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Abstract 

 Soil surface roughness is a major factor influencing soil erosion by wind and 

water. Studying surface roughness requires accurate Digital Elevation Model (DEM) data. 

A vehicle-based laser measurement system was developed to generate high-resolution 

DEM data. The system consisted of five units: a laser line scanner to measure the surface 

elevation, a gyroscope sensor to monitor the attitude of the vehicle, a real-time kinematic 

GPS to provide the geographic positioning, a frame-rail mechanism to support the 

sensors, and a data-acquisition and control unit. A user interface program was developed 

to control the laser system and to collect the sensors data through a field laptop.  

 

Laboratory experiments were conducted to evaluate the performance of the laser 

sensor on different type of targets. The results indicated that the laser measurement on a 

white paper had the least variability than that on other targets. The laser distance 

measurement was calibrated using the data acquired on the white paper.   

 

Static accuracy tests of the gyroscope sensor on a platform that allowed two-axis 

rotations showed that angle measurement errors observed in combined pitch/roll rotations 

were larger than those in single rotations. Within ±30° of single rotations, the 

measurement errors for pitch and roll angles were within 0.8° and 0.4°, respectively. A 

model to study the effect of attitude measurement error on elevation measurement was 

also developed.  

 

DEM models were created by interpolating the raw laser data using a two-

dimensional, three-nearest neighbor, distance-weighted algorithm. The DEM models can 

be used to identify shapes of different objects.  

 

The accuracy of the laser system in elevation measurement was evaluated by 

comparing the DEM data generated by the laser system for an unknown surface with that 

generated by a more accurate laser system for the same surface. Within four replications, 



 

the highest correlation coefficient between the measured and reference DEMs was 0.9371. 

The correlation coefficients among the four replications were greater than 0.948. After a 

median threshold filter and a median filter were applied to the raw laser data before and 

after the interpolation, respectively, the correlation coefficient between the measured and 

reference DEMs was improved to 0.954. Correlation coefficients of greater than 0.988 

were achieved among the four replications. Grayscale images, which were created from 

the intensity data provided by the laser scanner, showed the potential to identify crop 

residues on soil surfaces.   

 

Results of an ambient light test indicated that neither sunlight nor fluorescent light 

affected the elevation measurement of the laser system. A rail vibration test showed that 

the linear rail slightly titled towards the laser scanner, which caused small variations in 

the pitch angle.  

 

A preliminary test on a bare soil surface was conducted to evaluate the capability 

of the laser system in measuring the DEM of geo-referenced surfaces. A cross-validation 

algorithm was developed to remove outliers. The results indicated that the system was 

capable of providing geo-referenced DEM data. 



 

 

 
A VEHICLE-BASED LASER SYSTEM FOR GENERATING HIGH-RESOLUTION 

DIGITAL ELEVATION MODELS 
 
 

by 
 
 
 

PENG LI 
 
 
 

B.S., China Agricultural University, China, 2002 
M.S., China Agricultural University, China, 2005 

 
 
 

A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

 DOCTOR OF PHILOSOPHY 
 
 

Department of Biological and Agricultural Engineering 
College of Engineering 

 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2010 
 

Approved by: 
 

Major Professor 
Dr. Naiqian Zhang 



 

 

Abstract 

Soil surface roughness is a major factor influencing soil erosion by wind and 

water. Studying surface roughness requires accurate Digital Elevation Model (DEM) data. 

A vehicle-based laser measurement system was developed to generate high-resolution 

DEM data. The system consisted of five units: a laser line scanner to measure the surface 

elevation, a gyroscope sensor to monitor the attitude of the vehicle, a real-time kinematic 

GPS to provide the geographic positioning, a frame-rail mechanism to support the 

sensors, and a data-acquisition and control unit. A user interface program was developed 

to control the laser system and to collect the sensors data through a field laptop.  

 

Laboratory experiments were conducted to evaluate the performance of the laser 

sensor on different type of targets. The results indicated that the laser measurement on a 

white paper had the least variability than that on other targets. The laser distance 

measurement was calibrated using the data acquired on the white paper.   

 

Static accuracy tests of the gyroscope sensor on a platform that allowed two-axis 

rotations showed that angle measurement errors observed in combined pitch/roll rotations 

were larger than those in single rotations. Within ±30° of single rotations, the 

measurement errors for pitch and roll angles were within 0.8° and 0.4°, respectively. A 

model to study the effect of attitude measurement error on elevation measurement was 

also developed.  

 

DEM models were created by interpolating the raw laser data using a two-

dimensional, three-nearest neighbor, distance-weighted algorithm. The DEM models can 

be used to identify shapes of different objects.  

 

The accuracy of the laser system in elevation measurement was evaluated by 

comparing the DEM data generated by the laser system for an unknown surface with that 

generated by a more accurate laser system for the same surface. Within four replications, 



 

the highest correlation coefficient between the measured and reference DEMs was 0.9371. 

The correlation coefficients among the four replications were greater than 0.948. After a 

median threshold filter and a median filter were applied to the raw laser data before and 

after the interpolation, respectively, the correlation coefficient between the measured and 

reference DEMs was improved to 0.954. Correlation coefficients of greater than 0.988 

were achieved among the four replications. Grayscale images, which were created from 

the intensity data provided by the laser scanner, showed the potential to identify crop 

residues on soil surfaces.   

 

Results of an ambient light test indicated that neither sunlight nor fluorescent light 

affected the elevation measurement of the laser system. A rail vibration test showed that 

the linear rail slightly titled towards the laser scanner, which caused small variations in 

the pitch angle.  

 

A preliminary test on a bare soil surface was conducted to evaluate the capability 

of the laser system in measuring the DEM of geo-referenced surfaces. A cross-validation 

algorithm was developed to remove outliers. The results indicated that the system was 

capable of providing geo-referenced DEM data.  
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CHAPTER 1 - Introduction 

Soil surface roughness, or microrelief, which describes the micro variation in 

surface elevation, is a crucial factor that influences soil erosion by water and wind 

(Moreno et al., 2008a). Soil erosion is related to surface processes, such as infiltration, 

runoff, gas exchange, sediment transport, and deposition. Surface roughness is a dynamic 

soil property that controls these physical processes (Darboux and Huang, 2001). 

Therefore, studying these processes and their spatial variations requires accurate 

descriptions of soil surface roughness. 

 

Soil roughness has been classified to four categories : 1) roughness due to 

individual particles (aggregates of 0-2 mm in diameter); 2) random roughness (aggregates 

of 100 mm in diameter); 3) oriented (ridge) roughness due to tillage implements 

(aggregates of 100-300 mm in diameter); 4) higher order roughness due to field 

topography (Romkens and Wang, 1986). Random roughness and oriented roughness are 

of the most interest to wind erosion studies, because they change rapidly due to 

weathering and tillage (Wagner and Hagen, 1991). Tillage ridges containing large 

aggregates prevent soil loss from surface more effectively than unridged surface. Thus, 

soil tillage ridges are often used to aid in control of wind erosion. Aerodynamic surface 

roughness, which is converted from random and oriented roughness based upon wind 

direction, is the ultimate goal of all the roughness measurement (Hagen and Armbrust, 

1992).  

 

Wind erosion is the detachment, transportation, and deposition of soil particles by 

the wind (MCI, 2003) The most obvious result of wind erosion is loss of fine particles 

and organic materials in soil, which reduces a soil’s quality and its ability to produce 

crops. Small soil particles may suspend in the atmosphere which pollutes the air. 

Agricultural engineers seek ways to control and prevent wind erosion. Hagen (1996) 

found that managing surface residues is a key factor to successfully control wind erosion. 

Crop residues standing above the soil surface are much more effective in preventing wind 
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erosion than the same quantity of residues lying flat on the soil surface. Studying and 

managing surface residues is a very challenging task, because it requires time and effort 

to count and measure standing residues (Fox and Wagner, 2001). Thus, a method to 

accurately assess the standing residue on a soil surface is needed.  

 

Surface roughness is also related to improvement of water quality in the riparian 

zone. A riparian buffer is a vegetated area next to a water resource that helps shade and 

partially protect a water source from the impact of adjacent land uses (WFI, 2008). It 

includes stream banks, floodplain, and wetlands, as well as sub-irrigated sites forming a 

transitional zone between upland and aquatic habitat (Lowrance et al., 1997). Riparian 

buffer not only provides valuable habitat for wildlife, it also helps improve water quality 

by intercepting sediment, nutrients, pesticides, and other materials and pollutants in 

surface runoff or subsurface flow before they reach the water resources. Riparian buffers 

are also important in reducing erosion by maintaining stable stream banks. To maintain 

and design the riparian buffer, a study of the physical hydrology processes in the buffer is 

needed. This study is highly empirical because of the difficulty in tracking the water 

movement through or over the buffer. Thus, a method to accurately describe the physical 

processes of a riparian buffer is necessary. 

 

The overall objective of this research was to develop a real-time, field portable 

measurement system that is capable of measuring geo-referenced surface elevations with 

a sub-inch accuracy. 

 

The specific objectives were:   

1) to develop a system that integrates a precision laser scanner, a gyroscope, 

and a RTK GPS with a portable computer; 

2) to construct a flexible mounting frame with a linear rail on a vehicle that 

supports the system components and controls the movement of the laser;  

3) to develop a computer program to control the system and to record the 

measurement data;  
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4) to develop data processing algorithms to create three-dimensional digital 

elevation model (DEM); 

5) to conduct laboratory tests to evaluate the performances of individual 

components of the system; 

6) to conduct laboratory tests to evaluate the accuracy and repeatability of the 

system in measuring elevation under different environments; 

7) to conduct preliminary field tests to examine the capabilities of the system 

in measuring micro-relief of soil surfaces. 
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CHAPTER 2 - Background and Literature Review 

2.1 Study of Soil Surface Roughness 

Soil erosion by wind and water are natural, complex dynamic processes. Soil 

surface roughness is a scientific index to help understand these physical processes. Many 

researchers have studied the mechanisms of these processes. To assist these studies, 

various techniques to measure surface roughness were developed over the past years.  

 

Surface roughness measuring techniques can be classified by spatial dimensions 

and sensor types (Jester and Klik, 2005). Two-dimensional measurements used simple 

tools, such as a pin meter and roll chain, to acquire limited surface characterization. 

Three-dimensional measurements gave a more realistic surface representation and 

allowed more analysis of surface parameters. Concerning the sensor type, measurement 

techniques can also be divided into contact and noncontact categories. The contact 

methods disturbed soil surface with pins or chain set for height measurement, whereas 

noncontact methods measured the distance from soil surface to a reference plane without 

touching the soil surface (Robichaud and Molnau, 1990). The noncontact methods gave 

an opportunity to monitor changes in soil properties over time. These methods fell into 

six categories: infrared, ultrasonic, photogrammetry, laser, LiDAR, and 3D laser. Each 

method had its advantages and disadvantages. For field studies and applications, the 

system used to measure soil surface roughness should be portable, accurate, and less 

time-consuming.  
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2.2 Techniques for Measuring Soil Surface Roughness 

2.2.1 Pin Meter 

The pin method was the dominant technique for measuring soil surface roughness 

before 1990s. A pin meter, or “profile meter”, consisted of a single pin or a row of evenly 

spaced pins (Figure 2.1). When measuring the elevation, the pins were lowered manually 

or automatically onto the soil surface until contacts were made. Surface elevations were 

then registered manually, electronically, or photographically from the relative heights of 

the pins, and later digitized (Podmore and Huggins, 1981; Radke et al., 1981; Wagner 

and Yu, 1991).  

 

Figure 2.1 Photographic Pin Meter (from ARS Photo, 2007) 

 

 

Moreno et al. (2008b) developed a method based on a pin-meter prototype and 

compared surface roughness of different types of soils (sandy clay loam and sandy loam) 

tilled with different tillage tools (roller, chisel, and tiller) in central Spain. A digital 

camera mounted on a tripod on the pin frame was used to digitalize the micro-topography 

identified by each pin position.   
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The pin meter was a simple, low cost method to obtain data in the field. However, 

this method required a long measurement time. Furthermore, this method gave limited 

resolution, which was determined by the physical pin spacing. Being a contact type 

measurement, this method also disturbed and damaged the original soil surface profile, 

especially for soft surfaces. 

 

2.2.2 Chain Method 

Roller chain was another contact method for measuring soil surface roughness. 

The chain method used chain-like devices placed across a surface. Soil roughness was 

mechanically measured by calculating the horizontal length reduction of the chain (Saleh, 

1993; Merrill et al., 2001). This method consisted of a roller chain, or a number of chain 

sets, and caliper rulers with a telescopic pointer (Figure 2.2). The chain method was an 

easy, fast, and inexpensive technique. However, it also deformed the original soil surface, 

especially on loose or wet soils. Furthermore, the chain technique was subject to scale 

indeterminacy. This was because a chain could yield the same roughness result for a 

surface with a large number of small rough elements and a surface with a small number 

of large rough elements (Skidmore, 1997). No digital elevation model can be created 

from the chain method. 
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Figure 2.2 Chain Sets (from Merrill et al., 2001) 

 

 

2.2.3 Infrared Sensor 

An early non-contact technique to measure soil roughness was infrared radiation. 

Romkens and Wang (1986) developed an infrared profiler meter. The meter included an 

optical probe which detected the soil surface at a known tracking height in predetermined 

transects.  The horizontal and vertical movement of the probe was accomplished through 

ball bearing screws driven by DC motors. The position of the probe was recorded by 

encoders. The profiler frame was equipped with utility vehicles to allow measurements of 

different transects. The covered area was 1 m by 1.15 m. A vertical accuracy of 3 mm 

was reported. However, due to the difference in reflectivities of different surfaces, the 

profiler meter was only used on surfaces with a uniform albedo.  

 

2.2.4 Ultrasonic Profiler 

Ultrasonic technology was widely used in distance measurement. The use of 

ultrasonic waves in distance measurement was also called SONAR (sound navigation and 

ranging). A non-contact ultrasonic profiler was developed by Robichaud and Molnau 
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(1990) to measure soil roughness. This profiler used an ultrasonic transducer to emit an 

ultrasonic signal to the soil surface and then received the reflected signal. The time 

between transmission and reception of the signal was proportional to the distance 

between the sensor and the soil surface. A 1.5 m by 1.5 m aluminum frame was used as 

the base to provide a reference plane. The movement of the ultrasonic sensor on the 

frame was controlled by a stepper motor. A vertical accuracy of 3 mm and a horizontal 

resolution of 30 mm were achieved by this profiler. 

 

2.2.5 Photogrammetry 

Photogrammetry was the first remote sensing technology developed to determine 

the geometric properties of objects from photographic images (WFI, 2009). A more 

sophisticated technique, called stereophotogrammetry, could estimate the three-

dimensional coordinates of points on an object. These coordinates were measured in two 

or more photographic images taken from different positions and angles with common 

reference points in each image (Welch et al., 1984; Warner, 1995; Taconet and Ciarletti, 

2007). A measurement accuracy of 1 mm has been reported.  

 

The photogrammetric technique was capable of reducing the data acquisition time 

for images covering large areas. However, interpretations of the photogrammetric data 

were complicated (Jester and Klik, 2005). 

 

2.2.6 Laser 

Laser was an acronym for Light Amplification by Stimulated Emission of 

Radiation. The light it referred to was an electromagnetic radiation of a certain 

wavelength, including visible, infrared, and ultraviolet lights, as well as electromagnetic 

waves in other wave bands. A laser light was usually a narrow, low-divergence beam in a 

narrow wavelength band.  

 

Due to its ability to obtain accurate measurement, laser has been used in a wide 

variety of scientific, military, medical, and commercial applications since its invention in 
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1958. One of the applications was range measurement. Most laser rangefinders projected 

a visible or infrared laser beam onto a target or a surface to which the distance was to be 

measured. A light-detector then received the beam reflected from the target or surface. 

The distance between the target or surface and the laser sensor was determined based on 

the triangulation or the time-of-flight principles. “Triangulation” sensors calculated the 

distance by determining where the reflected beam fell on the detector. “Time-of-flight” 

sensors derived the distance from the time the light took to travel from the sensor to the 

target or surface and return.  

 

Laser systems for automated, non-contacted measurements of surface elevation 

commonly included three major components: an optical transducer with a receiver to 

detect the distance, a computer-controlled, motor-driven, two-dimensional traversing 

frame, and a set of interface circuitry and a PC to control the motion of the camera-laser 

carriage and to register the elevation data  (Bertuzzi et al., 1990; Huang and Bradford, 

1990; Flanagan et al., 1995; Wilson et al., 2001; Darboux and Huang, 2003).  

 

With the fast development of laser technology, many commercial laser scanners 

became available in the market. Arvidsson and Bolenius (2006) reported a commercial 

laser sensor, SICK DME3000-211, with a three-leg, two-direction mounting frame, in 

studying the effects of soil water content during primary tillage in Sweden. Lee and 

Ehsani (2008) compared characteristics and performances of two laser scanners, SICK 

LMS200 and Hokuyo URG-04LX. 

 

The laser method was not very convenient for frequent field experiments because 

it required transportation of a heavy traversing frame. Moreover, hidden objects in the 

reflection path could cause missing data for the “triangulation” lasers. 

 

2.2.7 LiDAR 

LiDAR (Light Detection and Ranging), also known as Airborne Laser Swath 

Mapping or ALSM, was one of the most recent remote sensing technologies used to 
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detect range and  acquire other information of a distant target. The range to an object was 

determined by calculating the time taken between transmission of a laser pulse and 

detection of the reflected signal. LiDAR had a wide range of applications in mapping and 

surveying.  

 

Typically, LiDAR was the combination of three different data collection 

equipment - a laser scanner mounted on an aircraft or a helicopter to determine the 

distance to the object, a Global Positioning System (GPS) to provide the sensor position, 

and an Inertial Navigation System (INS) to acquire the orientation characteristics 

(Brovelli et al., 2004; Habib et al., 2005; Hollaus et al., 2005; Reutebuch et al., 2005; 

Webster et al., 2006; Pfeifer and Briese, 2007; Liu, 2008). Other important extensions of 

the LiDAR systems were an integration of a high-resolution digital camera or a digital 

video camera (Ackermann, 1999; Ahlberg et al., 2004). Commercial LiDAR systems 

could achieve a root mean square error (RMSE) of 15 cm vertically and a sub-meter 

RMSE horizontally (CARMS, 2006). However, a number of researchers have examined 

the vertical accuracy of LiDAR data with varying results from 5cm to 1m (Woolard and 

Colby, 2002). 

 

A relatively new technique of LiDAR is the ground-based LiDAR system, which 

was mainly used for forestry applications. Accurate canopy structure with individual tree 

parameters has been successfully estimated using ground-based LiDAR systems (Watt 

and Donoghue, 2005; Henning and Radtke, 2006). It has also been used to study the 

effect of system geometric set-up on the accuracy of trees structure measurement (Van 

der Zande et al., 2006). Loudermilk (2009) introduced another promising approach of 

ground-based LiDAR to efficiently capture fine-scale characteristics of shrubs, 

specifically heights and volumes.     

 

The LiDAR system was one of the fastest and most effective means of collecting 

topographic data and it has become the primary choice for large-area forestry applications. 

However, effectively processing raw LIDAR data to avoid errors and distortion was a big 

challenge. Development in this area was still in progress (Liu, 2008). Due to the 
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limitation in accuracy, LiDAR has not been used to characterize soil surfaces in small 

scales. 

2.2.8 3D Laser Scanner 

A 3D scanner was an instrument that analyzed a physical object or environment 

by capturing dense point cloud data on its surface. The collected data could be further 

processed to build virtual 3D models. A 3D scanner was similar to a camera. However, it 

collected distance information, rather than color information, as a camera would do. By 

combining the distance information with the orientation of the scanner, three-dimensional 

positions of the points could be created in local coordinate of the scanner. Many different 

technologies could be used to construct 3D scanning devices, although laser scanner was 

the most commonly used one.  

 

In a 3D laser scanner, a laser probe projected a laser beam to a surface while 

cameras continuously triangulated the changing distance and the shape of the laser line as 

it swept along, and digitized the object in three dimensions (LDI, 2008). The 3D laser 

scanning technique was an effective method to create a complete, three-dimensional 

documentation for the spatial geometries of an object. The recorded data, point clouds, 

could not be used directly. They had to be processed using special software to convert 

into detailed, useable 3D models (ArcTron, 2005; STC, 2008).  Milan (2007) reported an 

application of a 3D laser scanner (LMS-Z210) in studying erosion and deposition 

volumes in a proglacial river. A vertical precision of 2 cm and an average spacing of 2 

cm were achieved. Some of the commercial 3D laser scanners could provide an accuracy 

of 0.5 mm and a vertical resolution of 0.1 mm (CFI, 2008).  

 

The 3D laser scanner was a new technology to build 3D models fast, accurately, 

but expensively. This technology has become widely used in collecting high-density 3D 

geo-spatial data for buildings, factories, landscapes, and other large architectures. Due to 

its high accuracy and resolution, the 3D laser scanner would have a great potential in 

measuring micro-topography of soil surfaces in the future. 



 12 

CHAPTER 3 - Design and Construction of the Laser System 

A vehicle-based laser measurement system was constructed. The system consisted 

of five major components: 1) a distance-measuring unit, 2) a frame-rail unit, 3) a frame 

angular-position measuring unit, 4) a geo-referencing unit, and 5) a data-acquisition and 

control unit. Algorithms for data processing were developed to create the DEMs in 

MATLAB (MATLAB, 2006). A block diagram of the system components is shown in 

Figure 3.1.  Detail descriptions of hardware and software are reported in the following 

sections.  

 

Figure 3.1 System Components 
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3.1 Hardware Design 

3.1.1 Distance-measuring Unit: Laser Line Scanner 

The distance-measuring unit was used to measure the surface elevation. An 

AccuRange Line Scanner, AccuRange 4000-LIR (Acuity Research Inc., 2000), was used 

(Figure 3.2). This scanner consisted of an elliptical, rotating mirror driven by a DC motor 

with an optical encoder, and mounting hardware for use with an Acuity’s 4000 laser 

rangefinder. The rotating mirror swept a laser beam in 360° rotations. The rangefinder 

measured distances of up to 15.24 m with a 2.54 mm accuracy. 

 

Figure 3.2 AccuRange Laser Line Scanner 

 

 

The measurement principle of the laser line scanner is demonstrated in Figure 3.3. 

A collimated, infrared laser beam of 780nm wavelength was emitted by the laser diode. 

The beam was deflected 90 degree toward the target by the rotating mirror. The target 

then reflected the laser beam back to the sensor through the same mirror. By knowing the 

traveling time of the laser beam, the distance between the sensor and the target can be 

determined. The elliptical mirror was situated at a 45 degree angle from the incident laser 
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beam and was rotated continuously by a 12V DC motor. The mirror was engineered to 

the highest optical standards with 96% reflectance. An optical encoder with 4096 counts 

per revolution was attached on the motor to record the mirror’s angular position. 

Additional information on the laser line scanner is listed in Table 3.1. 

 

Figure 3.3 Measurement Principle of the Laser Line Scanner 

 

   

Table 3.1 Technical Specifications of the Laser Line Scanner 

Laser Model AccuRange 4000-LIR 

Laser Type 780 nm  IR Laser Diode 

Laser Class IIIb (Avoid direct exposure to the beam) 

Laser Power 8 milliwatts maximum, +5 volts 

Effective Range 0 to 15.24 meters for most surfaces 

Accuracy 2.54mm (0.1in), 0.5mm (0.02in) short-term repeatability 

Sampling Rate Up to 50 KHz (programmable) 

Output Interface RS-232, Pulse Width Output, optional 4-20mA Current loop 

Motor Speed Up to 2600rpm @ 12V (programmable) 

Encoder  4096 counts/revolution 
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The AccuRange 4000-LIR had two interface cables. One was a 9-pin connector 

for standard RS-232 serial port communications. The port was configured for 8 data bits 

with no parity, 1 stop bit, and in either the ASCII or the binary format. Output data can be 

in either an internally calibrated distance format, or an uncalibrated format which 

included information on uncompensated range, signal strength, background light, and 

sensor temperature. The sensor can be configured via commands sent over the serial port. 

Configuration information was stored in a nonvolatile EEPROM. Table 3.2 provides a 

quick reference of commands.  

 

Table 3.2 Commands for AccuRange Laser Scanner 

Command Name Length Command Code 

Set Sample Interval 3-8 bytes ASCII Code: S<Interval> 
(20<=Interval<=9999999)  

Set Maximum Range 1-6 bytes ASCII Code: F[<MaxRange>] 
(0<=MaxRange<=99999) 

Laser Power On 1 byte ASCII Code: H 

Laser Power Off 1 byte ASCII Code: L 

Enable Serial Data Output 2 bytes ASCII Code: A<Mode>          
(Mode: 1=English, 2=low level, 3=flowctl, 
4=Metric(mm)) 

Disable Serial Data Output 2 bytes ASCII Code: T<Mode>          
(Mode: 1=calibrated, 2=low level, 3=flowctl, 
4=Metric(mm)) 

Set Baud Rate 2 bytes ASCII Code: B<Baud Rate Code> 

Set Serial Output to ASCII 1 byte ASCII Code: D 

Set Serial Output to Binary 1 byte ASCII Code: N 

Set Analog Output Mode 2 bytes ASCII Code: X[<Mode>]                
(Mode:1=calibrated, 2=uncalibrated, 3=off) 

Read Configuration Data From 
EEPROM 

1 byte ASCII Code: R 

Write Configuration Data To 
EEPROM 

1 byte ASCII Code: W1234 

Reset Configuration to Factory 
Defaults 

1 byte ASCII Code: I 

Show Version Number 4 bytes ASCII Code: V1234 
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The other cable was an 8-pin power/signal cable. Output signals transmitted 

through this cable were analog data formatted as either the Pulse Width Output or 

Optional 4-20mA current Loop. Descriptions of the wiring for the power/signal cable are 

given in Table 3.3. All wires were connected straight through, except that the power line 

passed through an interlock box before powering the laser. The interlock box included a 

keyswitch and an interlock jack required for CFR certification for Class IIIb lasers 

(Figure 3.4). 

 

Table 3.3 Power and Signal Cable Wiring (from Acuity Research Inc., 2000) 

Wire Color  Function  Direction 

Red Sensor Power, +5V (5-6V) In 

Black Ground  

Orange Heater Power, +5V (4.5-7V) In 

Brown Heater Power Return  

Yellow Internal Sensor Temperature, 0 to 5 volts Out 

Blue Pulse Width Range Signal, square wave Out 

Green Ambient Light, 0 to 5 volts Out 

Purple Amplitude Light, 0 to 5 volts Out 

Shield Ground at Supply End  

Figure 3.4 Interlock Box 
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3.1.2 Frame-rail Unit 

Field applications required a portable system. Factors to be considered for a 

portable system included flexible mounting to allow adjustment of laser height and scan 

area, frame integrity to allow easy transportation, and easiness for on-site assembly. The 

frame-rail mechanism was designed based on these considerations.  

 

Since the laser line scanner only measured distances along a straight line, a rail 

was needed to move the sensor in the direction perpendicular to its scan plane for surface 

measurement.  An ER belt-driven actuator (Parker Hannifin Corp., 2004) (Figure 3.5) 

was selected to move the laser scanner along the rail. The actuator moved the laser 

scanner through a carriage. A 12V DC, geared motor was mounted at one end of the rail 

to control the translational motion of the laser scanner. An incremental optical encoder 

with 200 pulses per rotation (BEI Industrial Encoders, model H20) was attached to the 

motor to provide feedback signals on the position of the laser scanner. A gyroscope 

sensor and an RTK GPS were also mounted on the rail. 

 

Figure 3.5 ER Belt-driven Actuator (from Parker Hannifin Corp., 2004) 
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A portable frame was designed to support the rail. Figure 3.6 shows the 

construction of the aluminum frame mounted on the bed of a John Deere Gator. This 

frame had a sliding structure that allowed two sliding arms to extend up to 1 meter. The 

sliding arms could also be raised for more than 1m with the help of the raising arcs. By 

adjusting the length and height of the sliding arms, the scanning area can be adjusted.  At 

the end of the sliding arms, a 1/4 inch thick, flat plate was mounted on two small sliding 

arcs. The linear rail was mounted on the flat plate with four toe clamps. This tilting 

mounting made the field of view of the laser scanner adjustable. The rectangular base of 

the frame could easily fit to the bed of a small utility vehicle, such as John Deere Gator 

and Golf Club Car.  

 

Figure 3.6 Adjustable Aluminum Frame to Support the Rail 
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3.1.3 Frame Angular-position Measuring Unit: Gyroscope Sensor 

A gyroscope sensor, Crossbow AHRS400CD-100 Motion and Attitude Sensing 

Unit (Crossbow Technology Inc., 2005a), was selected to measure the pitch, roll, and 

yaw angular displacements of the frame under static and dynamic conditions. The 

“AHRS”, short for “Attitude and Heading Reference System”, was a nine-axis 

measurement system that integrated linear accelerometers, rotational rate sensors, and 

magnetometers. It used a 3-axis accelerometer and 3-axis rate sensor to accomplish 

complete measurements of the system dynamics. The addition of a 3-axis magnetometer 

also allowed the sensor to make a true measurement of magnetic heading. More detailed 

specifications of the sensor are listed in Table 3.4.  
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Table 3.4 Specifications of the AHRS400CD-100 Gyroscope Sensor (from Crossbow 

Technology Inc., 2005b) 

Specification AHRS400CD-100 Remarks 
Performance 

Update Rata (Hz) 
Start-up Time Valid Data (sec) 
Fully Stabilized Data (sec) 

 
>50 
<1 
<60 

 

Continuous update mode 

Under static conditions 

Attitude 
Range: Roll, Pitch (°) 
Static Accuracy (°) 
Dynamic Accuracy (°) 
Resolution (°) 

 
±180, ±90 

<±0.75 
±2.0 
< 0.1 

 

Heading 
Range (°) 
Static Accuracy (°) 
Dynamic Accuracy (° rms) 
Resolution (° rms) 

 
±180 
<±1.5 
±3 

< 0.1 

 

Angular Rate 
Range: Roll, Pitch, Yaw (°/sec) 
Bias: Roll, Pitch, Yaw (°/sec) 
Bias: Roll, Pitch, Yaw (°/sec) 
Scale Factor Accuracy (%) 
Non-Linearity (% FS) 
Resolution (°/sec) 
Bandwidth (Hz) 
Random Walk (°/hr1/2) 

 
±100 
<±1.0 
<±0.05 

< 1.0 
< 0.3 

< 0.025 
> 25 

< 2.25 

 
 
 
 
 
 
 
 

-3 dB point 

Acceleration 
Input Range: X/Y/Z (g) 
Bias: X/Y/Z (mg) 
Scale Factor Accuracy (%) 
Non-Linearity (% FS) 
Resolution (mg rms) 
Bandwidth (Hz) 
Random Walk (m/s/hr1/2) 

 
±4 

<±12 
< 1 
< 1 

< 0.5 
> 10 
< 0.1 

 

 
 
 
 
 

-3 dB point 

Environment 
Operating Temperature (°C) 
Non-Operating Temperature (°C) 
Non-Operating Vibration(g rms) 
Non-Operation Shock (g) 

 
-40 to +71 
-55 to +85 

6 
1000 

 

 

Electrical 
Input Voltage (VDC) 
Input Current (mA) 
Power Consumption (W) 
Digital Output Format 
Analog Range (VDC) 

 
9 to 30 
< 300 
< 4 

RS-232 
±4.096 

 

Physical  
Size (cm) 
Weight (kg) 
Connector 

 
7.62*9.52*10.41 

< 0.77 
15 pin sub-miniature 

 

Incl. mounting flanges 
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A Cartesian coordinate system the AHRS400 gyroscope sensor used was 

illustrated on the front face of the sensor (Figure 3.7). The pitch, roll, and yaw angles 

were defined as the angular displacements about the Y, X, and Z axes, respectively. 

Directions of these angles were defined using the “right-hand rule”. The AHRS400 

sensor utilized a sophisticated Kalman filter algorithm to track orientation accurately 

through dynamic maneuvers. The Kalman filter automatically adjusted for changing 

dynamic conditions without user inputs. 

