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Abstract 

The emergence of big data storage together with the evolution of sensor technologies has 

expanded the amount of data that complex manufacturing facilities can produce. Almost all 

process variables in the factory can be measured and the data can be stored in data lakes in cloud 

servers. This big data phenomenon has presented challenges and opportunities for quality 

improvement teams. While the traditional control charts are still widely used, they are often 

isolated tools for monitoring product quality characteristics scattered in a manufacturing system. 

The need to monitor full systems becomes even more pressing with the emergence of smart 

factories in the next industrial revolution called Industry 4.0. 

The goal of this research is to develop a big data computational framework for enterprise-

level process monitoring that tracks different variables simultaneously and provides near-time 

system status updates. To achieve this goal, a novel methodology called Technique of 

Uniformally Formatted Frequencies (TUFF) is developed that standardizes continuous, discrete 

and profile variables into comparable statistics, classifies these statistics into four colors using 

ideas from pre-control charts and summarizes these colors to a single frequency table. This table 

is used to compare the current situation to historic data and to decide if the performance of the 

system has changed. A higher resolution of the results identifies the temporal and spatial location 

of possible change. The comprehensive monitoring method uses all the available data and 

monitors both quality characteristics as well as process parameters near-time. Additionally, the 

method is easily scalable to handle big data level datasets. Extensive simulation studies identify 

the sensitivity and other characteristics of the TUFF method.  

This dissertation also redefines one of the more popular Six Sigma continuous 

improvement methods of DMAIC (Define, Measure, Analyze, Improve, and Control) for the 



  

manufacturing environment. The redefined method is Measure, Define, Analyze, Improve and 

Control (MDAIC), where the unit in need of improvement is identified automatically by the data. 

The research integrates the TUFF statistical system monitoring method to the MDAIC 

framework and provides a solution for the implementation of the method in a big data 

environment based on the MapReduce algorithm. 
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Chapter 1 - Introduction 

 1.1 Introduction and research motivations 

Over the course of human history, three industrial revolutions have taken place. The first 

was during the 18th and 19th centuries when technological advances started the trend of moving 

from hand production to machine production. The second industrial revolution is widely 

considered to be the introduction of the conveyor method as a mean of mass production at the 

beginning of the 20th century (Schwab, 2016). The mass production dictated a need for parts with 

constant measurements for quality control. That need was satisfied with the introduction of control 

charts by Shewhart in 1924 (Montgomery, 2012). The third revolution was the introduction of the 

microchip to automate the production in the 1970s (Schwab, 2016).  

Now humankind is on the brink of the fourth industrial revolution that is based on the 

digitalization of production. It is characterized by the fusion of technologies that is blurring the 

lines between the physical and digital world (Schwab, 2016). Today’s production processes are 

becoming more complex with every passing day. The amount of data received from a production 

line is large and each production company usually owns several facilities consisting of a number 

of production lines. All the data generated can be conveniently saved to data warehouses and 

managed there with the help of big data tools. Additionally, the advances in cyber-physical 

systems, industrial internet, and digital manufacturing have enabled the connection between 

physical production equipment to computational cyberspace or cloud (Chang, 2017).  

All the stages of product life from design to production to quality assurance to customer 

service can all be delivered through a cloud platform. Every client of the platform has access to a 

large amount of data. At the same time, the methods that are used to assess the quality and health 



2 

 

 

 

of the process are largely the same as the ones used after the second industrial revolution. This 

research is transformative in that it introduces a method that will allow the quality assurance and 

process monitoring to evolve from the second industrial revolution to cater to the needs of the 

fourth revolution. 

One of the more common tools to assess the quality of the products is statistical process 

monitoring (SPM) or as previously known, statistical process control (SPC) (Montgomery, 2012). 

Unfortunately, most existing SPM methods are not capable of analyzing large datasets generated 

by the production equipment and real-time quality characteristics that are collected from all over 

the factory floor. The most traditional SPC tool X-bar and R control chart often deal with only one 

quality characteristic at a time. Multivariate control charts, for example, Hotelling’s T2 charts are 

rarely capable of using more than 10 characteristics (Montgomery, 2012).  More than 1000 sensors 

may need to be monitored in a modern production line, but control charts are still widely used 

despite their shortcomings. Other solutions, some of which will be discussed in the next section, 

have been proposed over the years to monitor the processes, but most of them are either 

computationally difficult or are hard to fathom for the end-users, so their use in industry is 

marginal. The current SPM methods are also largely ignoring different spatial and temporal spaces.  

The list below provides a few key motivations for this research: 

1. Can an algorithm be created for enterprise-level or system-wide SPM that is easily 

scalable over a large number of variables, is computationally easy to execute in a big 

data environment and helps define the time and location of the change? 

2. Can an algorithm be created for SPM that is capable of merging different types of data, 

specifically continuous, profile and binomial data? 

3. How to implement this type of algorithm in big data environments? 
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 1.2 State of the art in SPM 

Weese et al (2016) did a comprehensive review of the statistical learning methods up to 

2015. They claimed to view these methods from the scalability to big data problems but did not 

offer any solutions on how to do it. They looked at unsupervised learning approaches such as 

Principal Component Analysis (PCA), Partial Least Squares (PLS), Factor Analysis (FA), Least 

Absolute Shrinkage and Selection Operator (LASSO), multivariate exponential weighted moving 

average (EWMA) charts, Support Vector Machines (SVM) and other clustering methods; and 

supervised learning methods such as control chart pattern recognition, regression-based methods, 

and neural networks. 

In another review, Yin et al (2014) looked at basic data-driven approaches for SPM. They 

concluded that due to uncertainties and complexities of modern industrial systems it is virtually 

impossible to construct process models based on the first principles or linear regression. They 

reviewed the usage of PCA and PLS within the multivariate statistical process framework.  

Ge et al (2013) reviewed and classified most of the data-based process monitoring methods 

based on which processes these are best applicable to, such as non-Gaussian processes, non-linear 

processes, time-varying, and multimode processes and dynamic processes.  

A review on the usage of support vector machines in statistical process monitoring can be 

found by Cuentas et al (2016). These authors aimed to provide researchers with a starting point to 

potentiate the performance of the support vector machine classifier to achieve the best possible 

performance and improve detection efficiency. The problem of scalability to big data application 

was not one of the goals of the review. 
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Maleki et al (2017) did a review of research conducted on measurement errors in SPM. 

The conclusion of their review was that the effect of contaminated measurements must be explored 

more in detail in the event of big data applications. Also, they brought out that very little attention 

has been given to multivariate processes and profile monitoring applications. 

A systematic comparison of PCA-based SPM methods was carried out by Rato et al (2016). 

The methods were used on different datasets such as autocorrelated data, nonstationary data, etc. 

and the pros and cons of each method were discussed. 

A comparative study on monitoring schemes for non-Gaussian distributed processes can 

be found by Li & Qin (2016). The focus was on support vector data description, kernel density 

estimation, Independent Component Analysis (ICA) and statistical pattern analysis. 

De Ketelaere et al (2015, 2016) reviewed SPM on time-dependent data, focusing mainly 

on PCA-based methods and how can they handle different types of data such as auto-correlation 

and non-stationarity. 

More recently, Zhu et al (2018) studied robust data mining approaches in industrial process 

monitoring in cases when the data was considered to be polluted because of outliers or missing 

data. The methods were divided into two main groups: robust data mining for data preprocessing 

and statistical modeling. Different methods of outlier detection, missing data imputation, 

normalization, principal component analysis, Bayesian principal component analysis, and non-

linear/non-Gaussian/dynamic modeling were discussed. The authors also discussed big data 

modeling, data selection, data dependence analysis, and information fusion, and multi-view 

monitoring. 

Jiang et al (2019) reviewed different multi-block PCA, PLS and canonical correlation 

analysis (CCA) methods and how these methods fit into their own proposed plant-wide data-driven 
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distributed monitoring method. The paper examined basic multivariate statistical process 

monitoring methods (Hotelling T2, PCA, PLS, CCA), then established motivations for distributed 

monitoring, where the basic methods were used in smaller subsets within the system and based on 

these statistics, decisions were made on the full system. The decision rules were Bayesian 

interference statistic or Bayesian fault diagnosis system.  

Abundant research has been conducted in this field as can be seen from the reviews. Three 

main methods are used: PCA, PLS and control charts. The following is an overview of some of 

the methods that have been published in recent years. 

 Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of values 

of linearly uncorrelated variables called principal components. Tong & Yan (2015) looked at a 

modified multiblock PCA algorithm for decentralized SPM. The measured variables were divided 

into several overlapping blocks, which then were analyzed with multiblock PCA. Since the method 

relies on Hotelling T2, the use of it in big data applications is doubtful. The numeric example given 

used 8 variables. Jiang et al (2016) explored the distributed PCA process with the help of fault-

relevant variable selection and Bayesian interference. The optimal subset of variables was 

identified for each fault using the optimization algorithm. A sub-PCA model was established for 

each subset and finally monitoring results were combined through the Bayesian process. The 

examples given used up to 32 variables.  

Gajjar et al (2018) investigated the use of sparse principal component analysis to detect 

faults. The reason for using SPCA was that interpreting the principal components from a large 

dataset was deemed challenging. The SPCA would use sparse loadings to some principal 

components and therefore make the detection of faulty variables easier. The proposed method was 
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used on the Tennesee-Eastman process with 32 variables. There are many other studies published, 

but they all rely on similar or same simulated datasets of up to 32 variables, for example, see Jiang 

& Yan (2014) and Zheng et al (2015). Menafoglio et al (2018) studied profile monitoring of 

probability density functions using simplicial functional PCA. Their work was using image data 

to detect faults. The proposed approach summarized the random occurrences of faults via their 

probability density functions and then monitors these functions using PCA. The example provided 

was on metal foam porosity faults.  

Zhang et al (2018) developed fault detection and diagnosis method based on weighted and 

combined indexes of the residual subspace associated with PCA. First, the residual subspace was 

divided into two subspaces according to the residual percent variance. The subspaces were active 

subspace and stable subspace based on the idea that the residual variance should reach a steady 

state when the factors begin to account for random errors. Next, the authors established a weighted 

index by combining Hotelling T2 statistics and the Euclidean distance statistics which was then 

monitored to detect faults.  

Partial Least Squares (PLS) regression is a statistical method that finds a linear regression 

model by projecting the predicted variables and the observable variables to a new space. Wang et 

al (2015) used kernel PLS based prediction model construction to monitor non-linear processes. 

Relations between input and output variables were considered in a high-dimensional space, latent 

vector matrices were calculated through reformed nonlinear iterative partial least squares method. 

The examples used showed only univariate datasets. Wang and Yin (2015) used orthogonal signal 

correction and modified PLS to detect quality-related faults. OSC was used to remove undesired 

systematic variation from the input space. Then the input was decomposed into two orthogonal 

subspaces of fully responsible for predicting the output and uncorrelated to output. The maximum 
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number of variables used was 32. Zhou et al (2018) introduced a statistical model based on a global 

plus local projection to the latent structures that focused more attention on the relevance of 

extracted principal components. The linear correlation information between the process and 

quality variables extracted was maximized and the local nonlinear structural correlation 

information was extracted as much as possible. The Tennessee-Eastman process was once again 

used as an example with 32 variables.  

Tong et al (2019) proposed the use of distributed partial least squares based residual 

generation for SPM. Their proposed method developed a soft sensing model for each specific 

variable and the generated residuals reflected the variations in the input-output relationship. The 

example was the Tennessee-Eastman process. The biggest issue with PLS is that like any 

regression modeling, the larger the number of variables, the more difficult it is to estimate 

variance-covariance matrices. 

As stated previously, the control charts are still used and also studied. Exponentially 

Weighted Moving Average (EWMA) and cumulative sum (CUSUM) charts are two variations of 

control charts. EWMA chart tracks the exponentially-weighted moving average of all prior sample 

means. EWMA weights samples in geometrically decreasing order so that the most recent samples 

are weighted most highly while the most distant samples contribute very little. Haq et al (2015) 

proposed an EWMA chart that was using the best linear unbiased estimator paired ranked set 

sampling method. They claim that the method performs better than other similar methods in 

detection and also is more sensitive. However, the method is used for univariate data. Multivariate 

EWMA chart based on the variable selection using the Akaike information criterion. The number 

of variables in examples was five. Huwang et al (2018) introduced a charting methodology for 

monitoring linear profiles. The method was developed based on the spatial rank of the vector of 
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the estimators of the regression coefficients and error variance. These coefficients and error 

variance was then monitored using EWMA charts.  

Suman and Das (2019) used EWMA on latent variables scores to detect developing faults 

early. First, the raw data was analyzed using PLS and then the scores were monitored using 

EWMA. The CUSUM chart accumulates information from the process over time and therefore is 

more sensitive to small and moderate changes in the process mean. Zhang and Woodall (2016) 

explored dynamic probability control limits for lower and two-sided risk-adjusted CUSUM charts. 

They discovered that the in-control performance of their charts varies significantly less than with 

the chart with fixed limits. Saleh et al (2016) examined the CUSUM control chart with estimated 

parameters by considering between-practitioner variability. They recommended designing the 

charts using a bootstrap approach.  

Daryabaryi et al (2019) explored the overall performance of the Bernoulli CUSUM chart 

on the presence of measurement errors and considering learning effect using the average number 

to signal measure as the performance metric. They showed that measurement errors deteriorated 

the performance of the chart and that the effect of Type I measurement errors was larger than the 

Type II error. The biggest shortcoming of the EWMA and CUSUM charts is that most of them are 

used to monitor changes in mean and do not consider variance shift at all. The other issue is also 

scalability of the methods. Usually, these charts are given for a univariate or small number of 

multivariate datasets. 

In conclusion, the largest shortcomings of current SPM methods are that they are focused 

on quality characteristics and not on other processes, they are not applied for the whole system, 

they are not capable of functioning with different data types, they ignore spatial and temporal 

spaces, they do not consider data streaming and they do not scale up beyond 50 dimensions. 
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 1.3 Challenges and Goals 

Most of the data generated by the production companies usually fulfill the requirement of 

the definition of big data by large volume and velocity. The use of video cameras and photo 

lenses add to the variety of data. The research proposed in this document focuses on the volume 

and velocity dimension of the big data in manufacturing. Comparisons between classical SPM 

implementations versus the opportunities that big data paradigm brings are listed in Table 1 

(Chang, 2017) 

Table 1. Classic SPC implementation vs the big data opportunities 

SPM Functions Classical SPM Big Data Opportunities 

Data Availability Scarce Abundant 

Data Type Restricted to numbers Numbers, text, image, voice 

Data Collection speed Slow Fast 

Data Collection frequency Infrequent Real- or near-time 

Data analysis Using samples Using all observations 

Data dimensions Small (less than 10) Large (hundreds or thousands) 

Data Archive Limited past All historical observations 

Data visualization Control charts Spatial, temporal, multiscale 

Data subject On product On both process parameters and products 

 

The first hurdle is the volume of the data. The ever-expanding frontiers in data recording 

and storing have made it possible for enterprises to gather large amounts of data about every detail 

in their processes. The amount of new data generated every second can be difficult to fathom. 
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Sensors are capable of reading 400 to 1000 values per second, which adds the velocity dimension. 

There can be thousands of sensors on the production line, several lines in a facility and several 

facilities in a corporation. Enterprises have large quantities of historic raw data, unfortunately, 

little is used to generate knowledge about processes. The traditional SPM assumes that you can 

monitor local quality characteristics and therefore the system-level monitoring is ignored. The 

system-level monitoring would allow predicting the output. If settings change due to wear of the 

machine or the tool, the quality of the product can change as well.  

The second issue is that the quality characteristics can be in different formats. Some 

processes are continuous, some can be described best by profiles and some use batches. To 

complicate matters further, the use of cameras is steadily rising and more information is captured 

by pictures or even movies.  

 Most of the methods described in the previous section are capable of dealing with either 

one type of data or with a small number of variables. When the requirements are much larger, the 

methods are not capable of handling such situations. There is certainly a need for a method that 

can accommodate a large amount of historical data. It should be scalable, simple to implement and 

understand, and computationally efficient. The method is useless if analyzing 1 minute of data 

from one machine takes 1 hour.  

After all the analysis is completed, the knowledge must be summarized and presented to 

the decision-makers. Visualization has been proven to be an effective way of conveying messages. 

Also, it is important that analysis can be summarized depending on the level of interest. The factory 

manager is interested mainly in the status of one’s factory; the area manager is interested in the 

summarization of the situation of the factories in their area etc. The method proposed could be 
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used to analyze all the data at the same time and have the flexibility to cater to the needs of most 

clients. 

Thus, the goals of this research are to 

 create an algorithm for system-wide Statistical Process Monitoring that is 

o usable with continuous and profile variables 

o capable of merging different types of data into a uniform format 

o able to identify timeframes and location of possible changes 

 establish a solution for big data implementation on the Statistical System 

Monitoring method 

 1.4 Research Contributions and Organization of Dissertation 

This research was inspired by the USA presidential elections in 2016. While there are 50 

states that contribute to the election of the president, most of the attention is focused on the few 

“swing” states that have historically elected both Republican and Democrat candidates. A large 

number of states almost always vote for Republican (Texas) or Democratic (California). Similar 

tendencies can be credited to the manufacturing industry. The data from a large number of 

variables are gathered, but only a few are monitored and analyzed thoroughly because they are the 

most important or most prone to change (such as “swing” states). However, similarly to 

presidential elections, all the variables must be accounted, just in case there are changes in those 

variables. 

Traditional quality monitoring methods that are still widely used in industry have limited 

capabilities when it comes to system-wide monitoring. They are usually geared towards 

monitoring locally without taking into account the events from upstream of the production line. 
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They are also focused on sampling and monitoring quality characteristics assuming that if those 

are in-control, the process parameters are also in-control. Big data allows much more flexibility in 

storing and analyzing each variable regardless if it is the current or historic measurement. In this 

dissertation, a novel system monitoring method called Technique of Uniformally Formatted 

Frequencies (TUFF) is proposed. A classification based on pre-control charts is utilized to monitor 

continuous variable, profile variable and attribute variable based data in a big data environment. 

All the readings are analyzed and summarized on different levels of interest to detect changes in 

overall performance and to pinpoint possible culprits of change. A novel approach to the Six Sigma 

continuous improvement process is also proposed where the signal for possible improvement 

projects is initiated by data rather than a person. The research is expected to help owners of the 

smart factories monitor the whole factory at once and identify the location and timeframe of 

possible issues in quality characteristics as well as process parameters for more in-depth analysis. 

 1.4.1 Profile Monitoring using Modified Sample Entropy 

First, a short literature review is presented on the current profile monitoring methods and 

Adjusted Modified Sample Entropy. A method to monitor a single profile using a modified Sample 

Entropy is presented next. A simulation study shows the sensitivity of the method to the changes 

in the underlying model of the profile as well as the variation changes of the profile. Specifically, 

the chapter makes the following contributions: 

 A novel method for profile monitoring is presented that uses modified sample entropy 

 The profile is characterized by a single value or set of values when the profile is 

segmented 
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 A simulation study shows that the method is capable of detecting changes in underlying 

models as well as variation along the profile 

 The segmentation of the profile helps to identify the faulty part of the process 

 1.4.2 Statistical System Monitoring (SSM) for Enterprise-Level Quality Control 

Statistical system monitoring called TUFF is proposed where all the process parameters 

and quality characteristics are considered simultaneously for change detection. Background into 

traditional multivariate statistical process control is presented with a literature review on Hotelling 

T2, Principal Component Analysis, Group Control Charts, and Pre-control charts are discussed. 

The desired properties of enterprise-level system monitoring are presented and a method for 

monitoring continuous variables in system-level is proposed. A continuous variable is monitored 

using classification based on the pre-control chart and group control chart ideas. The classifications 

are summarized and presented in “traffic-light” visualization. Results from simulation studies are 

presented that show the thresholds of changes for decision-makers, the maximum number of 

variables that can be used in the group control phase and the sensitivity of the method. 

Recommendations for implementation of the method in a big data environment are provided. The 

chapter makes the following contributions: 

 The requirements for the system-wide monitoring are identified 

 A method is proposed on how to monitor continuous variable in a system-wide 

environment 

 A step-by-step example is provided on how to implement the TUFF method in an 

enterprise as well as in big data environment 
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 Simulation studies are conducted to identify the characteristics of the method, including 

thresholds for decision-makers, the maximum number of variables that can be grouped 

together and what is the sensitivity of the method 

 1.4.3 Monitoring Profile Data in a System-Wide Monitoring Framework in the Big 
Data Era 

 

 A literature review on single and multiple profile monitoring is presented. The background 

on pre-control charts, group control charts and continuous variable monitoring in the system-wide 

framework is explained. The monitoring of a profile type of data with TUFF is proposed. The 

method uses classification based on pre-control charts and group control charts with the “traffic-

light” type of visualization as the statistics to monitor. The raw profile is monitored with a method 

that can characterize the profile, for example, one from Chapter 2, and these characteristics are 

then classified. Results from simulation studies show the recommendation for machine-level 

statistics and sensitivity of the method in the profile domain. The main contributions are 

 A method is proposed that standardizes profile monitoring into similar representation as 

to the continuous variable tracking in the previous chapter 

 The monitoring has shifted from raw data to characterizing values 

 Simulation studies are carried out to identify which summarization method would be 

capable of identifying changes best out of average over all control points, a worst-case 

out of all control points and single characterizing value (Adjusted modified Sample 

entropy). The most sensitive method is to use worst-case out of all control points 
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 The second simulation study establishes the sensitivity of the method. Small changes in 

a small number of profiles (1% of profiles) are not detected, however, medium changes 

are detectable in 1%, 5%, 10% and 20% of changed profiles cases 

 1.4.4 MADIC- a Six Sigma Implementation strategy in Big Data Environments 

A literature review is presented on the current state of Six Sigma in big data environments. 

One of the more popular techniques of Six Sigma, DMAIC (Define, Measure, Analyze, Improve, 

Control) is proposed to be redefined in the realm of big data possibilities in the manufacturing 

environment. An application of the redefined process is presented. The use of system-wide 

monitoring is discussed in terms of continuous improvement. The indexing method in a big data 

environment is proposed and shown in an example of the implementation of the system-wide 

monitoring. Specifically, the chapter’s contributions are: 

 Refining DMAIC in a manufacturing environment, where the signal for potential 

improvement candidate comes from data rather than from a person. The new sequence 

of steps would be: Measure, Define, Analyze, Improve, Contol 

 The merging of the continuous variable, profile variable and attribute variable data into 

system-wide monitoring TUFF framework is proposed using pre-control charts, group 

control charts and classifications on characterizing values of different variable types 

 A big data implementation solution is proposed for the Six Sigma process and for the 

TUFF method using a MapReduce algorithm 
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 1.4.5 A Visualization tool for Multivariate Process Monitoring in Data-abundant 
environment using Adjusted Modified Sample Entropy 

 

A background on modified sample entropy, adjusted modified sample entropy, trellis 

displays, and star glyphs are presented. A method for visualization is presented that uses elements 

from the background.  A visualization tool is presented that can be used to monitor a large number 

of variables. The method is demonstrated in different settings. The main contributions: 

 A novel tool is presented to visualize a large number of variables simultaneously 

 The tool is capable of helping to determine changes in variables 
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Chapter 2 - Profile Monitoring using Modified Sample Entropy 

 2.1 Introduction 

A profile is defined as a relationship between a response variable and the explanatory 

variable(s) (Woodall, 2007). The explanatory variable is usually either time or space. Since a lot 

of processes in manufacturing are using profiles to characterize their performance, profile 

monitoring has drawn attention over the last 10-15 years. Various methods have been proposed, 

some of which have been described in the following section. The problem with most of those is 

that the algorithms are usually computationally demanding and lack the capability of easy 

comparison. Since there is a trend to generate larger quantities of data, there is a need for a method 

that has the capability to detect and quantify changes and could be used to analyze all the incoming 

data. 

