the system. 
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Chapter 4 - Bayesian Methods 

Bayesian methods have been used to estimate specific types of faults in power equipment 

in [27][28]. The currents collected showed a distribution above that could be used to determine 

the most likely location for the fault. In this section, some Bayesian methods and simplification 

are discussed as explained in [29][30][31]. 

 4.1 Maximum a Posteriori Estimation 

Suppose that a sample of the sensor currents 𝑖!, 𝑖!,… , 𝑖! which are of the distributions 

shown above. The goal is to estimate the parameter or fault location  𝑭. One of the most accurate 

ways to estimate the fault location parameter is the Maximum a Posteriori estimator. This 

estimator returns the parameter that maximizes the probability, 𝑝𝑟𝑜𝑏(𝑭|𝑖!, 𝑖!,… 𝑖!), as follows: 

 

𝑭!"# ← argmax
𝑭

𝑝𝑟𝑜𝑏(𝑭|𝑖!, 𝑖!,… 𝑖!) 

 

The maximum a posteriori probability is described in Equation 4.2 below using Bayes 

theorem.  This is basic estimator of the maximum a posteriori probability. On the right side of 

the equation, the numerator represents the likelihood of the currents given the fault location and 

the prior probability. The denominator is a normalization term, which ensures that the probability 

on the left integrates to unity. The denominator can be excluded when calculating the estimate. 

 

𝑝𝑟𝑜𝑏 𝑭 𝐼 =   
𝑝𝑟𝑜𝑏 𝐼 𝑭 ×𝑝𝑟𝑜𝑏(𝑭)

𝑝𝑟𝑜𝑏(𝐼)
, 𝐼 = 𝑖!, 𝑖!,… 𝑖!  

 

 

(4.1) 
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The main problem with this calculation is the knowledge of prior probabilities of the fault 

location parameters. Since the prior probabilities are not known in this research, this estimation 

cannot be determined. Therefore, the maximum likelihood estimation is a better fit for this 

research. 

 4.2 Method of Maximum Likelihood 

The first simplification considered in this research is the maximum likelihood estimation.  

The estimation is described in the equation below. The method estimates the fault based on the 

likelihood of each sensor current based on each fault location parameter. The fault location that 

maximizes this likelihood is chosen as the estimated fault location. 

 

𝑭!" ← argmax
𝑭

𝑝𝑟𝑜𝑏 𝑖!, 𝑖!,… 𝑖! 𝑭  

 4.3 Simplifications of Maximum Likelihood 

Further simplifications are made to make the computation faster and less complicated. 

The first assumption made is that the current distribution for each sensor for each fault is 

Gaussian. The distribution of these currents, seen in the figures in Chapter 3, resembles a normal 

Gaussian distribution. This assumption inserts Equation 4.4, below, into the maximum likelihood 

estimator. 

𝑝𝑟𝑜𝑏(𝑖!|𝑭)~𝑁(𝜇𝑭,!,𝛴) 
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The next simplification is the assumption that each sensor is conditionally independent. 

The joint density function can be written as the product of the individual probabilities, shown in 

the equation below: 

𝑭 ← argmax
𝑭

𝑝𝑟𝑜𝑏(𝑖!|𝑭)
!

 

 

The final simplification was fixing the standard deviation for each fault for each sensor. 

This simplification decreases the complication of each calculation. However, some accuracy is 

lost when this assumption is made. 

𝑝𝑟𝑜𝑏(𝑖!|𝑭)~𝑁(𝜇𝑭,!,𝜎) 
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Chapter 5 - Proposed Approach to Fault Location Identification 

After the explanation of the Bayesian methods, this section will describe the 

development, simplification, and modification of the proposed algorithm. All the algorithms 

described are developed in MATLAB. The main problems that need to be addressed are how to 

tell when there is a fault, complexity of the algorithm, and the adaptability of the algorithm. 

  5.1 Triggering the Fault Identification 

The first problem when locating a fault is how to tell if a fault exists or doesn’t exist. One 

way to tell if there is a fault is to check the change in currents. Since the sampling rate was 

chosen, it can be compared to the previous and present currents against a certain normal change 

in current for each sensor. The usual normal changes for each sensor in our situations would be 

only when the switches are opened or closed and the load configuration changes. The faults that 

are harmful to the power system, such as electronics, would cause abnormal rises in current. The 

rises in current would be greater than that of the normal changes.  

