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Abstract

Accurate and realistic assessment of the performance of columns in general, and those in
critical locations that may cause progressive failure of the entire structure, in particular, is
significantly important. This performance is affected by the load history, pattern, and intensity.
Current design code does not consider the effect of load pattern on the load and displacement
capacity of columns. A primary research sponsored by Kansas Department of Transportation
(KDOT) was conducted as the initial step of the present study (No. K-TRAN: KSU-11-5). The
main goals of the KDOT project were: (1) investigation of new KDOT requirements in terms of
the column design procedure and detailing and their consistency with AASHTO provisions; (2)
verification of the KDOT assumptions for the plastic hinge regions for columns and bridge piers,
(3) provide assessment of the load capacity of the existing columns and bridge piers in the light
of the new specifications and using the new load demand as in the new provisions; and finally
recommendations for columns and bridge piers that do not meet the new requirements. A
conclusion was drawn that there is a need for conducting more studies on the realistic
performance of Reinforced Concrete (RC) sections and columns. The studies should have
included performance of RC members under various loading scenarios, assessment of columns
capacity considering confinement effect provided by lateral reinforcement, and investigation on
performance of various monotonic and cyclic material models applied to simulate the realistic
performance.

In the study reported here, monotonic material models, cyclic rules, and plastic hinge
models have been utilized in a fiber-based analytical procedure, and validated against
experimental data to simulate behavior of RC section under various loading scenarios.

Comparison of the analytical predictions and experimental data, through moment—curvature and



force—deflection analyses, confirmed the accuracy and validity of the analytical algorithm and
models. The performance of RC columns under various axial and lateral loading patterns was
assessed in terms of flexural strength and energy dissipation.

FRP application to enhance ductility, flexural strength, and shear capacity of existing
deficient concrete structures has increased during the last two decades. Therefore, various
aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of
concrete members confined and reinforced by FRP, have been studied in many research
programs, suggesting various monotonic models for concrete confined by only FRP. Exploration
of existing model performances for predicting the behavior of several tested specimens shows a
need for improvement of existing algorithms. The model proposed in the current study is a step
in this direction. FRP wrapping is typically used to confine existing concrete members
containing conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral
steel reinforcement in analytical studies has been uniquely considered in various models. Most
models consider confinement due to FRP and ignore the effect of conventional lateral steel
reinforcement. Exploration of existing model performances for predicting the behavior of several
tested specimens confined by both FRP and lateral steel shows a need for improvement of
existing algorithms. A model was proposed in this study which is a step in this direction.
Performance of the proposed model and four other representative models from literature was
compared to experimental data from four independent databases.

In order to fulfill the need for a simple, yet accurate analytical tool for performance
assessment of RC columns, a computer program was developed that uses relatively simple
analytical methods and material models to accurately predict the performance of RC structures

under various loading conditions, including cyclic lateral displacement under a non-



proportionally variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007).
However, it was limited to circular, rectangular, and hollow circular/rectangular sections and
uniaxial lateral curvature or displacement.

In this regards, a computer program was developed which is the next generation of the
aforesaid program with additional functionality and options. Triangulation of the section allows
opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined
with any sequence of axial load provides opportunity to analyze the performance of a reinforced
concrete column under any load and displacement path. Use of unconventional reinforcement,

such as FRP, in lateral as well as longitudinal direction is another feature of this application.



EFFECT OF LOAD PATTERN AND HISTORY ON PERFORMANCE OF REINFORCED
CONCRETE COLUMNS

by

FATEMEH SHIRMOHAMMADI

BS, Isfahan University of Technology, 2007
MS, Isfahan University of Technology, 2010

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Civil Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015

Approved by:

Major Professor
Prof. Asad Esmaeily



Copyright

FATEMEH SHIRMOHAMMADI

2015



Abstract

Accurate and realistic assessment of the performance of columns in general, and those in
critical locations that may cause progressive failure of the entire structure, in particular, is
significantly important. This performance is affected by the load history, pattern, and intensity.
Current design code does not consider the effect of load pattern on the load and displacement
capacity of columns. A primary research sponsored by Kansas Department of Transportation
(KDOT) was conducted as the initial step of the present study (No. K-TRAN: KSU-11-5). The
main goals of the KDOT project were: (1) investigation of new KDOT requirements in terms of
the column design procedure and detailing and their consistency with AASHTO provisions; (2)
verification of the KDOT assumptions for the plastic hinge regions for columns and bridge piers,
(3) provide assessment of the load capacity of the existing columns and bridge piers in the light
of the new specifications and using the new load demand as in the new provisions; and finally
recommendations for columns and bridge piers that do not meet the new requirements. A
conclusion was drawn that there is a need for conducting more studies on the realistic
performance of Reinforced Concrete (RC) sections and columns. The studies should have
included performance of RC members under various loading scenarios, assessment of columns
capacity considering confinement effect provided by lateral reinforcement, and investigation on
performance of various monotonic and cyclic material models applied to simulate the realistic
performance.

In the study reported here, monotonic material models, cyclic rules, and plastic hinge
models have been utilized in a fiber-based analytical procedure, and validated against
experimental data to simulate behavior of RC section under various loading scenarios.

Comparison of the analytical predictions and experimental data, through moment—curvature and



force—deflection analyses, confirmed the accuracy and validity of the analytical algorithm and
models. The performance of RC columns under various axial and lateral loading patterns was
assessed in terms of flexural strength and energy dissipation.

FRP application to enhance ductility, flexural strength, and shear capacity of existing
deficient concrete structures has increased during the last two decades. Therefore, various
aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of
concrete members confined and reinforced by FRP, have been studied in many research
programs, suggesting various monotonic models for concrete confined by only FRP. Exploration
of existing model performances for predicting the behavior of several tested specimens shows a
need for improvement of existing algorithms. The model proposed in the current study is a step
in this direction. FRP wrapping is typically used to confine existing concrete members
containing conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral
steel reinforcement in analytical studies has been uniquely considered in various models. Most
models consider confinement due to FRP and ignore the effect of conventional lateral steel
reinforcement. Exploration of existing model performances for predicting the behavior of several
tested specimens confined by both FRP and lateral steel shows a need for improvement of
existing algorithms. A model was proposed in this study which is a step in this direction.
Performance of the proposed model and four other representative models from literature was
compared to experimental data from four independent databases.

In order to fulfill the need for a simple, yet accurate analytical tool for performance
assessment of RC columns, a computer program was developed that uses relatively simple
analytical methods and material models to accurately predict the performance of RC structures

under various loading conditions, including cyclic lateral displacement under a non-



proportionally variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007).
However, it was limited to circular, rectangular, and hollow circular/rectangular sections and
uniaxial lateral curvature or displacement.

In this regards, a computer program was developed which is the next generation of the
aforesaid program with additional functionality and options. Triangulation of the section allows
opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined
with any sequence of axial load provides opportunity to analyze the performance of a reinforced
concrete column under any load and displacement path. Use of unconventional reinforcement,

such as FRP, in lateral as well as longitudinal direction is another feature of this application.
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Chapter 1 - Introduction

1-1 Introduction

Experimental and analytical studies have shown significant effects of material models,
including monotonic and cyclic (hysteresis) rules, assumption on curvature distribution along a
structural member, loading pattern, and the analytical strength evaluation procedure, on
performance assessment accuracy of reinforced concrete (RC) columns. A primary research,
sponsored by KDOT was conducted as the initial step of the present study (No. K-TRAN: KSU-
11-5). A conclusion was drawn that there is a need for conducting more studies on the realistic
performance of Reinforced Concrete (RC) sections and columns. The studies should have
included performance of RC members under various loading scenarios, assessment of columns
capacity considering confinement effect provided by lateral reinforcement, and investigation on
performance of various monotonic and cyclic material models applied to simulate the realistic
performance.

RC member response under various loading scenarios is a research area that has not been
sufficiently addressed compared to more traditional areas in civil engineering. Loading history,
pattern, intensity, and linear combination of loads, specifically lateral and axial loads in a
column, can significantly affect RC members’ behavior. The loading pattern of combined axial
load and lateral force affects flexural and shear strength, ductility, stiffness, and energy
dissipation of RC members. When exposed to dynamic excitation of any source, such as wind or
earthquake, columns are subjected to a loading pattern in combined but non-proportional in
lateral and axial directions, especially in earthquake excitations in near-fault regions with high
accelerations of vertical and horizontal ground motions, large velocity pulses, directional effects,

repetitive pulse effects, and aftershocks.



A majority of experimental research related to various parameters that affect RC member
behavior has been limited to monotonic or cyclic lateral displacement (force) on columns under
no or constant axial load (Jiang and Saiidi 1990, Jaradat et al. 1998, Kowalsky et al. 1999,
Ridrigues et al. 2013). In an early works, the importance of concurrent amounts of axial load and
bending moment was emphasized for dynamic analysis of coupled shear walls (Saatcioglu et al.
1983). A limited number of researchers, such as Gilbertsen and Moehle (1980) and Abrams
(1987), considered axial load variation in RC column behavior. Abrams investigated the
influence of proportionally variable axial force on flexural behavior of RC columns. He
recommended additional analytical and experimental studies for a good understanding of the
influence of these variations on flexural behavior of RC columns. Kreger and Linbeck (1986)
considered uncoupled variations of axial and lateral force by experimentally testing a single
column. They demonstrated that column behavior depends strongly on axial force history.
Sadeghvaziri and Foutch (1991) analytically studied RC column behavior under
nonproportionally varying axial load. They argued that “non-proportional variations in axial
load are not just another parameter that can be considered within the framework of current
approaches, but that its effects are so significant that new methodology and models are needed
to assess the inelastic cyclic response of RC columns under uncoupled fluctuations in axial and
lateral loads.” They concluded that axial load history significantly affects moment-curvature and
axial load-flexural moment interaction curve (Saadeghvaziri 1996).

Ono et al. (1996) observed a strange failure mode in their experimental studies which
they concluded may have been caused by vertical motion. Alaghebandian et al. (1998) concluded
that fluctuation in axial force can cause failure, especially in low-rise buildings and interior

columns. Elanashai utilized inelastic analysis of RC columns and reached the same conclusion as



Alaghebandian et al. (Papazoglou and Elnashai 1996; Ghobarah and Elnashai 1998). Ranzo et al.
(1999) conducted nonlinear time-history analysis on columns and discovered that seismic codes
must provide special recommendation in order to consider fluctuation in axial force due to
vertical acceleration of ground motions.

During an earthquake, the majority of buildings are subjected to biaxial lateral earthquake
motion in addition to vertical component of earthquake. Biaxial motion is induced in columns of
an irregular building even against one-directional earthquake motions. Experimental studies and
investigations of damaged structures after earthquakes have proven that damage caused by bi-
directional earthquake motions is different and, in most cases, more extensive than damages
caused by uniaxial earthquake motions. When cyclic seismic loading in one direction is strong
enough to push a RC section into its nonlinear range, it consequently affects stiffness in that
direction and the perpendicular direction. The coupling effect of two directions significantly
reduces overall seismic strength of the column in some cases.

Since all methods related to seismic strength assessment of structures are based on
uniaxial experimental data, in recent years researchers have investigated methods to address the
biaxial effect of dynamic excitations such as earthquakes. Many experimental and analytical
studies have been conducted to investigate column behavior under biaxial cyclic loading. Most
analytical investigations utilize finite element modeling software such as Abaqus. Unfortunately,
available commercial software, such as Abaqus or OpenSees, are not the first choice of design
firms interested in assessing the real performance of existing or new RC structural members,
though, because the learning curves for these applications are very steep. However, this
assessment is critically important for existing structural members in relation to decisions to

retrofit or replace those members.



Experimental works conducted on concrete columns under axial forces and cyclic biaxial
lateral loading are presented in Qiu et al. (2002), Hsu et al. (2009), Chang (2010), Rodrigues et
al. (2012a), Rodrigues et al. (2012b), and Wang et al. (2013). In addition, analytical researches,
such as Sfakianakis (2002), Bonet et al. (2006), Charalampakis and Koumousis (2008), Pallares
et al. (2009), and Fossetti and Papia (2012), have studied the effect of axial force and biaxial
bending on composite section behavior as behavior relates to axial force and biaxial bending
moment interaction. Researchers also have attempted to model cyclic behavior of composite
columns under axial force and biaxial lateral forces (Lee et al. (2005), Liang (2008), and Liang

(2009))

1-2 Objectives

The primary objective of this research is to model and assess the behavior of concrete
columns under various cyclic and monotonic loading scenarios. To achieve this goal, the
following tasks must be completed:

1. Evaluate the performance of concrete columns confined by conventional lateral steel or
FRP under biaxial displacement paths and fluctuating axial force, benchmarked against
experimental data.

2. Evaluate the performance of RC columns in concrete structures located in near-fault
regions.

3. Assess various material monotonic models and cyclic rules for confined concrete,
unconfined concrete, Fiber Reinforced Polymer (FRP), and steel by extensively studying
and improving existing models or developing new models.

Develop a new model for concrete confined by FRP and steel tie/spiral.



4. Develop a new constitutive model for concrete confined by FRP and lateral steel
(tie/spiral), or FRP and lateral steel.

5. Assess and improve existing plastic hinge models or develop a new model if necessary.

6. Develop window-based software to model the performance of concrete columns under
various monotonic and cyclic loading scenarios in uniaxial and biaxial directions with a
smooth learning curve and user-friendly interface.

1-3 Scopes

This dissertation includes five chapters and an appendix that detail the performance of

RC structural members with various material types and arrangements under various loading

scenarios.

Chapter 1 introduces the goals of this study and contents of the chapters.

Chapter 2 reviews the literature through three subjects: (1) effect of lateral
displacement/loading pattern on performance of RC column; (2) effect of axial loading
pattern on performance of RC column; and (3) material (steel, plain concrete, confined
concrete by lateral steel, FRP warp, and both lateral steel and FRP wrap) and plastic
hinge models.

Chapter 3 introduces the analytical algorithm, material and plastic hinge models which
were used in this study. In addition, a constitutive stress-strain relationship for FRP-steel-
confined concrete is presented. Performance of the proposed stress-strain model is
assessed through experimental data and analytical analyzes.

Chapter 4 presents parametric studies conducted to investigate the effect of loading

pattern, including lateral and axial, on performance of RC columns.



e Chapter 5 presents summary, conclusion and recommendations.

e Appendix A presents a help file for the developed computer application.



Chapter 2 - Literature Review

2-1 Introduction

This chapter reviews literature in three different topics; effect of lateral
displacement/loading pattern on performance of RC columns, effect of axial loading pattern on

performance of RC columns and material (monotonic and cyclic) and plastic hinge models.

2-2 Effect of Lateral Displacement/Loading Pattern on Performance of RC

Members

A comprehensive review of studies about effect of lateral displacement/loading pattern is

presented, chronologically, as follows.

2-2-1 Kim and Lee (2000)

Failure of brittle material such as concrete demonstrates two major mechanisms: (a)
uncracked condition and (b) cracked condition. In the uncracked condition, applied axial force
and bending moment do not have any coupling effect. However, in the cracked condition, the
axial force may affect curvature about the bending axis and the bending moment may influence
the axial strain. The axial force and bending about the other principal axis may affect the
curvature about each principal axis when the section is under axial force and bidirectional
bending moment and stress is beyond the elastic range.

Kim and Lee proposed a numerical model to assess behavior of RC columns under axial
and biaxial bending moments. To demonstrate validity of analytical results, they conducted a set
of experimental tests in which they tested a total of 16 tied RC columns with square and

rectangular cross section. Eccentricity of the axial load for all tests was 40 mm. The angle



between the principal axis and direction of eccentricity was 0, 30, and 45 for columns with
square cross section and 0, 30, 45, 60, and 90 for columns with rectangular cross section.

Fafitis and Shah’s (1985) model and Vebo and Ghali’s (1977) stress-strain model were
used to model behavior for concrete in compression and tension, respectively, in conjunction
with Ottor and Naaman’s (1989) cyclic stress-strain model. Stress-strain behavior of reinforcing
steel bars was simulated using elastic-perfectly plastic model in conjunction with a linear cyclic
model with slope equal to modulus elasticity of the steel material. Analytical results were in
good agreement with experimental data. Comparisons between moment magnification factor
(using the moment magnification factor to consider the slenderness effect of columns) predicted
by the proposed numerical method and the American Concrete Institute (ACI) method revealed

that the ACI moment magnification factor was conservative.

2-2-2 Sfakianakis (2002)

Sfakianakis used an alternative fiber model with computer graphics as a computational
tool to calculate stress integration. The developed model was employed to analyze conventional
reinforced concrete section as well as members repaired by jacketing and steel-concrete
composite sections under bidirectional bending and axial force. Due to using no iteration,
Sfakianakis’ method has the benefit of convergence in all cases. In order to prove the validity
and functionalities of the developed method, four representative numerical examples were
discussed in his work. The following assumptions were included in the proposed method: (1)
Based on Bernoulli-Euler assumption, plane sections remain plane after deformation, (2) Elastic-
perfectly plastic stress-strain model is used to predict steel bar behavior, (3) Tensile strength of

concrete is neglected, and (4) Monotonic behavior of concrete is modeled using a stress-strain



model proposed by Tassios (1988) with parabolic initial ascending branch up to the concrete

strength, followed by a descending linear branch.

2-2-3 Qiu et al. (2002)

The coupling effect of two principal directions significantly decreases seismic resistance
of structures. Therefore, assessment of RC column behavior under biaxial loading is a primary
subject of current studies of RC structures. In order to investigate behavior of RC columns under
biaxial loading, Qiu et al. (2002) conducted an experimental study that included biaxial quasi-
static loading of seven RC columns. The strength and stiffness degradation, hysteretic energy
dissipation, and damage index of the seven columns were analyzed considering six loading
paths. According to test results, the conclusion was made that the column’s capacity under
biaxial bending differed significantly from the capacity of the column under uniaxial loading.
Accumulative energy dissipation of the column under biaxial bending was significantly higher
than the column under uniaxial loading. In addition, the plastic deformation capability of the
column under biaxial loading was much lower than the plastic deformation under uniaxial

loading.

2-2-4 Lejano (2007)

Most RC sections design charts apply to unidirectional bending of RC sections.
Utilization of Bresler’s (1960) Load Contour Method and Reciprocal Load Method allows design
charts to be used for bidirectional bending of RC columns. Lejano (2007) used a fiber model to
predict biaxial behavior of an RC section and to develop design charts for bidirectional bending.

In this fiber method, Bazant’s Endochoronic (1980) theory and Ciampi’s model (1982) were



used to simulate the behavior of concrete and steel fibers, respectively. However, this study was
limited to biaxial analysis of a square cross section with uniform and symmetrical reinforcement

distribution and the effect of slenderness was ignored.

2-2-5 Charalampakis and Koumousis (2008)

Charalampakis and Koumousis developed a generic fiber model algorithm to analyze an
RC section under biaxial bending and axial load. The developed fiber model can be used for any
arbitrary composite section. In their study, a prismatic beam with arbitrary cross section was
assumed, following the Bernoulli-Euler assumption in which the plane section remains plane and
perpendicular to the longitudinal axis of the beam. Using developed fiber model, Charalampakis
and Koumousis addressed the following problems in their study: (1) construction of moment-
curvature diagram, (2) construction of interaction curves and failure surface, and (3)
determination of the deformed cross section after loading.

Failure of a three-dimensional (3D) surface of a section can be produce using four
techniques: (1) conducting interaction curves with the bending moment ratio, (2) conducting load
contours with the level of axial force, (3) calculating stress resultant extending along an arbitrary
oriented straight line, and (4) conducting a chart of isogonic 3D curves, as used in
Charalampakis and Koumousis’s developed model. The stress-strain law of materials of a section
can be defined using any number and any combination of linear and cubic polynomial segments
in Charalampakis and Koumousis’s developed fiber model. Charalampakis and Koumousis
compared the calculated results of the developed fiber model were compared to results calculated

by Chen et al. (2001) for an arbitrary shape cross section with a circular hole.
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2-2-6 Papanikolaou (2012)

Papanikolaou developed a methodology to calculate the ultimate strength and moment-
curvature response of an arbitrary composite section under biaxial bending and axial load. Using
the presented methodology and arbitrary material laws, any composite section with unlimited
number of components and unconditionally shape complexity can be analyzed.

Papanikolaou categorized stress integration schemes into three main categories: (1) fiber
integration, (2) analytical integration using closed form functions, and (3) numerical integration
in a form of Gaussian sampling on a Green path integral. The third scheme was used in
Papanikolaou’s study due to lake of efficiency in the first two schemes. Application and validity
of the presented methodology were proven through moment-curvature analysis and interaction
curves of five composite sections, including the well-known composite section reported by Chen

et al. (2001).

2-2-7 Rodrigues et al. (2012)

In order to assess the behavior of RC columns under biaxial bending, Rodriques et al.
conducted an experimental study that included four types of full-scale quadrangular columns. A
total of 24 columns were tested under constant axial force and displacement controlled condition.
Six displacement paths were considered in their study, including uniaxial loading path about the
weak and strong axes of the section, quadrangular, expending square, expanding circular and
expending rhombus displacement paths. Three cycles were repeated in each level of
displacement. The global behavior of these RC columns and their energy dissipation and

damping capacity were discussed in their studies.
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Rodrigues et al. defined four branches in the force-deflection response of an RC column:
(1) pre-cracking response, (2) post-cracking response until the reinforcing steel yields, (3) post-
yield hardening zone, and (4) a softening phase. According to experimental results, biaxial
loading did not affect initial stiffness of the RC columns. Strength degradation in biaxial loading
was higher than the strength degradation in uniaxial loading, and ultimate ductility decreased in
columns under biaxial loading.

Rodrigues et al. studied the cumulative energy dissipation and individual cycle energy for
all tested columns. They concluded that biaxial cumulative energy dissipation was significantly
higher than uniaxial cumulative energy dissipation, but the summation of cumulative energy
dissipation about two principal axes was similar to the biaxial summation of cumulative energy
dissipation. The expanding circular path had maximum dissipated energy between applied
displacement paths and the quadrangular path had the least dissipated energy. Energy dissipated
of quadrangular path was less than the summation of dissipated energy about two principal axes.
In addition to the column’s geometry, the axial load level and number of cycle reputation
affected total energy dissipation.

According to experimental results, the displacement path significantly affected equivalent
viscous damping of the RC columns; however, the number of repetitive cycles did not affect
viscous damping. The quadrangular displacement path demonstrated the highest viscous
damping. Proposed expressions in literature for estimating viscous damping of RC structures
were validated against experimental data, and two simplified expressions were proposed to

calculate equivalent viscous damping of RC column under biaxial bending.
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2-2-8 Rodrigues et al. (2013)

Yield displacement differentiates behavior of an RC column in elastic and plastic
regimes, and various techniques in the literature have been proposed to calculate yield
displacement/curvature. In order to calculate yield displacement, Rodrigues et al. adopted the
procedure originally proposed by Park (1989) to be used in conjunction with the complete cyclic
response of the column.

According to experimental results achieved from a series of 24 columns under biaxial and
uniaxial cyclic loading, Rodrigues et al. concluded that: (1) Biaxial loading decreases maximum
strength of columns approximately 8% and 20% in the strong and weak direction of the columns,
respectively. However, biaxial loading does not affect initial stiffness. (2) Ultimate ductility of a
column under biaxial loading is significantly less than ultimate ductility of the column under
uniaxial loading . (3) Strength degradation is more pronounced in biaxial loading than uniaxial
loading. (4) Biaxial loading does not significantly affect stiffness degradation.

Finally, displacement-based performance limits were calculated using experimental data
and Part 3 of Eurocode (EC) 8 that accurately predicted drift demand of columns under uniaxial

loading compared to experimental results.

2-2-9 Dutta and Kunnath (2013)

Based on modern seismic design codes, structures should undergo elastic behavior under
minor earthquake and damage controlled avoiding collapse under severe earthquakes. However,
this design philosophy is only related to service ability and ultimate limit states. Many
experimental and analytical studies have been conducted to evaluate accurate seismic demands

for performance-based design. However, a majority of these studies considered seismic motion
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only in one principal direction. In the few studies that considered seismic motion in two
perpendicular principal directions, intensity of applied ground motion in one direction was small
compared to the other direction. In order to increase research of ground motion with similar
intensity in both principal directions, Dutta and Kunnath assessed story drift of single-story and
multi-story idealized systems under uniaxial and biaxial seismic motions. They proposed a
simple and reasonably accurate hysteretic model that considered 20 far-fault ground motions.
Based on results, they concluded that biaxial interaction may lead to increased drift demand.
However, because they used a lumped nonlinear model, calculated results may be slightly
overestimated. The period of single-story system increased under biaxial interaction, but the

same trend was not demonstrated in the multi-story system.

2-2-10 Bouchaboub and Samai (2013)

Bouchaboub and Samai used finite difference method to calculate the capacity of a
slender, high-strength RC column. The column in their study was subjected to bidirectional
bending and axial force, and the stress-strain model in the Federation International de la
Precontrainte (FIB) textbook was used to simulate behavior of concrete in compression. Tensile
strength of concrete was ignored. Steel behavior was assumed to be elastic-perfectly plastic. The
developed analytical method was validated by comparing calculated results and experimental

data for tests conducted by Olivier Germain and Espion (2005) and Pallares et al. (2000).

2-3 Effect of Axial Loading Pattern on Performance of RC Members

In this section a comprehensive review of studies about effect of axial loading pattern or

in other words fluctuating axial force is presented, chronologically, as follows.
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2-3-1 Saadeghvaziri and Foutch (1990)

Sadeghvaziri and Foutch were the first researchers to conduct analytical studies of RC
columns under non-proportional axial load and lateral force. The behavior of RC column under
lateral force and non-proportional axial loading was simulated using FEM. Based on analytical
results, Sadeghvaziri and Foutch concluded that non-proportional axial loading and lateral force
can cause an abnormal phenomena called “negative energy” in RC columns and that hysteretic
force-deflection curves are not of the Masing type. Negative energy was explained
bySaadeghvaziri and Foutch in light of axial deformation. The effect of phasing in applied axial
loading was also investigated; calculated results showed that hysteretic loops did not follow a

unique pattern as a result of phasing.

2-3-2 Saadeghvaziri and Foutch (1991)

As discussed by Saadeghvaziri and Foutch, considering the maximum vertical
acceleration less than horizontal one is the lack of provisions in the seismic design of the RC
structures including buildings and bridges. Based on information gathered by Saadeghvaziri and
Foutch, reports of some earthquakes indicated that the vertical acceleration of an earthquake is
large and the vertical acceleration can exceed the amount of the horizontal acceleration. In order
to assess the effect of seismic motion’s vertical component on behavior of highway bridges,
Saadeghvaziri and Foutch modeled bridge column and deck behavior using a 3-nodes element
and a set of beam elements, respectively. The developed analytical model was employed to
analyze several bridges under two major cases: considering horizontal motion and considering

uncoupled horizontal and vertical motions. Based on analytical results, Saadeghvaziri and Foutch
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concluded that hysteretic moment-curvature loops are unstable and asymmetric. Increased
applied compressive axial force caused the moment and shear in the column to increase,
consequently increasing the failure possibility in the column, foundation, and abutments.
However, increasing tensile axial force reduced the shear and the moment of the column,
possibly increasing the failure possibility of the column in shear. Sadeghvaziri and Foutch listed
other undesirable effects such as greater damage in plastic hinge or transition zone, increased
ductility demand, cracking of the entire cross section of RC column, possibility of buckling and
pullout of reinforcing steel bars, and increased load carried by the abutments. The effects of
variable and uncoupled axial and lateral forces were studied in the foundation, abutment, and
connections of bridges in Saadeghvaziri and Foutch studies. Detailed results for these portions of

bridges are presented in Saadeghvaziri and Foutch (1991).

2-3-3 Papazoglou and Elnashai (1996)

Papazoglu and Elnashai collected field evidence from three earthquakes in addition to
results from dynamic analysis considering vertical ground motion. They believed that results of
previous strong earthquakes underestimated the ratio of vertical-to-horizontal peak acceleration
for near-fault regions. Moreover, fluctuation of axial force was believed to potentially cause the
shear and flexural failure. They categorized all evidence into two main categories: filed evidence
and analytical evidence. Both categories included evidence from the buildings and bridges.