 

Figure 3.7 The AHRS400 Gyroscope with its Coordinate System Illustrated on the 

Front Face 

 

 

 

The AHRS400 gyroscope sensor had a male DB-15 connector (Figure 3.7). Table 

3.5 lists the pin assignments. The sensor provided both analog and RS-232 outputs. Data 

can be requested via the serial link as a single polled measurement or continuous stream 

measurements. The analog outputs were fully conditioned and can be connected directly 

to an analog data acquisition device. The serial interface was standard RS-232 configured 

for 38,400 baud rate, 8 data bits, 1 start bit, 1 stop list, no parity, and no flow control.  
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Table 3.5 Pin Assignments of the AHRS400 Gyroscope Connector (from Crossbow 

Technology Inc., 2005a) 

Pin Signal 

1 RS-232 Transmit Data 

2 RS-232 Receive Data 

3 Positive Power Input 

4 Ground 

5 X-axis accelerometer Analog voltage 

6 Y-axis accelerometer Analog voltage 

7 Z-axis accelerometer Analog voltage 

8 Roll rate analog voltage 

9 Pitch rate analog voltage 

10 Yaw rate analog voltage 

11 NC – factory use only 

12 Roll angle/X-axis magnetometer scaled analog voltage 

13 Pitch angle/Y-axis magnetometer scaled analog voltage 

14 Yaw angle/Z-axis magnetometer scaled analog voltage 

15 NC – factory use only 

 

There were three measurement modes in AHRS400: voltage mode, scaled sensor 

mode, and angle mode. In the voltage mode, only the accelerometer analog outputs were 

available and they were converted to unsigned 12-bit digital data with 1 mV resolution. 

In the scaled sensor mode, the analog signals were sampled and converted to the digital 

form. The sampled data were temperature compensated, corrected for misalignment, and 

scaled to the engineering units. The data was sent as singed, 16-bit, 2’s complement 

integers. In the angle mode, the gyroscope sensor acted like a complete attitude and 

heading reference system to output stabilized pitch, roll and yaw angles along with their 

angular rate, angular acceleration, and magnetic field information. The Kalman filter 

operated only in the angle mode.  
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The AHRS400 gyroscope sensor had a simple command structure. The one-byte 

commands can be sent to the sensor over the RS-232 interface. A list of the commands is 

shown in Table 3.6. 

 

Table 3.6 AHRS400 Gyroscope Command Quick Reference (from Crossbow 

Technology Inc., 2005a) 

Command (ASCII) Response Description 

R H Ping: Pings AHRS to verify communications 

r R Change to Voltage Mode 

c C Change to Scaled Sensor Mode 

a A Change to Angle Mode (VG Mode) 

P None Change to polled mode. Data packets sent when a G 
is received by the DMU. 

C None Change to continuous data transmit mode. Data 
packets streamed continuously. Packet rate is 
dependent on operating mode. Sending “G” stops 
data transmission. 

G Data 
Packet 

Get Date. Requests a packet of data from the DMU. 
Data format depends on operating mode. 

S ASCII 
String 

Query DMU serial number. Returns serial number 
as 32-bit binary number. 

v ASCII 
String 

Query DMU version ID string. Return ASCII string 

b Change 
baud rate 

Autobaud detection. Send “b”; DMU will respond 
“B”; change baud rate; send “a”; DMU will send 
“A” when new baud rate is detected. 

s S Start Hard/Soft iron calibration. DMU should be 
rotated through at least one complete turn (360° of 
rotation) with the system basically level. 

u U End Hard/Soft iron calibration. Calibration is saved 
in EEPROM. 

h H Clear Hard iron calibration 

t T Clear Soft Iron calibration 

 

 

Ideally, the gyroscope sensor used its magnetic sensors to only measure Earth’s 

weak magnetic field to determine the heading (yaw angle). In the real world, however, 
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residual magnetism in the sensor and the surrounding environment would add to the 

measured magnetic field. These extra magnetic fields were called “hard iron magnetic 

fields”. In addition, extra magnetic material can change the direction of measured 

magnetic field. This effect was called “soft iron effect”. Both hard iron and soft iron 

effects may create errors in the heading measurement. As a result, even small amounts of 

moving magnetic material near the gyroscope can change the heading measurement 

(Crossbow Technology Inc., 2005a).  

 

The gyroscope can correct for the magnetic fields through hard and soft iron 

calibration. The calibration was done by making a series of measurements with the extra 

magnetic field and then using these measurements to model the hard iron and soft iron 

environment in the system. However, the calibration would not help for time-varying 

magnetic fields, or fields created by large moving parts within 60.96 cm distance from 

the sensor.   

 

The hard and soft iron calibration can be performed using the GyroView software 

provided by Crossbow Technology, Inc (2005a). The calibration required the following 

steps: 

 

1). Power on the gyroscope and start GyroView. 

2). Click on the “CLEAR CAL” button when the sensor was still and leveled. 

This cleared the old hard and soft iron calibration. 

3). Click on “START CAL” button to command the sensor to enter the calibration 

process. 

4). Rotate the system through a complete circle. The system did not have to be 

perfectly leveled as the algorithm would compensate for any angle offsets.  

5). Click on “STOP CAL” when the turn was done. 

6). Wait at least 1 minute. The algorithm would initialize if the system was 

motionless.  
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The quality of hard and soft iron calibration can be evaluated and tested by 

observing the magnetometer outputs. The following procedure was followed: 

 

1). Power up the gyroscope and start GyroView. 

2). Click on the “START LOG” to start logging the data 

3). Rotate the gyroscope slowly about the z axis through one complete turn.  

4). Click on the “STOP LOG” to stop logging 

5). Plot the X-mag vs Y-mag from the data file. 

 

A successful calibration would give a perfect circle centered around the origin 

(Figure 3.8). If the circle was not circular or the center of the circle had an offset, repeat 

the calibration procedure without clearing the existing calibration. Usually a successful 

calibration can not be achieved after the first turn. Multiple calibration routines were 

often necessary.  
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Figure 3.8 Evaluation of the Hard and Soft Iron Calibration: (a) Before Hard and 

Soft Iron Calibration, and (b) After Hard and Soft Iron Calibration 

 

(a) 

 

(b) 
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3.1.4 Geo-reference Unit: RTK GPS 

The geo-reference unit was for providing the global position information of the 

measured surface and converting the measurement results from a local coordinate system 

to the global coordinate system. A Real-time Kinematic (RTK) GPS, Topcon HiPer Lite+ 

(Topcon Positioning System Inc., 2006), was used to help register the measured surface 

into a geographic coordinate system.  

 

The Topcon HiPer Lite+ RTK System (Figure 3.9) consisted of a HiPer Lite+ 

Base, a standard HiPer Lite+ Rover, and a FC-100 data collector with TopSURV data 

collection software. The Topcon Hiper Lite+ was a robust, fast set-up, completely cable-

free system with an advanced internal radio technology that provided interference-free 

data links of up to 1.5 miles radius. The HiPer Lite+ gave static accuracies of 3 mm 

horizontal and 5 mm vertical. The kinematic accuracies were 10 mm horizontal and 15 

mm vertical. More detailed specifications are given in Table 3.7. 

 

Figure 3.9 Topcon HiPer Lite+ GPS System with FC-100 Controller 
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Table 3.7 Specifications of the HiPer Liter+ RTK System (from Topcon Positioning 

System Inc., 2006) 

Tracking Specifications 

Tracking Channels, standard 40 L1 GPS 

Signals Tracked L1/L2 C/A and P Code & Carrier and GLONASS 

Performance Specifications 
Static, Rapid Static H:3mm+0.5ppm, V:5mm+0.5ppm 

RTK H:10mm+1ppm, V:15mm+1ppm 

Power Specifications 
Battery Internal Lithium-Ion batteries for up to 14+ hours of operation  

External power input 6 to 28 volts DC 

Power consumption Less than 4.2 watts 

GPS + Antenna Specifications 
GPS/GLONASS Antenna Integrated 

Antenna Type Center-mount Spread Spectrum Antenna 

Ground Plane Antenna on a flat ground plane 

Radio Specifications 
915 MHz SpSp Modem Internal Tx/Rx 

Power Output 1.0W/0.25W (selectable) 

Wireless communication 
Communication BluetoothTM version 1.1 comp. 

I/O 
Communication Ports 2 serial (RS232), USB 

Other I/O Signals 1pps, Even Marker (optional) 

Status Indicator 4×3- color LED’s, two-function keys (MINTER) 

Control & Display Unit External Field Controller 

Memory & Recording 
Internal Memory Up to 128 MB 

Data Update Rate Up to 20 Hz 

Data Type Code and Carrier from L1 and L2, GPS and GLONASS 

Data Input/Output 
Real time data outputs RTCM SC104 version 2.1,2.2,2.2,3.0,CMR, CMR+ 

ASCII Output NMEA 0183 version 3.0 

Other Outputs TPS format 

Output Rate Up to 20 Hz 

Environmental Specifications 
Enclosure Aluminum extrusion, waterproof 

Operation temperature -30 °C to 55 °C 

Dimensions W:159×H:172×D:88 mm/ 6.25×6.75×3.5in 

Weight 1.65 kg/3.64 lbs 
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The Topcon’s FC-100 was a field controller to communicate with the HiPer Lite+ 

and store the data. It incorporated a graphical, Windows CE operating system on an ultra-

bright, sunlight-active, thin film transistor (TFT), color touch-screen display. The FC-100 

was equipped with a mini USB data port and an RS-232C serial data port. Bluetooth was 

also available to wirelessly connect to the HiPer Lite+. With the installed TopSURV 

software, FC-100 can set up the configurations for both the Base station and the Rover, 

and store data into the secure digital (SD) cards or internal memory.  

 

The HiPer Lite+ GPS had two serial ports, a USB port, and a power connector 

(Figure 3.10).  By setting the serial port D through a set of commands, the standard GPS 

data can output directly at a predefined update rate. 

 

Figure 3.10 Ports on the HiPer Lite+ GPS 
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Both the Base and the Rover can be configured using the TopSURV program in 

the FC-100 field controller. The TopSURV software provided the following functions to 

set up the RTK GPS system:  

 

1). Job creation: to save all configurations of the system; 

2). Survey configurations: to declare the communication settings of the system; 

3). Projection definition: to select a geographic coordinate system; 

4). Start the Base: to broadcast RTK correction signals; 

5). Fix the Rover: to listen to the Base radio; 

6). Status indicator: to check the radio link; 

7). Data management.  

 

The coordinates were saved in a text file in the controller’s memory after the RTK 

GPS system had been configured successfully. Data file then can be uploaded to the field 

computer for further analysis. However, the laser system required the NEMA GGA string 

output from the Rover.  A special command had to be sent to the Rover to output the 

GGA string from its serial port D. The command was:  

 

%%em,/dev/ser/d,/msg/nmea/GGA:1 

 

The output rate can be set by changing the last field of the command. For instance, 

using “:0.2” for 5 Hz. This script can be sent using the "Manual Mode” option under the 

“file” menu in CE-CDU (controller software) or PC-CDU (office software).    

 

3.1.5 Data-acquisition and Control Unit 

The laser line scanner was configured for use with a High Speed Interface (HSIF) 

to increase the sample rate. The power/signal cable provided the pulse width output. A 

standard PCI HSIF card was employed to measure the duration of the pulse width output 

from the laser sensor (Figure 3.11). This HSIF card also had two pulse-width modulated 

motor control channels, two 32-bit quadrature decoders to read motor encoders, and three 
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general purpose inputs. A motor control channel with a quadrature decoder was used to 

monitor the angular displacement of the rotating mirror. Another motor channel and 

encoder reader were wired to the DC motor on the linear rail. The input and output 

connectors on the PCI HSIF card (P1 and P2) are illustrated in Table 3.8 and 3.9, 

respectively. P1 supplied power and received signals from the laser sensor. P2 controlled 

the power levels of two motors and read the two encoders. 

 

Figure 3.11 AccuRange High Speed Interface Card 

 

 

Table 3.8 Pin Assignments of the Power and Signal Connector (P1) (from Acuity 

Research Inc., 2000) 

Pin AR4000 wire Function Direction 

1 Red Power, +5V out 

2 Black Ground  

3 Orange Heater Power, +5V (4.5~7V) out 

4 Brown Heater Power Return  

5 Yellow Temp, 0~5V in 

6 Blue Pulse Width Range Signal in 

7 Green Ambient Light Signal, 0~5V in 

8 Purple Amplitude Signal, 0~5V in 

9 Not used Laser Control, 0~5V out 
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Table 3.9 Pin Assignments of the I/O Connector (P2) (from Acuity Research Inc., 

2000) 

Pin Function Direction 

1 Motor 2 Control out 

2 Motor 2 Return Out 

3 Motor Power Supply In 

4 Ground  

5 +5V Power, 100mA Out 

6 Ground, Motor 2 encoder Ch A- (dif) in 

7 Ground, Motor 2 encoder Ch B- (dif) in 

8 Ground, Motor 1 encoder Ch A- (dif) in 

10 Ground, Motor 1 encoder Ch B- (dif) in 

11 Gen. Purpose Input 2/ Encoder 2 index pulse – (dif) in 

12 Start/Stop sample control in 

13 Gen. Purpose Input 2/ Encoder 2 index pulse +  in 

14 Motor 1 Control out 

15 Motor Power Ground  

16 Motor 1 Return out 

17 Laser Control out 

18 +5V Power, 100 mA out 

19 Motor 2 encoder Ch A+ in 

20 Motor 2 encoder Ch B+  in 

21 Motor 2 encoder Ch A+  in 

22 Motor 1 encoder Ch B+  in 

23 Gen. Purpose Input 1/ Encoder 1 index pulse -  in 

24 Gen. Purpose Input 1/ Encoder 1 index pulse + (dif) in 

25 Gen. Purpose Input 3 in 
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The gyroscope sensor had a 15-pin to 9-pin converter cable to connect the sensor 

with a standard serial port. The rover of RTK GPS was configured as a standard serial 

interface through the receiver’s port D. A ruggedized field laptop computer (GETAC Inc., 

model GETAC A770) was used to acquire data from different components. Figure 3.12 

displays the connections among the system components. Two RS232 ports were 

converted to USB ports using serial-to-USB converters due to the limited number of 

RS232 serial ports available on the field laptop. 

  

Figure 3.12 The Data Acquisition System 

 

 

3.1.6 Power and Control Circuitry 

For any field applications, the power supply is always an issue. The laser system 

was originally designed to operate under field conditions. The laser line scanner with a 

heater powered on required +5 volts at 4A. The input voltage of the gyroscope sensor 

ranged from 9 to 30 volts at 275 mA. Power consumption of the GPS receiver was less 

than 4.5 watts. The laser mirror was driven by a DC motor that consumed 12 volts at 110 

mA. The maximum power required by the DC motor driving the carriage on the rail was 

17 watts.  Thus, the total power consumption of the system was approximately 47 watts. 

The system can run for approximately 21 hours at 4A on the vehicle battery, which was 
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rated at 85 Ah. Another 12 V deep cycle battery of 200 Ah was also provided as a backup 

power source.  

 

The movement speed of the laser-carriage on the linear rail was one of the major 

factors affecting the spatial resolution of the measurements. To control the speed, a 

circuit was designed to drive the DC motor on the rail. Figure 3.13 shows the schematic 

of the DC motor controller. This controller controlled the motor through pulse width 

modulation (PWM), which changed the duty cycle of the power at a fixed frequency.  A 

555 timer was configured as a stable oscillator in the circuitry to generate the required 

PWM signal at a frequency of 2 KHz. A commercially available LMD18200 H-Bridge 

was used to drive the DC motor with direction control and stop function. The circuit 

provided a near linear relationship between the PWM duty cycle and motor speed.  A 1K 

multi-turn potentiometer, R1, was used to control the duty cycle. To avoid the laser from 

moving out of the linear rail, a limit switch was attached at each end of the rail. Once a 

limit switch was tripped by the carriage, the power would be cut off.   

 

Figure 3.13 Schematic of the DC Motor Controller 
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The motor control circuit was secured in a black control box (Figure 3.14). The 

control box also provided power connections between the battery and all the components.  

 

Figure 3.14 Black Control Box with a Cigarette Lighter Adepter 

 

 

3.1.7 System Assembly 

Figure 3.15 shows all the components of the system installed on a frame that was 

tied on the bed of a Club car. The laser line scanner was mounted on a carriage that 

moved along the linear rail and the rotating mirror was oriented towards the ground. For 

safety, the laser beam was covered by a U-shaped enclosure to limit the field of view of 

the laser to 100 degree. The gyroscope sensor was tightened on an aluminum frame with 

nonmagnetic copper screws. The GPS receiver was installed on the same frame.  
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Figure 3.15 The Laser System Assembled on the Club Car 

 

 

3.2 Software Design 

3.2.1 AR4000 PCI High Speed Interface 

The AR4000 High Speed Interface was a PCI board that took readings from the 

laser line scanner. It sampled laser data at a sampling frequency of up to 50,000 Hz and 

buffered the data in the onboard memory for reading by the host computer. Data collected 

by the PCI HISF was not scaled or calibrated. For maximum accuracy, the actual 

distances were calculated by the host computer using calibration tables supplied with the 

interface. 

 

The HSIF card application program interface (API) employed routines accessible 

through the Acuity HSIF dynamic link libraries (DLL’s) and windows driver. 

Descriptions of the basic API’s are listed in Table 3.10. 
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Table 3.10 Summary of Frequently Used Functions in the HSIF’s API 

Function Name Description 

HsifDllInit Initializes the library before using any of its function 

HsifOpen Opens communications with the PIC HSIF card and 
returns its handle. 

HsifClose Closes the application’s access to the card 

HsifSamplingModeInit  Sets HSIF card to sampling mode 

HsifResetBoard Performs a hardware reset of the card 

HsifGetBufferedSamples Gets buffered samples 

HsifSetSampledPeriod Sets the sample period and maximum range 

HsifProcessSamples Calculates calibrated range measurements 

HsifLoadCalibrationData Loads calibration file to generate true distance 
measurements 

HsifSamplingEnable Enables sampling 

HsifClearSampleBuffer Clears sample buffer 

HsifSetMotorPower Sets power for motors 1 and 2 

HsifClearEncoder Calibrates the encoders 

HsifCalibrate Calibrates HSIF card 

OpenPort Opens a com port to communicate with the laser sensor 

ClosePort Closes com port 

 

 

The PCI HSIF collected 16 bytes/sample in a sequential data stream which were 

read with function HsifGetBufferedSamples. Each sample included a 32-bit range 

reading, two 32-bit encoder readings, 1 byte for signal strength, 1 byte for ambient light, 

1 byte for sensor internal temperature, two general purpose input bits, and others. The 

sampled data format is shown in Table 3.11.  
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Table 3.11 Sampled Raw Data Format (from Acuity Research Inc., 2000) 

Word Bit #  Contents 

0 buffer overflow indicator 

1 Input 3 
2 Motor 1 encoder index / Input 1 
3 Motor 2 encoder index / Input 2 

4-7 sample count, 0-15 repeating 
8-15 8-bit Sensor internal temperature 
16-23 8-bit ambient light sample 

 

 

 

0 

 

24-31 8-bit amplitude sample  
0-15 low word of 32-bit Motor 1 encoder position   

1 16-31 high word of 32-bit Motor 1 encoder position  

0-15 low word of 32-bit Motor 2 encoder position   
2 16-31 high word of 32-bit Motor 2 encoder position  

0-15 low word of 32-bit range   
3 16-31 high word of 32-bit range  

 

 

A C program was written to sample the laser data (Appendix A). Figure 3.16 

shows the flowchart of the program. To generate the true distance measurement from the 

raw range data, a calibration file named LOOKUPHS was included. This program was 

compiled with Microsoft Visual C++ 6.0 under Windows XP.  
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Figure 3.16 Flowchart of the Laser Sampling Program 
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3.2.2 Serial Communications in Microsoft Win32 

In a data packet of the gyroscope sensor, each measured variable was sent in two 

bytes, starting with the MSB. Each data packet began with a header byte 255 (0xFF) and 

ended with a checksum. These digital data can be converted to                                                                                                                                  

actual measurements using conversion formulas in three different modes, as shown in 

Table 3.12.  

 

Table 3.12 Data Conversion Formulas 

Measurement 

Mode 

Formula Note 

Voltage Mode voltage = data * (5 V)/212 “voltage” is the voltage measured 
by the sensor; “data” is 
measurement data in the data 
packet, in unsigned 16-bit integer 
format. 

Scaled Sensor Mode accel = data*(GR*1.5)/215 

rate = data*(AR*1.5)/215 

mag = data*(MR*1.5)/215 

“accel” is the measured acceleration 
in G’s, “GR” is the G range; “rate” 
is the measured angular rate in 
°/sec; “AR” is the angular rate 
range; “mag” is the measured 
magnetic field in Gauss; “MR” is 
the magnectif field range; “data” is 
the measurement data in the data 
packet. 

Angle Mode angle = data*(SCALE)/ 215 “angle” is the measured angle in 
degrees; “data” is the measurement 
data in the data packet, in signed 
integer format. 

  

   

The GPS receiver outputted the NMEA-0183 standard messages.  NMEA-0183 

messages began with a dollar sign ($), followed by a talker ID code (GP) and a message 

ID code (GGA), and ended with a carriage return and a line feed. One of the available 

messages, the GGA (GPS fix data) message contained the information on latitude and 

longitude.  Table 3.13 describes the fields included in the message. 
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Table 3.13 GGA Message Fields 

Field Description 

1 UTC of position fix in HHMMSS.SS format 

2 Latitude in DD MM,MMMM format (0-7 decimal places) 

3 Direction of latitude 
N: North; S: South 

4 Longitude in DDD MM,MMMM format (0-7 decimal places) 

5 Direction of longitude 
E: East; W: West 

6 GPS Quality indicator 
0: fix not valid; 1: GPS fix; 2: DGPS fix 
4: Real-time kinematic, fixed integers 
5: Real-time kinematic, float integers 

7 Number of SVs in use, 00-12 

8 HDOP 

9 Antenna height, MSL reference 

10 “M” indicates that the altitude is in meters 

11 Geoidal separation 

12 “M” indicates that the geoidal separation is in meters 

13 Correction age of GPS data record, Type 1; Null when DGPS not used 

14 Base station ID, 0000-1023 

 

 

Both data packets from the gyroscope sensor and the GPS receiver were 

transmitted to the field laptop via standard serial interfaces. The operating system on the 

laptop was the Microsoft 32-bit Windows XP professional.  

 

In Microsoft Win32, the serial data communication can be implemented through 

two techniques: Application Programming Interfaces (APIs) and ActiveX controls. 

Programs using the ActiveX were simple, clear, but not very flexible. On the contrary, 

using APIs made programming a bit more difficult but more flexible. Thus, the APIs 

were used in the program. In Microsoft Windows, a serial port can be treated as a file. 

Functions in APIs for reading and writing files can be applied to a serial port. To send 
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and receive data through a serial port of a computer, the following procedure was 

followed:  

 

1). Open a communication port;  

2). Get the configuration of the port from Device Control Block;  

3). Modify the configuration by setting the baud rate, parity, number of data bits, 

etc; 

4). Store the configuration;  

5). Set timeout value for communication;  

6). Read or write data to the port;  

7). Close the port.  

 

A universal serial communication program was written in C based on these steps 

(Appendix B). Figure 3.17 shows the flowchart of the program. In this program, a serial 

port was opened by the CreateFile function in the “overlapped method” (Table 3.11), 

which was not as straightforward as the “nonoverlapped” I/O, but it allowed more 

flexibility and higher efficiency. An event was created by the SetCommMask (Table 3.14) 

function to manage the serial port. Any event, such as connect, disconnect, error, and 

receiving data, that occurred on the serial port would be notified. The program was 

compiled with Microsoft Visual C++ 6.0 under Windows XP. This program can be very 

easily integrated into a windows application with a user interface.  
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Figure 3.17 Flowchart of the Program for Universal Serial Communication 
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Table 3.14 Serial Communication Functions in APIs 

Function Description 

CreateFile Open a communications port and create a handle 

GetCommState Restore a current configuration from the serial port 

SetCommState Store a configuration into the serial port 

GetCommTimeouts Get a current timeout 

SetCommTimeouts Set a time-out communication 

ReadFile Receive data 

WriteFile Send data 

CloseHandle Close a serial port 

SetCommMark Set the desired events that cause a notification 

WaitCommEvent Detect the occurrence of the events 

ClearCommError Detect errors and clear the error condition 

PurgeComm Clear all buffer 

 

3.2.3 Main Program 

A user interface program was developed in C to control the laser system and to 

acquire the sensors data through the field laptop (Appendix C). Figure 3.18 shows the 

flowchat of the program. This main program was a command-line program. It took 18 

command line arguments: three data files name, the serial port number for the laser, the 

HISF card number, the laser sample period in microsecond, the data buffer size, the 

maximum laser measurement range in inch, the number of motors, the motor power level, 

the measurement mode of the gyroscope sensor, the serial port number for the gyroscope 

sensor, the baud rate of the serial port of the gyroscope sensor, the serial port number for 

the GPS, the baud rate of the serial port of the GPS, the number of bits of the GPS com 

port, the parity control of the GPS com port,  and the number of the stop bit of the GPS 

com port. There were three raw data files created. One was for a sequential laser samples. 

Another was for a sequence of the gyroscope data packets. The last one logged the GGA 

messages from the GPS. The program was compiled with Microsoft Visual C++ 6.0 

under Windows XP. 
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Figure 3.18 Flowchart of the Main Program 
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CHAPTER 4 - System Components Tests 

 4.1 Laser Line Scanner 

4.1.1 Rotating Mirror Control  

The laser line scanner swept laser beam at a selected speed as the mirror rotated 

by a DC motor. At a given sampling rate, a constant mirror rotational speed gave the laser 

line scanner a constant number of measurements per revolution. If the speed varied, the 

number of measurements per revolution would change, resulting in changes in horizontal 

sample spacing. Thus, the rotational speed of the DC motor had a great influence on the 

measurement resolution of the laser system. The basic requirement for a DC motor was to 

rotate at the desired speed with minimum steady-state errors. The other requirement was 

that the motor should accelerate to its steady-state speed within a relatively short period 

of time after it was turned on.  

 

A test was designed to evaluate the performance of the DC motor on the laser line 

scanner in controlling the rotating mirror.  

 

The DC motor speed was controlled by the output voltage level of the motor 

power control on the HSIF card, which could be varied as commanded. The power 

control resolution was 1 part in 256 and the power could be set from 0 (off) to 255 (full 

power). The resolution of the optical encoder mounted on the motor shaft was 4096 pulse 

counts per revolution. The angular displacement of the motor could be monitored by 

counting the number of pulse detected within a period of time. Therefore, the motor 

speed (RPM) can be derived from Equation 4.1.  

 

60000

4096
pulse

M

N
S

T

×
=

×
                                                                 (4.1) 

where SM is the speed of motor (RPM), 

          Npulse is the number of encoder pulse detected within a sampling period, and 

          T is the sampling period (ms). 
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The settling time is the duration for the Npulse to reach a narrow envelope of ±2 

pulses/sampling-period surrounding the steady-state value. 

 

In this test, the laser sampling period was set at 5 ms, corresponding to a sampling 

rate of 200 Hz. The DC motor was running at full power. The Npulse readings of the 

encoder were recorded for 45 seconds after the DC motor was powered on. The Npulse 

recorded during the first 45 seconds is illustrated in Figure 4.1. 

 

Figure 4.1 Number of Encoder Pulses Detected within a Sampling Period after the 

Motor was Powered on 

 

 

This figure shows that Npulse reached within the narrow envelope of 350±2 

pulses/sampling-period 14 seconds after the motor was powered on. After the steady-state 

speed was reached, Npulse was maintained at 350±1 pulses/sampling-period. Thus, the 
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laser scanner should not start measurement until the transient period was completed. In 

this test, a delay time of 20 seconds was applied to all data collection programs. 

 

4.1.2 Distance Calibration 

The AR4000 rangefinder on the laser line scanner required sufficient light 

reflection from the target surface. The amount of reflected light, expressed as a 

percentage of the incident light, was defined as reflectance, which depended on target 

color and composition, and the frequency of the light being reflected (SMSI, 2009). 

 

Target reflectance was an important factor affecting the accuracy of distance 

measurement. There were two types of targets: cooperative targets and uncooperative 

targets. A cooperative target was designed to reflect a major portion of the incident light. 

Light colored materials, such as wood, paper, and white paint, were the best cooperative 

targets. They may be measured over a wide range of incident angles. In some applications, 

mirrors may be used as cooperative targets. Uncooperative targets included surfaces or 

materials not specifically designed to reflect light, such as shiny metal, painted surfaces, 

liquids, and loose or granular solid substances. The AR4000 rangefinder was designed to 

work with both cooperative and uncooperative targets. In addition to the amount of light 

a surface reflects, the way in which the light hit the target surface could affect the 

sensor’s performance. Temperature and ambient light may also affect the accuracy of the 

laser sensor (SMSI, 2009).  

 

In the laboratory, a test was conducted to evaluate the performance of the laser 

sensor on difference targets and to calibrate the distance measurement. The targets tested 

were white paper, black paper, and sand. During the calibration, the target was positioned 

on a lifting platform, at seven different distances away from the center of the rotating 

mirror (Figure 4.2). The laser sensor took distance measurements at each position for 15-

18 seconds. For each distance, an average number of 60,000 ~ 100,000 measurements 

was taken and the average readings were compared with the actual distances (Table 4.1).   
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Figure 4.2 The Platform for the Laser Scanner and the Targets 

 

 

Table 4.1 Calibration of the Laser Distance Sensor 

Measured distance (cm)  
 

Actual distance 
(cm) 

white paper  black paper  sand (‡‡‡‡) 

16.19 19.31 21.06 19.23 

23.81 27.69 29.17 27.08 

39.05 42.72 43.19 42.77 

54.29 58.09 58.18 57.21 

69.53 73.84 77.88 73.40 

84.77 87.92 87.61 87.25 

100.01 103.94 104.65 103.06 

‡: 2.7 cm was added to the measured distances because sand surface in the box was 2.7 cm higher 
than other targets.    
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The actual distance (D) was measured from the center of the rotating mirror to the 

target, whereas the distance measured by the laser sensor was the actual distance plus Do 

(Figure 4.3). Do was the distance from the faceplate of the laser sensor to the center of the 

rotating mirror, which was not provided by the manufacturer.  

 

Figure 4.3 The Actual and Measured Distances 

 

 

 

The relationships between the actual distance and the measured distance for three 

targets are showed in Figures 4.4 through 4.6.   
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Figure 4.4 Laser Distance Measurement with White Paper as the Target 

 

Figure 4.5 Laser Distance Measurement with Black Paper as the Target 
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Figure 4.6 Laser Distance Measurement with Sand as the Target 

 

 

To compare the accuracies in distance measurement on these targets, standard 

deviations of 60,000 ~ 100,000 repeatedly measured distances at each position for each 

target are plotted in Figures 4.7 through 4.9. It is obvious that the laser measurement on 

the white paper had the least variability. To determine the value of Do, the actual distance 

were calibrated against the laser readings through a linear regression (Equation 4.2) using 

the data acquired on the white paper. Apparently, the intercept value (3.4763) in the 

regression equation represented Do. Figure 4.10 shows the regression curve and the 

residuals. In the remaining sections of the dissertation, the calibrated laser distance 

reading, DC, will be referred to as “raw laser data”.  

 

DC = 0.99633 × DM – 3.4763                                                        (4.2) 

 where DC  is the measured distance (cm), and  

             DM is the distance reading of the laser sensor (cm).  
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Figure 4.7 Standard Deviations of 60,000 ~ 100,000 Distance Measurements Taken 

at Seven Distances. The Target Material was White Paper. 

 

Figure 4.8 Standard Deviations of 60,000 ~ 100,000 Distance Measurements Taken 

at Seven Distances. The Target Material was Black Paper. 
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Figure 4.9 Standard Deviations of 60,000 ~ 100,000 Distance Measurements Taken 

at Seven Distances. The Target Material was Sand Surface 

 

Figure 4.10 Calibration for Distance Measurement: (a) Regression Line, and (b) 

Residual Plot 
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4.1.3 Measurement Resolutions of the Laser System 

The resolution of the laser system was defined in two parts: the resolution in 

elevation measurement (Z) and the resolutions in sample grids (X and Y).   

 

The resolution in elevation measurement was highly dependent on the resolution 

of the laser line scanner, which was limited by the sample rate selected and the maximum 

range to be measured. Using the HSIF, the resolution can be 33% finer than that using the 

serial port (Acuity Research Inc., 2000). Table 4.2 shows sampling rates required at 

different combinations of maximum distance settings and attainable resolutions.  