So in this algorithm, the changes in current are constantly compared to the maximum 

current change due to normal conditions. The results using the trigger for each fault case are 

shown below in Table 5.1 as tested on both shipboard power models. The table shows the results 

of both models used in this research. It compares the precision of the method when determining 

the location at the ends of the power lines or just which power line has a fault. The Corzine 

model results are further split comparing the accuracy of faults that affect the system and all the 

faults which includes fault currents that fall under the normal range in current. As you can tell 

the trigger has little effect on the ML method using the covariance matrix. In fact, the affected 

parts are faults that are considered within normal range of current for all sensors. When using the 
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variances and a fixed variance is used, as explained later, the trigger has a minimal effect on the 

accuracy of the method, at the less than 2%. A detailed set of tables with the accuracy values for 

both the variances and fixed variances can be seen in Appendix A. 

 

Table 5.1 Comparing Accuracy: Original Method and Addition of a Trigger  

SPS  
Model  Resistance  Included Faults  Location  

ML 
Accuracy 

(%)  

Trigger and 
ML 

Accuracy 
(%)  

Simple  100*R  All Faults  Lines  100.00 100.00 

Simple  100*R  All Faults  
Ends of 
Lines  

85.66 85.66 

Simple  1000*R  All Faults  Lines  100.00 100.00 

Simple  1000*R  All Faults  
Ends of 
Lines  

84.77 84.77 

Corzine  100*R  Outside of Normal Current  Lines  99.86 99.86 

Corzine  100*R  Outside of Normal Current  
Ends of 
Lines  84.15 84.15 

Corzine  100*R  All Faults  Lines  61.74 59.17 
Corzine  100*R  All Faults  

Ends of 
Lines  51.13 49.80 

Corzine  1000*R  Outside of Normal Current  Lines  100.00 100.00 

Corzine  1000*R  Outside of Normal Current  
Ends of 
Lines  

86.40 86.40 

Corzine  1000*R  All Faults  Lines  61.84 59.28 

Corzine  1000*R  All Faults  
Ends of 
Lines  

52.44 51.22 

 

 5.2 Sweeping through All Possible Faults 

The main problem of fault location impedances would be that when a fault happens, the 

impedance is not always immediately known. Therefore, an algorithm should accommodate any 

of the fault impedances that should occur. This research assumes two things about fault 
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impedances: lower impedances are quickly identified and taken care of before the algorithm 

takes place and higher impedances, above our range, have little effect on the system.  Therefore, 

the range in which the algorithm needs to check is 100*R to 1000*R. The way that you sweep 

through, given the mean for each resistance will be different, is very important. The proposed 

method assumes that the mean and variances are linear and the move in toward the normal range 

as the resistance gets higher. The step size needed to seep through the impedances is tested in 

Table 5.2. The table shows that the algorithm is less accurate if fewer steps are taken. However, 

the difference between the two is less than 1%. 

Table 5.2 Multiple Random Impedance Fault Accuracy  

 
Step Size  

Fault Impedance  10R  100R  
123R  82.2  82  
731R  82.0  79.6  

 

 5.3 Procedure and Results 

Combining the two methods above, the proposed algorithm is seen below in Figure 5.1. 

The sensors are constantly updating the currents at a rate of 80ms. If the trigger is activated, then 

the algorithm steps through all possible faults and gets a possible fault location and probability 

that the fault is in that location. The trigger is explained below as if the change in current is 

greater than the normal change in current, ΔINORMAL. After this process, the fault location that 

has the highest probability is picked as the estimated fault location. The results of this method 

including the Trigger can be seen above in Table 5.1. 
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Figure 5.1 Full Process with Trigger and Fault Impedance Loop 

 
 

 5.4 Simplification of the Algorithm 

In fault location identification, the idea is to find, isolate and repair the fault as fast as 

possible. So, the least amount of time that the location process takes is better for the power 

system. The best way to speed up the process is to reduce the calculation time. This includes 

decreasing the storage needed to calculate the location and the total amount of calculations need 

to make the estimate. 
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 5.4.1 Fixed Variance 

An excellent way to reduce the amount of calculations and storage is to reduce the 

number of parameters that need to be calculated. Since the variances needed to be calculated for 

every step or every impedance in the proposed method, it would be an advantage to eliminate 

this calculation. This fixed variance reduces the calculation to determining the minimum squared 

distance to the next fault for each sensor. The results are compared with using variances for each 

fault on each sensor in Table 5.3. 