Based on field evidence, the vertical component of an earthquake influences shear
capacity of RC members (columns and shear wall) and creates the likely possibility of
compressive failure in vertical elements such as columns and walls. The vertical component of

an earthquake causes a uniform increase in the axial force of all columns of a story, considering a
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uniform distribution of axial stiffness. Because overturning effect does not significantly affect
interior column design, these columns are more vulnerable to compressive failure, such as
interior columns in the 3-story parking building located at California State University, Long
Beach, California. The buildings appear to be stiffer in vertical direction than horizontal
direction; therefore, their vertical period is shorter than the horizontal period. The vertical period
is not influenced greatly by lateral stiffness and building height. In the other words, during
vertical motion, a wide varieties of buildings experience identical dynamic amplification.

After providing various field evidences and analytical studies, Papazoglou and Elnashai
concluded that failure modes occur which cannot be explained properly considering only shear
and flexural capacities. They asserted that, in such failures, the effect of axial overstressing
provides more reasonable justification for observed damages. They also stated that, in addition to
compressive overstressing failure, the vertical component of an earthquake may cause shear and
flexural failure. The contribution of concrete in shear reduces when the section is under reduced

compression or mild tension.

2-3-4 Saadeghvaziri (1997)

Sadeghvaziri categorized variation of axial load with respect to lateral force/displacement
into two main categories: proportional and non-proportional. In the proportional category, the
axial load and lateral force/displacement reach their extreme values at the same time and they are
applied simultaneously. In the second category, axial load and lateral force/displacement are
uncoupled. The axial force-moment diagram was calculated with and without considering the
loading history. The flexural capacity of the section considering loading history in some level of

axial load was significantly less than the value calculated without considering loading history.
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Therefore, Saadeghvaziri suggested use of composite columns such as concrete-filled steel
tubular columns because uniform distribution of the reinforcement causes the effect of varying
axial load to be less pronounced. Otherwise, code-based axial force-moment diagrams should be
modified considering the worst case of the non-proportional axial load and lateral force. Using
an analytical model, a cantilever column was analyzed under proportional and non-proportional
varying axial load. Comparison of obtained results from these two cases showed that ductility
demand of the column increased significantly by considering non-proportional varying axial

loading.

2-3-5 Collier and Elnashai (2001)

Many design codes suggest use of a scaled spectral shape, originally derived for the
horizontal component of an earthquake to take care of the vertical component, meaning that
these design codes considered frequency contents of vertical and horizontal motions to be
identical, which is incorrect. Although S-waves cause horizontal motions, the vertical component
of an earthquake is associated with P-waves that have higher frequencies than S-waves. Because
of this lack of design codes, Collier and Elnashai developed a new procedure to calculate the
elastic and inelastic vertical vibration period considering vertical and horizontal motions. The
proposed procedure requires an engineering seismology and site-specific study. Using records of
past earthquakes, they concluded that the time interval between peak horizontal and peak vertical
accelerations increased when the distance from the earthquake source increased. The time
interval was influenced by earthquake magnitude, and for distances less than 5 km, peak vertical
and peak horizontal acceleration could occur coincidently. Utilization of a graph originally

developed by Elnashai and Papazouglou (1997) and knowledge regarding horizontal
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acceleration, distance, and magnitude from the earthquake source, allow vertical acceleration to
be specified. Vertical accelerations also can be calculated using the equation proposed originally
by Ambraseys and Simpsons (1996):

Log(a,) =—1.74+0.273x M, —0.954x log(r) +0.076 x S , +0.058x Sq 21)

where M, is earthquake magnitude and r*>=d*+4.7> and d is durance from the earthquake
source. Parameters s, and S, depend on the soil type: For rock, the parameters are equal to 0;

for stiff soil, s, is 1.0 and S is O; for soft soil, s, isOand sy is 1.0.
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Figure 2-1 Vertical-to-horizontal earthquake GPA ratio (Elanashi and Papazoglou,

1997)

Collier and Elnashai recommended a method for calculating force caused by the vertical

component of an earthquake using the vertical period and a vertical response spectrum. Based on
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the observed interaction, a procedure was proposed for the combination of forces due to vertical

and horizontal components of the earthquake.

2-3-6 Esmaeily and Xiao (2004)

Because of overturning moment effect, columns in tall buildings and multi-column bent
bridges are subjected to axial force proportional to lateral force under seismic or wind loading.
However, when the tall building or bridges are located in near-fault regions, axial force acts
proportional to lateral horizontal loading. Most studies conducted to assess the effect of seismic
loading of structural columns have used constant level of axial force or axial force proportional
to lateral loading despite considering complicated lateral loading patterns. In order to perform
more studies on seismic behavior of columns under non-proportional axial force and lateral
loading, Esmaeily and Xiao conducted a set of experimental tests in which they tested six large-
scale RC columns with circular cross section under constant and variable axial force and cyclic
and monotonic lateral loading. Based on recorded force-deflection and calculated moment-
curvature responses, they concluded that peak flexural strength and displacement capacity of
columns under constant level of axial force and cyclic lateral loading is similar to the flexural
strength and displacement capacity for monotonic pushover loading case. However, flexural
strength and displacement capacity of columns under variable axial force with identical
maximum and minimum values were completely different. In addition, the variation pattern of

axial force significantly affected column responses.
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2-3-7 Esmaeily and Xiao (2005)

In a companion paper, Esmaeily and Xiao (2005) simulated the behavior of RC columns
under variable axial force using a fiber-based model, and they modeled the monotonic behavior
of steel using their own proposed stress-strain model. Esmaeily and Xiao also developed a
multilinear model, explained in detail in Chapter 4, to simulate cyclic behavior of steel bars.
Stress-strain behavior of concrete fibers was modeled using a parabolic function in conjunction
with the nonlinear cyclic model proposed by Esmaiely and Xiao. Using rectangular fibers and
plastic hinge concept, force-deflection analysis of the circular section was modeled and
compared to experimental data. Analytical results were in good agreement with experimental

data.

2-3-8 Kim et al. (2011)

Kim et al. emphasized the importance of vertical peak acceleration and that vertical-to-
horizontal (V/H) acceleration ratio may exceed the value of two-thirds, as recommended by
design codes. In order to investigate the effect of the vertical component of an earthquake, Kim
et al. studied the effect of VV/H peak ground acceleration and the time interval between arrivals of
those peaks. During an earthquake, the vertical component of ground motions is caused by P-
waves, and S-waves cause horizontal ground movement. P-waves’ wavelength is shorter than S-
waves’ wavelength, or, in the other words the frequency content of P-waves is higher than S-
waves. Although energy content over the frequency range of P-waves is less than the S-waves,
the large amount of energy is concentrated in a narrow frequency range, causing large
amplifications in a short time. Kim et al. utilized the Pacific Earthquake Engineering Research

next-generation attenuation project database and other observations from the literature in order to
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considef V/H ratio limited to 2.0 and time interval limited to 5s in their analytical study. They
analyzed two bridges (Santa Monica Bridge and the Concept Design Example No. 4 of the
Federal Administration [FHWA] designed based on AASHTO 1995) under earthquake ground
motion of five near-source stations. These earthquake records had a vertical GPA greater than
0.3 and V/H ratio greater than 0.6. Using obtained analytical results, they concluded that
increasing the variation of axial force caused by the vertical component of an earthquake can
decrease shear capacity up to 30%. They also concluded that arrival time only minimally affects
variation of axial force and consequently shear demand; in contrast, the arrival time interval has
a significant effect on shear capacity. They also added that no clear correlation between the time

leg and vibration period was observed.

2-3-9 Lee and Mosalam (2013)

Lee and Mosalam believed that one of the primary reasons bridges fail during
earthquakes in the last decades is because of lack of redundancy of structural systems. Although
previous research has shown the effect of axial force on shear capacity of columns, the most
critical element of bridge’s structural system, current design codes have unique approaches for
estimating shear capacity. Failure to consider axial force leads to bending moment capacity
changes (compression increases and tension decreases) and greater shear force. Lee and
Mosalam emphasized the importance of the vertical component of an earthquake and explained
how design codes account for the effect of this excitation. They asserted that the two-thirds ratio
of peak V/H ground acceleration, as considered in most current design codes, underestimates the
effect of vertical excitation in near-fault regions. In order to address the lack of experimental

justification, Lee and Mosalam studied the effect of vertical ground excitation on shear capacity
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of RC bridge piers using shaking table tests. Although the effect of vertical earthquake excitation
is more pronounced in a bridge comprised of small column aspect ratios, short spans, and multi-
column bridge bent (Kunnath et al. 2008), Lee and Mosalam studied the single column. Isolation
of high-frequency vertical excitation of axial force variation caused by overturning moment and
shaking table size was mentioned as the main reason to study a single column. Vertical
earthquake excitation caused fluctuating axial force in the column, resulting in degradation of
shear capacity. Flexural damages occurred at the top of the column earlier than damages at the
bottom of icolumn due to large mass moment of inertia at the top. Increased scale of ground
motion caused increased flexural damages at the top and bottom of the column. Shear damages
occurred because of flexural yielding at the end of the column. Comparison of experimental
shear force with shear capacity predicted by ACI and Caltrans Seismic Design Code (SDC)
showed that the SDC predicted shear capacity more conservatively because of it neglected

concrete contribution under tensile axial force.

2-3-10 Mwafy (2012)

Using a fiber-based model, Mwafy (2012) investigated the effect of vertical component
of earthquake in conjunction with horizontal component on seismic response of 12 medium-rise
RC buildings (24-36 m). The developed analytical model was subjected to the near-filed
earthquake records. To avoid extreme conclusion, earthquake excitations with unusual V/H peak
acceleration ratios were not considered in Mwafy’s studies. Selected earthquake records were
normalized to obtain equal velocity spectrum intensity in the period range of the buildings. The
vertical component of an earthquake increased axial force fluctuation in the columns, potentially

causing variation in column strength and stiffness because flexural and shear capacity of
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columns is highly affected by axial force level. Therefore, the Zeus-NL platform (Elnahsai et al.
2010) was used for analytical simulation in order to capture the large displacement behavior of
buildings under static and dynamic loading, considering material inelasticity and geomantic
nonlinearities. Using archived analytical results, Mwafy concluded that the vertical component
of an earthquake significantly affects the seismic response of the member and structure levels. In
addition, Mwafy suggested that designs of medium-rise RC buildings located at near-fault
regions should consider maximum amplification of vertical ground motion. Based on Mwafy’s
results, the vertical ground motion effect increases when a building contains structural

irregularity, and the contribution of lateral seismic action is small at higher stories.

2-4 Material and Plastic Hinge Models

Analysis of RC elements or structures requires analytical material models to simulate
cyclic and monotonic behavior of RC element components. These models should accurately
reflect monotonic and cyclic behavior of materials. This section provides a comprehensive
review of material models for monotonic and cyclic stress-strain relationships of steel, plain
concrete (unconfined concrete), concrete confined by lateral steel (tie/spiral), Fiber Reinforced
Polymer (FRP), or both lateral steel and FRP. In addition, current assumptions regarding

curvature distribution over column height, specifically plastic hinge models are reviewed.

2-4-1 Monotonic Material Model

Real monotonic material models for steel and concrete confined by various lateral
reinforcements were obtained from tensile tests of steel bars and compressive tests of concrete

specimens. Numerous models have been developed based on observed behavior of steel,
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concrete confined by lateral steel, concrete confined by FRP, and concrete confined by both FRP

and lateral steel. Some of these models are briefly discussed in this chapter.

2-4-1-1 Steel
Because mild steel is generally used as reinforcing steel in concrete members, only the

behavior of mild steel is discussed in this section. Actual behavior of steel bars under tensile test
is shown in Figure 2-2. As illustrated in this figure, increased tensile strain caused the steel to

demonstrate linear elastic behavior up to the yield point (¢, f,). After that yield point, steel

strength did not change significantly with increased tensile strain. This region is referred to as the
yield plateau in the literature. The strain hardening region followed the second region to the

ultimate strength of steel ( f,,). In the last region, also known as the post-ultimate stress region,

steel strength decreased with increased tensile strain.

2-4-1-1-(a) Multilinear Models

Many researchers have used multilinear models in analytical studies to simulate uniaxial
behavior of steel bars. In multilinear models, steel behavior is simplified using multiple linear
functions. Two examples of this type of model are shown in Figure 2-3.

One of the commonly used multilinear models is the elastic-perfectly plastic model which
includes two lines. The first line has a slope equal to steel modulus of elasticity continuing to the

yield point. The second line has zero-slope, as shown in Figure 2-3.
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Figure 2-2 Typical monotonic curve of mild steel in tension
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Figure 2-3 Multilinear models: (a) bilinear or elastic-perfectly plastic model and (b) quad linear

model
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Figure 2-4 Monotonic stress-strain model for steel proposed by Menegotto-Pinto (1973)

2-4-1-1-(b) Menegotto-Pinto Model

Menegotto-Pinto’s model (1973) includes a bilinear curve. The initial line with a slope of
steel modulus of elasticity up to yield strength models elastic behavior of steel material. The
post-yield strength is defined as a linear function with a slope equal to a portion (defined by b
parameter) of the initial part’s slope. However, yield plateau characterization is neglected. The

Menegotto-Pinto model is summarized in the following equation:

1-b)x
L =bx & + %y
fy gy Ry UR, (2_2)
1+ (ESJ
Ey

where R, is the exponent that controls the transition between elastic and hardening branch.

2-4-1-1-(c) Mander et al. Model (1984)

The model of Mander et al. (1984) was developed as a result of many tension and
compression coupon tests. This model, which takes into account elastic behavior, yield plateau,
and strain hardening of steel material, has three main regions, as shown in Figure 2-5. The first

region is a linear function with slope equal to steel’s modulus of elasticity; the region ends at the
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yield point with stress equal to yield stress of steel. The second region simulates yield plateau,
and the third region is an ascending curve up to the maximum strength of steel, simulating the
strain hardening region of steel behavior. The post-ultimate stress region is not considered in the

Mander et al. model.

fs
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fy |-
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Figure 2-5 Proposed stress-strain model for reinforcing steel by Mander et al. (1984)

Stress-strain functions for these three regions can be summarized as

f=E,x¢&
O<eg <g,
f,=f,
g, <& <& (2-3)
P
Ey — €
_ su s <e <
fo= fsu_(fsu_fy)x(—j Gsh = &5 = Ea
Esu ~Esh

where ¢, ¢, &,, f,, f,, E;, and f are steel strain, steel strain at commencement of strain

hardening region, steel strain corresponding to ultimate strength, steel stress, steel yield stress,

steel modulus of elasticity, and steel ultimate strength, respectively. Parameter P is defined as

Eqy — €.
P=E su sh 2_4
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2-4-1-1-(d) Balan et al. Model (1998)
The monotonic response of reinforcing steel in tension is typically assumed to be

identical to its response in compression. The tensile and compressive responses were considered
to be identical; therefore, the linear strength degradation of compressive response due to local
buckling was ignored in Balan et al. model. Balan et al. (1998) considered two coordinate
systems in order to model linear strength degradation. They considered identical curve for steel
in tension and compression in engineering coordinate system, resulting in varied behavior for
tension and compression in a natural coordinate system. Their proposed stress-strain curve for

reinforcing steel in tension in the engineering coordinate system was

(2-5)

where p=E,/E, is hardening ratio and E, is slope of asymptote in the strain hardening region.
Eq. (4-4) describes a family of parallel hyperbolas with two asymptotes that depend on

parameter 5. Parameter & is defined as

% (2-6)
1—
where ¢, is the area of triangle bounded by two asymptotes and the tangent to the hyperbola.

o=

A

Balan et al. (1998) extended Eq. (4-4) to define the linear elastic region, yield plateau, and strain
hardening behavior of reinforcing steel in a single equation in the engineering coordinate system

as follows:

fszfy'x

2
(1_'0'))( 1+ (1+p’)xgs_80_ 83—80 _1 +5! (2'7)
2 @a-p" &y &y

where
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o :{ f, & <é&g (2-8)

E,xey, & >éq
0 & <sg,
Pk & > &g, (2-9)
Oy & < &gy,
2
5’ = 2'10
[ﬁ— J X0, & > &g (&-10)
gy
0 & S &g,
2
&y = f 2-11
’ (gsh _E_yj X 50 &5 > Eqn ( )
s
! l !
gy:m[( fsu_ fy)_(gsu_gsh)XEsxp} (2-12)

Eq. (2-7) was used to define the tension curve in the engineering coordinate system, and Eq. (2-
12) converted the tensile monotonic curve:
z =In(l+¢,)
3 (2-13)
f,=In(1+ f,)

where z, and f, are strain and stress, respectively, in the natural coordinate system.

2-4-1-1-(e) Esmaeily and Xiao Model (2005)

Esmaeily and Xiao’s steel monotonic model simulates behavior of longitudinal
reinforcement when additional detailed reinforcing steel information is available. This model

takes into account yield plateau, strain hardening, and softening of steel material. As shown in
Figure 2-6, four parameters (K,, K,, K;, and K,) were used to simulate stress-strain behavior of

various steel types. These four parameters are defined as:
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K,= ratio of strain at the start of the strain hardening region to yield strain
K, = ratio of strain corresponding to ultimate strain to yield strain
K, = ratio of ultimate strain to yield strain

K, = ratio of ultimate stress to yield stress

fs

K4-Xfy ______________

fol-

Figure 2-6 Esmaeily-Xiao (2005) monotonic stress-strain model curve of steel

2-4-1-2 Concrete

Compressive behavior of plain or unconfined concrete is commonly obtained from
compressive tests of cylinder specimens with a height-to-diameter ratio of 2. Tensile strength of
plain concrete also can be obtained directly from tensile tests. However, the direct tensile test is
rarely used due to difficulties associated with holding the specimen and uncertainties of
secondary stress caused by the holding tools. Therefore, tensile strength can also be measured
indirectly using a split-cylinder test. Experimental data has been used to develop numerous
stress-strain models for unconfined concrete. A few of those models are described in the

following sections.
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2-4-1-2-(a) Hognestad Model (1951)
The ascending portion of the stress-strain curve in Hognestad’s model is defined using a

parabolic function. The descending branch of the model is defined using a linear function as

follows:
2 2
PRETHEN | R
&, &
f,= v (2-14)
E.tT€&
fiyx|1-0.15x —c 20| o <5 <0.0038
< { 0.0038—500} o

where f_, f/,, &, and g, are axial compressive stress of concrete, maximum strength of plain

concrete, strain of concrete, and strain corresponding to the maximum strength of plain concrete,

respectively. In Hognestad’s model, fracture strain of plain concrete is assumed to be 0.0038.

2-4-1-2-(b) Mander et al. Model (1988)
Mander et al. proposed a stress-strain model that considers Popovics equation as follows:

gC
—XTr
f, = r _1{‘%} (2-15)
2xrxfg
x|&, —€ 2xe,<E.Z¢
(5sp—2xgc)x(r—1+2r) (Sp c) @ oTeTTe

where ¢ is spaling strain of plain concrete, and r is defined as

r=——r— (2-16)

E. is the concrete modulus of elasticity, and E,. is defined as
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ESEC = (2'17)

2-4-1-3 Concrete Confined by Lateral Steel

2-4-1-3-(a) Richart et al. Model (1928)
Richart et al. (1928) conducted one of the first studies on the effect of transverse

reinforcement on enhancement of concrete compressive strength. Richart et al. used test results
of 100mmx200mm cylindrical specimens under various transverse pressures to conclude that
strength and corresponding strain increases in proportion to transverse pressure increase. Based
on experimental results, they proposed the following equation to predict compressive strength of
confined concrete by lateral reinforcement:

fo =f, +kxf (2-18)

where f),, f, f.

cc!

and k are plain concrete compressive strength, transverse pressure,

compressive strength of confined concrete, and experimental coefficient, respectively. Strain

corresponding ( ¢, ) to maximum stress of confined concrete was given as

£ = £ X {1+ 5(£ —1}} (2-19)
ch

where ¢, is strain corresponding to maximum strength of plain concrete.

2-4-1-3-(b) Mander et al. Model (1988)
The model of Mander et al. (1988) was developed analytically for circular or rectangular

cross sections. Researchers have used this model to simulate monotonic behavior of concrete

confined by conventional reinforcement. The RC section may contain any general confinement
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type provided by spiral or circular hoops, or rectangular hoops with or without supplementary
cross-tie. In this model, the effect of any confinement type is taken into account by defining an
effective lateral confining pressure. Effective lateral confining pressure in this model depends on
lateral and longitudinal reinforcement configuration. The model’s stress-strain relationship is

based on an equation proposed by Popovics:

&
—XTr
fc = fc’0 X Coc (2-20)

r
r —1+[8°]
— gcc -

where ¢, is strain corresponding to maximum strength of confined concrete ( f. ) calculated by

£ = . {1+ 5x ( ::Cf —1ﬂ (2-21)
c0

r=——< (2-22)

r is defined as

and E, = f. /e, . Maximum strength of confined concrete is expressed as

fl=f/x {—1.254 +2.254 /1+ m - 2l} (2-23)
ch ch

In Eq. (2-23), f,' is effective lateral confining pressure defined as
, 1
fl = Eke X Pg X fyh (2'24)

where p is the ratio of volume of transverse reinforcement, f, is yield strength of the

transverse reinforcement, and k. is confinement effectiveness coefficient. k, for a circular

column can be calculated by
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1 circular hoope
k=1 - Pe (2-25)

s circular spiral
1- Pec

s’, d,, and pcc are clear spacing between spiral or hoop bars, diameter of spiral or hoop, and

ratio of area of longitudinal steel to area of core of section, respectively. For a rectangular section

reinforced laterally by rectangular tie and cross-tie, the confinement effectiveness coefficient is

1- ” (Wi’)z x(l— s jx(l— s J
 _ = 6 2b, 2d, (2-26)

1_pcc

defined as

where b, and d_ are core dimensions to centerlines of perimeter hoop in x- and y-directions,
respectively. To predict strain corresponding to first fracture, Mander et al. used an energy
balance approach by equating strain energy stored in the concrete caused by confinement to

strain energy capacity of lateral reinforcement (Mander et al. 1988).

gCU gCU

110p, = [ fode, + [ fydz, —0.017,Tg (2-27)
0 0
where f is stress in longitudinal steel reinforcement.

2-4-1-3-(c) Cussan et al. Model (1995)

Because proposed stress-strain models for normal-strength concrete may overestimate
strength and fracture strain of high-strength concrete, Cusson and Paultre (1995) proposed a

model to predict monotonic behavior of high-strength concrete confined by steel ties using
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experimental results of 50 large-scale high-strength concrete-tied columns tested under eccentric
loading. Cusson and Paultre considered effects of tie-yield strength, concrete compressive
strength, tie configuration, and lateral and longitudinal reinforcement ratios when developing
their model (Cussan and Paultre 1995). The initial part of Cusson and Paultre’s stress-strain
curve for confined and unconfined concrete is a relationship originally proposed by Popovics
(1973). The second part of the curve is a modification of the relationship proposed by Fafitis and

Shah (1985) for high-strength confined concrete. The mathematical expression of this model is

f. x fo r
#r gc < ECC
- H{a) (2-28)
gCC
. k,
fccxexp(klx(ec—ecc) ) & > Eq

where k, and k, are defined as

In(0.5)

kg =————
(50500 — & )kz

(2-29)
k, =0.58+16( ./ 5o}~

Maximum strength of confined concrete is calculated using the equation proposed by Press et al.

(1990):

0.7
fe 104 2.1X(LJ (2-30)

/
c0 c0

Effective lateral pressure ( f,") is calculated using equations developed by Mander et al. (1988)

which consider f, (stress in transverse reinforcement) instead of f . Strain corresponding to

hce

maximum strength of confined concrete is defined as
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\L7
£ =€+ 0.21[Lj (2-31)

fcIO
As reported by Cusson and Paultre (1995), yield strength of lateral reinforcement develops at
peak strength of concrete only for well-confined high-strength concrete specimens; therefore,

peak strength of confined concrete is computed by employing an iterative process.

2-4-1-3-(d) Kent and Park (1971)
Based on experimental results, Kent and Park (1971) proposed a stress-strain model with

three branches for concrete rectangular sections. The mathematical expression of the first branch

IS given as

2
' &, &,
fof c _|_% &, <0.002 2-32

‘ cc{0.002 (0.002} } ( )
Kent and Park assumed that lateral steel does not affect the shape of the first branch. The second
branch of Kent and Park’s stress-strain curve is given as

fo=f[1-2 (s, —0.002)] 0.002< &, < £y (2-33)

where

z- 05 (2-34)
Eggy + Esop —0.002
and

. _3+0.002x fe
4§ -1000

3 |b
Eson = ZPS\E (2-36)

(f._ in psi) (2-35)
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In Eq. (3-35), p,, b", s are ratio of volume of transverse reinforcement to volume of concrete
core measured to outside of hoops, width of confine core measured to outside of hoops, and
transverse reinforcement spacing, respectively. The third branch of the model is

fc =0.2x 1:cvc gc > ‘920(: (2'37)

2-4-1-3-(e) Fafitis and Shah’s Model (1985)
Fafitis and Shah (1985) initially developed a stress-strain model for a circular concrete

section. They later proposed that square sections can be treated as circular sections with diameter

equal to the side of square core. Effective lateral pressure caused by lateral reinforcement is

defined as
g =B tn (2-38)
d, xs
where A, f,, d.,and sare total section area of the transverse reinforcement in vertical cross,

yield strength of the transverse steel, core concrete diameter, and lateral spacing, respectively.
Fafitis and Shah’s model includes two branches: ascending and descending branches.

Mathematical expressions of these two branches are

A
f = fc{l[lij ] 0<s, <&,
boc (2-39)

f.o=", xexp[—k x (& — &g )1.15} P

Compressive strength of confined concrete ( f_, ), coefficient k , and power A are defined as

A=E x i (2-40)

cc
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k =24.65x f 4 x exp{—0.0l%j

E, =33x - x fc'0

A =1- 25(:—.'j(1—exp(—3.2 £ )9)

c0

2-4-1-3-(f) Sakino and Sun’s Model (1993)
Sakino and Sun developed a stress-strain model for circular and square section using

experimental results of columns under axial loading. Their stress-strain model is given as

AX +(D-1)X?2
¢ = lec 2 (2-41)
1+ (A-2)X + DX
g E. x &g oo . . —
where X ==¢, A=—""¢ and f_ is calculated using the following equation:
&eo cc

fclc =pux ch T KX Py X fyh (2'42)
In above equation, « depends on the shape of the concrete section. For a circular section,
u=0.8; for a square section, ¢=1.0. x is a coefficient that depends on the section’s shape. For

a square section, x is defined as

d’ s
K=1.15(EJ[1—2—DCJ (2-43)

where D, and C are the center-to-center dimension of a steel hoop and transverse distance

between any two anchored longitudinal bars, respectively. Strain corresponding to maximum

strength of plain concrete can be calculated using the following equations:

o OX{ 1+47(K-1) K<15 (2-44)

3.35+20(K —1.5) K>15
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where K =< and 4, are defined as

c0
A\l
£, =05243x () x107°. (2-45)

In Eq. (3-44), the concrete modulus of elasticity is calculated using the following equation:

f . 1/3 2
E, =4k| —= | x10°x (lj (2-46)
1000 2.4

where k is an empirical coefficient that depends on the concrete mixture material. This

coefficient can be 0.9, 1.0, or 1.2. y is equal to 0.75 for steel tube and 0.5 for square hoops.