 

Table 4.2 Sampling Rates (sample/second) required for Different Combinations of 

Maximum Distance Settings and Attainable Resolutions (from Acuity Research Inc., 

2000) 

Maximum distance (m)   
Resolution 

(cm) 1.83  9.14 15.24 

0.0119 2304 677 390 

0.0239 4609 1355 781 

0.0478 9218 2711 1562 

0.0952 18346 5422 3125 

0.1905 36873 10845 6250 

0.3810 50000 21691 12500 

0.7620 50000 43382 25000 

1.5240 50000 50000 50000 

 

The horizontal spatial resolution was affected by the rotational speed of the mirror, 

the sampling rate, the movement speed of the laser-carriage, the height of the laser line 

scanner from the ground, and the size of the scan area. Assuming that, X axis was in the 

direction along the laser scan line, Y axis was in the direction along the rail, the size of 

the scan area was D by W, and the height of the laser line scanner was H (Figure 4.11), 

the resolutions in the X and Y directions, x∆  and y∆ , can be derived using Equations 4.3 

and 4.5, respectively.  
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-1 /2
∆ = - ( ( ) - )

2

W W
x tan tan H

H
α ×                                         (4.3) 

where α = angle travelled by the laser beam during a sampling period (degree), 

and 

 360M

s

S

f
α = × � ,                                                              (4.4) 

 SM = the rotational speed of the mirror (RPM), 

 f s= the sampling rate (Hz), 

             W = the width of the scan area (meter), and 

  H= the height of the laser line scanner from the surface (meter). 

 

C

M

S
y

S
∆ =                                                                                      (4.5) 

where SC = the movement speed of the laser-carriage (m/s). 

 

Obviously, x∆  was not constant along the X axis. The largest x∆  occurring near 

the edge of the scan area would dominate the resolution of X axis. The resolutions of 

sample grids can be changed by adjusting variables in Equations 4.3, 4.4, and 4.5.  

Figure 4.11 Horizontal Spatial Resolutions  
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4.2 Gyroscope Sensor 

4.2.1 Static Accuracy on a Two-dimensional Platform 

The attitude information of the linear rail detected by the gyroscope sensor was 

used to correct the elevation data. The gyroscope sensor should provide reliable and 

accurate angle measurements, especially for roll and pitch angles. A series of tests was 

conducted to examine the measurement errors of the gyroscope sensor in measuring pitch, 

roll, and combined pitch/roll rotations.  

 

A milling machine (Enco Manufacturing Co.) was used as a two-dimensional 

testing platform. With the gyroscope sensor fastened on the drill head, the machine can 

provide three-dimensional rotations to the gyroscope sensor (Figure 4.12). The pitch and 

roll angles were defined as the angular displacements around the Y and X axes, 

respectively. The milling machine could provide maximum roll and pitch angles of ±

90°and ±45° with a 1° increment, respectively.  For the static test, the gyroscope was 

tested with pitch rotation only, roll rotation only, and combined pitch and roll rotations. 

Considering the application of the gyroscope sensor on the laser system, pith and roll 

rotations of up to ±45° were tested. The gyroscope sensor was also calibrated for hard 

and soft iron compensation after being mounted on the milling machine. At each angle, 

the average value of 4,000 measurements was compared with the actual angle read from 

the dials of the milling machine. The absolute error between the average measurement 

value and the actual angle was used to evaluate the accuracy of the measurement.   
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Figure 4.12 Gyroscope Sensor Installed on the Milling Machine 

 

 

 

The pitch and roll angle measurement errors are shown in Figure 4.13. For both 

pitch and roll angles, the measurement errors generally increased as the angles increased. 

The maximum absolute error for pitch was 0.80° when the pitch angle was -28°. The 

maximum absolute error for roll was 0.49° when the roll angle was 42°. Within the ±30° 

range, the measurement errors of pitch and roll angles were within 0.8° and 0.4°, 

respectively.  
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Figure 4.13 Absolute Errors for Pitch and Roll Measurement Observed in Single 

Rotations: (a) Pitch Rotation, and (b) Roll Rotation 

 

(a) 

 

(b) 
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Figure 4.14 shows the measurement errors for the pitch and roll angles when both 

rotations existed. Four cases were considered: (1) positive pitch and roll, (2) negative 

pitch and roll, (3) positive pitch with negative roll, and (4) negative pitch with positive 

roll. For case 1, maximum absolute errors of 1.23° and 1.07° occurred at 42° and 43° for 

pitch and roll, respectively (Figure 4.14a). The maximum absolute errors observed for 

case 2 were 0.38° at pitch angle of -41° and 0.68° at roll angle of -41° (Figure 4.14b). For 

case 3, the maximum absolute errors were 0.99° at pitch angle of 28° and 0.19° at roll 

angle of -18° (Figure 4.14c). The maximum absolute errors observed for case 4 were 

0.37° at pitch angle of -28° and 1.81° at roll angle of 44° (Figure 4.14d). In summary, 

when pitch or roll angle varied within ±30°, the measurement errors for both pitch and 

roll angles were maintained within 1°.  
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Figure 4.14 Absolute Errors in Pitch and Roll Measurements Observed in Four Cases: (a) Positive Pitch and Roll, (b) Negative 

Pitch and Roll, (c) Positive Pitch  and Negative Roll, and (d) Negative Pitch and Positive Roll 
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It can be noted that some of the errors observed in combined pitch/roll rotations 

were larger than those in single rotations. This may have been caused by the difference in 

magnetic effect of the steel milling machine under these conditions. Magnetic effect and 

angle measurement were always inter-linked in the gyroscope sensor (CTI, 2006) . 

 

4.2.2 Effect of Attitude Measurement Error on Elevation Measurement  

The effect of pitch and roll measurement errors on elevation measurement was 

analyzed for a typical application of the laser system on a 1m × 1m soil surface with the 

laser line scanner mounted at 1m height from the ground.  Four cases were analyzed to 

study the maximum allowable errors in roll and pitch angle measurements that would 

limit the elevation measurement error to 1 cm.  

 

For this analysis, constants and variables were defined as follows (Figures 4.15, 

4.19, 4.23, and 4.25):  

 

e - elevation error, which was limited to ±1 cm, 

α  - roll angle reading from the gyroscope sensor (degree), which was in the 

range of ±30°, 

rα - measurement error of roll angle (degree), 

β  - pitch angle reading from the gyroscope sensor (degree), which was in the 

range of ±30°, 

rβ - measurement error of pitch angle (degree), 

h - elevation to be measured (meter), 

0H - height of the laser line scanner from the reference ground when the rail was 

leveled (meter), which was equal to 1m, 

H - height of the laser line scanner from the ground when the rail was tilted 

(meter), 

L -  distance from the laser line scanner to the surface to be measured (meter), 

which was in the range of 0 to 1m,   
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RW  - distance between the laser beam and the outer edge of the vehicle’s right 

wheel, which was equal to 0.5 m,   

LW  - distance between the laser beam and the outer edge of the vehicle’s left 

wheel, which was equal to 1.5 m, 

DR - distance between the laser beam and the center of the vehicle’s rear wheel, 

which was equal to 1 m, and 

DF – distance between the laser beam and the center of the vehicle’s front wheel, 

which was equal to 1 m. 

 

This analysis was implemented in MATLAB (Appendix D). 
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Case A: The vehicle is tilted to the right (Figure 4.15). A positive roll angle would 

be measured by the gyroscope sensor.  

 

Figure 4.15  Elevation Measurement When the Vehicle is Rolled Right 

 

 

Based on the geometrical relationship, the height (H) and the elevation (h) can be 

derived from Equations 4.6 and 4.7.  

 

0 R= ( - tan ) cosH H W α α⋅ ⋅                                                 (4.6) 

cosh H L α= − ⋅                                                                     (4.7) 

 

With the measurement error (ar) in the roll angle measurement, the height of the 

laser line scanner from the ground would become: 

 

0 R r r= [ - tan( )] cos( )rH H W α α α α⋅ + ⋅ +                         (4.8) 

 

and the measured elevation would become:  

cos( )r r rh H L aα= − ⋅ +          (4.9) 

 

Thus, the error in the elevation measurement caused by the measurement error of 

roll angle can be calculated as: 
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re h h= −            (4.10) 

 

And it can be calculated as: 

          0 0( ) cos( ) sin( ) ( ) cos + W sinr R r Re H L W H Lα α α α α α= − ⋅ + − ⋅ + − − ⋅ ⋅ (4.11) 

 

For the maximum allowable measurement error in elevation, 1cm, the maximum 

allowable errors in the roll angle measurement, ar, became a function of L and a , and can 

be analyzed in two conditions.   

 

Condition 1 (Figure 4.16): when  e = 0.01,   

 
0.01

α = - arcsin( + sin(θ - α))+ θ - αr 2 2(H -L) +W0 R
                  (4.12) 

 where 
WRθ = arccos( )

2 2(H -L) +W0 R
                                        (4.13) 

 

 Obviously, when α > αr  , the actual roll angle became negative. Under this 

condition, the above analysis became invalid. 

Figure 4.16 Maximum allowable errors in positive roll angle measurement when the 

maximum allowable measurement error in elevation was 1cm 
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Condition 2 (Figure 4.17):  when e = -0.01, 

 
-0.01

α = - arcsin( + sin(θ - α))+ θ - αr 2 2(H -L) +W0 R
                  (4.14) 

 where 
WRθ = arccos( )

2 2(H -L) +W0 R
                                        (4.15) 

 

Figure 4.17 Maximum allowable errors in positive roll angle measurement when the 

maximum allowable measurement error in elevation was -1cm 

 

 

Among the two conditions, condition 2 gave a smaller αr  value. Thus, condition 

2 was considered more critical. A three-dimensional model for ar established for 

condition 2 is shown in Figure 4.18. 
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Figure 4.18 The Maximum Allowable Error for Roll Angle Measurement to Limit 

the Elevation Measurement Error within ±1 cm when the Vehicle was Rolled Right 

 

 

The maximum allowable error of the roll angle measurement reached its 

maximum value, 1.332°, when the measured distance (L) was 1m and the vehicle was 

rolled to 30°. It reached the minimum value, 0.6119°, when the measured distance (L) 

was 0 m and the vehicle was rolled to 30° (Figure 4.18). Recalling that the measurement 

error of the gyroscope sensor in roll angle measurement was less than 0.4° when the roll 

angle was within 30° (Figure 4.13b), it can be concluded that the measurement error for 

roll angle would not be a significant effect on the elevation measurement in case A.  
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Case B: The vehicle is tilted to the left (Figure 4.19). A negative roll angle would 

be measured by the gyroscope sensor.  

 

Figure 4.19 Elevation Measurement When the Vehicle is Rolled Left 

 

 

From Figure 4.19, H and h can be derived from Equations 4.16 and 4.17.  

 

0 L= ( tan ) cosH H +W α α⋅ ⋅                                                 (4.16) 

cosh H L α= − ⋅                                                                     (4.17) 

 

Taking the same process as in case A, e can be expressed by Equation 4.18. 

 

         0 0( ) cos( ) sin( ) ( ) cos W sinr L r Le H L W H Lα α α α α α= − ⋅ + + ⋅ + − − ⋅ − ⋅  (4.18) 

 

The maximum allowable errors, ar, can be analyzed in two conditions.  

 

Condition 1 (Figure 4.20): when  e = 0.01,  
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L

0.01
α = arcsin( + sin(θ + α)) - θ - αr 2 2(H -L) +W0

                   (4.19) 

where L

L

W
θ = arccos( )

2 2(H -L) +W0
                                        (4.20) 

 

Obviously, when α > αr  , the actual roll angle became positive. Under this 

condition, the above analysis became invalid. 

 

Figure 4.20 Maximum allowable errors in negative roll angle measurement when 

the maximum allowable measurement error in elevation was 1cm 

 

 

Condition 2 (Figure 4.21): when  e = -0.01,   

 

L

-0.01
α = arcsin( + sin(θ + α)) - θ - αr 2 2(H -L) +W0

                   (4.21) 

where L

L

W
θ = arccos( )

2 2(H -L) +W0
                                        (4.22) 
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Figure 4.21 Maximum allowable errors in negative roll angle measurement when 

the maximum allowable measurement error in elevation was -1cm 

 

 

The values of ar in condition 2 were smaller then those in condition 1. Thus, 

condition 2 was considered more critical. A three-dimensional model for ar established 

for condition 2 is shown in Figure 4.22. 
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Figure 4.22 The Maximum Allowable Error for Roll Angle Measurement to Limit 

the Elevation Measurement Error within ±1 cm when the Vehicle is Rolled Left 

 

 

The maximum allowable error for roll angle measurement reached its maximum 

value, 0.4401°, when the measured distance (L) was 1m and the vehicle was rolled to -

30°. It reached the minimum value, 0.3184°, when the measured distance was 0 m and 

the vehicle was rolled to -30° (Figure 4.22). Recalling that the measurement error of the 

gyroscope sensor in roll angle measurement was less than 0.3° when the roll angle was 

within -30° (Figure 4.13b), it can be concluded that the measurement error for roll angle 

would not be a significant effect on the elevation measurement in case B. 
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Case C: The front end of the vehicle is tilted up (Figure 4.23). A positive pitch 

angle would be measured by the gyroscope sensor. 

 

Figure 4.23 Elevation Measurement When the Vehicle is Pitched Up 

 

 

From Figure 4.23, the height (H) and the elevation (h) can be derived from 

Equations 4.23 and 4.24.  

 

0 R= ( tan ) cosH H + D β β⋅ ⋅                                                 (4.23) 

cosh H L β= − ⋅                                                                      (4.24) 

 

Taking the same process as in case A, e can be expressed by Equation 4.25 

 

          0 0( ) cos( ) sin( ) ( ) cos sinr R r Re H L D H L Dβ β β β β β= − ⋅ + + ⋅ + − − ⋅ − ⋅  (4.25) 
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The maximum allowable errors, βr, can be derived using Equations 4.26 and 

4.28 under conditions 1 and 2, respectively. Because condition 2 gave smaller values, the 

results under condition 2 was chosen for further error analysis. A three-dimensional 

model for βr is shown in Figure 4.24.  

 

Condition 1: when  e = 0.01,  

 
0.01

= arcsin( + sin(θ + )) - θ -r 2 2(H -L) +D0 R
β β β                 (4.26) 

 where 
DRθ = arccos( )

2 2(H -L) +D0 R
.                                      (4.27) 

 

Condition 2: when  e = -0.01,  

 
-0.01

= arcsin( + sin(θ + )) - θ -r 2 2(H -L) +D0 R
β β β                 (4.28) 

 where 
DRθ = arccos( )

2 2(H -L) +D0 R
.                                      (4.29) 
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Figure 4.24 The Maximum Allowable Error for Pitch Angle Measurement to Limit 

the Elevation Measurement Error within ±1 cm when the Vehicle is Pitched Up 

 

 

The maximum allowable error of the pitch angle measurement reached its 

maximum value, 1.493°, when the measured distance (L) was 0 m and the vehicle was 

pitched up to 30°. It reached the minimum value, 0.5730°, when the measured distance (L) 

was 1m and the vehicle was leveled (Figure 4.24). Recalling that, when the pitch angle 

was within ±30°, the maximum error of pitch measurement was 0.5871° (Figure 4.13a), it 

can be concluded that, for case C, the measurement error for pitch angle would have a 

significant effect on the elevation measurement, especially when the actural pitch angle 

approached 30°. 

 

 

 

 

 



 75 

Case D: The rear end of the vehicle is tilted up (Figure 4.25). A negative pitch 

angle would be measured by the gyroscope sensor. 

 

Figure 4.25 Elevation Measurement When the Vehicle is Pitched Down 

 

From Figure 4.25, H and h can be derived from Equations 4.30 and 4.31.  

 

0 F= ( tan ) cosH H + D β β⋅ ⋅                                                 (4.30) 

cosh H L β= − ⋅                                                                      (4.31) 

 

Taking the same process as in case A, e can be expressed by Equation 4.32 

 

         0 0( ) cos( ) sin( ) ( ) cos sinr F r Fe H L D H L Dβ β β β β β= − ⋅ + + ⋅ + − − ⋅ − ⋅  (4.32) 

 

The maximum allowable errors, βr, can be derived using Equations 4.33 and 

4.35 under conditions 1 and 2, respectively. Because condition 2 gave smaller values, the 

results under condition 2 was chosen for further error analysis. A three-dimensional 

model forβr is shown in Figure 4.26.  
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Condition 1: when  e = 0.01,   

 
F

0.01
= arcsin( + sin(θ + )) - θ -r 2 2(H -L) +D0

β β β                 (4.33) 

 where 
DF

F

θ = arccos( )
2 2(H -L) +D0

.                                      (4.34) 

 

Condition 2: when  e = -0.01,   

 
F

-0.01
= arcsin( + sin(θ + )) - θ -r 2 2(H -L) +D0

β β β                 (4.35) 

 where 
DF

F

θ = arccos( )
2 2(H -L) +D0

.                                      (4.36) 

 

 

Figure 4.26 The Maximum Allowable Error for Pitch Angle Measurement to Limit 

the Elevation Measurement Error within ±1 cm when the Vehicle is Pitched Down 
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The maximum allowable error of the pitch angle measurement reached its 

maximum value, 0.6594°, when the measured distance (L) was 1 m and the vehicle was 

pitched down to -30°. It reached the minimum value, 0.4190°, when the measured 

distance (L) was 0m and the vehicle was pitched down to -30° (Figure 4.26). Recalling 

that the measurement error for the pitch angle was less than 0.416° when the pitch angle 

within -18°, and the error was greater than 0.67° when the pitch angle was between -30° 

to -27° (Figure 4.13a), the following conclusions can be drawn for case D: (1). The pitch 

measurement error would not significantly affect the elevation measurement when the 

pitch angle of the vehicle was within 0 to -18°, (2). The pitch measurement error would 

significantly affect the elevation measurement when the pitch angle was higher than -27°, 

(3). When the pitch angle was between -18° and -27°, the effect of pitch measurement 

error on the elevation measurement depended on the measured distance (L).    

 

 



 78 

CHAPTER 5 - System Tests 

5.1 Accuracy in Elevation Measurement 

5.1.1 Description  

Three-dimensional raw laser data was registered in a local coordinate system by 

combining measured distance with position information provided by two optical encoders.  

This data was the foundation to generate the three-dimensional digital elevation model 

(DEM). Inaccuracies in the 3D raw data would result in both low accuracy and low 

precision of the DEM data.  

 

The DEM data was created by interpolating the 3D raw data into a regular, square 

grid. Adequate data processing algorithms were implemented before and after the 

interpolation to improve the accuracy. The accuracy of the system was evaluated by 

comparing the DEM data with a reference DEM data measured by a more accurate laser 

system.  

 

In addition to distance measurement, the laser system also provided the intensity 

data of the reflected laser signals, which can be used to generate grayscale images of the 

measured surface. Additional information on the target surface, such as color and texture, 

can be obtained from these images.   
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 5.1.2 Objectives 

The objectives of the accuracy tests were:  

 

1). to develop algorithms for creating three-dimensional DEM data from the raw 

laser data;  

2). to evaluate the repeatability of the laser system in DEM measurement; 

3). to evaluate the accuracy of the laser system in DEM measurement by 

comparing with the DEM measured by a reference system; 

4). to study the potential use of the gray-scale data. 

 

5.1.3 Methodology 

5.1.3.1 Test of Surface with Known Geometric Shapes 

5.1.3.1.1 Surface Characteristics 

This test was conducted by scanning two surfaces with various objects. The first 

surface was a rectangular box placed on a white paper. The laser line scanner was 

positioned 116 cm above the paper (Figure 5.1). The box was 22.54 cm long, 13.33 cm 

wide, and 11.43 cm tall.  The second surface had four objects of different shapes (Figure 

5.2).  Dimensions of the objects were given in Figure 5.3. For both surfaces, the laser line 

scanner used a sample rate of 40 KHz, a mirror rotation speed of 1400 RPM, and a max 

range setting of 183 cm. The carriage of the scanner moved on the rail at a speed of 6 

cm/s. The scan tests were replicated five times on surface 1 and twice on surface 2. The 

measured and actual dimensions of the box were compared. The correlation coefficients 

between DEMs obtained by the laser system and digitized models of the surfaces were 

calculated. 
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Figure 5.1 Test Surface 1 with a Box of a Known Geometric Shape 
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Figure 5.2 Test Surface 2 with Four Objects of Known Geometric Shapes 
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Figure 5.3 Dimensions of the Four Objects Placed on Surface 2: (a) Object A, (b) 

Object B, (c) Object C, and (d) Object D 

 

(a) 

 

                               (b)       (c) 

 

(d) 
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5.1.3.1.2 Coordinate Conversions 

The distance (r) measured by the laser line scanner and the rotational angle (φ) 

of the laser beam described the measured surface in a polar coordinate system. The origin 

of the polar coordinate system was at the center of the rotating mirror when the laser-

carriage was at the starting position on the rail, which was determined by a limit switch. 

The DEM of the measured surface, on the other hand, was best represented in a Cartesian 

coordinate system (Figure 5.4). The origin of the Cartesian coordinate system coincided 

with that of the polar coordinate system. The direction of the X-axis was aligned with the 

horizontal direction pointing to the right of the vehicle. The direction of the Z-axis 

pointed upwards. For both coordinate systems, the Y-axis pointed to the front direction of 

the vehicle.  

 

Figure 5.4 Conversion from Polar to Cartesian Coordinates 

 

 

When the linear rail was not leveled with the ground, as in the case of non-zero 

roll or pitch rotations, the laser measurements were registered in a new 3D Cartesian 
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coordinates (X* ,Y* ,Z*). Figure 5.5 demonstrates a case with a positive pitch angle. In 

this case, a coordinate transformation from the (X* ,Y* ,Z*) system to the (X, Y, Z) 

system was needed. 

 

Figure 5.5 Rotation of the Coordinate System at a Positive Pitch Angle When the 

Linear Rail Is Tilted  

 

 

The coordinate conversion may include translation, scaling, and rotation, or their 

combinations (Gonzalez and Wintz, 1987). A generalized form of the conversion is 

shown in Equation 5.1. 

 

V R R R S T Vα β θ
∗= ⋅ ⋅ ⋅ ⋅ ⋅      (5.1) 
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where 

1

X

Y
V

Z

 
 
 =
 
 
 

      (5.2) 

 

1

X

Y
V

Z

∗

∗
∗

∗

 
 
 =
 
 
 

      (5.3) 

 and T is for translation, 

 

0

0

0

1 0 0

0 1 0

0 0 1

0 0 0 1

X

Y
T

Z

 
 
 =
 
 
 

     (5.4) 

where X0, Y0, Z0 are the coordinates of the origin of  the new coordinate 

system (X, Y, Z) in the old coordinate system (X*, Y*, Z*).  

 

The S is for scaling:  

0 0 0

0 0 0

0 0 0

0 0 0 1

x

y

z

S

S
S

S

 
 
 =
 
 
 

      (5.5) 

where Sx, Sy, Sz are the scaling factors between the X, Y, and Z axes and the X*, 

Y*, and Z* axes, respectively. 

 

Rα , Rβ , and Rθ  are the rotation factors for the X*, Y*, Z* axes, respectively. 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

Rα
α α
α α

 
 
 =
 −
 
 

    (5.6) 
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cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

Rβ

β β

β β

− 
 
 =
 
 
 

    (5.7) 

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

Rθ

θ θ
θ θ

 
 − =
 
 
 

     (5.8) 

where α, β, θ are the rotational angles of the Y-Z, Z-X, and X-Y planes about the 

X*, Y*, and Z* axes, respectively (Figure 5.6). 

 

Figure 5.6 Rotation Angles of the Y-Z, Z-X, and X-Y Planes about the X*, Y*, Z* 

Axes 

 

 

 

As a result, the general orthogonal transformation can be written as 
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For a simple pitch rotation, the coordinate transformation can be simplified as  
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It should be noted that the pitch angle measured by the gyroscope sensor had a 

direction that was opposite to the positive direction of angle a shown in Figure 5.6. This 

algorithm was implemented in MATLAB (Appendix E). 

5.1.3.1.3 Interpolation algorithm for DEM generation 

A digital elevation model (DEM) was a digital, or numerical, representation of 

ground surface topography. Regular grids, or square grids, were commonly used in DEM. 

The grid DEM used a matrix structure that implicitly recorded topological relations 

between data points (El-Sheimy et al., 2005). In a DEM, each grid cell had a value 
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corresponding to its elevation, which was usually obtained by interpolation between 

adjacent sample data points.  

 

The grid DEM was a simple and efficient approach in data storage and 

manipulation since this data structure was similar to the array structure in a computer 

(Ziadat, 2007). However, this approach may introduce errors because it discontinuously 

represented the surface, especially when coarser grid sizes were used (Ramirez, 2006). In 

this study, data acquired by the laser system had a high density, which allowed a fine grid 

size.  

 

The interpolation was an approximation procedure in mathematics and an 

estimation issue in statistics (Li et al., 2004). It was a process of predicting a new value of 

a given variable in un-sampled locations within an area of known data points (Liu, 2008). 

For DEM data, interpolation was used to determine the elevation of a point by using 

known elevations of neighboring points. Two implicit assumptions were applied to the 

interpolation process: the surface was continuous and smooth, and there was a high 

correlation between the neighboring data points (Li et al., 2004).   

 

The interpolation algorithm used in this study was a two-dimensional, n-nearest 

neighbor, distance-weighted interpolation (Zhang et al., 1989). The number of nearest 

neighboring data points was three. The algorithm employed weighting functions to obtain 

smooth surfaces.  

 

The first step of the interpolation algorithm was to select three nearest 

neighboring data points surrounding each cell on the regular grids from the raw laser data 

on the irregular grids. Assuming data points A(x1, y1), B(x2, y2), C(x3, y3) were the three 

nearest data points surrounding cell O(X, Y) (Figure 5.7), polynomial weighting 

functions can be calculated using the following equations: 

  

2 2 2 2 2
1 1 1 1 2 23 3 32( , ) ( )W x y d d d d d= +                                                        (5.11)  

2 2 2 2 2
2 2 2 2 1 13 3 31( , ) ( )W x y d d d d d= +                                                       (5.12)  
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2 2 2 2 2
3 3 3 3 1 12 2 21( , ) ( )W x y d d d d d= +                                                       (5.13) 

where d1, d2, and d3 were the distances between the center of cell O and the three 

data points.  

 

Figure 5.7 Distance-weighted, three-nearest neighbor Interpolation 

 

 

 The elevation, Z, of cell O was then determined as the weighted average of the 

elevations of points A, B, and C: 

  

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 1 1 2 2 2 3 3 3

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

z

y

W x y z x y W x y x y W x y z x yZ
W x W x y W x y

+ +=
+ +

  (5.14) 

 

where z1 to z3 = the elevations at the three data points. 

 

This algorithm was implemented in MATLAB (Appendix F). 

 

5.1.3.2 Test of Unknown Surface 

DEM data of an unknown surface were measured using the laser system and a 

reference system. Accuracy of the measurement was evaluated by comparing the two 

DEM data.  
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5.1.3.2.1 Surface Characteristics 

An artificial surface made of sands and stones was constructed as a testing surface 

(Figure 5.8). The surface was formed by four small regions, labeled a, b, c, and d, 

respectively, a stone zone, and a small wooden block.  The surface was surrounded by a 

1m by 1m wooden frame.  

 

Figure 5.8  A Test Surface 

 

 

5.1.3.2.2 The Reference System 

A laser-based profile meter was used as the reference system (Figure 5.9). This 

meter included three components:  a laser distance sensor, NR-40-105 (Nova Range Inc., 

2001), to measure surface elevation, a computed-controlled, motor-driven, two-

dimensional traversing frame, and a data acquisition card, PC-CARD-DAS16/16AO 

(Measurement Computing Corp., 2007), plugged into a field laptop to control the motion 

of the laser-carriage and to register the elevation data. 
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The traversing frame had a 1.2 m by 1.5 m rectangular base constructed from 

aluminum tubing (Figure 5.9). A bridge carrying the laser distance sensor rode on the 

frame in the X-direction. The motion of the laser distance sensor along the bridge was 

accomplished by a screw-nut mechanism, in which the screw was positioned parallel to 

the bridge and was driven by a stepper motor, whereas the nut was mounted on the 

carriage of the laser distance sensor. A plate was attached on one side of the frame to 

serve as a platform for electronic components. Two ball screws, each 1.2 m long, were 

mounted on two sides of the frame, in the Y-direction. These ball screws were supported 

by bearings on both ends. A stepper motor was attached to each screw by a sleeve. When 

turned simultaneously, two ball screws can provide the bridge motions in Y-direction. 

The traversing frame as a reference plane was equipped with three leveling screw jacks 

and three dual-vial bulb levels to allow level adjustment before each scan.  

 

Figure 5.9 The Laser-based Profile Meter and the Traversing Frame 
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The laser distance sensor was a CLASS IIIa product, which emitted a red laser 

beam of 670 nm wavelength, received reflected beam, and calculated the distance based 

on the triangulation principle. It provided an accuracy of 0.05cm within 60cm range. The 

output was either a 4 to 20 mA current loop or RS-232 signals. Configuration of the RS-

232 interface was: 9600 baud rate, 8 data bits with no parity, 1 stop bit, and hardware 

flow control.   

 

Three PK2 packaged stepper drives (Parker Hannifin Corp., 1997) were screwed 

on the frame platform to drive three stepper motors.  This bipolar stepper drive had motor 

connections, control signal connections, and function switches to allow flexible control. 

Descriptions of the connections and switches are listed in Table 5.1. 

 

Table 5.1 Connection and Switches on PK2 Stepper Drive (from Parker Hannifin 

Corp. 1997)  

Terminal Description 
1A 

1B 

 
Connect one phase of the motor 

2A 

 
 

Motor 
Connections 

2B 

 
Connect the other phase of the motor 

0V Common return point for control signals 

Fault output Output high in the event of a drive fault 
Energize/Reset High to enable motor to be de-energized, reset a fault condition 

Dirn Direction of motor rotation, 0v to reverse 
Ck.in Clock input to make motor step at low-going transition 
Slow 0v to run the internal oscillator at low rate, 40~1000 steps/sec. 

Fast 0v to run the internal oscillator at fast rate, 400~ 1000 steps/sec. 

Fast Adj Connect to an external potentiometer (10K) between Adj.com to control the 
fast speed of the internal oscillator 

Adj.com Common return connection for external speed controls 

 
 
 
 
 
 
 
 

Signal 
Connections 

Slow Adj Connect to an external potentiometer (100K) between Adj.com to control 
the slow speed of the internal oscillator 

Switch1-Energ Turn on to permanently energize the drive 

Switch2-Mode Turn on to select Full step mode and off to Half step mode 
Switch3 
Switch4 
Switch5 
Switch6 

 
Motor current set: 2.0A all switches off; 1.8A only Switch6 on; 1.6A only 
Switch5 on; 1.4A only Switch4 on; 1.2A only Switch3 off; 1.0A only 
Switch3 on. 

Switch7-Slow Turn on for internal slow speed adjustment and off for external speed 
control 

 
 
 
 

Switch 
Settings 

Switch8 - Fast Turn on for internal fast speed adjustment and off for external speed control 
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PC-CARD-DAS16/16AO was a data acquisition and control board for a PC 

computer with PCMCIA type II interface. It provided 16 single-ended or 8 differential 

analog inputs with 16-bit A/D resolution, two analog outputs, four digital I/O lines, and 

three 16-bit down counters. Four digital I/O lines and one counter were used to connect to 

the stepper drives to control the motors running in independent or continuous mode.  

 

In the independent mode, the motor stepped at negative edges of the clock input 

of the PK2 stepper drive. This input was driven by an external clock source generated by 

a port of the PC-CARD-DAS16/16AO board. The continuous mode allowed the motor to 

continuously run at a predefined speed determined by a built-in potentiometer that 

controlled the frequency of an internal oscillator.  

 

Figure 5.10 shows wire connections between the data acquisition board and the 

stepper drives for two modes. Two LabVIEW (LabVIEW, 2004) programs were 

developed to control the motors running in these modes, respectively (Appendix G). 

Sampled laser data was registered into a text file. In independent mode, the spatial 

sampling interval was limited to 0.5 cm and it took eight hours to scan a 1m by 1m 

surface. When the sampling interval increased to 0.2 cm in the continuous mode, time 

required to scan the surface was reduced to five hours.   
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Figure 5.10 Connections between the PC-CARD-DAS16/16AO and PK2 Stepper 

Drives: (a) Independent Mode, and (b) Continuous Mode 

(a) 

 

(b) 
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5.1.3.2.3 Test Procedure  

Both the laser system and the reference system measured the sand-stone surface. 

The laser system scanned the surface with a sampling rate of 40 KHz, a mirror rotation 

speed of 1400 RPM, and a maximum range setting of 183 cm. The carriage of the scanner 

moved on the rail at a speed of 6 cm/s. For the reference system, motors were driven in 

the continuous mode. Because the position at which the first measurement was made on 

each scan line varied, the distance between this position and the edge of the wooden 

frame was recorded. During data processing, these distances were used to correct the 

coordinates of the data points in the X direction. The spatial resolutions of the measured 

data were 0.2 cm and 0.3 cm in the X and Y directions, respectively. The DEM data 

generated by both systems were plotted and compared.  