As can be seen in the table, this reduction has little effect on the simple model. The only 

difference is the end of power lines estimate. The Corzine model shows that there is little effect 

when changing to just fixed variance. 

Table 5.3 Comparing Accuracy: Multiple Variances and Fixed Variance  

SPS  
Model  Resistance  Included Faults  Location  

Variances 
Accuracy 

(%)  

Fixed 
Variance 

Accuracy(%)  

Simple 100*R All Faults Lines 100.00 100.00 
Simple 100*R All Faults Ends of Lines 79.85 76.54 
Simple 1000*R All Faults Lines 100.00 100.00 
Simple 1000*R All Faults Ends of Lines 76.90 75.52 
Corzine 100*R Outside of Normal Current Lines 100.00 100.00 
Corzine 100*R Outside of Normal Current Ends of Lines 78.11 78.11 
Corzine 100*R All Faults Lines 61.88 61.82 
Corzine 100*R All Faults Ends of Lines 47.57 48.38 
Corzine 1000*R Outside of Normal Current Lines 100.00 100.00 
Corzine 1000*R Outside of Normal Current Ends of Lines 74.20 46.75 
Corzine 1000*R All Faults Lines 61.91 61.96 
Corzine 1000*R All Faults Ends of Lines 45.29 45.63 
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 5.4.2 Active Sensors 
In order to reduce the number of calculations that it takes to make the fault location 

estimation, a logical step is to only use important sensors in the calculations. The sensors that are 

affected with current greater than that of the normal change in current can be used. This would 

reduce the number of calculations because not all the sensors are needed for their information in 

order to make the decision. Table 5.4 below shows the correct location estimation percentage of 

the method when using all the sensor data compared to that of the method using only the 

activated sensors.  

Table 5.4 Comparing Accuracy: All Sensors and Active Sensors  

SPS  
Model  

Test Set 
Resistance  

Included Faults  Location  

All 
Sensors 

Accuracy 
(%)  

Active 
Sensors 

Accuracy 
(%)  

Simple 100*R All Faults Lines 100.00 100.00 
Simple 100*R All Faults Ends of Lines 85.66 75.90 
Simple 1000*R All Faults Lines 100.00 100.00 
Simple 1000*R All Faults Ends of Lines 84.77 49.49 
Corzine 100*R Outside of Normal Current Lines 99.86 93.79 
Corzine 100*R Outside of Normal Current Ends of Lines 84.15 72.93 
Corzine 100*R All Faults Lines 61.74 55.54 
Corzine 100*R All Faults Ends of Lines 51.13 43.16 
Corzine 1000*R Outside of Normal Current Lines 100.00 73.27 
Corzine 1000*R Outside of Normal Current Ends of Lines 86.40 47.89 
Corzine 1000*R All Faults Lines 61.84 43.41 
Corzine 1000*R All Faults Ends of Lines 52.44 28.30 
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 5.5 Summary 

In this chapter, a method for fault location identification is presented. A trigger is devised 

to start the method when a fault occurs. Then, the method is further simplified to decrease the 

speed in which it takes to locate the fault. The fist simplification developed was to fix the 

variances. This simplification decreased the accuracy a little but not much. The second 

simplification was using only active sensors information to determine the location of the fault. 

Overall the method developed was accurate in determining the location of the fault. The next 

chapter tests the method that was developed. 
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Chapter 6 - Performance and Testing of the Developed Algorithm 

The next step in the process is to test this method. When a fault happens in the system, 

the sensors have no knowledge of the impedance of the fault. Therefore, the best way to test the 

method is to simulate random faults. Another way to test the system is with multiple faults. The 

final way to test would be a change in load. If the load changes in a system, the currents could 

change without the knowledge of the sensor. All three of these tests need to be evaluated for 

completeness of this method. 

  6.1 Random Fault Impedances and Multiple Faults 

The first two tests of the algorithm are random fault impedances in multiple locations. 