 2.2 Background 

 2.1.1 Current profile monitoring methods 

Studies on profile monitoring methods in quality control before 2007 have been reviewed 

by Woodall (2007). Studies after 2007 include for example Chang and Yamada (2010), who 

studied monitoring of non-linear profiles using wavelet filtering and B-Spline approximation. In 

another study, Chou et al (2014) researched simultaneous process monitoring for multiple linear 

or non-linear profiles. Zeng et al (2014) studied Phase I monitoring of profile data in non-normality 

assumption cases. These authors used independent component analysis to transform multivariate 

coefficient estimates to independent univariate data and then used univariate nonparametric control 

charts to detect changes. Chang et al (2014) tried to detect changes in wave profiles in real-time 

[5]. In another study, Shang et al (2016) looked at change point detection with binary data profiles 
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and random predictors using a logistic model. Paynabar et al (2016) looked at multivariate profile 

monitoring using multidimensional functional principal component analysis. 

 2.1.2 Adjusted Modified Sample Entropy 

 This study used Adjusted Modified Sample Entropy as the tool to detect changes in 

profiles. It is a version of Sample Entropy that has been upgraded by Xie et al (2010) to detect 

smaller changes and by Kong et al (2015) and Koppel et al (2016) to help detect changes in both 

mean shift and variance change. In essence, the Sample Entropy calculates the negative natural 

logarithm of the conditional probability that two similar sequences for m points remain similar 

within a tolerance of r at the next (m+1) point. The Sample Entropy has a Heaviside step function 

where a value of 1 is assigned if the distance between two random points in the time series is less 

than the set threshold of r and 0 if the distance is greater. Xie et al (2010) introduced a smoothing 

concept to the method, where the step function is replaced with a fuzzy membership function that 

assigns weights as values. The closer the value of the member is to the set goal, the higher the 

weight is assigned. 

Kong et al (2015) introduced a transformation of the original data to Sample Entropy. The 

original data is segmented, the means of each segment are calculated and then the transformation 

is calculated using the following formula 

 𝒚𝒊𝒋 = 𝒙𝒊𝒋(ฬ
𝒙ଙഥ − 𝝁

𝝈
ฬ + 𝟏) 

 

(1) 

where  𝑥̅௜ is the estimated mean of ith segment set;  𝜇 is the desired mean of the variable of interest, 

and  𝜎 is the desired standard deviation of the variable of interest. After the transformation, the 

Sample Entropy is used on the new data. The method is capable of detecting mean shift and 
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variance changes. Koppel et al (2016) used the same transformation to transform the original data 

for Modified Sample Entropy.  

 2.3. The proposed method for detecting changes in profiles using Modified 
Sample Entropy 

 

The proposed method for change detection is presented in this section. As is the case with 

most quality control methods, this includes Phase I and Phase II procedures. The parameters are 

set for the upper control limit in Phase I and the monitoring is conducted in Phase II. 

Phase I steps include the following. Import training set of profiles that have been proven 

to be good. The suggested number of profiles is between 10 and 40. Next, calculate the baseline 

by averaging each point in time over all the selected profiles. After that, remove the baseline from 

all the profiles. Then determine where the profile has direction changes by either visual inspection 

or using any method of change point detection for segmentation purposes. Segmentation can be 

also done by dividing the profile into equal chunks with the same number of observations in each 

of the segments. Next, divide the profile into segments and calculate the mean for each segment. 

Input the transformation of Adjusted Modified Sample Entropy according to equation (1) on all 

the segments on all the profiles of the training set. Then calculate Modified Sample Entropy for 

each segment of each profile in the training set. Finally, calculate the upper control level for each 

segment using mean plus k times the standard deviation of the entropy values. The k is selected to 

be 4 to lessen the Type 1 error. The lower level is not necessary, because that implies that the mean 

has not changed and the variance of the profile under investigation is less than the variance of the 

training set or the approved profiles. 
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Phase II steps include the following: import the new profile (this step can be also done on 

each segment as it is generated to monitor the process near-time), remove the baseline determined 

in the Phase I, calculate the mean for each segment. Then input the transformation of Adjusted 

Modified Sample Entropy according to equation (1) on all the segments of the profile, or the 

segment generated in the near-time application. Next, calculate the Modified Sample Entropy for 

each segment of the profile or for the segment under investigation. If any value of the Modified 

Sample Entropy in any segment exceeds the upper control level, the profile is marked and needs 

closer attention to determine if the output of the process is acceptable or not and the cause of the 

change. 

 2.4. Simulation Study on the use of the proposed method 

The following simulation study was conducted in order to demonstrate the capability of 

the proposed method to detect changes. A simple profile was generated and analyzed (Figure 1). 

The profile had three segments: an upward slope, a stable segment and then a downward slope 

mimicking for an example temperature reading of a vulcanizing process.  
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Figure 1. A sample of the temperature profile in vulcanizing 
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The profile was simulated using the following models: 

 Segment 1:100 Segment 101:400 Segment 401:500 

Model y=x+e y=100+e y=500-x+e 

 

where y is the output, x is the time value and e is error term. In this case, the error term was 

generated based on a normal distribution with a mean of 0 and a standard deviation of 1. 

A total of twenty such profiles were generated. The profile was segmented based on the 

changes of directions in profile according to the procedure introduced in the previous chapter. The 

segmentation was done visually because the model was simple. The mean values for each segment 

were calculated and the transformation was conducted. Then the modified Sample Entropies for 

each segment of each profile were calculated. Based on these numbers, upper control limits were 

calculated for each segment using the mean values plus four times the standard deviation. The 

control limits were as follows: 

 Segment 1 Segment 2 Segment 3 

Upper Control Limit 0.3277 0.2602 0.2796 

 

In Phase II, five different scenarios were used: 1) no change, 2) variance change for all of 

the profile, 3) the first slope was steeper, 4) the second slope was steeper and 5) the holding 

segment had a higher temperature. A total of 100 profiles was simulated in each scenario while 

changing the needed parameter. The count of profile segments with an alarm was generated out of 

each scenario. 
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In scenario 1, the slope models and the holding segment model were the same; the error 

was generated using a normal distribution with a mean of 0 and a standard deviation of 1. All the 

profiles were segmented into three segments as the Phase I profiles. The baseline was removed 

from each generated profile. The means of each segment of each profile were calculated and used 

to transform the original data with the Adjusted Modified Sample Entropy transformation formula. 

Then the Modified Sample Entropy was calculated to each of the segments of each profile and 

compared to the upper control limit identified in Phase I.  

The results showed that in segment 1 there were four profiles with a value that was higher 

than the upper control limit for the first segment. There were no alarms on the profiles of the 

second segment and four alarms on the third segment, but those were not on the same profiles as 

the alarms for the first segments.  

In scenario 2, the variance changed for the whole profile, but the models for slopes and 

holding segment stayed the same (Figure 2). The variance change was achieved by generating the 

error term using a normal distribution with a mean of 0 and a standard deviation of 2.  
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Figure 2. Example of the profile with larger variance 
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All the steps of Phase II were carried out on all the 100 profiles. The results indicated that 

the alarm was generated in all the slope segments and the holding segments. Therefore, the change 

was detected in all the segments. 

In scenario 3, the first segment had a steeper slope and therefore the holding time was 

longer than the holding segment in Scenario 1 and 2 (Figure 3). The third segment did not change 

and the error was generated using a normal distribution with a mean of 0 and a standard deviation 

of 1. 
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Figure 3. Example of a profile with a steeper first slope 

 

The profiles were segmented, the baseline was removed, means were calculated, original 

data was transformed and Modified Sample Entropies were calculated on all the segments of all 

the profiles. The results showed that there were 100 alarms in segment 1, none in segment 2 and 6 

in segment 3. The algorithm was capable of detecting the change in all the profiles and accurately 

identifying the segment where the change had happened. 
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Scenario 4. The third segment had a less steep slope and therefore the holding time is 

shorter than the holding segment (Figure 4). The first segment did not change from Phase I profiles 

and the error was still normal distribution with a mean of 0 and standard deviation of 1.  
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Figure 4. An example of a profile with a less steep second slope 

 

The steps of the method were completed and the results showed 1 alarm in Segment 1, 100 

alarms in Segment 2 and 100 in Segment 3. Therefore, the method was capable of detecting the 

change in all the segments and also identifying the segments where the change had happened. 

Scenario 5. The error term was the same normally distributed with a mean of 0 and standard 

deviation of 1. The first slope had the same angle as in Scenario 1, but it continued further to 120 

(Figure 5). Therefore, some of the increase happened in the holding segment. Holding time was 

the same, but in higher temperature, affecting the third segment as well. The cool-down was with 

the same slope as the Scenario I profiles, but since it started later, the minimum temperature was 

not achieved.  
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Figure 5. An example of a profile with higher temperature in the holding segment 

 

The results indicate that no alarms were detected in the first segment, 100 alarms were in 

the second and third segment. The method was capable of detecting all the changes and also 

identifying all the segments where the change happened. 

 2.5. Conclusions and Future Studies 

A novel method for change detection in profile monitoring has been presented in this study. 

It is based on the Adjusted Modified Sample Entropy. The tool is capable of identifying changes 

in variation and in the shape of the profile. It is also capable of identifying which segment of the 

profile is changing.  

For future research, while the base of this method has been studied in big data applications, 

there is a need to investigate the capabilities and adaptability of this method to function in the big 

data environment. It shows a lot of promise in providing input in the indexing of massive datasets. 

The idea is that all the raw data is analyzed with simple methods, given identification and stored 

into a data warehouse.  It can then be retrieved for further, more accurate analysis if needed. The 
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outcomes of simple methods are then used for monitoring the health of systems and cumulative 

reporting with different reporting horizons. There is also a need to study more complex cases of 

profiles like second-order and third-order models and different error distributions. 
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Chapter 3 - Statistical System Monitoring (SSM) for Enterprise-
Level Quality Control 

 

 3.1 Introduction 

Statistical process control (SPC) approaches were first introduced by Walter Shewhart 

(1930). The use of statistical methods such as hypothesis testing in graphic forms coupled with the 

Central Limit Theorem has served numerous applications well especially in manufacturing to 

achieve desired product quality. The core concept is the use of a set of historical data deemed in 

control to set up a pair of control charts. This process is usually called Phase I SPC. Then during 

Phase II SPC, statistics of future observations of a quality characteristic are plotted for continuous 

monitoring. If any point plots outside control limits, then the process under monitoring is deemed 

out of control. Process engineers are then informed of fault diagnoses.     

This basic framework remains unchanged to this day although multiple revisions such as 

CUSUM and EWMA charts have been proposed to improve the sensitivity of detecting small 

process shifts (Runger et al, 2004; Lowry et al, 1992; Hu et al, 2007). Hotelling T2 (Hotelling, 

1947) was proposed to extend univariate quality characteristics to multivariate quality 

characteristics. However, the combinational development of omnipresence of sensors and cloud 

computing often-called Industrial 4.0 or cyber-physical systems (Lee et al, 2015) has opened up 

opportunities to rethink implementation strategies of SPC for manufacturing. Traditional SPC 

methods, often restricted to product quality characteristics, cannot take advantage of big data 

generated from a production process equipped with thousands of process parameters and hundreds 

of product characteristics scattered throughout a production system.  
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We propose a system-wise process monitoring framework to answer this challenge. The 

proposed framework is called Technique of Uniformally Formatted Frequencies (TUFF) and it is 

used for statistical system monitoring or SSM in that all process parameters and QCs are 

considered simultaneously for change detection. A system is composed of multiple processes that 

may be hierarchical. This chapter provides the SSM framework that adopts parts of a collection of 

monitoring methods such as pre-control and group control chart algorithms. The core concept of 

TUFF is to, first, quantify the performance of a system or subsystem composed of process 

parameters and product quality characteristics over time into three zones (green, yellow, and red 

zone in Figure 6). Then, only those segments of time series that exhibits changes in terms of the 

statistics reflecting green, yellow, and red zones are to be analyzed. A small manufacturing 

example with three departments is used to demonstrate the use of the proposed method. The goal 

is to monitor the full system, not just the individual parts. Simulated data sets are generated to 

demonstrate the properties of the proposed method.  

Unlike the traditional methods where measurement is restricted to physical products or 

work in progress, the TUFF framework integrates process parameters associated with products or 

work in process for process monitoring and defect prevention. Since the number of parameters is 

usually very large, a high dimensional problem often confronts traditional control charts. For 

example, the production of semiconductor wafers includes hundreds of processes and thousands 

of process parameters. The TUFF framework contains multiple techniques for dimension reduction 

and feature selection. The following section briefly outlines some of these methods in the content 

of statistical process control or monitoring. 
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 3.2 Background 

 3.2.1 Traditional Multivariate SPC  

Much research has been generated on the topic of statistical process monitoring over the 

last decades. Most work focuses on a univariate quality characteristic.  

 3.2.1.1 Hotelling T2 

Hotelling T2 is one of the oldest SPC methods for monitoring multivariate processes. This 

method is monitoring the mean vector of the process. The monitoring is done by plotting a chi-

squared control chart (Hotelling, 1947).  

The statistic plotted is calculated based on the vector of variable means over some time. 

Then a covariance matrix is used to calculate the statistic. There also lies the biggest issue of the 

method – the estimation of the elements in a covariance matrix. It is possible to calculate the 

covariance matrix when there are about 10 variables, but anything over that, the task becomes very 

difficult or next to impossible to implement. Also, Hotelling T2 is often applied to several QCs.  

Usually, process parameters associated with the QCs are not considered in the same vector. 

Multivariate versions of Exponentially Weighted Moving Average (EWMA) and cumulative sum 

(CUSUM) charts (Lowry et al, 1992; Pignatello & Runger, 1990; Crosier, 1988) suffer the same 

drawbacks. These control charts were merely used to enhance the chart performance of catching 

small shifts. 

 3.2.1.2 PCA 

When a large number of multiple quality characteristics are encountered, Principal 

Component Analysis (PCA) is often used for dimension reduction.  PCA uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of values 
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of linearly uncorrelated variables called principal components (Montogomery, 2012). Jiang and 

Yan (2014) proposed a tool to monitor multi-mode plant-wide processes by using mutual 

information-based multi-block PCA, joint probability and Bayesian inference.  Tong and Yan 

(2017) studied a modified multiblock PCA algorithm for decentralized Statistical Process 

Monitoring. In another study, Liu et al (2015) explored statistical process monitoring with the 

integration of data projection and one-class classification using PCA. In a different study, Zheng 

et al (2015) studied a time series model coefficients monitoring approach for controlled processes. 

Jiang et al (2016) proposed a distributed PCA process with the help of fault-relevant variable 

selection and Bayesian interference. In another study, Gajjar et al (2016) proposed to detect faults 

with the help of Sparse Principal Component Analysis. Gajjar and Palazoglu (2016) also proposed 

a data-driven multidimensional visualization technique to process fault detection and diagnosis. 

Yan et al (2016) proposed a robust multivariate process monitoring via stable principal component 

pursuit. Their goal was to increase the PCAs robustness against gross outliers. In a different study, 

Jiang et al (2016) investigated a Gaussian mixture model and optimal principal component-based 

Bayesian method for multimode fault diagnostics.  

Most of these studies showed that their methods work well with the Tennessee-Eastman 

process that has 52 process variables. The Tennessee-Eastman process is a benchmark process that 

consists of five main process units: a two-phase reactor where an exothermic reaction occurs, a 

separator, a stripper, a compressor, and a mixer. This is a nonlinear open-loop unstable process 

that has been used in many studies as a case study for plant-wide control, statistical process 

monitoring, sensor fault detection, and identification of data-driven network models. However, it 

is unclear whether these methods are capable of scaling up for a production facility with more than 

a thousand process parameters. 
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 3.2.2 Group Control Charts 

The control charting methods reviewed so far often focus on a single product with one or 

multiple quality characteristics. Boyd (1950), recognizing the need for applying process 

monitoring for multiple-stream processes, proposed the use of group control charts. Multiple 

streams are defined as multiple input sources of the same product. Any chart in a group is based 

on a pair of average (i.e. X-bar) and range (i.e. R) charts. All streams are sampled and each is 

monitored by a pair of X-bar and R charts. The group control chart framework only records the 

largest, smallest mean, and the maximum range of the streams with the understanding that if these 

are within the control limits, the other streams must be too. Specifically, the TUFF method adopts 

the idea of monitoring the worst-case scenarios (Montogomery, 2012). 

 3.2.3 Pre-control 

Pre-control is a technique used to detect shifts or upsets in the process that may result in 

the production of nonconforming units (Satterthwaite, 1954). The technique differs from a 

statistical process control in that conventional control charts are designed for real-time monitoring 

while pre-control is mainly used to assure process capability. Pre-control uses the normal 

distribution in determining changes in the process mean or standard deviation that could result in 

increased production of nonconforming units. Only three statistics related to green, yellow, and 

red zones are required to provide control information as shown in Figure 6.  

The original pre-control method assumes that the process is normally distributed and the 

natural tolerance limits (𝜇 ± 3𝜎) exactly coincide with the specification limits. Therefore, this 

process produces 0.27% of fallout in the red zone. The control works by setting an upper and lower 

process control limit at ¼ and ¾ of the specification limits. Two consequent samples are drawn 
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Figure 6.  The basic set-up of the pre-control chart 

 

and compared to the UPCL and LPCL. If they fall within the green zone, the process has not 

changed. If two samples fall to the same side of between control limit and specification limit (i.e. 

the yellow zone), the mean might have changed. If the samples are on the opposite sides between 

control and specification limits, the standard variation might have changed. If they are outside the 

specification limits (i.e. the red zone), the process has produced non-conforming parts. Comparing 

the traditional control charts, pre-control needs to be executed at the beginning of a shift and about 

six times during a shift for quality assurance purposes. In addition, traditional control charting 

usually requires a pair of charts – one for mean shift and the other for variance changes while pre-

control only requires one chart. It is not an emphasis in the pre-control chart to connect the dots of 

consecutive samples as the traditional control chart does.  This proposed work uses the color 

scheme of pre-control to classify samples while defining different limits for determining the 

classification of each sample. The upper and lower control limits on the TUFF method are set at 1 
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sigma from the mean rather than 1.5 as in the traditional method. Users can set their desired limits 

when dealing with cases where more precision is required such as 6 sigma processes.  

 3.3 A Proposed Framework for System/Enterprise-Level Monitoring 

The following framework is the TUFF method for enterprise-level system monitoring. 

Note that existing SPC methods such as PCA are usually limited to approximately 50 variables at 

once or need to solve large variance-covariance matrix (Hotelling T2). There are also possibilities 

of using machine learning algorithms, artificial neural networks or other methods, which are 

usually computer-time consuming. The TUFF method can be used as a tool to reduce the size of 

the dataset before it is analyzed with machine learning algorithms.  

An enterprise-level system monitoring method should possess the following properties: 

1. Able to detect there is a change in the system of interest 

2. Able to detect changes in both QCs and their corresponding process parameters 

3. Able to detect the location of the change 

4. Able to detect the timing of the change 

5. Able to work with different types of data: continuous, profile and binary data  

6. Able to be easily modeled (or model-free) and implemented 

7. Able to be scaled up for big data applications 

Enterprise-level system monitoring is assumed to aid different levels of managers. The 

department head is interested if all machines in the department are performing as expected or on 

the same level as previously, the factory manager is interested if all the departments are performing 

on needed levels, the area manager is interested if all the factories are performing on the needed 

level, etc. Therefore, the monitoring does not focus on finding the cause of the change, but simply 
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on detecting it. The machine operator or process engineer is also expected to correct any deviations 

promptly. The monitoring system allows detecting changes on the level that a particular manager 

or investigator is interested in and gives a starting point for further analysis. 

With the growth of sensors in a system, all the process parameters and quality 

characteristics can be monitored and treated as variables. The TUFF method takes into account all 

variables and monitors all of them. It is data-driven. No knowledge of distribution is needed as the 

basis of the TUFF method is to compare results of the period currently under investigation to 

results from previous periods. Two main strategies are followed to maintain the scale of the 

problem formulated. First, only the variables that exhibit changes according to the pre-control rules 

are flagged for further investigation. Second, the values of all variables in different data types are 

transformed into a standard scale so that changes are easy to identify with familiar units. 

The TUFF method is a two-layer method: the first layer is the bottom-level entities such as 

individual machine performance and the second layer is the aggregation of results over all bottom-

level entities such as machines at the department level or factory level. The same application can 

be applied to the department and factory level and so on. The machine-level layer looks at all of 

the variables connected to the particular machine (process parameters, quality characteristics) and 

categorizes them based on “distance from target”. This can be used with both continuous data and 

profile data. Then the output of the variables is categorized. Summarization is done by using the 

group control chart idea. The base here is to look at all the variables for each timeframe, that is, 

samples are taken (10 per second, every second, or every minute, etc.), and then the worst outcome 

is chosen to represent the status of the machine at that timepoint. 
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The higher level generates summary statistic values over time periods and machine groups 

that the user has identified. These statistic values are then compared with similar values from 

previous time periods and conclusions are made based on the results of the comparison.  

When change is detected on a higher level, indexing is used to change the resolution of the 

report to identify the location of the change (machine, department) and the timing of the change. 

More precise analysis with a much smaller dataset can then be started to identify the cause of the 

change. 

 3.3.1 Formulation of the TUFF method  

Consider a small production system of d departments each containing m machines.  The 

machines generate raw data on quality characteristics and process parameters. Each machine 

generates v variables. The number of machines in each department and the number of variables in 

each machine do not have to be the same across the factory. Assume that the system produces two 

different products that have different process paths and different target values for each quality 

characteristic and process parameter.  

Transformation to 
distance

Precontrol color 
classification of 

distances 

Group control color 
classification of machine

Summarization of 
different colors 

Change detection based 
on comparison with 
another timeframe

 

Figure 7. The flowchart of the TUFF method 

The TUFF method consists of five steps (Figure 7). The main purpose is to identify if there 

has been a change, when the change occurred and where the change occurred. This is achieved by 

using the indexing method and different resolutions of time and space. The indexing method uses 

the timestamps associated with each measurement to assign time and location identification 

(machine ID, department ID and factory ID) to all measurements. 
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The first step is to transform all the raw data into a distance measure from the target. The 

assumptions are that all the process parameters are continuous variables and quality characteristics 

have target values. The calculation of the target is as follows 

 
𝑑௝௞௟௧ =

ห𝑥௝௞௟௧௣ − 𝑇𝑎௝௞௟௣ห
𝑠௝௞௟௣

൘  
(2) 

 

where d – distance 

x – raw continuous data measurement  

Ta –target value 

s – target standard deviation 

j – index for departments in each factory (j=1,2,…, d) 

k- index for machines in each department (k=1,2,….., m) 

l – index for variables in each machine (l=1,2,…., v) 

t – index for the count of measurement (t=1,2,….., n) 

p – product identifier 

The second step is to classify each distance from the measurement using the pre-control 

idea. The classification assigns one of four colors to each distance-based as follows: 

𝑐௝௞௟௧ =

⎩
⎪
⎨

⎪
⎧ 𝑔𝑟𝑒𝑒𝑛, 𝑖𝑓𝑡ℎ𝑒 𝑑௝௞௟௧  𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑜𝑛𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 0 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑦𝑒𝑙𝑙𝑜𝑤, 𝑖𝑓 𝑡ℎ𝑒 𝑑௝௞௟௧  𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 3 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 0 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

𝑟𝑒𝑑, 𝑖𝑓 𝑡ℎ𝑒 𝑑௝௞௟௧𝑖𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 3 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑑𝑜𝑤𝑛 

𝑤ℎ𝑖𝑡𝑒, 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑑𝑜𝑤𝑛

 

The setup of the limits can be done using different principles. In the presented case higher 

value was assigned to more precision, so anything under 1 sigma shift was rewarded with green in 

the TUFF method. The classification limits could also be set up based on the original precontol 
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charts, where the “acceptable” area is divided equally between green and yellow; and the division 

is at 1.5 times the standard deviation.  