Parameter D in the stress-strain function is calculated by

. K-1)f.
D=15-1.68x10"°x f, +¥ % (2-47)

2-4-1-3-(Q) Saatcioglu and Razavi’s Model (1992)
Similar to the model proposed by Kent and Park (1971), Saatcioglu and Razavi’s model

includes a parabolic ascending branch and a linear descending branch. The initial branch is given

as

1
& & 2 K
fo=fy 2[#]-[-6} < fy (2-48)
gCC gCC

-0.17

where K =¥ ang k,=6.7x(f)

c0

f, is lateral pressure caused by transverse steel

reinforcement, given as

f - DA x f, xsina (2-49)
sxh,
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where «a is the angle between transverse reinforcement and b, is the dimension of core concrete.
A, is the total area of lateral reinforcement. Confined concrete strength ( f_.) is calculated by the

following equation:
foo = foo + K fie (2-50)

where f,, is effective lateral pressure caused by lateral reinforcement, defined as:
fo =k, x f, (2-51)

In Eq. (3-50), k, is 1.0 for circular sections, and for square section is given as:

o[

where s, is the distance between longitudinal bars. Strain corresponding to compressive strength

of confined concrete is calculated by

Eqo = Ego (14+5K) (2-53)

2-4-1-4 Concrete Confined by Fiber Reinforced Polymer

2-4-1-4-(a) Saaman et al. Model (1998)

Samaan et al. expressed monotonic behavior of FRP-confined concrete by calibrating the
Richard and Abbott (1975) relationship. The equation of monotonic stress-strain curve in this

model is as follows:

(El_EZ)XgC n+E2X‘9c

[1+((E1 ~E;)xs, TT (2-54)

fo

f =

c

where
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f, = fo+6.0x f2 [MPa]= f_, +3.38x f,"[ksi]

E = 39504/ ., [MPa] = 47.586,/1000 x f, [ksi]

'0.2 ' 0.2
E, = 245.61x f, +13456x =Xt D [MPa] 52.411x f,,*? +1.3456 D [k5|] (2-55)

f, =0.872x f o +0.371x f, +6.258[MPa]=0.872x f., +0.371x f,, +0.908 [ksi]

Samaan et al. used a curve-shape parameter n=1.5for the Richard and Abbott equation.

2-4-1-4-(b) Lam and Teng’s Model (2003)

Lam and Tang (2003) proposed a design-oriented stress-strain model for FRP-confined
concrete. Their model contained the following basic assumptions based on test observations of
FRP-confined concrete with a monotonically increasing stress-strain curve:

e The stress-strain curve includes a parabola first portion and a straight line second
portion. This assumption leads to a stress-strain curve similar to models implemented in
codes for unconfined concrete.

e The parabola slope at the initial point (¢, = 0) is equal to the slope of unconfined
concrete curve (E.). This assumption is to account for the fact that initial stiffness of
FRP-confined concrete due to the passive nature of confinement is affected by FRP.

e The first parabola portion is affected because of the presence of FRP. This assumption
reflects the fact that FRP confinement is activated when concrete behavior is nonlinear.

e The slope does not change when the first portion meets the second portion.
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Figure 2-7 Proposed stress-strain model for FRP-confined concrete (Lam and Teng (2003))

Based on assumptions in the Lam and Teng model, the following expression is given for this

stress-strain model:

2
E.-E
fczEcgc—Mgc2 0<g <g
4f, (2-56)
f, =1, +E,&, & <& <&y,

where f, is intercept of the stress axis by the linear second portion, &, is ultimate strain, and &,

IS strain at which two portions meet, given by:

21,

g o0
where E, is the slope of the linear second portion, given by:
g, =t =T (2-58)
&,

where f_ is compressive strength of the confined concrete. To predict ultimate strain, Lam and

Tang used the constitutive model proposed by Ottosen (1979). The following expression was
proposed for ultimate strain in order to plot the strain enhancement ratio against the actual

confinement ratio for Carbon-FRP wraps and Aramid-FRP wraps:
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ch Sec xR ch

E t 1.45
S 175 +12(—frp j(—g“'r”p ] (2-59)

where E.., R, E,,, t,and & . are second modules of elasticity at the compressive strength of

unconfined concrete, radius of circular section, elastic modulus of FRP, thickness of FRP, and
actual FRP hoop rupture strain, respectively. Experimental data from the present database in the
literature was used to suggest the following equation for obtaining compressive strength of
confined concrete:

fo 9,330 (2-60)

c0 c0

where f , is confining pressure caused by FRP. To calculate f,, Samaan et al. proposed the

following equation based on experimental data (Samaan et al. 1998):

f, =0.872x £, +0.371x f, +6.258 (MPa) (2-61)

Using empirical results of 63 specimens, Lam and Teng demonstrated that f, is independent of
confinement pressure and, for simplicity, they used f, = ., in their model.

Lam and Teng also proposed an FRP efficiency factor defined as the ratio of actual FRP
hoop rupture strain (, ,,) in FRP-confined concrete to FRP rupture strain from flat coupon test

(£4,)- The obtained efficiency factor equaled 0.586 for 52 CFRP-wrapped specimens out of a

total of 76 specimens. Therefore, the ultimate strain of CFRP-confined concrete can be expressed

as:

f e 0.45
fu 175+ 5.53(£J(ﬂJ (2-62)
&

ch c0 c0
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2-4-1-4-(C) Berthet’s et al Model (2006)
Berthet et al. (2006) presented a model based on an analytical approach. They

categorized the mechanical behavior of confined concrete into two distinct parts. The first part,
related to the low level of strain, is based on the theory of elasticity and strain compatibility
between concrete core and composite jacket. The second part, related to the high level of strain,
corresponds to pseudo-plastic behavior. This second part can be assessed using experimental
data. The following steps are needed in order to obtain the stress-strain model:

e Prediction of ultimate behavior

e Modeling of the second region

e Modeling of the first region.

Using Mohr-Coulomb failure criterion, Berthet et al. proposed the following equation to
determine the ultimate strength of confined concrete ( f,, ):
foo = foo + ko x fy (2-63)

where f’

co’

f,, and k, are ultimate concrete strength of plain concrete, ultimate confinement

pressure, and confinement efficiency, respectively. When stress equilibrium is used to obtain

ultimate confinement pressure, Eq. 3-62 is represented as

f.="fy +k1><£>< E, x&y, (2-64)
r

cc

where E,, ¢, t, and rare the Young modulus of FRP jacket, ultimate circumferential strain in

the jacket, jacket thickness, and radios of the concrete core, respectively. Confinement efficiency
(hardening parameter) can be presented by regression analysis:

k, =3.45 20< f,, <50 MPa (2-65)
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9.5

K =——z 50 < f,, <200 MPa
(feo)

The following expression represents ultimate axial strain ( ¢,, ) based on experimental database:

2/3
A m(i} (o -veso) (2-66)

where v, E,, and &,, are Poisson’s ratio of plain concrete, confinement modulus, and axial

strain corresponding to the change of slope from pseudo-elastic behavior to the pseudo-plastic
behavior which is 0.002. Regression analysis was used to obtain the following equation for the

slope of linear relationship between the pseudo-plastic branch and the confinement modulus:
6, =2.73E, -163 (2-67)
Reference plastic stress (f.;,) can be calculated with the following equation:
foo = fee =6, x(gfu —grp) (2-68)
Compressive stress for the second branch can be estimated by following equation:
f.=f.—6 ><((vc —7)éa0 —erp)+ 0.ve, Eap <4 (2-69)
where ¢ is axial plastic strain corresponding to ¢, and ¢, is axial strain.

For the first branch, Berthet et al. (2006) used the following expression proposed by

Ahmad and Shah (1982) and modified by Toutanji (1999):
o Axe fup S5, (2-70)
1+bxe+Cxeg?

The boundary condition of stress-strain curve was used to obtain constants A4, B, and C as

follows:

A=E; :—{1+E5(1—vc)} (2-71)
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where E. is Young modulus of plain concrete.

2-4-1-4-(d) Teng et al. (2009)
In 2009, Teng and his research group (Teng et al. 2009) refined the design-oriented

stress-strain model originally proposed by Lam and Teng in 2003. Based on the new database
compiled by Teng et al., Lam and Teng’s model overestimated ultimate axial strain of concrete
at high level of confinement and underestimated compressive strength at low level of
confinement. In addition, the effect of confinement stiffness was only considered for the ultimate
axial strain equation but was not considered in the compressive strength equation.

In their new work, Teng et al. (2009) posed two refined versions of a stress-strain model.
In the first version, they updated only the ultimate axial strain and compressive strength of the
original model. In the second version, they modeled the descending branch not covered in the
original model. Teng et al. proposed the following expressions for ultimate axial strain and

compressive strength in the first version:

f.
ﬁzc(y +Fo'(pk)>< fg(p;;)
c0

(2-72)
&,
ﬂzcg + I:‘g(lak)>< fé(p&)
€eo

where C_and C_ are constant, F_(p,)and F,(p,) are functions of the confinement stiffness ratio,

and f_(p,), and f_(p,)are functions of the strain ratio. Based on experimental results, these

functions are defined as:
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C,=10, C,=175

35(p—1)p, p =001

Fo‘(pk)xfa(pg):{ O p <001
k .

(2-73)

F. () x f.(p,) =655 o0 x p;®
For the second version of their stress-strain relationship, Teng et al. added another part to

Lam and Teng’s original model when &, <¢, <¢,,:

2
(Ec — EZ)
E.e,——————+bxg, +c 0<¢g <g
41,
fo=1[ f,+Ee p =001 (2-74)
, o f & <&, <&y,
f, feo = oy p <001

gC u

— &0

where E, is defined in Lam and Teng’s model (2003). £, is defined as follows:

:— =3.5(p, —0.01)p,

c0

To 5085 fo 0>0 (2-75)

2-4-1-4-(e) Lokuge’s et al. Model (2011)

The stress-strain model proposed by Lokuge et al. is based on 24 tri-axial tests on four
grades of concrete (40, 60, 75, and 100 MPa) and three confining pressures (4, 8, and 12 MPa).

In order to predict the relationship between axial strain (&) and lateral strain (,), Lokuge et al.

(2011) used an equation proposed by Candappa (2000):
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& _ (2-76)

where ¢, ¢, and a are axial strain corresponding to peak axial stress, corresponding lateral

strain, and material parameter depending on uniaxial concrete length, respectively. Parameter a
IS approximated by:

a=0.0177f,, +1.2818 (2-77)

v2 Is initial Poisson’s ratio defined in Candappa (2000) as:

Ve =8x10x( £, ) +0.00021,,+0.138 (2-78)
In order to obtain axial strain corresponding to peak axial stress, Lokuge et al. used the

equation suggested by Attrad and Setunge (Attrad, 1996):

Foo =1+(17-0.06 fc'o)(L.'] (2-79)

‘900 c0

where f, and ¢, are confining pressure and axial strain corresponding to peak uniaxial

compressive strength in plain concrete (generally assumed to be 0.002), respectively.

Compressive strength of confined concrete is given as:

. k
fe (£ (2-80)
ch ft

where f, is tensile strength. Because the silica fume was not utilized in the work of Lokuge et al,
tensile strength is given as:
f,=0.9x0.32(f,) " (2-81)

k is a constant defined as:

49



c0

k =1.25[1+ 0.062 ff—'j( ) (2-82)

Lokuge et al. expressed axial stress, axial strain, and lateral strain behavior of concrete as

follows:

27, 1€ [2“"’} +f,  Before Peak
o= (2-83)

&+é&

52
2t |1-e ‘Z™/) _d |+ f, After Peak

mp

where cand d are material parameters depending on uniaxial concrete strength. Lokuge et al.
(2011) proposed the following equations to predict these parameters based on best fit curves for
each concrete strength:

c=-0.0427 f , +7.7381

(2-84)
d =-0.0003f,, —0.0057

rp and - are maximum shear stress at peak and maximum strain at peak, respectively, defined

as
fc'c — 1:I
Tmp = 5
(2-85)
Sec _géc
A
In Eqg. (3-84), confining pressure f, is obtained based on force equilibrium as follows:
fp xNxt
= (2-86)

S

where d,, f,_, n, and t are diameter of the cylinder, hoop stress of the carbon fiber sheet,

frp?

number of sheets, and sheet thickness, respectively.
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2-4-1-4-(f) Wei and Wu’s Model (2012)

Wei and Wu (2012) proposed one of the most recent models for stress-strain relationship
of concrete columns confined by FRP. This model was developed based on the large number of
database from authors’ own tests and tests from literature. The most unique feature of this model
is its unified efficiency for use with circular, rectangular, and square sections.

Wei and Wu’s model contains two parts. The first part of the model is a parabola with an

initial slope in ¢, =0 equal to the elastic modulus of unconfined concrete. The first part meets

smoothly with the linear second part. The following equations present these two parts:

E.&. fo_—Ecgo 2 0<g <g
f. = & (2-87)
fo+Ey(e—&) & <& <&y
where g, is transitional strain calculated by the following equation:
(fo+ oyt Ecgcu)—\/( fo+ foy + Euty ) —B8FoEcsyy >.88
go = ( - )
2E,
E, is the slope of the second portion, defined as:
f -
E2 _ au 0 (2_89)
S — €0

In Egs. (3-87) and (3-88), f and f, are ultimate stress, ultimate strain, and transitional

cu’? gcu !

stress, respectively.
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Figure 2-8 Unification of column shapes (Wei and Wu (2012))

Wei and Wu also introduced two parameters, the cross-sectional aspect ratio (h/b) and
the corner radios ratio (2r/b), in which h, b, and r are length of the longer side, length of the
shorter side, and corner radios of a rectangular section, respectively. Wei and Wu used these two
parameters to unify their model for circular, square, and rectangular columns, as shown in
Figure 2-8. They used the following equation, achieved by regression of database, to obtain

ultimate stress of FRP-confined concrete:

f 24 Y rhyt
—4 =05+ 2.7(—) — (—j (2-90)
fy b fy b

where f, is calculated by:

¢ _ 2E;eqt

= (2-91)

where b is width of columns and is equal to the diameter of circular columns or the length of the
smaller side of rectangular columns. Wei and Wu used regression of full database to present the

following mathematical expression for calculating ultimate strain (Wei Y. Y., 2012):
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f 0.75 f 0.62 2 h -0.3
Eou :1_75+12[_!J (ﬁJ (0.36—r+0.64j(—J (2-92)

€eo c0 ch b b
where f,, is concrete strength of unconfined grade C30 concrete and f_, is maximum strength
of unconfined concrete. In the absence of test values, the value of ¢, in Eq. 3-91 can be

calculated using the equation proposed by Popovics (1973):

£, =0.0009374[f, (2-93)

Regression analysis was used to present the following equation for calculating transitional stress:

2r 0.68 h -1

2-4-1-4-(g) Youssef et al. Model (2013)

The model by Youssef et al. is based on results from large-scale tests on circular, square,
and rectangular sections confined only by FRP wrap. The first part of the model is a polynomial
that simulates unconfined concrete behavior. The second part of the model is a linear function of
strain that can predict ascending behavior of moderate- to high-confined concrete sections and
descending behavior of low- to moderate-confined concrete sections. Stress-strain equations of

this model are as follows:

n-1
fc=ECXEC|:l—1(1—EZ]><(g°j };mdnz(Ec_Ez)xgt 0<g <gand E, >0
n

c & E.x&—f

1 (2-95)
f=E xs |12 % | |andn=—"2f_ 0<g <4 and E, <0
n{ & E.xg —

f.=f+E,x(e,—&) &< <g,
where for the circular section, ultimate strength and strain are calculated by the following

equations:
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' f
o =1.0+2.25[—'TJ

c0 c0

0.5
_ fi fy
&, =0.003368+0.250x| — |x| -1
p

c0 fr|

(2-96)

L.t =1.0+3.0£

5/4
4xtx Efrp xgjtJ
c0

Dx f,

4><t><Efrp><gJ-t o fyf 0o
£ =0.002748+0.1169 x| — Tt || T
Dx ch Efrp

Slope of the second branch can be calculated using ultimate strain and strength (s, f,) and

strain and stress in the transition point (¢,, f,).

2-4-1-5 Concrete Confined by Lateral Steel and Fiber-Reinforced Polymer

2-4-1-5-(a) Harajli’s Model (2006)

Harajli’s model for the relationship between strain and strain of concrete confined with
FRP contains two parts. The first part is a parabola similar to the model proposed by Scott et al.
for the ascending branch of the stress-strain relationship for unconfined concrete or confined

concrete with transverse steel ties:

2
fo="fo {ﬁ _[£] ] &, <& (2-97)

ch €0
where f;, and ¢, are stress and strain at the intersection point between the first stage and the

second stage.

Harajli et al. proposed the following expression for the second part of the stress-strain

relationship:
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fo=feo +k fi +ki fy % & > & (2-98)
where k, =4.1, A, is the area of concrete core confined with internal transverse ties, and A_ is

the gross area of the column section. f, and f, are lateral passive confining pressure exerted by

FRP and ordinary transverse steel on the concrete section, respectively. They are expressed as

foo Ket 1 E
= —2 &
keskv S ES keskv S|
flf :( 2pt jglﬁ( zptjfy[

In Egs. (3-98), 1, is yield strength of transverse ties and Eis modulus of elasticity of steel. p,

(2-99)

is the volumetric ratio of FRP sheets, expressed for the circular and rectangular concrete sections

as
4n.t . .

pp=— For circular concrete section

D
(2-100)
2n.t(b+h .
Dy :M For rectangular concrete section

bh

where n,, t, D, b, and h are the number of FRP layers, design thickness of FRP fabric,

diameter of circular section, smaller dimension of rectangular section, and larger dimension of
rectangular section, respectively.

The term p,, is volumetric ratio of transverse steel ties or hoops (volume of ties or hoops

to volume of concrete core measured to outside of hoops). Based on the approach suggested by

Sheikh and Uzumeri (1982) and Mander et al. (1988), parameters k_, , k.., and k, are as follows

ef !

for rectangular section using FRP:
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(1-p:) (2-101)

For a rectangular section, using hoops, k., and k, parameters are defined as:

es !

l—Z(Wfi +W§i)/6xy

k =
ef (1_,05)

(2-102)
(1-s'72x)(1-5 "/ 2y)
l_pcc

k =

v

where w,; and w,, are i™ clear distance between adjacent longitudinal bars along the horizontal
x- and y-dimensions, respectively (x and y are concrete core dimensions to centerline of
peripheral hoop). p. is the longitudinal steel ratio relative to the confined concrete core

measured to outside of hoops, and s'is clear vertical spacing between lateral hoops.

Parameter k,, for circular column reinforced laterally with circular hoops and spiral is

defined as
. 2
MZ@T/MQ
Per (2-103)
K = 1-s/2d,
1_pcc

where d, is diameter of spiral or hoop.

Stress and strain in the intersection point between the first and second part of the two-part

relationship of the stress-strain model are proposed as follows:

~ K E: k.kp.E
fco _ fco +k15|0{ efpzf f 4 s vzpst s (%}J (2-104)
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c0

£, =& {1+(310.57gIo +1.9)£%— J]
where ¢, is lateral strain equal to yield strain of transverse steel hoops, or 0.002 if no internal

confinement by transverse steel is available. The stress-strain relationship for the second stage of

this model is:
o =J(KS —K) - K, £ > €0 (2-105)
where
K, = 00031k E, — f., —%klE,s £ [i—+ 0.9] (2-106)
0
and

B =kgpiEf /2

(2-107)
E, =k

e

SpSES /2

2-4-1-5-(b) Eid’s et al. Model (2008)
Eid et al. (2008) proposed a model to predict axial and lateral behavior of circular

concrete columns with transverse steel and FRP. The proposed model integrates the contribution
of FRP and transverse steel. In order to predict the behavior of confined concrete, an effective

confinement index was introduced that considers transverse steel and FRP properties

(mechanical and geometrical). The equation to determine maximum confined concrete stress ( f.,

) and its corresponding strain (&, ) are derived from regression analysis of test results conducted
by Legeron and Paultre (2003):
T gy 24(1,)" (2-108)

c0
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c \L2
SL:=1+35(|3)

where f,, and ¢, are unconfined concrete strength and its corresponding strain, respectively.

The following equation can be derived from the force equilibrium of the half cross section:

. 2ef . . .
fie = Dh + e A, =py fn +Eqer —A

c

(2-109)

p
where f,, is effective confinement pressure at concrete peak stress, and e is thickness of the

uniform equivalent steel tube that replaces discrete steel ties, given as:

o = Py (2-110)
2x8

where s is lateral reinforcement spacing, and A, is the total cross-sectional area of ties in y-

direction. D, is concrete core diameter, and f, and ¢, are lateral pressure due to FRP and FRP
circumferential strain at concrete peak stress, respectively. E, =2t,E, / D is measure of the FRP
composite stiffness or FRP lateral modulus in which t, and E, are thickness and elastic
modulus of FRP, respectively, and D is diameter of the whole concrete section. A, is lateral
pressure due to transverse steel reinforcement, and p,, is effective sectional ratio of the

confining reinforcement, given as:

_ ke A%hy

Psy D, (2-111)
f, is lateral steel stress at concrete peak stress, defined as:
oy k<10

fo=1 0.25f (2-112)

>0.43c.E. x>10
psy(K_l) o

where E, is transverse steel modulus of elasticity. Parameter « is defined as:
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P (2-113)
Psy Esg(I:

Tangential (tensile) strain of composite (&, ) and tangential strain of transverse steel (&, )
can be assumed to be equal in elastic range, as for ¢, and &, . Strain in transverse steel can be

expressed as a function of the concrete secant’s Poisson’s ratio corresponding to peak stress (v, )

and the concrete’s secant modulus elasticity at peak stress (E,,):

(t-v) ¢ (2-114)

Eh =Veebee — ' le
ccl

where

E, —ate g>1 (2-115)

gCC

Substituting Eq. 3-107 into Eq. 3-113 yields:

g—ﬁ=(1+ 35(|;)“j P (2-116)

2 o (1+2.4x(|;)°'7j

c
Legeron and Paultre’s study (2003) concluded that steel-confined concrete v, is equal to 0.43

and «=0.11. In another study, Xia and Wu (2003) proposed the following equation for v, for

FRP-confined concrete:

. \0.9
vgczlo[h] . (2-117)

Efl

In order to consider the effect of transverse steel on v,

cc?

the following modified equation was

proposed:
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. 0.9
Ve < Vg =10 _fo | o5 (2-118)
Efl +psyEs7/sf

where v, is concrete Poisson’s ratio and y =&, /&y, , Which is 0.133 for concrete confined by

transverse steel only. Based on regression analysis of experimental data and Eq. 3-115:

8—*.‘=V;C+77>< I, (2-119)

&

where 7 is given as
7=29.8xv, —3.56. (2-120)
When considering force equilibrium at the half cross section, the equation for effective

confinement index (1. ) is given as

| = Path Eafr (2-121)

) ch ch

where f, =E xg, <f, . When & is equal to actual FRP rupture strain (&, ,), the effective

confinement index is at its maximum level:

_ psy fhy + Efl‘?fué

I max = — 2-122
ch ch ( )
Integration of Egs. 3-118 and 3-120 yields
|élzig ly K >7
kKi—=n
. - f
I, = |e2=M5|e,max K <nand i, >7n (2-123)
feo (Kz _77)
Ie,max Kl < n
where «;, and «, are defined as:
K, feg &, (2-124)

1 = n T =
psyEsgc + Eflgc EfI + Esl
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K‘Z = fclo = E—(I:

Eflgclz Eq

where E, = fy /¢, is concrete secant modulus at peak stress and E, =E, x p,, is transverse steel
stiffness.

Experimental data of various studies showed that adjustment of Lam and Teng’s
proposed model (2003) allows ultimate concrete strength (f,) and strain (¢,) of concrete

confined with FRP or FRP and transverse steel to be predicted using the following expressions:

f_c:u =1+ 3.3[—/) 5 Ty +—E“g.'“‘sz &

c0 c0 fCO fCO
2-125
' fE 045 ( )
i:1.56+12£psy| hy L f"?fué ]{gfu‘,aj
& c0 ch &

The first stage, or pre-peak branch, of the stress-strain curve is expressed by Sargin’s
(1971) proposed equation, with modification as follows:

as,

¢ 1+bg, +28’

, (2-126)
E, 2 E.E.¢ 1 E4E
= b=—-—+ z= -

ct —cu“cc — ct —cu
ot () () (f)

where E, is tangent elasticity modulus of concrete and E_, is slope of the curve after the peak,

ct

given as:

B =——7% (2-127)

2-4-1-5-(c) Lee et al. Model (2010)

In the study by Lee et al., an experimental work was conducted on 24 specimens under

compressive load with various types of confinements. Based on experimental results,
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compressive response of the confined concrete column could not be obtained by adding the
confinement effect of FRP and transverse steel reinforcement due to differences in FRP and steel
behavior. Using the test data, a set of empirical equations to predict the stress-strain response of

concrete column confined with FRP and transverse steel was proposed.

fe

£ Steel Yielding

cu /
f y

cSs

- Confined| Concrete

£l nconfined; Concrete

cOl--—,

i &
€co Ecs Ecu

Figure 2-9 Monotonic stress-strain model proposed by Lee et al. for FRP steel spiral-confined
concrete

The proposed model considers the role of transverse reinforcement and the FRP jacket to
predict the stress-strain response of the confined concrete column subjected to a compressive
load. In this three-part model (Figure 2-9) for concrete confined by spiral and FRP, the first part
of the model is a parabolic equation beginning with a slope equal to the modulus of elasticity of
plain concrete. The first part is followed by a polynomial function after a strain equal to the
strain of unconfined concrete at maximum compressive strength. The confining effect of FRP
and spiral steel on the compressive strength of concrete is demonstrated by the second part of the

curve which ends at the yield point of the steel spiral. The effect of the steel spiral remains
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constant, and the effect of FRP confinement increases to the ultimate strain of FRP-spiral-

confined concrete in the remaining part of the curve. The formulae of this model are as follows:

2
fc:Ecxgc_"(fc‘O_Ecxgco)X[ij 0<g <¢g,
c0
0.7
fo=f+(fy— fc'o)x( i ‘ECOJ fo S5, <5, (2-128)
s — €co
0.7
fc = fcs +(fclu - fcs) X(MJ Ees SE S &y,
Eou ~ Ees

where

f
£ =&y {0.85 +0.03x [f—”)} and f, =095x f, f,>f,

Is

(2-129)
0.4
£, =0.7x5, and f = f,, x("’"—] fie <
gcu
Ultimate strength and strain are calculated using the following equations:
: fie + 1
I {1+2Mj
ch
(2-130)

fo+k xf e 0%
£y = &9 ¥ 1.75+5.25[ujx[ﬂj
feo €eo

where k, =2 f, /f for f, <f, and k =1 for f, > f,. &, isthe rupture strain of FRP.

2-4-1-5-(d) Hu et al. Model (2010)
In accordance with the concept of passive confinement, Hu et al. proposed a model for

concrete columns confined with FRP and transverse steel. Axial stress and strain can be
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calculated from each actively confined stress-strain curve by adopting the stress-strain

relationship proposed by Popovics (1973):

o (efen)xr
fo y—1+( /o )7 (&131)

where y=E, / (EC —f./ g;C). E.is Young’s modulus of the concrete; f. and ¢, are peak stress

and strain of the actively confined concrete, respectively; f. and &, are stress and strain of the
passively confined concrete curve, respectively. Peak stress and strain are calculated as:

fclc = 1Eclo + Afc‘cFRP + Afc'cTRA

¢ (2-132)
£, =1+ 5(&—1}

c0

where

A coprp =3.5% Ty

: ; (2-133)
Aforpn = T [2.254 1+7.94—-1s _2 s _ 2.254]
\f f f
c0 c0

In Eq. (3-132), f, and f, are given as:

2E;t; g
flf = d
KEahy (2-134)
f SXdC | sy
I =
s 2k, T, A, s
stC | = ©sy

where k, is a confinement-effectiveness coefficient proposed by Mander et al. (1988). d is
diameter of the cross section, d, is diameter of core concrete, and ¢, is lateral strain that can be

calculated using the following equation:

64



0.7
e _0.85 (1+ o.75(iD - exp[— i) X1
ch ‘900 ch

where

1+8x fy [ fog+ Brs x fis/ Ty For FRP — Steel Confined Concret

{ 1+8x fi /T For FRP Confined Concrete
77 =

Prrs 1S defined as:

23.5
k

steel

Prrs =

Kerp

where kg =EGA,,/7d, and ke = Eqtys/zd .

2-4-2 Cyclic Material Models

(2-135)

(2-136)

(2-137)

Cyclic behavior of reinforcing steel and concrete, especially core concrete, significantly

affects RC member cyclic behavior modeling. The following section presents cyclic rules

proposed in the literature to simulate cyclic behavior of reinforcing steel, concrete confined by

conventional lateral steel, and FRP.