 

5.1.3.2.4 Matching by correlation 

The DEM data measured by the laser system and the reference system were 

compared using the image matching method (Gonzalez and Woods, 2002), which 

calculated the correlation coefficient between the two DEM data.  

 

If the DEM data obtained by the reference system and the laser system were 

defined as ƒ(x, y) of size M*N and w(x, y) of size J*K, respectively, the correlation 

function between ƒ and w can be calculated as   

 

1 1

0 0

( , ) ( , ) ( , )
J K

s t

c x y f s t w x s y t
− −

= =
= + +∑∑                                                    (5.15)  

 

where x = 0, 1, 2 …M-1, 

            y = 0, 1, 2…N-1, and 

 the summation is taken over the data region where w and ƒ overlap.  

 

Figure 5.11 illustrates the procedure for computing c(x, y). As x and y varied, w 

moved within the area of ƒ, giving the function c(x, y) at each location. The maximum 

value of c indicated the position where w best matched ƒ. 
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Figure 5.11 Correlation Function between the Two Measured DEM Data (from 

Gonzalez and Woods, 2002)  

 

 

The correlation function given in Equation (5.15) had the disadvantage of being 

sensitive to changes in the amplitudes of ƒ and w. A frequently used approach to 

overcome this difficulty was to use the correlation coefficient, which was defined as:  
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∑∑ ∑∑

      (5.16) 

 

 where x = 0, 1, 2…, M-1, 
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            y = 0, 1, 2…, N-1, 

 w
−

 is the average value of the elevations in w (computed only once),  

            f
−

 is the average value of ƒ in the region coincident with the current 

location of w, and 

             the summations are taken over the coordinates common to both ƒ and w. 

 

The correlation coefficient r(x, y) was independent of scale changes in the 

amplitudes of ƒ and w. This algorithm was used to evaluate the accuracy and repeatability 

of DEM measurement. It was also used to analyze the effects of noise on DEM 

measurement. This algorithm was implemented in MATLAB (Appendix H).  

 

5.1.3.2.5 Spatial filters 

A spatial filter (also called spatial mask, kernel, template, or window) is an image 

enhancement approach. In this study, two spatial filters were used to smoothen the data 

measured by the laser scanner before or after the interpolation. The first filter applied was 

a median threshold filter. The second one was a standard median filter.  

 

 The median threshold filter was applied to the raw laser data. It included the 

following steps: 

 

(1)  Specify the size of a rectangular filter, and set the upper and lower limits, 

(2)  Move the filter through the raw laser data without overlapping, 

(3)  Sort the values of the elevation in the filter area at each position, 

(4)  Determine their median,  

(5) Remove all values that are out of a range of [median - lower limit, median + 

upper limit]. 

 

In this study, the median filter was only applied to the laser data after 

interpolation. It consisted of the following steps: 
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(1)  Specify the size of a rectangular filter (typically a 3 by 3 window), 

(2)  Move the window from pixel to pixel over the laser data, 

(3)  At each pixel, rank the values within the window, 

(4)  Determine their median,  

(5)  Replace the value of the pixel at the center of the window with the median. 

 

It was critical for the median threshold filter to select an optimal combination of 

filter size and the limits, and for the median filter to determine the window size. These 

spatial filters may help remove errors in the laser data. They may, however, remove 

useful details of the data if the parameters were not appropriately selected.  

 

5.1.3.3 Use of Gray-scale Data  

The laser line scanner used in this study provided gray scale data, which depended 

on the color, texture composition, and orientation of the target.  

 

Intensities of the reflected light were stored as 8-bit integers, allowing 256 gray 

levels. The two-dimensional, three-nearest neighbor, distance-weighted interpolation 

algorithm was used to create the grayscale intensity image. The typical pixel size was 0.5 

cm by 0.5 cm. 

 

5.1.4 Results and Discussion 

5.1.4.1 Test of Surface with Known Geometric Shapes 

  One of five measured raw laser data for test surface 1 is shown in Figure 5.12. 

The spatial resolution of the raw laser data was 0.27 cm by 0.28 cm. Two-dimensional 

views of the raw laser data of the box are displayed in Figure 5.13.  

 



 99 

Figure 5.12 A Three-dimensional View of the Box on Test Surface 1 using Measured 

Raw Laser Data  

 

Figure 5.13 Two-dimensional Views of the Box in (a) X-Z Plane, and (b) Y-Z Plane 

 

(a) 

 

(b) 
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To compare the measured box with the actual box, linear regression analyses were 

applied to the edges of the box on the raw laser data. The regression lines are showed in 

Figure 5.14 in cyan color. The actual box (in red color) is positioned in Figure 5.14a 

based on its actual dimensions and its location in the 3D Cartesian coordinate system. It 

is postioned in Figure 5.14b, based on its actual dimensions and with its left edge aligned 

to the regression line. The area covered by the four regression lines was calculated and 

compared with the actual area of the box. The volume of the parallelepiped formed by the 

regression lines was also calculated and compared with the volume of the box. Relative 

errors of area and volume in five replications are listed in Table 5.2.  

  

Table 5.2 Comparisons of Areas and Volume Measured by the Laser System with 

the Actual Values of the Box on Test Surface 1 

Area 

X-Z plane 
(Actual: 257.63 cm2 ) 

  Y-Z plane 
(Actual: 152.36 cm2 ) 

 
Volume 

(Actual: 3434.24 cm3 ) 

 

Reference 

Measured
, cm2 

Relative 
error(‡), % 

Measured
,cm2 

Relative 
error,% 

Measured
, cm3 

Relative 
error,% 

1 291.22 13.03 147.85 2.96 3896.56 13.46 

2 285.59 10.85 146.85 3.62 3812.59 11.02 

3 286.28 11.12 147.44 3.23 3854.69 12.24 

4 289.62 12.42 148.28 2.68 3904.08 13.68 

5 283.54 10.06 148.07 2.82 3799.48 10.64 

Mean 287.25 11.49 147.70 3.06 3853.48 12.21 

CV(†) 1.08%  0.38%  1.23%  

‡: Relative error = |measured value – actual value| / (actual value) *100% 

†:  CV (coefficient of variation) = standard deviation/ mean * 100% 

 

The results showed the laser system had a good repeatability in area and volume 

measurements. The area measured in the Y-Z plane was more accurate than that in the X-

Z plane. 
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Figure 5.14 Two-dimensional Views of the Measured Box with Linear Regression 

Lines for the Edges in (a) X-Z Plane, and (b) Y-Z Plane 

 

(a) 

 

 

(b) 
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The DEM of the box was interpolated from the raw laser data. The grid size of the 

DEM was 0.5 cm by 0.5 cm. Figure 5.15 displays the DEM of the box and Figure 5.16 

shows its two-dimensional views. The box gave a trapezoidal look in the X-Z plane 

(Figure 5.16a). This may have been caused by the fact that, for each scan line, the first 

measurement was taken at a slightly different angle of the laser beam, hence, slightly 

different distance between the intercept point of the laser beem and the box to the edge of 

the box, which may in turn vary the intensity of the reflected light, causing errors in 

distance measurements. 

 

Figure 5.15 Measured DEM for Test Surface 1 

 

 

 

 

 

 

 

 

 

 



 103 

Figure 5.16 Two-dimensional Views of the Measured DEM for Test Surface 1 in (a) 

X-Z Plane, and (b) Y-Z Plane 

 

(a) 

 

(b) 

 

 

The DEM of test surface 2 acquired by the laser system is shown in Figure 5.17. 

The grid size of the DEM was 0.5 cm by 0.5 cm. The four objects can be easily identified 

from the DEM. Figure 5.18 shows the digitized model of the original objects on a 0.5 cm 

by 0.5 cm grid. This DEM model was used as the reference model for comparison.  

Correlation coefficients between the reference DEM and two replications of the measured 

DEMs are listed in Table 5.3.  
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Figure 5.17 DEM of Test Surface 2 Acquired by the Laser System  

 

 

Figure 5.18 Digitized DEM of Surface 2 using the Known Geometric Parameters 

 

 

Table 5.3 Correlation Coefficients between the Reference DEM and DEMs 

Acquired by the Laser System in Two Replications for Test Surface 2  

 Reference  Replication 1 Replication 2 

Reference 1 0.7167 0.7199 

Replication 1 0.7167 1 0.9585 

Replication 2 0.7199 0.9585 1 
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R-values of about 0.72 were achieved between the reference DEM and the DEMs 

measured in two replications, indicating low accuracy of the laser system in elevation 

measurement. However, when comparing portions of the DEM that contained only 

individual objects, the R-values were much higher. Taking object B as an example, when 

only the portion of the DEM data that contained object B and surrounding area was 

compared (Figure 5.19), the R value reached 0.9679. R-values of 0.8633, 0.9493, and 

0.9261 were achieved for other three objects, respectively. These results indicated that 

the laser system can describe individual objects more accurately than a flat surface.    

 

Figure 5.19 DEM Derived for Object B on Test Surface 2 
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5.1.4.2 Comparison with the Reference System 

Figure 5.20 displays the sand-stone surface measured by the reference system. 

Measurement errors found along the boundaries of the surface, which are indicated by red 

arrows in Figure 5.20, were probably caused by the reflection of the wood frame.  

 

Figure 5.20 DEM of the Sand-stone Surface Measured by the Reference System 

 

 

 

 

The laser system spent approximately 17 seconds to scan the sand-stone surface. 

This derived DEM is shown in Figure 5.21.  
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Figure 5.21 DEM of the Sand-stone Surface Measured by the Laser System 

 

 

Four small regions, a stones zone, and a small wooden block can be easily 

observed on both DEMs. To quantitatively evaluate the accuracy of the laser system, 

correlation coefficients between the reference and four replications of the measured 

DEMs was calculated (Table 5.4). The R-values between the reference and measured 

DEMs were greater than 0.925. The R-values among the four laser-measured DEMs were 

greater than 0.948.  

 

Table 5.4 Correlation Coefficients between DEMs Obtained by the Laser System in 

Four Replications and the Reference DEM 

 Reference  Replication 1 Replication 2 Replication 3 Replication 4 

Reference 1 0.9314 0.9251 0.9274 0.9371 

Replication 1 0.9314 1 0.9492 0.9481 0.9483 

Replication 2 0.9251 0.9492 1 0.9614 0.9587 

Replication 3 0.9274 0.9481 0.9614 1 0.9647 

Replication 4 0.9371 0.9483 0.9587 0.9647 1 

 

To further improve the measurement accuracy, the median threshold filter was 

applied to the raw laser data before interpolation (Figure 5.22). The filter’s size was 1cm 
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by 1cm. The upper and lower limits of the median value used in the filter were set to 1 

cm and 0.5 cm, respectively. The filtered laser data was then interpolated to generate the 

DEM. Comparisons between the filtered DEMs and the reference DEM are given in 

Table 5.5. The R-values between the filtered DEMs and the reference DEM were greater 

than 0.93. The R-values among the four replications were greater than 0.955. In both 

cases, the comparisons were slightly improved. 

 

Figure 5.22 DEM of the Sand-stone Surface Filtered using the Median Threshold 

Filter 

 

Table 5.5 Correlation Coefficients between the DEMs filtered using the Median 

Threshold Filter and the Reference DEM 

 Reference  Replication 1 Replication 2 Replication 3 Replication 4 

Reference 1 0.9412 0.9309 0.9318 0.9422 

Replication 1 0.9412 1 0.9548 0.9552 0.9556 

Replication 2 0.9309 0.9548 1 0.9648 0.9621 

Replication 3 0.9318 0.9552 0.9648 1 0.9679 

Replication 4 0.9422 0.9556 0.9621 0.9679 1 
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To further improve the result, the median filter was applied to the laser measured 

DEMs after interpolation. The filter was a 3-by-3 spatial filter. Figure 5.23 illustrated a 

DEM of the sand-stone surface measured by the laser system after the median filter was 

applied. The DEM in Figure 5.23 appeared more blurring than that shown in Figure 5.21. 

This was due to the removal of certain details by the filter. Table 5.6 shows the 

comparisons between the DEMs. The R-values between the DEMs obtained by the laser 

system and the reference DEM were greater than 0.935. The R-values among the four 

replications were greater than 0.988. The filter seemed to have slightly improved both 

accuracy and repeatability of the laser system, although its disadvantage in removing 

detailed information was fully awared of. 

Figure 5.23 DEM of the Sand-stone Surface Filtered using the Median Filter 

 

Table 5.6 Correlation Coefficients between the DEMs Obtained by the Laser System 

and Processed using the Median Filter and the Reference DEM 

 Reference  Replication 1 Replication 2 Replication 3 Replication 4 

Reference 1 0.9540 0.9393 0.9359 0.9459 

Replication 1 0.9540 1 0.9891 0.9884 0.9885 

Replication 2 0.9393 0.9891 1 0.9917 0.9886 

Replication 3 0.9359 0.9884 0.9917 1 0.9916 

Replication 4 0.9459 0.9885 0.9886 0.9916 1 
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In summary, the comparison between DEMs obtained by the laser system and the 

reference system showed that the laser system generated the DEM for a sand-stone 

surface with satisfactory accuracy and repeatability. The accuracy was further improved 

when a median threshold filter and a median filter were used to process the raw laser data 

before and after the interpolation, respectively.  

 

5.1.4.3 Use of gray-scale data 

Grayscale image of test surface 1, test surface 2, and the sand-stone surface are 

displayed in Figures 5.24, 5.25, and 5.26, respectively. For the box, the gray levels of the 

paper background and the box were similar. This was because the background and the 

box were made of similar materials.   

 

Figure 5.24 Grayscale Image of Test Surface 1 

 

 

 

In Figure 5.25, four objects can be easily distinguished from the background. 

However, it was difficult to identify the shapes. A vertical strip was clearly shown in the 



 111 

image. It may have been caused by the shadow of the linear rail. Several horizontal pencil 

marks clearly appeared on the grayscale image, which were never shown on the DEM 

surfaces.   

 

Figure 5.25 Grayscale Image of Test Surface 2  

 

 

 

For the sand-stone surface, stones and wooden block can be easily observed from 

the grayscale image. Darker stones appeared more clearly in the image. However, the 

four sand regions were not distinguishable from the sand background.  
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Figure 5.26 Grayscale Image of the Sand-Stone Surface 

 

 

In summary, differences in materials and colors affected the gray-scale image. 

This made it possible to identify crop residues from soil surface in the field.   

 

 

5.2 Noise Tests 

5.2.1 Description 

There were two major sources of noise that affected the laser measurement. The 

first was the ambient light. Optical sensors were sensitive to ambient light. For indoor 

experiments, fluorescent light was the major source that may affect the laser sensor. In 

the field, sunlight usually had the strongest effect on optical sensors. In some cases, the 

laser signal received from the surface may be overwhelmed by the strong daylight.  

 

The second source of noise was the mechanical vibration of the laser sensor, 

which was caused by the laser-carriage movement and the laser mirror rotation. If there 
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were roll or pitch angular changes on the rail during scanning, the measured elevation 

would be affected. 

 

This test focused on the effects of these two noise sources on the elevation 

measurement. In the ambient light test, the DEMs of the sand-stone surface measured 

under different indoor and outdoor ambient light conditions were compared. Angular 

displacements recorded by the gyroscope sensor during scanning were analyzed to study 

the effect of mechanical vibration. 

 

5.2.2 Objectives 

The objectives of the noise tests were: 

1). to study the effect of ambient light on elevation measurement in both indoor 

and outdoor environments;  

2). to investigate the potential effect of rail vibration on the angular displacement 

of the linear rail. 

5.2.3 Methodology 

5.2.3.1 Ambient Light Effect 

5.2.3.1.1 Indoor Ambient Light 

For the indoor test, fluorescent lamps, Philips cool white F32T8/TL841/ALTO, 

were used as the light source. The sand-stone surface was measured by the laser system at 

four different times: 9:30AM, 1:30PM, 8:30PM, and 11:30PM. At each time, 

measurements were taken with and without the fluorescent light on, respectively. For all 

scans, the laser line scanner was configured at a sample rate of 40 KHz, a mirror rotation 

speed of 1400 RPM, and a max range setting of 183 cm. The laser-carriage moved at a 

speed of 6.31 cm/s. At this speed, each scan was completed within 17 seconds. DEMs 

data derived were observed at different lighting conditions. Correlation coefficients 

among the measured DEMs were compared. 
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5.2.3.1.2 Sunlight 

In order to investigate the effect of sunlight on the measurement, an outdoor test 

was designed (Figure 5.27). A sand-stone surface was constructed (Figure 5.28) and was 

measured by the laser system at four different times - 10:30AM, 1:30PM, 3:30PM, and 

6:00PM - in December, 2009. Two replications were taken at each time. For these 

measurements, the laser line scanner used a sample rate of 40 KHz, a mirror rotation 

speed of 1400 RPM, and a max range setting of 183 cm. The laser-carriage moved at a 

low speed of 6.31 cm/s. DEM data of the measured surface were plotted. Correlation 

coefficients among the DEM data were calculated. 

 

Figure 5.27 Outdoor Test on the Effect of Sunlight on Elevation Measurement 
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Figure 5.28 The Sand-stone Surface Used in the Outdoor Test 

 

 

5.2.3.2 Rail Vibration Effect 

To investigate the effect of rail vibration, roll, pitch, and yaw angles measured by 

the gyroscope sensor were recorded under the following conditions:  

 

1). The laser-carriage moved at three different speeds on the rail while the laser 

mirror rotated at three different speeds; 

2). The laser-carriage moved at three different speeds while the laser mirror did 

not rotate; 

3). The laser mirror rotated when the laser-carriage was situated at the starting and 

ending positions on the rail, respectively;  

4). The laser-carriage moved at three different speeds on the rail while the laser 

mirror rotated at three different speeds, when the rail was fixed at both ends. 
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The three speeds at which the laser-carriage moved were 6.31cm/s (“low”), 

9.32cm/s (“medium”), and 14.63cm/s (“high”). The three rotational speeds of the laser 

mirror were 1400 RPM, 2000 RPM, and 2600 RPM.  The “starting” position was located 

at 66 cm from the rear-end of the rail. The “ending” position was 120 cm away from the 

starting position, along the rail. The distance between the center of the gyroscope sensor 

and the starting position was 51 cm. Roll, pitch and yaw angles were measured by the 

gyroscope sensor during all the tests.  

 

5.2.4 Results and Discussion 

5.2.4.1 Ambient Light Effect 

For this experiment, correlation coefficients were calculated among DEMs of the 

sand-stone surface measured under various light conditions. The DEMs were generated 

through the following steps:  

 

1). Create 3D raw data based on the 3D coordinate conversion algorithm (Section 

5.1.3.1.2); 

2). Apply the median threshold filter (Section 5.1.3.2.5) to the 3D raw data; 

3). Interpolate the filtered 3D data using the interpolation algorithm (Section 

5.1.3.1.3); 

4). Apply the 3-by-3 median filter (Section 5.1.3.2.5) to derive the final DEM.  

 

5.2.4.1.1 Indoor Ambient Light 

The DEMs of the sand-stone surface derived under different light conditions are 

showed in Figures 5.29 through 5.32. R-values among these DEMs are listed in Table 5.7. 

It can be observed that all the R-values were greater than 0.98, indicating that the 

fluorescent light did not affect the elevation measurement of the laser system. 
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Figure 5.29 DEMs of the Sand-stone Surface Measured under Different Indoor 

Lighting Conditions (a) 9:30AM with Fluorescent Light, and (b) 9:30AM without 

Fluoresecent Light 

 

(a) 

 

 

(b) 
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Figure 5.30 DEMs of the Sand-stone Surface Measured under Different Indoor 

Lighting Conditions (a) 1:30PM with Fluorescent Light, and (b) 1:30PM without 

Fluorescent Light 

 

(a) 

 

 

(b) 
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Figure 5.31 DEMs of the Sand-stone Surface Measured under Different Indoor 

Lighting Conditions (a) 8:30PM with Fluorescent Light, and (b) 8:30PM without 

Fluorescent Light 

 

(a) 

 

 

(b) 
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Figure 5.32 DEMs of the Sand-stone Surface Measured under Different Indoor 

Lighting Conditions (a) 11:30PM with Fluorescent Light, and (b) 11:30PM without 

Fluorescent Light 

 

(a) 

 

 

(b) 
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Table 5.7 Correlation Coefficients among DEMs Derived during the Indoor Tests 

Conducted at Different Times in a Day and under Different Lighting Conditions 

9:30 AM 1:30 PM 8:30 PM 11:30 PM  

Light 
on 

Light 
off 

Light  
on 

Light  
off 

Light  
on 

Light 
off 

Light  
on 

Light  
off 

Light  
on 

1 0.9898 0.9880 0.9902 0.9886 0.9913 0.9877 0.9898 9:30 

AM 
Light  

off 
0.9898 1 0.9903 0.9892 0.9888 0.9929 0.9910 0.9931 

Light  
on 

0.9880 0.9903 1 0.9862 0.9825 0,9885 0.9927 0.9905 1:30 

PM 
Light  

off 
0.9902 0.9892 0.9862 1 0.9874 0.9915 0.9885 0.9898 

Light  
on 

0.9886 0.9888 0.9825 0.9874 1 0.9911 0.9890 0.9910 8:30 

PM 
Light  

off 
0.9913 0.9929 0.9885 0.9915 0.9911 1 0.9892 0.9931 

Light  
on 

0.9877 0.9910 0.9927 0.9885 0.9890 0.9892 1 0.9907 11:30 

PM 
Light  

off 
0.9898 0.9931 0.9905 0.9898 0.9910 0.9931 0.9907 1 

 

5.2.4.1.2 Sunlight 

The DEMs of the sand-stone surface measured at different times of the day are 

displayed in Figures 5.33 and 5.34. This surface was slight different from the one used in 

the indoor test. R-values among these DEMs are listed in Table 5.8. It can be observed 

that all R-values were greater than 0.97, indicating that the sunlight did not affect the 

elevation measurement of the laser system. 
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Figure 5.33 DEMs of the Sand-stone Surface Measured under Sunlight on 

December 17, 2009: (a) 10:30 AM, and (b) 1:30 PM 

 

(a) 

 

 

(b) 
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Figure 5.34 DEMs of the Sand-stone Surface Measured under Sunlight on 

December 17, 2009: (a) 3:30 PM, and (b) 6:00 PM 

 

(a) 

 

 

(b) 
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Table 5.8 Correlation Coefficients among DEMs Measured at Different Times of the Day under Sunlight on December 17, 

2009 

10:30 AM 1:30 PM 3:30 PM 6:00 PM  

Replication  
1 

Replication  
2 

Replication  
1 

Replication  
2 

Replication  
1 

Replication  
2 

Replication  
1 

Replication  
2 

Replication  
1 

1 0.9790 0.9843 0.9791 0.9724 0.9739 0.9748 0.9746 10:30 

AM 
Replication  

2 
0.9790 1 0.9726 0.9778 0.9763 0.9732 0.9767 0.9766 

Replication  
1 

0.9843 0.9726 1 0.9718 0.9780 0.9872 0.9785 0.9876 1:30 

PM 
Replication  

2 
0.9791 0.9778 0.9718 1 0.9751 0.9883 0.9798 0.9829 

Replication 
 1 

0.9724 0.9763 0.9780 0.9751 1 0.9810 0.9942 0.9854 3:30 

PM 
Replication  

2 
0.9739 0.9732 0.9872 0.9883 0.9810 1 0.9768 0.9920 

Replication  
1 

0.9748 0.9767 0.9785 0.9798 0.9942 0.9768 1 0.9823 6:00 

PM 
Replication  

2 
0.9746 0.9766 0.9876 0.9829 0.9854 0.9920 0.9823 1 
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In summary, results of the ambient light test indicated that neither sunlight nor 

fluorescent light affected the measurement of the laser system. The system provided 

consistent elevation measurements under both indoor and outdoor lighting conditions.  

 

5.2.4.2 Rail Vibration Effect 

Angular displacements recorded by the gyroscope sensor were plotted and 

compared under four conditions.   

 

Condition A: The laser-carriage moved at three different speeds on the rail while 

the laser mirror rotated at three different speeds (Figure 5.35 ~ Figure 5.37).  
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Figure 5.35 Roll Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds 
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Figure 5.36 Pitch Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds 
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Figure 5.37 Yaw Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds 
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In order to study the impact of the mirror rotation, carriage movement, and their 

interaction on the roll angle measurement, the “mixed” procedure in SAS (SAS, 2002) 

(Appendix I) was used to analyze the roll angles measured under condition A, Carriage 

movement speed (CS), mirror rotation speed (MR), and interactions (CS*MR) at 

combinations of three mirror rotational speeds and three carriage movement speeds were 

considered as the fixed effects. The unequal numbers of replicates in the combinations 

were also considered as a fixed effect. A least squares analysis of a factorial design with 

unequal numbers of replicates at factor combinations was carried out. The results are 

summarized in Table 5.9.  

 

Table 5.9 Results of Statistics Analysis of the Measured Roll Angle under Condition 

A 

Effect CS levels MR levels Estimate 
(degree) 

Standard Error 
(degree) 

Pr > |t| 

CS 1  2.1592 0.000424 <0.0001 
CS 2  2.1527 0.000550 <0.0001 
CS 3  2.1453 0.000658 <0.0001 
MR  1 2.1520 0.000532 <0.0001 
MR  2 2.1545 0.000525 <0.0001 
MR  3 2.1506 0.000531 <0.0001 

CS*MR 1 1 2.1547 0.000706 <0.0001 
CS*MR 1 2 2.1627 0.000700 <0.0001 
CS*MR 1 3 2.1602 0.000700 <0.0001 
CS*MR 2 1 2.1565 0.000944 <0.0001 
CS*MR 2 2 2.1503 0.000931 <0.0001 
CS*MR 2 3 2.1512 0.000932 <0.0001 
CS*MR 3 1 2.1446 0.001096 <0.0001 
CS*MR 3 2 2.1506 0.001087 <0.0001 
CS*MR 3 3 2.1405 0.001114 <0.0001 

 

The carriage movement speed, mirror rotation speed, and their interactions were 

found to have statistically significant effects on the measured roll angles, P<0.0001, when 

the significance level α=0.05. However, the standard errors at the combinations were less 

than 0.0012, indicating that these effects were not practical significant. In fact, at almost 

all the combinations of the carriage speeds and mirror rotational speeds, the measured roll 

angles were within the range of 2.09~2.26 degree. 
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 From Figure 5.36, it is obvious that the pitch angle gradually decreased when the 

laser-carriage moved from the starting position towards the ending position. The 

reduction range was 0.38°. The yaw angle decreased when the laser-carriage moved from 

the starting position to 30cm and increased from approximate 70cm to the ending 

position. There was a variation on the yaw angles when the laser-carriage moved from 

30cm towards 70cm (Figure 5.37).       

 

Condition B: The laser-carriage moved at three different speeds while the laser 

mirror did not rotate (Figure 5.38 ~ Figure 5.40). 

 

Figure 5.38 Roll Angle Measured by the Gyroscope Sensor at Laser-carriage 

Movement Speeds of (a) 6.31cm/s, (b) 9.32 cm/s, and (c) 14.63 cm/s, while the Laser 

Mirror was not Rotating 
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Figure 5.39 Pitch Angle Measured by the Gyroscope Sensor at Laser-carriage 

Movement Speeds of (a) 6.31cm/s, (b) 9.32 cm/s, and (c) 14.63 cm/s, while the Laser 

Mirror was not Rotating  
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Figure 5.40 Yaw Angle Measured by the Gyroscope Sensor at Laser-carriage 

Movement Speeds of (a) 6.31cm/s, (b) 9.32 cm/s, and (c) 14.63 cm/s, while the Laser 

Mirror was not Rotating 

 

 

        When the laser mirror was not rotating, the average values of roll angles were 

2.1617°, 2.1546°, and 2.1438° at carriage movement speeds of 6.31cm/s, 9.32 cm/s, and 

14.63 cm/s, respectively. The variation ranges of roll angles at three difference movement 

speeds were 2.1039°~2.2248°, 2.1039°~2.2028°, and 2.0875°~2.1973°. Thus, the 

measured roll angle was maintained within a range of 0.12°, which was slightly reduced 

from 0.16°, when the laser mirror was in motion (condition A). Pitch angle also 

decreased when the laser-carriage moved from the starting position to the ending position 

on the linear rail. The reduction range was about 0.36°, which was slightly smaller than 

that observed under condition A (0.38°). Comparing these numbers under two conditions, 
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it can be concluded that the mirror rotation did not significantly affect the roll and pitch 

measurements. The trends on yaw angles were similar to those derived for condition A.   

 

Condition C: The laser mirror rotated when the laser-carriage remained still at 

the starting and ending positions on the rail, respectively (Figure 5.41). 

 

Figure 5.41 Roll, Pitch, and Yaw Angles Measured by the Gyroscope Sensor at Two 

positions on the Rail, while the Laser Mirror Rotated at 2600 RPM and the Laser 

Carriage Remained Still 

    

  

 

Comparison between the two positions clearly showed that the pitch and yaw 

angles measured at the two positions were different. The average pitch angle at the 

starting position (0.997°) was greater than that at the ending position (0.6718°), whereas 

the average yaw angle measured at the starting position (178.0148°) was less than that at 
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the ending position (179.9615°). The roll angle almost kept constant. The average roll 

angles measured at two positions were 2.1857° and 2.139°.   

 

 Comparing these numbers with those obtained for condition A, one can find that 

the pitch and roll angles measured at the two positions were similar. Thus, it can be 

concluded that the movment of the laser-carriage did not significantly affect the pitch and 

roll measurements. 

 

 

Condition D: The laser-carriage moved at three different speeds on the rail while 

the laser mirror rotated at three different speeds, when the rail was fixed at both ends 

(Figure 5.42 ~ Figure 5.44). 
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Figure 5.42 Roll Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds, when the Rail was Fixed at Both End 
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Figure 5.43 Pitch Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds, when the Rail was Fixed at Both End 
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Figure 5.44 Yaw Angles Measured by the Gyroscope Sensor at Combinations of Three Mirror Rotational Speeds and Three 

Carriage Movement Speeds, when the Rail was Fixed at Both End 
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The “mixed” procedure used in condition A was applied to study the impact of the 

mirror rotation, carriage movement, and their interaction on the roll and pitch 

measurements under condition D, respectively (Appendix I). Carriage movement speed 

(CS), mirror rotation speed (MR), and interactions (CS*MR) between the rotational 

speeds and the carriage movement speeds were considered as the fixed effects. The 

unequal numbers of replicates in the combinations were also considered as a fixed effect. 

A least squares analysis of a factorial design with unequal numbers of replicates at factor 

combinations was carried out for roll and pitch measurements, respectively. The results 

are summarized in Tables 5.10 and Table 5.11, respectively. 

 

Table 5.10 Results of Statistics Analysis of the Measured Roll Angle under 

Condition D 

Effect CS levels MR levels Estimate 
(degree) 

Standard Error 
(degree) 

Pr > |t| 

CS 1  1.8566 0.000399 <0.0001 
CS 2  1.8575 0.000502 <0.0001 
CS 3  1.8567 0.000603 <0.0001 
MR  1 1.8586 0.000497 <0.0001 
MR  2 1.8562 0.000491 <0.0001 
MR  3 1.8559 0.000479 <0.0001 

CS*MR 1 1 1.8622 0.000666 <0.0001 
CS*MR 1 2 1.8520 0.000663 <0.0001 
CS*MR 1 3 1.8555 0.000660 <0.0001 
CS*MR 2 1 1.8561 0.000864 <0.0001 
CS*MR 2 2 1.8577 0.000859 <0.0001 
CS*MR 2 3 1.8586 0.000849 <0.0001 
CS*MR 3 1 1.8576 0.001035 <0.0001 
CS*MR 3 2 1.8588 0.001017 <0.0001 
CS*MR 3 3 1.8536 0.000975 <0.0001 
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Table 5.11 Results of Statistics Analysis of the Measured Pitch Angle under 

Condition D 

Effect CS levels MR levels Estimate 
(degree) 

Standard Error 
(degree) 

Pr > |t| 

CS 1  0.9085 0.000426 <0.0001 
CS 2  0.9035 0.000536 <0.0001 
CS 3  0.8920 0.000644 <0.0001 
MR  1 0.9073 0.000531 <0.0001 
MR  2 0.8991 0.000524 <0.0001 
MR  3 0.8976 0.000511 <0.0001 

CS*MR 1 1 0.9148 0.000711 <0.0001 
CS*MR 1 2 0.9078 0.000708 <0.0001 
CS*MR 1 3 0.9030 0.000705 <0.0001 
CS*MR 2 1 0.9039 0.000922 <0.0001 
CS*MR 2 2 0.9097 0.000918 <0.0001 
CS*MR 2 3 0.8968 0.000907 <0.0001 
CS*MR 3 1 0.9031 0.001105 <0.0001 
CS*MR 3 2 0.8797 0.001086 <0.0001 
CS*MR 3 3 0.8931 0.001041 <0.0001 

 

The carriage movement speed, mirror rotation speed, and their interactions were 

found to have statistically significant effects on the measured roll and pitch angles, 

P<0.0001, when the significance level α=0.05. However, the standard errors at the 

combinations were less than 0.0011 for roll angle and 0.0012 for pitch angle, indicating 

that these effects were not practically significant. 