The two fault impedances that were chosen at random were 123*R and 731*R. In this test, those 

two impedances are simulated at random locations and could be simulated up to two locations at 

the same time. These multiple fault locations should test the location algorithm to the brim in 

Table 6.1, the results of the test of random faults at multiple locations in the Corzine model is 

shown.  The step size referred to in the table is the step size when looping from 100*R to 

1000*R, explained above in Section 5.2. As can be seen in the table the algorithm is a little more 

accurate for the 123*R than the 731*R. However, the difference is small and the method does a 

pretty good job of identifying the fault location along the power system. 

Table 6.1 Multiple Random Impedance Fault Accuracy  

 
Step Size  

Fault Impedance  10R  100R  
123R  82.2  82  
731R  82.0  79.6  



33 

 

 

 6.2 Simulating Imperfect Sensors 

Most practical sensor readings have a relative error in practice. Therefore, to test this 

theoretically, noise need to be added to the sensors. For the worst-case scenario, uniform 

distribution random noise is added to the sensor within ±5% of the simulated value of the 

sensors. As shown below in Table 6.2, the fully developed method, using active sensors and a 

fixed variance the noise, does not affect the accuracy by much. In fact, in some cases the 

accuracy is increased by a little. This is due to the limited test sample, and if more samples were 

run, the data should reflect a small decrease in accuracy with added noise. However, the overall 

effect on the method is small. 

 

Table 6.2 Comparing Accuracy: Fixed Variance Active Sensors With and Without Noise  

Test Set 
Resistance  

Included Faults  Location  
Without 

Noise 
(%)  

Added 
Noise 
(%)  

100*R Outside of Normal Current Lines 91.23 92.31 
100*R Outside of Normal Current 

Ends of 
Lines 

72.61 67.31 
100*R All Faults Lines 54.01 56.18 
100*R All Faults 

Ends of 
Lines 

42.95 41.07 
1000*R Outside of Normal Current Lines 72.30 72.09 
1000*R Outside of Normal Current 

Ends of 
Lines 

46.75 46.66 
1000*R All Faults Lines 42.80 42.72 
1000*R All Faults 

Ends of 
Lines 

27.66 27.58 
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 6.3 Unbalanced Loads along the SPS 

The one thing that has not been discussed in this research thesis so far is what if the load 

shifts. Shifts in the load can happen during normal operations. A load at one position on the grid 

may switch to another position over a period of time. Two different types of load distributions 

are tested. On one of the distributions a higher percentage of the load is toward the center of the 

ship, i.e., a center biased load. Another distribution that is tested is a right biased load, with a 

higher percentage of the load distributed to the right of the ship. The center and right distributed 

loads are represented in Figures 6.1 and 6.2. Each figure shows the percentage of the total load 

that is included in the areas encircled. Also noted is that the vital, semi-vital, and non-vital loads 

keep their ratios of the load within the encircled areas. That is, since the semi-vital consumes 

twice the power as the other two loads originally, the same applies during these simulations and 

tests. 

Figure 6.1 Central Biased Load Distribution  
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Figure 6.2 Right Biased Load Distribution

 

  

These distributed loads are tested with the same method as described above, with the 

same means and with the same deviations. This process is used as well to test the step size when 

looping through the possible impedance faults. The results of these tests are shown below in 

Table 6.3. As you can tell, the faults in the load distribution that favors the center of the SPS are 

located with a little less accuracy but still located at a respectable rate. However, the method is 

not as accurate with the right biased load distribution. The accuracy decreases because the 

current means move with the load distribution and the method does not account for this change 

in current values. 

 
Table 6.3 Unbalanced Load Fault Accuracy 

 
Step Size  

Load Bias  10R  100R  
Center (100R)  84.0  83.8  
Right (100R)  14.0  13.6  
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 6.4 Online Training for Better Results 

The method needs a way to adapt to the change in loads in the SPS. If the loads are 

changing, the parameters in the location, such as the means, should be changing along with the 

load shifts. In this part of the research, a decreased load distribution is used to test if the method 

can adjust to a shift in load. In Figure 6.3, the percentages shown are the amount of the original 

load distribution. For example, the far left load zone is decreased to 50% of its original load 

value.  