The third step uses the group control chart idea to offset within machine variable 

dependency. The worst classification will be reported.  The machine will be assigned into a 

category for each sample row ti based on the following rules 

Green count   𝑡𝑖௝௞௧
௚

= ൜
1, 𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐௝௞௟௧ = 𝑔𝑟𝑒𝑒𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

Yellow count  𝑡𝑖௝௞௧
௬

= ൜
1, 𝑤ℎ𝑒𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐௝௞௟௧ =  𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑛𝑜𝑛𝑒 𝑖𝑛 𝑟𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Red count    𝑡𝑖௝௞௧
௥ = ൜

1, 𝑤ℎ𝑒𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐௝௞௟௧ =  𝑟𝑒𝑑 𝑜𝑟 𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑡𝑜𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

White count                      𝑡𝑖௝௞௧
௪ = ൜

1, 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ℎ𝑎𝑠 𝑎 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑠𝑡𝑜𝑝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

The overall count  𝑡𝑖௝௞௧ =  𝑡𝑖௝௞௧
௚

+ 𝑡𝑖௝௞௧
௬

+ 𝑡𝑖௝௞௧
௥ + 𝑡𝑖௝௞௧

௪  

The fourth step is to summarize all color counts and generate a statistic that is used for 

comparison and detection of changes. The summarization is completed as follows: 

All the available counts: 

 
𝑇 = ෍ ෍ ෍ 𝑡𝑖௝௞௧

௡ೖ

௞ୀଵ

௡ೕ

௝ୀଵ

௡

௧ୀଵ

 
(3) 

Count of each color category:  

 
𝑇௖ = ෍ ෍ ෍ 𝑡𝑖௝௞௧

௖

௡ೖ

௞ୀଵ

௡ೕ

௝ୀଵ

௡

௧ୀଵ

 
(4) 

 

where c is the index of the color, either g for green, y for yellow, r for red, or w for white 
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The statistic is the ratio between the counts of each color category divided by the overall 

available count of samples. Based on the calculations following table is created for each period 

under investigation 

Green 𝑇௚

𝑇ൗ  

Yellow 𝑇௬

𝑇ൗ  

Red 𝑇௥

𝑇ൗ  

White 𝑇௪

𝑇ൗ  

 

Step 5 – the final step is to detect changes. The previous four steps are used on the period 

under investigation and also on two other periods, for example, average values of the ratios over 

year-to-date and average values of the ratios over historical data from the same periods over the 

previous years. When the change is detected (i.e. the percentages of colors are different between 

the periods), the location and the period of change can be pinpointed by segmenting the data further 

and running the same method. For example, if the time frame under investigation was a week, the 

segmentation would be to generate the same table for each day of that week and for each 

department of the system. The comparison would show when and where the change occurred.  

Change Detection Criteria. The selection of the criteria depends on many aspects, such 

as the availability of historic data, the distributions of variables, etc. In the case of historic data, 

the user can choose the timeframe that is known to be acceptable and generate acceptable 

thresholds based on those timeframes and compare the results with the results under investigation. 

This process is very similar to the Phase I operation of control charting. The examples in this 

chapter were generated by assuming a normal distribution for each variable. The results showed 
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that the percentage of red was the best indication of change. Depending on if there were 10 or 20 

variables grouped together in the third step, the threshold for change was 3.417% and 6.305% of 

red respectively. The process behind these suggestions can be found in the simulation study section 

of this chapter. In practice, these thresholds should come from the computation based on a 

historical data set with the considerations of both Type I and Type II errors. 

 3.3.2 Examples 

The following samples are presented to show how the TUFF method works. The first 

example shows the step-by-step process of how to locate the change and the second example shows 

how to pin-point the timeframe of the change. 

 3.3.2.1 Example 1 

Assume there is a small system of three departments that are producing two products. Each 

department has three machines that have six critical process variables each. The goal is to detect 

if the system is operating on the same level one day as it did on the previous day. The proposed 

system-wide monitoring framework is implemented for the assessment. 

An example of one machine from one department of raw data and the target value is in 

Table 2. Process variables x1, ..., x6 are raw data for each of the six variables. TA1, ..., TA6 are 

the target values for each variable. Ten sample periods are shown in this table. The measurements 

are assumed to be recorded at the same time for each variable in this case for the sake of simplicity, 

but in real life that does not have to be the case. This will be addressed in the discussion section. 

The distance for each variable is calculated based on the equation in the first step of the 

TUFF method. The results are listed in Table 3. 
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Table 2. Raw data example for one machine 
Sample 

Period 

no 

x1 TA1 x2 TA2 x3 TA3 x4 TA4 x5 TA5 x6 TA6 

1 20.645 20.000 81.491 100.000 48.659 50.000 1079.103 1000.000 69.268 70.000 71.991 66.000 

2 19.062 20.000 93.879 100.000 51.037 50.000 1039.937 1000.000 69.828 70.000 66.385 66.000 

3 19.690 20.000 101.773 100.000 51.288 50.000 1021.800 1000.000 69.210 70.000 68.343 66.000 

4 20.441 20.000 94.206 100.000 53.557 50.000 1060.937 1000.000 69.359 70.000 67.117 66.000 

5 20.654 20.000 113.126 100.000 49.391 50.000 972.231 1000.000 68.941 70.000 65.596 66.000 

6 20.403 20.000 87.734 100.000 49.528 50.000 1037.427 1000.000 71.952 70.000 62.247 66.000 

7 20.475 20.000 93.849 100.000 49.716 50.000 933.001 1000.000 69.856 70.000 63.205 66.000 

8 21.967 20.000 91.667 100.000 51.327 50.000 1010.222 1000.000 69.861 70.000 62.996 66.000 

9 14.953 20.000 83.017 100.000 49.024 50.000 1039.758 1000.000 71.692 70.000 65.149 66.000 

10 20.532 20.000 117.300 100.000 47.953 50.000 1070.887 1000.000 70.254 70.000 66.333 66.000 

 

Table 3. The results of the distance calculation based on the first step of the TUFF method. 
d1, ..., d6 are the distance values for each variable 

Sample 

Period no 

d1 d2 d3 d4 d5 d6 

1 0.645 18.509 1.341 79.103 0.732 5.991 

2 0.938 6.121 1.037 39.937 0.172 0.385 

3 0.310 1.773 1.288 21.800 0.790 2.343 

4 0.441 5.794 3.557 60.937 0.641 1.117 

5 0.654 13.126 0.609 27.769 1.059 0.404 

6 0.403 12.266 0.472 37.427 1.952 3.753 

7 0.475 6.151 0.284 66.999 0.144 2.795 

8 1.967 8.333 1.327 10.222 0.139 3.004 

9 5.047 16.983 0.976 39.758 1.692 0.851 

10 0.532 17.300 2.047 70.887 0.254 0.333 

 

The distances are classified based on the logic presented in the second step of the TUFF 

method using the pre-control methodology. In this example case, all the values for all process 

variables for machine 1 are within one standard deviation from the target except for variable 1 at 

row 9 which is 3 or more standard deviations from the target. Table 4(a) shows the color 

classifications c1, c2, …, c6 for corresponding process variables of machine1. 

In the next step -- the third step of the method, each machine is given an overall color 

classification based on the group control chart idea. The worst classification across all 
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Table 4. (a) Pre-control classification for Machine 1; (b) overall color code for Machine 1 

Sample 
period no c1 c2 c3 c4 c5 c6  ti 

1                

2                

3                

4                

5                

6                

7                

8                

9                

10                

(a)                                                                    (b) 

process variables of a machine is chosen as the performance for a machine. Table 4(b) shows the 

overall color classification for machine one for each sample. 

Next, the overall available number of samples is calculated based on equation 3 in the 

fourth step of the TUFF method as well as the count of each color classification found in the 

sample list. In this case for Machine 1: ∑ 𝑡𝑖௝௞௧
௚

= 9 and ∑ 𝑡𝑖௝௞௧
௥ =1. The results for machine 1 are 

then summarized according to equations in step 4 shown in Figure 8. Note that Table 4 is the 

result of one machine while the overall system would generate  Table 5. 

 

 

Figure 8. The final results in term of percentage of sample in each color class 

 3.3.2.2 Example of detecting the time and location of the change 

The TUFF method is also designed to identify the location and the time of changes by 

changing the resolution of the output. Let’s assume there is a department with 10 machines that 

Level Statistic
10.0%

0.0%
90.0%

IDLE 0.0%
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Table 5. The system-wide look at the perfomance 

Sample 
period no 

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6 Machine 7 Machine 8 Machine 9 

1                   
2                   
3                   
4                   
5                   
6                   
7                   
8                   
9                   

10                   

 

are producing different products. The goal is to determine if the department is producing on a 

similar level as the previous day. Over an 8 hour shift the data is collected, targets are deducted 

from the raw data, all the variables and time points are classified into color classes with the help 

of pre-control part of the TUFF method.  Then the machines are assigned to color classes based on 

the group control part. All the data is summarized and the output for the department is reported in 

figures 9-11. 

 

Figure 9. Comparison of two days of production of the department 

In figure 9, the red percentage has changed from 3.2% to 4.15 % which means more 

measurements were beyond 3 times the deviation from the target value. The recommendations for 

the decision criteria will be discussed under the simulation portion of this chapter. Obviously, there 
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has been a change somewhere and some time. To determine when the change happened, the results 

are viewed in higher resolution. Specifically, the categorized machine output is divided into hourly 

blocks with the help of timestamps and presented in the series of outputs. 

 

Figure 10. Hour-to hour production of the whole department on higher resolution 

In figure 10, it is clear that the change happened somewhere between 14:00 and 15:00 in 

the department. The next step would be to identify the machine/machines that are responsible for 

the change. Since the time of the change is known, the time is limited only to that slot and the 

categorized machine output is summarized over that time slot. The machines are not summarized 

into department level to identify the culprit. The results are presented in a series of outputs. 

 

 

Figure 11. Time 14:00-15:00 based on individual machines on higher resolution 

8:00-9:00 Level Statistic 9:00-10:00 Level Statistic 10:00-11:00 Level Statistic 11:00-12:00 Level Statistic
3.20% 3.15% 2.95% 3.50%

86.170% 86.770% 86.850% 86.600%
10.63% 10.08% 10.20% 9.90%

IDLE 0% IDLE 0% IDLE 0% IDLE 0%

12:00-13:00 Level Statistic 13:00-14:00 Level Statistic 14:00-15:00 Level Statistic 15:00-16:00 Level Statistic
3.17% 3.40% 7.20% 7.00%

87.080% 86.040% 81.900% 82.150%
9.75% 10.56% 10.90% 10.85%

IDLE 0% IDLE 0% IDLE 0% IDLE 0%

Machine 1 Level Statistic Machine 2 Level Statistic Machine 3 Level Statistic Machine 4 Level Statistic Machine 5 Level Statistic
2.83% 3.18% 3.40% 3.22% 45.10%

86.400% 86.780% 86.780% 85.810% 45.130%
10.77% 10.04% 9.82% 10.97% 9.77%

IDLE 0% IDLE 0% IDLE 0% IDLE 0% IDLE 0%

Machine 6 Level Statistic Machine 7 Level Statistic Machine 8 Level Statistic Machine 9 Level Statistic Machine 10 Level Statistic
2.60% 3.17% 3.18% 2.65% 2.67%

86.790% 87.320% 86.710% 86.430% 87.180%
10.61% 9.51% 10.11% 10.92% 10.15%

IDLE 0% IDLE 0% IDLE 0% IDLE 0% IDLE 0%
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In figure 11, the results show that machine 5 has started to produce higher percentages of 

signals that are classified as red and now a more thorough analysis of the reasons behind that can 

start with a much smaller time window. 

 3.4 Simulation Studies 

Three simulation studies were carried out to identify the different characteristics of the 

TUFF method. The goal of the first study is to determine what threshold should be used for making 

a decision if there has been a change. The second study aims to determine the maximum number 

of variables that can be grouped together in the third step of the method. Finally, the third study 

determines how sensitive this method is. All the simulation studies were carried out with an 

assumption that the data was normally distributed for simplicity and demonstration purposes. In 

real-life applications, the distribution does not have to be predetermined and the decisions would 

be made based on the comparison with historic data. 

 3.4.1 Determining threshold for Decision Making  

Let’s assume there is a machine with 10 variables. Each variable measures a different 

parameter of the machine. There are 3600 data points in each variable. For simplicity, all the 

variables have been normalized so that the unchanged variable would be normally distributed with 

N(0,1). In order to determine the threshold for change detection and Type II errors for different 

scenarios, all but one variable were left at N(0,1) and one was changed according to a series of 

parameter changes. The changes introduced were mean shifts of 0, 0.5, 1, 2 and 3 while standard 

deviations’ changes of 1, 1.5, 2 and 3, and the combination of both. After each iteration of the 

simulation, the TUFF method was applied to the new dataset and the results of the color 

percentages were recorded.  Each combination was repeated 10,000 times. One of the additional 
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findings of this simulation was that in this case, the red percentage was the best indicator of change. 

The green and yellow percentages were more random and together mirroring the red color 

percentage. The results of the red color percentages on the machine level are presented in the 

following box-plots.  

 

Figure 12. Boxplots of red zone percentages from various out-of-control situations at the 
machine level 

Figure 12 shows all the scenarios on the same graph. As can be seen, most of the scenarios 

have no overlapped results with the unchanged scenario, which is the process is at N(0,1). The 

only overlapping scenarios to N(0,1) are N(0.5,1) and N(1,1). Figure 13 shows a more detailed 

look at the results of those three scenarios.   

 

Figure 13. Box-plots of red zone percentages of processes N(0,1), N(0.5,1), and N(1,1) 
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A more detailed look reveals that scenario N(1,1) has much fewer overlaps than N(0.5,1). 

The smaller change results are much closer to the unchanged variable results. To determine what 

threshold should be used in the decision making, the overall Type I error will be set at 0.0027. In 

the case of 10 variables, the threshold of red color percentage would be 3.417%. Anything over 

that would be considered as a changed variable.  

Table 6 shows the Type II errors of different scenarios when considering the set threshold. 

The results are drawn from the 10 000 repetition results. 

Table 6. Type II errors for different scenarios 

St.Dev        Mean 0 0.5 1 2 3 

1  0.914 0.0001 0 0 

1.5 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

 

The table confirms the previous finding that only N(0.5, 1) and N(1,1) have overlaps with 

the unchanged variable and therefore are also the only ones with Type II error. Given the overall 

type I error at 0.0027, the TUFF monitoring method is not capable of detecting a very small process 

mean shift. 

The second part of this simulation study was to determine if the threshold will change when 

the number of variables in each machine is different. The simulation steps and scenario parameters 

stayed the same, only this time the machine was assumed to have 20 variables with 3600 data 

points each and one of those is responsible for change based on the scenario. Each scenario was 

repeated 10,000 times. Similarly to the first part, the red color percentage was found to be the best 

indicator of change. The overall results of the study are shown in the box-plot of Figure 14. 
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Figure 14. Box-plots of red zone percentages from various out-of-control situations with 20 
variables 

Once again only the small mean shifts of N(0.5, 1) and N(1, 1) seem to have overlapping 

parts with unchanged variables. More detailed boxplot of the three is provided in Figure 15 

 

Figure 15. Box-plot of red zone percentages of processes N(0,1), N(0.5,1) and N(1,1) 

The threshold, in this case, is again based on the Type I error of 0.0027. When the machine 

uses 20 variables and is assumed to be normally distributed, the red percentage threshold for 

change is 6.305%. Additionally, there were two revelations. First, the unchanged variable produces 

much more “red” colored signals which can be explained with Bonferroni curse of dimensions. 

The threshold is almost two times larger than on the 10 variable cases. The second is that there is 

less difference or more overlapping between scenarios. 
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Table 7. Type II errors of different scenarios with 20 variables 

St.Dev        Mean 0 0.5 1 2 3 

1  0.9664 0.0411 0 0 

1.5 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

 

 

Table 7 shows the Type II errors of the scenarios based on the 10,000 repetitions and the 

threshold set previously at 6.305%. As can be seen, the Type II error for both N(0.5,1) and N(1,1) 

has increased. The larger changes are detected with 100% accuracy, while the small mean shift is 

virtually undetectable. 

 3.4.2 Determining the max number of variables in one machine 

This simulation study was inspired by the first study. The purpose of this study was to 

determine how many variables can be grouped together in the group control part of the TUFF 

method without losing too much detection power.  

For this simulation, the statistic monitored was the percentage of “red” classifications as 

the previous study indicated to be the best indicator. The scenarios were based on 30-100 variables 

in 10 variable steps. Each number of variables was simulated with variable changing N(0,1), 

N(0.5,1), N(1,1), N(0, 1.5), N(0.5,1.5) and N(1,1.5) because the previous study showed that 

smaller changes are more prone to be overlapping with the unchanged variable. For 30, 40, 50 and 

60 variables, each combination of mean and standard deviation was recorded 10,000 times. For 

70, 80, 90 and 100 variables, each combination was recorded 1,000 times due to the high demand 

in computational time. 
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Tables 8 and 9 show the results for this simulation. Both Type I and Type II errors are 

considered to reach a balance performance in setting the threshold values.  Table 8 shows the 

threshold values in the second column Type II errors of a different number of variables when the 

Type I error is set at 0.0027 while Table 9 shows the results of Type I errors when the Type II 

error is set at 0.05. 

Table 8. Type II errors of different combinations of scenarios and number of variables with 
Type I error of 0.0027 

No of variable Threshold N(0,1.5) N(0.5,1) N(0.5,1.5) N(1,1) N(1,1.5) 
30 0.0905 0 0.9735 0 0.0496 0 
40 0.1175 0.0002 0.9878 0 0.3711 0 
50 0.1417 0 0.9821 0 0.2756 0 
60 0.164 0.0085 0.992 0 0.6904 0 
70 0.193 0.008 0.993 0 0.574 0 
80 0.222 0.03 0.989 0 0.776 0 
90 0.24 0.017 0.99 0 0.571 0 

100 0.255 0.036 0.986 0.001 0.742 0 
 

Table 9. Type II errors of different combinations of scenarios and numbers of variables 
with Type I error of 0.05 

No of var Threshold N(0,1.5) N(0.5,1) N(0.5,1.5) N(1,1) N(1,1.5) 
30 0.0852 0 0.7796 0 0.0021 0 
40 0.1113 0 0.8445 0 0.0659 0 
50 0.136 0 0.8556 0 0.0568 0 
60 0.1565 0.0002 0.888 0 0.2274 0 
70 0.1844 0 0.866 0 0.137 0 
80 0.2119 0.001 0.897 0 0.217 0 
90 0.2315 0 0.863 0 0.261 0 

100 0.248 0.003 0.907 0 0.353 0 
 

As shown in Tables 8 and 9, the more variables are used during the group control part of 

the TUFF method, the higher the threshold is for keeping the type I error at 0.0027 and 0.05 

respectively. Again, this is explained by the Bonferroni curse of dimensions. What also can be 

seen is that in each combination there is a trend for Type II error to grow when the number of 
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variables increases. The more variables are used, the less obvious the difference between 

unchanged and changed variable is. For the recommendation of how many variables could be used 

in the group control part of the proposal, decision criteria must be established. The proposal is to 

base the decision on the N(1,1) scenario because in the previous simulation study that scenario 

showed a small Type II error and it is an important change that needs to be captured. The second 

side of the decision criteria is where to draw the line of what is acceptable. The recommendation 

here would be to use 5% of Type II error because, at that level, a lot of changes are still detected. 

Based on the decision criteria, the recommended maximum number of variables to be used in the 

group control part of the algorithm would be 30 variables for the TUFF method to be effective 

with the consideration of both Type I and Type II errors. 

 3.4.3 Determining the sensitivity of the TUFF method 

This simulation study on the sensitivity of the TUFF method aims to determine how 

sensitive it is by leveraging the knowledge gained from the previous two studies. Assume that 

there is a factory with 10 departments. Each department consists of 10 machines and each machine 

monitors 10 variables. Overall, there are 1000 variables to monitor. Each variable has 3600 data 

points or rows.  The simulation is done with a small mean shift of N(1,1) because that was used in 

the number of variables simulation study decision criteria. In the first scenario, 1% of random 

variables changed by N(1,1). This means 10 random variables out of 1000. The selection was made 

with a uniformly distributed random number generator. Each variable had an equal chance of being 

selected. Also, the changed variables could have appeared on the same machine. The selected 

variables changed from iteration to iteration. After each dataset was generated, the TUFF method 

was applied. First, the pre-control part of the algorithm classified each data point into either red, 
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yellow or green color. Then the group control part grabbed the worst classification for each row 

and assigned that classification to the machine for that row. The next steps were to sum up the 

results on the machine, department and factory level and report the percentages for each color. 

This was repeated 1000 times. The red color percentage was used for the identification statistic. 

The same process was carried out with 5% of variables (50 random variables out of 1000) and 

10% of variables (100 random variables out of 1000) experiencing changes. 

Two thresholds were used for alpha: 3.417% for 0.0027 and 3.111% for 0.05. The results 

can be found in Table 10. The Type I error reported in this table represents the amount of 

machines/departments/factory that were labeled as changed but in fact, they did not have the 

changed variable in them. On the other hand, the Type II error represent 

machines/departments/factory that were labeled unchanged but had a changed component in them.  

Table 10 shows that the TUFF method is capable of detecting changes at the machine level 

well. The method failed to detect changes in department and factory level when Type I is 0.0027 

in the 1% case. In the case of 5% variables change case, the departmental detection is getting much 

better.  In the 10% case, the factory level and the department level are almost always labeled as 

changed. The revelation is that on any managerial level the change is brought to attention if there 

is either a large change or a lot of small changes. 

 3.5 Discussions 

The TUFF method is capable of practical implementation in many different environments. 

The example given in the previous chapter was when all the samples were taken at the same time 

point. In most real-life cases that might not be possible. For example, the measurement of each 

part in height might happen 10 times a second, but the temperature is measured only every 2-3 
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Table 10. The sensitivity of the TUFF method 
N(1,1)   alpha = 0.05  alpha=0.0027  

   Type I Type II Type I Type II 

1% variables 

changed 

Factory (1) 0.0000 1.0000 0.0000 1.0000 

 Department (10) 0.0000 0.6613 0.0000 0.9585 

 Machine (100) 0.0612 0.0000 0.0047 0.0010 

            

5% variables 

changed 

Factory (1) 0.00000 0.00000 0.00000 0.00000 

 Department (10) 0.00000 0.02536 0.00000 0.14874 

 Machine (100) 0.00897 0.00002 0.00074 0.00052 

            

10% variables 

changed 

Factory (1) 0.0000 0.0000 0.0000 0.0000 

 Department (10) 0.0000 0.0001 0.0000 0.0009 

 Machine (100) 0.0084 0.0000 0.0006 0.0004 

 

seconds. The recommendation would be to assign the less frequent measurement to each row of 

the sample that is between the less frequent sampling times. In cases where there is so much data 

that the traditional computational tool cannot handle the data, the use of big data applications might 

be useful. Another facet of the TUFF method worth mentioning is that it is not an in-time 

monitoring method where the sample in hand is the item under investigation. The method can be 

used as near-time since the focus is on the results from a period of time. 