 

The measured roll angle was maintained within a rangle of 0.13°, which was 

smaller than that observed under condition A (0.16°). The range of measured pitch angle 

was also 0.13°. This result was different from those obtained from conditions A and B, 

where a clear declining trend in pitch angle was observed when the laser-carriage moved 

forward. Thus, it can be concluded that the rigidity of the aluminum frame to support the 

rail was not sufficient. The results of yaw angle measurement were similar to those 

derived from conditions A and B. A similar trend on the yaw angles was observed when 

the rail was supported at both ends. 
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The trends on yaw angle readings may have been caused by changes in the 

magnetic field when the laser line scanner moved along the rail. However, displacements 

of the yaw angle should not have affected the laser measurements because the yaw angle 

was only used in coordinate system conversion. The roll angles measured under all 

conditions had small variation ranges (<0.16°), resulting in no practically significant 

effect on the elevation measurement. By comparing the measurements of pitch angle 

under conditions A and B with those under condition D, it was obvious that the rail 

always tended to tilt to the direction where the laser scanner was located. These changes 

were related to the change of weight balance on the linear rail. The coordinate system of 

the laser system was defined based on the orientation of the linear rail. If the linear rail 

was tilted, the positions of the laser measurements would change. Thus, changes of pitch 

angle would affect the elevation measurements. These measurement errors shoud be 

compensated. 
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5.3 Preliminary Test on a Bare Soil Surface 

5.3.1 Description 

The laboratory experiments demonstrated that the laser system can provide 

accurate DEM data with high resolution. However, this vehicle-based system was aimed 

to measure soil surface roughness in the field. It was desirable to examine the 

functionality of the laser system under complex field conditions. Furthermore, the ability 

of the system to correctly register the measured DEM in the geographic coordinate 

system also needed to be examined.    

 

The field test reported in this dissertation was only a preliminary study. It focused 

on evaluating the capability of the laser system in measuring geo-referenced DEM under 

field conditions.  

 

5.3.2 Objectives 

The objectives of the preliminary test on a bare soil surface were: 

1). to examine the capability of the laser system in measuring soil surface 

elevation; 

2). to study possible sources of measurement errors and to design algorithms for 

error correction; 

3). to develop algorithms to convert derived DEM data from a local coordinate 

system to the geographic coordinate system. 

 

5.3.3 Methodology 

5.3.3.1 Test Procedure 

The outdoor experiment was conducted on November 20th, 2007. The scanned 

bare soil surface was located near the east parking lot of the Bill Snyder Family stadium, 

Manhattan KS (Figure 5.45). The selected laser sampling rate was 10 kHz. The maximum 

measurement range was set at 304.8 cm. The laser mirror rotated at the maximum speed 
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of 2600 RPM. The laser-carriage moved at the medium speed (9 cm/s).  The vertical 

distance from the laser scanner to the bare soil surface was measured at approximately 

117 cm. A Trimble AgGPS 132 DGPS receiver was used to provide the global 

positioning information. 

   

Figure 5.45 Outdoor Test on a Bare Soil Surface 

 

 

5.3.3.2 Cross-validation-based Outlier Removal Algorithm 

In statistics, an outlier was an observation that was numerically distant from the 

rest of the data (Barnett and Lewis, 1994). Because outliers were found in the data sets 

acquired by the laser system, an algorithm was developed to recognize and remove the 

outliers.  

 

The algorithm to remove the outliers used a polynomial model to describe the 

elevation profile derived during each scan and a leave-one-out cross-validation method to 
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select the model that best fitted the data. From the selected model, the predicted laser data 

and a 95% confidence interval can be obtained. Measured data that fell outside the 

confidence interval would be treated as outliers and removed from the data set. The 

algorithm consisted of the following steps: 

 

(1)  Break the data obtained during a scan into k partitions, 

(2)  Take one of the partitions out from the data, 

(3)  Use the remaining partitions to develop a polynomial regression equation 

with order r (Equation 5.17), 

 

y = arx
r+ar-1x

r-1+…+a2x
2+a1x+a0                                  (5.17) 

where (x, y) are the data points within the remaining partitions, and 

           a0, a1,…, ar are the coefficients of the polynomial regression equation.          

 

(4)  Use the partition that was taken out in step 2 as the test set to test the 

polynomial model and to calculate the prediction error (Equation 5.18), 

 

EP = (Y – Ŷ)2                                                                                 (5.18) 

where Y is the observed data of the test set, and 

           Ŷ is the predicted data of the test set. 

 

(5)  Repeat steps (2) through (4) until all partitions have been used as a test set, 

(6)  Determine the average of the prediction errors, 
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= −∑ ,                                                                    (5.19) 

 where k is the number of partitions. 

 

 (7) Increase order r at step (3) and repeat steps (2) through (6) until the maximum 

order, 16, is reached, 
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(8)  Select the optimum polynomial order r that gave the minimum error Er 

among models of all orders tested, 

(9)  Develop a polynomial regression equation at the optimum order using all data 

partitions,  

(10)  Determine the 95% confidence intervals of the regression model, 

(11)  Remove data points that fell outside the confidence interval.  

 

The algorithm was implemented in MATLAB (Appendix J). Two functions, 

polyfit and polyval, were used. The polyfit function generated a ‘best fit’ polynomial (in 

the least squares sense) of a specified order for a given set of data. The polyval function 

calculated the predicted value of y at a given value of x using the best fit polynomial 

equation. Both functions had two return parameters. [p, S] = polyfit(x, y, n) returned the 

polynomial coefficients p and a structure S for use with polyval to obtain predictions or 

error estimates. [y, δ] = polyval(p, x, S) uses the optional output structure S generated by 

polyfit to generate prediction y and error estimates δ. Thus, y±2δ contained 95% of the 

predictions and, hence, can be used as the 95% confidence interval.  

5.3.3.3 Coordinate Conversion Algorithm 

The DEM data generated by the laser system was represented in its local 

coordinate system. In order to locate these data points on a geographic coordinate system, 

a coordinate conversion algorithm was required. 

 

The most convenient way to specify points on the curved surface of the Earth was 

using latitude, longitude, and altitude in a coordinate system built on a geodetic datum. 

However, these points can also be specified on a flat surface or map in grid coordinates 

after projecting the curved surface onto a flat surface.  

 

A geodetic datum was a tool to describe the size and shape of Earth surface, the 

origin and orientation of the coordinate system used in mapping Earth. Throughout time, 

there were hundreds of geodetic datums in use around the world. One of the most widely 

used datums was the World Geodetic System 1984 (WGS84) developed by the U.S. 

Department of Defense. It comprised a coherent set of global models and definitions: an 
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Earth-centered, Earth-fixed (ECEF) Cartesian coordinate frame, a reference ellipsoid of 

revolution as a geometric model of the shape of Earth, a characterization of Earth’s 

gravity field, and a consistent set of fundamental constants (Misra and Enge, 2001).  

WGS84 was essential to the development of the Global Positioning System (GPS), 

because the position information from the GPS receiver was expressed in the WGS84 

geodetic coordinate system.  

 

The Universal Transverse Mercator (UTM) geographic coordinate system used a 

grid-based method to specify locations of points corresponding to their latitudes and 

longitudes (USGS, 2006). Based on a transverse Mercator projection, the UTM system 

divided the surface of Earth into sixty north-south zones, each of which was six degrees 

wide in longitude. The zones were numbered from west to east, beginning at the 

International Data Line (180°).  Each zone was subdivided into the eastern and western 

halves by drawing the ‘central meridian’, which was a line perpendicular to the equator 

between the poles. In each zone, coordinates were measured North and East in meters. To 

avoid negative coordinates, an arbitrary false northing value of 10,000,000 meters was 

assigned to the equator and an easting value of 500,000 meters was assigned to the 

central meridian (Riesterer, 2008). The WGS84 ellipsoid was used as the underlying 

model of Earth in the UTM coordinate system. 

 

The coordinate conversion algorithm used in the laser system was to convert the 

DEM data from its local coordinate system to the UTM geographic coordinate system 

using the laser measurements, the yaw angle measured by the gyroscope, the latitude and 

longitude information provided by the GPS receiver, and the known positions of these 

sensors (Appendix K). Two local coordinate systems and one global coordinate system 

were defined during conversion. These coordinate systems are described as follows: 

 

(1). The X-Y-Z coordinate system (Figure 5.46). This was a local coordinate 

system defined on the laser system with Y and X axes aligned with the forward and 

rightward and Z axis pointing upwards. The origin O1 located at the center of the rotating 

mirror when the laser was at the starting position (Figure 5.4).  
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(2). The E-N-U coordinate system (Figure 5.46). This was a local coordinate 

system with the three axes aligned with the East, North and Upward directions, 

respectively. The origin O2 located at the center of the gyroscope sensor. For the field test, 

the roll and pitch angles were measured only once before the laser-carriage started to 

move. Variations in the pitch and roll angles during the rotation of the mirror and the 

translation of the laser-carriage on the rail were ignored. Only the measured yaw angle 

was used in the transformation.  

 

(3). The UTM geographic coordinate system. This is an Earth-fixed coordinate 

frame with the three axes aligned with the North, East and down (NED) directions, 

respectively. Obviously, only translations were involved in the transformation between 

the E-N-U and the UTM coordinate system. 

 

Figure 5.46 The Local Coordinate Systems 
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The yaw angle measured by the gyroscope sensor was referenced to the magnetic 

north, pointing to Earth’s magnetic north pole. On the other hand, the UTM coordinates 

used the true north (geographic North Pole) as its north. The true north did not coincide 

with the magnetic north. The angular difference between the true north and the magnetic 

north was called “declination” or “magnetic variation”.  By knowing the yaw angle and 

the magnetic declination, elevations measured in the X-Y-Z coordinate system can be 

converted into the E-N-U coordinate system by using Equations (5.20), (5.21) and (5.22). 

The mathematical model of the calculation is shown in Figure 5.47. The estimated value 

of magnetic declination can be found on the website of National Geophysical Data Center, 

which is provided as a public service by the U.S. Department of Commerce, National 

Oceanic and Atmospheric Administration, National Environmental Satellite, Data and 

Information Service. 

 

Figure 5.47 Illustration of Coordinate Conversation between the X-Y-Z coordinate 

system and the E-N-U coordinate system 

 

 

cos sin ( )e x y dα α= ⋅ + ⋅ −                                               (5.20) 

sin cos ( )n x y dα α= − ⋅ + ⋅ −                                            (5.21) 
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0u z z= +                                                                               (5.22) 

 

where (x, y) was the location of a data point P in the X-Y-Z coordinate system, in 

meter, 

 z was the elevation of data point P in the X-Y-Z coordinate system, in 

meter, 

           (e, n) was the location of the same data point P in the E-N-U coordinate 

system, in meter, 

 u was the elevation of data point P in the E-N-U coordinate system, in 

meter,  

           a γ δ= +                                                                    (5.23)  

            where δ was the magnetic declination, in radian, 

 γ was the yaw angle measured by the gyroscope sensor, in radian.  

 Due to the fact that the Z-axis in the X-Y-Z coordinate system was 

in the opposite direction of the U-axis in the E-N-U coordinate 

system, a negative sign was added to γ.  

 d = 51cm, the horizontal distance between the origin O1 of the X-Y-Z 

coordinate system and the origin O2 of the E-N-U coordinate system,  

 z0 = 24cm, the vertical distance between the origin O1 of the X-Y-Z 

coordinate system and the origin O2 of the E-N-U coordinate system.   

     

The GPS antenna was mounted on top of the gyroscope sensor during field 

experiments. The vertical distance between the center of the antenna and the center of the 

gyroscope sensor was 11 cm. Coordiantes in the E-N-U coordinate system can be 

converted into the UTM (WGS84) coordinate system by using Equations (5.24), (5.25), 

and (5.26).  

 

e’ = e + e’0                                                                             (5.24)  

n’ = n + n’0                                                                            (5.25) 

u’ = u + u’0+ ua                                                                      (5.26) 
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where (e’, n’) were easting, northing in the UTM geographic coordinate system, 

in meter, 

            u’ was the altitude, which was referenced to Mean Sea Level (MSL), in 

meter, 

           (e, n) were the coordiantes in the E-N-U coordinate system, in meter,  

           u was the elecations in E-N-U coordinate system, in meter, 

 (e’0, n’0) was the coordinate of the origin O2 of the E-N-U coordinate 

system in the UTM (WGS84) geographic coordinate system (Appendix L), 

           u’0 was the elevation of the center of GPS antenna, referenced to the MSL, 

in meter, 

           ua = 11cm, was the vertical distance betweent the center of the GPS 

antenna and the origin O2 of the E-N-U coordinate system. 

 

 

5.3.4 Results and Discussion 

Outliers were observed in most three-dimensional raw datasets acquired by the 

laser system in the outdoor test. Figure 5.48 shows one of these data sets. Figure 5.49 is 

the same data set viewed in the X-Z plane.  These plots clearly showed that most of the 

measured data points laid between -110 cm and -120 cm, whereas a few were great than -

120 cm. These data points appeared to qualify for the “outliers” by human judgment. 
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Figure 5.48 3D Plot of a Raw Laser Data Set Measured during the Field Test 

 

 

Figure 5.49 Outliers Viewed in the X-Z Plane 
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The leave-one-out cross-validation algorithm was applied to data shown in 

Figures 5.48 and 5.49. The result is shown in Figures 5.50 and 5.51. Obviously, most 

outliers were removed. The bare soil surface had an inclined slope.  

 

Figure 5.50 3D Plot of the Raw Data after the Outliers were removed 
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Figure 5.51 (a) The Raw Data Viewed in the X-Z Plane after the Outliers were 

removed, (b) The Same Data Viewed in the X-Z Plane after the Scales for the X- and 

Z-axis were Unified 

 

(a) 

 

(b) 

 

The coordinate conversion algorithm, along with the yaw angles measured by the 

gyroscope sensor and the latitudes, longitudes and altitudes provided by the GPS, was 

used to convert the measured data from the X-Y-Z local coordinate system to the 

geographic coordinate system, UTM-WGS84 (Figure 5.52). The recorded latitude was 

39°12.161782’ north and the longitude was 96°35.424589’ west.  The results showed that 

the soil surface was located at 4,342 kilometers north and 208.07 kilometers east in zone 

14 in the UTM geographic system.   
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Figure 5.52 (a) Measured DEM in the UTM (WGS84) Geographic Coordinate 

System, (b) The Same Data Plotted at Identical X-, Y- and Z-axis Scales 

 

(a) 

 

 

(b) 
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CHAPTER 6 - Conclusions 

Conclusions drawn from each stage of this study are summarized as follows: 

6.1 Laser System 

A vehicle-based laser measurement system for generating high-resolution DEM 

data was developed. The system consisted of five units:  

� a laser line scanner to measure the surface elevation,  

� a flexible frame-rail mechanism to support the sensors on the bed of a small 

utility vehicle, 

� a gyroscope sensor to measure the roll, pitch, and yaw angular displacements 

of the vehicle, 

� a RTK GPS to provide the geographic position of the measured surface, and 

� a data-acquisition and control unit. 

A user interface program was developed to control the laser system and to collect 

the sensors data through a field laptop.  

6.2 Components Tests 

� A test on the rotating mirror showed that the DC motor required a transient period of 

about 20 seconds to reach its steady-state speed. The laser scanner should not start 

the measurement during the transient period. 

� After testing the laser scanner on three types of objects – white paper, black paper, 

and sand surface, it was found that the white paper gave the most consistent distance 

measurement. The laser scanner was then calibrated on the whiter paper for distance 

measurement.  

� The spatial resolution of the DEM models developed by the laser system was 

affected by the rotational speed of the mirror, the sampling rate, the movement 

speed of the laser-carriage, the height of the laser line scanner from the ground, and 

the size of the scan area.  

� A test conducted on the gyroscope sensor showed that errors in pitch and roll 

measurement were larger in combined pitch/roll rotations than those in single pitch 
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or roll rotations. Within ±30° of single pitch or roll rotations, the measurement 

errors in pitch and roll angles were within 0.8° and 0.4°, respectively.  

� A modeling study on the effects of pitch and roll measurement errors on elevation 

measurement demonstrated that: a) Errors in roll angle measurement did not 

significantly affect the elevation measurement; b) For positive pitch angles, 

especially those approaching 30°, errors in pitch angle measurement had a 

significant effect on the elevation measurement; c) For negative pitch angles in the 

ranges of 0~-18°, errors in pitch angle measurement did not significantly affect the 

elevation. For those in the ranges of -27~-30°, errors in pitch angle measurement 

had a significant effect on the elevation measurement. Outside these ranges, the 

effect depended on the measured distance. 

6.3 Accuracy Tests 

� DEM models were created by interpolating the raw laser data using a two-

dimensional, three-nearest neighbor, distance-weighted algorithm.   

� Test results of surfaces with known geometric shapes indicated that the laser system 

can describe individual objects more accurately than a flat surface. Shapes of 

different objects can be identified from the DEMs. 

� The accuracy of the laser system in elevation measurement was evaluated by 

comparing the DEM models generated by the laser system for a sand-stone surface 

with a reference DEM model generated by a more accurate, laser-based profile 

meter for the same surface. The correlation coefficient between the DEMs was 

calculated. Within four replications, the highest correlation coefficient between the 

measured and reference DEMs was 0.9371. The correlation coefficients among the 

four replications were greater than 0.948.  

� A median threshold filter and a median filter applied to the raw laser data before and 

after the interpolation slightly improved both measurement accuracy and 

repeatability. The correlation coefficient between the measured and reference DEMs 

was improved to 0.954. Correlation coefficients of greater than 0.988 were achieved 

among the four replications. 
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� Differences in materials and colors affected the grayscale images, which were 

created from the intensity data provided by the laser scanner.   

6.4 Noise Tests 

� Results of the ambient light test indicated that neither sunlight nor fluorescent light 

affected the elevation measurement of the laser system. The system provided 

consistent elevation measurements under both indoor and outdoor lighting 

conditions.  

� A test on the linear rail when the laser-carriage moved with and without the mirror 

rotation indicated that the mirror rotation did not significantly affect the roll and 

pitch measurement. 

� A test on the linear rail when the mirror rotated with and without the laser-carriage 

movement indicated that the laser-carriage movement did not significantly affect the 

roll and pitch measurement. 

� A test on the linear rail when both ends were fixed indicated that the rigidity of the 

aluminum frame to support the rail was not sufficient. 

� Tests on the linear rail showed that the rail slightly tilted to the direction where the 

laser scanner was located because of the change in weight balance. The variation 

range of the roll angle was small (<0.16°), which resulted in no practically 

significant effect on the elevation measurement. A consistent trend in yaw angle 

variation was observed when the laser scanner moved along the rail. It may have 

been caused by changes in the magnetic field. 

� Errors in the elevation measurement caused by the variation of the pitch angle 

needed to be compensated. 

6.5 Preliminary Test in the Field 

� A leave-one-out cross-validation algorithm was used to remove the outliers observed 

in the raw laser data. 

� The DEM data measured by the laser system was converted from a local coordinate 

system to the UTM geographic coordinate system by using the yaw angle measured 
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by the gyroscope, the known positions of the sensors, and the latitude, longitude, 

and altitude information provided by the GPS receiver.  

� Results of the preliminary outdoor experiment indicated that the laser system was 

capable of providing geo-referenced DEM data. 
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CHAPTER 7 - Future Work 

Rail vibration test results showed that the linear rail tilted to the direction where 

the laser scanner was located when the laser-carriage moved on the rail. These angular 

changes of the rail would affect the elevation measurements. Two methods to solve this 

effect are recommended. One is to strengthen the rigidity of the aluminum frame. 

Another method is to correct the measurement errors during the generation of the three-

dimensional data. 

             

          The comparison between DEMs obtained by the laser system and the reference 

system showed that the laser system can describe the measured surface with satisfactory 

accuracy and repeatability based on distance measurements. Using additional information 

such as intensity may have the potential for removing the measurement error and 

increasing the accuracy. Thus, future studies on the fusion of distance measurement and 

intensity information need to be investigated.  

 

More field experiments need to be conducted for further evaluating the 

performance of the laser system in measuring the soil surface roughness. 

 

Differences in materials and colors affected the graycale image. Thus, tests on the 

reflected light intensity need to be conducted to examine the potential capabilities of the 

laser system in measuring crop residues on soil surface. Methods in digital image 

processing could be introduced to enhance the grayscale image. 
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Appendix A - Laser Sampling Program 

/************************************************** ******************** 

** Program:  LaserReading.cpp 

** This is a data logger for Acuity - AccuRange 4000 through HSIF.   

** Files:  LOOKUPHS - laser calibration file; hsiflib.lib - HISF static linked library  

**       sio_util.h; sio_util.cpp; rangehs. h - Laser settings and HSIF routines 

** Inputs: COM port number, HSIF Card number, Sampling Period, Data Buffer Size,Max Range,  

**  Motor Number, and Motor Power Lever. (Calibration File)  

** Ouputs: *.txt: Distance, Raw range, Amplitude, Temperature, Angle1(Laser Motor),  

**            Angle2(Rail Motor),Index1(Laser Encoder Index), Index2(Rail Encoder Index).  

** Usage: laser_gyro_gps <Laser_file_name><COM> <Card> <SamplePeriod><Lines><Range> 

**                   <Motor> <Power>  

** Subroutines: Save_file(); 

*************************************************** ******************/                

#include <math.h>  

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <errno.h> 

#include <process.h> 

#include <windows.h> 

#include <conio.h>  

 

#include "..\hsiflib\rangehs.h"   //h.file for laser setting   

#include "..\utilities\sio_util.h"  //h.file for laser setting  

 

#define MAX_PACKET_SIZE 255 

#define MAX_BUF_SIZE 255 

#define DEFAULT_LASER_COMM 1  //default settings 

#define DEFAULT_LASER_BOARD 1 

#define DEFAULT_LASER_SAMPLE_PERIOD 20 

#define DEFAULT_LASER_SAMPLE_LINES 200 

#define DEFAULT_LASER_MOTOR_NUM 1 

#define DEFAULT_LASER_MOTOR_POWER 255 

#define EXIT_CHAR 'q' 
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#define NUM_SAMPLES 5000 

#define HS_BUFSIZE (NUM_SAMPLES*sizeof(HSIF_SAMPLE))    

HSIF_SAMPLE hsbuffer[HS_BUFSIZE/sizeof(HSIF_SAMPLE)];//Raw sample buffer  

#define NUM_PROCESS 1000000 

#define HPS_BUFSIZE (NUM_PROCESS*sizeof(HSIF_PROC_SAMPLE))     

HSIF_PROC_SAMPLE hpSampleBuf[HPS_BUFSIZE/sizeof(HSIF_PROC_SAMPLE)]; 

HSIF_RESULT result;    // see manual, page26 

COMMINFO Commport;  // in sio_util.h, "COMMINFO" in serial I/O routine for communication 

COMMINFO * pcom = 0;             

 

static void save_file(int lines, FILE* fp);  // save laser data 

main(int argc, char *argv[]) 

{ 

 COMMINFO Commport;                            //laser data structure, in sio_util.h 

 pcom = &Commport; 

 HSIF_HANDLE hsif = HSIF_INVALID_HANDLE;      // handle of HSIF card 

 int serialport = DEFAULT_LASER_COMM;            // serial port number 

 int board = DEFAULT_LASER_BOARD;              // HSIF number   

 long sample_period = DEFAULT_LASER_SAMPLE_PERIOD; // sampling period  

 int lines = DEFAULT_LASER_SAMPLE_LINES;   // total lines of range data before exiting 

 int max_range = DEFAULT_MAX_RANGE;             //650 inches 

 int motor = DEFAULT_LASER_MOTOR_NUM;         //motor number 

 int powerlevel = DEFAULT_LASER_MOTOR_POWER;   //motor power 

 char *outLaserFileName;                            //point to data file 

 char calibration[]="LOOKUPHS";                    //calibraion file: LOOKUPHS 

 DWORD numRead; 

 int hplines; 

 FILE *fp;    //point to a file structuce.    

 unsigned int userChar = '0'; 

 int currentArg;  //Argument number of Main() 

    

 if (argc < 2) { /* not enough argument */ 

  printf("usage: laserreading<Laserfile><options>\n"); 

  printf("Available options are: \n"); 

  printf("-c <comm port number for Laser> where the default is 1.\n"); 

  printf("-b <HSIF board number> where the default is 1.\n"); 

  printf("-s <sampling period> where the default is 20us.\n"); 

  printf("-l <buffer size> where the default is 200 which means 1000000 samples \n"); 

  printf("-r <max range> where the default is 650 inches.\n"); 

  printf("-m <motor number> where the default is 1.\n"); 
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  printf("-p <motor power level> where the default is 255, the highest speed\n"); 

  getchar(); // waiting key_point 

  exit(1); 

 } 

 

 currentArg = 1;   //0 is the program name  

 outLaserFileName = argv[currentArg]; currentArg++; 

 while (argc > currentArg) {       //argument > 4 (begin) 

  switch (argv[currentArg][1]) {     

  case 'c': // serial port number  

   currentArg++; 

   serialport = atoi(argv[currentArg]); currentArg++; 

   break; 

  case 'b': // HSIF board number 

   currentArg++; 

   board = atoi(argv[currentArg]); currentArg++; 

   break; 

  case 's': // sampling period 

   currentArg++; 

   sample_period = atol(argv[currentArg]); currentArg++; 

   break; 

  case 'l': // data buffer size 

   currentArg++; 

   lines = atoi(argv[currentArg]); currentArg++; 

   break;   

  case 'r': // maximum measurement range 

   currentArg++; 

   max_range = atoi(argv[currentArg]); currentArg++; 

   break;  

  case 'm': // motor number 

   currentArg++; 

   motor = atoi(argv[currentArg]); currentArg++; 

   break; 

  case 'p': // motor power level 

   currentArg++; 

   powerlevel = atoi(argv[currentArg]); currentArg++; 

   break;  

  default: 

   printf("unknown argument: -%c\n",argv[currentArg][1]); 

   printf("type laser_gyro_gps without any parameters for help"); 

   break;} // end switch  

 } // end while  



 168 

 HsifDllInit(); // Initialize library, See manual, page 25 

 fp = fopen(outLaserFileName , "w"); 

             

 if(!OpenPort(pcom, 9600, serialport)){ //Initialization: COM, HSIF Card ,in sio_util.h 

  pcom = 0; 

  fprintf(stderr, "Error: Serial Comm port open failed.\n"); 

  goto ERROR_EXIT; 

 }     

 sendstr(pcom,"I");// set to factory defaults. manually send the command to set the sensor through RS232. 

 Sleep(200);      //give 0.2 sec time to take effect.        

                  

    fprintf(stderr, "Opened high speed interface.\n"); 

 hsif = HsifOpen(board, &Commport); // Open HSIF, in rangehs.h 

 if(hsif == HSIF_INVALID_HANDLE) { 

  fprintf(stderr, "Error: HsifOpen failed.\n"); 

  goto ERROR_EXIT; 

 } 

 if(HsifResetBoard(hsif) == HSIF_FAIL) { // Reset HSIF, in rangehs.h 

  fprintf(stderr, "Error: HsifResetBoard failed.\n"); 

  goto ERROR_EXIT; 

 } 

 fprintf(stderr, "HISF Card Calibration\n");  

 HsifSetPollMode(hsif,TRUE); // TRUE = polling allowed       

 if(HsifCalibrate(hsif) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Could not get calibration value\n"); 

  goto ERROR_EXIT; 

 } 

 fprintf(stderr,"SamplingModeInit\n");  

 if(HsifSamplingModeInit(hsif) != HSIF_SUCCESS){// set card to sampling mode 

  fprintf(stderr,"Error: Could not initialize sampling mode\n"); 

  goto ERROR_EXIT; 

 }  

 if(HsifClearEncoder(hsif, ENCODER1|ENCODER2,TRUE)!= HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to clear encoder1\n"); 

  goto ERROR_EXIT; 

 } //True: take place when the index pulse occurs;  FALSE: immediately  

 if(HsifCalibrateEncoder(hsif, ENCODER1, 0, 4096) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set encoder1\n"); 

  goto ERROR_EXIT; 

 } // Set sample period and resolution for encoder1. 

 if(HsifCalibrateEncoder(hsif, ENCODER2, 0, 200) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set encoder2\n"); 
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  goto ERROR_EXIT; 

 } // Set sample period and resolution for encode2. 

 if(HsifLoadCalibrationData(hsif, calibration) == HSIF_FAIL) { 

  printf("ERROR: Could not read calibration file\n"); 

  goto ERROR_EXIT; 

 } 

 if(HsifSetSamplePeriod(hsif,0,max_range,sample_period)!= HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set sample and range\n"); 

  goto ERROR_EXIT; 

 } // Set sample period and resolution 

 HsifSetMotorPower(hsif, motor, powerlevel);    

 fprintf(stderr,"Waiting (20 sec.) for mirror to move\n"); 

 Sleep(20000);   

 fprintf(stderr, "Clear Sample Buffer\n");  

 HsifClearSampleBuffer(hsif); // for clean buffer each time 

 HsifSamplingEnable(hsif);  // need to skip ahead 

 fprintf(stderr,"Sampling Enable\n"); 

 fprintf(stderr,"Begin sampling\n"); 

 hplines = lines; 

 while((userChar != EXIT_CHAR) && (lines--)){ 

  if((HsifGetBufferedSamples(hsif,hsbuffer,NUM_SAMPLES,&numRead,TRUE))==HSIF_FAIL){ 

   printf("ERROR: Buffer overflow flag not getting set.\n"); 

   return(0); 

  }    

  if( DATA_LOST(hsbuffer[NUM_SAMPLES-1])){ 

   HsifClearSampleBuffer(hsif); 

   HsifSamplingEnable(hsif); 

  } 

           result=HsifProcessSamples(hsif,hsbuffer,hpSampleBuf+(hplines-lines-1)*NUM_SAMPLES,NUM_SAMPLES);

  if(hpSampleBuf[(hplines-lines-1)*NUM_SAMPLES].timeout){ 

   printf("ERROR: Sample measurement timeout!\n"); 

   return(0); 

  } 

  if (kbhit()) { 

   userChar=getch(); 

  }//kbhit()--checks the console for keyboard input, required header <conio.h> 

    } 

  

 fprintf(stderr,"End sampling\n"); 

 fprintf(stderr,"Sampling Lines counter: %d\n", lines); 

 HsifSetMotorPower(hsif, motor, 0);   

 fprintf(stderr,"Saving Data,Please Waiting\n"); 
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 save_file((hplines-lines-1), fp);  

ERROR_EXIT: 

 if(pcom) 

  ClosePort(pcom); 

 if(hsif != HSIF_INVALID_HANDLE) 

  HsifClose(hsif); 

 return(0); 

} 

 

/*********************************** 

//Function Name: save_file(int lines) 

//Descriptions:Write all data from hpSampleBuf[] buffer to a .txt file (data.txt). 