 

Figure 6.3 Right Biased Decreased Load 

  

The situation being tested here is that a standard load distribution is running and the 

means of the fault situations for each sensor is already known. After that, the load distribution 

change and some of the loads, toward the left side of the model, are decreased. The model needs 

to be able to adapt to this situation in order to have higher accuracy. In this situation, the same 

algorithm is used with some modifications. 
Since the fault impedance is not known in any fault situation case, the fault impedance 

needs to be estimated. In this method of online training, the previously computed probabilities of 

fault impedances are used. The method steps from 100*R impedance to 1000*R computing the 
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most likely fault impedance for each. The online method uses these probabilities to estimate the 

fault impedance. The following equations show the method used to slowly update the means of 

the Gaussians.  

 

𝜌!! =
!!"#$%!!!
!!!!!

          𝑎𝑛𝑑            𝜌!! =
!!!!!"#$%
!!!!!

           (6.1) 

 

∆𝜇!! = 𝜖𝜌!!(𝐼!"#$% − 𝜇!!)           (6.2) 

 

∆𝜇!! = 𝜖𝜌!!(𝐼!"#$% − 𝜇!!)           (6.3) 

 

𝜇!! ← 𝜇!! + ∆𝜇!!           𝑎𝑛𝑑          𝜇!! ← 𝜇!! + ∆𝜇!!              (6.4) 

 
In the equations above, the resistance R! is equal to 100*R and the resistance R! is equal 

to 1000*R. Equation 6.1 describes a fraction 𝜌 for each resistance on how much they should 

update the means. Equation 6.2 calculates the difference between the current of the fault and the 

mean of each mean. Next, this amount is portioned to each resistance using the fraction 

described in Equation 6.1. Then, 𝜖 is used to make sure that the online method does not overreact 

to outliers. In this research 𝜖 is set to 0.01. However, testing was needed to find an optimum 

value for this parameter. 

The results for this online method are shown below in Table 6.4. The means from the 

original balanced load are used as the means in the beginning and the online method is run. 500 

random impedances at randomly selected locations are simulated with different switching 

configurations. The means are trained with two thirds of the faults simulated. In the end, the 



38 

 

means calculated are tested with the last third of the faults and the 100*R and 1000*R faults 

simulated beforehand. The results are shown in Table 6.4. The online method improves the 

results by a significant amount and with more simulations the estimation’s accuracy could 

become greater. 

 
Table 6.4 Comparing Accuracy: Before and After Online Training for Load Shifted System 

Test Set 
Resistance  

Full 
Implement 

ML 
(%)  

Online 
Training 

(%) 

100*R 14.0 84.4 
1000*R 12.2 63.7 
Random n/a 78.8 

 

 6.4 Fault Impedances Outside the Specified Range 

The final situation that needs to be tested is what if the fault impedance happens to be 

outside of the range set. The set range of 100*R to 1000*R was found during testing to be about 

the right range. However, the question still remains as to what the method will decide if the 

impedance of a fault falls outside that range and the preexisting assumption that small 

impedances are found quickly and isolated does not work. For this situation, 50*R is used to test 

the method. The other situation is that a higher impedance fault occurs. For this situation, 

1250*R is chosen to show the estimate of the method. Table 6.5 shows the results. 
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Table 6.5 Outside Impedance Range Fault Accuracy  

Test Set 
Resistance  

Included Faults  Location  
Accuracy 

(%)  

50*R Outside of Normal Current Lines 90.4139 
50*R Outside of Normal Current Ends of Lines 64.147 
50*R All Faults Lines 53.4668 
50*R All Faults Ends of Lines 37.9639 

1250*R Outside of Normal Current Lines 18.9611 
1250*R Outside of Normal Current Ends of Lines 9.8395 
1250*R All Faults Lines 11.2061 
1250*R All Faults Ends of Lines 5.8105 

 