 3.5.1 Implementation in an Enterprise environment 

The TUFF method is scalable and can be adapted to a system ranging from a factory to a 

supply chain. The recommendation of the implementation of the method in a real-world enterprise 

would consist of the following steps: 

1. Determine the target value for each variable in the system for each product produced in the 

facility to calculate the distances from the target: 

a. If the targets can be set by requirements,  those could be used 
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b. If not, the historical data must be used to calculate the targets 

c. Not all process variables are continuous. Some may be discrete and the others may 

be in the form of a profile. The method introduced in section 3.1 is based on the 

fraction of time as shown in equations (2), (3), (4) and (5) computed by the number 

of samples falling into each color zone. Discrete variables can be easily 

accommodated using the same set of equations. However, profile variables require 

additional procedures to convert. It will be introduced in another study.  

2. Determine the standard deviations to be used in the pre-control part of the algorithm 

a. If the standard deviations are set by requirements, those should be used 

b. If not, the historical data of “good” products should be used. This is often referred 

to as the Phase I of control charting. 

3. Group variables together for the group control part of the TUFF method: 

a. If there are more than 30 variables in the machine, then the variables should be 

separated and grouped together to form subgroups. For example, if the machine has 

10 variables that are connected to temperature measurements, 20 connected to 

speeds and 10 connected to the shape of the product, then 40 variables together will 

not produce good output. However, grouping them according to function within the 

machine would give the desired result. 

b. While it would be advisable to keep the variable groups similar in size, it is not 

required 

4. Run the TUFF method on the full set of historic data. This step might help with solving 

problems in the future. The data should be analyzed for both “good” parts as well as “bad” 

parts. If in the future a certain set of changes has been detected, then comparing it to 
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historical data and finding a similar set of changes with the current issue might help to 

solve the problem and also predict the quality of the products or even predict an imminent 

failure. 

5. Start the real-time monitoring using the target values from step 1 and deviations from step 

2. 

6. For reporting purposes, the recommendation would be to have three output charts side-by-

side that show the current period, averages of year-to-date and averages of historical data 

from a similar timeframe (for example all the Julys in history). This might help understand 

the trends and also helps in the case of autocorrelated data. 

7. Different levels of management are assumed to be interested in different levels of data. The 

department head is interested in the machine level report in their department. The factory 

manager is interested in the department-level report and CEO is interested in the factory 

level report. Each level can dig deeper if more precise analysis is needed.  

8. Prior knowledge of the distributions of the variables is not required, because the decisions 

are based on the comparison with the historical data that can be chosen on the basis of 

“good” products.  

The addition of new machines is not an issue, because all the statistics are generated based 

on all the available time and they are a percentage of that. New machines add to the total time. 

  3.5.2 Implementation in Big Data environment 

MapReduce is a framework for executing highly parallelizable and distributable algorithms 

across large datasets using hundreds or thousands of commodity computers (Lublinsky et al, 
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2013). A MapReduce algorithm does parts of the calculations in the server that the data segment 

is stored in parallel (hence the name “parallel computing”). 

MapReduce consists of two procedures that the user must develop: mapping and reducing. 

The system manages the parallel execution, coordination of tasks that execute mapping or reducing 

and also deals with possible failures of some of the task execution. In the mapping procedure, the 

data segment in each server is split, sorted and filtered. If needed, other calculations are also carried 

out. Users must define two critical parameters that are used as the input and output of each server: 

key and value. The key is the identification parameter that depends on the goal of the algorithm 

and the value is the output of the segment in that server. All the key-value pairs are collected by 

the master controller and divided among all Reduce tasks in a way that all the pairs with same key 

end up in the same Reduce task (Rajaraman & Ullman, 2012) 

In the reducing procedure, the outputs of the mapping procedures are shuffled and sorted 

based on the key defined in the mapper and then reduced by combining the values defined 

previously in some manner defined by the user. 

The TUFF method could be turned into a MapReduce function using the following logic. 

The assumption is that all the targets and standard deviations are stored in the top-level computer 

so they can be accessed by the program at any time. The data is assumed to have a timestamp and 

variable identification for each measurement. In the mapper function, the distances are calculated, 

colors are assigned, the machine level is assigned. The output is a timestamp, machine ID and 

color assignment.  

In the reducer function, the summarization of the colors is made based on the level of 

interest of the user. This is where the resolution of the report is set. The output would be the traffic 
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light for the timeframe and location under investigation. Details of the MapReduce algorithm 

applied to the TUFF method will be reported in another study. 

 3.6 Conclusions 

An enterprise-level monitoring system called Technique of Uniformally Formatted 

Frequencies (TUFF) is proposed. All the raw data is transformed into distances from the target. 

The distances are then classified into colored groups with the help of the pre-control chart idea. 

All the variables associated with a machine are then used to classify the machine into a color class 

according to the group control chart idea. The resulting counts are turned into percentages of time 

and that statistic is used to determine if the process is changed or not. The simulation studies show 

that the TUFF method is capable of handling 1000 variables per department and produce usable 

results with different scenarios. A recommendation for implementation of it in real-life situations 

is proposed as well as a recommendation for big data application with the help of the MapReduce 

method. 

The TUFF method has the following characteristics: 

1. It is capable of detecting changes, also identify the spatial and temporal space of the change 

2. It does not use a covariance matrix, which makes the calculation much easier 

3. It is easily scalable from a few to 1000 process variables 

4. It can be extended in big data format 

5. It does not require previous knowledge of distributions 

Future studies include the implementation of the method on different types of data, such as 

profile data and binary data. In addition, the TUFF method may be able to be integrated into 
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maintenance planning - usually, a topic traditionally studied from the field of reliability. 

Additionally, the method may be applied to supply chain applications. 
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Chapter 4 - Monitoring Profile Data in a System-Wide Monitoring 
Framework in the Big Data Era 

 

 4.1 Introduction 

The continuous development of sensors and the adoption of data storage solutions such as 

the Internet of Things (Bruner, 2013) has allowed the collection of a large amount of data in 

production facilities. The collected data could be categorized as big data, which is defined as data 

collection so large that it can not be analyzed with traditional methods (Megahed and Jones- 

Farmer, 2015). It is usually described to have at least one of the three Vs: Volume, Variety, and 

Velocity (Megahed and Jones- Farmer, 2015). The data collected in production facilities can be 

considered as big data because it is usually in large volume and have many varieties. Production 

data may come from different sources such as process parameters and quality characteristics with 

different formats in discrete (or categorical), continuous, profile, or images.   

As the amount of raw data collected rises, the monitoring of the production systems 

becomes more difficult. Traditional statistical process monitoring methods such as univariate or 

multivariate control charts (Montgomery, 2012) aims to monitor local areas in an entire system. 

Additionally, traditional methods usually use sample sets of quality characteristics with the 

assumption that if the quality characteristics are good, the process parameters must be good as 

well and that the current stage is independent of previous stages.  

Traditional process monitoring methods are not designed to take the full advantage of 

new opportunities in the big data era. For example, it may be possible for defect prevention 

through the monitoring of both process parameters and product quality characteristics. Analyzing 

full data sets may also reveal hidden correlations between different stages and timeframes. An 
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analogy is heavy snowfall in the upstream of the Mississippi River in the winter months may 

cause flooding in downstream cities in the spring. While this example is obvious, it may be 

hidden in a hierarchical production system where some of the rogue parameters in the upstream 

stages may cause production or quality issues downstream. In summary, alternative methods are 

needed to monitor the data abundant production systems to elevate understanding of the system 

and allow for faster reaction to problems. We have developed a system-wide monitoring 

framework called Technique of Uniformally Formatted Frequencies (TUFF) to tackle this 

challenge in our previous work (Chapter 3). However, that work focuses on a continuous 

variable in the big data environment. Other types of process parameters such as profiles over 

time or space have not been studied.  In this study process parameters characterized by profiles 

are integrated into the TUFF framework. 

The purpose of this study is to provide a method that can monitor profiles as a part of a 

smart system monitoring framework for a larger production system. The TUFF method is not in 

direct competition with current profile monitoring methods which focus on monitoring one or 

more profiles in real-time (Chang et al., 2014; Zou et al., 2008; Chou et al., 2014; Chou et al., 

2020,  etc.). These real-time methods are still needed to monitor the profiles on the local level to 

establish statistics that the proposed method uses to generate system-wide results. The method is 

complementary to the real-time methods as a managing tool for summarizing the system’s 

performance, identifying the timeframe and space of change and monitoring the process 

parameters to prevent quality deterioration. For example, a decline in the yield level in a 

semiconductor production line may trigger an investigation into causes. Thousands of variables 

need to be examined to find the causes for dropping yield. The analysis would be much faster if 

the parameters and characteristics that have changed can be narrowed down. The TUFF method 
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focuses on the system-wide performance of the profile data in near time which means that the 

method analyses data over some time period, so that all the data from that time period is readily 

available. The same approach can also be applied to process parameters of all types in addition to 

profile data.  

Assume that minor process deviations were not detected on real-time control charts. 

However, combinations of these deviations in various stages in the process may cause problems 

in overall product quality.  The TUFF method would need to be able to detect changes, indicate 

the timing and location of the change, and easy to model and implement. Finally, the proposed 

method should be scalable for big data applications. 

 4.2 Literature review 

A lot of manufacturing processes contain profiles to characterize some of their processes' 

performance as well as quality characteristics. Therefore, profile monitoring has drawn attention 

over the last 10-15 years (Woodall, 2007; Maleki et al., 2018). A profile is defined as a relationship 

between a response variable and the explanatory variable(s) (Woodall, 2007). An explanatory 

variable is usually either time or space.  

Woodall (2007) reviewed various profile monitoring methods in quality control prior to 

2007. He reviewed over 50 articles and discussed the use of simple linear regression, multiple 

and polynomial regression, nonlinear regression, mixed models and wavelets. More recently, 

Maleki et al. (2018)  did an overview of papers published between 2008 and 2018 on profile 

monitoring and classified them based on the characteristics of the profiles and methods, such as 

monitoring single and multiple linear profiles, non-linear profiles, etc. A total of 195 articles 

were identified that proposed solutions to different aspects of profile monitoring. The main 
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findings were that considerable attention has been given to different areas of profile monitoring 

over the last decade, most of the work has been focused on statistical design of the profile 

monitoring control charts, the most common profile regression model is a simple linear model 

and that most studies have been devoted to univariate response variable case.  The most popular 

methods for single profile monitoring over the last few years are different variations of 

Exponentially Weighted Moving Average (EWMA). Zou et al. (2008) proposed a control 

scheme that could monitor both linear and nonlinear regression models by integrating the 

EWMA with the Generalized Likelihood Ratio (GLR) test based on local linear regressions. In a 

different study, Abdella et al. (2016) considered the effectiveness of double EWMA and double 

multivariate EWMA statistics in the multivariate statistical process control (SPC) applications 

and extended these statistics to Phase II polynomial profile monitoring. Fasso et al. (2016) 

introduced two types of functional EWMA control charts which differed for the stopping rule 

rationale. The functional data analysis uses observed functional data as a single object rather than 

a sequence of single observations. The focus was on using Multivariate EWMA control charts as 

functional EWMA on the random effects of a mixed linear model. In another study, Huwang et 

al. (2016) proposed two Phase II Multivariate EWMA-type of control charts based on the 

observed and in-control Fisher information for monitoring profiles that can be characterized by 

proportional odds models where the response variable was both categorical and ordinal. Chiang 

et al. (2017) used a multivariate EWMA chart for a simple linear process in the presence of 

within-profile autocorrelation. Another study by Abbas et al. (2017) introduced the Bayesian 

control charting structure for linear profile monitoring under phase II using double EWMA 

charts. Yang et al. (2017) proposed a kernel-based control scheme that integrated the 

multivariate EWMA procedure with the dynamic probability control limits. Closely related to the 
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EWMA methods is the Cumulative Sum (CUSUM) methods. Zhang et al. (2017) proposed two-

sided Cumulative Sum (CUSUM) schemes with two separate or one single statistic to detect 

small shifts in pre-specified changes. 

The second most popular method is wavelets. Chang and Yamada (2010) studied the 

monitoring of non-linear profiles using wavelet filtering and B-Spline approximation. Shahiari et 

al. (2016) proposed the use of estimators insensitive to outlying samples in monitoring 

complicated profiles using wavelet transformation. The estimators were based on the clustering 

of the estimated wavelet coefficients and a type S-estimators. In a different study, Koosha et al. 

(2017) applied image data in the SPC context using a nonparametric profile monitoring approach 

based on wavelet transformation for feature extraction. 

Other methods have been proposed. Zeng et al. (2014) studied Phase I monitoring of 

profile data in non-normality assumption cases. These authors used independent component 

analysis to transform multivariate coefficient estimates to independent univariate data and then 

used univariate nonparametric control charts to detect changes. Chang et al. (2014) proposed an 

SPC framework to detect potential changes in wave profiles before the entire information on the 

profile of interest was fully available by converting each wave profile using the exponential-

decayed function as cutting line into a statistic that could then be monitored with a univariate 

control chart. In another study, Shang et al. (2016) looked at change point detection with binary 

data profiles and random predictors using a logistic model. 

Charkhi et al. (2016) proposed two methods to calculate Process Capability Indices (PCI) 

for logistic regression profile. In one method the PCI was calculated for certain levels, then 

overall PCI was determined for each level by calculating the percentage of nonconforming items 

and then the percentage was used to estimate the overall PCI. The second method calculated PCI 
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for all levels under a continuous state. Shi et al. (2016) presented a manifold learning-based 

approach to identify and visualize the nature of profile-to-profile variation in a sample of profile 

data. In a different study, Wu et al. (2016) proposed a Bayesian Hierarchical Linear Modelling 

(HLM) with level -2 variance heterogeneity to build a relationship between profiles data, the 

explanatory variables and the microstructural parameters for quality inspection and control.  

Zang et al. (2016) provided a framework for monitoring unaligned profiles based on 

robust Dynamic Time Wrapping (DTW) and penalized likelihood estimation by calculating a 

baseline profile from aligned in-control profiles, aligning the new profile to be monitored with 

the baseline profile and estimating the true mean of the aligned profile using several 

penalization-based methods for example fused LASSO. In another study, Koppel and Chang 

(2017) proposed the use of modified Sample Entropy value as an indicator of a possible change 

in the profile. Fan et al. (2017) chose the hyperbolic tangent function to model and monitor the 

aluminum alloy vacuum heat treatment process data. The monitoring was proposed to be 

executed by using two T2 and three metric control charts. Ding et al. (2017) used proportional 

odds ratio models to monitor profiles with an ordinal response and random predictors. In another 

study, Awad et al. (2018) presented a data-driven methodology for fault detection of complex 

arrays such as structural systems via multivariate SPC and the use of artificial neural networks. 

Liu et al. (2018) proposed a mixed-effect profile monitoring scheme to achieve effective out-of-

control profiles detection for spatial data with patent inter-cluster variations using the spatial 

Dirichlet process. Darbani and Shadman (2018) proposed to add a variable sampling interval to 

the generalized likelihood ratio control chart for monitoring linear profiles. The above-mentioned 

profile monitoring studies provide a good variety of approach to the single profile problem. 
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In a multiple profile case, several profiles are under investigation simultaneously. As is 

the case in the continuous variable cases, Principal Component Analysis (PCA) is one of the 

widely used methods. Lei et al. (2010) developed a feature selection and hierarchical 

classification method for missing part detection in the multi-operational forging process using 

data segmentation and Principal Component Analysis (PCA). Noorossana et al. (2010) extended 

the likelihood ratio, Wilk’s lambda, T2 and PCA to monitor multivariate multiple linear 

regression profiles in Phase I. They found that likelihood ratio and Wilk’s ratio were the best in 

detecting sustained and outlier shifts. In a different study, Zou et al. (2012) proposed the use of 

variable-selection based multivariate control scheme that is capable of monitoring the regression 

coefficients and profile variations. Paynabar et al. (2013) proposed the use of uncorrelated 

multilinear principal component analysis for multichannel profiles that utilizes information from 

each profile channel as well as takes into consideration the interrelationship among different 

channels. In another study, Paynabar et al. (2016) adopted multidimensional functional principal 

component analysis for multivariate profile monitoring. Wang et al. (2018) proposed a 

thresholded multivariate PCA for multichannel profile monitoring. The method first reduces 

high-dimensional multichannel profile to a reasonable number of features using PCA and then 

uses soft-thresholding techniques to further select informative features under the out-of-control 

state. Chou et al. (2014) researched simultaneous process monitoring for multiple linear or non-

linear profiles. Their approach was based on a multivariate EWMA control chart.  Jahani et al. 

(2018) studied the modeling and monitoring of multivariate profiles using multivariate Gaussian 

process modeling. 

As can be seen from this literature review, a myriad of methods have been proposed over 

the years. The problem with most of these methods is that the calculations are usually 
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computationally demanding and not scalable for big data level problems. The other issue is that 

the vast majority of current methods deal with one profile at a time or one machine with a few 

different profiles that characterize the performance and then detect changes. A real-world 

production system might have thousands of variables some are characterized by profiles scattered 

all over a facility. To the best of our knowledge there is no study that links multiple profile 

variables scattered on different machines or locations in a hierarchical system. The proposed 

method aims to fill this void.  

 4.3 The monitoring of a profile with the TUFF method  

Consider an hierarchical production system of ℎ departments each containing 𝑚 machines. 

The number of machines can vary from department to department. The system can be any 

production system where the product is moved from station to station and modified at each station. 

Assume that the machines contain process parameters only in the profile format. This assumption 

does not fully reflect a real-world situation but is used for simplicity in explaining the proposed 

method. The TUFF approach would generate a pre-control color distribution over certain 

predetermined timeframe similar to that presented previously in the continuous variable case. The 

timeframe can be hour, day, week etc. and  depends on the specifics of the production system. 

During each timeframe o profiles is generated by any machine in any department. The number of 

profiles for each machine can vary from machine to machine similarly to number of machines in 

each department. At the department level, there are 𝑚 machines, each is associated with a color-

distribution. On the factory level, each department would have its own color-distribution table. 

The purpose of this method is to detect changes in the entire production system over the time 

period so that more advanced analyses of fault identification can take place.  
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The TUFF method consists of two stages which are similar to Phase I and Phase II in 

traditional SPC control charts. Traditionally in Phase I, process data is gathered and analyzed to 

construct control limits. When users confirm that the control limits from Phase I represent in-

control process performance, Phase II begins. In Phase II the incoming sample drawn from the 

process is compared to the established control limits in Phase I to monitor the behavior of the 

process. Similarly, the first stage of the TUFF method aims to establish standards leading to 

color-distributions for each department or machine. In the second stage, each new data point is 

compared to the color-distributions established in the first stage and ultimately decide whether 

the system has changed or not. The steps in both stages are very similar and the differences will 

be pointed out in the explanation of the proposed method.  

Calculation of 
characterizing 

value(s)

Calculation of 
distances from 

target

Precontrol color 
classification of 

distances

Summarization 
of different 

colors

Change detection 
based on 

comparison with 
another timeframe

 

Figure 16. The Flowchart of the TUFF method 

Each stage consist of five steps (Figure 16). The purpose of the method is to identify: a) if 

there have been changes, b) when the changes occur, and c) where the changes occur. This is 

achieved by using an indexing method of different resolutions of time and space. The indexing 

method uses the timestamps associated with each measurement to assign time and location 

identification using machine ID, department ID, and factory ID to identify all measurements. 

The first step is to acquire a statistical measurement from the profile. As was stated 

before, the TUFF method is not competing with the methods presented in the literature review. 

Any of the traditional methods that create a statistic that helps to identify changes can be used. In 

cases of simple profiles, a piecewise regression could be beneficial to determine change points in 
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the profile. In more elaborate profiles, b-spline regression or wavelet analysis could be used to 

identify the change points and get the coordinates for those points (for example, see Chang and 

Yamada, 2010). Other methods such as PCA, modified Sample Entropy or methods from the 

literature review would also work. The simplest method is for users to assign some control points 

on the x-axis that are critical and record the y-axis value for those points. For more precise 

monitoring, the profile can be divided into segments and a different number of control points can 

be assigned to each segment. The result is a group of tuples of values or coordinates. Each 

machine and each process need to have its own profile identification statistic.  

The second step is to calculate the distance measured from the target value for all the 

statistics generated in the first step. In essence, the monitoring shifts from tracking the raw data 

into monitoring the characterizing values or statistics of the profiles. In the first stage, the target 

value is calculated by either using the pre-set specification values or averaging the characterizing 

values that were acquired in the first step. In the case where the user can set certain critical points 

on the x-axis and uses the reading of those points (y-axis value), the difference between the 

reading and the target value is calculated. The same is true in the case where the profile has been 

characterized by one value (for example modified Sample Entropy as proposed Chapter 2) where 

the distance is defined as the distance from the “good” characterizing value. If certain control 

points or change points are established, the distance from the calculated or set target needs to 

take into account both x-axis and y-axis distances. A simple triangle calculation would be 

sufficient in those cases.  

The calculated distances are then further analyzed. In parameter setting stage (stage 1), 

the standard deviation of the distances is also calculated. Then in both stages, the data can be 

normalized using the standard deviation and mean value.  
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To level the simpler profile monitoring methods (using the control points) with one-value 

methods, only one characterizing value should be assigned to the whole profile. Two methods 

could be recommended: a worst-case scenario that is based on group control charts idea or 

average distance over all control points. This decision must be made during stage 1 to help with 

setting up the color- distributions because the calculation order differs.  

In the average over control point method, the average value of u control point distances is 

calculated in stage 1 and used as the standard in stage 2. 

𝑑௝௞௦ =
∑ 𝑏௝௞௦௥

௡ೝ
௥ୀଵ

𝑝൘  
(5) 

where d is the profile characterizing value (average distance from target) 

 j – index for departments (j = 1,2,…,h) 

 k – index for machines in department j (k = 1,2,…,m) 

 s– index for identifying the profile sequence number (s = 1,…,o) 

 b is the calculated distance from the target for each control point 

 r – index for control point (r=1,2,…,u)  

 p is the number of control points in each profile  

The worst-case scenario skips the formula (5) and is continued in the third step. 

The third step is to classify each distance calculated in the previous step using the pre-

control idea. If the average distance from check point method is used, the classification adds one 

to the counter representing one of the four colors based on the following criteria: 

𝐶௝௞௦
௜ = 𝐶௝௞௦

௜ + 1 (6) 
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where 

⎩
⎪
⎨

⎪
⎧ 𝑖 = 𝑔 𝑓𝑜𝑟 𝑔𝑟𝑒𝑒𝑛, 𝑖𝑓𝑡ℎ𝑒 𝑑௝௞௦ 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 1.5 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡                     

𝑖 = 𝑦 𝑓𝑜𝑟 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑖𝑓 𝑡ℎ𝑒 𝑑௝௞௦  𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1.5 𝑎𝑛𝑑 3 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒  𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 

𝑖 = 𝑟 𝑓𝑜𝑟 𝑟𝑒𝑑, 𝑖𝑓 𝑡ℎ𝑒 𝑑௝௞௦𝑖𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 3 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑑𝑜𝑤𝑛                 

𝑖 = 𝑤 𝑓𝑜𝑟 𝑤ℎ𝑖𝑡𝑒, 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑑𝑜𝑤𝑛                                                                                                  

         

Note that these counters preset to 0 at the beginning of a period are used to generate the 

frequencies (i.e. counts) for all profile variables over a period of time. For the worst-case control 

point method, eq (6) conditions can be easily modified by replacing the average distance 𝑑௝௞௦   by 

the worst distance. Similar methods can be applied to the other process parameters with types 

other than profile. In fact, continuous parameters are very similar to the worst-case profile 

method.          