***********************************/ 

static void save_file(int lines, FILE *fp) 

{ 

 int i; 

 fprintf(fp, "Distance(inches)\t"); 

 fprintf(fp, "Raw Range(bits)\t"); 

 fprintf(fp, "Amplitude\t"); 

 fprintf(fp, "Ambient\t"); 

 fprintf(fp, "Temp(F)\t"); 

 fprintf(fp, "Angle1(radins)\t"); 

 fprintf(fp, "Angle2(radins\t"); 

 fprintf(fp, "Index1\t"); 

 fprintf(fp, "Index2\t"); 

  

    for( i=0; i < (lines*NUM_SAMPLES); i++){ 

  fprintf(fp,"\n"); 

  fprintf(fp, "%.2f\t", hpSampleBuf[i].distance); 

  fprintf(fp, "%.0f\t", (double)hpSampleBuf[i].rawRange); 

  fprintf(fp, "%.1f\t", hpSampleBuf[i].amplitude); 

  fprintf(fp, "%.1f\t", hpSampleBuf[i].ambient); 

  fprintf(fp, "%.1f\t", hpSampleBuf[i].caltemp); 

  fprintf(fp, "%.4f\t", hpSampleBuf[i].angle1); 

  fprintf(fp, "%.4f\t", hpSampleBuf[i].angle2); 

  fprintf(fp, "%d\t", INPUT1(hpSampleBuf[i]) ? 1:0); 

  fprintf(fp, "%d\t", INPUT2(hpSampleBuf[i]) ? 1:0); 

 }     

    if (fclose(fp)) 

  fprintf(stderr,"Error: Can't close the file\n"); 

} 
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Appendix B - Universal Serial Communication Program 

/************************************************** ******************** 

** Program:  Serial.cpp    (GPSreading.cpp) 

** This is a universial serial communation program for RS-232.   

** It initailize the port and collect data and save to txt file. 

** Available options are: 

** -c <comm port> where the default is COM1 

** -b <baud rate> where the default is 9600   

** -n <number of bits in the bytes> where the default is 8  

** -p <parity > where the default is NOPARITY (0) 

** -s <the number of the stop bits> where the default is ONESTOPBIT (1) 

** Subroutines: Output(); 

*************************************************** ******************/ 

#include <stdio.h> 

#include <windows.h> 

#include <conio.h>  // console function 

 

#define MAX_BUF_SIZE 255 

#define EXIT_CHAR 'q' 

static void Output(unsigned char *comBuf, unsigned long bytesRead, FILE* out);// save data 

 

void main (int argc, char *argv[])  

{ 

 char *outFileName;               //a pointer to output file name 

 FILE *out; 

 int currentArg;  

 char *comPort="COM1";                      //Seiral port, default is COM1  

 unsigned int baudRate = CBR_9600;     //Baud Rate, default is 9600, 'CBR'-Key words 

 unsigned int byteSize = 8;          // number of bits in the bytes transmitted and received 

 unsigned int parity = 0; 

 unsigned int stopBit = 0; 

 unsigned char comBuf[MAX_BUF_SIZE] = "";  //Comm buffer 

 unsigned int userChar= '0'; 

 unsigned long bytesRead = 0; 

 DWORD dwCommEvtMask; 

 DWORD dwErrorMask; 
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 DWORD nToRead; 

 DWORD dwRes; 

 LPDCB serialCtrl= new DCB;                   //DCB structure in MSDN,LPDCB 

 HANDLE serialPort; 

 COMMTIMEOUTS commTimeouts; 

 COMSTAT comstat; 

 OVERLAPPED ol = {0}; 

 

 if (argc < 2) { /* not enough argument */   

  printf("usage: gpsreading <file> <options>\n"); 

  printf("Available options are: \n"); 

  printf("-c <comm port> where the default is COM1\n"); 

  printf("-b <baud rate> where the default is 9600\n");   

  printf("-n <number of bits in the bytes> where the default is 8\n"); 

  printf("-p <patiry > where the default is NOPARITY (0)\n"); 

  printf("-s <the number of the stop bits> where the default is ONESTOPBIT (1)\n"); 

  printf("  Parity values: 0 -- No parity; 1 -- Odd; 2 -- Even; 3 -- Mark; 4 -- Space.\n"); 

  printf("  StopBits values: 0 -- 1 stop bit; 1 -- 1.5 stop bits; 2 -- 2 stop bits.\n"); 

  getchar(); 

  exit(1); 

 } 

 currentArg = 1; // 0 is the program name  

 outFileName = argv[currentArg]; currentArg++; 

 while (argc > currentArg) { //argument > 2 

  switch (argv[currentArg][1]) {    

  case 'c':  

   currentArg++; 

   comPort = argv[currentArg];currentArg++; 

   break;  

  case 'b':  

   currentArg++; 

   baudRate = atoi(argv[currentArg]); currentArg++; 

   break;  

  case 'n':  

   currentArg++; // atof() - convert strings to double 

   byteSize =  atoi(argv[currentArg]); currentArg++; 

   break;     



 173 

  case 'p':  

   currentArg++;      

   parity=atoi(argv[currentArg]); currentArg++;   

   break; 

  case 's':  

   currentArg++; 

   stopBit =atoi(argv[currentArg]); currentArg++; 

   break;  

  default: 

   printf("unknown argument: -%c\n",argv[currentArg][1]); 

   printf("type gpsreading without any parameters for help"); 

   break;}  

 } 

 switch (parity){ 

  case 0: parity = NOPARITY; break; 

  case 1: parity = ODDPARITY; break; 

  case 2: parity = EVENPARITY; break; 

  case 3: parity = MARKPARITY; break; 

  case 4: parity = SPACEPARITY; break; 

  default: parity = NOPARITY; break; 

 } 

 switch (stopBit){ 

  case 0: stopBit = ONESTOPBIT; break; 

  case 1: stopBit = ONE5STOPBITS; break; 

  case 2: stopBit = TWOSTOPBITS; break; 

  default: stopBit = ONESTOPBIT; break; 

 } 

 

 out = fopen(outFileName, "w"); 

 serialPort=CreateFile(comPort,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTIN

G,FILE_FLAG_OVERLAPPED,NULL);// OverLapped Mode 

 if (serialPort == INVALID_HANDLE_VALUE) { 

  printf("could not open serial port: %d\n", GetLastError()); 

  exit(1); 

 } 

 if (!(SetupComm(serialPort, 1024, 1024))) {  // Set input  and output buffer size:  

  printf( "error setting up comm: %d\n", GetLastError()); 



 174 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 if (!(GetCommState(serialPort, serialCtrl))) {  //get serial port state 

  printf("error getting comm: %d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 serialCtrl->BaudRate = baudRate;    //configure the serial port parameters. 

 serialCtrl->ByteSize = byteSize; 

 serialCtrl->Parity = parity; 

 serialCtrl->StopBits = stopBit; 

 if (!(SetCommState(serialPort, serialCtrl))) { //reset serial port state 

  printf("error setting comm: %d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 if (!GetCommTimeouts(serialPort, &commTimeouts)){ // get the serial port timeout 

  printf("error getting comm timeouts: %d\n",GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 commTimeouts.ReadIntervalTimeout = MAXDWORD; //interval time between the two bytes. 

 commTimeouts.ReadTotalTimeoutMultiplier =MAXDWORD; 

 commTimeouts.ReadTotalTimeoutConstant = 100;  

 if( !SetCommTimeouts(serialPort, &commTimeouts)){   //reset the serial port timeout 

  printf("error setting comm timeouts: %d\n",GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 if (!SetCommMask(serialPort, EV_RXCHAR)) {  // specify a event to monitor the serialPort. 

  printf("could not set a Mask for serial port: %d\n", GetLastError());  

  CloseHandle(serialPort); 

  exit(1); 

 } 

 if(!PurgeComm(serialPort,PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURG

E_RXCLEAR)){  
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  printf("error purge comm: %d\n",GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 }// clear all buffer 

 ol.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); 

 if (ol.hEvent==NULL){ 

  printf("could not set event: %d\n", GetLastError()); 

  exit(1); 

 }  

 while(userChar != EXIT_CHAR) { 

       if (WaitCommEvent(serialPort, &dwCommEvtMask, NULL)){ //waiting for moniting event 

             ClearCommError(serialPort,&dwErrorMask,&comstat);  // get data length  

             if ((dwCommEvtMask & EV_RXCHAR) && comstat.cbInQue){// receive  

       if(comstat.cbInQue > 255) 

               nToRead = 255; 

        else 

              nToRead = comstat.cbInQue; 

         if (nToRead ==0) 

                continue; 

          if (ReadFile(serialPort,comBuf,nToRead,&bytesRead,&ol)==0){ 

   if(GetLastError()== ERROR_IO_PENDING){ 

            dwRes = WaitForSingleObject(ol.hEvent,500); 

            switch (dwRes){ 

    case WAIT_OBJECT_0: 

    if (!GetOverlappedResult(serialPort, &ol, &bytesRead,FALSE)) 

           printf("Error getting Overlapped result: %d\n", GetLastError()); 

    else{ 

         if(bytesRead){ // no data print here    

     Output(comBuf,bytesRead,out);} 

    } 

    break; 

    case WAIT_TIMEOUT: 

         printf("TimeOut for waiting single object: %d\n", GetLastError()); 

         break; 

    case WAIT_FAILED: 

          printf("error waiting for single object: %d\n", GetLastError()); 

          break; 
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        default: 

         break; 

    } 

           } 

            else 

   printf("Reading of serial communication has problem: %d\n", GetLastError()); 

        } 

       else{ 

            if (bytesRead){  // data  print here 

                  Output(comBuf,bytesRead,out); 

         } 

              } 

      } 

 } 

  else{ 

          if(GetLastError()== ERROR_IO_PENDING){ 

           continue;  

           } 

           else 

   printf("Error for Waiting Comm Event: %d\n", GetLastError()); 

 } 

 if (kbhit()) { //kbhit()--checks the console for keyboard input, required header <conio.h> 

          userChar=getch();}  //getch()--get char for keyboard input, required header <conio.h> 

 } 

 if (CloseHandle(serialPort) == 0 ) 

  printf("Port  Closing isn't successed: %d\n", GetLastError()); 

 if (CloseHandle(ol.hEvent) == 0 ) 

  printf("Event Closing isn't successed: %d\n", GetLastError()); 

 if (fclose(out)) 

  fprintf(stderr,"Error: Can't close the file\n");   

} 

 

/************************ 

// Function Name: Output(unsigned char *comBuf, unsigned long bytesRead, FILE* out) 

//Descriptions: Write all data from comBuf[] buffer to a .txt file . 

************************/ 

static void Output(unsigned char *comBuf, unsigned long bytesRead, FILE* out) 
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{ 

 unsigned long i; 

 for (i=0; i<bytesRead; i++){ 

  fprintf(out,"%c",comBuf[i]); 

 } 

} 
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Appendix C - Main Program 

/************************************************** ******************** 

** Program:  Laser_gyro_gps.cpp 

** Source Files: LOOKUPHS - laser calibration file; hsiflib.lib - HISF  static linked library 

**            sio_util.h; sio_util.cpp; rangehs. h - Laser settings and HSIF routines     

** Inputs: Laser file name, Gyro file name, GPS file name, COM port number for laser,  

**       HISF card number, Sampling period, Buffer size, Max measurement range, Motor Number, **       

Motor Power Lever; Operating Mode of gyro, COM port number for gyro ;  

**  Baud rate of COM for gyro, COM port number for GPS, baud rate of COM for GPS,  

**      Bits number of COM for GPS, Parity control of COM for GPS, Stop bit of COM for GPS 

** Ouputs: Three data file for Laser, Gyroscope, and GPS, respectively.  

** Subroutines: Save_file(); restart_system(); check_packet_valid(); get_packet();output_packet();  

**           output_GPS() 

** Description: This is a data logger for Acuity laser scanner, Crossbow - AHRS400, and GPS systems.   

*************************************************** ******************/  

#include <math.h>  

#include <stdio.h> 

#include <string.h> 

#include <time.h>   

#include <stdlib.h> 

#include <process.h>  

#include <errno.h>   

#include <windows.h> 

#include <conio.h>   

#include <sys/types.h>   

#include <sys/timeb.h>  

 

#include "..\hsiflib\rangehs.h"          

#include "..\utilities\sio_util.h"    

#include "laser_gyro_gps.h" 

 

static void save_file(int lines, FILE* fp);     //save laser data 

static bool check_packet_valid(char mode,unsigned char* packet, unsigned int packetSize); 

static void get_packet(HANDLE fp, unsigned int packetSize, unsigned char *packet);  

static void output_packet(char mode,double dt, unsigned int packetCnt, 

unsigned char* packet, bool isDOSTIME, FILE* out); 
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static void restart_system(HANDLE serialPort,char mode, unsigned int *packetSize); 

static void output_GPS(unsigned char *comBuf,unsigned long bytesRead,FILE* outGPS); 

 

main(int argc, char *argv[]) 

{   // Laser parameters 

 COMMINFO Commport; 

          pcom = &Commport; 

          HSIF_HANDLE hsif = HSIF_INVALID_HANDLE; // handle of HSIF card,   

          int  serialport = DEFAULT_LASER_COMM; 

          int   board = DEFAULT_LASER_BOARD; 

          long sample_period = DEFAULT_LASER_SAMPLE_PERIOD; 

          int  lines = DEFAULT_LASER_SAMPLE_LINES;     

          int  max_range = DEFAULT_MAX_RANGE;     

          int  motor = DEFAULT_LASER_MOTOR_NUM;  

          int powerlevel = DEFAULT_LASER_MOTOR_POWER;  

          char  *outLaserFileName; 

          char calibration[]="LOOKUPHS";//calibraion file: LOOKUPHS 

          DWORD numRead; 

          int hplines;   

 

         //Gyro  parameters 

          char *outGyroFileName;  

          unsigned char packet[MAX_PACKET_SIZE]; //buffer the transfered and received data 

          FILE *out, *fp;  

          char *comPort = "COM2"; 

          unsigned int baudRate = CBR_38400;  

          char mode = ANGLE_MODE; //Measurement Modes, defualt is Angle mode. 

          unsigned long decimationRate=1; 

          bool outputData=FALSE, badPacket=FALSE; 

          bool isDOSTIME = FALSE; 

          unsigned int packetSize=0; 

          unsigned int packetCnt =0; 

          unsigned int badpacketCnt =0; 

          unsigned int i; 

          double dt=-1; 

          LPDCB serialCtrl= new DCB;    //DCB structure in MSDN,LPDCB 

          HANDLE serialPort; 
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         COMMTIMEOUTS commTimeouts; 

 

//GPS parameters 

char *outGPSFileName;  

FILE *outGPS; 

char *comGPSPort="COM3"; 

unsigned int baudRate_GPS = CBR_9600; 

unsigned int byteSize = 8;  

unsigned int parity = 0; 

unsigned int stopBit = 0; 

unsigned char comBuf[MAX_BUF_SIZE] = ""; //Comm buffer 

unsigned long bytesRead = 0; 

DWORD dwCommEvtMask; 

DWORD dwErrorMask; 

DWORD nToRead; 

DWORD dwRes;  

COMSTAT comstat; 

OVERLAPPED ol = {0}; 

LPDCB GPSserialCtrl= new DCB;    //DCB structure in MSDN,LPDCB 

HANDLE GPSserialPort; 

COMMTIMEOUTS GPScommTimeouts; 

  

//common  

unsigned int userChar = '0'; 

int currentArg; //Argument number of Main() 

printf(VERSION_STRING);    

   

if (argc < 4) { // not enough argument  

printf("usage: laser_gyro_gps <Laserfile><Gyrofile><GPSfile> <options>\n"); 

printf("Available options are: \n"); 

printf("-c <comm port number for Laser> where the default is 1.\n"); 

printf("-b <HSIF board number> where the default is 1.\n"); 

printf("-s <sampling period> where the default is 20us.\n"); 

printf("-l <buffer size> where the default is 200 which means 1000000 samples (15M).\n"); 

printf("-r <max range> where the default is 650 inches.\n"); 

printf("-m <motor number> where the default is 1.\n"); 

printf("-p <motor power level> where the default is 255 which means the highest speed\n"); 
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printf("-M <mode for Gyro> where <mode> is a, r, or c. Default is angle mode (a).\n"); 

printf("-C <comm port for Gyro> where the default is COM2 (2)\n"); 

printf("-B <baud rate for Gyro> where the default is 38400 (38400)\n");   

printf("-S <comm port for GPS> where the default is COM3\n"); 

printf("-R <baud rate for GPS> where the default is 9600\n");   

printf("-N <number of bits in the bytes> where the default is 8\n"); 

printf("-P <patiry > where the default is NOPARITY (0)\n"); 

printf("    Parity values: 0 -- No parity; 1 -- Odd; 2 -- Even; 3 -- Mark; 4 -- Space.\n"); 

printf("-n <the number of the stop bits> where the default is ONESTOPBIT (1)\n"); 

printf("    StopBits values: 0 -- 1 stop bit; 1 -- 1.5 stop bits; 2 -- 2 stop bits.\n"); 

getchar(); // waiting key_point 

exit(1); 

} 

 

currentArg = 1; //0 is the program name  

outLaserFileName = argv[currentArg]; currentArg++; 

outGyroFileName = argv[currentArg]; currentArg++; 

outGPSFileName = argv[currentArg]; currentArg++; 

while (argc > currentArg) {       //argument > 4 (begin) 

switch (argv[currentArg][1]) {    

case 'c': // serial port number  

 currentArg++; 

 serialport = atoi(argv[currentArg]); currentArg++; 

 break; 

case 'b': // board number 

 currentArg++; 

 board = atoi(argv[currentArg]); currentArg++; 

 break; 

case 's': // sample period 

 currentArg++; 

 sample_period = atol(argv[currentArg]); currentArg++; 

 break; 

case 'l': // sample lines 

 currentArg++; 

 lines = atoi(argv[currentArg]); currentArg++; 

 break;  

case 'r': // max range 
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 currentArg++; 

 max_range = atoi(argv[currentArg]); currentArg++; 

 break;  

case 'm': // motor number 

 currentArg++; 

 motor = atoi(argv[currentArg]); currentArg++; 

 break;  

case 'p': // motor power level 

 currentArg++; 

 powerlevel = atoi(argv[currentArg]); currentArg++; 

 break;  

case 'M': // mode  

 currentArg++; 

 mode = argv[currentArg][0]; currentArg++; 

 break;  

case 'C': // comm port  

 currentArg++; 

 comPort= argv[currentArg]; currentArg++;  

 break; 

case 'B': // baud rate   

 currentArg++; 

 baudRate = atoi(argv[currentArg]); currentArg++; 

 break; 

case 'S':  

 currentArg++; 

 comGPSPort= argv[currentArg]; currentArg++;  

 break; 

case 'R':  

 currentArg++; 

 baudRate_GPS = atoi(argv[currentArg]); currentArg++; 

 break;  

case 'N':  

 currentArg++; 

 byteSize =  atoi(argv[currentArg]); currentArg++; 

 break;    

case 'P':  

 currentArg++;  
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 parity=atoi(argv[currentArg]); currentArg++;   

 break; 

case 'n':  

 currentArg++; 

 stopBit =atoi(argv[currentArg]); currentArg++; 

 break;  

default: 

 printf("unknown argument: -%c\n",argv[currentArg][1]); 

 printf("type laser_gyro_gps without any parameters for help"); 

 break; 

} // end switch  

} // end while  

//GPS 

switch (parity){ 

case 0: parity = NOPARITY; break; 

case 1: parity = ODDPARITY; break; 

case 2: parity = EVENPARITY; break; 

case 3: parity = MARKPARITY; break; 

case 4: parity = SPACEPARITY; break; 

default: parity = NOPARITY; break; 

} 

switch (stopBit){ 

case 0: stopBit = ONESTOPBIT; break; 

case 1: stopBit = ONE5STOPBITS; break; 

case 2: stopBit = TWOSTOPBITS; break; 

default: stopBit = ONESTOPBIT; break; 

} 

outGPS = fopen(outGPSFileName, "w"); 

GPSserialPort=CreateFile(comGPSPort,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXI

STING,FILE_FLAG_OVERLAPPED,NULL); // OverLapped Mode 

if (GPSserialPort == INVALID_HANDLE_VALUE) { 

 printf("GPS - could not open serial port: %d\n", GetLastError()); 

 exit(1); 

} 

if (!(SetupComm(GPSserialPort, 1024, 1024))) {  // Set input and output buffer size:  

 printf( "GPS - error setting up comm: %d\n", GetLastError()); 

 CloseHandle(GPSserialPort); 
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     exit(1); 

} 

if (!(GetCommState(GPSserialPort, GPSserialCtrl))) {  //get serial port state 

 printf("GPS - error getting comm: %d\n", GetLastError()); 

 CloseHandle(GPSserialPort); 

 exit(1); 

} 

GPSserialCtrl->BaudRate = baudRate_GPS;    //configure the serial port parameters. 

GPSserialCtrl->ByteSize = byteSize; 

GPSserialCtrl->Parity = parity; 

GPSserialCtrl->StopBits = stopBit; 

if (!(SetCommState(GPSserialPort, GPSserialCtrl))) { //reset serial port state 

 printf("GPS - error setting comm: %d\n", GetLastError()); 

 CloseHandle(GPSserialPort); 

 exit(1); 

} 

if (!GetCommTimeouts(GPSserialPort, &GPScommTimeouts)){ // get the serial port timeout 

 printf("GPS - error getting comm timeouts: %d\n",GetLastError()); 

 CloseHandle(GPSserialPort); 

 exit(1); 

} 

GPScommTimeouts.ReadIntervalTimeout = MAXDWORD; 

GPScommTimeouts.ReadTotalTimeoutMultiplier =MAXDWORD; 

GPScommTimeouts.ReadTotalTimeoutConstant = 100;  

if( !SetCommTimeouts(GPSserialPort, &GPScommTimeouts)){ // reset the serial port timeout 

 printf("GPS - error setting comm timeouts: %d\n",GetLastError()); 

 CloseHandle(GPSserialPort); 

 exit(1); 

} 

if (!SetCommMask(GPSserialPort, EV_RXCHAR)) { // specify a event to monitor the serialPort. 

 printf("GPS - could not set a Mask for serial port: %d\n", GetLastError());  

 CloseHandle(GPSserialPort); 

 exit(1); 

} 

If (!PurgeComm (GPSserialPort, 

PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR)){ 

printf("GPS - error purge comm: %d\n",GetLastError()); 
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CloseHandle(GPSserialPort); 

exit(1); 

} // clear all buffer 

ol.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); 

if (ol.hEvent==NULL){ 

 printf("GPS - could not set event: %d\n", GetLastError()); 

 exit(1); 

}  

printf("GPS record is starting now!\n"); 

printf("For stop, Press 'Q' !\n"); 

while(userChar != EXIT_CHAR) { 

 if (WaitCommEvent(GPSserialPort,&dwCommEvtMask,NULL)){  

 ClearCommError(GPSserialPort,&dwErrorMask,&comstat);// get data length  

 if ((dwCommEvtMask & EV_RXCHAR) && comstat.cbInQue){ 

if(comstat.cbInQue > 255) 

nToRead = 255; 

else 

      nToRead = comstat.cbInQue; 

             if (nToRead ==0) 

         continue; 

             if (ReadFile(GPSserialPort,comBuf,nToRead,&bytesRead,&ol)==0){ 

       if(GetLastError()== ERROR_IO_PENDING){ 

   dwRes = WaitForSingleObject(ol.hEvent,500); 

   switch (dwRes){ 

   case WAIT_OBJECT_0: 

           if (!GetOverlappedResult(GPSserialPort,&ol,&bytesRead,FALSE)) 

    printf("GPS - Error getting Overlapped result: %d\n",GetLastError()); 

            else{ 

    if(bytesRead){ // no data print here 

    output_GPS(comBuf,bytesRead,outGPS); 

                 } 

           } 

           break; 

   case WAIT_TIMEOUT: 

           printf("GPS - TimeOut for waiting single object: %d\n",GetLastError()); 

           break; 

   case WAIT_FAILED: 
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           printf("GPS - error waiting for single object: %d\n",GetLastError()); 

           break; 

   default: 

           break; 

   } 

       } 

       else 

        printf("GPS - Reading of serial communication has problem: %d\n",GetLastError()); 

                } 

  else{ 

          if (bytesRead){   

   output_GPS(comBuf,bytesRead,outGPS); 

           } 

         } 

     } 

 } 

 else{ 

        if(GetLastError()== ERROR_IO_PENDING){ 

  continue;  

          } 

       else 

  printf("GPS - Error for Waiting Comm Event: %d\n", GetLastError()); 

       } 

       if (kbhit()) {           

  userChar=getch();}  

 }  

 if (CloseHandle(GPSserialPort) == 0 ) 

        printf("GPS - Port Closing isn't successed: %d\n", GetLastError()); 

 if (CloseHandle(ol.hEvent) == 0 ) 

        printf("GPS - Event Closing isn't successed: %d\n", GetLastError()); 

 if (fclose(outGPS)) 

       fprintf(stderr,"GPS - Error: Can't close the file\n");  

 userChar = '0'; 

 

 //Gyro 

 out = fopen(outGyroFileName, "wb"); 

 serialPort = CreateFile(comPort,GENERIC_READ|GENERIC_WRITE,0, 
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   NULL, OPEN_EXISTING, FILE_ATTRIBUTE_SYSTEM, NULL); 

 if (serialPort == INVALID_HANDLE_VALUE) { 

  printf("Gyro - could not open serial port, %d\n", GetLastError()); 

  exit(1); 

 } 

 if (!(SetupComm(serialPort,0x1000, 0x1000))) { 

  fprintf(stderr, "Gyro - error setting up comm: %d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 }//set internal buffer size, in bytes.  

 if (!(GetCommState(serialPort, serialCtrl))) { 

  fprintf(stderr, "Gyro - error getting comm: %d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 serialCtrl->BaudRate = baudRate; 

 serialCtrl->Parity = NOPARITY; 

 serialCtrl->StopBits = ONESTOPBIT; 

 if (!(SetCommState(serialPort, serialCtrl))) { 

  fprintf(stderr, "Gyro - error setting comm: %d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 if(!(GetCommTimeouts(serialPort, &commTimeouts))){ 

  fprintf(stderr, " Gyro - error getting comm timeouts:%d/n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 }; 

 commTimeouts.ReadIntervalTimeout = MAXDWORD; 

 commTimeouts.ReadTotalTimeoutMultiplier = MAXDWORD; 

 commTimeouts.ReadTotalTimeoutConstant = 5; 

 if(!(SetCommTimeouts(serialPort, &commTimeouts))){ 

  fprintf(stderr, "Gyro - error setting comm timeouts:%d\n", GetLastError()); 

  CloseHandle(serialPort); 

  exit(1); 

 } 

 printf("Gyro record is starting now!\n"); 
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 printf("For stop, Press 'Q' !\n"); 

 if(mode == ANGLE_MODE) { 

  printf(" ROLL PITCH YAW GYROX GYROY  GYROZ ACCELX ACCELY ACCELZ 

MAGX MAGY MAGZ TEMP\n"); 

 } 

 else { 

  printf("GYROX GYROY GYROZ ACCELX ACCELY ACCELZ MAGX MAGY 

MAGZ TEMP\n"); 

 } 

 restart_system(serialPort, mode, &packetSize); 

 while(userChar != EXIT_CHAR) { 

         for (i=0; i<decimationRate; i++){  

  get_packet(serialPort, packetSize, packet);  

  if (!check_packet_valid(mode, packet, packetSize)) { 

           if(badpacketCnt == 5) restart_system(serialPort, mode, &packetSize); 

           badpacketCnt++; /* at least one packet to restart system */ 

           badPacket = TRUE; 

  }  

  else {  

          badPacket = FALSE; 

         badpacketCnt = 0; 

  } 

  packetCnt++;  // number of packets   

        } 

         if (!badPacket) { 

  output_packet(mode, dt, packetCnt, packet, isDOSTIME, out); 

        } 

         if (kbhit()) { 

  userChar=getch(); 

        } 

 } // end while 

 if (CloseHandle(serialPort) == 0 ) 

  fprintf(stderr,"Gyro - Port  Closing isn't successed: %d\n", GetLastError()); 

 if (fclose(out)) 

  fprintf(stderr,"Gyro - Error: Can't close the file\n");  

 userChar = '0'; 
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 //Laser 

 HsifDllInit();  

 fp = fopen(outLaserFileName , "w");          

 if(!OpenPort(pcom, 9600, serialport)){ //initialize Serialport. About Serial Port see sio_util.h 

  pcom = 0; 

  fprintf(stderr, "Error: Serial Comm port open failed.\n"); 

  goto ERROR_EXIT; 

 }     

 sendstr(pcom,"I");// set to factory defaults 

 Sleep(200);     

              fprintf(stderr, "Opened high speed interface.\n"); 

 hsif = HsifOpen(board, &Commport);   // see rangehs.h about HsifOpen 

 if(hsif == HSIF_INVALID_HANDLE) { 

  fprintf(stderr, "Error: HsifOpen failed.\n"); 

  goto ERROR_EXIT; 

 } 

 if(HsifResetBoard(hsif) == HSIF_FAIL) { 

  fprintf(stderr, "Error: HsifResetBoard failed.\n"); 

  goto ERROR_EXIT; 

 } 

 fprintf(stderr, "HISF Card Calibration\n");  

 HsifSetPollMode(hsif,TRUE);                    

 if(HsifCalibrate(hsif) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Could not get calibration value\n"); 

  goto ERROR_EXIT; 

 } 

 fprintf(stderr,"SamplingModeInit\n");  

 if(HsifSamplingModeInit(hsif) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Could not initialize sampling mode\n"); 

  goto ERROR_EXIT; 

 } 

 if(HsifClearEncoder(hsif, ENCODER1|ENCODER2 , TRUE)!= HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to clear encoder1\n"); 

  goto ERROR_EXIT; 

 }  

 if(HsifCalibrateEncoder(hsif, ENCODER1, 0, 4096) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set encoder1\n"); 
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  goto ERROR_EXIT; 

 } // Set sample period and resolution for encoder1. 

 if(HsifCalibrateEncoder(hsif, ENCODER2, 0, 200) != HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set encoder2\n"); 

  goto ERROR_EXIT; 

 } // Set sample period and resolution for encode2. 

 if(HsifLoadCalibrationData(hsif, calibration) == HSIF_FAIL) { 

  printf("ERROR: Could not read calibration file\n"); 

  goto ERROR_EXIT; 

 }     

 if(HsifSetSamplePeriod(hsif,0,max_range,sample_period)!= HSIF_SUCCESS){ 

  fprintf(stderr,"Error: Failed to set sample and range\n"); 

  goto ERROR_EXIT; 

 } // Set sample period and resolution 

 HsifSetMotorPower(hsif, motor, powerlevel);    

 fprintf(stderr,"Waiting (20 sec.) for mirror to move\n"); 

 Sleep(20000);   

 fprintf(stderr, "Clear Sample Buffer\n");  

 HsifClearSampleBuffer(hsif); // for clean buffer each time 

 HsifSamplingEnable(hsif);  // need to skip ahead 

 fprintf(stderr,"Sampling Enable\n"); //Sleep(DEBUG_SLEEP_DELAY);    

 fprintf(stderr,"Begin sampling\n"); 

 hplines = lines; 

 while((userChar != EXIT_CHAR) && (lines--)){ 

              if((HsifGetBufferedSamples(hsif,hsbuffer,NUM_SAMPLES,&numRead,TRUE))==HSIF_FAIL){ 

   printf("ERROR: Buffer overflow flag not getting set.\n"); 

   return(0); 

  }    

           if( DATA_LOST(hsbuffer[NUM_SAMPLES-1])){ 

   HsifClearSampleBuffer(hsif); 

   HsifSamplingEnable(hsif); 

         } 

                      result =HsifProcessSamples(hsif,hsbuffer,hpSampleBuf+(hplines-lines-1)*NUM_SAMPLES, 

                                                                   NUM_SAMPLES); 

         if(hpSampleBuf[(hplines-lines-1)*NUM_SAMPLES].timeout){ 

  printf("ERROR: Sample measurement timeout!\n"); 

  return(0); 
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        } 

        if (kbhit()) {//kbhit()--checks the console for keyboard input, required header <conio.h> 

  userChar=getch(); 

 } 

    }  

 fprintf(stderr,"End sampling\n"); 

 fprintf(stderr,"Sampling Lines counter: %d\n", lines); 

 HsifSetMotorPower(hsif, motor, 0);   

 fprintf(stderr,"Saving Data,Please Waiting\n"); 

 save_file((hplines-lines-1), fp);  

 

ERROR_EXIT: 

 if(pcom) 

  ClosePort(pcom); 

 if(hsif != HSIF_INVALID_HANDLE) 

  HsifClose(hsif); 

 return(0); 

} 

 

/*********************************** 

// Function Name: save_file(int lines) 

// Descriptions: Write all data from hpSampleBuf[] buffer to a .txt file (data.txt). 

**********************************/ 

static void save_file(int lines, FILE *fp) 

{ 

 int i; 

 fprintf(fp, "Distance(inches)\t"); 

 fprintf(fp, "Raw Range(bits)\t"); 

 fprintf(fp, "Amplitude\t"); 

 fprintf(fp, "Temp(F)\t"); 

 fprintf(fp, "Angle1(radins)\t"); 

 fprintf(fp, "Angle2(radins\t"); 

 fprintf(fp, "Index1\t"); 

 fprintf(fp, "Index2\t");  

              for( i=0; i < (lines*NUM_SAMPLES); i++){ 

  fprintf(fp,"\n"); 

  fprintf(fp, "%.2f\t", hpSampleBuf[i].distance); 
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  fprintf(fp, "%.0f\t", (double)hpSampleBuf[i].rawRange); 

  fprintf(fp, "%.1f\t", hpSampleBuf[i].amplitude); 

  fprintf(fp, "%.1f\t", hpSampleBuf[i].caltemp); 

  fprintf(fp, "%.4f\t", hpSampleBuf[i].angle1); 

  fprintf(fp, "%.4f\t", hpSampleBuf[i].angle2); 

  fprintf(fp, "%d\t", INPUT1(hpSampleBuf[i]) ? 1:0); 

  fprintf(fp, "%d\t", INPUT2(hpSampleBuf[i]) ? 1:0); 

 }     

    if (fclose(fp)) 

  fprintf(stderr,"Error: Can't close the file\n"); 

} 

 

/********************************** 

// Function Name: check_packet_valid() 

// Descriptions: Check gyro data packect to start sampling. 