 6.5 Summary 

Multiple tests were developed to determine the robustness of the method. The first 

method was to simulate multiple random impedance faults. The method located the faults with 

good accuracy. The second test was to simulate imperfect sensors. The method was not affected 

by this addition of noise to the sensors. The third test was shifts in the load. Two load 

distributions were developed and tested, right and central biased. The method was accurate for 

the central biased load.  However, the right biased load provided problems for the method. An 

online method was developed to adapt to changes in load to help this problem. This online 

method was then tested with random impedances. The method produced an increase in accuracy 

for shifts in load. The final test was impedances outside the range specified. The method 

accurately found faults under the impedance range. However, the impedances above the 

impedance range were a problem. In Chapter 7, the method is compared to other presented 

methods. 
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Chapter 7 - Comparing with other Methods 

There are many other methods to compare these results out there. One way to test some 

of these methods is to use WEKA. WEKA is a data mining toolbox that uses Java and data files 

to allow you to use many of the methods out there [32]. In this comparison, multilayered 

perceptron (MLP) network and a simple Classification And Regression Tree (SimCART) are 

simulated.  

Multilayered perceptron network is a neural networks model that intakes data and maps 

to an output set. MLPs use back propagation to train the network. Back propagation is a form of 

supervised learning where the output of the network is compared to the expected result and 

adapting the network based on this error.  

 A simple Classification And Regression Tree (CART) is a decision tree that compares the 

inputs to set values and returns a decision as the output. Each node of the tree compares one of 

the inputs to a set value and then, based on this comparison, a decision is made to move on to the 

next node. The ends of the tree are the decided classification. In Figure 7.1, a simple CART tree 

is shown. 
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Figure 7.1 Simple CART Tree Example 

 

Table 6.6 shows the accuracy of those methods compared to the proposed method. The 

first two tests are the methods trained with 100*R and 1000*R and then tested with each set of 

100*R and 100*R. The results show that the tree was the worst and the proposed method 

outperformed the MLP. The last set is the random faults. The online method and the two WEKA 

methods trained with 66% of the 500 random faults created earlier and then trained with 33% of 

that test set. The results show that the developed method determined the location of the fault 

better than the other methods. 

 
Table 7.1 Comparing Method to MLP and SimCART  

Test Set 
Resistance 

Full 
Implement 

ML 
(%) 

MLP 
(%) 

SimCART 
Tree 
(%) 

100*R 91.23 80.9 75.9 
1000*R 72.30 70.6 62.1 
Random 78.80 76.0 72.0 
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Chapter 8 - Discussion and Conclusion 

An approach was designed to determine the location of a high impedance ground fault in 

a DC shipboard power system. Two different shipboard power system models were used to 

determine the effectiveness of the method. One of the models used to formulate a model and a 

more complex model to test the rigidness of the model. Each of these power systems contains 

generators, AC to controlled DC converters, power lines, and loads. The power systems are 

simulated in MATLAB Simulink using SimPowerSys toolbox. 

Sensors placed on power lines recorded the line currents. The currents are collected for 

different load variations. These currents were then used to determine the location of a fault. 

Multiple Bayesian methods are used to determine the estimated location of a fault. Maximum 

likelihood is used to with Gaussian distributions of the currents in order to determine this 

location. The calculation of the maximum likelihood estimate is then simplified using fixed 

variances and only activated sensors. Activated sensors are sensors that recognize that the fault 

has occurred or their recorded current is greater than the current during normal situations. This 

method showed positive results for the originally proposed load system, evenly distributed 

throughout the ship. 

Further tests were needed to test the method. The first test was random fault impedances. 

This test was introduced because when a fault occurs in the system the impedance is normally 

not known. For this situation, an algorithm is designed to loop through the possible high 

impedance faults and determine the most likely location of the fault. The next situation to test 

was a shift in load. An online method was introduced to adapt to shifting loads. This method 

helped the accuracy of the algorithm in shifting loads. When comparing the results to other 



43 

 

methods, multi-layered perceptron networks and classification trees, the final online training 

program produces higher accuracy after training. 

There are many things that need to be further considered in the future research. This 

includes exploring if a sensor is lost in the same event of a fault how would the algorithm react. 

Other possible implementations include using the voting and Dempster-Schafer theories to 

determine the locations of the faults. These methods could be more accurate in their assessment 

of the sensor data in order to determine the fault location. Also, local decisions could be made to 

determine the fault location faster and act locally to protect loads and equipment near the 

sensors. Some of the future directions are outlined in Chapter 9. 
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Chapter 9 - Future Research  

There are many possible expansions to this work. The Gaussians that are found in this 

work could help a sensor make decisions locally and protect the loads around the sensor. Voting 

systems and Dempster-Shafer belief algorithm could be implemented as well. The system also 

sets up well for the implementation and testing of the many voting systems available. Another 

possible exploration could be the decentralization of the method.  