2-4-2-1 Steel

2-4-2-1-(a) Linear Hysteretic Model

A linear hysteretic model uses a linear function with slope equal to modulus elasticity of

steel in order to model unloading and reloading branches of steel’s cyclic behavior. Stiffness

degradation is not considered in this model; therefore, calculated results using the linear

hysteretic model are not as accurate as results obtained using a more realistic hysteretic model.
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The monotonic model used in conjunction with the linear model as the envelope of the hysteretic

model may or may not consider the strain hardening effect.

2-4-2-1-(b) Ramberg-Osgood Model
The Ramberg-Osgood equation is given as

& — & L(1+ f
E

_S
S 1:ch

_ J (2-138)

where ¢, ¢, f., E,, fy, and rare steel strain, steel strain at zero stress at the beginning of

si ! S S

loading, steel stress, steel modulus of elasticity, stress dependent on yield strength and plastic

strain of steel from previous loading, and parameters depending on the loading run number.

2-4-2-1-(c) Balan et al. Model

Balan et al. developed a macroscopic cyclic model. The backbone of this model is

expressed as

, . 2
A\1-p 1+p —c. — ,
fS:fy< ) 1+( ,)xgs s Lgs s —1] +5 (2-139)
2 (1—p) &y &y
where
, f E.—& <&
f _ y ' S 0 sh (2_140)
T Egxey &8 > &g,

p =1E, (2-141)
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! 2
o = 2-142
Lﬁ— j X8y & —& > Eq ( )
&
y
and
&y & — & < €sh
& = [ fy} (2-143)
Egt| & —— | & —&y>&Eq
ES
g'y = ;_[( fo— fy)_(gsu ~ &sh ) Espl] (2-144)
£ 7)

Differentiation of the envelope equation with respect to the strain leads to the tangent modulus

on the envelope curve in the engineering coordinate:

(2-145)

Balan et al. considered three types of reversals:

e Reversal from yield plateau

e Reversal from strain hardening region

e Reversal from reversal curves.
Complete and incomplete reversals follow the same rules. The only difference between these
three types of reversals is amplitude parameter. When an unloading/reloading occurs, stress-
strain behavior of steel is simulated using a hyperbolic branch. Mathematical formulation of this

branch in the engineering coordinate is given as:
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2
_ _k _k
f :kf (1 p) 1+(1+p)xgs gr_ (85 gr_} +k5 ' (k=0,1,~~,n) (2'146)

where ‘s, p=g,/*E,, *E,, ‘f,, and e, are reversal strain, instantaneous hardening,

unloading modulus, instantaneous yield stress, and strain, respectively. Superscripts k in this
formula indicate the unloading/reloading cycle number. All parameters with superscripts k are
updated after each unloading/reloading cycle. Instantaneous stress and strain are calculated suing

the following equations:

“f, = E,x*e,, (k=01---,n) (2-147)
where
ey =0y gy e (k=01-) (2-148)
and
k k kf
&="¢—-—, (k=01---n) (2-149)

kEu

In Egs. (3-146) to (3-148), s, &,, “f,, and kg are strain at the intersection of the

y ) r?
instantaneous unloading asymptote and strain axis after k-reversal, initial yield strain in the
engineering coordinate, stress, and stress after k-reversal. In the unloading/reloading branch

equation, *s is degradation parameter, defined as:

&

y

C o \2
ks = % 1+ ka(#] , (k=01--,n) (2-150)
1-p

where kgp is plastic strain amplitude and &, is initial value of & given as:
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_]0.005 Ordinary Steel (Grade 40 and 60) (2-151)
"] 0.01 High — Strength Steel
and *a is amplitude parameter, given as:
kg k-1
¢ L=
Ko y
a= k f kflf . (2-152)
3 —F——<2
fy

2-4-2-1-(d) Esmaeily and Xiao’s Model (2005)

Esmaeily and Xiao’s hysteretic model (2005) for steel is a multilinear model. At the
reversal point, the unloading path is a linear function with a slope equal to modulus of elasticity
of steel material. The Bauschinger effect is taken into account in this model by changing the
slope of the first unloading branch into a portion of steel’s modulus of elasticity. In order to more
realistically simulate cyclic behavior of steel material, this ratio and the strain at which the slope
change occurs differ in the second (tensile strain and compressive stress) and fourth
(compressive strain and tensile stress) quarters compared to values in the first (tensile strain and
stress) and third (compressive strain and stress) quarters. Hysteretic behavior of steel material

can be changed using five ratios (P, P,, P, R, and R,) in Esmaeily-Xiao’s model. Stress-strain
mathematical expressions of this model in one of the Point 1, 2, and 3, as shown in Figure 2-10
are defined by considering the previous stress and strain state (¢, , f,).

At Point 1, no unloading/reloading had previously occurred; therefore, the envelope

curve (monotonic model) is followed. At Point 2, the reversal branches are defined

mathematically as:
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fp+ES(gS—gp)£ f +Line(e) £y —
¢ o f SP f (2-153)
+ . +
Plfy+P3Es(g—sp+p—lyj£f"'“e(g) e<e, ———7
s ES
where
pouneey _[ fu—Pafy ) f APy (2-154)
2¢, 2
e [P ) AR, (2-155)
2¢ 2

u

In Egs. (2-153) to (2-155), f,, f,,and ¢, are ultimate strength, yield strength, and rupture strain

of steel, respectively.

At Point 3, the stress-strain reversal branch is similar to Point 2, with one exception:

fp+Plfy fp+Plfy

. (2-156)

f:Plfy+P2ES[g—gp+ ]sf“”e(g) e<e, -

S

S

Figure 2-10 Esmaeily and Xiao’s cyclic model
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2-4-2-2 Concrete

2-4-2-2-(a) Linear Model

Cyclic behavior of plain and confined concrete can be modeled using a linear model in
which unloading and reloading curves are simplified using a line with a slope equal to the
modulus of elasticity of the plain concrete. The linear cyclic model is shown in Figure 2-11.
Although the linear model was developed to simulate hysteretic behavior of plain and concrete
confined by lateral steel reinforcement, the linear model can also be used to model hysteric

behavior of concrete confined by FRP or lateral steel and FRP.

fe

Figure 2-11 Linear cyclic model

2-4-2-2-(b) Park et al. Model (1972)
Kent and Park developed a cyclic model to model cyclic behavior of plain concrete and

concrete confined by lateral steel. In this model, the unloading/reloading curve is approximated
by a bilinear function. Although the envelope curve (monotonic model) for compressive
behavior of concrete is represented by Kent and Park’s function for concrete confined by lateral
steel reinforcement, this model can be used in conjunction with any monotonic model as its

envelope curve. Park et al. model is shown in Figure 2-12.
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Figure 2-12 Park et al. model for hysteretic behavior of concrete

2-4-2-2-(c) Kuramoto and Kabeyasawa Model (1995)
Kuramoto and Kabeyasawa developed a linear model in which the slope of

unloading/reloading branch can be tuned as needed, as shown in Figure 2-13. In this figure, o is
compressive strength of cover concrete (or plain concrete) and K is confinement coefficient.
Initial stiffness of plain and confined concrete is considered to be equal to plain concrete
modulus of elasticity, and secondary stiffness of plain and confined concrete is defined as a

portion of initial stiffness.

fe

Confined Concrete

KXO'B -------- Ec3 ‘5

a Plain Concrete
B
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1 i
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Figure 2-13 Kuramoto and Kabeyasawa model for hysteretic behavior of concrete



2-4-2-2-(d) Mander et al. Model (1984)
Mander et al. modified the hysteretic model developed by Takiguchi et al. to be suitable

for plain and confined concrete. In the Mander et al. model, shown in Figure 2-14, the unloading
path follows a concave-upward parabolic path with a zero-slope at the strain-axis. Tensile
strength of concrete can be taken into account considering a linear path with a slope of plain
concrete modulus of elasticity. With increased strain, stress remains zero up to the last strain
corresponding to zero stress, after which point strain will grow in a linear reloading path with a

slope equal to plain concrete modulus of elasticity in the strain-axis.

fe

&

Figure 2-14 Mander et al. (1984) model for hysteretic behavior of concrete

2-4-2-2-(e) Esmaeily-Xiao Model (2005)
In Esmaeily-Xiao’s cyclic model, shown in Figure 2-15, the unloading path follows a

parabolic path that is concave-upward with a slope of E, on the envelope curve (monotonic
curve). The monotonic model is followed for ascending and descending within the elastic range
of concrete. With decreased strain at the unloading path, stress decreases to zero, after which

point if the tensile strength is ignored, stress remains zero; otherwise, the stress decreases to
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tensile strength using a linear function with a slope of E,. The mathematical expression of

unloading branch is given as:

E2 2,/ f. f , 2,/ f. f
fc:ﬁ 8—8p—% Sfcc 8>8p—%
cc c2 c2 (2_157)
2,/ f T
f.=0 gggp—$
Ecz

where f, ¢, ¢, f,, Ey, and f, are stress, strain, strain and stress at the point from which

unloading begins, initial stiffness of reloading branch, and maximum compressive strength,

respectively.

f C,C

T

Figure 2-15 Esmaeily-Xiao hysteretic model for concrete, descending branch

With increased strain, the stress remains zero until the latest strain corresponding to zero

stress; then stress increases following a concave-downward parabolic with a slope of E_ at the
strain-axis, as shown in Figure 2-16. The following parabolic function is followed for ascension

from a point with strain ¢ and stress f_:

74



¢~ —ECZ% & 8p+2f°.°—2 fcc(fcc_fp) —
4fcc Ecl Ecl
(2-158)
o2 f (f—f
cl Ecl

f C!C

fo

Figure 2-16 Esmaeily-Xiao hysteretic model for concrete, ascending branch

2-4-2-2-(f) Shao, Zhu, and Mirmiran Model (2006)

Shao et al. developed a model for predicting behavior of FRP-wrapped concrete cylinders
using experimental data. Experimental data was developed by testing 24 concrete cylinders with
dimensions of 152 mm by 305 mm tall. Cylinders were wrapped with carbon or glass FRP and
then loaded cyclically. During cylinder testing, the discovery was made that using one layer of
FRP wrap was only beneficial in increasing cylinder ductility but failed to increase compressive
strength (Zhao et al. 2006). Researchers also discovered that the Glass-FRP caused the cylinder
to have increased ductility, but Carbon-FRP caused ultimate strengths to increase more than
Glass-FRP (Zhao et al. 2006). The concluding observation from testing showed that a thick wrap
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would potentially cause the cylinder to fail during unloading because the FRP squeezes the
cylinder after loading.

After completing testing on 24 cylinders, a model was developed by Shao et al. to explain
observed cyclic behavior. The madel is a bilinear curve. The concrete core’s modulus governs
the first part of the stress-strain curve and the FRP jacket controls the latter part of the curve. The

stiffness of each part is a primary factor in the curve’s response, given by:

(E1-E)ec
fe = + E,e,
[1 + (%H” n (2-159)

where E; and E; are slopes of the response, given by:

E, = 3950./f,
(2-160)

E;t;
E, = 245.61£/92 + 1.3456#

where E; is the modulus of elasticity of FRP, t; is jacket thickness, and f ¢ is unconfined strength
of the concrete. In addition, n is 1.5 and f, and f, are given by:

fo = 0.872f;, + 0.371f, + 6.258
2-161
1 &1y

=D

where fj is tensile strength of the wrap. Ultimate strength of FRP-confined concrete is given by:
fon = foo + 6.0£,%7 (2-162)
which can be used to find ultimate strain using

e 2Jaulo (2-163)
E;
The unloading branch of the response curve was found by developing a model for the secant

modulus, given by:

fun
E = -
Secu Eun — gpl (2 164)
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where fu, and &yn are stress and strain at unloading, respectively, and ¢ is the plastic strain, given

by:

_ fun

Esecu

Epl = Eun (2-165)

Shao et al. discovered a linear correlation between the secant modulus of unloading and E.

Analyzing data, a tri-linear model was adopted for Ececy, given by:

ES@C‘U.

Ey

1,0<f“—”<1

 flo
fun fun
—0.44 x—"+1.44,1 < — < 2.5 (2-166)
féo feo
0.34,fL," > 2.5
féo

Using the above correlation, the unloading response was determined by the following equations:

& — g{m
X = S —
Epl — Eun
(2-167)
(1 =-x)?

fe = mfu’n

2-4-2-2-(g) Lam and Teng Model (2009)

Lam and Teng used the monotonic model proposed for stress-strain behavior of confined

concrete with FRP under monotonic loading as an envelope curve for their cyclic model. Based

on experimental works, Lam and Teng concluded that the unloading path for FRP-confined

concrete is highly nonlinear except in the initial loading stage. They highlighted two primary

observations:

e The degree of nonlinearity or curvature of the unloading path increases by increasing the

strain.

e The slope of the unloading path at zero stress usually is nonzero; when the unloading

strain increases, this value consequently increases.

77



Based on Lam and Teng’s observations, Shao’s cyclic stress-strain model is inadequate
for predicting the unloading path because he considered only a small range of strain in his
studies. The following equation describes the unloading path in Lam and Teng’s model:

o, =ag] +be, +c (2-168)
where

Oun — Eun,O (gun — &l )

N _ ol _ el —
Eun gpl 775p| (gun gpl)

a=

) (2-169)
b= Eun,O - nggl ' (gun _gpl )

— n

In Egs. (3-168), 7 is an exponent and g_ ., is slope of the unloading path at zero stress, defined

un,0

as
n=350¢g,, +3
0.5f,
- (2-170)
Euno = Min o
Gun
En — €&

un pl
Based on Lam and Teng’s observations from experimental work, they used a linear
function as a main part of the reloading path, which continues with a parabola in order to reach

the monotonic envelope curve. The defined linear portion of the reloading path is

O; =0} + Ere (gc _gre) Ere < & < Eref (2'171)
where
O, — 0O
Ere = Ere < & < Eref (2'172)
Es — &

ref re
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In Egs. (3-170) and (3-171), - is reference strain depending on the number of cycles. In order

ref
to evaluate the degree of stress deterioration under repeated unloading/reloading cycles and

define the reloading path, the reference strain must be defined as follows:

gref 1 =&

un,env and Gref,lza

un,env

c _ ‘9ref,n—l gun,n < gref,n—l
ref ,n
gun.n 8un,n > 8ref n-1 (2-173)

_ O'ref ,n-1 gun,nggref,n—l
Oref n

Ounn ‘gun,n > Eref ,n-1

When the reference strain is defined, o, is calculated using linear portion. Once the linear
portion is calculated, the parabolic portion is defined. The following assumptions define the
second portion:

(a) The parabola starts from the reference point (gref ,anew).

(b) The initial slope of the parabola is equal to E,, .

(c) The slope of the parabola at the point which reaches the monotonic curve is equal to the
envelope curve defined by the monotonic curve.
The parabola expression is as follows:
0. =As’ +Bg, +C g4 <&, <¢ (2-174)

ref — ret,env

where A, B, and C are constants that must be determined. A, B and C are calculated as follows:

B= Ere - 2A€ref
(2-175)
C= Ohnew — Agrzef - B‘c"ref
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As mentioned, the first linear portion continues with the parabolic portion in order to
obtain the envelope curve. However, in the following cases the line portion continues to the

envelope curve:

Case (1) - When &, ¢y <0.001, S0 &,y eny = Ererenv.n TOr any value n.

>0.85x0

rel — un,env an

Case (2) - When gun,env>0'0011: for n=1, Eretenvl = Eunenv if o

Eretenvin-l —

gun,env if both Ores >0.85x Oun,env and gret,env,l = gun,env are satisfied.
For Cases (1) and (2), the following equation must be used to calculate the slope of the linear

portion:

Ere = Tunew — Tre Ere SE S Epgt (2'176)

re —
‘gun .env gre

2-4-2-2-(h) Varma, Barros and Sena-Cruz Model (2009)
Varma and Barros (2009) proposed a stress-strain model to model CFRP-confined, short,

circular concrete columns under cylic and monotonic loading. The theoretical cyclic stress-strain
model proposed for cyclic loading is based on a three-sectioned monotonic model. The three
zones (I, 11, and I11) are defined by a linear section, a nonlinear transition section, and another
nonlinear transition section. The third section (Zone 111) is the only zone significantly influenced
by FRP. These regions are illustrated in Figure 2-17. Zone | uses the following equations for the

region 0<¢, <gg,:

fc = Eci X &

E.=Eq (2-177)

Sp = B> Exoupc
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where E, is initial modulus of elasticity for the concrete evaluated experimentally or by

applicable code equations and B=0.4. ¢, . Is strain corresponding to axial compressive

strength of unconfined, plain concrete. Zone Il uses the following equations for the region

Ep SE =&y

fc = 1:ca X(gc _gca)[Eca + A|gc _gca|Rj|

E. = Eq + A(R+1)|e, — el

R = Eca - Ec,sec and A= Ec,sec — Eca (2_178)
"E . -E, - R
Ec,sec B ECb |€Cb - ‘9ca|
f b — f
Ec,sec =4
b ~ €ca
fe
h
f ! (Ecu?u f;:un)
cu
g r
fcrs Zone ITI \L i > (Ecres fere)
Zone I1 \ ‘,." ;
< Y
! ' ]
<0 il
P it if
L i Zonel
i fo
1 SC
Scp ECQ 1'\4’,\_2,‘0?:"1 Ecu

Figure 2-17 Schematic of FRP-confined envelope curve
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The transition zone begins from the end of Zone I (g, fca) and ends at the start of Zone

I (gep, fep). In Figure 2-17, these points are labeled P and Q, respectively. Zone Il uses the

following equations for the region ¢ <&, <&, :

fo = foourc tK

f
- 1ok, | —e 1
" g"°’“’°{ ' Z(fco,upc H (2-179)

Y

fi="1fq+ fyx—=

Equations for Zone III (confined concrete) are taken from Harajli’s (2006) paper. The remaining
equations associated with Varma et al. (2009) model are described in Section 2-4-1-5-(a). The

cyclic model was developed to predict four loading conditions:

e Complete unloading and complete reloading (A to B to C to D)

e Partial unloading and complete reloading ( A to B to C to D)

e Complete unloading and partial reloading ( A to B to E’)

e Random loading (A to B'to E to F ")
These four unloading and reloading cases are shown in Figure 2-18. Shifts in stress and strain
(denoted as Ag; and Af;) are commonly observed in a confined concrete cyclic loading cycle

because of change in stiffness (moduli) in which the reloading branch always rejoins the loading

curve at a higher strain than the unloading strain.
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Figure 2-18 Schematic of FRP-confined concrete cyclic model

The unloading portion of the cyclic stress-strain model uses the same equations as the

transition zone (Zone 1) equations. Points B, C, and D represent the three points of interest in a

complete reloading cycle. This curve is represented by

foew = foun —Af, FromBtoC
fCﬂE‘W
Eqew=—"—"— FromBtoC
un gcpl
foe =E.x&4. FromCtoD
Eere =Ean + A, FromCto D

Eg e =E.x&,. FromCtoD

Cl

where

cun

f
&

& -
cun
E

cpl —
csecu

gcun,g

Af, =014y, (

:)0.15

cu
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Ag, =0.19x%x ¢,

cun

where . is concrete plastic strain, f__ is new value of stress corresponding to the unloading

cpl cnew

strain (g,,), and f,, is stress on FRP-confined concrete at unloading before load reversal.

cun
Equations from Points C to D (denoted with subscipt “cre”) correspond to returning stress, strain,
and modulus of elasticity.

Partial unloading allows for complete or partial reloading. Both curves calculate modified

intermediate (C') and returning points (D). Stresses and strains associated with partial
unloading are assumed to be between the envelope curve and the complete unloading curve.
Varma et al. (2009) denotes these partial points with an asterisk. Partial unloading equations are
as follows:

* E — & ' '
new = Toun —Af, =—2 FromB toC

Eoun — gcpl

*

* f - f ' ]
Eqew = —+—2 FromB toC
cun — €ero
., (2-182)
Ee = Equn — A&, % FromC to D

cun cpl
E.,.=E.x¢&,, FromCtoD

foo=f.xée,, FromCtoD .

In addition, experimental results revealed that an imaginary unloading strain (%) was valid to
connect the “previous envelope unloading strain and the envelope reloading strain” (Varma et al.

2009) for future load responses of a partial unloaded curve.

Eere — 8cp|

* E =&
Eun =€en t {ce—CUNJ(gcre —Eun ) (2-183)
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2-4-3 Plastic Hinge Models

Plastic hinge length of RC members is defined as the length over which a concrete
section experiences severe damage. Three physical zones in the plastic hinge of RC members
include longitudinal steel yielding, concrete crushing, and curvature concentration zone (Jiang et
al. (2014)). Extensive damage of the plastic hinge zone, typically occurring at sections with
bending moment larger than bending moment corresponding to section yielding, can be observed
in the following forms: comprehensive crushing of the concrete cover, concrete core damage,
inelastic buckling of longitudinal steel, and lateral steel yielding or FRP rupture (Ho and Pam
2003). For practical purposes, equivalent plastic hinge length, L, is defined as the length over
which plastic deformation occurs with constant distribution of plastic curvature. This constant

curvature, known as maximum plastic curvature, ¢,, is assumed to be equal to the difference
between maximum curvature, ¢,,, and yield curvature, 4, :
P =0n— 9y (2-184)
However, plastic rotation can be related to L, and ¢,, as follows:
0,=0,xL=(0,-6,)xLp (2-185)
The assumption is made that plastic rotation, ¢, is concentrated at mid-height of the
plastic hinge. Therefore, plastic displacement at the top of the cantilever, A, can be obtained by
the following expression:
Ap=Apax —A, =0,(1-05xL:)= (4, —9,) xLp x(L-0.5x L) (2-186)
where L is column length, A . is maximum displacement at the top of the cantilever, and A is

yield displacement given by the following equation:
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A, =¢,xL?/3 (2-187)
The presented procedure to determine L, with respectto A, and A, has been implemented in

many researches to determine plastic hinge length from moment-curvature and lateral load-
lateral displacement relationships.

RC member plastic hinge research can be categorized according to variables such as the
type of reinforcing material (FRP/steel), concrete strength, section geometry, and load pattern.
Work presented herein consisted of studies categorized based on their consideration of the effect
of load patterns on plastic hinge determination:

e No axial load
1. Monotonic lateral load/displacement
2. Cyclic lateral load/displacement
e Constant axial load
1. Monotonic lateral load/displacement
2. Cyclic lateral load/displacement
Uniaxial
Biaxial
e Variable axial load
1. Cyclic lateral load/displacement
Uniaxial
Biaxial

However, few researches have been applicable to RC members under variable axial load

(Blakeley et al. (1971), Hachem et al. (2003), Esmaeily et al. (2005), Phan et al. (2007),

Mortezaei et al. (2012), and Mortezaei (2014)) or biaxial lateral load/displacement (Hachem et
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al. (2003), Esmaeily et al. (2005), Alemdar (2010), and Biskinis et al. (2010)). Among reviewed
papers in the current study, the only method applicable to all possible load patterns, including
constant and variable axial loading with monotonic and cyclic biaxial lateral load/displacement,
is presented in research reported by Esmaeily et al. (2005). Assuming that load pattern
considerably affects RC member behavior, additional experimental and analytical studies should
be undertaken to provide increased understanding of the behavior of the plastic hinge region of
RC columns subjected to various load patterns. For example, investigation of variable axial load
effects on the behavior of structural elements is essential because observations from previous
earthquakes have indicated that structures subjected to near-fault ground motions experience
more severe damage compared to structures under far-fault ground motions. Following, it is a

review of existing plastic hinge models.

2-4-3-1 No Axial Load-Monotonic Lateral Load/Displacement
Cohn et al. (1963) tested two series of five two-span continues reinforced concrete beams

under monotonic concentrated load. Steel ratios at critical sections differed in each beam
specimen. Calculated plastic hinge lengths from test data were within the range of 0.3d to 0.9d
where d is effective depth of the beam section.

Mattock (1965) tested 37 simple-span beams under concentrated load. Test variables
included concrete strength, beam depth, amount and yield point of reinforcement, and distance

from point of maximum moment to point of zero moment. Based on test results for identical

degrees of reinforcement, ((q—q)/ g,) plastic hinge length increased with increased ratio z/d

where q=pxf, /f  is tension reinforcement index, o =p xf,/f, is compression
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reinforcement index, 0, =p, x f, / f. is tension reinforcement for balanced ultimate strength
conditions, z is distance from section of maximum moment to adjacent section of zero moment

(in.), d is distance from extreme compressive fiber to centroid of tensile reinforcement (in.), o

and p are tensile and compressive steel ratios, respectively, f, is yield point stress of tension

y

reinforcement, and f, is concrete cylinder strength. In addition, for the same ratio z/d, plastic

hinge length decreased with increased degree of reinforcement. By analyzing test data, Mattock

proposed the following equation to estimate plastic hinge length:

d z ] [y 9-a)[d ]
Q—Z{M{LMJ; q @ " jl&Z} (2-188)

Corley et al. (1966) presented test results of 40 simple-span beams under concentrated

load. These tests were an extension of tests conducted by Mattock (1965). Test variables
included size of specimens, confinement of concrete in compression, moment gradient, tensile
reinforcement ratio, and size of loaded area. Based on test results of this study, the following
equation was proposed for plastic hinge length:
d 0.2z
= — 4 —
2 Jd

where z is the distance along the span from section of maximum moment to adjacent section of

Lo (2-189)

zero moment (in.) and d is the distance from extreme compression fiber to centroid of tension
reinforcement (in.).

Riva et al. (1990) derived an expression to estimate plastic hinge length using a computer
lumped-plasticity program, STRUPL-LC. A parametric study on 56 simply supported and 32
cantilevered reinforced and pre-stressed concrete beams tested under monotonic distributed or

point loads was conducted. Variables of this study included section shape, mechanical
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percentage of tension steel, g, mixed reinforcing steel, », load distribution, structural
configuration, boundary conditions, and pre-stressing cable layout. Terms q and » are defined
as follows:

q:Aprpu"'Astsl
b, xdx f,

(2-190)
_ A, x f,
Apx fpu+AS>< fy

v

where f, is ultimate pre-stressing steel stress, f, is reinforcing steel stress at the limiting

sl
strain, f, is concrete compressive strength, d is effective depth of the section, b, is web width

of the section, A; is the reinforcing steel area, and A, is the pre-stressing steel area.

Table 2-1 Numerical constants of Egs. (3-189) to (3-192) (Riva et al. (1990))

Beam Model A B C D E F G f(y)

YY VYV VYV vy
w2 Vi

058 30 35 30 50 65 05 (1-050,¥2)Vwe

039 70 65 50 54 00 075 (@1-0.75/32)

. b

I *Z 025 70 80 60 28 00 08 1-0.80y

Three plastic hinge length equations were defined for three states of ¢, / ¢, , where ¢, is plastic

curvature and ¢, is yielding curvature. These three stages and corresponding plastic hinge

length equations are:

1. From cracking to yielding limit state (¢, / #,, <1.0). In this stage, plastic hinge length

increases from zero to its maximum value at yielding limit state.
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L B é ¢/100q b —p/1000¢?
L o A—— x| 2 x| — x f(y) (2-191)
z 1000xq Boy b,,

2. From yielding to reinforcement strain-hardening (1.0<¢,/#, <~7.0). In this stage

plastic hinge length drastically decreases.

. 5 y —(0.9-0.8y) b —p/1000g?
L= Ae— x| 2 x| — x f(y) (2-192)
z 1000xq ) | 4, b

W

3. Ultimate limit state (4, / #,, >7.0). In this stage, plastic hinge length increases up to the

value corresponding to the ultimate limit state.

G
L _|E, F | (b (2-193)
z | 100 1000 " ¢, |\ b,

where L, is plastic hinge length, z is abscissa of the contraflexure point, and b and b" are
compression flange and tension flange width, respectively. A, B, C, D, E, F, G, and f(y)
approximated by regression analysis are based on bending moment distribution. These values
correspond to various loading and support conditions, as shown in Table 2-1.