***********************************/ 

static bool check_packet_valid(char mode, unsigned char* packet,unsigned int packetSize) 

{ 

 unsigned int i; 

 unsigned int checksum = 0; 

 bool retVal = TRUE;  // check packet data valid  

 switch (mode) { 

 case RAW_MODE:  // 24 

      if ( packetSize != AHRS_RAW_PACKET_SIZE ) { 

  printf("packet size incorrect: %d should be %d for AHRS\n",  

    packetSize, AHRS_RAW_PACKET_SIZE); 

  return FALSE;} 

 break; 

 case COOKED_MODE:  //24  

                   if (packetSize != AHRS_COOKED_PACKET_SIZE){ 

  printf("packet size incorrect: %d should be  %d for AHRS\n", 

    packetSize, AHRS_COOKED_PACKET_SIZE); 

  return FALSE;} 

 break;  

 case ANGLE_MODE:  //30 

        if (packetSize != AHRS_ANGLE_PACKET_SIZE){ 

  printf("packet size incorrect: %d should be %d for AHRS\n", 
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    packetSize, AHRS_ANGLE_PACKET_SIZE); 

  return FALSE;} 

 break;  

 default: 

  printf("\nunrecognized packet type: %c", mode); 

  return FALSE; 

 } /* end switch */ 

 //check the packet header 

 if (packet[0] != NORMAL_HEADER) { 

  printf("Gyro \nunrecognized header byte: "); 

  retVal = FALSE; 

 } 

 //check the packet checksum 

 for (i=1; i<packetSize-1; i++) { 

  checksum += packet[i]; 

 }// Sum all packet contents except header and checksum 

 if ( packet[i] != (checksum & 0xFF)){ 

  printf("\nbad checksum:"); 

  retVal = FALSE; 

 } 

 if (retVal==FALSE) { 

  for (i=0; i<packetSize; i++)  

   printf("%x ", packet[i] &0xFF); 

  printf("\n"); 

  return FALSE; 

 } 

 else { 

  return TRUE; 

 } 

} // is packet valid end  

 

/****************************** 

// Function Name: get_packet() 

// Descriptions: Get one packet data from gyroscrope for each calling. 

*******************************/ 

static void get_packet(HANDLE fp, unsigned int packetSize, unsigned char *recvBuf)  

{ 
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 unsigned int i; 

 unsigned char tmpBuf[MAX_PACKET_SIZE]; 

 unsigned long bytesRead, byteCnt, bytesToRead; 

 byteCnt = 0; 

 while (byteCnt < packetSize) { 

  bytesToRead = packetSize-byteCnt; 

  ReadFile(fp, tmpBuf, bytesToRead, &bytesRead, NULL); 

  for(i=0; i<bytesRead; i++) 

   recvBuf[byteCnt + i] = tmpBuf[i]; 

  byteCnt += bytesRead;   

 } 

} /* end get_packet */ 

 

/***************************** 

// Function Name: output_packet() 

// Descriptions:  save gyro data into a file  

******************************/ 

static void output_packet(char mode, double dt, unsigned int packetCnt,  

    unsigned char* packet, bool isDOSTIME, FILE* out) 

{ 

 unsigned int i, j; 

              static double initialTime, thisTime; 

 static int firstTime = 1; 

 static unsigned tmp[50][25]; 

 static int tmpCnt=0; 

 double elapsedTime; 

 double accel[3], gyro[3], temp, roll, pitch, mag[3], yaw; 

 unsigned int hdxTime; 

 unsigned short partNumber=0,bit=0; 

 static int adjustTime =1; 

 static unsigned long packetCntAdjust =0; 

 static double lastOutputTime=0.0; 

 

 if (dt < 0) { 

  if (isDOSTIME) { 

   thisTime = (double)clock() / (double)CLOCKS_PER_SEC; 

   fprintf(out, "%d %f ", packetCnt, thisTime); 
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   fileOutputRate = 0.0; 

  } 

  else { 

   fprintf(out, "%d ", packetCnt); 

   fileOutputRate = 0.0; 

  } 

 } 

 else { 

  if (isDOSTIME) { 

   thisTime = (double)clock() / (double)CLOCKS_PER_SEC; 

   fprintf(out, "%d %f ", packetCnt, thisTime); 

   fileOutputRate = 0.0; 

  } 

  else { 

   thisTime = (double)clock() / (double)CLOCKS_PER_SEC; 

   if (firstTime) {  // firstTime=1 

    initialTime = thisTime; 

    lastOutputTime = initialTime; 

    firstTime = 0; 

   } 

   elapsedTime = dt*(packetCnt-packetCntAdjust) + initialTime;  

   if((elapsedTime-lastOutputTime) < fileOutputRate ) 

    return; 

   else 

    lastOutputTime = elapsedTime; 

   if (elapsedTime+(dt*4) < thisTime) { 

    packetCntAdjust = packetCnt; 

    initialTime = thisTime; 

    elapsedTime = thisTime; 

    lastOutputTime = elapsedTime; 

   } 

   fprintf(out, "%d %f ", packetCnt, elapsedTime); 

  } 

 }  

 switch (mode) { 

 case RAW_MODE:{ 

i=1; 



 196 

  for (j=0; j<3; j++) { 

   gyro[j]=((unsigned short)((packet[i]<<8)+packet[i+1]))*gSensorVoltConversion; 

   i+=2;} 

  for (j=0; j<3; j++) { 

               accel[j]=((unsigned short)((packet[i]<<8)+packet[i+1]))*gSensorVoltConversion; 

   i+=2;} 

  for (j=0; j<3; j++) { 

   mag[j]=((unsigned short)((packet[i]<<8)+packet[i+1]))*gSensorVoltConversion; 

   i+=2;} 

  temp=((((packet[i]<<8)+packet[i+1])*5.0/4096.0)-1.375)*44.44;  

  i+=2; 

  hdxTime = (packet[i]<<8)+packet[i+1]; 

  fprintf(out, "%f %f %f ", gyro[0], gyro[1], gyro[2]); 

  fprintf(out, "%f %f %f ", accel[0], accel[1], accel[2]); 

  fprintf(out, "%f %f %f ", mag[0], mag[1], mag[2]); 

  fprintf(out, "%f %d\n", temp, hdxTime); 

  return;} 

  break;  

 case COOKED_MODE:{i=1; 

  for (j=0; j<3; j++) { 

       gyro[j]=((short)((packet[i]<<8)+packet[i+1]))*(gGyroRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2;} 

  for (j=0; j<3; j++) { 

       accel[j]=((short)((packet[i]<<8)+packet[i+1]))*(gAccelRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2;} 

  for (j=0; j<3; j++) {  

          mag[j]=((short)((packet[i]<<8)+packet[i+1]))*(gMagRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2;} 

  temp = ((((packet[i] << 8) + packet[i+1]) * 5.0/4096.0) - 1.375)*44.44;  

  i+=2; 

  hdxTime = (packet[i] <<8) + packet[i+1]; 

  fprintf(out, "%f %f %f ", gyro[0], gyro[1], gyro[2]); 

  fprintf(out, "%f %f %f ", accel[0], accel[1], accel[2]); 

  fprintf(out, "%f %f %f ", mag[0], mag[1], mag[2]); 

  fprintf(out, "%f %d\n", temp, hdxTime); 

  return;} 

 case ANGLE_MODE: 
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  i=1; 

  roll=((short)((packet[i]<<8)+packet[i+1]))*(180.0)/TWO_EXP_FIFTEEN; 

  i+=2; 

  pitch=((short)((packet[i]<<8)+packet[i+1]))*(180.0)/TWO_EXP_FIFTEEN; 

  i+=2; 

  yaw=((short)((packet[i]<<8)+packet[i+1]))*(180.0)/TWO_EXP_FIFTEEN; 

  i+=2; 

  for (j=0; j<3; j++) { 

               gyro[j] = ((short)((packet[i] << 8) + packet[i+1])) *  (gGyroRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2; 

  } 

  for (j=0; j<3; j++) { 

                accel[j] = ((short)((packet[i] << 8) + packet[i+1])) *(gAccelRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2; 

  } 

  for (j=0; j<3; j++) { 

                    mag[j] = ((short)((packet[i] << 8) + packet[i+1])) *(gMagRange[j]*1.5)/TWO_EXP_FIFTEEN; 

   i+=2; 

  } 

  temp=((((packet[i]<<8)+packet[i+1])*5.0/4096.0)-1.375)*44.44;  

  i+=2; 

  hdxTime = (packet[i] <<8) + packet[i+1]; 

  fprintf(out, "%f %f %f ", roll, pitch, yaw); 

  fprintf(out, "%f %f %f ", gyro[0], gyro[1], gyro[2]); 

  fprintf(out, "%f %f %f ", accel[0], accel[1], accel[2]); 

  fprintf(out, "%f %f %f ", mag[0], mag[1], mag[2]); 

  fprintf(out, "%f %d\n", temp, hdxTime); 

  break; 

 default: 

  printf("Gyro - unrecognized packet type in output_packet \n"); 

  break; 

 } // end switch  

} 

 

/********************************** 

//Function Name: restart_system() 

//Descriptions:  restatr gyro sensor  
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***************************************/ 

static void restart_system(HANDLE serialPort, char mode, unsigned int *retPacketSize)  

{ 

 unsigned char buf[MAX_BUF_SIZE];  //255 bytes, buffer the transfered and received data. 

 unsigned long bytesWritten, bytesToWrite; 

 unsigned int packetSize=0;   // record the packet size. 

 LPDCB serialCtrl= new DCB; 

 bytesWritten = 1; 

 while (bytesWritten > 0) { 

   buf[0] = 'P';  // AHRS command, change to polled mode, waiting 'G' to sent data 

   bytesToWrite = 1; 

   WriteFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

   Sleep(100); 

   bytesToWrite = MAX_BUF_SIZE; 

   ReadFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

 } 

 //set AHRS operating Mode 

 buf[0] = 0; 

 while  (buf[0] != (mode - 0x20)) { 

  buf[0] = mode; 

  bytesToWrite = 1; 

  WriteFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

  Sleep(1); 

  bytesToWrite = 1; 

  ReadFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL);  

 } 

 //stop continuous mode  

 bytesWritten = 1; 

 while (bytesWritten > 0) { 

   buf[0] = 'P'; 

   bytesToWrite = 1; 

   WriteFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

   Sleep(100); 

   bytesToWrite = MAX_BUF_SIZE; 

   ReadFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

 } 

 //send a 'G' to find the size of the packet  
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 buf[0] = 'G'; 

 bytesToWrite = 1; 

 WriteFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

 Sleep(100); 

 bytesToWrite = MAX_BUF_SIZE; 

 ReadFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL);  

 packetSize = bytesWritten; 

 check_packet_valid(mode, buf, packetSize); 

 buf[0] = 'C'; 

 bytesToWrite = 1; 

 WriteFile(serialPort, buf, bytesToWrite, &bytesWritten, NULL); 

 *retPacketSize = packetSize;  

} 

 

/*********************************** 

// Function Name: output_GPS(int lines) 

// Descriptions: Write GPS data to a .txt file . 

**********************************/ 

static void output_GPS(unsigned char *comBuf, unsigned long bytesRead, FILE* outGPS) 

{ 

 unsigned long i; 

 for (i=0; i<bytesRead; i++){ 

  fprintf(outGPS,"%c",comBuf[i]); 

 } 

} 
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Appendix D - Modeling Study on the Effects of Pitch and Roll 

Measurement Errors on Elevation Measurement 

%%********************************************** 

%% CASE A: Roll Right 

%%*********************************************** 

%%Condition A 

H0 = 1; %in meter 

Wr = 0.5; %in meter 

hh = 0.01; %in meter 

aaa1 = zeros(length(0:0.05:1),length(0:0.05:30)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for a=0:0.05:30 %in degree 

        b = acosd(Wr/sqrt((H0-L)^2+Wr^2)); %in degrees 

        ar = b-a-asind(hh/sqrt((H0-L)^2+Wr^2)+sind(b-a)); 

        if(-ar>a) 

           aaa1(i,j)=100; 

        else 

           aaa1(i,j)= ar; 

        end 

        j=j+1;         

    end 

    j=1;  i=i+1; 

end 

 

%%Condition B 

H0 = 1; %in meter 

Wr = 0.5; %in meter 

hh = -0.01; %in meter 

aaa3 = zeros(length(0:0.05:1),length(0:0.05:30)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for a=0:0.05:30 %in degree 

        b = acosd(Wr/sqrt((H0-L)^2+Wr^2)); %in degrees 

        ar = b-a-asind(hh/sqrt((H0-L)^2+Wr^2)+sind(b-a)); 

        aaa3(i,j)= ar; 
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       j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Comparison A and B 

aaa = zeros(length(0:0.05:1),length(0:0.05:30)); 

[m,n]=size(aaa); 

for i=1:m 

    for j=1:n 

        if(abs(aaa1(i,j))>abs(aaa3(i,j))) 

            aaa(i,j)=abs(aaa3(i,j)); 

        else 

            aaa(i,j)=abs(aaa1(i,j)); 

        end 

    end 

end 

 

%%3D model plot 

for ii = 1:length(0:0.05:1) 

    x_matrix(ii,:) = (0:0.05:30); 

end 

for jj = 1:length(0:0.05:30) 

    y_matrix(:,jj) = (0:0.05:1)'; 

end 

figure; 

handle_axe1=surf(x_matrix, y_matrix, aaa); 

xlabel('X axis - a (degree)'); 

ylabel('Y axis - L (meter)'); 

zlabel('ar (degree)'); 

shading interp, 

handle_light1 = camlight('headlight') 

lighting phong, material dull; 

 

%%********************************************** 

%% CASE B: Roll Left 

%%*********************************************** 
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%%Condition A 

H0 = 1; %in meter 

Wl = 1.5; %in meter 

hh = 0.01; %in meter 

aaa1 = zeros(length(0:0.05:1),length(-30:0.05:0)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for a=-30:0.05:0  %in degree 

        b = acosd(Wl/sqrt((H0-L)^2+Wl^2)); %in degrees 

        ar = -b-a+asind(hh/sqrt((H0-L)^2+Wl^2)+sind(b+a)); 

        if(ar>-a) 

           aaa1(i,j)=100; 

        else 

           aaa1(i,j)= ar; 

        end 

        j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Condition B 

H0 = 1; %in meter 

Wl = 1.5; %in meter 

hh = -0.01; %in meter 

aaa3 = zeros(length(0:0.05:1),length(-30:0.05:0)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for a=-30:0.05:0  %in degree 

        b = acosd(Wl/sqrt((H0-L)^2+Wl^2)); %in degrees 

        ar = -b-a+asind(hh/sqrt((H0-L)^2+Wl^2)+sind(b+a)); 

           aaa3(i,j)= ar; 

        j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Comparison A and B 
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aaa = zeros(length(0:0.05:1),length(-30:0.05:0)); 

[m,n]=size(aaa); 

for i=1:m 

    for j=1:n 

        if(abs(aaa1(i,j))>abs(aaa3(i,j))) 

            aaa(i,j)=abs(aaa3(i,j)); 

        else 

             aaa(i,j)=abs(aaa1(i,j)); 

        end 

    end 

end 

 

%%3D model plot 

for ii = 1:length(0:0.05:1) 

    x_matrix(ii,:) = (-30:0.05:0); 

end 

for jj = 1:length(-30:0.05:0) 

    y_matrix(:,jj) = (0:0.05:1)'; 

end 

figure; 

handle_axe1=surf(x_matrix, y_matrix, aaa); 

xlabel('X axis - a (degree)'); 

ylabel('Y axis - L (meter)'); 

zlabel('ar (degree)'); 

shading interp, 

handle_light1 = camlight('headlight') 

lighting phong, material dull; 

 

 

%%********************************************** 

%% CASE C: Pitch Up 

%%*********************************************** 

%%Condition A 

H0 = 1; %in meter 

Dr = 1; %in meter 

hh = 0.01; %in meter 

aaa1 = zeros(length(0:0.05:1),length(0:0.05:30)); 



 204 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for b=0:0.05:30 %in degree 

        a = acos(Dr/sqrt((H0-L)^2+Dr^2)); %in radians 

        br = -a*180/pi-b+asin(hh/sqrt((H0-L)^2+Dr^2)+sin(a+b*pi/180))*180/pi; 

        aaa1(i,j)= br; 

        j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Condition B 

H0 = 1; %in meter 

Dr = 1; %in meter 

hh = -0.01; %in meter 

aaa3 = zeros(length(0:0.05:1),length(0:0.05:30)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for b=0:0.05:30 %in degree 

        a = acos(Dr/sqrt((H0-L)^2+Dr^2)); %in radians 

        br = -a*180/pi-b+asin(hh/sqrt((H0-L)^2+Dr^2)+sin(a+b*pi/180))*180/pi; 

        aaa3(i,j)= br; 

        j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Comparison A and B 

aaa = zeros(length(0:0.05:1),length(-30:0.05:0)); 

[m,n]=size(aaa); 

for i=1:m 

    for j=1:n 

        if(abs(aaa1(i,j))>abs(aaa3(i,j))) 

            aaa(i,j)=abs(aaa3(i,j)); 

        else 

             aaa(i,j)=abs(aaa1(i,j)); 

        end 
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    end 

end 

 

%%3D model plot 

for ii = 1:length(0:0.05:1) 

    x_matrix(ii,:) = (0:0.05:30); 

end 

for jj = 1:length(0:0.05:30) 

    y_matrix(:,jj) = (0:0.05:1)'; 

end 

figure; 

handle_axe1=surf(x_matrix, y_matrix, aaa); 

xlabel('X axis - b (degree)'); 

ylabel('Y axis - L (meter)'); 

zlabel('br (degree)'); 

shading interp, 

handle_light1 = camlight('headlight') 

lighting phong, material dull; 

 

 

%%********************************************** 

%% CASE D: Pitch Down 

%%*********************************************** 

%%Condition A 

H0 = 1; %in meter 

Df = 1; %in meter 

hh = 0.01; %in meter 

aaa1 = zeros(length(0:0.05:1),length(-30:0.05:0)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for b=-30:0.05:0 %in degree 

        a = acos(Df/sqrt((H0-L)^2+Df^2)); %in radians 

        br = -a*180/pi-b+asin(hh/sqrt((H0-L)^2+Df^2)+sin(a+b*pi/180))*180/pi; 

        aaa1(i,j)= br; 

        j=j+1;         

    end 

    j=1; i=i+1; 
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end 

 

%%Condition B 

H0 = 1; %in meter 

Df = 1; %in meter 

hh = -0.01; %in meter 

aaa3 = zeros(length(0:0.05:1),length(-30:0.05:0)); 

i = 1; j = 1; 

for L=0:0.05:1 %in meter 

    for b=-30:0.05:0 %in degree 

        a = acos(Df/sqrt((H0-L)^2+Df^2)); %in radians 

        br = -a*180/pi-b+asin(hh/sqrt((H0-L)^2+Df^2)+sin(a+b*pi/180))*180/pi; 

        aaa3(i,j)= br; 

        j=j+1;         

    end 

    j=1; i=i+1; 

end 

 

%%Comparison A and B 

aaa = zeros(length(0:0.05:1),length(-30:0.05:0)); 

[m,n]=size(aaa); 

for i=1:m 

    for j=1:n 

        if(abs(aaa1(i,j))>abs(aaa3(i,j))) 

            aaa(i,j)=abs(aaa3(i,j)); 

        else 

            aaa(i,j)=abs(aaa1(i,j)); 

        end 

    end 

end 

 

%%3D model plot 

for ii = 1:length(0:0.05:1) 

    x_matrix(ii,:) = (-30:0.05:0); 

end 

for jj = 1:length(-30:0.05:0) 

    y_matrix(:,jj) = (0:0.05:1)'; 
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end 

figure; 

handle_axe1=surf(x_matrix, y_matrix, aaa); 

xlabel('X axis - b (degree)'); 

ylabel('Y axis - L (meter)'); 

zlabel('br (degree)'); 

shading interp, 

handle_light1 = camlight('headlight') 

lighting phong, material dull; 
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Appendix E - Generation of 3D Raw Laser Data 

%%********************************************** 

%% MATLAB program 

%% Description: 3D raw laser data generation 

%% update date: 08/26/2009 

%*********************************************** 

 

%% Open Laser.txt, Gyro.txt 

clear; close all; clc; 

fid = fopen('laser.txt','r');  

C = textscan(fid, '%f %f %f %f %f %f %f %f %f', 1100000,'headerlines',1); 

L = length(C{1}) 

fclose(fid); 

 

fid = fopen('gyro.txt','r');  

C1=textscan(fid,'%*f%f%f %f %f %f %f %f %f %f %f %f %f %*f %*f', 1100000,'headerlines',0); 

L1 = length(C1{1}) 

fclose(fid); 

 

phi = mean(C1{1}); % roll angle 

theta = mean(C1{2}); % pitch angle 

psi = mean(C1{3}); % yaw angle or heading, to magnetic north. 

 

%% Only keep data foucing on the ground. RawData 

Shield1 = 2.6353;  %default, U-shape enclosue   

Shield2 = 4.3182;  %default 

j = 0; 

for i = 1:L 

    mulripleC = floor(C{6}(i,1)/(2*pi)); 

    remC = C{6}(i,1)-mulripleC*2*pi; 

    if ((remC>=Shield1) & (remC<= Shield2)) 

        j=j+1; 

    end 

end 

Num_C1 = j  % Number of new Raw Data 

RawData1 = zeros(Num_C1,10); 
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j = 1;  

for i = 1:L 

    mulripleC = floor(C{6}(i,1)/(2*pi)); 

    remC = C{6}(i,1)-mulripleC*2*pi; 

    %if (rem(C{5}(i,1),2*pi)>=Shield1 & rem(C{5}(i,1),2*pi)<= Shield2) 

    if ((remC>=Shield1) & (remC<=Shield2)) 

        RawData1(j,1)=C{1}(i,1);     % Distance in original file 

        RawData1(j,2)=C{2}(i,1);     % Raw Range in original file 

        RawData1(j,3)=C{3}(i,1);     % Amplitude in original file 

        RawData1(j,4)=C{4}(i,1);     % Ambient in original file 

        RawData1(j,5)=C{5}(i,1);     % Temp in original file 

        RawData1(j,6)=C{6}(i,1);     % Angle1 in original file 

        RawData1(j,7)=C{7}(i,1);     % Angle2 in original file 

        RawData1(j,8)=C{8}(i,1);     % Index1 in original file 

        RawData1(j,9)=C{9}(i,1);     % Index2 in original file 

        RawData1(j,10)=i;                 % Number in original file 

        j=j+1; 

    end 

end 

 

j = 0; 

for i = 1:Num_C1 

    if (RawData1(i,1)>0) 

        j=j+1; 

    end 

end 

Num_C = j  % Number of new Raw Data 

RawData = zeros(Num_C,10); 

j = 1;  

for i = 1:Num_C1 

    if (RawData1(i,1)>0) 

        RawData(j,1)=RawData1(i,1);     % Distance in original file 

        RawData(j,2)=RawData1(i,2);     % Raw Range in original file 

        RawData(j,3)=RawData1(i,3);     % Amplitude in original file 

        RawData(j,4)=RawData1(i,4);     % Ambient in original file 

        RawData(j,5)=RawData1(i,5);     % Temp in original file 

        RawData(j,6)=RawData1(i,6);     % Angle1 in original file 
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        RawData(j,7)=RawData1(i,7);     % Angle2 in original file 

        RawData(j,8)=RawData1(i,8);     % Index1 in original file 

        RawData(j,9)=RawData1(i,9);     % Index2 in original file 

        RawData(j,10)=RawData1(i,10);   % Number in original file 

        j=j+1; 

    end 

end 

 

%% only calibrate the distance using data acquired on white paper 

RawDatapre = RawData;  %Keep old data. 

% calibration curve from Point_12inches\Points\CalibrationWhite.jpg  

RawData(:,1) = RawDatapre(:,1)*0.99633 - 1.3685; %White paper 

 

%% Polar coordinate to Cartesian coordinate conversion using AngleAdj to adjust the level.  

gyro_angle = phi*pi/180;  % Gyro reading: roll angle 

AngleAdj = 1.171 - gyro_angle;  % 1.171 is angle difference of z-axis between Polar and Cartesian coor. 

[X,Z]=pol2cart(RawData(:,6)+AngleAdj,RawData(:,1));  %distance and angle 

 

%% Building the Y axis based on rail encoder reading. 

Angle = RawData(:,7)*180/pi;  % radian to degree 

 

% Counting the number of rail angle change. 

j= 0; 

for i = 1:(Num_C-2) 

    if (Angle(i)~=Angle(i+1) &Angle(i)==Angle(i-1) &Angle(i)~=Angle(i+2)) 

        j=j+1; 

    end 

end 

Num = j  % Total Number of angle change. 

 

%Create Diff_Angle[Num+1,2] to store "Number" and "Angle Value" 

Diff_Angle = zeros(Num+1,2); 

Diff_Angle (1,1) = 1;   % first value 

Diff_Angle (1,2) = Angle(1); 

k=2; 

for i = 1:(Num_C-2) 

    if (Angle(i)~=Angle(i+1) &Angle(i)==Angle(i-1) &Angle(i)~=Angle(i+2)) 



 211 

        Diff_Angle(k,1)=i+1;     % Number in RawData file (order) 

        Diff_Angle(k,2)= Angle(i+1);  % Changed Angle in degree 

        k=k+1; 

    end 

end 

 

%Define the first and last valued number, and total valued number. 

First_N = Diff_Angle(2,1);  % valued number starts 

Last_N = Diff_Angle(Num+1,1) - 1; % valued number ends 

Number_N = Last_N - First_N + 1; % number of valued number 

 

%% Angle Difference array: 3 columns - "Number", "Angle Interval", "Angle in order" 

%% Note: In this case the first 0 in Diff_Angle is useless.  

%% So the length of Adj_Diff_Angle short than Diff_Angle, it shorts 1. 

Adj_Diff_Angle = zeros(Num,3); 

Adj_Diff_Angle(1,1) = Diff_Angle(2,1); 

Adj_Diff_Angle(1,2) = 0; 

Adj_Diff_Angle(1,3) = 0; 

for i = 2 : Num 

    Adj_Diff_Angle(i,1) = Diff_Angle(i+1,1); 

    Adj_Diff_Angle(i,2) = abs(Diff_Angle(i+1,2) - Diff_Angle(i,2));          % Angle interal 

    Adj_Diff_Angle(i,3) = abs(Diff_Angle(i+1,2) - Diff_Angle(2,2));         % incremental Angle 

End 

 

%% Reassemble X,Y,Z 

R = 0.1570  % (inch) computed/empirical vaule.Define rail motor radius 

% Building New_Y 

Temp0 = zeros(Adj_Diff_Angle(2,1)-Adj_Diff_Angle(1,1),1); 

Temp2 = Temp0; 

for i = 2: Num-1 

    Temp1 = zeros(Adj_Diff_Angle(i+1,1)-Adj_Diff_Angle(i,1),1); 

    for j = 1 : Adj_Diff_Angle(i+1,1)-Adj_Diff_Angle(i,1) 

       Temp1(j) = Adj_Diff_Angle(i,3); 

    end 

    Temp2 = vertcat(Temp2, Temp1); 

end 

New_Y = (Temp2*pi/180)*R;  
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% Building New_Number 

Temp0 = zeros(Adj_Diff_Angle(2,1)-Adj_Diff_Angle(1,1),1); 

for j = 1 : Adj_Diff_Angle(2,1)-Adj_Diff_Angle(1,1) 

       Temp0(j) = Adj_Diff_Angle(1,1)+j-1; 

end 

Temp2 = Temp0; 

for i = 2: Num-1 

    Temp1 = zeros(Adj_Diff_Angle(i+1,1)-Adj_Diff_Angle(i,1),1); 

    for j = 1 : Adj_Diff_Angle(i+1,1)-Adj_Diff_Angle(i,1) 

       Temp1(j) = Adj_Diff_Angle(i,1)+j-1; 

    end 

    Temp2 = vertcat(Temp2, Temp1); 

end 

New_Number = Temp2; 

% Building New_X 

New_X = zeros(Number_N,1); 

for i = 1 : Number_N 

    New_X(i) = X(First_N+i-1); 

end 

% Building New_Z 

New_Z = zeros(Number_N,1); 

for i = 1 : Number_N 

    New_Z(i) = Z(First_N+i-1); 

end 

% Building New_RawRange 

New_RawRange = zeros(Number_N,1); 

for i = 1 : Number_N 

    New_RawRange(i) = RawData((First_N+i-1),2); 

end 

% Building New_Amp 

New_Amp = zeros(Number_N,1); 

for i = 1 : Number_N 

    New_Amp(i) = RawData((First_N+i-1),3); 

end 

% Building New_Ambient 

New_Ambi = zeros(Number_N,1); 

for i = 1 : Number_N 
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    New_Ambi(i) = RawData((First_N+i-1),4); 

end 

% Building New_Temp 

New_Temp = zeros(Number_N,1); 

for i = 1 : Number_N 

    New_Temp(i) = RawData((First_N+i-1),5); 

end 

 

% Pitch roations only (by 12/21/09), transoformation between two X-Y-Z Cartesian coordinates 

gyro_pitch = -theta;  

New_Y1 = New_Y; 

New_Z1 = New_Z; 

New_Y = (cos(gyro_pitch*pi/180))*New_Y1 + (sin(gyro_pitch*pi/180))*New_Z1; 

New_Z = -(sin(gyro_pitch*pi/180))*New_Y1 + (cos(gyro_pitch*pi/180))*New_Z1; 

 

%% Concatenate X,Y,Z matrices. [X,Y,Z,Raw Range,Amplitude,Temp,Number] 

NewXYZ = 

horzcat(New_X,New_Y,New_Z,New_RawRange,New_Amp,New_Ambi,New_Temp,New_Number); 

save('raw_level.mat'); % save 3D raw laser data 

 

%% Narrow X range. 

data = NewXYZ; 

X_upper = 20; % need to change  

X_lower = -25; % need to change 

data(data(:,1)<X_lower,:)=[]; 

data(data(:,1)>X_upper,:)=[]; 

%% Narrow Z range. 

data = NewXYZ; 

Z_upper = -33.11; % need to change 

Z_lower = -45.23; % need to change 

data(data(:,3)<Z_lower,:)=[]; 

data(data(:,3)>Z_upper,:)=[]; 

%% Narrow Y range. 

data = NewXYZ; 

Y_upper = ; % need to change  

Y_lower = 1.44; % need to change 

data(data(:,2)>Y_upper,:)=[]; 
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data(data(:,2)<Y_lower,:)=[]; 

 

figure; 

plot3(data(:,1),data(:,2),data(:,3),'marker','.','linestyle','none') 

xlabel('X axis - roll (inches)'); 

ylabel('Y axis - pitch (inches)'); 

zlabel('Z axis - yaw (inches)'); 

title('Distance plot '); 

grid on; 

 

save('raw_level_zxy_pitch.mat'); 
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Appendix F - Interpolation Algorithm 

%%***************************************** 

%%  MATLAB program    

%%  Description:  Triangle-based linear/distance-weighted Interpolation 

%%***************************************** 

 

load raw_level_zxy_.mat data;  %% MATLAB data file constaining laser raw data in a array - data 

[m_data,n_data] = size(data); 

nLdata(:,1:3)=data(:,1:3)*2.54; % inch to cm 

 

fprintf('The minimum X is %.4f cm\n',min(nLdata(:,1)));  

fprintf('The maximum X is %.4f cm\n',max(nLdata(:,1)));  

fprintf('The minimum Y is %.4f cm\n',min(nLdata(:,2)));  

fprintf('The maximum Y is %.4f cm\n',max(nLdata(:,2)));  

 

xres = 0.5; % x resolution,cm,equal to the resolution of the reference frame. 

yres = 0.5; % y resolution,cm,equal to the resolution of the reference frame. 

xmin = min(nLdata(:,1)) + 3; % cm, starting point of x for the intoplation 

xmax = max(nLdata(:,1)) - 3; % cm, ending point of x for the intoplation 

ymin = min(nLdata(:,2)) + 1; % cm, starting point of y for the intoplation 

ymax = max(nLdata(:,2)) - 1; % cm, ending point of y for the intoplation 

xrange = 2; %search range for x 

yrange = 2; %search range for y 

     

yb = ymin; 

zb_i = 1; 

zb_k = 0;  

[m_nLdata,n_nLdata] = size(nLdata); 

while (yb <= ymax) 

    zb_j = 1; 

    xb = xmax; 

    while (xb >= xmin) 

              % narrow the X and Y within xrange and yrange of xb and yb, save them in nLdataxy. 

        nLdatax = nLdata(find(nLdata(:,1)<=(xb+xrange)),1:3); 

        nLdatax = nLdatax(find(nLdatax(:,1)>=(xb-xrange)),1:3); 
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        nLdatay = nLdatax(find(nLdatax(:,2)<=(yb+yrange)),1:3); 

        nLdataxy = nLdatay(find(nLdatay(:,2)>=(yb-yrange)),1:3); 

        % distance calculation 

        dis = sqrt((nLdataxy(:,1)-xb).^2 + (nLdataxy(:,2)-yb).^2);  

        nLdataxy_dis = horzcat(nLdataxy,dis); 

        % ascend the data based on the ascending order of distance. 