The fourth step summarizes all the categorized color machine counts and generates a 

statistic for comparison and detection of the change. Total numbers of occurrences for green, 

yellow, red, and white zone are computed as follows:  

𝑇௜ = ෍ ෍ ෍ 𝐶௝௞௦
௜ , 𝑓𝑜𝑟 𝑖 = {𝑔, 𝑦, 𝑟, 𝑤}

௠

௞ୀଵ

௛

௝ୀଵ

௢

௦ୀଵ

 
(7) 

All available counts over the period under investigation are tallied as: 

𝑇 = 𝑇௥ + 𝑇௬ + 𝑇௚ (8) 

While the monitoring of white color (scheduled maintenance or no orders) is important 

for the higher management, the red, yellow and green are vital for any level as they provide 

information on the actual performance of the system. Therefore, the three colors are used for 

performance indicators. However, a large proportion of  𝑇௪/(𝑇 + 𝑇௪) as shown in eq (9) means 

a long idle time during the investigation period. 
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The statistics of the ratio between the counts of each color category divided by the overall 

available count of samples represent the frequencies for each color zone. The following formulas 

(9) are used to create a report for each period under investigation. 

Green 𝑇௚/𝑇 

Yellow 𝑇௬/𝑇 

Red 𝑇௥/𝑇 

White 𝑇௪/(𝑇 + 𝑇௪) 

 

9) 

 

The formulas 7-9 are shown here to be used in the system-wide monitoring case. 

However, if more detailed look is needed, the resolution could be heighten and the formulas 

could be used to summarize the results for each department or machine as needed. The difference 

is that classified samples and available counts are only used if they are part of that particular 

department or machine. 

The final step is to detect changes. The previous four steps are used in the period under 

investigation and also in two other periods, for example, average values of the ratios over year-

to-date and average values of the ratios over historical data from the same periods over the 

previous years. The results from the first stage calculations can also be used for comparison. The 

decision criteria for the change detection can be calculated by either using historical data to 

determine the best indicator. When a change is detected, the location and the period of change 

can be pinpointed by segmenting the data further and re-analyzing using the same method. For 

example, if the time frame under investigation is weekly, the segmentation would be to generate 

the same table for each day of that week and for each department of the system. The comparisons 
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of the daily patterns in term of the ratios in eq. (9) would reveal when and where any change 

might occur. 

 4.4 An Illustrative Example 

In this section, the TUFF method is applied to a small simulated production system. The 

assumption is that the system consists of three stations each containing one machine that modifies 

the product in different ways and the process parameters are characterized by profiles. Specifically, 

the first station applies exponential pressure over time, the second applies similar pressure on 

different angles, and the third station heats the product over time as shown in Table 11. The 

representation of underlying models without error term is shown in Figure 17. 

Table 11. Underlying models of illustrative example 

Station number Underlying model 

1 𝑦ଵ,௧ = 1 + 2𝑥ଵ + 3𝑥ଶ
ଶ + 𝜀 

2 𝑦ଶ,௧ = 1 + 2𝑥ଵ + 3𝑥ଶ
ଶ + 𝜀 

3 𝑦ଷ௧ = 𝑦ଵ,௧ିଶ + (−10(𝑥 − 0.5)ଶ + 6) + 𝜀 

 

                            (a)                                               (b) 

Figure 17. The underlying profiles for (a) stations 1 and 2; (b) station 3 
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The simulated system assumes that the first and third stations are correlated as can be 

seen in Table 1. In real-life situations, this information is usually not known. The error terms 𝜀 

are assumed to be normally distributed with a mean of 0 and a standard deviation of 0.1. Twenty 

equally spaced points between 0 and 1 were used as x values. The example is laid out as a 

weekly production run. Each week 100 products are processed in all three stations.   

Setup Stage. One hundred simulated profiles for all three stations over one week were 

analyzed with the TUFF method. The profiles were simulated to represent one week of work 

where the production results were deemed to be good. Since the profiles were simple, seven 

control points were chosen along the x-axis that is capable of defining the shape. The average 

values for 100 profiles at those seven points were calculated, which were used as the target value 

at each control point. Next, the target values were subtracted from an observed profile value at 

each profile’s control point to calculate the distance from the target. Using eq. (5), mean 

distances, as well as their standard deviations, were calculated. Based on the classification and 

summarization of the distances explained in steps 3 and 4 of the TUFF method using eqs. (6) to 

(9), the process monitoring results were obtained in Table 12.   

Table 12. The results of process monitoring using the TUFF method (setup stage) 

Class Overall Station 1 Station 2 Station 3 

Green 87.05% 86.57% 87.43% 87.14% 

Yellow 12.67% 13.14% 12.29% 12.57% 

Red 0.28% 0.29% 0.28% 0.29% 

 

The main interest of the system-wide monitoring would be in the overall section, in 

which, 87.05%, 12.67%, and 0.28% of profiles are deemed in the green, yellow, and red zone, 
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respectively. In this example, this result reflects what the monitoring system should report when 

the underlying process from all three stations is under control. Note that all stations shown in 

table 12 also carry similar color distributions.  

Monitoring Stage. Two weeks of production data is simulated next. The first week 

represents the no-change scenario and the second week assumes that a small change in the error 

term was introduced in the first station. Instead of the error term being N(0,0.1), it becomes N(0, 

0.11). The new profiles for each station are analyzed by running the TUFF method using the 

target values, mean distances and standard deviations of distances calculated in the setup stage as 

shown in Table 13. 

Table 13. The results of the process monitoring using the TUFF method (monitoring stage): 
week 1, week 2 and a detailed look at week 2 

 

 

Setup Wk Week 1 Week 2 Detailed Week2 

Class Overall Overall Overall Station 1 Station 2 Station3 

Green 87.05% 83.81% 84.24% 78.86% 88.71% 85.14% 

Yellow 12.67% 15.67% 14.71% 19.14% 11.14% 13.86% 

Red 0.28% 0.52% 1.05% 2.00% 0.15% 1.00% 

 

   As shown in Table 13, the first week's overall results showed small changes, but these 

are not considered problematic when the threshold for issues was set at 1% of the red percentage. 

However, the results from week 2 shows that the red percentage is more than 1%. The 

diagnostics using the details in the station level shows that the 1% threshold has been exceeded in 

both Station 1 and Station 3. More precise investigation may be initiated in more details in the 



74 

 

 

 

machine or parameter level in a more complex system.  While this three-machine system is not 

difficult to analyze, real-world applications may have thousands of variables. Since the TUFF 

method is easy to scale up, it can manage much bigger challenges. 

 4.5 Simulation Studies 

This section presents a couple of simulation studies regarding the numerical performance 

of the TUFF method. To the best of our knowledge, the vast majority of existing literature focuses 

on detecting changes in a single profile and not on the system of different profiles. Therefore, these 

simulation studies were used to explore the properties of the TUFF method in a hierarchical 

system. 

 6.1 Study 1 

The purpose of the first simulation was to study how the color distributions of one simple 

profile behaves facing various shifts while all the profiles in the system exhibit no changes during 

the production. The profile in the first study is a quadratic model 𝑦௜௝ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝛽ଶ𝑥௜
ଶ +

𝜀௜௝   𝑖 = 1, . . , 𝑛 was considered. This simulation was also intended to identify the best practice for 

single machine level of the TUFF method. In each run, 1000 profiles were generated to mimic a 

certain daily or weekly production run on one machine. Six out-of-control cases were considered 

as shown in Table 14. The underlying shape of the model changes by small amounts for each of 

the parameters of β in cases 1-3. This is comparable to the mean change in continuous variable 

cases. Case 4 has a variance increase, while in case 5, the variance decreased. Case 6 was a 

combination of the variance change and parameter change. 

Several approaches may be possible for monitoring a single machine in the TUFF method. 

The first possible approach for summarization uses the average deviation distance from 
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Table 14. The parameters for changed profiles in simulation study 1 

 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝑺𝒕. 𝑫𝒆𝒗 

Base case 1.0 2.0 3.0 0.1 

Case 1 1.0 2.0 3.1 0.1 

Case 2 1.0 2.1 3.1 0.1 

Case 3 1.1 2.1 3.1 0.1 

Case 4 1.0 2.0 3.0 0.11 

Case 5 1.0 2.0 3.0 0.05 

Case 6 1.1 2.1 3.1 0.11 

 

10 control points on the graph to generate the color distribution using eq. (6)-(9). The second 

possible approach uses the group control chart idea to choose the worst deviation distance among 

10 control points. Then eq. (6)-(9) are used to generate the color distribution. The third possible 

approach uses the modified Sample Entropy (Chapter 2) in the first step to generate one value that 

represents the profile. Sample Entropy in short is often applied to a time series for assessing its 

variability (Grassberger and Procaccia, 1983). The sensitivity of the original Sample Entropy to 

detect small changes was enhanced by the introduction of modified Sample Entropy (Xie et al, 

2010).  More detail of the modified Sample Entropy method can be found in Chapter 2. Once a 

modified sample entropy value is generated for each profiles, eqs. (6)-(9) can be carried out to 

generate the color distribution.  

Table 15 summarizes the colors distributions generated from the approaches mentioned 

above. The numerical percentages were replaced with pie-charts for ease of visualization of the  
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Table 15. The results from simulation study 1 with 6 cases of profile change 

ALL M1. Average over 10 
variables 

M2. Worst case scenario M3. Modified Sample 
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changes. The base case represents the in-control state where no change occurs. Comparing three 

methods M1 to M3, M2 is the worst case method based on the group control chart idea so M2 is 

the most sensitive to any shifts. Even in the base case situation, the norm is a large portion of 

yellow comparing to the green and red zone. On the other hand, both M1 and M3 are based on the 

“average” concept considering the entire profile, the color distributions of M1 and M3 are much 

less sensitive for detecting shifts as shown in the base case. The green zone dominates the other 

color zones. 

Comparing the detection performance within each methods, small changes in the 

underlying model (cases 1-3) are basically not detected by M1 and M3 as shown in Table 15 

although case 3 shows that M1 is a little better than M3. Both M1 and M2 cannot detect a change 

in the variability change (case 4), however the sample entropy model M3 is able to catch that 

change. In all the other cases, the distribution of the classes is visibly different from the base case. 

Even in case 5 where the variation decreased, the color distributions of all methods are different 

from their corresponding base cases. Since the change, in that case, is for better, it is probably not 

too important from the monitoring point of view, but nevertheless, the change has been detected.   

The worst-case scenario method M2 is different from the two other methods in the base 

case in that the yellow and red zones have much larger proportions. This can be explained by the 

theory that the more variables (or in this case, control points) there is in the system, the higher is 

the probability to find at least one point that is out of control limits even though the process might 

be in control. Since the focus of the method is to monitor the system and not to focus on every 

single profile, the exact ratios identified in the in-control situation do not need additional analysis. 

As can be seen in Table 15, the worst-case method M2 is capable of detecting all cases of out-of-

control sets because all color distributions from case to case differ. However, the drawback of M2 
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is that as was shown in the continuous variable case (Chapter 3), if the number of control points 

increases over 30, the method loses its detection power because of the Bonferroni curse of 

dimensionality.   

 6.2 Study 2 

The goal of this simulation study is to establish the sensitivity of the TUFF method through 

Type I and Type II errors when a portion of the underlying profiles exhibit changes. In this study, 

the system consisting of 100 machines is explored. Assume that each machine generates one 

profile over a period. The goal is to monitor the system and detect changes. Since the underlying 

model is not important since the proposed method focuses on deviation from the profile control 

points, simple models were chosen to represent the output of the machines. The worst-case control 

point method M2 was chosen to represent simple profiles and the average over control points 

method M1 was used to represent the complicated profiles. M2 was chosen because the previous 

simulation study showed that it had the best detection capability while M1 was chosen because it 

showed similar detection power as modified Sample Entropy method M3.  The profiles simulated 

were based on two models in Zou et al, 2008. 

6.2.1 First stage: Setting of the parameters  

The quadratic model was used as the base model 

𝑦௜௝ = 1 + 2𝑥௜ + 3𝑥௜
ଶ + 𝜀௜௝   𝑖 = 1, . . , 𝑛 

The error term 𝜀௜௝ was assumed to be independent and identically distributed N(0,0.01) in 

both models. The error term was chosen to be 10 times smaller than the one used in Zou et al 

(2008) because the original error terms did not seem to be realistic. Twenty equally spaced points 

𝑥௜ =
௜ି଴.ହ

௡
, 𝑖 = 1, . ., were chosen for the implementation of the TUFF process.  
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First, 10,000 profiles representing 100 profiles for 100 machines were generated to 

calculate mean values for control point targets. Given the shape of the profiles and for the sake of 

simplicity, seven control points were chosen. More points were assigned to steeper curve areas for 

more precision. The control points represent the x values and then the deviation distances represent 

the corresponding y values. The target values were calculated by averaging all y values at 

corresponding x points.  

Next, the distances from the target were calculated based on the preliminary 10,000 profiles 

where the mean values were subtracted at each point in each profile. Since the x values were set, 

the distance was calculated only on the y-axis. The mean and standard deviation of the distances 

was calculated for each control point to help the classification in the following step. 

The distances were then classified based on the guidelines from the third step and ratios of 

the color classes were calculated. This process was repeated 10,000 times to help establish 

thresholds in the percentage table for change detection. Four thresholds were recorded to determine 

the performance: average of control point ratios for the green color, average of control point ratios 

for red color, group control-based “worst-case from each profile” ratios of green color and of red 

color. The threshold was set based on Type I error (for false alarm rate) of 0.02. The thresholds 

for the scenario 1 were 0.835, 0.0071, 0.3205 and 0.032 and those for scenario 2 were 0.8385, 

0.007, 0.33 and 0.02901, respectively. The differences between the scenarios were small, but they 

still need to be accounted for. 

6.2.2 Second stage: a Sensitivity study 

The purpose of the simulation study is to determine the sensitivity of the TUFF methods. 

For each repetition, 100 profiles for 100 machines were generated.  Several different sensitivity 
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levels were examined: 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 5%, 10% and 20% of the profiles 

changed. The same control points were used in the parameter setting segment calculations.  

Three different out of control models were chosen similarly to Zou et al (2008). The models 

were as follows: 

(I): 𝑦௜௝ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝛽ଶ𝑥௜
ଶ + 𝜀௜௝ 

(II): 𝑦௜௝ = 𝛽଴ + 𝛽ଵ𝑥௜ + 𝛽ଶ𝑥௜
ଶ + 𝛽ଷ𝑥௜

ଷ + 𝜀௜௝ 

(III): 𝑦௜௝ = 1 + 2𝑥௜ + 3𝑥௜
ଶ + 𝛽ଵsin (2𝜋𝛽ଶ𝑥௜) + 𝜀௜௝ 

These three out of control models represent three cases: (I) the parameters shift, but the 

structure of the regression relationship remains; (II) the regression relationship changes to another 

linear model and (III) the regression relationship changes to a nonlinear model. 

Table 16. The parameters for changes used in the simulation 

Scenario 1 

Out-of-control model 1 
 

Out-of-control model 2 
 

Out-of-control model 3 

   𝛽଴  𝛽ଵ  𝛽ଶ 𝑆𝑡. 𝐷𝑒𝑣 
 

   𝛽଴  𝛽ଵ 𝛽ଶ  𝛽ଷ 𝑆𝑡. 𝐷𝑒𝑣 
 

   𝛽ଵ 𝛽ଶ 𝑆𝑡. 𝐷𝑒𝑣 

Case 1 1 2 3.1 0.1 
 

Case 1 0.8 4.4 -3 4 0.1 
 

Case 1 0.1 1 0.1 

Case 2 1 2.1 3.1 0.1 
 

Case 2 0.8 4.4 -3 4.1 0.1 
 

Case 2 0.2 1 0.1 

Case 3 1.1 2.1 3.1 0.1 
 

Case 3 0.8 4.4 -3.2 4.1 0.1 
 

Case3 0.2 0.8 0.1 

Case 4 1 2 3 0.11 
 

Case 4 1 4.4 -3.2 4.1 0.1 
 

Case 4 0.2 1.3 0.1 

Case 5 1 2 3 0.05 
 

Case 5 0.8 4.4 -3 4 0.11 
 

Case 5 0.3 1.5 0.1 

Case 6 1.1 2.1 3.1 0.11   Case 6 0.8 4.5 -3 4 0.11   Case 6 0.3 1.5 0.11 

 

In scenario 1 model 1 the first three cases show changes in the shape of the model, fourth 

case had a variance increase, fifth case showed variance decrease and the sixth case was the 

mixture of variance and parameter change. In the second model, the first four cases were shape 
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change, the fifth was variance change and the sixth was a mixture. In model 3 the first five has 

shape change and the sixth was the mixture case.  

The output of this simulation was captured in the form of red and green percentages in each 

case. After recording the percentage data, Type II error for each combination was calculated based 

on the thresholds established in the first stage of the study. 

In the case of profiles represented with single value (for example, SamplEn, worst case of 

control points, etc) (table 17), the results show that the method is capable of detecting changes 

already at 0.6% of the profiles being changed. Smaller changes than that are not picked up well. 

The reduction of variability is not noticed (case 5 in model 1), but as was explained with the first 

simulation study, the change is usually considered to be better. On the color comparison, red color 

monitoring is much better than green color monitoring. The red can pick up 0.6% of the profiles 

changing while the green color starts to read at 5% changes. 

In the case of the simpler profiles when using the worst classification of the control points, 

the results (table 18) show that if a small number of profiles were affected by the change (one 

machine or less), the method had difficulties to capture the change. As could be expected, when 

the changes were in larger number of machines, the method became better in detecting changes.  

When comparing the detection power of the color class, then monitoring of red color was superior 

to green color monitoring. The red color was capable of picking up the changes when they affected 

more than one machine, while green color monitoring started to be effective after 10 machines had 

been changed. However, since not all the possible combinations could be presented here and there 

is another color in the mix, the recommendation would be to monitor both colors 

 



82 

 

 

 

Table 17. The results of simulation study 2 for profile monitoring with single value in terms 
of Type II error 

 

  

0.5% 0.6% 0.7% 0.8% 0.9% 1% 5% 10% 20%
Case 1 0.289 0.002 0 0 0 0 0 0 0
Case 2 0.313 0.003 0 0 0 0 0 0 0
Case 3 0.284 0.001 0 0 0 0 0 0 0
Case 4 1 1 1 1 1 0 0 0 0
Case 5 1 1 1 1 1 1 1 1 1
Case 6 0.295 0.002 0 0 0 0 0 0 0
Case 1 0.672 0.108 0.001 0 0 0 0 0 0
Case 2 0.29 0 0 0 0 0 0 0 0
Case 3 0.269 0.002 0 0 0 0 0 0 0
Case 4 0.292 0.001 0 0 0 0 0 0 0
Case 5 0.819 0.274 0.013 0 0 0 0 0 0
Case 6 0.284 0.005 0 0 0 0 0 0 0
Case 1 0.881 0.431 0.057 0.005 0 0 0 0 0
Case 2 0.285 0.001 0 0 0 0 0 0 0
Case 3 0.284 0.003 0 0 0 0 0 0 0
Case 4 0.274 0 0 0 0 0 0 0 0
Case 5 0.321 0.003 0 0 0 0 0 0 0
Case 6 0.282 0.003 0 0 0 0 0 0 0

0.5% 0.6% 0.7% 0.8% 0.9% 1% 5% 10% 20%
Case 1 1 1 1 1 1 1 0.01 0 0
Case 2 1 1 1 1 1 1 0.022 0 0
Case 3 1 1 1 1 1 1 0.027 0 0
Case 4 1 1 1 1 1 1 0.018 0 0
Case 5 1 1 1 1 1 1 1 1 1
Case 6 1 1 1 1 1 1 0.026 0 0
Case 1 1 1 1 1 1 1 0.018 0 0
Case 2 1 1 1 1 1 1 0.011 0 0
Case 3 1 1 1 1 1 1 0.018 0 0
Case 4 1 1 1 1 1 1 0.019 0 0
Case 5 1 1 1 1 1 1 0.027 0 0
Case 6 1 1 1 1 1 1 0.018 0 0
Case 1 1 1 1 1 1 1 0.018 0 0
Case 2 1 1 1 1 1 1 0.015 0 0
Case 3 1 1 1 1 1 1 0.016 0 0
Case 4 1 1 1 1 1 1 0.019 0 0
Case 5 1 1 1 1 1 1 0.024 0 0
Case 6 1 1 1 1 1 1 0.012 0 0

Percent of change

Percent of change
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od
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Table 18. The results of simulation study 2 for profile monitoring using worst case of 
control points in terms of Type II error 

 

0.6% 0.7% 0.8% 0.9% 1% 5% 10% 20%
Case 1 1 1 0.997 0.994 0.957 0 0 0
Case 2 1 1 0.999 0.992 0.97 0 0 0
Case 3 1 1 0.998 0.995 0.968 0 0 0
Case 4 1 1 1 1 0.981 0 0 0
Case 5 1 1 1 1 1 1 1 1
Case 6 1 1 0.999 0.994 0.969 0 0 0
Case 1 1 1 0.999 0.998 0.955 0 0 0
Case 2 1 1 1 0.998 0.966 0 0 0
Case 3 1 1 1 0.995 0.971 0 0 0
Case 4 1 0.999 1 0.999 0.969 0 0 0
Case 5 1 1 1 0.994 0.974 0 0 0
Case 6 1 1 0.999 0.992 0.967 0 0 0
Case 1 1 1 0.999 0.997 0.975 0 0 0
Case 2 1 1 0.999 0.998 0.963 0 0 0
Case 3 1 1 0.999 0.994 0.962 0 0 0
Case 4 1 1 1 0.996 0.972 0 0 0
Case 5 1 1 1 0.995 0.976 0 0 0
Case 6 1 1 1 0.999 0.967 0 0 0

0.6% 0.7% 0.8% 0.9% 1% 5% 10% 20%
Case 1 1 1 1 1 1 1 0.905 0
Case 2 1 1 1 1 1 1 0.875 0
Case 3 1 1 1 1 1 1 0.903 0
Case 4 1 1 1 1 1 1 0.887 0
Case 5 1 1 1 1 1 1 1 1
Case 6 1 1 1 1 1 1 0.906 0
Case 1 1 1 1 1 1 1 0.867 0
Case 2 1 1 1 1 1 1 0.897 0
Case 3 1 1 1 1 1 1 0.891 0
Case 4 1 1 1 1 1 1 0.847 0
Case 5 1 1 1 1 1 1 0.908 0
Case 6 1 1 1 1 1 1 0.896 0
Case 1 1 1 1 1 1 1 0.89 0
Case 2 1 1 1 1 1 1 0.882 0
Case 3 1 1 1 1 1 1 0.894 0
Case 4 1 1 1 1 1 1 0.897 0
Case 5 1 1 1 1 1 1 0.863 0
Case 6 1 1 1 1 1 1 0.886 0

Percent of change

Percent of change
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 4.7 A Real-World Example 

 In this section, the TUFF method is applied to a real dataset obtained from an industrial 

rubber hose manufacturing facility. High-pressure hose products are made out of alternate layers 

of rubber and metal wires. Toward the end of the production process, various high-pressure hose 

reels are loaded and cured. A curing process typically consists of a sealed, heated chamber, called 

an autoclave or vulcanizer. Most vulcanizers are equipped with multiple thermocouples inside 

their chambers and/or parts. The most important information gathered from the thermocouples is 

the air temperature, represented as a nonlinear profile during the curing cycle. A programmable 

logical controller is used to control temperature based on sensor reading or a fixed time interval 

according to a curing recipe. Figure 5 shows a typical air temperature profile divided into three 

sections – heat-up stage, curing stage and cool-down stage. It is important for the flat section (the 

curing stage) of this profile to hold for a fixed period of time. The thermocouples are calibrated 

from time to time. The data collection unit of the PLC is capable of collecting multiple temperature 

readings per second. (Chang et al, 2012). 