Zhao et al. (2011) used FEM to study plastic hinge length involving three physical zones: rebar

yielding, concrete crushing, and curvature concentration. In their study, L

sy 1 L

o+ Lpcrand Lo
were defined as maximum length of the rebar yielding zone, concrete crushing zone, curvature
increasing zone, and curvature localization zone, respectively. The curvature increasing zone is
the region in which increased curvature and insignificant increase in other parts are observed.
The curvature localization zone is the region of curvature concentration during plastic rotation.

Zhao et al. believed that dominant deformation in plastic hinge is flexural, so members with

small aspect ratio were not considered. A parametric study to evaluate the effect of yield strength
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of reinforcing steel ( f, ), strain hardening stiffness of steel bar (E,,), compressive strength of

concrete ( f,) shear span of beam (z), effective depth of beam (d ), tension and compression
reinforcement ratios (p, and p,. , respectively), tension rebar diameter (d,), and aspect ratio

z/hon Ly, L,, L,,and L, was conducted. Results of this study indicated that Ly, has the

sy ! —cs !
maximum value compared to lengths of other zones: Its value is less than two times the effective

depth. Empirical plastic hinge lengths reported in the literature were close to L, and L, but
different from L.,and much larger than L. Results of this study indicated a clear trend of

increasing L , Ly, L,,and L, with an increase in beam aspect ratio, effective depth, and

sy !
strain hardening stiffness of steel bar for normal range of strain hardening stiffness. However,

Ly, L, did not show a clear trend of increased f, unless the effect of strain hardening stiffness

sy !

of steel bar was considered. In this case, L., L increased with an increase in f,, L

N and L,

sy !
increased with an increase in p, before rebar yielding and concrete crushing point, after which

the opposite trend was observed. For smaller values of d,, increase in d, caused an increase in

L, . However, for bars with a very large diameter, L, L, increased if f; increased. For smaller
values of o, no significant trend was observed, while for larger values of pg., length of

yielding zone increased when o increased. A comparison of numerical results of this study and

those of available empirical studies indicated that plastic hinge length given by Paulay and
Priestley yielded the closest value to plastic hinge length obtained from this study. In addition,

proposed models by Corley, Mattock, and Sawyer overestimated plastic hinge length for E, less

than or equal to zero and underestimated plastic hinge length for E, greater than zero. Among
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the studied parameters, p,, p.., Eg,, and d, had the most significant effect on plastic hinge

length.

Zhao et al. (2014) tested five groups of simply supported reinforced concrete beams with
rectangular cross sections under two symmetrical monotonic loads. Test results indicated that
equivalent plastic hinge length was approximately equal to beam depth (h) for all specimens
tested in this study.

Gopinath et al. (2014) conducted a parametric study on 173 test data from the literature to
determine plastic hinge length of simply supported beams under central point loading. Variable
parameters included strength of concrete, yield strength of steel reinforcement, geometrical
dimensions of beams, reinforcing ratio, support conditions, and load configuration. Based on
results of this study, L, decreases with an increase in beam depth and reinforcement percentage
does not affect plastic hinge length. Among the studied variables, effective depth of the beam
had the largest correlation with plastic hinge length. The proposed equation to predict plastic

hinge length is as follows:

(2-194)

Variable parameters are defined in Figure 2-19 M, and M, are yield moment and ultimate
moment, respectively, given by the following equations:
M, =0.87x f, x A, x(d —042x X, )
(2-195)
M, =0.87xf, x A ><(d —0.42x Xu)

where f, and A, are yield strength and area of tension reinforcement, respectively. X, and X,

are neutral axis depth at yield load and ultimate load, respectively.
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Bending Moment Diagram

Figure 2-19 Determination of plastic hinge length based on bending moment diagrams

(Gopinath et al. (2014))

2-4-3-2 No Axial Load-Cyclic Lateral Load/Displacement
Thompson et al. (1980) developed a computer program to investigate the effect of

variables such as longitudinal prestressing and non-prestressed steel ratio and distribution,
transverse steel amount, and cover thickness on curvature ductility of prestressed and partially
prestressed rectangular concrete beams. In order to assess accuracy of the developed analytical
model, test results from other studies were compared to results obtained from the analytical
model in this study. Tests were conducted on beam-column assemblies, and earthquake loading
was simulated by reversing the direction of vertical loads at the beam ends. Assuming a
rectangular distribution of curvature along the plastic hinge length, the measured equivalent
plastic hinge lengths of beam specimens were approximately one-half the overall section depth (

hi2).
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2-4-3-3 Constant Axial Load-Monotonic Lateral Load/Displacement

Chan et al. (1955) conducted 23 tests on RC frame assemblies under monotonic constant
axial load on columns and monotonic bending moment. The influence of axial load level and
lateral binding ratio on plastic hinge length was studied. Because the axial load level was high in
all tests, primary failure was due to compression. Analysis of test data indicated that plastic
hinge length does not vary significantly when varying the steel ratio for fixed-end beams.
Analysis also showed that plastic hinge length had an average value of 0.4xS, where S is the
distance between the point of maximum moment and the point of contraflexure. In addition to
the columns, plastic hinge length increased with an increase in axial load level. However, for
normal rectangular frameworks, plastic hinge length did not exceed 0.7 xS .

Baker et al. (1964) developed an equation to estimate plastic hinge length based on test
results of 32 beams under monotonic bending moment with or without axial loading. Test
variables included grade of concrete and steel, steel ratio, single loads and double loads, axial
force, shear magnitude, transverse binding, and compression steel ratio. The proposed plastic

hinge equation is as follows:
7 14
Ly =k xk, x Ky x (Ej d (2-196)

where zis the distance of critical section to point of contraflexure and d is effective depth of the

section.

1:

0.9 For Cold —Worked Steel

k, = (1+ O.SEJ
PU

{0.7 For Mild Steel

(2-197)
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where P is applied axial force and P, is maximum compressive force which the member could

sustain without any bending moment.

3=

0.6 When cube Strength = 6000 psi
(2-198)

0.9 When cube Strength = 2000 psi

For normal values of z/d, the value of L, lies within 0.2xd and 0.4xd .

Paulay and Priestley (1992) proposed an equation to predict plastic hinge length as a

function of column length (L), longitudinal steel reinforcement diameter (d, ), and yield strength

of steel reinforcement ( f, ):
L, =0.08L+0.022d,f, (MPa). (2-199)
The average value of L for typical columns and beams can be approximately taken as

0.5xh, where h is the section depth. The theoretical value of plastic hinge length obtained from
integration of curvature distribution did not include “tensile strain penetration” length into the
footing. Eq. (3-198) considers “tensile strain penetration” phenomenon and steel strains due to
inclined flexure-shear cracking.

Mendis (2001) compared plastic hinge length measured experimentally to those estimated
by nine existing expressions. Test results were adopted from experimental work Mendis (1986)
conducted on nine simply supported beams subjected to axial load, shear, and bending moment.
In this experimental work, the effect of compression and tension reinforcement ratio, transverse
steel spacing, shear span ratio, and axial load level on plastic hinge length was evaluated. Axial
load ranged from 175 to 50,100 KN, while balance axial load on the axial load-moment
interaction curve for test specimens was approximately 100 KN. Test results showed that plastic
hinge length increases with increased shear span ratio, compression, and tension reinforcement

ratio and decreases with increased transverse steel ratio. Results also showed that plastic hinge
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length is insensitive to axial load level. According to test data of this study, all beams subjected
to axial load had constant plastic hinge length and were approximately equal to 0.4xd , where
d is effective depth of the beam cross section. Compared to other plastic hinge length
expressions reviewed in this study, the predicted plastic hinge length using the expression
recommended by ACI Committee 428 in 1968 best matches experimentally observed plastic

hinge lengths for low axially-loaded columns and high-strength concrete beams (up to 80 MPa).

2-4-3-4 Constant Axial Load-Cyclic Lateral Load/Displacement-Uniaxial
Park et al. (1977) performed tests on 10 prestressed and non-prestressed reinforced

concrete beam-columns and beam assemblies with approximately full-size members subjected to
static cyclic loading. The frame was loaded as depicted in Figure 2-20. Cyclic loading was

simulated by reversing direction of vertical loads on the beams.

Figure 2-20 Frame loading

Based on test results, measured plastic hinge length was independent from prestressing

steel with an average value of half the overall section depth (h/2).
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Park et al. (1982) tested four square reinforced concrete columns under constant axial
load and reversal lateral displacement. Test variables included axial load levels varying between
0.2 and 0.6 and lateral steel reinforcement ratio. Test results indicated that measured equivalent
plastic hinge lengths have an average value of 0.42xh and are not influenced by the axial load
level in which h is the overall section depth. Plastic hinge length is equal to 0.4 xh. Baker and
Amarakone (1965) and Corley and Gene (1966) proposed equations that predict larger values for
plastic hinge lengths compared to measured plastic hinge lengths in this study. Corley’s equation
provides more accurate results at higher axial load levels compared to Baker’s equation.

The results of experimental work conducted at the University of Ganterbury (Gill et al.
1979, Potangaroa et al. (1979), Ghee et al. (1981), Davey et al. (1975), Munro et al. (1976) and
Heng et al. 1978) indicated that plastic hinge length does not depend on the axial load level with
a value between 0.35xH and 0.65xH , where H is the overall depth of the sections. Mander
(1983) performed further investigations on experimental results of the aforementioned tests and
suggested that plastic deformation is due to moment gradient and yield penetration of
longitudinal bars. Test results of four hollow RC columns subjected to constant axial load and
cyclic lateral displacement and previous studies led Mander to propose the following equation to
predict equivalent plastic hinge length:

L, =L, +0.06xL

L,, =0.32,/d,

where L is column length and d, is the longitudinal bar diameter in mm. The first and second

(2-200)

terms of Eqg. (3-199) denote the contribution of yield penetration and spread of plasticity along

the member length due to the moment gradient, respectively.
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Zahn (1985) tested 14 columns with circular, hollow circular, and square sections under
constant axial compressive load (P) and reversible horizontal load. Axial load ratio differed for
each specimen. Plastic hinge length calculated using Priestley and Park’s (1987) equation and
plastic hinge length observed from tests in the current study were compared. The comparison
indicated that Priestley’s equation overestimates L,, for square columns with diagonal bending
and hollow circular columns. In addition, for axial load ratios less than 0.3, Priestley’s equation

gives larger values for L, compared to experimental values. Because overestimating plastic

hinge length is not conservative, Zahn suggested that, for columns with low axial loads, a

reduction factor should be applied to Priestley’s equation as follows:

(0.081 +6d, ) 054167 | —F <03
f f A,
(2-201)
0.081 +6d, P 503

c

c
L, =

where | is column length and d, is the diameter of longitudinal reinforcing bars (mm). However,
for hollow circular columns with one ring of reinforcing bars and no confinement through the
tube walls, a reduction factor of 0.25 should be applied to Priestley’s equation as follows:
L, =0.06l +4.5d, (2-202)
As noted in their study, additional experimental data is required to validate equations proposed
for plastic hinge length, especially columns with d, #16.
Priestley et al. (1987) derived an equation for plastic hinge length based on test results of
RC bridge columns under constant axial load and inelastic cyclic lateral displacement. Test
variables included cross-sectional shape, column aspect ratio, axial load level, confining
reinforcement ratio, yield strength, and configuration. Axial load ratio for solid columns was

between 0.2 and 0.7 and between 0.1 and 0.3 for hollow columns. Curvature distribution was
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assumed to be constant along the plastic hinge length. Yield penetration and shear spread of
plasticity were also considered. Curvature distributions along column lengths for all columns
specimens were measured, and the following relationship to estimate plastic hinge length was
proposed:

L, =0.08L +6d, (2-203)
where L is the distance from point of contraflexure of the column to the section of maximum

moment, and d, is the bar diameter (mm). The calculated mean value of the plastic hinge for all

tests was approximately 0.5xh, where h is gross section depth in the direction of seismic
loading.
Tanaka et al. (1990) tested eight RC columns under constant axial and cyclic lateral

loading. Test variables included axial load level, shear span-to-depth ratio, lateral reinforcement

configuration, and anchorage details. Axial load levels varied from 0.1x f;x A, to 0.3x f; x A,

where f_ and A, are compressive strength and gross section area of the concrete column. Based

on observations from the aforementioned tests, the conclusion was made that plastic hinge length
increases when axial load level increases. Observed plastic hinge length was within the range
0.4xHto 0.75xH , where H is overall depth of the column section.

Sheikh et al. (1993) used test data of four high-strength and six normal-strength concrete
column large-scale specimens with prismatic and nonprismatic sections subjected to constant
large axial load level ranging from 0.47 to 0.77 and reversal lateral load. In this study, observed
plastic hinge lengths, including effects of yield penetration into the stub, were within the range of
0.85xh to 1.1xh, with an average value of 1.02xh. In addition, results indicated that plastic
hinge length is insensitive to axial load level, reinforcement steel configuration, concrete

strength, and confining steel ratio.

99



Dodd et al. (2000) used a shake table to test 14 cantilever circular bridge concrete
columns under simulated earthquake loads. Test variables included the column’s aspect ratio,
axial load ratio, base flexibility, base input motions, and the effect of initial low-level shaking on
column response to subsequent higher-level shakes. Axial load ratios varied from 0.05 to 0.45.
Equivalent plastic hinge length was assumed to be equal to the length over which curvature
distribution is constant. Experimental results indicated that plastic hinge length increases with

increased axial load level. Zahn et al. (1986) suggested that, for axial-load ratios less than 0.3, a

reduction factor of 0.5+1.6xP/ fc'Ag should be applied to the plastic hinge length equation

proposed by Priestley et al. (1992). The conclusion was made that plastic hinge length values
calculated with Zahn’s recommendation are conservative and show good agreement with values
obtained from tests of this study, especially for lower axial loads. However, Priestley’s equation
yields conservative values for tall and medium columns, but it overestimates plastic hinge length
for short columns. The authors of this study suggested that no reduction factor should be used for
an axial load ratio of 0.4.

Panagiotakos et al. (2001) used test results of 875 RC members under uniaxial bending
moment with or without axial load to investigate plastic hinge length of RC columns. Test
variables included test specimen geometry, reinforcement ratio and configuration, concrete
strength, steel type, and axial load level. The axial load ratio varied from 0 to 0.95. After
analyzing data of the 875 tests, the following expressions were revised from Paulay and
Priestley’s (1992) equation to estimate plastic hinge length in this study:

For cyclic loading

L, o =0.12L +0.014a,d, f, (MPa) (2-204)

For monotonic loading
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Lot mon = 0.18L +0.021a,d, f, (MPa) (2-205)
where f, is yield strength of tension reinforcement (MPa), L, is shear span of the member, d, is

the diameter of compression longitudinal reinforcement. a, is 0 when no bar pullout is present

from the anchorage zone beyond the section of maximum moment; 2 is 1 when bar pullout is
present.

Ho et al. (2003) investigated the plastic response of high-strength reinforced concrete
(HSRC) columns using test results of four column specimens subjected to low axial load level
and reverse cyclic displacement excursions. Based on experimental results of this study, plastic
hinge length of HSRC columns under low axial load does not exceed the depth of the column
cross section and is not affected by the lateral reinforcement ratio. Plastic hinge length, including
“stub effect” length, was suggested to be equal to overall depth of the column cross section (h).

Binici et al. (2008) developed an analytical model to investigate ductility of plastic hinge
zones of RC columns after FRP retrofitting. Obtained results of the proposed model were
verified against results of numerical analysis and test results, and a parametric study was
conducted to derive an equation for plastic hinge length. Carbon-FRP and Glass-FRP confined
RC columns subjected to constant axial load ratio between 0.1 and 0.4 with column aspect ratio (
L/R) of 10, longitudinal reinforcement ratio between 0.01 and 0.04, and cyclic lateral
displacement excursions were selected for the parametric study. The following equation was

proposed to calculate plastic hinge length:

L
Tp =0.077+8.16d—Lb (2-206)
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where d, is the longitudinal bar diameter. Plastic hinge length calculated by Eq. (3-205) was

shown to correlate well with observed plastic hinge lengths of 59 column specimens under
constant axial load and cyclic lateral displacement.

Berry et al. (2008) proposed an equation to estimate plastic hinge length using
experimental data of 37 large-scale circular columns. All test columns were confined by spiral

reinforcement and subjected to cyclic lateral loading and constant axial load less than

0.3x f, x A, , where f_ is concrete compressive strength and A, is the gross section area of the

column. Shear deformation was disregarded due to the typical aspect ratio of bridge columns of
this study. After conducting a parametric study, the following equation was proposed to calculate

plastic hinge length:

0.12f,d,
L, =0.0375L+ =" (MPa) (2-207)

Ji
where L is the distance between the point of maximum moment at the column base to the point

of zero moment at the column top, and f, and d, are yield strength and diameter of longitudinal
reinforcing steel, respectively. The second term of Eq. (3-206) reflects the strain penetration

effect, normalized with respect to \F in order to consider the effect of concrete strength on

bond strength.

Bae et al. (2008) conducted four tests on full-scale concrete columns subjected to reverse
cyclic displacement excursions and axial load levels from moderate to high in order to study the
effect of axial load and shear span-depth ratio (L/h) on plastic hinge length. Using a concrete
compression strain method and considering bar slip, shear, and flexural displacement, an
expression to estimate plastic hinge length was proposed. In order to reflect the stub confinement

effect, 0.25h was subtracted from the length corresponding to strains greater than compressive
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reinforcing bar strains. As a result, plastic hinge length increased with increased L/hfor high
levels of axial loads (axial load ratio>0.2). However, for low levels of axial loads (

axial load ratio >0.2), the effect of L/h on plastic hinge length was not significant and plastic

hinge length was approximately equal to the constant value of 0.25xh. For high values of axial
load, plastic hinge length increased with an increase in axial load level. For all axial load levels,

plastic hinge length increased when longitudinal reinforcement ratio (A /A,) increased. The

following equation was proposed to estimate plastic hinge length:

L =[0.3(3J+3(5]—0.1](5}0.252 0.25 (2-208)
h P, A, h

R, =085f (A, —A)+f,A (2-209)

where

where P is the applied axial load, A is area of tension reinforcement, A, is gross area of

concrete section, L is the distance from critical section to point of contraflexure, f, is

c

compressive strength of concrete, and h is overall depth of the column. Bae et al. suggested that
the specified plastic hinge length in ACI 318-05 is not conservative for columns subjected to
high axial loads. They recommended an increase in column length from h to 1.5xh in order to
require the use of closely-spaced ties.

Qinghua et al. (2008) implemented five plastic hinge models to develop a computer
program that investigates the accuracy of calculated damage indices, such as ultimate curvature
of critical section. Twelve quasistatic tests on bridge pier specimens, simulated by the computer
program, were subjected to monotonic or cyclic lateral loading and a constant axial load. Axial
load ratio varied between 0.7 and 0.19 in these tests. The implemented plastic hinge models

included Priestley and Park, Chang-Mander, Japanese code, and Esmaeily-Xiao’s first and
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second models. Details of these models are presented in the study by Qinghua et al. (2008).
Results of this study showed that although calculated residual displacement does not depend on
the implemented plastic hinge model, the ultimate curvature value is highly dependent on it. A
comparison between calculated values of ultimate curvature with various plastic hinge models
showed that Esmaeily-Xiao’s second model and the Japanese code model provide minimum and
maximum values, respectively. All calculated ultimate curvatures were less than experimental
ultimate curvatures except when Japanese code was implemented. Based on results, Chang-
Mander’s model and Esmaeily-Xiao’s first model gave most accurate values for ultimate
curvature, and Chang-Mander’s and Esmaeily-Xiao’s second model more accurately computed
maximum tensile strength of outmost longitudinal steel compared to the other three models.
Among the five studied models, Japanese code and the Priestly-Park model provided most
accurate results compared to experimental data. All five plastic hinge models underestimated
maximum compression strain of the core concrete and overestimated maximum tensile strain of
longitudinal steel, resulting in great statistic discreteness in calculated cycle fatigue indices by
the program. Qinghua et al. (2008) concluded that the Japanese code model is the most
conservative among the five models. Qinghua et al. concluded that the Priestly-Park model is
easy to use, appropriate for high bridge piers, and sufficiently reliable. They suggested the
Chang-Mander model as a second recommendation.

Gu et al. (2011) suggested an equation for plastic hinge length estimation based on test
results from 29 FRP-confined circular concrete columns subjected to simulated seismic load with
axial load ratio between 0.05 and 0.65. Due to a small lateral-steel ratio, confinement provided
by lateral reinforcement could be neglected in these tests. No lap splice was observed in the

plastic hinge region. Results of this study indicated that plastic hinge length increases with
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increased FRP confinement at low confinement ratio and decreases at high confinement ratio.
However, the type of confining FRP does not significantly affect plastic hinge length. The

proposed equation to calculate plastic hinge length is as follows:

L, =(059-234, +2.2847 )L +0.022f,d, where i, >0.1 (2-210)

o=
where A, is the confinement ratio, Lis column height, d,is the diameter of longitudinal
reinforcement (mm), and f, is yield strength of longitudinal reinforcement (MPa). Due to lack
of test data for confinement ratios less than 0.1, Eq. (3-209) is applicable only when A, >0.1.

The general form of this equation, adopted from Paulay and Priestley (1992), was modified to

consider the effect of FRP confinement. For A, =0, the original form of the Paulay and Priestley
(1992) equation for plastic hinge length should be used as follows:

L, =0.08L+0.022f,d, where A =0. (2-211)

Jiang et al. (2014) used analytical and experimental studies to evaluate the confining

effect of FRP on plastic hinge length. Tests were conducted on seven RC square columns under

constant axial load and monotonic lateral displacement with axial load ratio of 0.35. These

columns were confined with FRP with various confining ratios. The proposed equation for

plastic hinge length is a modified version of the Gu et al. (2011) equation in order to be

applicable to circular and rectangular columns. This expression consists of two terms: L, which
represents the normal plastic hinge adopted from the Paulay and Priestley (1992) model, and L,

which represents the FRP confining effect. Because the proposed equation by Gu et al. (2011) is

0.72
applicable to circular columns, the reduction factor k =(%) , In which band rare column

width and corner radius, respectively, is multiplied by the second term. This reduction factor is
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applied because the FRP confinement effect on plastic hinge in circular columns is more

comparable to rectangular or square columns (Wu and Wang, 2009; Wu and Wei, 2010; Wei and

Wu, 2012).
2r 0.72
L =Ly +(Fj ‘L, (2-212)
where
L,o =0.08L +0.022d, f, (2-213)

in which L is column height and d,, and f, are diameter and yield strength of longitudinal
reinforcement, respectively.

3.0281, 0<A, <1
pe = 2 (2-214)
051-2.34, +2.2847 0.1<A, <05

where A, is the confinement ratio defined as A, =f,/fy,, in which f, is cylindrical

compressive strength of unconfined concrete.
; 2E; et

" (2-215)

whereE,, &, and t are elastic modulus, ultimate tensile strain, and thickness of FRP jacket,

respectively. Based on findings of Jiang et al. (2014) studies, the effect of FRP jacketing on
plastic hinge length depends on the level of confinement. Plastic hinge length increases for low
level of confinement and decreases for high level of confinement, confirming findings of the
study by Gu et al. (2011). Because tests were conducted under larger axial load compared to
other studies, Jiang et al. concluded that, at zero-confinement, test results match better with
results predicted by Ho’s (2003) plastic hinge length equation compared to results of Paulay and

Priestly’s (1992) equation.

2-4-3-5 Constant Axial Load-Cyclic Lateral Load/Displacement-Biaxial
Biskinis et al. (2010) developed an expression for plastic hinge length based on

experimental data from 1540 cyclic or monotonic uniaxial tests. The proposed equation is
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applicable to RC beams, rectangular columns, members with T-, H-, U-, or hollow rectangular
sections and rectangular walls. Biskinis et al. (2010) acknowledged that the proposed model is
also on the safe side for biaxial loading. Flexural failure was the dominant failure mode in all
tests. The proposed equation for plastic hinge length

For cycling loading with earthquake resistance detailing:

Ly, =0. 2h{1+ ;mln(Q ; ﬂ (2-216)

For monotonic loading with or without earthquake resistance detailing:

Lot mon = h{1.1+ 0.04min[9,%ﬂ (2-217)

whereh is cross section depth and L, is shear span.

Alemdar (2010) used results of 72 dynamic and static tests of modern bridge columns to
propose two equations to estimate plastic hinge length. In this study, two methods were used to
determine plastic hinge length. One method used maximum drift capacity and the other method
utilized curvature distribution along the column length. All tests had axial load ratio of less than
or equal to 0.3. Multivariable regression analysis of test data was used to propose the following
equations for plastic hinge length:

Based on maximum drift capacity:

L

_p 3f,dy

Cand i ]
500 \/7 —1000 (psi and in) (2-218)

1,
5

Based on curvature distribution:

L, 3 f,dy

L
— si and in) . -
T 1000 \F 2500 (psi and in) (2-219)
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2-4-3-6 Variable Axial Load-Cyclic Lateral Load/Displacement-Uniaxial
Blakeley (1971) performed four tests on full-scale precast, pre-stressed concrete beam-

column assemblies subjected to static cyclic lateral and variable axial loading. Plastic hinge
location and confining steel ratio were the test variables. Observed equivalent plastic hinge
length in columns and beams tested in this study were approximated as one-half of the overall
depth of the member (h/2).

Phan et al. (2007) tested three one-third scale bridge columns on a shake table. Two of
the three columns were tested under near-fault ground motions and the other column was tested
under far-fault ground motions. Axial load ratio was 8% for all specimens, and the two columns
tested under near-fault ground motions were reinforced with various amounts of longitudinal and
lateral steel reinforcements. Paulay and Priestley’s equation was used to calculate plastic hinge
length. This equation was found to be conservative for all specimens. Plastic hinge lengths
measured from the specimen’s plastic displacements were larger than lengths calculated using
Paulay and Priestley’s equation. Columns subjected to near-fault and far-fault ground motions
had identical plastic hinge length.

Mortezaei et al. (2012) performed a numerical study, including nonlinear analysis of
1350 FRP-confined RC columns, to investigate plastic hinge region length for near-fault and far-
fault earthquakes. Variables in this study included axial load level, high-depth ratio, longitudinal
reinforcement ratio, and earthquake characteristic. Based on conclusions from this study, for

axial load ratio less than 0.2 (P/PR, <0.2), plastic hinge length remains almost constant, or

0.65x h for far-fault and 0.55h for near-fault earthquakes. For higher values of axial load, plastic
hinge length increases with increased axial load level. Although the effect of height-depth ratio
on plastic hinge length at low levels of axial load (P /P, <0.2) was not significant, plastic hinge

length increases with increased height-depth ratio at higher axial load levels. Columns with high
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longitudinal reinforcement ratio developed longer plastic hinge length. Results of this study
showed that columns subjected to far-fault earthquakes have longer plastic hinge length
compared to columns subjected to near-fault earthquakes. FRP jacketing also increases plastic
hinge length.

Recommended equations to approximate plastic hinge length are as follows:

LT _
L -104 P +3 A -0.1 [Ej+0.6520.65 For far — fault earthquake

R A, h

(2-220)

L - 0.4(5}%{%}—0.1} %)+0.5520.55 For near — fault earthquake

0

where P is applied axial load, P,is nominal axial load capacity, h is overall depth of the

column, A, is the area of tension reinforcement, A, is the gross area of concrete section, and H

is the distance between the critical section and contraflexure point. Proposed plastic hinge length
equations in this study were adopted from Bae and Bayrak’s (2008) study with an adjustment to
consider shear deformation, deformation caused by bar slip, and flexural deformation.