 9.1 Voting 

A voting system is a natural fit for this research. The sensors could represent voters and 

the fault locations would be the candidates. Many voting systems exist that could be modified, 

implemented and tested in this system.  Various methods should be tested in order to choose the 

best voting system for this purpose. Each of these methods could possibly be implemented using 

fuzzy logic. These methods could be applied in a distributed decision making scheme to 

determine the fault location.  

 9.2 Dempster-Shafer Theory 
Another method that could be compared to the proposed method is the Dempster-Shafer 

Theory. The theory combines evidence from different sources to create a degree of belief of 

certain events. Each sensor could send degrees of beliefs in fault locations and a sensor fusion 

method could combine that information in order to decide a centralized belief in a fault location. 

Like voting theory discussed above, this method could be modified for distributed decision 

making to decide the fault location. Examples of this method being modified for other 

applications are included in [33]. 
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 9.3 Decentralized Methods 

Complex systems, such as a shipboard power system, can cause some more problems that 

would be better served locally to the problem rather than centrally located. The method that is 

produced in this research is centrally decided, meaning that the sensors send their information to 

a central location, a central processing unit, and the fault is then located, as seen in Figure 8.1. 

However, the fault location and isolation process could be sped up with a more distributed 

decision-making, as seen in Figure 8.2 and explained in [34]. A sensor could decide the location 

of a fault based on the accessible information, its current data and maybe some neighbors. Then, 

the sensor could isolate the fault faster with locally controlled equipment. Rules could be made 

as to when a sensor could make these decisions and a possible centralized decision could come 

later. However, a local decision could improve the time in which it takes to respond to a possible 

fault. 

Figure 8.1 Centralized Decision Making Architecture 
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Figure 8.2 Decentralized Decision Making Architecture 
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Appendix A - Accuracy of Methods  

This appendix contains the accuracy of methods for the developed models, Simple and 

Corzine. The method presented uses the Maximum Likelihood estimation. The first comparison 

is the ML method using covariance matrix. Next, the ML Method with multiple variances for 

each fault for each sensor is presented. The final comparison is the fixed variance comparison. 

These methods are presented within different stages of the development of the method. The first 

is just the ML estimation. The second is testing the trigger developed and the third is using only 

active sensors information. 

Table A.1 Accuracy of Method: Corzine Model Active Sensors with Covariance Matrix 

 

Table A.2 Accuracy of Method:  Corzine Model Active Sensors with Variances 
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Table A.3 Accuracy of Method: Corzine Model Active Sensors with Fixed Variance 

 

 

Table A.4 Accuracy of Method: Corzine Model Trigger with Covariance Matrix 

 

Table A.5 Accuracy of Method:  Corzine Model Trigger with Variances 
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Table A.6 Accuracy of Method:  Corzine Model Trigger with Fixed Variance 

 

 

Table A.7 Accuracy of Method:  Corzine Model All Data with Covariance Matrix 

 

Table A.8 Accuracy of Method:  Corzine Model All Data with Variances 
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Table A.9 Accuracy of Method:  Corzine Model All Data with Fixed Variance 

 

 

Table A.10 Accuracy of Method:   Simple Model Active Sensors with Covariance Matrix 

 

Table A.11 Accuracy of Method:  Simple Model Active Sensors with Variances 
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 Table A.12 Accuracy of Method:  Simple Model Active Sensors with Fixed Variance 

 

Table A.13 Accuracy of Method:  Simple Model Trigger with Variances 

 

Table A.14 Accuracy of Method:  Simple Model Trigger with Fixed Variance  
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Table A.15 Accuracy of Method:  Simple Model All Data with Covariance Matrix 

 

Table A.16 Accuracy of Method:  Simple Model All Data with Variances 

 

Table A.17 Accuracy of Method:  Simple Model All Data with Fixed Variance 

 

Table A.18 Accuracy of Method:  Simple Model Trigger with Covariance Matrix 

 