        [dis_ascend,dis_ind]= sort(nLdataxy_dis(:,4)); 

        nLdataxy_dis_ascent = nLdataxy_dis(dis_ind,1:4);   

        if (nLdataxy_dis_ascent(1,1)==xb & nLdataxy_dis_ascent(2,1)==xb & 

nLdataxy_dis_ascent(3,1)==xb ) 

            nLdata_ascentxx = nLdataxy_dis_ascent(3:end,:); 

            nLdata_ascentx = nLdata_ascentxx(find(nLdata_ascentxx(:,1)~=xb),1:4); 

            nLdataxy_dis_ascent(3,:)=nLdata_ascentx(1,:);    

        end  

        if (nLdataxy_dis_ascent(1,2)==yb & nLdataxy_dis_ascent(2,2)==yb & 

nLdataxy_dis_ascent(3,2)==yb ) 

            nLdata_ascentyy = nLdataxy_dis_ascent(3:end,:); 

            nLdata_ascenty = nLdata_ascentyy(find(nLdata_ascentyy(:,2)~=yb),1:4); 

            nLdataxy_dis_ascent(3,:)=nLdata_ascenty(1,:); 

        end 

        if((nLdataxy_dis_ascent(1,1)==xb)& nLdataxy_dis_ascent(1,2)==yb) 

            zb_matrix(zb_i,zb_j) =nLdataxy_dis_ascent(1,3) ;        

            zb(zb_k+zb_j)= nLdataxy_dis_ascent(1,3); 

        else 

            %Pick the first three as the three vertices locations 

            trix1 = nLdataxy_dis_ascent(1,1); triy1 = nLdataxy_dis_ascent(1,2); 

            triz1 = nLdataxy_dis_ascent(1,3); 

            trix2 = nLdataxy_dis_ascent(2,1); triy2 = nLdataxy_dis_ascent(2,2); 

            triz2 = nLdataxy_dis_ascent(2,3); 

            trix3 = nLdataxy_dis_ascent(3,1); triy3 = nLdataxy_dis_ascent(3,2); 

            triz3 = nLdataxy_dis_ascent(3,3); 

            %calcuation1  

            tri2b=sqrt((trix2-xb)^2+(triy2-yb)^2); 

            tri3b=sqrt((trix3-xb)^2+(triy3-yb)^2); 

            tri23=sqrt((trix2-trix3)^2+(triy2-triy3)̂2); 

            d1 = sqrt(tri3b^2-((tri23^2+tri3b^2-tri2b^2)/(2*tri23))^2); 

            d21 = sqrt(tri2b^2-d1^2); 
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            d31 = sqrt(tri3b^2-d1^2); 

            %calcuation2 

            tri1b=sqrt((trix1-xb)^2+(triy1-yb)^2); 

            tri31=sqrt((trix3-trix1)^2+(triy3-triy1)̂2); 

            d2 = sqrt(tri1b^2-((tri31^2+tri1b^2-tri3b^2)/(2*tri31))^2); 

            d32 = sqrt(tri3b^2-d2^2); 

            d12 = sqrt(tri1b^2-d2^2); 

            %calcuation3 

            tri12=sqrt((trix1-trix2)^2+(triy1-triy2)̂2); 

            d3 = sqrt(tri2b^2-((tri12^2+tri2b^2-tri1b^2)/(2*tri12))^2); 

            d23 = sqrt(tri2b^2-d3^2); 

            d13 = sqrt(tri1b^2-d3^2);  

            %Polynomial Weighting Functions W1, W2, and W3 

            W1 = d1^2*(d2^2*d23^2+d3^2*d32^2); 

            W2 = d2^2*(d1^2*d13^2+d3^2*d31^2); 

            W3 = d3^2*(d1^2*d12^2+d2^2*d21^2); 

                 

            zb_matrix(zb_i,zb_j) = (W1*triz1 + W2*triz2 + W3*triz3)/(W1+W2+W3);        

                    % the matrix of the interpolated z-value: m*n=(number of y)*(number of x) 

            zb(zb_k+zb_j)= (W1*triz1 + W2*triz2 + W3*triz3)/(W1+W2+W3);    

        end 

        zb_j=zb_j+1; 

        xb = xb - xres;     

    end 

    zb_k=zb_k+zb_j-1; 

    zb_i=zb_i+1; 

    yb = yb +yres;     

end   

 

% generate X and Y matrix for 3D plots 

[m_y,n_x] = size(zb_matrix); 

xb_matrix=zeros(m_y,length(xmax:-xres:xmin)); 

for i=1:m_y 

    xb_matrix(i,:)=xmax:-xres:xmin; 

end 

for i=1:n_x 

    yb_matrix(:,i)=(ymin:yres:ymax)'; 
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end 

 

figure 

handle_axe1 = surf(xb_matrix,yb_matrix,zb_matrix); 

xlabel('X axis (cm)','fontsize',12); 

ylabel('Y axis (cm)','fontsize',12); 

zlabel('Z axis (cm)','fontsize',12); 

title({'Surface Plot of the reference laser readings';'Distance-weighted Neareset Neighbor Interpolation'}); 

shading interp,colorbar 

handle_light1 = camlight('headlight') 

lighting phong, material dull; 
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Appendix G - LabVIEW Programs 

LabVIEW programs for the reference system to control top and left/right motors 

running in two modes and to log laser data. 

G.1 Independent Mode 

Figure G.1 Front Panel 
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Figure G.2 Block Diagram 
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Figure G.3 Flow Chart 
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 G.2 Continuous Mode 

Figure G.4 Front Panel 

 

 

Figure G.5 Block Diagram 
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Figure G.6 Flow Chart 
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Appendix H - Matching by Correlation 

%%***************************************** 

%%  MATLAB program    

%%  Description:  Matching by correlation 

%%***************************************** 

 

[m_fxy, n_fxy] = size(Fxy);       % Fxy - Data array contains the reference data set 

[j_wxy, k_wxy] = size(Wxy);      % Wxy - Data array contains the sub data set 

if (rem(j_wxy,2) == 0 ) 

    j_Wori = floor(j_wxy/2); 

else 

    j_Wori = floor(j_wxy/2)+1;  

end 

if (rem(k_wxy,2) == 0 ) 

    k_Wori = floor(k_wxy/2); 

else 

    k_Wori = floor(k_wxy/2)+1;  

end 

 

W_average = mean(mean(Wxy)); 

Rxy = zeros(m_fxy,n_fxy); 

for i=1:m_fxy 

    if ((i >= j_Wori) & ((m_fxy - i) >= j_Wori)) %high/low parts of w(x,y) is inside of f(x,y) 

        for j=1:n_fxy 

            if ((j >= k_Wori) & ((n_fxy - j) >= k_Wori)) %left/right parts of w(x,y) inside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):(i+(j_wxy-j_Wori)),(j-k_Wori+1):(j+(k_wxy-

k_Wori))))); 

                for ii=1:j_wxy 

                    for jj=1:k_wxy 

                        if ((ii==1) & (jj==1)) 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 
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                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));                 

            elseif (j < k_Wori)               % left parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):(i+(j_wxy-j_Wori)),1:(j+(k_wxy-k_Wori))))); 

                for ii=1:j_wxy 

                    for jj=1:(j+k_wxy-k_Wori) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(i-j_Wori+ii,jj)-F_average_st; 

                            st2=Wxy(ii,k_Wori-j+jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,jj)-F_average_st; 

                            st2=Wxy(ii,k_Wori-j+jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 
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                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            else           % (n_fxy - j)<k_Wori. right parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):(i+(j_wxy-j_Wori)),((j-k_Wori)+1):end))); 

                for ii=1:j_wxy 

                    for jj=1:(k_Wori+ n_fxy-j) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            end 

        end 

    elseif(i < j_Wori)                   %high parts of w(x,y) is outside of f(x,y) 

        for j=1:n_fxy 

            if ((j >= k_Wori) & ((n_fxy - j) >= k_Wori)) %left/right parts of w(x,y) inside of f(x,y) 

                F_average_st = mean(mean(Fxy(1:(i+(j_wxy-j_Wori)),(j-k_Wori+1):(j+(k_wxy-k_Wori))))); 

                for ii=1:(i+j_wxy-j_Wori) 

                    for jj=1:k_wxy 

                        if ((ii==1) & (jj==1)) 

                            st1=Fxy(ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(j_Wori-i+ii,jj)-W_average; 

                            st1_square = st1*st1; 
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                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(ii,j-k_Wori+jj)-F_average_st;  

                            st2=Wxy(j_Wori-i+ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));                 

            elseif (j < k_Wori)                      % left parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy(1:(i+(j_wxy-j_Wori)),1:(j+(k_wxy-k_Wori))))); 

                for ii=1:(j_wxy-j_Wori+i) 

                    for jj=1:(k_wxy-k_Wori+j) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(ii,jj)-F_average_st; 

                            st2=Wxy(j_Wori-i+ii,k_Wori-j+jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(ii,jj)-F_average_st;  

                            st2=Wxy(j_Wori-i+ii,k_Wori-j+jj)-W_average;  

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        
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                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            else              % (n_fxy - j)<k_Wori. right parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy(1:(i+(j_wxy-j_Wori)),((j-k_Wori)+1):end))); 

                for ii=1:(j_wxy-j_Wori+i) 

                    for jj=1:(k_Wori+ n_fxy-j) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(ii,j-k_Wori+jj)-F_average_st;  

                            st2=Wxy(j_Wori-i+ii,jj)-W_average;  

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(j_Wori-i+ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            end 

        end 

    else                     % (m_fxy - i) < j_Wori. Low parts of w(x,y) is outside of f(x,y) 

        for j=1:n_fxy 

            if ((j >= k_Wori) & ((n_fxy - j) >= k_Wori)) %left/right parts of w(x,y) inside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):end,(j-k_Wori+1):(j+(k_wxy-k_Wori))))); 

                for ii=1:(j_Wori+m_fxy-i) 

                    for jj=1:k_wxy 

                        if ((ii==1) & (jj==1)) 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 
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                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));                 

            elseif (j < k_Wori)             % left parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):end,1:(j+(k_wxy-k_Wori))))); 

                for ii=1:(j_Wori+m_fxy-i) 

                    for jj=1:(k_wxy-k_Wori+j) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(i-j_Wori+ii,jj)-F_average_st; 

                            st2=Wxy(ii,k_Wori-j+jj)-W_average; 

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,jj)-F_average_st;  

                            st2=Wxy(ii,k_Wori-j+jj)-W_average;  

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 
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                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            else              % (n_fxy - j)< k_Wori. right parts of w(x,y) is outside of f(x,y) 

                F_average_st = mean(mean(Fxy((i-j_Wori+1):end,(j-k_Wori+1):end))); 

                for ii=1:(j_Wori+ m_fxy-i) 

                    for jj=1:(k_Wori+ n_fxy-j) 

                        if ((ii==1) & (jj==1)) %first data point 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st; 

                            st2=Wxy(ii,jj)-W_average;  

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = st1*st2; 

                            Rxy_denominator1 = st1_square; 

                            Rxy_denominator2 = st2_square; 

                        else 

                            st1=Fxy(i-j_Wori+ii,j-k_Wori+jj)-F_average_st;  

                            st2=Wxy(ii,jj)-W_average;  

                            st1_square = st1*st1; 

                            st2_square = st2*st2; 

                            Rxy_numerator = Rxy_numerator + st1*st2; 

                            Rxy_denominator1 = Rxy_denominator1 + st1_square; 

                            Rxy_denominator2 = Rxy_denominator2 + st2_square; 

                        end        

                    end 

                end 

                Rxy(i,j) = Rxy_numerator/(sqrt(Rxy_denominator1*Rxy_denominator2));   

            end 

        end         

    end     

end 

R_max = max(max(Rxy));  % correlation coefficient 



 231 

Appendix I - SAS Code  

%%********************************************** 

%% SAS code   

%% Note: Input different datalines, before running this code 

%%********************************************* 

 

data; 

input CS MR REP Y; 

datalines;  

 

proc mixed method= type3; 

class CS MR; 

model y= CS MR CS*MR REP /solution; 

lsmeans cs mr cs*mr/diff cl slice = cs; 

run; 

proc sort; 

by cs mr; 

run; 

proc plot; 

plot y*rep; 

by cs mr; 

run; 

proc reg; 

model y = rep; 

by cs mr; 

run; 
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Appendix J - LOOCV Based Algorithm 

%%***************************************** 

%%  MATLAB program    

%%  Description:  Leave- one-out  cross-volidation based data filter algorithm 

%%     Note: May not good or necessary for all data sets 

%%***************************************** 

 

NewXYZ1 = data;                 % data - Data array contains the laser raw data set 

deltaY = min(all_deltaY(:,1));       % all_deltaY(:,1) - interval of each scanning line. 

[m_NewXYZ1,n_NewXYZ1] = size(NewXYZ1);  

data1 = ones(1,n_NewXYZ1);        %store the final data set. 

Degree = 16;                 % the maximum polynoial degree based on previous anaysis of CV 

ii = 1; 

numLines = 0; % count number scanned lines. 

for i=1:(m_NewXYZ1-1) 

    if ( (NewXYZ1(i+1,2)-NewXYZ1(i,2))>=deltaY) 

        j = i; 

        numLines = numLines + 1; 

        Ddata = NewXYZ1(ii:j,:); %Each line. part of NewXYZ 

        sizeD = size(Ddata,1); % numbers of data in each line. 

        nRegression = 1;  % for while loop 

        pd(1,3) = 0;      % for while loop. 

        numDdata = sizeD; % for while loop 

        while (pd(nRegression,3)~=numDdata) 

            sizeD = size(Ddata,1); % numbers of data in each line. 

            Ddata_random = Ddata; 

            fold = sizeD; %LOOCV        

            numDdata = size(Ddata,1);         

            for degree = 0: Degree % given possible polynomial degree 

                sizeG2 = 0; % end number of each group 

                for fold_Ddata =1:fold %k-fold method and leave-one-out method  

                        sizeG1 = sizeG2; 

                        sizeG2 = round(sizeD*fold_Ddata/fold); 

                        sizeG = sizeG2-sizeG1; % each group size 

                        xtest = Ddata_random(sizeG1+1:sizeG2,1); 

                        ytest = Ddata_random(sizeG1+1:sizeG2,3); 
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                        xtrain = Ddata_random(:,1); 

                        ytrain = Ddata_random(:,3); 

                        xtrain(sizeG1+1:sizeG2) = [];  

                        ytrain(sizeG1+1:sizeG2) = []; 

                        p_g = polyfit(xtrain,ytrain,degree);%polynomial coefficients 

                        r_g(degree+1,fold_Ddata) = sum((ytest - polyval(p_g,xtest)).^2); 

                end 

                pe(degree+1) = mean(r_g(degree+1,:)); %degree vs. 'MSE' 

            end 

            for pe_index = 1:Degree+1 % search for the minimum of 'MSE' 

                if pe(pe_index)== min(pe) 

                    degreeCV = pe_index-1;  

                end 

            end 

            pd(nRegression+1,1) = degreeCV; % regression time vs optimal polynomial degree 

            x_std = (Ddata(:,1)-mean(Ddata(:,1)))./std(Ddata(:,1)); %Normalize X in Ddata. 

            p_d = polyfit(x_std,Ddata(:,3),degreeCV); %polynomial coefficients 

            pd(nRegression+1,2) = mse(Ddata(:,3) - polyval(p_d,x_std)); % RT vs mse 

            [p,S]= polyfit(x_std,Ddata(:,3),degreeCV); 

            [Dis,delta] = polyval(p,x_std,S); 

            BB = double(abs(Ddata(:,3)-Dis)< 2*delta);  % condition 

            Ddata(:,3) = Ddata(:,3).*BB; 

            Ddata(Ddata(:,3)==0,:)=[]; 

            pd(nRegression+1,3) = size(Ddata,1); 

            Lines(numLines,nRegression) = degreeCV; 

            nRegression = nRegression +1; 

        end 

        data1 = vertcat(data1,Ddata); 

        ii = j+1; 

    end 

end 

% last one line 

numLines = numLines + 1; 

Ddata = NewXYZ1(ii:m_NewXYZ1,:); % parts of NewXYZ 

sizeD = size(Ddata,1); % numbers of data in each line. 

nRegression = 1;  % for while loop 

pd(1,3) = 0;      % for while loop. need to delete in furture. 
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numDdata = sizeD; % for while loop 

while (pd(nRegression,3)~= numDdata) 

    sizeD = size(Ddata,1); % numbers of data in each line. 

    Ddata_random = Ddata; 

    fold = sizeD;  

    numDdata = size(Ddata,1); 

    for degree = 0: Degree % given possible polynomial degree 

        sizeG2 = 0; % end number of each group 

        for fold_Ddata =1:fold 

                sizeG1 = sizeG2; 

                sizeG2 = round(sizeD*fold_Ddata/fold); 

                sizeG = sizeG2-sizeG1; % numbers in each group 

                xtest = Ddata_random(sizeG1+1:sizeG2,1); 

                ytest = Ddata_random(sizeG1+1:sizeG2,3); 

                xtrain = Ddata_random(:,1); 

                ytrain = Ddata_random(:,3); 

                xtrain(sizeG1+1:sizeG2) = []; 

                %xtrain = (xtrain-mean(xtrain))./std(xtrain); 

                ytrain(sizeG1+1:sizeG2) = []; 

                p_g = polyfit(xtrain,ytrain,degree); 

                r_g(degree+1,fold_Ddata) = sum((ytest - polyval(p_g,xtest)).^2); 

        end 

        pe(degree+1) = mean(r_g(degree+1,:)); 

    end 

    for pe_index = 1:Degree+1 

        if pe(pe_index)== min(pe) 

            degreeCV = pe_index-1; 

        end 

    end 

    pd(nRegression+1,1) = degreeCV; % regression time vs optimal polynomial degree 

    x_std = (Ddata(:,1)-mean(Ddata(:,1)))./std(Ddata(:,1)); %Normalize X in Ddata. 

    p_d = polyfit(x_std,Ddata(:,3),degreeCV); %polynomial coefficients 

    pd(nRegression+1,2) = mse(Ddata(:,3) - polyval(p_d,x_std)); % RT vs mse 

    [p,S]= polyfit(x_std,Ddata(:,3),degreeCV); 

    [Dis,delta] = polyval(p,x_std,S); 

    BB = double(abs(Ddata(:,3)-Dis)< 2*delta);  % condition 

    Ddata(:,3) = Ddata(:,3).*BB; 
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    Ddata(Ddata(:,3)==0,:)=[]; 

    pd(nRegression+1,3) = size(Ddata,1); 

    Lines(numLines,nRegression) = degreeCV; 

    nRegression = nRegression +1; % for while loop 

end 

data1 = vertcat(data1,Ddata); 

data1(data1(1,1)==1,:)=[]; 

 

figure; 

plot3(data1(:,1),data1(:,2),data1(:,3),'marker','.','linestyle','none') 

xlabel('X axis - roll (inches)'); 

ylabel('Y axis - pitch (inches)'); 

zlabel('Z axis - yaw (inches)'); 

title('Distance plot '); 

grid on; 
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Appendix K - Conversion of  the Local Coordinate System to 

the UTM Geographic Coordinate System  

%%************************************************* ** 

%% MATLAB program 

%%  Description:: Local coordinate system to UTM geographic coordinate system. 

%%  Nomenclature: 

%%  {b} – X-Y-Z coordinate system 

%%  {be} – E-N-U coordinate system 

%%  {e} – UTM (WGS84) geographic coordinate system 

%%************************************************* ** 

 

%% open gyro.txt 

fid = fopen('gyro.txt','r');  

% import degree,rate sensor, accelerometer, magnetometer  

C1=textscan(fid, '%*f%f%f%f %f %f %f %f %f %f %f %f %f %*f %*f', 1100000,'headerlines',0); 

L1 = length(C1{1}) 

fclose(fid); 

 

phi = mean(C1{1});    % roll angle 

theta = mean(C1{2});   % pitch angle 

psi = mean(C1{3});    % yaw angle or heading, to magnetic north. 

dis_origin = 51/2.54;   % horizontal distance between the starting position of laser and Gyro. 

GM_Angle = 4.5; %the angle between grid north and magnetic north,in 1997 

psi = -psi + GM_Angle; 

dis_origin_v = 24/2.54;  % vertical distance between the starting position of laser and Gyro. 

 

data2 = data1;      %3D raw laser data in {b} 

data2(:,1) = cos(psi*pi/180)*data1(:,1)+sin(psi*pi/180)*(data1(:,2)-dis_origin); %east in {be} 

data2(:,2) = -sin(psi*pi/180)*data1(:,1)+cos(psi*pi/180)*(data1(:,2)-dis_origin); %north in {be} 

data2(:,3) = data1(:,3)+ dis_origin_v;    %up in {be} 

 

% unit conversion: inch to meter 

data2(:,1) = data2(:,1)*0.0254;   

data2(:,2) = data2(:,2)*0.0254; 

data2(:,3) = data2(:,3)*0.0254; 
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%% open gps.txt 

fid = fopen('gps.txt','r');  

C2 = textscan(fid, '%s%f%f%c%f%c%n%n%f%f%c%f%c%c%s', -1,'headerlines',1, 'delimiter',','); 

L2 = length(C2{1}) 

fclose(fid); 

 

% Universal Transverse Mercator Projection Parameters % all angles are in radians, 

% DD MM.MMMM to DD.ff 

lat_mean = mean(C2{3}); 

long_mean = mean(C2{5}); 

lat = (39+(lat_mean-3900)/60)*pi/180;              % latitude 

long = (-(96+(long_mean-9600)/60))*pi/180;    %longitude 

long0 = (-99)*pi/180;        % longitude of the origin (the central meridian) of the projection 

                                            % need to change. refernce to UTM grid 

delta_long = long-long0 ;     % difference of longitude from the central meridian 

U_k0 = 0.9996;                    %central scale factor, an arbitrary reduction applied to all 

                                            % geodetic lengthes to reduce the maximum scale distortion of the prejection 

FN = 0;                % false northing 

FE = 500000;     % false easting 

 

% ellipsoid parameters (NAD83/WGS84) 

E_a = 6378137;                            % meters, semi-major axis of the ellipsoid 

E_b = 6356752.3142;                   % meters, semi-major axis of the ellipsoid 

E_f = 1/298.25723563;                 % flattening or ellipticity =(a-b)/a 

E_e2 = (E_a^2-E_b^2)/E_a^2;    % the square of first eccentricity.%0.00669 

E_ee2 = (E_a^2-E_b^2)/E_b^2;   % the square of second eccentricity.%0.007 

E_n = (E_a-E_b)/(E_a+E_b);  

E_p = E_a*(1-E_e2)/(1-E_e2*sin(lat)^2)^(3/2);     % raduis of curvature in the meridian 

E_v = E_a/(1-E_e2*sin(lat)^2)^(1/2);                     %raduis of curature in the prime vertical; 

                                                    % also defined as the normal to the ellipsoid termination at the minor axis 

E_A = E_a*(1-E_n+5/4*(E_n^2-E_n^3)+81/64*(E_n^4-E_n^5)); 

E_B = 3/2*E_a*(E_n-E_n^2+7/8*(E_n^3-E_n^4)+55/64*(E_n^5-E_n^6)); 

E_C = 15/16*E_a*(E_n^2-E_n^3+3/4*(E_n^4-E_n^5)); 

E_D = 35/48*E_a*(E_n^3-E_n^4+11/16*(E_n^5-E_n^6)); 

E_E = 315/512*E_a*(E_n^4-E_n^5);    % 0.03mm 

E_S = E_A*lat-E_B*sin(2*lat)+E_C*sin(4*lat)-E_D*sin(6*lat)+E_E*sin(8*lat); 
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%Terms used to calculate general equations. 

T1 = E_S*U_k0; 

T2 = E_v*sin(lat)*cos(lat)*U_k0/2; 

T3 = E_v*sin(lat)*cos(lat)^3*U_k0/24*(5 - tan(lat)^2 + 9*E_ee2*cos(lat)^2 +... 

    4*E_ee2^2*cos(lat)^4); 

T4 = E_v*sin(lat)*cos(lat)^5*U_k0/720*(61 - 58*tan(lat)^2 + tan(lat)^4 +... 

    270*E_ee2*cos(lat)^2 - 330*tan(lat)^2*E_ee2*cos(lat)^2 +... 

    445*E_ee2^2*cos(lat)^4 + 324*E_ee2^3*cos(lat)^6 -... 

    680*tan(lat)^2*E_ee2^2*cos(lat)^4 + 88*E_ee2^4*cos(lat)^8 -... 

    600*tan(lat)^2*E_ee2^3*cos(lat)*6 - 192*tan(lat)^2*E_ee2^4*cos(lat)^8); 

T5 = E_v*sin(lat)*cos(lat)^7*U_k0/40320*(1385 - 3111*tan(lat)^2 +... 

    543*tan(lat)^4 - tan(lat)^6); 

T6 = E_v*cos(lat)*U_k0; 

T7 = E_v*cos(lat)^3*U_k0/6*(1 - tan(lat)^2 + E_ee2*cos(lat)^2); 

T8 = E_v*cos(lat)^5*U_k0/120*(5 - 18*tan(lat)^2 + tan(lat)^4 +... 

    14*E_ee2*cos(lat)^2 - 58*tan(lat)^2*E_ee2*cos(lat)^2 +... 

    13*E_ee2^2*cos(lat)^4 + 4*E_ee2*3*cos(lat)^6 -... 

    64*tan(lat)^2*E_ee2^2*cos(lat)^4 - 24*tan(lat)^2*E_ee2^3*cos(lat)^6); 

T9 = E_v*cos(lat)^7*U_k0/5040*(61 - 479*tan(lat)^2 + 179*tan(lat)^4 - tan(lat)^6); 

 

%% latitude and longitude of  the origin of {be} in {e} 

North = FN+(T1+delta_long^2*T2+delta_long^4*T3+delta_long^6*T4+delta_long^8*T5); 

East = FE+(delta_long*T6+delta_long^3*T7+delta_long^5*T8+delta_long^7*T9); 

     

% {be} to {e}: UTM coordinate system - North and East and Down. 

data2(:,1) = data2(:,1) + East; 

data2(:,2) = data2(:,2) + North; 

figure; 

plot3(data2(:,1),data2(:,2),data2(:,3),'marker','.','linestyle','none') 

xlabel('East (meter)'); 

ylabel('North (meter)'); 

zlabel('Distance (meter)'); 

title('Earth fixed coordinate frame - UTM-WGS84'); 

grid on; 

 

%add 3/19/2010 

data3 = data2; 
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MSL = mean(C2{10});  

dis_v = 11/100; % vertical distance between the GPS and Gyro. 

data3(:,3)= data2(:,3)+MSL+dis_v; 

 

figure; 

plot3(data3(:,1),data3(:,2),data3(:,3),'marker','.','linestyle','none') 

xlabel('East (meter)'); 

ylabel('North (meter)'); 

zlabel('Altitude,mean sea level (meter)'); 

title('Earth fixed coordinate frame - UTM-WGS84'); 

grid on; 

 

save('UTM.mat')  % data save. 
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Appendix L - Official Formulas for the Conversion of 

Geographic Coordinates to UTM Grid Coordiantes 

L.1 General Formulas and Terms 

The National Geospatial-intelligence Agency issued the official formulas for the 

conversion of geographic coordinates to UTM grid coordinates in the technical document 

of the Universal Grids: Universal Transverse Mercator (UTM) and Universal Polar 

Stereographic (UPC) in 1989. These general formulas for the computation of north and 

east in the UTM geographic system by knowing the latitude and longitude are given in 

equations H.1 and H.2. For the following definitions of terms, all lengths are in meters 

and all geographic coordinates are in radians unless specified otherwise. The sign 

notation is negative for the Southern and Western hemispheres.  

 

 

N = FN + ( T1 + Δλ2T2 + Δλ4T3 + Δλ6T4 + Δλ8T5)          (H.1)  

E = FE + (ΔλT6 + Δλ3T7 + Δλ5T8 + Δλ7T9)                       (H.2) 

 

where  N = grid northing in {e}, 

            E = grid easting in {e},  

            FN = False Northing (0 for the Northern hemisphere; 10000000 for the  

           Southern Hemisphere), 

            FE   = 500000, False Easting, 

            T1 = Sk0,     

            0sin cos k
T2

2

v φ φ = , 

            
3

2 2 2 4 40sin cos k
T3 (5 tan 9e' cos 4 ' cos )

2

v
e

φ φ = − φ + φ + φ  , 
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5
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2 2 2 4 4 6 6

2 4 4 8 8 2 6 6

2 8 8

sin cos k
T4 (61 58tan tan 270 ' cos

720

330tan ' cos 445 ' cos 324 ' cos

680tan ' cos 88 ' cos 600tan ' cos

192tan ' cos )

v
e

e e e

e e e

e

φ φ= − φ + φ + φ −

φ φ + φ + φ −

φ φ + φ − φ
− φ φ ,   

            
7

2 4 60sin cos k
T5 (1385 3111tan 543tan tan )

40320

v φ φ = − φ + φ − φ , 

                        T6 = vcosΦ k0, 

            
3

2 2 20cos k
T7 (1 tan e' cos

6

v φ = − φ + φ) , 

            

5
2 4 2 20

2 2 2 4 4 6 6

2 4 4 2 6 6

cos k
T8 (5 18tan tan 14 ' cos

120

58tan ' cos 13 ' cos 4 ' cos

64tan ' cos 24tan ' cos

v
e

e e e

e e

 φ= − φ + φ + φ −

φ φ + φ + φ −
φ φ − φ) , and 

            
7

2 4 60cos k
T9 (61 479tan 179tan tan

5040

v φ = − φ + φ − φ) . 

 

L.2 Universal Transverse Mercator Projection Parameters 

Φ = latitude 

λ = longitude 

Φ’ = latitude of the foot of the perpendicular from the point to the central   

         meridian 

λo = longitude of the origin (the central meridan) of the projection 

Δλ = λ - λo, difference of longitude from the central meridian (for genearl  

   formula use, value is sing dependent; for use in tables, value  

   always considered position) 

Ko = 0.9996, central scale factor, an arbitrary reduction applied to all geodetic  

   lengths to reduce the maximum scale distortion of the projection.   

k = scale factor at the working point on the projection 
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L.3 Ellipsoid Parameters:  

a = 6378137, semi-major axis of the ellipsoid 

b = 6356752.3142, semi-major axis of the ellipsoid 

f = (a-b)/a = 1/298.25723563, flattening or ellipticity 

e2 = (a2 - b2)/a2 = f(2 - f) = (first eccentricity)2 

e’2 = (a2 - b2)/b2 = f(2 - f)/(1 - f)2 = e2/(1 - e2) = (second eccentricity)2 

n = (a - b)/(a + b) = f/(2 - f) 

ρ = a(1 - e2)/(1 - e2sin2
Φ)3/2, radius of curvature in the meridan 

v = a(1 - e2)/(1 - e2sin2
Φ)3/2 = ρ(1 + e’2 cos2Φ),  

 radius of curvature in the prime vertical;also defined as the normal to the  

  ellipsoid terminating at the minor axis 

S = A’ Φ – B’ sin2Φ + C’ sin4Φ – D’sin6Φ + E’sin8Φ ,  

 meridional arc, the true meridional distance on the ellipsoid from the  

  equator, 

where A’ = a [ 1 – n + 5(n2 - n3)/4 + 81(n4 - n5)/64  + …], 

           B’ = 3a/2 [ n – n2 + 7(n3 - n4)/8 + 55n5/64  + …], 

           C’ = 15a/16 [ n2 – n3 + 3(n3 - n4)/4 + …], 

           D’ = 35a/48 [ n3 – n4 + 11n5/16  + …], and 

           E’ = 315a/512 [ n4 - n5 + …]. 

 