Mortezaei (2014) analytically investigated plastic hinge length of RC columns under
near-fault ground motions by simulating 936 RC columns under variable axial loading and cyclic
lateral loading/displacement using a finite element program. Variable parameters included axial
load ratio, height-depth ratio, and strength of concrete. Analytically obtained results were
verified against experimental results from literature. Results indicated that at low level of axial

loads (less than 0.2), L, is almost constant and equal to 0.55h. At higher axial load ratios, L,

increases with increased axial load levels. In addition, the observation was made that an increase

in height-depth ratio did not cause significant increase in L, for axial load ratios less than or

equal to 0.2. L, increased as height-depth ratio increased at higher axial load levels. RC columns
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under near-fault axial loading also exhibited longer plastic hinge length compared to columns
subjected to far-fault ground motions. The following equation for plastic hinge length was

proposed based on obtained numerical results:

L 0.2
== 0.85{1+ 0.45(3ﬂ(%j xk ForP/P,>0.2

P

(2-221)

L
T":o.ss For P/P,<0.2

where h is overall column depth, P is applied axial load, P, is nominal axial load capacity, and H
is the distance from critical section to point of contraflexure. Coefficient, k, depends on concrete

strength, £/, as follows:

0.65 When f, =32.5 MPa
K= 0.85 When f, =32.5 MPa (2-222)
0.85-0.01(f, —12.5) When12.5 MPa< f, <32.5 MPa

2-4-3-1 Variable Axial Load-Cyclic Lateral Load/Displacement-Biaxial

Hachem et al. (2003) tested four circular reinforced concrete bridge columns under

bidirectional earthquake loading subjected to near-fault and far-fault ground motions. The

average axial load level was approximately 0.06 fC'Ag , where f_ and A, are compressive strength

and gross section area of the concrete column, respectively. Observed plastic hinge length after
testing was approximately 0.75D, in which D is the column section diameter. Values of
observed plastic hinge lengths were close to values predicted by the Priestley et al. (1992)
equation.

Esmaeily et al. (2005) developed a computer program to investigate the effect of axial

load level and its pattern on lateral behavior of bridge piers. Based on Esmaeily et al. findings,
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the level of axial load and its pattern significantly affects column behavior. Methods developed
by Esmaeily et al. are applicable to biaxial monotonic and cyclic lateral loading and
displacement cases with variable or constant axial loading. Curvature distribution was assumed
to be linear between the first yield point (concrete or longitudinal bar) and the critical section in

the first method. L, defined as the length over which transition occurs, is the distance between

the first yield point and the critical section. In this method, L,, is given by:

L =11 My)
o =10-4 (2-223)

u

where | is total length, M, is the yield moment for the existing axial load, and M, is the

moment at the critical section.
For the second method, curvature distribution along the column at various hinge regions

is shown in Figure 2-21.

|

\ [ End of elastic region !‘

.
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[

Figure 2-21 Assumption of curvature distribution along column height

In Figure 2-21,
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D for length to depthr atio <12.5
o= . (2-224)

0.081 for length to depthr atio >12.5

where D is the column’s section depth in direction of analysis.
l,, =0.15f.d, (2-225)

in which f, is maximum tensile stress of the section at the column-footing interface and d, is

the longitudinal bar diameter. The value of I, (plastic length) is constant, but I, (stress

penetration length) changes at each step of analysis due to variation of f . The value |

trans

(transition length) is not constant and varies as the length of the elastic part changes with changes
in loading and displacement.

Plastic hinge lengths recommended by codes include:
I. ACI-ASCE committee 428 on limit design (1968):

R, (9 + 0.032RmJ
I, > 4 (2-226)
R.d

&
where

M, —M,

"M —-M

u e

0.044 ¢,
Ro=——"" (2-227)

Ecu0 ~ Coue

LM,
N, +JoM R,

d is the distance from extreme compression fiber to centroid of section reinforcement, &__is

cue

elastic component of maximum compressive strain in concrete at ultimate resisting moment and

axial load, ¢

cu0

IS basic maximum compressive strain in concrete to which a value in the range

0.003 to 0.004 is assigned, M, is maximum moment in a length of member, M, is ultimate
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resisting moment concurrent with ultimate resisting axial load, M, is elastic-limit resisting
moment, Vv, is shear adjacent to a concentrated load or reaction at a section of maximum
moment, and w is the uniformly distributed load at a section of maximum moment. If @and a
concentrated load (or reaction) at this section act in opposite directions, «=0should be used.
The following are AASHTO guide specifications for Load and Resistance Factor Design
(LRFD) of seismic bridge design (2007):
For columns framing into a footing, an integral bent cap, oversized shaft, or cased shaft:
L, =0.08L +0.15f,dy, >0.3f.dy, (2-228)
For noncasted prismatic pile shafts:
L, =0.08H + D’ (2-229)
For horizontally isolated flared columns:
L, =G; +0.3f . d, (2-230)
where Lis the length of column from point of maximum moment to point of moment contra-

flexure (in.), f,is expected yield strength of longitudinal column reinforcing steel bars (ksi), d,,

is nominal diameter of longitudinal column reinforcing steel bars (in.), D"is diameter of circular

shafts or cross-sectional dimension in direction under consideration for oblong shafts (in.), H is
the length of pile shaft/column from point of maximum moment to point of contraflexure above

ground (in.), and G, is the gap between the isolated flare and soffit of the bent cap (in.).

The institute research committee on ultimate load design of concrete structures (1962)

proposes
S\
L, =k, >k, x kg x [Ej d (2-231)

where
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=

0.7 for mild steel
0.9 for cold —worked steel

k, =1+ 0.5(P3J (2-232)

u

03,
Ky =0.9—E(fc ~11.7)

where P is the ultimate axial load for the member (allowing for the bending moment when

present), P, is the ultimate capacity of the member for axial load when no bending moment acts,

zis the distance of critical section to point of contraflexure, and d is effective depth of the

section.

114



Chapter 3 - Analytical Models and Algorithm

3-1 Introduction

Performance of reinforced concrete sections with arbitrary cross-sectional shapes has
been studied by many a number of researchers (Yen 1991, Yau 1993, Rodriguez and Avristizabal-
Ochao 1999, Fafitis 2000, Sfakianakis 2002, Bonet et al. 2004, Sousa and Muniz 2007,
Charalampakis 2008, Rosati et al. 2008, Papanikolau 2012) in an attempt to develop new
methods and algorithms and small computer applications to calculate axial force-bending
moment interaction surface of a section. Monotonic loading was employed in these studies to
construct the failure surface of a section; however, when exposed to a dynamic excitation such as
wind, tornado, or earthquake, columns can be subjected to combined non-proportional bilateral
and axial directions which is more pronounced in earthquake excitations, specifically in near-
fault regions with high vertical and horizontal ground accelerations, large velocity pulses,
directional effects, repetitive pulse effects, and aftershocks.

Estimation of available force and displacement capacity, energy dissipation, and inflicted
damage on a structural element or occurrence of a certain limit state with reasonable accuracy
requires a realistic prediction of structure performance. Accuracy of analytical predictions
depends on the employed analytical methods and implemented material models, constitutive
laws hysteresis rules, and distribution of curvature along the member. Detailed finite element
analysis using available commercial software such as ABAQUS or open source software such as
OpenSees has a steep learning curve and is not the first choice for a design engineer who prefers

less sophisticated approaches.
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Most small computer applications are limited to section analysis under a constant axial
load, monotonic and very few cyclic, unilateral displacement or force. In order to fulfill the need
for a simple, yet accurate analytical tool for performance assessment of reinforced concrete
columns, a computer program was developed that uses relatively simple analytical methods and
material models to accurately predict the performance of reinforced concrete structures under
various loading conditions, including cyclic lateral displacement under a non-proportionally
variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007). However, it was
limited to circular, rectangular, and hollow circular/rectangular sections and uniaxial lateral
curvature or displacement.

The computer program described in this study is the next generation of the aforesaid
program with additional functionality and options. Triangulation of the section allows
opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined
with any sequence of axial load provides opportunity to analyze the performance of a reinforced
concrete column under any load and displacement path. Use of unconventional reinforcement,
such as FRP, in lateral as well as longitudinal direction is another feature of this application.

Accuracy of various material models, hysteresis rules, and other assumptions for
behavior simulation of a reinforced concrete member tested under a certain loading pattern can
be examined by the developed computer program.

Performance of the developed computer application was assessed through various types
of analysis for RC members compared to respected experimental data, including moment-
curvature analysis of a hollow square cross section, force-deflection analysis of an oval section

under axial force and uniaxial lateral displacement and a square section under axial force and
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biaxial lateral displacements, and axial force-bending moment interaction surface for a square

section.
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Figure 3-1 Main window of the developed window-based computer application

3-1 Applied Analytical Method and Assumptions

The primary goal of this study was to develop a user-friendly, simple, and accurate
computer program capable of analyzing the performance of RC columns with any cross section,
reinforced by conventional or unconventional reinforcement in lateral and/or longitudinal
directions under any load/displacement pattern. The main window of this computer application is
shown in Figure 3-1. The load/displacement pattern can be a combination of independent biaxial

curvature or moment with any axial load pattern in a moment-curvature analysis, or independent
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biaxial lateral displacement or force under an independently variable axial load. Behavior of an
arbitrary-shaped section under various loading scenarios was modeled using the Bernoulli-Euler
assumption in which plane sections remain plane after deformation. The arbitrary-shape section
may consist of various materials and reinforcements, and the section may have any hole/opening.
Constitutive material in the arbitrary-shape section may have any monotonic and cyclic behavior.

Analysis was based on fiber modeling of the section effectively used by others (Prakash
et al. 1993, Mazzoni et al. 2006). When a fiber model is used to analyze a beam or column, the
cross section of the member is divided into smaller elements. When these elements are viewed in
relation to the length of the beam, they appear as long ‘fibrous’ elements, hence the name ‘Fiber
Modeling’. The stress and strain on each of these smaller elements is analyzed. When the stress
and strain on each element is known, the axial load and moment effects on that element are
easily found. After all of these smaller elements are analyzed, the axial loads and moments from
each element are added together to determine the forces on the cross section as a whole. The
accuracy of the analysis depends upon the size of each small element. As the cross section of the
member is divided into more elements, the smaller these elements become, the more accurate the
analysis.

Fiber modeling is a type of finite element analysis. Fiber modeling has two general
assumptions which separate it from finite element analysis. The first assumption is that as the
beam or column member bends, the cross section of the member always remains plane to the
longitudinal axis of the member.

The second assumption is that the deformation of each fiber is linear across each fiber of

the cross section. These two assumptions are general and cover the majority of fiber models. It is

118



possible, however, to implement a fiber analysis which does not follow one or both of these
assumptions.

Analysis addressed by the developed computer application includes (i) construction of
code-based 3D axial force-bending moment interaction surface for RC columns with
conventional lateral steel reinforcement using American Concrete Institute stress-block (ACI
318-11), (ii) construction of axial force-bending moment interaction surface using material
models for meshed RC columns laterally reinforced by steel, FRP, or steel and FRP assuming a
constant strain at the extreme compressive fiber, (iii) construction of real axial force-bending
moment failure surface considering material models for meshed RC columns laterally reinforced
by steel, FRP, or steel and FRP with or without considering the axial force loading pattern, (iv)
code-based biaxial moment-curvature analysis for RC columns with conventional lateral steel
reinforcement considering ACI stress-block, (v) biaxial moment-curvature analysis considering
the meshed section, including use of proper material models with any pattern of curvature in the
two lateral directions and any variation of axial load, and (vi) biaxial force-deflection analysis
using proper material models and a plastic hinge method, with displacement patterns in two

lateral directions and arbitrary axial load pattern.

3-2 Cross Section

As mentioned earlier, a fiber-based method was employed to analyze RC sections in the
developed computer application. In the triangular mesh algorithm used in the computer
application, various components of a column’s section are defined as separate regions. Each
region is divided into a number of fibers and each fiber, depending on the material and location

of the region, follows a particular cyclic rule and a monotonic material model as the envelope
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curve of the cyclic model. Longitudinal bars are considered separately in the model with distinct
monotonic and cyclic rules and load history. Triangular meshing caused the cross section of a
beam-column to have an arbitrary shape with or without holes/opening. The composite section
can be reinforced longitudinally by steel/FRP bars and laterally by conventional steel (tie/spiral),
FRP warps, or lateral steel and FRP warps. The effect of lateral reinforcement was indirectly
taken into account in modeling because uniaxial stress-strain behavior of the region enclosed by
lateral reinforcement is affected by lateral reinforcement. FRP warps can have stiffness in axial
and lateral directions, depending on the orientation of FRP fibers. The effect of FRP warps with
fibers only in hoop direction was modeled indirectly through the stress-strain relationship of
concrete regions. The fiber arrangement of a composite section is shown in Figure 3-2, which
includes four regions: (i) steel or FRP bars, (ii) section core region, (iii) region between FRP
warps and lateral steel reinforcement (or cover concrete for conventionally reinforced sections),

and (iv) FRP wraps region.

Figure 3-2 Composite section

Distribution of longitudinal reinforcement can be evenly distributed or costume
distribution. Lateral reinforcement can be provided by conventional lateral reinforcement

(tie/spiral), FRP warps, or FRP warps and steel lateral reinforcement. However, the FRP wrap
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may have stiffness in only the hoop direction, thereby providing confinement for the concrete
section or the hoop and longitudinal directions. In the latest case, FRP stiffness contributes to the

axial and flexural capacity of the RC section.

3-3 Material Properties

Mechanical properties of materials, including concrete, steel in longitudinal and lateral
directions, FRP wraps, and FRP longitudinal bars, are provided in the computer application.
Concrete strength, as measured in the lab or desired for analysis, must be provided. For steel
material, yield strength and modulus of elasticity are provided as basic mechanical properties,
assuming symmetric behavior for steel in tension and compression. Because behavior of FRP
wraps in tension and compressive directions may not be similar in general, tensile and

compressive strength and modulus of elasticity of FRP wraps must be individually provided.

3-4 Material Models

3-4-1 Monotonic Material Models

A number of widely-used existing material models were implemented in the computer
application in order to model uniaxial monotonic behavior of fibers with various materials. For
plain/unconfined concrete, the Mander et al. model (Mander et al. 1988) for low to medium
strength concrete and Cusson and Paultre’s model (1995) for high-strength concrete were
implemented into the program. For concrete confined by steel lateral reinforcement, the Mender
et al. model (1988) for low to medium strength concrete and Cusson and Paultre’s model (1995)
for high-strength concrete were chosen because of their accuracy in predicting the behavior of
circular and rectangular concrete columns with various longitudinal and lateral steel

configurations.
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The Mander et al. model (1988) was developed analytically for circular or rectangular
cross sections under monotonic, cyclic static or dynamic loading. The RC section may have any
general confinement type provided by either spiral or circular hoops, or rectangular hoops with
or without supplementary cross-tie. In this model, the effect of any confinement type was taken
into account by defining an effective lateral confining pressure that depends on lateral and
longitudinal reinforcement configuration. To predict strain corresponding to first fracture,
Mander et al. used an energy balance approach by equating strain energy stored in the concrete
caused by confinement to strain energy capacity of the lateral reinforcement (Mander et al.
1988). The stress-strain relationship of the Mander et al. model is based on an equation proposed
by Popovics (1973). Many researchers have used Mander et al. model to simulate model
monotonic behavior of concrete confined by conventional reinforcement. Because proposed
stress-strain models for normal-strength concrete may overestimate the strength and fracture
strain of high-strength concrete, Cusson and Paultre (1995) proposed their model to predict
monotonic behavior of high-strength concrete confined by steel ties, using experimental results
of 50 large-scale high-strength concrete tied columns tested under eccentric loading. Cusson and
Paultre also considered effects of tie-yield strength, concrete compressive strength, tie
configuration, and lateral and longitudinal reinforcement ratios when developing their model
(Cussan and Paultre 1995). Cusson and Paultre’s stress-strain curve for confined and unconfined
concrete consists of two parts. The initial part is a relationship originally proposed by Popovics
(1973), and the second part is a modification of the relationship proposed by Fafitis and Shah
(Fafitis and Shah 1985) for high-strength confined concrete. As reported by Cusson and Paultre
(1995), yield strength of lateral reinforcement is developed at the peak strength of concrete only

for well-confined high-strength concrete specimens; therefore, peak strength of confined
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concrete was computed by employing an iterative process in this model. Formulas of these two
models are provided in Chapter 3.

Samaan et al. (1998) and Youssef et al. (2007) models were chosen as representative
models for concrete confined by FRP. Samaan et al. developed a bilinear stress-strain model for
FRP-confined concrete based on 30 cylindrical specimens tested under uniaxial compression
loading (Samaan et al. 1998). They used a four-parameter relationship originally proposed by
Richard and Abbott (1975) to model initial behavior of FRP-confined concrete. Calculating the
fracture strain and its corresponding stress, the initial curve is followed by a line connecting the
initial part to the fracture point.

Youssef et al. (2007) used results of an experimental program that included large-scale
circular, rectangular, and square short columns confined by carbon-FRP and E-glass-FRP warps
in order to develop a stress-strain model for concrete confined by FRP. This model is applicable
for predicting monotonic behavior of low- to high-confined concrete. The initial relationship of
this model is a polynomial function followed by an ascending or descending linear part that

represents low- and moderate- to high-strength confinement, respectively.
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Figure 3-3 Example of “custom model” for plain or confined concrete

For concrete confined by FRP and conventional lateral steel, Kawashima et al. (2000),

Lee et al. (2009), and Shirmohammadi et al. (2014) models were implemented in the computer
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program. Kawashima et al. stress-strain model was developed by combining the Hoshikuma et
al. (1997) model for concrete confined by steel tie reinforcement and the Hostani et al. (1998)
model for concrete confined by carbon-FRP. The initial part of this model is a polynomial
followed by a linear path. The linear part of this model can be ascending or descending
depending on the confinement ratio of the concrete section (Kawashima et al. 2000). Lee et al.
(2009) presented a comprehensive stress-strain model for concrete confined internally by lateral
steel and externally by FRP wraps based on experimental results of 24 concrete cylinders
subjected to compression. The Lee et al. model consists of three polynomials: a second-order
polynomial function, a polynomial at strain corresponding to plain concrete strength, and a
polynomial at the point representing the lateral steel yield point (Lee et al. 2009). In order to
estimate ultimate stress and corresponding strain, Lam and Teng (Lam and Teng 2003) equations
were modified by introducing two new parameters based on experimental results from Lee et al.
Shirmohammadi et al. developed a constitutive stress-strain relationship to model the behavior of
concrete confined by FRP and lateral steel. They used Thorenfeldt et al. (1987) stress-strain
relationship which is the modified version of Popovics’ (1973) equation. Using experimental
data, Shirmohammadi et al. proposed two equations for ultimate strain and corresponding stress
for FRP and steel confined concrete. The formulations of monotonic stress-strain models for
concrete confined by FRP or FRP and conventional lateral steel are provided in Chapter 3.
Concrete tensile strength can be considered by assuming a linear equation with a slope
equal to modulus of elasticity of plain concrete in all aforementioned monotonic models. In
addition these models, a custom model option was added to the developed program. Using
custom model functionality, users can implement and use their own model, including linear and

second-order polynomial segments for various regions of cross section. Custom Model may
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include up to five segments, and each segment may be linear or polynomial. An example of a
Custom Model for plain or concrete confined by steel is shown in Figure 3-3. This monotonic
model consists of four segments; the first and third segments are polynomial, and the second and

last segments are linear.
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Figure 3-4 Implemented steel stress-strain models in computer application: (a) elastic-perfectly
plastic model, (b) Mander et al. model (1984), (c) Esmaeily-Xiao model (2005), and (d)
Menegotto-Pinto model (1973)

For steel, a plastic-perfectly plastic model, Mander et al. model (1984), Esmaeily-Xiao
model (2005), and Menegotto-Pinto model (1973) were implemented in the computer
application. Figure 3-4 shows these four steel monotonic models. When no information except
yield strength and modulus of elasticity is available, the plastic-perfectly plastic stress-strain
model can be used for monotonic behavior of longitudinal steel bars. Esmaeily and Xiao’s steel
monotonic model can be employed to model behavior of longitudinal reinforcement when

additional detailed information about reinforcing steel is available. Stress-strain behavior of
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various types of steel can be simulated using four parameters (K,, K,, K;, and K,). Yield

plateau, strain hardening, and softening of steel material were taken into account in this model
(Esmaeily and Xiao 2015). The hardening and softening branch of steel monotonic model can be
estimated using coefficients proposed by Esmaeily and Xiao (2002) when no information is
available except steel yield strength and modulus of elasticity. Based on tensile experiments of

steel bars, Esmaeily and Xiao proposed the ultimate strain (&,,) and strength ( f ) for steel to be

equal to 24.9x ¢, and 1.3x f,, respectively (Esmaeily and Xiao 2002).

oy

The Mander et al. model (1984) was developed as a result of a variety of tension and
compression tests. This model takes into account elastic behavior, yield plateau, and strain
hardening of steel material. Menegotto-Pinto’s model (1973) includes a bilinear curve. The
initial line has the slope of steel modulus of elasticity up to yield strength, thereby modeling
elastic behavior of steel material, and post-yield strength is defined as a linear function with a
slope equal to a portion (defined by b parameter) of the initial part’s slope. Yield plateau
characterization is neglected in Menegotto-Pinto’s monotonic model.

A bilinear model was used in the computer application to model uniaxial behavior of
FRP. The slope of tensile and the slope of compressive branches were equal to tensile modulus

and compressive modulus of elasticity of FRP wraps, respectively.

3-4-1 Cyclic Material Models

Various cyclic models were implemented in the computer application to model cyclic
behavior of materials in a composite section. A sample form of cyclic rules is shown in Error!
eference source not found.. Cyclic behavior of plain concrete can be modeled using a linear

model with a slope equal to the modulus of elasticity of concrete, or models developed by
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Mander et al. (1984) and Esmaeily and Xiao (2005). For cyclic behavior of concrete confined by
conventional lateral steel, Mander et al. and Esmaeily-Xiao cyclic rules were implemented in the
developed computer application (Figure 3-5). All these cyclic models can work with any
monotonic model as an envelope curve. In the Mander et al. cyclic model, the unloading path
follows a concave-upward parabolic path with a zero-slope at the strain-axis. Tensile strength of
concrete can be taken into account considering a linear path with a slope of plain concrete
modulus of elasticity. With increased strain, stress remains zero up to the last strain
corresponding to the zero stress, after which point strain grows in a linear reloading path with a
slope equal to plain concrete modulus of elasticity in the strain-axis (Mander et al. 1984). In
Esmaeily-Xiao’s cyclic model, the unloading path follows a parabolic path which is concave-

upward with a slope of E_, on the envelope curve (monotonic curve). This model may account

for the tensile strength of concrete. With decreased strain at the unloading path, stress decreases
to zero, after which point, if the tensile strength is ignored, stress remains zero; otherwise, stress
decreases to tensile strength using a linear function with a slope of E,. With increased strain,
stress remains zero up to the latest strain corresponding to zero stress and then stress increases,
following a concave-downward parabolic with a slope of E_ at the strain-axis (Esmaeily and
Xiao 2005). Cyclic behavior of concrete confined by FRP or lateral steel and FRP can be
modeled by a linear cyclic model with a slope equal to the modulus of elasticity of plain
concrete. Mander et al. (1984) and Esmaeily-Xiao (2005) cyclic models were originally
developed to model cyclic behavior of concrete confined by lateral steel; however, they can also
be applied to model cyclic behavior of concrete confined by FRP or FRP and lateral steel. The
Esmaeily-Xiao and linear cyclic models for confined concrete are shown in Figure 3-5 in which

the Mander et al. confined concrete monotonic model is used as the envelope curve.
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(a) (b)
Figure 3-5 Implemented confined concrete cyclic models: (a) Esmaeily-Xiao model, (b) linear
model

For steel, Menegotto-Pinto’s model (1973), Esmaeily-Xiao’s model (2005), and a linear
model with a slope equal to the modulus of elasticity of steel were implemented into the
developed computer program. Menegotto-Pinto’s model has a bilinecar backbone curve, as
previously explained. Cyclic response of steel material was defined using a nonlinear equation.

The shape of unloading and reloading curves are defined by three parameters: R,, &, and a,.

Because of numerical stability and realistic predictions, many researchers have used this model
as a basis to propose new models for steel material.

Esmaeily-Xiao’s hysteretic model for steel is a multilinear model. At the reversal point,
the unloading path is a linear function with a slope equal to modulus of elasticity of steel
material. The Bauschinger effect is taken into account in this model by changing the slope of the
first unloading part into a portion of steel’s modulus of elasticity beyond a certain stress
(Esmaeily and Xiao 2005). In order to realistically simulate cyclic behavior of steel material, this
ratio and the strain at which the slope change occurs are different in the second (tensile strain and
compressive stress) and fourth (compressive strain and tensile stress) quarters from their values

in the first (tensile strain and stress) and third (compressive strain and stress) quarters. Esmaeily-
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Xiao’s model uses five ratios (P, P,, P, R, and R,) to change the hysteretic behavior of steel

material. Unlike Menegotto-Pinto’s model, linear and Esmaeily-Xiao’s cyclic models can be
used in conjunction with any steel monotonic model as an envelope curve. Figure 3-6 shows
Esmaeily-Xiao’s and Menegotto-Pinto’s cyclic models for steel material. In Figure 3-6(a),
Esmaeily-Xiao’s monotonic model is used as an envelope curve of Esmaeily-Xiao’s cyclic
model. The Menegotto-Pinto cyclic model is used in conjunction with Menegotto-Pinto’s

monotonic model in Figure 3-6(b).
fi fs

7 g
i~ -
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Figure 3-6 Implemented steel cyclic models: (a) Esmaeily-Xiao model, (b) Menegotto-Pinto
model

3-5 Analysis

Because shear deformation is not modeled in the computer application, beam-column
specimens should not be shear-critical. A beam column specimen was modeled cantilever
considering fix support at the bottom of the specimen. Axial force and lateral
forces/displacements were assigned to the top of the column. The centroid of a composite section

was calculated with respect to a global x- and y-axis considered in the program. Considering
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curvature in x- and y-direction, uniaxial strain of fibers was calculated using the following

equations:
Eq =P X Y5 —Py X X5 —D
& = (@ X Yo — @y X X — D) (4-1)
Eq =@ X Y5 — @y xX; =D

In the above equations, &g, ¢,

ci?

and ¢, are uniaxial strain at steel bar, concrete fiber, and
FRP fiber, respectively. x, y;, o, ,and ¢, are locations of i fiber with respect to x- and y-axis

of the global coordinate system, respectively, and D is strain at the global coordinate’s centroid

(Figure 3-7).
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Figure 3-7 Calculation of fiber’s strain under biaxial bending

When strains of all concrete and FRP fibers and longitudinal bars were calculated, stress
of fibers and bars were calculated through cyclic and monotonic models defined for each fiber or

bar as follows:

si?*¢sir“sir“unr

o = Steel Cyclic Model (Steel Monotonic Model, &4, 5,08, £, 00un) (4-2)
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o,; = Concrete Cyclic Model (Concrete Monotonic Model, &, £ ,68, 410w €ror1Oro)
o = FRP Cyclic Model (FRP Monotonic Model, &4,£8,08)
and o, are stresses in i" steel/FRP bar, concrete fiber, and FRP fiber,

where 5., o

respectively. Stress in each fiber depends on current strain (&), previous strain and stress of that
fiber (&P,o”), strain and stress of the last point reached on the monotonic model (¢,,,o,,) and in
concrete fibers, and strain and stress of the last point reached in the unloading branch (.., 0% )-

When the axial force and bending moments have stresses of all fibers and bars, the axial

force and bending moments are calculated using the following equations:

P:jjadxdyzjadA (4-3)

M, = [ox(y-y) dA
A

(4-4)
M, =ja><(x—i) dA
A
Using discrete fibers, the above equations can be written in the following discrete format:
PzzsAsi X0y +ZC'% X Oy +ZAfi X O
i=1 i=1l i=1
M, zzAsi x 0 (Y _7)+z/‘\:i x 0 % (Yei _7)+ZAfi xogx(Yq—Y) (4-5)
i=1 i=1 i=1

ng n

MyzzAsixo-six(Xsi _i)"-ch\:ixo-ciX(Xci_)_()"'zAﬁxo-fix(Xfi_Y)

i=1 i=

In the above equations, A,, A,,and A, are the area of i"" steel/FRP bar, i concrete fiber,

and i"™ FRP fiber, respectively. x and y are the distances of the cross section of beam-column

specimen centroid along x- and y-direction, respectively.
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Figure 3-8 Displacement-controlled code-based moment-curvature curve

3-5-1 Moment-Curvature Analysis

In the developed computer application, monotonic moment-curvature analysis was
performed with consideration of the code-based method and material models. Code-based
monotonic moment-curvature analysis can be conducted for RC beam-columns laterally
reinforced by conventional lateral steel and longitudinally reinforced by steel bars only.
However, exact monotonic and cyclic moment-curvature analysis considering material models
can be performed for concrete beam-columns with any longitudinal and lateral reinforcement.