The data analyzed for the illustrative example contained profiles from five days. The first day had 

26 profiles and the following days had 26, 44, 24 and 33 profiles respectively. The first day was 

chosen to be the benchmark day to which all the other days are compared to. Piecewise regression 

was chosen to be the single profile analysis method for the simplicity of the algorithm and the 

shape of the profile. R function segmented() from package segmented was used for the piecewise 

regression analysis because the function is capable of producing estimated change points, which 

were then used for the distance calculations and all the other steps of the proposed method.  
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Figure 18. Example of a profile generated in the vulcanization process 

Stage I. The profiles from the first day were analyzed with the segmented() function. The 

results indicated that there were 4 change points along the time axis of the profiles. For each 

profile, the change points and the temperature reading at that point were recorded, resulting in 8 

records for each profile. Then the average and standard deviation for each record were calculated 

over the 26 profiles of the first day. The resulting values were then used to color-code each record 

and summarized according to step 4 of the proposed method (table 19).  

Stage II. Each of the remaining 4 days was analyzed separately. The same principals were 

used. Each profile was analyzed with the segmented() function to establish change points. The 

same amount of change points and respective temperature readings were detected and recorded. 

The average values for each point established in Phase I were subtracted and the results were 

classified based on the suggestions from the third step of the method. Each day was then 

summarized and the result table 20 was generated. 
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Table 19. The results of the first day of vulcanizer profiles 

 

Percentage 

Green 90.38% 

Yellow 6.25% 

Red 3.37% 

 

Much larger sample size than 5 days would be useful for more precise change detection, but when 

comparing each day to the first day, the results show that the second day has changed since the 

green portion of the results of the day is higher and the yellow and red portions are lower. This 

means more change points were close to the targets that were established on the first day. The third 

and the fourth day indicate also changes, but they are different, indicating fewer change points 

were close to the targets. The fifth day does not show many changes when compared to the first 

day. The more specific follow up analysis should be done on the third and fourth day, because of 

the change detected. Since the assumption for simplifying the example here was that day 1 was 

“acceptable”, then no analysis is necessary for day 1.  

Table 20. The results of 5 days of vulcanizer profiles 

 

day1 day2 day3 day4 day5 

 

Percentage Percentage Percentage Percentage Percentage 

Green 90.385% 92.308% 86.080% 89.063% 90.152% 

Yellow 6.250% 5.769% 11.364% 8.854% 6.061% 

Red 3.365% 1.923% 2.557% 2.083% 3.788% 
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 4.8. Conclusions and Future Studies 

In this chpater, a system-wide monitoring method called the Technique of Uniformally 

Formatted Frequencies (TUFF) is proposed for the monitoring of profile data in enterprise-level 

quality control. It is adapted from the pre-control chart idea for classifying all measurements over 

a period of time into three classes according to how close to their target. This study examines three 

methods to convert a profile to a measurement ready for classification. The TUFF method is easily 

scalable to big data problems and can be used for both linear and non-linear profiles. The method 

is not designed for real-time monitoring, but rather for near-time quality assurance over a certain 

period. A simulation study was carried out to investigate the sensitivity of the proposed method. 

An illustrative example was presented based on the curing process of rubber products. 

The TUFF method is designed as a system process monitoring tool first and foremost. 

However, it can be implemented for other purposes as well. The following are two applications 

where the proposed method could be effective. 

Process capability study 

A process capability study measures the uniformity of a process. A process capability 

analysis helps quantify the process variability, analyze this variability relative to product 

requirements in terms of specification limits, and assist in eliminating or greatly reducing this 

variability (Montgomery, 2012). The TUFF method could be applied to process capability studies. 

The proposed method can first convert the profiles used as quality characteristics quality into 

colored pie charts. Observing the changes in the red portion in the pie charts in a fixed sample 

frequency(e.g. weekly), decision makers would be able to glean more information in process 
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stability as oppose to just one process capability index number from the traditional process 

capability study.   

Prognoses 

The TUFF method can be used for prognoses when all the historical data has been analyzed. 

For example, the proposed framework can pinpoint the time and place of potential changes for a 

new set of data. Association rule mining methods (Rajaman and Ullman, 2012) could be applied 

to this new data set to search for similar occurrences in the past. If similarities are found, past 

corrective actions linked to this data pattern may provide immediate feedback for adjustments to 

restore process stability impacting product quality. 

One of the future research tasks is to extend the proposed profile monitoring method for an 

all-inclusive, enterprise-level, system-wide process monitoring framework. The main task 

involves the integration of all process data types such as continuous, attribute, and profile 

variables. This study and the previously published works in the profile monitoring are based 

mainly on the assumption that the profiles are not affected by external factors. However, this 

assumption may not hold for real-world situations. For example, process temperatures might be 

affected by the ambient temperature of the factory. It could be beneficial to study how that affects 

the TUFF method for profiles and what additional steps might be needed to address that type of 

change. The examples given in this article have been generated using normal distribution on the 

error term of the models. It would be interesting to see if the method works similarly for non-

normal data.   
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Chapter 5 - From Data to Knowledge: MADIC- a Six Sigma 
Implementation Strategy in Big Data Environments 

 

 5.1. Introduction 

The competition for market shares and consumer satisfaction has been one of the major 

driving forces for many innovations in manufacturing companies. Businesses try to find any 

advantages that can help them succeed. Many process improvement methods have been proposed 

over the years for companies to improve their operational performance.  One of the most utilized 

methods is the Six Sigma approach (Alexander et al, 2019; Gupta et al, 2018;  Noori et al, 2018; 

Anthony et al, 2017; Gijo et al, 2014, etc). It is a data-driven method that focuses on the reduction 

of variability of the controllable variables in a system with the ultimate goal of reducing process 

variability (Alexander et al, 2019).  

Six Sigma methodology was first introduced in the Motorola company around 1987 as the 

competition from overseas manufacturers started to mount extreme pressure (Anthony et al, 2017). 

The engineers in Motorola started improvement projects that followed a “roadmap” of Measure, 

Analyze, Improve and Control (MAIC). This roadmap provides a generic approach for a variety 

of problems. The results of this process attracted the attention of other companies such as General 

Electric (GE) during the mid-1980s. When GE decided to adapt the methodology, they also added 

an additional level to the beginning of the process (Define) and DMAIC was born (Anthony et al, 

2017). In recent years, DMAIC has been used in many applications in manufacturing companies 

and also in various scientific fields, some of which will be discussed. 

Attention towards Six Sigma has been increasing still to this day. Raval et al (2016) 

reported in a comprehensive literature review on the Lean Six Sigma trends and themes and 
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pointed out that there is an increasing trend of numbers of papers on the topic since 2002. 

Alexander et al (2019) reviewed the topic of Lean Six Sigma for small and medium-sized 

manufacturing enterprises. Pathirante et al (2018) reviewed critical success factors for Six Sigma 

in service and manufacturing companies and identified 48 different factors, one of these was 

information technology and innovation. Shamsi et al (2018) focused on the implementation 

barriers of Lean Six Sigma in the Information Technology industry. They identified that the biggest 

barriers were time consumption, staff turnover, difficulty in data collection, and difficulty in 

deciding on the scope of the project. Anthony et al (2017) pointed to big data as one of the future 

trends for Six Sigma and projected that big data would breathe new life into Six Sigma standards 

by providing entry to a data-rich environment. 

The rapid evolution of sensors, data storage, and computational resources has enabled the 

processing of large datasets that can contain different data types. Since Six Sigma adopts a data-

driven philosophy, the opportunities provided by big data environments would be a natural fit. Big 

data tools would allow the search process for the areas needing most improvement to be automated, 

therefore speeding up the project-identification process. The other benefit would be to minimize 

the guesswork on which area to focus on because the identification of the improvement project 

could be initiated by the data, rather than a person. Most of the published case studies that focus 

on projects in the manufacturing industry follow the traditional path of DMAIC, where the goal is 

defined by the process owner, the team is gathered and then data is collected on the issue to identify 

the source of variation that needs improvement (Martinez Leon et al,2012;  Gijo et al, 2014; Gupta 

et al, 2018; Noori et al, 2018; Sharma et al, 2018). Big data tools could help both the Define and 

Measure steps. 
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A few research fields that examine the use of big data in Six Sigma include education (Laux 

et al, 2017), digital curation (Arcidiacono et al, 2016), and financial institutions (Zwetsloot et al, 

2018). In the manufacturing field, Gaudard et al. (2009) proposed using historical datasets for a 

rotogravure printing process to shrink the number of variables that might cause issues by using a 

decision tree method called recursive partitioning. Thirty-nine variables used in the dataset were 

either continuous or categorical. The decision tree process identified the variables that were 

possibly the most influential in producing non-conformity. These variables were used to perform 

more experiments in a controlled environment to confirm the need for improvement.  Stojanovic 

et al (2015) proposed a method of big data analytics for continuous process improvement in 

manufacturing. They elaborated on using big data-driven clustering for the efficient discovering 

of unusual occurrences in real-time. They claim that extending traditional clustering algorithms 

with methods for better understanding the nature of clusters through big data processing will pave 

the way for empowering Lean Six Sigma. Their example showed finished-product testing using 

three profile variables. In another study, Stojanovic et al (2017) argued that that Six Sigma comes 

from the era of small data. They proposed a big data platform for enabling self-healing 

manufacturing, which could be used in continuous improvement projects. 

 One of the bigger obstacles of implementing Six Sigma processes in a big data 

environment lies in the fact that real-life systems may have more than 1000 variables and these 

variables can be a mixture of continuous, categorical, binomial, and profile variables. The use of 

big data allows analyzing a much bigger set of historical data. When big data is available, the 

identification of the problematic areas may be automated, and the order of activities in the 

continuous improvement method could be altered. Therefore, the first goal of this research is to 

renovate one of the most used Six Sigma tools DMAIC (Define, Measure, Analyze, Improve and 
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Control) in a manufacturing environment and show how big data analytics can help identify and 

prioritize continuous improvement projects. The second goal of this study is to identify continuous 

improvement projects according to changes identified in the system-wide monitoring phase. 

Specifically, a pair of attribute control charts namely p-charts are applied to red lights and green 

lights at any hierarchical level of a manufacturing system. When either chart indicates the process 

at that point is out of control, the identification of the possible improvement candidates is just a 

few steps away. Details of the proposed framework are described in the following sections. 

One of the tools used in the continuous improvement projects in the Measure section is 

statistical process monitoring (or SPM, formerly also statistical process control, SPC) (Pande et 

al, 2000). The purpose of SPM is to monitor the process to determine if the process is under 

control. The evolution of the methods started with the univariate control charts such as Shewhart 

charts for detecting median to large process shifts and exponential weighted moving average or 

EWMA charts and cumulative sum or CUSUM charts for small shifts. To simplify the inspection, 

pre-control charts (Satterthwaite, 1954) were established, where data points were plotted based on 

how far they were from the mean with a set of rules on how to make a decision based on the 

location of the data points. In addition to univariate control charts, multivariate solutions such as 

Hotelling T2 charts, principal component analysis, and Partial Least Squares, etc were also 

introduced. In the case of multiple stream processes, group control charts were introduced (Boyd, 

1950). When the product quality characteristics follow a discrete distribution, p- and np- charts for 

attribute monitoring. (Montogomery, 2012). These are all traditional methods that are still used in 

manufacturing facilities. While they have been proven useful on the local machine level, they are 

not suitable for use at the system level. The traditional methods do not take into account the whole 

set of data, focus mainly on the quality characteristics, not on the process parameters and disregard 
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previous stages of the process. Therefore, a system-wide monitoring method that takes into account 

all the data and uses both quality characteristics and process parameters would be very useful in 

the Six Sigma improvement portfolio. 

 5.2. Redefining DMAIC for the manufacturing sector 

One of the most popular techniques of Six Sigma continuous improvement projects is 

DMAIC, which stands for Define, Measure, Analyze, Improve, and Control. In the first step 

(Define), the objective is to identify the project opportunity and to verify or validate that it 

represents legitimate breakthrough potential. The purpose of the Measure step is to evaluate and 

understand the current state of the process. In the second step (Measure), the defined metrics are 

measured.  In the Analyze step, the objective is to use the data from the Measure step to begin to 

determine the cause-and-effect relationships in the process and to understand the different sources 

of variability. Next, improvements are suggested and carried out, and finally, they are monitored 

for performance in the Control step (Pande et al, 2000). While the method is data-driven, there is 

a large human presence in the Define step. Traditionally, in the define step of DMAIC, the experts 

weigh in on what variables or areas need to be monitored and what variation is allowed for 

measurements 

As stated before, a modern manufacturing facility can generate a large amount of data. 

Almost all the facets of production are covered with sensors and measures. Unfortunately, not all 

of the data is used, but it is gathered. More often than not, the unused data is called ‘dark data’ 

because opportunities for the discovery of improving a process or situation are lost. One of the 

main reasons for dark data is the sheer volume of data generated. The first step of DMAIC – 

“Define” is often initiated by a Six Sigma team. Once a subject is deemed worthwhile, the data 
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related to this subject is then collected. Since everything or almost all data is measured, the DMAIC 

technique could be redefined.  

 We propose to redefine a Six Sigma approach in a big data environment as MDAIC 

(Measure, Define, Analyze, Improve, and Control) as shown in figure 20. The first step assumes 

that all process and quality-related data is collected and measured. The data is constantly analyzed 

to identify any abnormalities in the streams of data using SPM tools for regular day-to-day 

operations of a factory. The proposed method also allows for system performance comparisons at 

any time scale such as by quarters.  Based on the information gathered, issue areas and expert 

opinions are used to classify the severity and the priorities of improvement candidates. In essence, 

the novelty of this approach is that the signal for improvement need is originated by data and in 

turn triggers process owners to initiate Six Sigma projects. Human input is still needed to determine 

if the issue or the source of variation is actually critical. The data-driven approach also supports 

the forming of the team as relevant operators or engineers from the floor can be assigned to the 

team. After the Define step is completed, analyses are carried out to identify the root cause of the 

issue and all the usual steps (Improve and Control) are performed.  

 

Figure 19. Redefined DMAIC proposal 
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 5.3. The proposed application of the redefined MDAIC process 

As stated previously, the traditional DMAIC steps dictate that a problem is first identified 

and then the data is collected based on the scope. The newly proposed redefinition of MDAIC 

requires a different method that could help trigger an investigation.  The proposed method uses a 

few different SPM tools, such as continuous and profile monitoring algorithms and the attribute 

control chart idea to monitor the process and identify issue areas. The following figure outlines the 

steps of the proposed method (figure 21). 

MEASURE

System-wide 
monitoring

Performance 
monitoring

DEFINE

Decision on 
improvement 

needs

EXPERT 
OPINION

 

Figure 20. The flow diagram of the proposed application of the redefined MDAIC process 

  

 5.3.1 System-wide monitoring 

Traditionally only raw data on quality characteristics (QC) from a product such as 

dimensions of a finished part is used for SPM. Some SPM methods are designed for univariate 

monitoring while others are for multivariate QCs. The SPM methods used in this study, namely 

monitoring of continuous variable data (Chapter 3) and profile variable data (Chapter 4),  were 

proposed in the context of system monitoring. This study provides an integration of all types of 
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process variables and product variables in a unified platform for monitoring system performance 

using the Technique of Uniformally Formatted Frequencies (TUFF). The reason for using this 

method is that all types of data should be assessed in the automated Six Sigma project to identify 

the candidate for improvement. The TUFF method is capable of monitoring continuous, attribute 

and profile variables. The methodology presented in this manuscript uses a top-down monitoring 

strategy, which means that the data is summarized to the top level and monitored there rather than 

monitor all the variables at their own local level. The reasoning is that top-down monitoring is less 

sensitive to false alarms at the variable level. While some of the errors might not be detected as 

fast as those when monitoring at the variable level, the variable level is more prone to overreaction 

to false alarms and a lot of effort might be directed to a non- issue. The TUFF method collects data 

over a period of time. Therefore, it is not a real-time process monitoring approach. Traditional 

process monitoring tools should still be implemented for detecting shifts at local levels. The TUFF 

system monitoring provides additional monitoring of system performance at a global level in that 

it counts the numbers of non-conformities gleaned from its sub-levels. It is a supplement to the 

traditional process monitoring that is carried out on the variable or machine level. 

While the proposed research aims to refine the DMAIC principle in data abundant 

environment, the proposed method of system-wide SPM can also extend additional diagnostic 

information to traditional SPM methods.  The first point is that the classic SPM relies on the 

sampling principles because of the gathering and analyzing of the data used to be expensive. This 

means that the data in traditional settings is usually scarce, the collection is slow and the frequency 

is also low. Big data applications contain abundant data, fast collection, and real- or near-time 

observations. It also offers the chance to analyze all observations, not just a set of samples. While 

this could mean collecting less useful data and recording outliers, the chance of catching problems 
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is much higher when analyzing the full dataset. The TUFF method is capable of detecting changes 

and pinpointing issue areas in addition to traditional control charting methods. 

The second point is that the classical SPM usually monitors just the quality characteristics, 

assuming that: if those are good, then all the other facets of production are also good. This circles 

back to the price of sampling and analyzing. Big data applications offer the chance to analyze 

everything. The TUFF method takes advantage of that and analyses both quality characteristics as 

well as the process parameters. In this way, pending problems might be caught earlier before they 

have had a chance to affect product quality. This practice may lead to savings in rework, possibly 

in preventive maintenance, etc.  

The third point is that classic SPM methods are only applied to local quality characteristics 

without the consideration of its prior or posterior steps. The TUFF method is designed to 

summarize the system performance of the full system over a user-defined period of time. Coupled 

with product functional flowcharts, quality engineers can examine the entire production steps to 

pinpoint an issue related to time or places quickly. 

 5.3.1.1 Data manipulation 

The measure phase of the continuous improvement process starts with gathering the data 

in the form of the results of continuous, profile and/or attribute monitoring data. These results may 

be collected hourly, daily, weekly at a different frequency depending on the specifics of the 

manufacturing process. Users can choose which timeframe is sufficient for their application; 

however, the data collection is done automatically as a part of day-to-day operations. 

The generalized method for TUFF system-wide monitoring consists of five stages. First, 

raw data is transformed into the characterizing statistic over a preset sampling period. During the 

data collection phase, a different number of values will be collected for continuous variables and 
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profile variables as well as attribute variables. In continuous variable cases, all the values would 

be recorded. In profile cases, only a few characterizing values are collected, for example, distance 

to the target at the sampling point or modified Sample Entropy value (Chapter 2). Similarly, the 

attribute results would have few recordings during the sampling period, for example, the 

percentage of non-conformity over the period between sampling points. This creates an 

imbalanced set where continuous variable readings would overwhelm the profile and attribute 

variables. The latter two variables would be lost and the monitoring would be almost exclusively 

on the continuous variable. Since the purpose is to monitor all the variables, the number of 

representations for each variable should be the same or very similar. In order to achieve a balanced 

representation of profile variables and attribute variables as well as continuous variables in the 

system-wide process monitoring, some modification is needed.  The TUFF method would 

calculate and monitor the mean and standard deviation of the segment of the continuous variable 

that is similar in length as the profile using equations 10 and 11. A segment is defined as the period 

of time to produce on profile. The reason for using both mean and standard deviations on the 

continuous variable is that both are needed to characterize the segment, otherwise some changes 

are not captured. 

 
𝒙ഥ𝒊𝒕 =

∑ 𝒙𝒊𝒋𝒕
𝒌
𝒋ୀ𝟏

𝒌
 

(10) 

 

 

𝒔𝒊𝒕 = ඨ
𝒌 ∗ ∑ 𝒙𝒊𝒋𝒕

𝟐𝒌
𝒋ୀ𝟏 − (∑ 𝒙𝒊𝒋𝒕)𝒌

𝒋ୀ𝟏

𝟐

𝒌 ∗ (𝒌 − 𝟏)
 

(12) 
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where 𝒙ഥ𝒊𝒕 is the mean value of the i-th continuous variable during the segment which the t-th 

profile characterizing value is generated; k is the number of continuous variable readings during 

the segment which the t-th profile characterizing value is generated; 𝒙𝒊𝒋𝒕 is the j-th single value 

of the i-th continuous variable during the segment which the t-th profile characterizing value is 

generated; 𝒔𝒊𝒕 is the standard deviation of the i-th continuous variable during the segment which 

the t-th profile characterizing value is generated 

After this transformation, the monitoring table is no longer based on raw data, but instead, 

on statistics generated by all variables which have similar weights. The new objects for monitoring 

would be the mean values and standard deviation values in case of continuous variables, the 

sampling points across the profile, and the nonconforming fraction values for attributes. The 

variables have been reduced to the same time scale and can be monitored simultaneously in the 

proposed framework. 

 The main sampling strategy is to generate the same number of statistics for all data types. 

We choose to use the least number of statistics from a profile variable as a base. For example, if 

the profile is characterized by a single Sample entropy value, then the mean and standard deviation 

of the continuous variable and the percentage of nonconformity of attribute variable are calculated 

over the same timeframe that was used to create the profile. If the characterization of the profile is 

done by merely setting certain control or sampling points, then the other variable characterization 

values are established over the period between those control or sampling points.  

 5.3.1.2. Classification and summarization 

After the characterizing values have been established, the method classifies each of these 

using ideas from pre-control charts (Satterthwaite, 1954). Each value is classified into a color 
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group based on how far the characterizing value is from its mean value. Let w be one of the 

characterizing values, then 𝜇௪would be the mean of that particular characterizing value and 𝜎௪ 

would accordingly be the standard deviation. The mean and standard deviation would be estimated 

based on historical data, which has been deemed satisfactory. The classification follows guidelines 

from Table 21. 

Table 21. The generic classification of each of the characterizing values 

Value Classification 

𝜇௪ − 1.5 ∗ 𝜎௪ < 𝑤 < 𝜇௪ + 1.5 ∗ 𝜎௪ Green 

𝜇௪ − 3 ∗ 𝜎௪ < 𝑤 < 𝜇௪ − 1.5 ∗ 𝜎௪ or  𝜇௪ + 1.5 ∗ 𝜎௪ < 𝑤 < 𝜇௪ + 3 ∗ 𝜎௪ Yellow 

𝑤 < 𝜇௪ − 3 ∗ 𝜎௪ or 𝑤 > 𝜇௪ + 3 ∗ 𝜎௪ Red 

The machine has scheduled stop or is not used in the production schedule White 

 

The third stage uses the group control chart idea of recording the worst-case observation 

(Boyd, 1950). For each row of classes over all the variables within one machine or another 

predetermined group, the “worst” class is selected for that particular segment and the machine or 

group will be assigned to that color class. For example, if all variables are assigned to the green 

class except for one in yellow, then the class of this machine or group is assigned the color yellow. 

If there is at least one red, then the machine or group is classified as red. The next stage summarizes 

all the classification instances over all segments in the period under investigation by selecting the 

worst cases of the machines on the investigators’ level of interest (department level, factory level, 

etc.). In this way, the algorithm generates a frequency table (Figure 22). The last stage detects 

changes by comparing the current frequency table to a similar table from historic data. 