In code-based moment-curvature analysis, the “ACI stress-block” is used without
considering the confinement effect. In this analysis, the angle of neutral axis with respect to x-
axis should be given to the computer application. The approximate code-based moment-
curvature graph contains four essential points. The first point is related to the starting point of
which curvature and moment are equal to zero. The second point is related to the “First Crack.”

For displacement control analysis (Figure 3-8), when the curvature changes step-by-step and
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moment is calculated, the bending moment drops when a crack develops. Therefore, at the same

curvature (¢, ), two moments are present: the moment before (M ) and the moment right

cr—before

after the crack (M, .. ) - For force-controlled analysis (Figure 3-9), when curvature related to a

given moment is calculated at the first crack point, the curvature jumps to a new curvature
immediately following the first crack, thereby demonstrating the presence of two curvatures: one
before the first crack and one after the first crack. The third point of the code-based moment-
curvature graph is related to “Steel Yield,” at which point the steel bars initially yield. The last
point is related to “Ultimate Strength,” which considers the code-based ultimate strength of an

RC section.

Mcr - @cri—after

= 9y Pn 150,
q)cr—before

Figure 3-9 Force-controlled code-based moment-curvature curve

In moment-curvature analysis using material models, the curvature-path along x- and y-
axis is known and the ultimate bending moment along x- and y-axis are calculated using material

models. Having ¢, and ¢, in each step during an iterative process, the value of D is calculated

to set axial force equal to the applied axial force at the top of the beam-column specimen. Next,
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bending moments along the x- and y-axis are calculated using Eq. (5-5). Unlike code-based
moment-curvature analysis, the developed computer application can perform monotonic and

cyclic moment-curvature analysis using material models.

3-5-2 Force-Deflection Analysis

Two methods can be employed to calculate flexural deformation of an RC beam-column.
In the first method, flexural deformation analysis of an RC beam-column specimen is conducted
using the finite element approach. This approach has high computational demands. In Finite
Element Method (FEM), displacement approximation has a significant role in the accuracy of
force-deflection results. When curvature of the critical section (at the bottom of the beam-column
specimen) falls into the descending branch of the moment-curvature curve, the corresponding
stiffness matrix becomes negative definite and adaptive methods (resorting trial-error) must be

employed to capture force-deflection results (Esmaeily and Xiao 2002).

L
Y Pt Ptrans
l
v i P Pcons
<>
Pu
(a) (b) (c)

Figure 3-10 Curvature distributing along column height as assumed in (a) Priestley and Park
and Priestley and Park revised by Xiao’s methods, (b) Esmaeily’s first method, and (c)
Esmaeily’s second method
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Table 3-1 Implemented plastic hinge methods in the computer application

Method Plastic Hinge Length

Priestely and Park (1987) l,=0.08xL+&x f, xd, &=0.022mm(0.15in)

Priestley and Park Revised by Xiao

(Esmaeily and Xiao 2002) I, =0.08xL+&xo xd, &=0.022mm(0.15in.)

Esmaeily First Method (Esmaeily M ieiq _ % M, % (L B Ip)
and Xiao 2002) = LX[l—M] PP Pries Xy Jield L

u

] L 1 D L/D<125
p - pcons+ ptrans’ Peons - Py + pz’ Ipl: OOSXL L/D>125

Esmaeily Second Method _ _ i
(Esmaeily and Peterman 2007) Iy, =¢x 0y xd, ¢=0022mm(0.15in)

=L—%X(L+|pz)—|

u

Py

Prrans

In the second method to calculate flexural deformation of an RC beam-column, the
plastic hinge concept of the critical section (or transition area) and a proper curvature distribution
along the beam-column specimen height are employed to solve the force-deflection problem
when curvature falls into the descending branch of the moment-curvature curve. In the plastic
hinge approach, column height is divided into two elastic and plastic elements. Depending on the
curvature distribution method, the length of the transition area (plastic hinge length) may or may
not change during force-deflection analysis. Total displacement at the top of a column is a
summation of elastic and plastic deformation caused by elastic and plastic elements, respectively.

In the developed computer application, the second approach was employed to perform
force-deflection analysis of an RC beam-column under constant or variable axial force and cyclic
or monotonic lateral forces/displacements. Nearly 30 plastic hinge models are available in the
literature, of which Priestley and Park’s model (Prietley and Park 1987), Esmaeily’s first and
second model, and Xiao’s model (Esmaeily and Xiao 2002) were implemented into the window-
based computer program. Although a majority of existing plastic hinge models in the literature

were developed considering uniaxial behavior of RC columns, experimental evidences have
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confirmed plastic hinge length is not affected by biaxial loading (Rodrigues et al. 2013);
therefore, the plastic hinge models developed based on uniaxial testing are applicable for biaxial
force-deflection analysis. Priestley and Park’s plastic hinge length depends on column height,
longitudinal steel yield strength, and rebar diameter. Curvature distribution was considered to be
uniform along the plastic hinge length, and axial force effect was not taken into account in
Priestley and Park’s model. Xiao (Esmaeily and Xiao 2002) later modified Priestly and Park’s
plastic hinge length by employing maximum tensile stress at longitudinal bars instead of steel
yield strength. These plastic hinge models work well for RC columns under constant axial force
and monotonic lateral force/displacement.

Esmaeily’s first plastic hinge method considered a linear distribution along transition
zone or plastic hinge length. Plastic hinge length applied in this model depends on yield moment
and moment at critical section at each step of loading. Therefore, axial force effect and cyclic
and monotonic behavior of all materials are taken into account in calculation of plastic hinge
length. Esmaeily’s first plastic hinge length may increase by decreasing the ratio of yield
moment to moment of critical section. Plastic hinge length simulates severe damage at column
footing; therefore, it cannot be decreased after formation (Esmaeily and Xiao 2002).

In Esmaeily’s second plastic hinge model, divides the transition zone into two parts.
Curvature distribution along the part closet to the critical section is assumed to be uniform. The
length of this part is constant and is equal to the section depth for columns with high to depth
ratio of less than 12.5; otherwise, it is equal to 0.08xL, where L is the column height. Curvature
distribution along the second part is assumed to be linear; its length depends on existing axial
force and level of lateral force. Esmaeily’s first and second models work more accurately

compared to Priestley and Park and Priestley and Park-Revised by Xiao models for RC columns
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under variable axial force and cyclic lateral force/displacement (Esmaeily and Xiao 2002).
Curvature distribution along column height as assumed in aforesaid models is shown in

Figure 3-10 and their formulation is summarized in Table 3-1.

Given P, A, and A,

.

Calculate My,,. My, and

A

Ay and Ay, for P

A= JAZ +AZ< A2 + A2 °

™  Select @uy. @uy @y = ?—: and
l Calculate @y, Quy
Calculate My,.. My,
andl, Calculate M,,,,.
l My, Fy and F,
Calculate Ay gy, Yes
andAy iy More Points? —

'ﬂtry: \‘Ilﬂzzr—zry + ﬂi‘—t?‘_}'

NOL
END

Ay — ﬂ‘ < Acceptable Error?

try

Figure 3-11 Force-deflection analysis flowchart

The developed computer application can conduct biaxial force-deflection analysis. Axial
force and lateral forces/displacements are applied at the top of columns. For each combination of
axial force and lateral displacement in the x- and y-direction using two sets of trial-error process

for D, ¢, and ¢, axial force and lateral displacements are set to the applied values. Force-

deflection analysis of an RC section under constant or variable axial force and cyclic or
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monotonic lateral displacements can be conducted using aforesaid plastic hinge models
implemented in the developed computer application. A simplified flowchart for force-deflection
analysis of an RC column under axial force and biaxial lateral displacements is shown in

Figure 3-11.

3-5-3 Axial Force-Bending Moment Interaction Curves

Three types of axial force-moment interaction 3D surface of an RC section can be conducted
using the developed computer program. In the first type, or code-based axial force-moment
interaction 3D surface, axial force-moment analysis is performed considering the ACI stress-
block concept without considering the confinement effect applied by lateral reinforcement.
Compressive strain in the extreme concrete fiber is assumed to be 0.003. Considering a specific
angle for neutral axis with respect to the x-axis, for each level of axial force through an iteration
process, curvature along the neutral axis is changed to converge to a curvature resulting in the
considered axial force. When curvature is changed, strain at the global coordinate’s centroid is
changed to maintain strain at the extreme compressive concrete fiber equal to 0.003. Code-based
axial force-moment analysis can be performed only for concrete sections reinforced laterally by
lateral steel reinforcement and longitudinally by steel bars. There are two methods to calculate
the ACI interaction curve as follows:

In the first method, the strain at the extreme concrete fiber is equal to 0.003. The
curvature along the analysis axis is increased from zero to the point that strain at the extreme
tensile steel bars becomes equal to 0.005. Then the curvature is decreased in a way that strain at

the extreme steel fiber remains 0.005.
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0,003 [_=——"—+

Figure 3-12 Curvature change in Method 1

In the second method, the strain at the extreme concrete fiber is kept constant and equal

to 0.003 and the curvature will increase to the point and the section fails.

0.003—[

Figure 3-13 Curvature change in Method 2

The second type of axial force-moment interaction surface is calculated considering user-
selected material models for plain concrete, confined concrete, reinforcing steel, and FRP. This

type of interaction surface can be calculated for a concrete section confined by conventional steel
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(tie/spiral), FRP wraps, or FRP wraps and conventional steel. Strain at extreme compressive
fibers is assumed to be constant and can be defined by the user.

The third type of interaction 3D surface is referred to as axial force-bending moment
interaction failure surface in the literature. Four techniques were employed in the literature to
construct the 3D failure surface of a composite section: (i) interaction curve considering constant
or variable ratio of curvature along x- and y-axis (constant neutral axis orientation), (ii)
interaction curve for a given ratio of bending moment in x- and y-direction, (iii) bending moment
constant for a constant given axial force, and (iv) generation of triplets stress resultant extending
an oriented strength line. The first technique (constant neutral axis orientation) was utilized in
the developed computer application.

In various algorithms developed by researchers to calculate failure surface, ultimate
moment capacity of an RC section is defined as the maximum moment in monotonic moment-
curvature analysis considering constant axial force (not considering the loading pattern of axial
force). However, columns exposed to a dynamic excitation are subjected to a loading pattern in
combined but non-proportional lateral and axial directions. Consideration of axial force loading
pattern when calculating bending capacity of an RC section is essential in structure columns
located in near-fault regions.

The developed computer application is capable of generating the failure surface of a
composite section using proper material models with or without considering the axial force
loading pattern. To calculate the failure surface of a section while considering the axial force
loading pattern for a specific neutral axis orientation and axial force level (P), a moment-
curvature analysis was performed considering the pattern of axial force against curvatures along

x- and y-directions. The maximum moment was selected as the ultimate capacity of the section
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in that level of axial force. The axial force loading pattern includes a number of points with

various curvature along the x- and y-axis and axial force coefficient (¢, , ¢,, ac). The axial force

coefficient (ac) for any combination of x- and y- curvature cannot exceed 1.0, meaning that the
maximum compressive axial force (acxP) in that pattern is equal to the specified level of axial
force (P). The axial force coefficient may consider more than -0.1, meaning that the maximum
tensile axial force capacity of the section should not be considered more than 0.1x P . Sinusoidal

and triangular axial force loading patterns are shown in Figure 3-14.
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Figure 3-14 (a) Sinusoidal and (b) triangular axial force loading pattern

3-6 Validation Examples

This section presents the performance and applicability of the developed computer
application using four examples in which analytical results by the program are compared to
experimental results from tests conducted on the respected specimen. The first example
investigates computer application accuracy to predict moment-curvature response of a reinforced
concrete section. In the second and third validation examples, computer application performance
for predicting the force-deflection response of two columns with their respected cross sections is
illustrated. The fourth test investigates computer application capability in constructing the failure

surface of a square section and interaction curves using the ACI stress-block concept.
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Figure 3-15 Geometry and reinforcement of the specimen TP-36; (a) elevation, (b) cross section

3-6-1 Moment-Curvature Analysis

The developed window-based computer application was employed to conduct moment-
curvature analysis of a hollow square cross section. The hollow square section, as shown in
Figure 3-15, had a width of 400 mm (15.748 in.), cover width of 50 mm (1.97 in.), and hole
width of 200 mm (7.874 in.). Cylinder strength of concrete was 29.7 MPa (4.05 ksi). The column

specimen was reinforced longitudinally with 24 No. 13 (24 #4) Grade SD295A (yield strength
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was 374 MPa (54.24 ksi)), giving the specimen a longitudinal ratio of 2.53%. The longitudinal
steel rebar arrangement is shown in Figure 3-15. The transverse reinforcing steel was Grade
SD295A with yield strength of 363 MPa (52.64 ksi). Lateral reinforcement was a No. 6 (#2) with
center-to-center spacing of 100 mm (3.93 in.), giving the specimen volumetric lateral
reinforcement of 1.23%.

The column specimen was tested under constant axial force of 230 kN (51.71 kips) and
cyclic uniaxial lateral force. Bending moment and curvature were measured at the column
footing. Additional details regarding experimental setup are presented in Kawashima et al.
(2001).

The Mander et al. model (1988) for unconfined and confined concrete was employed in
order to model monotonic behavior of concrete fibers located in the cover and core concrete,
respectively. The Mander et al. model was developed for circular and rectangular cross sections
without a hole/opening. An equivalent rectangular section without an opening was considered in
order to use this model to simulate monotonic behavior of confined concrete in a rectangular
section with a hole/opening. Dimensions of the equivalent rectangular section were similar to the
original section; however, only the outer layer of longitudinal and lateral reinforcement original
section were considered as longitudinal and lateral reinforcement of the equivalent section.
Maximum strength, ultimate strain, and fracture strain of confined concrete in the hollow
rectangular section was calculated considering the equivalent rectangular section in the Mander
et al. model (1988). Tensile strength for confined and unconfined concrete was assumed to be
10% of the plain concrete compressive strength. Linear cyclic behavior with a slope of plain

concrete modulus of elasticity was considered for unconfined and confined concrete fibers.
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Menegotto-Pinto’s model (1973) was used to model cyclic and monotonic behavior of
longitudinal steel bars. The monotonic curve backbone coefficient (b) in Menegotto-Pinto’s

model was set to 0.01. Cyclic parameters R,, &, and a, were considered 2.0, 2.0, and 0.09,

respectively.
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Figure 3-16 Comparison of analytical and experimental moment-curvature response curves for
the hollow square cross section (TP-36)

Experimental and calculated moment-curvature curves at the bottom of the column
specimen are shown in Figure 3-16. As demonstrated in the figure, great agreement exists
between experimental data and analytical results calculated by the developed window-based

computer application.
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3-6-2 Force-Deflection Analysis

3-6-2-1 Reinforced Concrete Column under Axial Force and Uniaxial Lateral
Force
The developed fiber-based computer application was employed for force-deflection

analysis of an oval section (TP-9) under constant axial force and uniaxial cyclic lateral force,
tested by Fujikura et al. (1998). Geometrical properties of the oval section are shown in
Figure 3-17 in Sl and imperial systems (numbers in parenthesis). The column specimen was
reinforced longitudinally with 38 No. 10 (38 #3) Grade SD295, giving the specimen a
longitudinal ratio of 0.83%. The longitudinal steel bar arrangement is shown in Figure 3-17.
Lateral reinforcement was provided using No. 6 (#2) with center-to-center spacing of 150 mm
(5.905 in.), giving the specimen volumetric lateral reinforcement of 0.9%. Cylinder strength of

concrete ( f,,) was 22.7 MPa (3.292 ksi) and yield strength of longitudinal and lateral steel was

379 MPa (54.97 ksi) and 380 MPa (55.114 ksi), respectively. The oval section was under
constant axial force of 160 kN (35. 97 kips) and lateral uniaxial force in x-direction. Additional
details regarding experimental setup are presented in Fujikura et al. (1998).

No. 6 @ 150 (#2 @ 5.905)— —38 No. 10 (38 #3)

CE

900 (35.43) -

-——400 (15.748)———~

Figure 3-17 Oval cross section (TP-9)
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Figure 3-18 Comparison of analytical and experimental force-deflection response curves for
oval section

In order to model the behavior of confined concrete, the Mander et al. model and linear
cyclic model were used as monotonic and cyclic rules, respectively. Ultimate strain, stress, and
fracture strain of confined concrete in the oval section were calculated considering only one of
the circular hoops in the oval section as an equivalent section. Diameter of the equivalent cross
section was equal to the width of the oval section (400 mm (15.748 in.)). It was reinforced
longitudinally and laterally using 14 No. 10 (14 #3) and No. 6 @ 150 mm (#2 @ 5.905 in.).

For plain concrete (located at the cover), the Mander et al. monotonic model and linear
cyclic model were employed. Menegotto-Pinto’s monotonic and cyclic models modeled
longitudinal reinforcement behavior. The monotonic curve backbone coefficient (b) in

Menegotto-Pinto’s model was set to 0.01. Cyclic parameters R,, &, and a, were considered 2.0,

2.0, and 0.09, respectively. Esmaeily’s first plastic hinge method (Esmaeily and Xiao 2005) was
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employed as curvature distribution along the specimen height. As shown in Figure 3-18, fiber-

based analysis predicted cyclic force-deflection of the oval section with reasonable accuracy.
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Figure 3-19 Comparison of analytical force-deflection with experimental data for specimen
PB12-N15 in (a) x-, and (b) y-direction under expanding square path
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Figure 3-20 Comparison of analytical force-deflection with experimental data for specimens
PB12-N16
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3-6-2-2 Reinforced Concrete Column under Axial Force and Biaxial Lateral
Force

The second example of force-deflection analysis is related to biaxial analysis of
specimens PB12-N15 and PB12-N16 from experimental work by Rodrigues et al. (2012). In that
work, specimens PB12-N15 and PB12-N16 were tested under expanding square and circular
displacement paths, respectively, and constant axial force at approximately 10% of theoretical

axial capacity (equal to p, =, x f,,, Where R, f, and A, are theoretical axial capacity, plain

concrete compressive strength, and gross cross-sectional area, respectively). These two
specimens had a square cross section with a dimension of 300 mm (11.81 ksi), and they were
reinforced longitudinally using eight No. 12 bars in European standard (No. 12 bar diameter is
12 mm (0.472 in.)), giving the specimen a longitudinal ratio of 1.01%. Lateral reinforcement was
provided by No. 6 bars in European standard with a step of 150 mm (5.9 in.) (No. 6 bar diameter
is 6 mm (0.236 in.)), giving the specimen volumetric lateral reinforcement of 0.21%. Cylinder

strength of concrete (f,,) was 21.57 MPa (3.13 ksi), and steel reinforcement grade in the

longitudinal and lateral direction was A400NR-SD (European standard).
Monotonic behavior of longitudinal bars was modeled using an idealized bilinear model.
Because no information was available concerning the monotonic curve of reinforcing steel

material, as recommended by Esmaeily and Xiao (2002), the ultimate strain (&) and strength (

fy,) for steel was considered to be 24.9xs, and 1.3x f,

respectively. The linear model was
used to model cyclic behavior of longitudinal bars with linear unloading-reloading stiffness.
For confined and unconfined concrete fibers, the Mander et al. model (1988) for confined

and unconfined concrete was used, respectively. Cyclic behavior of concrete fibers was

considered linear with a slope equal to the modulus of elasticity of plain concrete. Priestly and
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Park’s plastic hinge method (1987) was employed as curvature distribution along the specimen
height.

Experimental and analytical force-deflection curves of specimens PB12-N15 and PB12-
N16 are shown in Figure 3-19 and Figure 3-20, respectively. As demonstrated in these figures,

predicted results are in good agreement with experimental data.

Moment-x (kip.in)
-4425 -3540 -2655 -1770 -885 0 885 1770 2655 3540 4425

500 : . . . : . . : 4425
P=13014 (6189) ----- P=13215 (5878.2)
400 F - P=1252.4 (5571) — — - P=11832(52632) | 3540
—— P=1112.8 (4950) __ -----ee- P=1008.8 (4487.3)
300 t 1 2655
200 | 1 1770
£ BRRERNAN g
£ 100 ¢ RN N 185 3
= ) \ =
> 0 10 >
5 |5
g N R =
AU S N Y TR e AV { -885
200 1 -1770
-300 | 1 -2655
-400 1 -3540
_500 1 1 1 1 1 1 1 1 1 _4425

-500 -400 -300 -200 -100 0 100 200 300 400 500
Moment-X (KN.m)

Figure 3-21 Failure curves for square section

3-6-3 Axial Force-Bending Moment Interaction Curves

The axial force-bending moment failure surface was constructed for a square cross
section beam-column specimen with a dimension of 400 mm (15.75 in.). The square cross
section was reinforced longitudinally using 20 No. 13 (20 #4), giving the specimen a longitudinal
ratio of 1.58%. Lateral reinforcement was provided by No. 6 (#2) steel rebar with lateral spacing

of 70 mm (2.75 in.), giving the specimen volumetric lateral reinforcement of 0.57. Cylinder
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strength of concrete was 35.9 MPa (5.207 ksi), and yield strength of longitudinal and lateral steel
was 363 MPa (52.65 ksi) and 368 MPa (53.37 ksi), respectively.

Actual interaction curves and failure surface of the square section are demonstrated in
Figure 3-21 and Figure 3-22, respectively. To construct these plots, confined and unconfined
concrete models of Mander et al. were used to model the behavior of confined and unconfined
concrete fibers. The Menegotto-Pinto model was applied to model cyclic and monotonic

behavior of longitudinal steel bars. Monotonic (b) and cyclic coefficients (R,, a,, a&,) in

Menegotto-Pinto’s model were considered 0.01, 2.0, 2.0, and 0.09, respectively.

In addition to actual failure surface, axial force-bending moment interaction 3D surface
of the square section was calculated considering the ACI-stress block method (ACI 318-11). In
Figure 3-23 and Figure 3-24, the red and blue dots are related to the ACI-interaction surface with

consideration of reduction factors and AClI-interaction surface without reduction factors.
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Figure 3-22 Failure-surface of square section
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3-7 Developing New Model for Circular Concrete Column Confined by

FRP and Conventional Lateral Steel

FRP application to enhance ductility, flexural strength, and shear capacity of existing
deficient concrete structures has increased during the last two decades. Therefore, various
aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of
concrete members confined and reinforced by FRP, have been studied in many research
programs, resulting in proposal of various monotonic models for concrete confined by only FRP.
Ozbakkalogu et al. (2013) reported 88 monotonic models for FRP-confined concrete circular
sections until year 2011. They categorized these models into two design-oriented and analysis-
oriented groups based on Lam and Teng’s suggested categorization (Lam and Teng 2003). Using
selected statistical indicators, model performances were assessed compared to reliable
experimental data. According to their investigation, models by Lam and Teng (2003) and
Tamuzs et al. (2006) most accurately predict ultimate strength and strain of FRP-confined

concrete (Ozbakkalogou et al. 2013).

FRP wrapping is typically used to confine existing concrete members containing
conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral steel
reinforcement in analytical studies has been uniquely considered in various models. A majority
of related models consider confinement due to FRP and ignore the effect of conventional lateral
steel reinforcement. Shao et al. (2005) used the model proposed by Samaan et al. (1998) that
utilizes concrete confined only by FRP to conduct a fiber-based analysis of concrete specimens
confined by FRP and tie. Although the amount of lateral steel reinforcement was not negligible
in their test specimens, they ignored its confining effect and achieved a reasonably good

agreement between experimental data and analytical results.

152



The model by Kawashima et al. (2000) was the first model to consider the confining
effects of FRP and conventional lateral steel reinforcement. Harajli et al. (2006) consequently
proposed a novel model for circular and rectangular concrete columns confined by FRP and
conventional lateral steel. Eid and Paultre (2008) proposed a relatively complicated model
requiring numerous parameters with good accuracy compared to experimental data. Based on
test results from 24 specimens, Lee et al. (2009) proposed a new empirical model to predict
monotonic behavior of concrete confined by FRP and steel spiral in circular sections. Chastre
and Silva (2010) proposed a model for circular sections using Ricard and Abbott (1975) stress-
strain relationship. Pellegrino and Modena’s model (2010) was proposed for circular and
rectangular sections confined by FRP with or without lateral steel reinforcement. Recently, Hu
and Seracino (2013) proposed a constitutive model using Popovics (1973) equation and modified
Mander et al. (1988) equations to predict peak stress and corresponding strain for concrete
confined by FRP and lateral steel reinforcement. However, their model does not predict ultimate

stress and its corresponding strain, two important parameters of monotonic models.

A majority of models have been based on experimental data from tests performed only by
originators. Performance of these models in prediction of experiments conducted by others
degrades considerably, as discussed later, as proven by a comparison of models proposed for
conventional confined concrete (Esmaeily and Lucio 2006). Exploration of existing model
performances for predicting the behavior of several tested specimens shows a need for
improvement of existing algorithms. The model proposed in the current study is a step in this
direction.

In addition to the proposed model, performance of four representative models in the

literature was assessed in this study. Two of the four models (Samaan et al. 1998; Youssef et al.
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2007) were proposed for concrete confined only by FRP but used as a model in analytical studies
for concrete confined by FRP and lateral steel. The other two models (Kawashima et al. 2000;
Lee et al. 2009), originally proposed for concrete confined by FRP and lateral steel, were chosen
because of their easy-to-use equations and accuracy in predicting experimental monotonic

behavior of specimens confined by FRP and lateral steel.

The new model proposed in this study was developed for concrete confined by FRP and
conventional lateral steel. Performance of the proposed model and the four representative models
from literature was compared to experimental data from four independent databases. These
specimens were reinforced laterally by FRP wraps and steel tie/spiral and tested under
monotonic concentric loading by Demers and Neale (1999), Eid and Paultre (2008), and Lee et

al. (2009).

In order to demonstrate the accuracy of the proposed model compared to the four
aforesaid models, a blind verification was performed using nonlinear moment-curvature analysis
and experimental moment-curvature response of two specimens not used to calibrate the
proposed model. These two specimens originated from experimental works performed by
Kawashima (2001). They were reinforced by Carbon-FRP and steel tie laterally and were tested

under constant axial load and cyclic lateral force.

3-7-1 Proposed Stress-Strain Curve

Most concrete members retrofitted or designed using FRP wraps contain internal lateral
steel reinforcement. Core concrete in these members is under the confining action of steel
tie/spiral and FRP warps. However, due to limited experimental data from tests conducted by the

originator, proposed models for concrete confined by FRP or FRP and tie/spiral do not provide a
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reasonably accurate prediction of specimen behavior tested by other researchers. Use of these
models to analyze performance of columns confined by FRP and lateral steel underestimates or,
in some cases, overestimates section capacity related to flexibility and flexural strength.
Development of the proposed model for concrete confined by internal steel and external FRP
lateral reinforcement is an attempt to address the aforesaid issue.

Axial stress-strain behavior of concrete confined by FRP and lateral steel (tie/spiral) was
obtained using the Thorenfeldt et al. equation (1987). This equation is a modified version of the
Popovics (1973) equation which describes stress-strain behavior of unconfined concrete
(Popovics 1973). This equation works well for normal-weight concrete. In addition, many
researchers have used this equation to simulate stress-strain behavior of concrete confined by
conventional steel reinforcement. Hu and Seracino (2013) used Popovics’ equation for
monotonic behavior of concrete confined by FRP and lateral steel. The Thorenfeldt equation is

as follows:

e n.(¢./&y)
1:clu n_]-‘*'(‘cf‘c/gcu)nk

(2-3)

where n=E, /(E, - f,, /¢&,). E, is the modulus of elasticity of the concrete, f, and &, are axial

stress and axial strain of confined concrete, respectively, ¢, and f, are ultimate strain and

cu

ultimate stress of confined concrete, respectively, and Thorenfeldt parameter k =0.8.