101 

 

 

 

Machine level

System level

Class Percentage
27.50%
69.75%

2.75%

Possible hierarchy

Machine 2 Segment 1 Segment 2 … Segment 5 … Segment 9 … Segment n
Cont Variable mean 11 mean 12 mean 15 mean 19 mean 1n
Cont Variable Stdev 11 Stdev 12 Stdev 15 Stdev 19 Stdev 1n
Cont Variable mean 21 mean 22 mean 25 mean 29 mean 2n
…
Prof Variable Control 21 Control 22 Control 25 Control 29 Control 2n
Attribute Proportion 1 Proportion 2 Proportion 5 Proportion 9 Proportion n

Machine 2 Segment 1 Segment 2 … Segment 5 …. Segment 9 … Segment n
Class
Class
Class
…
Class

Machine

Machine 1 Percentage Machine 2 Percentage Machine 10 Percentage
30.15% 24.15% 27.50%
67.43% 73.26% 69.35%

2.42% 2.59% 3.15%
...

 

Figure 21. The hierarchical structure of the TUFF method 

For example, we now consider a small workshop, shown in Figure 22, composed of 10 

machines (m1,m2,…, m10) that each has five different variables (m1.1, m1.2, …, m10.5). These 

numbers can vary in practice but for the purpose of illustration, we fix them at ten and five. We 
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also assume that these variables, as well as product quality, are monitored at all times during the 

production. In each machine, one variable is characterized by a profile, while all the other variables 

are continuous. Assume the continuous variables produce 1 data point per second for 8 hours each 

day. The continuous variable values are simulated using a normal distribution with a mean of 0 

and a standard deviation of 1. Each profile variable generates one profile every 20 seconds. Each 

profile consists of 20 points, matching the sampling speed of continuous variables. The underlying 

model in all profiles is  

 𝒚 = 𝟏 + 𝟐𝒙 + 𝟑𝒙𝟐 + 𝜺 (32) 

 

where x is twenty equally spaced points between 0 and 1 calculated by 

 𝒙𝒊 =
𝒊ି𝟎.𝟓

𝟐𝟎
, 𝒊 = 𝟏, 𝟐, … , 𝟐𝟎   (13) 

 

The  𝜺 is the error term assumed to be normally distributed with a mean of 0 and a standard 

deviation of 0.1 (Chapter 5). The values recorded for each segment are the two critical values at 

point 5  and point 15 with the assumption that these are important points in the profile. 

During the transformation, each of the continuous variables is divided into sets of 20 to 

mimic the profile variables, followed by a calculation of means and standard deviations over each 

of the sets of 20 observations for each continuous variable. At the same time, the profiles are 

monitored by recording y values on two critical points of each run. 

 The outcome is a new base for monitoring with raw data transformed into statistics (Table 

2). For each continuous variable (m1.1, m.1.2, etc.) two statistics are generated: m1.1mean, 

m1.1st.dev, m1.2mean, etc., and for each profile variable two critical values are recorded: 

m1.5cr.val 1, m1.5cr.val2, etc. In essence, each machine would have 10 values for each segment. 
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Table 22. Transformed data for system-wide monitoring 

 

Next, each new variable (m1.1 mean, m1.1 st.dev … m10.5 cr.val 2) is classified into green, 

yellow, or red class based on the Table 21 rules. Assume that the variable m1.1st.dev had the upper 

threshold of 1.03 and a lower threshold of 0.97 for the green color. Then the value of the m1.1st.dev 

for the first segment would be classified as yellow, while the value for the second segment would 

be classified as green based on the values in Table 22. The mean and standard deviation values 

used for Table 21 classification rules are generated using historical data on the same characterizing 

values from the period when the system was deemed in-control. The worst color (green is better 

than yellow and yellow is better than red) from all the variables in a machine is chosen to represent 

the machine in each segment. Next, the colors for each machine are then summarized to generate 

the machine level frequency table of each color. The last step is to identify the worst machines in 

terms of red color to represent the system-level frequency table and identify the “worst-

performing” machines for each day. The monitoring of the lights will happen in the performance 

monitoring section. 

It is important to point out that while the red percentage is an indicator of non-compliant 

values, it may also contain false alarms. Every distribution allows for some level of non-

conformity. In this method, the probability of false alarms and a small number of out-of-control 

samples is acknowledged and accepted. If the current results compared to a historic timeframe 

were similar in terms of green and red percentages, then we would conclude that the system 

t m1.1 
mean 

m1.1 
st.dev 

m1.2 
mean 

m1.2 
st.dev 

… m1.5 
cr.val 1 

m1.5 
cr.val 2 

… m10.5 
cr.val1 

m10.5 
cr.val 2 

1 120 2 3600 25 … 1.0678 4.547 … 1.0854 4.552 
2 121 1.9 3585 20 … 1.0858 4.752 … 1.0674 4.514 
…. …. …. … … … … … … … … 
1440 120 2.1 3621 21 … 1.0644 4.523 … 1.0687 4.651 
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performance stays the same without changes. However, the red proportion exceeds its upper 

control limit of the p chart, the process is deemed out of control. Details will be described in the 

next section. 

 5.3.2 Performance monitoring 

The Measure phase continues with the automatic monitoring of the systems’ performance 

over a certain period of time. This is achieved by recording and monitoring the worst-case machine 

over a period of time, more specifically, the green and red percentages generated in the first step 

during day-to-day manufacturing operations. The reason for not monitoring all three percentages 

is that they will always add up to 100% and therefore it would be redundant to use all three. For 

example, if the red percentage does not change, but the green declines, the yellow percentage is 

increasing. Traditionally traffic lights reflect the idea that green color means good and red color 

means bad. In this research the colors do not mean exactly that, rather they are used just as 

indicators based on the pre-control chart. Color green means that a process observation statistic is 

close to its mean, while the color red means that the process statistic is far from its mean. Previous 

research (Chapter 4) has also shown that the percentage of red and percentage of green are good 

indicators for changes. 

In the proposed method, the red and green percentage data that was collected during the 

monitoring is monitored using an attribute control chart with upper and lower control limits 

defined by formulas (14) and (15) (Montgomery, 2012).  

 

𝑈𝐶𝐿 =  𝑝 + ඨ
𝑝(1 − 𝑝)

𝑛
 

(44) 
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𝐿𝐶𝐿 =  𝑝 − ඨ
𝑝(1 − 𝑝)

𝑛
 

(55) 

 

where p is the percentage of red or green color from historical dataset deemed in-control and n is 

the number of percentage measurements in the historic dataset deemed in-control 

First, overall or system-wide data is monitored over a period of time, for example over one 

month. The worst performing machines are identified by the system and recorded for each day. 

The machine that has the highest count of records could be considered for the improvement 

candidate. If there are several machines with high counts over the month, all of them can be the 

candidate for improvement. The system gives an alarm to the process owner and the decision step 

of the MDAIC process can start. 

Continuing with the example of 10 machines with 5 mixed variables, the performance 

monitoring would start with the generation of a “good” dataset that is used for set-up. The dataset 

is assumed to run over 30 days. The dataset is simulated using standardized values to simplify the 

coding. Each continuous variable is simulated using a normal distribution with a mean of 0 and a 

standard deviation of 1. The profiles are generated using the underlying model (12). Two critical 

points are identified as explained in the previous section. Similarly, the mean and standard 

deviations of the continuous variables during each profile run are calculated. For each day 28800 

(8 h*60 min *60 sec) measurements are recorded for each continuous variable. Since the profile 

generates two measurements every 20 seconds, 1440 (8 h*60 min*60 sec /20) values are calculated 

for each characterizing variable. The values are classified and summarized at the machine and the 

system level. A single worst-case machine is identified for each day. When the process is in 

control, the assumption is that each machine has an equal probability of being labeled as “worst-
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case” for each day.  Therefore, the expectation is that the list of daily under-performers would 

include almost all the machines. The results shown in Table 23a show that as expected, almost all 

machines are “worst-case” at some point in the month and no machine has significantly more 

appearances.  

Table 23. The frequency table for daily "worst-case" machines. (a) in-control, (b) Machine 
1 had a small mean shift in one continuous variable 

Machine 1 2 3 4 5 6 7 8 10 

Frequency 3 2 4 5 3 4 2 4 3 

(a)        (b)  

Let’s now assume that there is a small shift in one variable in machine 1 and all the other 

machines perform on the previous levels. The shift occurs on the 7th day. The mean changes from 

0 to 0.5. All the other variables are generated with the old parameters. After running through the 

proposed method, the frequency table (Table 23b) is generated again. Obviously, one machine has 

a much higher count of being “worst-case” on a daily bases. In this case, the Machine 1 frequency 

of 24 meant that Machine 1 was the “worst-case” machine on 24 occasions over the observed 

month. This would then trigger the alarm to the process owner and the decision step of MDAIC 

can start. Let’s also assume that we would implement a pair of control charts, say X-bar and R 

charts on this machine 1 variable. Since the control charts would not respond to a shift 

instantaneously, the frequency count for machine 1 should still be higher than those for the other 

machines under normal operating conditions. 

 5.3.3 Decision on improvements needs 

Decision-makers of a system of interest can leverage the traffic light statistics generated to 

identify opportunities for improved in the Define step of the Six Sigma process. Based on the 

Machine 1 4 7 8 

Frequency 24 4 1 1 
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example used previously, machine 1 was identified as the worst performer according to Table 23b 

while machine 4 is the second-worst performer. Two attribute control charts should be applied to 

the red and green light statistics respectively on both machines 1 and 4 using formulas (14) and 

(15). These control charts are established to define the upper and lower control limits as well as 

the centerlines using the SPC Phase I process which assumes that the red and green color 

percentages are stationary in a certain range when the process is in control. Because the system-

wide monitoring relies on retrieving the worst case from the machine level values, most of the 

calculations are already done in the background and can be easily retrieved. The p charts indicate 

that both Machine 1 and Machine 4 are within the control limits when no changes are introduced, 

so no immediate action is required. 

As shown in Figure 24, Machine 1 shows points beyond control limits after day 6 while 

the signals for machine 4 are well within the limits. Based on this information, the process owner 

can assemble the project personnel whose expertise is connected to the machine 1. At this point, 

the proposed framework already leads the Six Sigma team to a continuous improvement candidate. 

However, a more in-depth analysis of a cause can be performed for machine 1.  

 5.3.4 Sensitivity of the TUFF method in MDAIC 

To show the sensitivity of the TUFF method, two more simulations were carried out. In 

the first simulation, the same small change from mean 0 to mean 0.5 was introduced in one variable 

in Machine 1, while other machines performed at the original levels. The difference was that 

instead of the fault occurring every day after the initial incident, the fault happens every 3 days. In 

essence, this simulation is more in line with the actual manufacturing environment in that when 

the issue arises, the operators will try to correct it. However, if the root cause is not addressed and 
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Figure 22. Attribute control charts on machine level for the red and green class for 
machines 1 and 4 in the in-control dataset 

    

    

Figure 23. Attribute control charts for machines 1 and 4 for the red and green class when 
one variable change on day 7 in machine 1 
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the same issue is reoccurring, the process owner might look into more permanent solutions that 

are beyond the capabilities of the operators.  

Table 24. The frequency table for daily "worst-case" machines after machine 1 had a small 
mean shift in one continuous variable every 3 days 

Machine 1 2 4 5 6 7 8 9 10 

Frequency 9 3 1 1 2 5 5 3 1 

 

The frequency table for the “worst-case” machine (Table 24) shows that while there are 

quite a few machines such as Machines 7 and 8 exhibiting high counts, Machine 1 still has the 

highest count. This would trigger the Decision step for deeper analyses. The results of the attribute 

control chart show that even in the case when the problem is reoccurring over 3 days, the method 

is capable of picking up the change (Figure 6). Every three days, both red and green percentages 

are not within the control limits. Machine 1 would be a candidate for an Improvement project.  

The second simulation was carried out to identify how well the TUFF method in MDAIC 

reacts to the change in a profile variable, rather than in a continuous variable. Suppose the 

underlying model for the profile variable was changed to equation (17) from equation (16). 

        

Figure 24. Attribute charts for machine-level monitoring of red and green percentages 
when one variable has a change once every 3 days in Machine 1 
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 𝒚 = 𝟏 + 𝟐𝒙 + 𝟑𝒙𝟐 + 𝜺 (66) 

 𝒚 = 𝟏. 𝟏 + 𝟐. 𝟏𝒙 + 𝟑. 𝟏𝒙𝟐 + 𝜺 (77) 

The change happened similarly to the original change sample on the 7th day. The frequency 

table (Table 25) shows again the large count for Machine 1 as the daily worst-case machine. The 

attribute control charts show that the change was caught by both red and green percentages at the 

machine level (Figure 26). In this case, the problem was identified after collecting one month's 

worth of data. This example demonstrates that the proposed framework is designed to collect 

system-wise problem counts in addition to locally implemented SPC methods. If a process is reset 

multiple times without addressing the underlying issues, p charts will identify these persistent 

problems. 

Table 25. The frequency table for daily "worst-case" machines after machine 1 had a shift 
in profile variable 

Machine  1 4 5 6 7 9 

Frequency 24 1 1 2 1 1 

      

Figure 25. Attribute control charts for system-wide monitoring of red and green 
percentages when one profile changed on the 7th day in machine 1 
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 5.3.5 Other scenarios with solutions 

The above-mentioned examples have dealt with scenarios where all the machines are the 

same and perform on the same level. The purpose of the monitoring is to identify the machine that 

is showing most frequently to be out-of-control for the purpose of MDAIC project identification. 

In real life, this assumption might not be true. The following sections provide two additional 

scenarios that might occur as well. 

 5.3.5.1  Mixture of old and new machines 

In this case, the assumption is that there are a few old machines and a few new machines 

in a manufacturing facility. Obviously, these machines would perform at different levels. Old 

machines are more prone to issues and breakdowns than the new ones. If the process owner runs 

the proposed method as-is, the assumption would be that usually, the old machines would be the 

ones that will be deemed as Improvement candidates. On the one hand, it is completely expected. 

But on the other hand, if the machines cannot be replaced or cannot be improved to perform at the 

level of the new machines (assuming they perform at the level that is acceptable for their purpose), 

the process owner might want to monitor the newer machines as well to detect if there might be 

candidates for Improvement. The solution for this type of scenario would be to alter the proposed 

method slightly. In the last steps, instead of picking the “worst-case” machine as the representative 

of a department, for example, the method would average each color over the machines to represent 

the department. Furthermore, the average each light over all departments represents the factory. In 

this way, if the old machines are operating at the same level as usual and one or a few of the new 

machines are operating worse than that previously, the proposed method would be able to detect 

the changes. The system performance monitoring would start from the top-level percentages. If a 
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change is detected on the factory level using attribute control charts over a period of time, for 

example, 30 days, the method should look for changes on the department level and after identifying 

the department, on the machine level of that department and so on. Because the average of light 

count instead of a worst-case statistic is used for a system performance measure, we can detect 

changes in the new machines as well on a daily basis.  

 5.3.5.2 Heterogeneous of machines 

So far the examples examined have three levels: machine, department, and factory. It is 

viable to consider the overall factory performance assuming the departments are equally important. 

However, the departments may be very different so it makes no sense to generate performance 

statistics at the factory level.  For example, there are three or more groups of machines. Each group 

has similar performance levels and similar tasks within the group that are different between the 

groups, says, a group of metal sheers, a group of stamping presses and a group of bending breaks. 

While the monitoring of the overall worst machine would be useful, more information might be 

available for each group. So the method would identify the “worst-case” machine for each group. 

If some of the machines are identified more often, while maybe not necessarily as the “worst-case” 

of the overall facility, these machines might be candidates for the Improvement project to enhance 

the overall quality performance of the whole factory. 

    5.4. Big Data MapReduce Strategies and Algorithms 

In this section, the focus is on proposing a solution on how the TUFF method in MDAIC 

would be applied in the big data environment. Assume that the file for the manufacturing data over 

100 days is larger than the traditional software such as Excel is capable of managing, therefore big 



113 

 

 

 

data methodology is used. The solution uses a MapReduce algorithm to analyze large sets with the 

proposed method.  

MapReduce is a framework for executing highly parallelizable and distributable algorithms 

across large datasets using hundreds or thousands of commodity computers (Lublinsky et al, 

2013). A MapReduce algorithm does parts of the calculations in the server that the data segment 

is stored in parallel (hence the name “parallel computing”). 

MapReduce consists of two procedures that users must write: mapping and reducing. The 

system manages the parallel execution, coordination of tasks that execute mapping or reducing 

and also deals with possible failure handling. In the mapping procedure, the data segment in each 

server is split, sorted and filtered. If needed, other calculations are also carried out. Users must 

define two critical parameters that are used as the input and output of each server: key and value. 

The key is the identification parameter that depends on the goal of the algorithm and the value is 

the output of the segment in that server. All the key-value pairs are collected by the master 

controller and divided among all Reduce tasks in a way that all the pairs with the same key end up 

in the same Reduce task (Rajaraman and Ullman, 2012). 

In the reducing procedure, the outputs of the mapping procedures are shuffled and sorted 

based on the key defined in the mapper and then reduced by combining the values defined 

previously in some manner defined by the user. 

A MapReduce method is applied to the workshop example presented earlier (Figure 27). 

The proposed method is similar to the word count problem in MapReduce. The goal of traditional 

word count is to generate a list of all words in a certain text and count how many times each word 

occurs. In this case, the goal is to calculate mean and standard deviations from variable data with 

date and time information on machine and date level. In the mapping procedure, the variable data 
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is split into smaller segments for servers to process. Then each machine and date in the segment is 

defined as key and has a value of the reading. In the reducing process, all the key-value pairs 

generated in the mapping procedure are shuffled together based on the keys and then all the 

averages and standard deviations for each key are calculated. Finally, all the reduced key-value 

pairs are merged and reported for the final output. 

The MapReduce paradigm is powerful, but it does not provide a general solution to all big 

data problems. While it works particularly well on some problems, others are more challenging. It 

is shown to work well on summarization problems including mean and standard deviation 

calculations and counting; filtering problems including distinction problems; data organization 

problems like changing structured data to hierarchical, partitioning, binning, shuffling and total 

order sorting; and joining problems, etc. (Miner & Shook, 2013). 

 

Figure 26. Flowchart of a MapReduce method applied to a manufacturing facility 
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 5.4.1 Indexing in the Step of Measure 

The identification of the location and the timeframe of change are of crucial importance in 

the first step (Measure) of the proposed MDAIC framework, especially in big data applications. 

This information allows an investigator to identify the areas that need more in-depth analysis and 

that need to be monitored more closely during the SPM operations often used in the Control step. 

It also helps to group data for further summarization. For example, a process engineer may be 

interested in the performance of one machine during week 25 as compared to week 23 and 24. On 

a different level, a factory manager may be interested in comparing the performance of line 1 to 

line 3 in March and April. The data should be prepared so that this information would be easily 

accessible and summarized for different levels of interest. This opportunity-seeking stage can be 

automated by computing various time intervals called scales. Comparisons of the statistics 

generated in each scale should be sent to managers when a certain number of changes over a 

threshold is reached. 

The method uses timestamps and machine identification as the key to identifying the place 

and the time of changes. The timestamps must be translated into regular mm/dd/yyyy hh:mm:ss 

format, which allows fast identification of any timeframe of interest. It also allows multiple-scale 

analysis since the timescale can be set as hourly, daily, weekly, monthly, or yearly bases. The same 

thing must be done with the machine-id, which should contain various identifying features, such 

as machine identification, department identification, factory identification, etc. Again, depending 

on what an investigator is interested in, a summation of the data according to various scales can 

be easily accomplished even for a large amount of data. This scalable data identification method 

used in the big data environments can help identify the variables/machines/departments in the 
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Measure step of the redefined Six Sigma method that can identify potentially good candidates for 

Improvement based on data collected.  

The indexing is used in the “key” of the MapReduce algorithm described previously. 

Depending on the length of time the investigator has set, the timestamp containing date/time 

information is separated and the set level of time is assigned to serve as a part of the “key” in 

identifying each raw or calculated value that is later summarized in the reduce section. The second 

part of the “key” would be the identification of the machine. 

  5.4.2 Indexing and MapReduce Example 

Assume that production data is in the JavaScript Object Notation (JSON) file format 

(json.org). To analyze the data, the data file first needs to be converted into separated value files 

such as in the CSV format. A JSON file is often organized in key and value pairs in which each 

value could be paired. It is one of the most often used data formats in browser/server 

communications. Each row in the dataset contains different values of states such as machine_id, 

department_id, sequence number, event begin time, event end time, event description, a reason for 

an event, and so on. For example, a row might contain the following syntax: 

{ "_id" : { "$oid" : "4f6abdbcf437c071d940a3a2" }, "tm" : 1332395360, "category" : 

"Utilization", "component" : "v2", "dataitemid" : "", "machine_id" : 3, "mt_name" : null, 

"mt_value" : "ACTIVE", "sequence" : 2037056, "subtype" : null, "type" : "Execution", 

"virtual_flag" : "N", “Reading”: 102.547 } 

In this structure, the “_id” is the key and the rest of the terms are values. The interest of an 

investigator is in the value parts of the file. In the value part, the first important component for the 

method purposes is “tm” which is the time stamp identifying the time of the reading. Next, the 
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machine id and the component id need to be extracted and finally the reading field. It is very 

important to note, that these key and value pairs are not defined the same way as the MapReduce 

key and value pairs, which will be extracted from JSON or CSV format and redefined. 

Assume the same example of 10 machines with 5 variables in each machine that was used 

previously.  In order to achieve the data input for the Define stage of the newly proposed method, 

different MapReduce algorithms would be used. Two MapReduce codes are used when all the data 

is the same, either continuous, attribute or profile type; three are used when the data is a mixture 

of continuous, attribute and profile. The first code would calculate the averages and standard 

deviations in case of mixed data types. The second code would classify the values while the third 

code would summarize the classes to generate the traffic lights for monitoring. 

The first MapReduce code would use the indexing proposed previously to extract the 

machine id, variable id, date and time info as well as the actual reading from the distributed JSON 

file and map the extracted data into key and value format. The key would be the machine id, the 

variable id and the date/time combo that is the same length as the profile in the same machine. 

Then the reducer would shuffle all the keys together and reduce it by calculating the mean and 

standard deviation for each variable in each machine. The results are saved as a new distributed 

JSON file. The mean and the standard deviation can be calculated using formulas (18) for mean 

and (19) for standard deviation. The MapReduce pseudocode for that calculation is presented in 

Figure 28.  

 
𝒙ഥ =

∑ 𝒙𝒊
𝒏
𝒊ୀ𝟏

𝒏
 

(88) 

 

 

𝒔 = ඨ
𝒏 ∗ ∑ 𝒙𝟐 − (∑ 𝒙)

𝟐

𝒏 ∗ (𝒏 − 𝟏)
 

(99) 
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where 𝒙𝒊 is individual the i-th reading 

n – number of individual readings 

 

Figure 27. Mapreduce pseudocode for calculating the mean and standard deviation of a 
large dataset with multiple variables and timeframes 

In the second MapReduce code, the mapper would extract the data from the JSON files 

similarly to the first code. The machine id, the variable id, and the time and date data are used as 

the key and reading (or statistics such as averages, standard deviation and the characterizing values 

for the mixture case) are the values. For each variable, the classification parameters as explained 

in Table 21 are retrieved with the assumption that these are previously established. Each variable 

is classified to either red, yellow or green for each timeslot and the color class is used as the output 

value of the mapping stage, while the key has identifications for variable and timeslot. For the 

reducer operation, the similar keys are shuffled together, the worst case is established, and each 

machine is assigned that color class for that time period. The key is now machine id, date and time, 

while the output value is the color class. This is saved as a big data object in the Hadoop File 

System (HDFS, 2019). 
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Figure 28. Mapreduce pseudocode for classifying the characterizing values and machines 

In the third MapReduce code, the mapper would use the big data object generated in the 

previous step. The first step would be to change the key into machine id, color class, and day 

identifier. The value is assigned 1. In the reducer side, the keys are shuffled together again and 

counts of green, yellow and red are generated and transformed into percentages. The worst daily 

performer is chosen as the representation of the system for the day. The output would give the 

traffic lights for each day, which would then be fed into attribute control charts and then analyzed.  

 

 

Figure 29. MapReduce pseudocode for summarizing the color to produce daily frequenzy 
table 
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 5.5. Conclusions 

In this research, a new Six Sigma process called MDAIC (Measure, Define, Analyze, 

Improve and Control) is proposed for the manufacturing discipline. In the era of big data where all 

the variables in the factory can and are monitored and stored in large amounts, the proposed 

framework is more data-driven so that the opinion of the expert on the area needing improvement 

is considered after the issue has been identified based on the data. A Statistical Process Monitoring 

framework called Technique of Uniformally Formatted Frequencies (TUFF) is presented that can 

take into account continuous, profile and attribute data to help identify the machine that could be 

a candidate for the Improvement section of the MDAIC from the data point of view. An example 

based on simulated datasets is provided to demonstrate how the proposed method works and the 

sensitivity of the proposed method reacting to process variable shifts.  

The proposed method is expected to be applied in a big data environment. A solution is 

provided that uses MapReduce methodology to implement the monitoring method in big data. 

Pseudocodes for different steps are provided. 

While the proposed redefinition of the DMAIC principles is applied to the manufacturing 

industry because of the abundance of measurements and data available, it is not the only industry 

where the statistical process monitoring could be used. For example, a large fast-food chain could 

also benefit from the proposed method. In this case, several performance variables may include 

time from order to payment, time from ordering to receiving, the portion of mess-up orders to all 

orders, etc. If these variables are monitored, then they can be classified into three colors and 

summarized. Restaurant locations are similar to machines in the manufacturing case. Additional 

levels of hierarchy may include city, state, region level, and country level. On any level, one 
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month's (or quarterly) worth of data may be analyzed using the proposed method and the worst 

performing location could be determined. These locations at various levels would then be 

candidates for continuous improvement. 

Future research may include the extension of the proposed approach to other application 

areas of Six Sigma such as healthcare.  Other interesting paths would be to investigate if adding 

weights to variables based on the criticality of the measurement would help in any way with more 

accurate monitoring. The current method assumes all process variables are of equal importance. 

Finally, it would be interesting to investigate if separating quality characteristics and process 

variables into two monitoring groups would have provided more diagnostic information. 
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Chapter 6 - A Visualization tool for Multivariate Process Monitoring 
in Data-abundant environment using Adjusted Modified Sample 

Entropy 
 

 6.1 Introduction 

The advance in sensor and data storage technologies has increased possibilities for 

monitoring and diagnosis in different production processes. Processes are becoming more 

complex, and monitoring devices are generating additional data. Although data analytics 

possibilities have grown with the introduction of big data, inherent statistical control challenges 

including process capability analysis have also grown. Process capability analysis is often used to 

compensate for variability, but the increasing amount of data has complicated process capability 

analysis (Montgomery, 2012). Traditional methods such as process capability ratios cannot 

manage large volumes of process data over time because these methods assume that the process 

has a normal distribution and does not change. There have been some proposals for using entropy 

types of methods for process capability studies. The reasoning is that entropy is not dependent on 

distribution and so it can still provide accurate process assessment in changing distribution 

environments. 

 6.2 Background 

 6.2.1 Modified Sample Entropy 

In this report, we use entropy to detect changes in time series. Entropy is defined as the 

average amount of information contained in each message received. Message refers to an event, 

sample, or character drawn from a distribution or data stream.  Entropy is also used to measure 

chaos in the data signal. The fundamental algorithm for entropy was derived from Shannon’s 
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theory published in 1948 (Shannon, 1948) by Andrei Kolmogorov in 1963 (Kolmogorov, 1998). 

The base of the algorithm was the calculation of probabilities of chances that a particular message 

was actually transmitted, and the entropy of the message system was a measure of the average 

amount of information in a message.  

 Several proposed methods that use heuristics to compute approximate entropy for finite 

input data have been derived from Kolmogorov’s algorithm. The two most common modifications 

are Approximate Entropy and Sample Entropy (SampEn) (Grassberger, 1988; Grassberger 

&Procaccia, 1983). Because studies have shown SampEn to be more accurate when data length 

varies, (Grassberger, 1988; Grassberger &Procaccia, 1983) it was used in this application. 

  Different modifications of SampEn were reviewed by Humeau-Heurtier (2015). One 

modification, Modified Sample Entropy (mSampEn) by Xie et al (2010), showed more promise 

for stable performance and precision in our simulation studies. However, Sample Entropy typically 

does not have an output when the sample size is small (less than 100 samples; a sample size of 20 

has been suggested to obtain readings. In addition, tolerance r cannot be very small: the entropy 

gives outputs until r = 0.2 if the sample size is larger than 200 observations, but it does not provide 

outputs below that value of r. If the sample size is 100–200, tolerance must be approximately 0.6* 

standard deviation. Both of these shortcomings occur because the process in Sample Entropy 

contains unit step function. When the algorithm compares the data points, it provides an output of 

1 (if the data point is less than the threshold) or 0 (if the data point is larger than the threshold). 

This function has a strict distinction for membership and also is not continuous. Therefore, Xie et 

al (2010) proposed an alternative function, the Modified Sample Entropy algorithm, to be used 

instead of the Heaviside function. They proposed the use of the fuzzy membership function in 

order to represent the similarity degree between two data points.  
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Calculation of Modified Sample Entropy requires the following steps. For N points 

normalized time series {𝑢(𝑖): 1 ≤ 𝑖 ≤ 𝑁}, the vector sequence takes a form similar to the 

definition of SampEn: 

 𝑋௜
௠ =  (𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚 − 1)) − 𝑢0(𝑖)        1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1 

 

(20) 

𝑋௜
௠ is generalized by removing a baseline 

 
𝑢0(𝑖) =  

1

𝑚
෍ 𝑢(𝑖 + 𝑗)

௠ିଵ

௝ୀ଴

 

 

(21) 

Then distance 𝑑௜௝
௠ between vectors 𝑋௜

௠ and 𝑋௝
௠ is defined as  

𝑑௜௝
௠ = 𝑑ൣ𝑋௜

௠, 𝑋௝
௠൧ = max|𝑢(𝑖 + 𝑘) − 𝑢0(𝑖) − (𝑢(𝑗 + 𝑘) − 𝑢0(𝑗))|, 𝑘 ∈ (0, 𝑚 − 1) , 𝑖 ≠ 𝑗      

(22) 

The similarity degree 𝐷௜௝
௠ between 𝑋௜

௠ and 𝑋௝
௠ is determined by a fuzzy membership 

function  

 𝐷௜௝
௠ = 𝑢(𝑑௜௝

௠, 𝑟) 

 

(23) 

A fuzzy membership function such as Gaussian or Sigmoid bell shape can be used if the 

function is continuous in order to prevent the similarity from changing abruptly. The function must 

also be convex, ensuring that self-similarity is maximized. In this report we use the following 

Sigmoid function: 

 𝑢൫𝑑௜,௝
௠ , 𝑟൯ =

1

1 + exp ቆ
𝑑௜௝

௠ + 0.5

𝑟
ቇ

 (24) 
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where 𝑢൫𝑑௜,௝
௠ , 𝑟൯ is the similarity output, 𝑑௜௝

௠ is the distance between any xi and xj, and r is 

the threshold. 

Similar to the definition of SampEn, for each vector 𝑋௜
௠, averaging all similarity degrees 

of its neighboring vectors  𝑋௝
௠ results in 

 
𝐶௥

௠(𝑖) =  
1

𝑁 − 𝑚 − 1
෍ 𝐷௜௝

௠

ேି௠

௝ୀଵ,௜ஷ௝

 

 

(25) 

The cumulative probability is 

 
𝐶௥

௠ =  
1

𝑁 − 𝑚
 ෍ 𝐶௥

௠(𝑖)

ேି௠

௜ୀଵ

 

 

(26) 

Then (m+1)-dimensional embedding vectors 𝑋௜
௠ାଵ =  {𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚)} are 

formed, and 𝐶௥
௠ାଵ is defined using 𝑋௜

௠ାଵ and steps described previously. For finite datasets, 

mSampEn can be estimated from 

 
𝑚𝑆𝑎𝑚𝑝𝐸𝑛 = −𝑙𝑛 

𝐶௥
௠ାଵ

𝐶௥
௠  

(28) 

 

 6.2.2 Adjusted Modified Sample Entropy 

SampEn can detect variance change by counting the number of data points that fall within 

the threshold of the value r. This counting mechanism, which is based on the overall variance of a 

time series, enables SampEn to handle variance-change detection. Unfortunately, however, the 

algorithm does not contain an element to react to mean-level shifts. Therefore, Adjusted Sample 

Entropy (AdSEn) was derived (Kong et al, 2015) in which the core component is the 
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transformation of original time series based on input in order to synthesize the mean shift and 

variance changes. The mean shift in a sample dataset must be converted into variance change via 

input transformation. The algorithm transforms the original time series of data into a new time 

series by multiplying the series as follows: 

 𝒚𝒊𝒋 = 𝒙𝒊𝒋 ൬ฬ
𝒙ഥ𝒊 − 𝝁

𝝈
ฬ + 𝟏൰ 

 

(29) 

where  𝒙ഥ𝒊 is the estimated mean of ith segment set, 𝝁 is the desired mean of the variable of 

interest, and 𝝈 is the desired standard deviation of the variable of interest. Simulations for this 

study showed that similar transformation as described above can be applied to Modified Sample 

Entropy to achieve mean shift and detect variance change detection.  

 6.2.3 Visualization 

The visualization is done by using two concepts: trellis display and star glyphs 

 6.2.3.1 Trellis Display  

A trellis display is a lattice-like arrangement that organizes plots into rows and columns on 

multiple pages. Plots on the different fields can be histogram, kernel density plot, theoretical 

quantile plot, two-sample quantile plot, strip chart, bar plot, scatterplot, or parallel coordinate plot 

(Sarkar, 2008). Each panel contains a subset of the data graphed by the plots.  

 6.2.3.2 Star Glyphs 

Star glyphs (also called star plots) display a multivariate dataset in a geometrical shape, 

such as a hexagon for six-dimensional data. In a star glyph, each graphic represents a vector of 

observations at a particular time. A star contains n spikes (e.g., n = 6) that evenly radiate from the 

center of the graph. The angle between each spike is equal to 360/n degree, and each spike has a 
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value with the same proportion of the variable for that observation, meaning that observations must 

be standardized before stars are constructed. Line segments usually connect the end of the point of 

each spike to neighboring spikes. In this study, each spike on a star glyph represented the ratio of 

each segment’s measure of AdmSEn or mSampEn to the template measure. 

The lattice-like arrangement of the trellis display was applied to the proposed multivariate 

visualization tool in this study. The block assignment was replaced by the time sequence, and the 

star glyphs were adopted to represent each multivariate observation on panels. 

 6.3. Proposed Multivariate Adjusted Modified Sample Entropy (AdmSEn) 
Visualization Graphs 

 

This section presents the proposed visualization tool. The proposed method, which 

integrates multiple AdmSEn outcomes into one glyph, is a visualization tool for a decision support 

system that encounters multivariate quality characteristics. Glyphs plotted over time are organized 

in panels of a trellis, and every column contains one time series glyph. Each vertex in the glyph 

represents a response that shares equal space around 360 degrees. The corresponding vertex would 

either grow or shrink in length depending on the output of the algorithm. The following steps 

describe the main procedure of the proposed AdmSEn multivariable glyphs. 

Step 1: Import data from collection devices. 

Step 2: If a known target and control standard deviation are present, use the existing μ and 

σ for each variable. Otherwise, select a reference sub dataset that is representative of the process 

under study and calculate the sample mean and sigma in the transformation function.  

Step 3: Input transformation: For each variable transform the original vector observations 

x into y, that is,  
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 𝒚𝒊𝒋 = 𝒙𝒊𝒋 ൬ฬ
𝒙ഥ𝒊 − 𝝁

𝝈
ฬ + 𝟏൰ 

 

(30) 

Step 4: Set manipulation parameters for mSampEn. Users can define parameters such as 

threshold r, length m of comparing vector, delay 𝜏, and select multiscale resolution k, which 

determines how many subsets will be broken into in the original dataset. Threshold r is the 

selection distance between vectors, m is the dimension of the vector, and 𝜏 is determined according 

to the selected vectors (𝜏 is recommended to be 1 for best use of full-size dataset), and scale k is 

the number of slices resulting from segmentation. If the specific parameters are unknown, a user 

must define scale number k; the rest of the parameters will be set as r = 0.6, m = 2, and 𝜏 = 1 as 

default while k = 2 as the minimal number for two segments on the dataset. 

Step 5: Graph the outcomes as glyphs for results. 

The size of the spike is the value of the output. With a stable and in-control process, a glyph 

on the trellis panel should be presented as a circle (when the number of spikes is more than 6), 

because the entropy or the amount of new data is less than thresholds determined in a separate 

simulation study that is waiting for publishing. Variable names are plotted in red or green 

depending on if the threshold has been crossed or not, respectively, in order to identify the possible 

out-of-control variable. If a spike shrinks toward the center of the circle, the process is in control 

because the entropy is smaller in value. However, if the spike expands toward the outside rim of 

the glyph, the variable is demonstrating a higher output of entropy. High entropy on the 

transformed vector y means that the segment under consideration has changed due to mean shifts 

or variation changes. High entropy on the original data vector x indicates that only the variance 

has changed. 
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 6.4. Method Demonstration  

Ten multivariate processes are considered in this section to demonstrate the proposed 

method. Each variable contained 1200 observations. This section also explores various mean shift 

and variance change combinations. The dataset was generated from multivariate normal 

distributions. The proposed AdmSEn algorithm was used on the transformed dataset y, while the 

mSampEn algorithm was used on the raw dataset x. The code for SampEn was obtained from R 

computer language package pracma, and the AdSEn code was coded by Zhang (2015). Both codes 

were modified to fit the mSampEn algorithm. Visualization codes in R computer language were 

adopted from Vaughn (2013) and modified to fit the needs of this work.  

Table 26 shows a simulated time series when the process is in control. Four segments were 

generated for each dataset of 1200 observations. Entropy values were then computed for each 

segment using AdmSEn and mSampEn algorithms. The first row in Figure 31 contains entropy 

values for the AdmSEn performed on the transformed dataset y; the second row shows entropy 

values for the mSampEn on the original dataset x. 

Table 26. Process parameters for in-control circumstances 

Segment (i) 1 2 3 4 

Samples  1-300 301-600 601-900 901-1200 

Mean 0 0 0 0 

Standard deviation 1 1 1 1 
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Figure 30. Multivariate visualization glyphs when the process is in conrol 

As shown in Figure 31, all outcomes are under the threshold and all the variables are green, 

leading to the assumption that all processes were under control. In addition, the shapes representing 

the outputs are similar in the figure, so no deviation from the mean or standard deviation was 

detected since the simulated data was set up to have characteristics of no change in mean and 

variation.  

Next, the conditions when either process means or variation levels or both processes mean 

and variation levels changed are analyzed. The proposed framework identified these changes and 

variables that contribute to changes.  

Table 27 shows the cases in the second visualization demonstration. The first segment 

consisted of 300 observations that were simulated as an in-control dataset. The rest of the segments 

represented cases when process parameters of either mean or variance changed. The first segment 

was used as a template, the second segment represented mean change, the third segment 

represented variance change, and the fourth segment contained mean shift and variance change.  
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Table 27. Process parameters for out-of-control circumstances 

 

Segment (i) 1 2 3 4 

Samples  1-300 301-600 601-900 901-1200 

Mean 0 1 0 1 

Standard deviation 1 1 1.5 1.5 

 

 

Figure 31. Multivariable visualization glyphs when the process has out-of-control signals 

As shown in Figure 32, the AdmSEn algorithm on the top row detected changes in mean 

and variance, while mSampEn on the bottom row detected only variance changes. The figure also 

clearly demonstrates which variable was out of control (colored red on the graphs). The change 

from segment 1 to segment 2 (labeled as 2) was mean shift because the shape of the entropy outputs 

became much larger on the top row, but the shape in the bottom row remained constant. The change 
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from segment 1 to segment 3 (labels as 3) was variance change because shape changes were 

identified by AdmSEn and mSampEn: the sizes of the shape changes were approximately the same 

for the top row and the bottom row. The change from segment 1 to 4 (labeled as 4) was a 

combination of mean shifts and variance changes. The magnitude of shape change on the top row 

was much bigger than the shape changes on the bottom, indicating that mean shifts and variance 

changes occurred.  

 6.5. Conclusions and Future Studies 

This study provided a visualization tool to help analyze time-series data in order to increase 

effective, quality-related decision making when the number of dimensions is large (i.e., up to 50 

variables). The tool helps users perceive mean shifts and variance changes and identify which out-

of-control variable(s) are responsible for the shifts or changes.  

 Future research should consider that because this tool assumes that variables have no 

correlation, the proposed star-glyph does not clearly indicate if the variable measured at one station 

is directly correlated with a variable measured at another station. Also, in this study, the highest 

number of dimensions explored was 50. The visualization tool should be expanded to 

accommodate more dimensions without compromising the tool’s effectiveness. For example, the 

angles between spikes for 100 variables in this study were 3.6 degrees, but the more spikes within 

the circle, the more clutter the spikes cause. Factories may want to simultaneously monitor more 

than 100 sensors or variables, thereby requiring additional studies.  
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Chapter 7 -  Conclusions 

 7.1 Summary 

The big data applications have widened the possibilities for many lines of business. The 

proliferation of sensors and the expansion of data storage capability has enabled increasing 

amounts of manufacturing data to be collected. This modern phenomenon, coupled with the 

complexity in the manufacturing processes, has revealed shortcomings of traditional quality 

monitoring methods. First, the traditional methods rely on taking a sample from the overall pool 

of readings and base the recommendations on that sample. The reason for sampling has historically 

been the high cost of gathering and analyzing the data. The result is that the data is usually scarce, 

the collection rate is low and the frequency of data points is also low. The second issue is that the 

traditional methods more often than not monitor only the quality characteristics of products with 

the assumption that if these are in control, the process parameters are also in control as well. The 

third problem is that the traditional methods only look at characteristics at the level on which they 

occur, assuming independence from previous steps. The opportunities offered by big data analytics 

can change that.  

Since current or historic data is stored in the cloud, the proposed big data quality monitoring 

framework can analyze each reading on various scales. The proposed system-wide monitoring 

approach called Technique of Uniformally Formatted Frequencies (TUFF) reduces the chance that 

hidden or small issues are overlooked. It also allows monitoring of all the parameters on both 

product and process characteristics found in the factory, so the issues related to these 

characteristics could be detected before they emerge as major problems. By monitoring the process 

parameters, the TUFF methods could help improve the preventive maintenance schedule, by 
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predicting the need for maintenance, which lowers costs. Thirdly, the TUFF methods look at the 

system in a comprehensive way in that they take into account the entire production steps and 

identify hidden correlations. Additionally, the dissertation investigates the application of the 

proposed system-wide monitoring method into Six Sigma continuous improvement methodology 

of DMAIC (Define, Measure, Analyze, Improve and Control). 

In the second chapter of the dissertation, a novel method for profile monitoring was 

proposed. The method uses modified sample entropy to generate a single value or, in case of 

segmenting the profile, set of values that can be used to characterize the profile. When these values 

are compared to each other, the changes can be detected. The simulation study showed that the 

proposed method is capable of detecting the changes in the underlying model and in the variation 

along the profile.  

The third chapter of the dissertation first identified the requirements for system-wide 

monitoring method. Secondly, a novel statistical system monitoring method called TUFF for 

continuous variables was proposed. The method relies on the ideas from the pre-control chart to 

classify measurements into red, yellow, green and white classes which are further used to 

characterize all the machines using a group control chart idea of the worst case. Over the user-

specified period (e.g. hour, day, or week), a frequency table for each color class in the system is 

generated in the form of traffic lights. A comparison of traffic lights from the current period and 

historical “good” periods would show if the system has changed or not. A step-by-step example 

was provided to show how the method could be implemented in a big data environment. Additional 

simulation studies were conducted to examine the sensitivity of the method and the thresholds that 

decision-makers can use.  
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In  Chapter 4  a novel method is proposed to monitor profile data in the TUFF framework. 

The method transforms the profile data into the same color frequency table used in the continuous 

variable method by characterizing the profile with values (for example the modified sample 

entropy from the first section) and classifying these values into color classes using pre-control 

chart idea. Simulation studies were carried out to identify the characteristics and study the 

sensitivity of the method. 

In Chapter 5 the TUFF method is integrated into the Six Sigma continuous improvement 

methods specifically one of the more popular Six Sigma methods of DMAIC (Define, Measure, 

Analyze, Improve, Control). Since all or almost all variables in a manufacturing setting are 

monitored, the specific signal for improvement could come from data rather than initiated by a Six 

Sigma team. Therefore, the redefined method reorders the steps into Measure, Define, Analyze, 

Improve, Control (MDAIC). In addition, the statistical system monitoring methods for continuous, 

profile and attribute data were also integrated to form a comprehensive TUFF method using the 

traffic lights from the previous chapters. A big data implementation solution using MapReduce 

algorithms was proposed to detect changes and to identify time and space where the changes occur. 

In Chapter 6 a novel visualization tool based on star glyph is proposed to examine a large 

number of variables simultaneously. The statistics displayed are the modified sample entropy. 

Visualization helps to identify possible changes. The proposed method works in different settings. 

The main contributions of this dissertation are: 

 The redefinition of Six Sigma method of DMAIC to MDAIC where the unit in need 

of improvement is identified automatically by data  

o A solution for the method to be used in big data environment based on the 

MapReduce algorithm is proposed 
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o Simulation studies that explore the sensitivity and other characteristics of 

the proposed method are presented 

 A comprehensive monitoring method (TUFF) that merges continuous variable, 

profile variable and attribute variable data to detect changes 

o The method monitors both quality characteristics and process parameters  

o The method takes into account all the readings 

This proposed framework re-defines the way quality control is implemented in the modern-

day manufacturing industry. The results from this research have the potential to rejuvenate data 

processing, reduce the production of non-conforming products, and increase the efficiency of the 

facility inundated with abundant data. Further, this research can be seen as the next step in the 

fourth industrial revolution (Schwab, 2016) as a method to monitor smart factories. 

 7.2 Future Studies 

For future studies, the focus could be shifted to supply chain monitoring, where there would 

be additional variables that are not necessarily measured already and that might be more difficult 

to obtain. The second focus could be to investigate how the method performs in different 

distribution cases. In this dissertation, the variables had either normal distribution or binomial 

distribution. It would be beneficial to learn if other distributions have similar detection rates. The 

third focus could be on improving the sensitivity of the method by different classification or 

summarization algorithms. 

The TUFF method has been presented in this dissertation to work on static databases of 

production data. However, since every day new sets of data points are generated, the method 
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should be capable of working with data streams. The problem would be how to update the results 

when new readings become available 

It would also be interesting to see if weighing variables differently based on their 

importance toward the process would be beneficial in monitoring the system. The more important 

the variable is, the higher the weight it should be assigned. Similarly, if the quality characteristics 

and process parameters are monitored separately, the proposed framework may provide more 

insights. The future research could also investigate how to use the visualization tool from Chapter 

6 within the proposed method. 
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