Many equations for calculating the modulus of elasticity of concrete are proposed in the
literature. In this study, ACI equations were used because of their relative accuracy in providing
the modulus of elasticity of concrete. ACI concrete modulus of elasticity equations for normal-

weight concrete is as follows:
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E, = 4700«/ f, (MPa)

(2-4)
E. = 57000«} fo  (psi)
where f, is compressive strength of unconfined concrete.
Table 3-3-2 Geometrical and mechanical properties of specimens
FRP TSR
fc’O Elrp f
. X t (mm) s f d cu
Specimen DM (MPa) oo (GPa) (Mpua) Type (Mﬁ a) s(m) (m,bn) (MPa) e
u2s-2 (De’l“;é;)and Neale 3 25 0.002 0.9 84 3937 Tie 400 0.15 113 366  0.0104
u40-3 (Derl”;g;;)a”d Neale 3 40 0.0027 0.9 84 3937 Tie 400 0.3 6.4 548 0.0065
C2NP2C (ZE(')gg‘)”d Paulre, 4303 317 0002 0762 78 3350 spiral 456 0.065 113 496 00124
CANP4C (ZE(')gg‘)”d Paulre, 4303 317 0002 1524 78 3350 spiral 456 01 113 6938  0.0243
C2MPpaC (ZE(;gBa)”d Paultre, ;303 508 00024 1524 78 3350 Spiral 456 0.065 11.3 9208  0.0188
A3NP2C (ZE(;g;”d Paultre, (303 317 0.002 0762 78 3350 Tie 602 0.07 95 50.6 0.0124
S2F2 (Leeetal, 2009) 015 362 00024 022 250 4510 spiral 1200 0.02 5 9268  0.038
S2F3(Leeetal, 2009) 015 362 00024 033 250 4510 Spiral 1200 0.02 5 1080  0.039
SOF4 (Leeetal, 2009) 015 362 00024 044 250 4510 Spiral 1200 0.02 5 1157 00384
SOF5 (Leeetal, 2009) 015 362 00024 055 250 4510 Spiral 1200 0.02 5 1508 0.043
S4F2 (Leeetal, 2009) 015 362 00024 022 250 4510 Spiral 1200 0.04 5 7477 00225
S4F3 (Leeetal,2009) 015 362 00024 033 250 4510 Spiral 1200 0.04 5 888 0029
S4F4 (Leeetal, 2009) 015 362 00024 044 250 4510 Spiral 1200 0.04 5 1042 0.032
S4F5 (Leeetal, 2009) 015 362 00024 055 250 4510 Spiral 1200 0.04 5 1236 0.036
I.RCC. 1.1L
(Benzaid et al., 2010) 016 951 oos77 34 50 ie 235 o1 8 050 01503
I.RCC. 2.1L
(Benzaid et al., 2010) 016 951 00377 34 50 ie 235 014 8 917 01475
CRCCAL o ” _ 235 8
(Benzaid et al., 2010) : 593 00273 50 ie 014 063 01278
IIRCC.L.IL
(Benzaid et al., 2010) 016 g24 00302 34 50 ie 235 0141 8 584 00737
IIRCC.2.1L
(Benzaid et al., 2010) 016 g24 00302 34 50 ie 235 0142 8 0.18 0935
ILRCC.1.3L
(Benzaid et al., 2010) 016 524 00302 34 50 ie 235 0143 8 0L5 1372
IIRCC.2.3L
(Benzaid et al., 2010) 016 524 00302 34 50 ie 235 014 8 9.35 1344
11.PCC. 3L
(Benzaid et al., 2010) 016 946 00169 34 50 ie 235 014 8 201 00727
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3-7-2 Peak Stress and Strain in Confined Concrete

Ultimate strength and corresponding strain are important parameters in a stress-strain
model. Major parameters affecting ultimate strength and corresponding strain of confined
concrete include (i) cross-sectional dimension, (ii) lateral steel reinforcement bar area, (iii) lateral
reinforcement spacing, (iv) FRP thickness, (v) FRP tensile strength, (vi) compressive strength of
unconfined concrete, and (vii) FRP modulus of elasticity and/or FRP rupture strain.

Coefficients and factors in the following equation for the ultimate strength of concrete
confined by FRP and conventional lateral reinforcement are based on regression analysis of a set
of 22 experimental studies. Geometrical and mechanical properties of these specimens are
presented in Table 3-3-2. All specimens were wrapped by CFRP with fibers primarily in the
hoop direction. CFRP-wrapped specimens with stiffness in the longitudinal direction and a few
specimens in Demers and Neale (1999) that were damaged before the compression test have
been excluded. Behavior of concrete confined by lateral steel and FRP wraps was notably
different from concrete confined by lateral steel and FRP tube because a part of FRP tube’s
lateral strain originated from its Poisson’s ratio. Therefore, concrete-filled CFRP tube specimens

with internal transverse steel reinforcement also have been excluded.
fl f 0.8 f f 0.2 d2 4
=114 2.5[—'TJ {—'FJ+3.5(—'FJ (—CZJ (2-5)
ch ch ch ch D

2xt; x f
If :T

where

(2-6)
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In Egs. (3-234) and (3-235), t,, fy, A, f,,»and s are FRP thickness, ultimate strength

of FRP, transverse steel cross section area, steel yield strength, and transverse steel spacing,
respectively. The confining mechanism for concrete confined by FRP and lateral steel is shown
in Figure 3-25. Relationships between the second and third terms of Eq. 4-224 with experimental
ultimate strength of confined concrete are shown in Figure 3-26 in which normalized
experimental ultimate strength of confined concrete from the 14 specimens has reasonable linear
correlation with the second and third terms of Eq. 4-224.

The second important parameter of the stress-strain curve is the ultimate strain of
confined concrete, beyond which confined concrete is assumed to fail. Ultimate strain is a
function of ultimate confining pressure by FRP and conventional steel. FRP jacketing and its
mechanical properties significantly affect the ultimate strain of confined concrete. Experimental
data monitoring showed the conventional reinforcement correlation between FRP jacketing
confinement and confinement. The following equation is proposed for ultimate strain of confined

concrete:

f 07 f 07 ; 0.04 08 (g 05
gﬂ=2.0+6.5x£—l,fJ {#J +6.O><[—'.SJ ( 5 j x( f,”’J (2-7)
‘9(:0 ch ch ch O'SX D ch

where E, is FRP modulus of elasticity. Parameters f and E, are provided in Eq. (3-236) to

consider properties related to FRP jacketing. The second term is primarily related to FRP
confinement, and the third term primarily relates to the confining effect of lateral steel. For two
specimens with identical lateral steel ratio, ultimate strain provided by the specimen with smaller
lateral steel spacing is higher than the specimen with larger lateral steel bar area and spacing.

Therefore, the lateral spacing effect is considered in the third term of the proposed equation for
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ultimate strain as an individual term in addition to confining pressure caused by lateral steel
reinforcement. The relationship between the second and third terms of Eq. (3-236) with
experimental ultimate strain is shown in Figure 3-27, which demonstrates a reasonable linear
correlation between normalized experimental ultimate strain and the second and third term of Eqg.
4-226. Figure 3-28 shows a sample of the proposed stress-strain curve for concrete confined by

FRP and lateral steel.

flft

|
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Figure 3-25 Confining mechanism for concrete confined by FRP and lateral steel
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Figure 3-26 Relationship between (a) second and (b) third term of confinement effectiveness
and experimental ultimate stress
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Figure 3-27 Relationship between (a) second, and (b) third term of confinement effectiveness
and experimental ultimate strain
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Figure 3-28 Proposed stress-strain curve for confined concrete by FRP and lateral steel

3-7-3 Validation

3-7-3-1 Validation of the Proposed Model in Prediction of Concentric-Uniaxial
Monotonic Stress-Strain Response

Figure 3-29 to Figure 3-33 show predicted monotonic uniaxial concentric stress-strain
curves for specimens S2F2, S2F3, S4F2, A3NP2C, and U25-2, respectively, using the four

models and the model proposed in this paper. In the model by Kawashima et al. (2000), the
initial part of the model is a polynomial function ending at &, , followed by the second part of the

model that ends at a strain corresponding to ultimate strength (¢, ). For specimens S2F2 and
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S2F3, the calculated &, is greater than ¢

cu?

therefore, the model by Kawashima is not presented
in Figure 3-29 and Figure 3-30. For specimens S2F2 and S2F3 (Figure 3-29 and Figure 3-30,
respectively) with considerable lateral steel reinforcement, models by Samaan and Youssef
underestimate the ultimate strength and ultimate strain. The model by Lee, calibrated against and
proposed based on their own test data, works generally well for these two specimens, as
expected.

For specimen S4F2 (Figure 3-31) with less lateral steel reinforcement ratio compared to
the first two specimens, Samaan’s model underestimates the ultimate strength and overestimates
ultimate strain. Youssef’s model underestimates the ultimate strength and strain of the specimen
S2F4 and the first two specimens (S2F2 and S2F3). The Kawashima model underestimates

ultimate strain and overestimates strength of the concrete section for specimen S4F2.
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Figure 3-29 Comparison of confinement models to experimental stress-strain of S2F2
(monotonic concentric)

161



120
~ -
100 7
P
P
-z
< 80 |+ P
o LT 2
é /'/ b ~
% // //
Lo
@ s Experiment
s Y
X 40 | // --------- Proposed
———- Leel
20 - Youssef
—e—— Samaan
O Il Il Il Il
0.00 0.01 0.02 0.03 0.04 0.05

Strain

Figure 3-30 Comparison of confinement models to experimental stress-strain of S2F3
(monotonic concentric)

For A3NP2C specimen (Figure 3-32), all models except those proposed by Samaan and
Kawashima provide a reasonably accurate prediction of the ultimate strain of confined concrete.
The Samaan model significantly overestimates the ultimate strength and strain of ASNP2C. For
the last specimen, U25-2, predicted ultimate strength and strain by all models differ significantly
from experimental values.

As shown in Figure 3-29 to Figure 3-33, the proposed model has good agreement with
experimental results for specimens S2F2, S2F3, S4F2, and A3NP2C. Although the model
slightly overestimates the ultimate strength for specimen U25-2 (Figure 3-33), its overall
performance is better than the other four models.

Predicted normalized ultimate strength and strain of confined concrete by the proposed
model and the four aforesaid models versus experimental results are shown in Figure 3-34 and
Figure 3-35, respectively. Because ultimate strain predicted by the Kawashima model is less than

transition strain, predicted ultimate strength and strain for specimens S2F2, S2F3, S2F4, and
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S2F5 are not plotted in these figures. As demonstrated in Figure 3-34, the proposed model has an
overall margin of error less than the four representative models for predicting ultimate strength

of confined concrete.
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Figure 3-31 Comparison of confinement models to experimental stress-strain of S4F2
(monotonic concentric)

As shown in Figure 3-35, variability of the predicted ultimate strain versus experimental
data is higher than variability of predicted ultimate strength versus experimental data.
Normalized ultimate strains predicted by the proposed model show a good correlation with
normalized experimental ultimate strain. In addition, the proposed model has a smaller margin of
error than the four representative models for predicting ultimate strain of confined concrete. The

overall margin of error for ultimate strain and strength is 20% and 15%, respectively.
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Figure 3-32 Comparison of confinement models to experimental stress-strain of ASNP2C
(monotonic concentric)
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Figure 3-33 Comparison of confinement models to experimental stress-strain of U25-2
(monotonic concentric)
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3-7-3-2 Validation of the Proposed Model in Response Prediction of a Member
under Combined Axial and Lateral Load

For further verification of the proposed model, experimental data was used from two
specimens not used for model calibration. Geometrical and mechanical properties of these
specimens are presented in Table 3-3. These two specimens were tested under cyclic lateral load.
Experimental data included the moment and curvature at the column-footing interface extracted
from data recorded by local displacement transducers and/or strain gauges affixed to the main
bars, applied lateral force, and displacement and axial force recorded at the top of the columns
(Kawashima et al. 2001). Moment-curvature analysis is preferred for accuracy assessment of
material’s monotonic behavior since no assumption on curvature distribution along the column
height is required. The proposed model and other aforesaid models were implemented into a
fiber-based moment-curvature analysis and results were compared to experimental data. All
other factors except the material model for confined concrete were unchanged in the analytical
process, including the monotonic stress-strain relationship of steel, cyclic rules for steel, and
plain and confined concrete.

Analytical procedure is based on a nonlinear fiber-based model in which a section is
divided into several parts and the column or beam is divided into several segments. Individual
fiber behavior is then simulated using a proper monotonic model and cyclic rule. Computational
efficiency of this method is greater than efficiency of the FEM to model flexural behavior of
concrete members (Rodrigues et al. 2013). Figure 3-36 shows a circular section of mesh used in
fiber-based analysis in this study. The cross section of beam or beam-column was divided into
core concrete, cover concrete, longitudinal steel, and FRP fibers. The cross section of the fiber-
elements in this study was triangular in accordance with the meshing procedure used in the

analytical procedure.

166



Table 3-3 Geometrical and mechanical properties of TP-22 and TP-23 (Kawashima et al. 2001)

Specimen TP-22 TP-23
Diameter (mm) 400 400
Longitudinal reinforcement 12 No. 16 12 No. 16
Longitudinal steel yield strength (MPa) 374 374
Tie Reinforcement No.6 @ 5.9 No.6 @ 5.9
Tie steel yield strength (MPa) 363 363
Fiber Type CFRP CFRP
FRP Thickness (mm) 0.11 0.22
FRP modulus of elasticity (GPa) 266 266
FRP fracture Strain 0.0163 0.0163
Unconfined compressive strength (MPa) 30 275

In order to address analytical needs of this study, a windows-based computer application
was developed. As the next version of a program developed to analyze performance of
reinforced concrete columns under various load patterns, the developed computer application is
capable of biaxial nonlinear monotonic and cyclic moment-curvature and force-deflection

analysis under any load and displacement pattern (Esmaeily and Peterman 2007).

o Tie/Spiral
Longitudinal bars

Concrete fibers
confined by FRP and
tie/spiral

Concrete fibers\A@ " |+
confined by FRP

Figure 3-36 Fiber representation of circular section
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As shown in Figure 3-36, four types of fiber elements are specified for a concrete section
confined by FRP and lateral steel: (i) concrete fibers confined by FRP and lateral steel located at
the section core, (ii) concrete fibers confined only by FRP (cover concrete for a conventionally
reinforced section), (iii) longitudinal reinforcement bars, and (iv) FRP fibers.

Moment-curvature analysis was conducted for two sections: TP-22 and TP-23
(Kawashima et al. 2001). Geometrical and material properties of these two sections are listed in
Table 3-3. FRP wraps used in specimens TP-22 and TP-23 were horizontal, thereby acting only

in the lateral/hoop direction with no stiffness in the longitudinal direction.

Figure 3-37 Menegotto-Pinto monotonic and cyclic model

The three fiber types (Types i, ii, and iii) followed monotonic and cyclic models and
rules. In order to analyze section behavior, three cyclic models for steel were implemented in the
developed window-based computer application, including linear-cyclic model, Esmaeily’s cyclic
model (Esmaeily and Peterman 2007; Exmaeily and Xiao 2005), and Menegotto-Pinto’s cyclic
model (1973). When all other parameters remained unchanged, predicted behavior using

Menegotto-Pinto and Esmaeily’s models was generally closer to experimental data. The
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Menegotto-Pinto model includes four parameters for setting monotonic and cyclic behavior of
steel. As shown in Figure 3-37, monotonic behavior of steel is bilinear in the Menegotto-Pinto
model. The first part of the monotonic model is a line with a slope equal to the modulus of
elasticity of steel, ending at the steel yield point. It is followed by the second line with a specific
slope set by the first parameter of the Menegotto-Pinto model (b) set to 0.01. Cyclic parameters

of the Menegotto-Pinto model, R;, a,, and a,, were considered 2.0, 2.0, and 0.09, respectively

(Menegotto and Pinto 1973).

In order to model behavior of concrete confined only by FRP (concrete fibers located
between lateral steel reinforcement and FRP, referred to as cover concrete for conventionally
reinforced sections), Youssef’s and Samaan’s stress-strain models were used in this study.
Considering functionalities of various models, the Samaan model is used for concrete fibers
located in the cover concrete region only when behavior of core concrete fibers are predicted by

the same model.

Maximum uniaxial compressive strength of a concrete fiber predicted by the Samaan
model, which considers only FRP, for specimens TP-22 and TP-23 was larger than the ones
predicted by Kawashima, Lee, and Youssef models in which effects of FRP and lateral steel
were considered (Figure 3-38). Because real FRP confinement for a section is less than
confinement provided by FRP warp and steel lateral reinforcement, the Samaan model cannot
logically be used as monotonic behavior of concrete fibers located at the cover region when the
Kawashima, Lee, or Youssef model is used for monotonic behavior of core-section fibers.
Therefore, the Youssef model is used for monotonic behavior of concrete fibers located at the
cover region, and the Kawashima, Lee, Youssef or proposed models are used for monotonic

behavior of core-concrete fibers.
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Figure 3-38 Analytical stress-strain of (a) TP-22 (with one layer of CFRP) and (b) TP-23
specimen (with two layers of CFRP) (monotonic concentric)

Cyclic behavior of FRP-confined fibers is considered linear with a slope equal to the

modulus of elasticity of plain concrete.

Monotonic models developed to predict behavior of concrete columns confined by FRP
can be categorized into two groups. In the first group, the effect of existing internal lateral steel
reinforcement (tie/spiral) is ignored. In the second group, however, this effect is implemented.
The Samaan and Youssef models represent the first group, and the Kawashima, Lee, and
proposed models represent the second group. Similar to FRP-confined only fibers, cyclic
behavior of fibers confined by FRP and lateral steel is also considered linear with a slope equal

to the modulus of elasticity of plain concrete.

Analytical results obtained from the five models (Samaan, Youssef, Kawashima, Lee,
and the proposed model) are compared to experimental results for specimens TP-22 and TP-23 in
Figure 3-39 and Figure 3-40, respectively. Throughout all analytical processes, only the

monotonic model for core concrete and cover concrete changed.
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Figure 3-39 Moment-curvature analysis for TP-22 (with one layer of CFRP) using (a) Lee, (b)
Kawashima, (c) Youssef, (d) Samaan, and (e) proposed model for confined concrete
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Figure 3-40 Moment-curvature analysis for TP-23 (with two layers of CFRP) using (a) Lee, (b)
Kawashima, (c) Youssef, (d) Samaan, and (e) proposed model for confined concrete
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Monotonic behavior, cyclic rules of steel, and cyclic rules for fibers located at cover and
core regions remained unchanged. The term “performance” refers to the ability of the analytical
procedure to predict real behavior of the specimen. The closer the prediction is to the real values,
the higher the performance of the model. Stiffness degradation and Bouschinger effect are
primarily affected by the steel hysteretic model when the level of axial force is low. Therefore, in
order to compare experimental data and analytical results, the envelope of flexural moment in
analytical and experimental hysteretic moment-curvature curves was compared. The closer the
predicted analytical envelope is to the experimental, the higher the performance. The moment-

curvature envelope of specimens TP-22 and TP-23 are shown in Figure 3-41.

As shown in Figure 3-39 and Figure 3-40, Youssef, Kawashima, and Lee models have
almost the same predication for specimens TP-22 and TP-23. Moment capacity of the section
dropped significantly after curvature 0.1 and 0.15 (1/m) in specimens TP-22 and TP-23,
respectively. Although Kawashima and Lee models are proposed for concrete confined by FRP
and lateral steel, their predictions are more realistic for a specific range of FRP and steel lateral
reinforcement. As shown in Figure 3-39, the predicted moment capacity of a section is closer to
the experimental moment for a section with two layers of FRP (higher FRP ratio) compared to a

section with only one layer of FRP (lower FRP ratio).

Although the Samaan model was developed for concrete confined only by FRP,
performance of this model for specimens TP-22 and TP-23 was better than performance of the
Kawashima and Youssef models, considering the confinement effect of FRP and lateral steel
reinforcement. Performance of the Samaan model improved by increasing the number of FRP
layers, as shown in Figure 3-40. For other stress-strain models, ultimate strain of confined

concrete was lower than the one predicted by the Samaan model. Therefore, confined concrete
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fibers began failing in a curvature less than 0.1 (1/m); when the Samaan model was used,
curvature at the start of failing for concrete fibers was higher than 0.15 (1/m). As shown in
Figure 3-34, the Samaan model overestimates ultimate compressive strain of specimens confined
by FRP and lateral steel for 55% when considering the confinement effect of FRP only. The
Samaan model was proposed using concrete-filled FRP tube specimens, and the effect of FRP
tube Poisson’s ratio on lateral FRP strain was ignored. Therefore, the Samaan model
overestimated ultimate strain of specimens TP-22 and TP-23 when considering the confinement

effect provided only by FRP, thereby leading to better performance compared to other models.
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Figure 3-41 Moment-curvature envelope of (a) specimen TP-22 (with one layer of CFRP) and
(b) specimen TP-23 (with two layers of CFRP)

The proposed model works reliably well for specimens TP-22 and TP -23, as shown in
Figure 3-39 and Figure 3-40. Versatility of the proposed model was enhanced by four
independent experimental databases. Compared to other models, the proposed model calculated

moment capacity of TP-22 and TP-23 specimens conservatively closer to the experimental data.
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3-8 Summary

A fiber-based method was employed to analyze RC sections, and a humber of monotonic
and cyclic material models from the literature were implemented in a developed computer
application. Because the developed computer application utilizes triangular meshing, a column’s
cross section can have any arbitrary shape. Monotonic and cyclic rules of materials can be
unconditionally complex. The developed window-based computer application can be used for:

e Construction of 3D axial force-bending moment interaction surface for RC
columns with conventional lateral steel reinforcement using the ACI stress-block
(code-based),

e Construction of axial force-bending moment interaction surface using proper
material models for RC columns laterally reinforced by steel, FRP, or steel and
FRP assuming constant strain at extreme compressive fiber,

e Construction of real axial force-bending moment failure surface considering
proper material models for RC columns laterally reinforced by steel, FRP, or steel
and FRP with or without considering the axial force loading pattern. Ultimate
moment capacity of an RC section is defined as the maximum moment in
monotonic moment-curvature analysis with constant or variable axial force,

e Moment-curvature analysis for RC columns with conventional lateral steel
reinforcement considering ACI stress-block (code-based),

e Biaxial moment-curvature analysis considering proper material models under any

pattern of curvature in the two lateral directions and arbitrary axial load pattern,
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e Biaxial force-deflection analysis using proper material models and plastic hinge
method under any pattern of lateral displacement in the two lateral directions and
an arbitrary axial load pattern.

Accuracy of the developed computer application’s calculated results was assessed
through validation examples in which analytical predictions were compared to experimental
results. Calculated results demonstrated a close agreement with the experimental data. The effect
of axial and lateral forces’ loading pattern in two lateral directions as it pertains to the response
of concrete columns confined by conventional lateral steel reinforcement, FRP, or lateral steel
and FRP can be captured using proper monotonic and cyclic material models and assumption on
curvature distribution along the column height. In addition, accuracy of existing monotonic and
cyclic material models and curvature distribution assumption (plastic hinges methods) can be
assessed through various types of analysis when experimental data is available.

In order to obtain a more versatile model for the stress-strain relationship of concrete
confined by FRP and lateral steel, a new monotonic model was developed using four
independent experimental databases, utilizing specimens tested under concentric monotonic axial
load. Compared to other models, predictions by the proposed model showed good agreement

with experimental data for the specimens.

Blind verification of the proposed model was also conducted using experimental data
from two concrete sections not used to calibrate this model. Because experimental data of these
two sections included moment and curvature at the column-footing interface, a fiber-based
moment-curvature analysis was conducted using the proposed model and the other four models
of monotonic behavior of confined concrete fibers. Use of four independent databases to develop

the proposed model demonstrated increased versatility and accuracy in performance prediction,
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especially ultimate failure condition, ultimate strength, and overall stress-strain response

compared to existing models in the literature.

This model and other representative models were implemented in a windows-based
computer program which is explained in detail in Chapter 4. This application can analyze the
load/displacement pattern and flexural performance of a reinforced concrete section or structural
members with various cross-sectional geometry, type, and arrangement of reinforcement in

longitudinal and lateral directions.
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Chapter 4 - Parametric Study on Load History and Pattern

4-1 Introduction

Loading history, pattern, intensity, and linear combinations of loads, specifically lateral
and axial loads, can significantly affect RC column behavior (Sadeghvaziri and Fouch 1991, Lee
et al. 2009). During an earthquake, a majority of buildings are subject to biaxial lateral
earthquake forces and variable cyclic axial force. Biaxial motion is induced in columns of
irregular buildings, even against one-directional earthquake motions. Experimental studies and
investigations of damaged structures after earthquakes have proven that damage caused by
bidirectional earthquake motion differs from and, in most cases, is more extensive than damage
caused by uniaxial earthquake motions (Marante and Florez-Lopez 2002, Rodrigues et al. 2013).

This chapter discusses the effect of lateral displacement/loading pattern and variable axial
force on performance of RC members. The effect of lateral displacement/loading pattern was
investigated in relation to performance of RC members’ flexural capacity and energy dissipation.
In addition, a new axial force-bending moment interaction curve was conducted that considered
maximum bending capacity of the section in a moment-curvature analysis with variable axial

loading.

4-2 Effect of Lateral Displacement/Loading Pattern on Performance of RC

Members

4-2-1 Analytical Model

In order to assess performance of RC column behavior under various loading scenarios, a

computer application was developed for nonlinear analysis of RC columns under uniaxial lateral
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forces/displacements and axial loading. Functionalities of this computer application are

explained in detail in Chapter 4.

A typical RC column was simulated using a nonlinear fiber-based model in which a cross
section of an RC column was divided into a number of fibers, including confined concrete fibers
at the section core enclosed by lateral reinforcement, plain concrete fibers at the section cover,
and longitudinal steel fibers. Other researchers have effectively utilized the fiber-based model to
simulate flexural behavior of RC columns (Esmaeily and Xiao 2005, Shao et al. 2005).

Figure 4-1 shows fiber representation of a square cross section with triangular mesh.

For columns with conventional geometry, deformation compatibility was considered by
the classical Bernoulli-Euler rule of plane sections remaining plane after deformation. Each fiber
was assigned to the proper monotonic stress-strain model in which cyclic rules for hysteretic

performance and confining effects were considered when applicable.

Confined Concrete Fibers

D aaavAvAY, o / =
) A PN N, ¢
Steel Bars . 3\ | N7 |

Unconfined Concrete Fibers

Figure 4-1 Fiber representation of a square cross section

In the present study, the model developed by Mander et al. (1988) was employed to

model uniaxial behavior of concrete fibers confined by tie in compression. This model can be
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used to model normal-weight concrete in circular and rectangular sections confined by spiral,
circular, or rectangular tie with or without cross ties. Uniaxial monotonic behavior of unconfined
(plain) concrete fibers was modeled using the model developed by Mander et al. (1988).The
equation related to the first part of this model for plain concrete was identical to the equation
used for confined concrete by assuming zero lateral pressure; the second part was a line

connecting strengths that corresponded to a strain of 2x¢,, (&, is axial strain in unconfined
concrete corresponding to maximum compressive stress of plain concrete) and the point of
concrete spalling (&, ) with zero strength. Tensile behavior of confined and unconfined concrete

fibers was modeled by a linear stress-strain relationship with a slope equal to the modulus of
elasticity of plain concrete. Fibers were shown to lose their tensile or compressive strength after
the first failure in tension or compression. Tensile strength of concrete is generally less than 20%
of the compressive strength, and it can be obtained experimentally using a tension test or a split-
cylinder test. In addition, a bending test of a plain concrete beam can be used to obtain tensile

strength of concrete, known as the modulus of rupture. When experimental data is unavailable,

tensile strength of concrete is commonly calculated using equation f, :O.ch'o (MPa), proposed

by the ACI. Tensile strength of plain concrete, for which no direct experimental value exists, has
commonly been considered to be approximately 10% of the standard compressive strength.
Cyclic behavior of confined and unconfined concrete fibers was assumed to be linear with a
slope equal to the modulus of elasticity of plain concrete. The effect of lateral reinforcement was
taken into account using the proper stress-strain model for concrete confined by lateral
reinforcement, namely stirrups. Monotonic and hysteretic stress-strain relationships of confined

and plain concrete fibers are shown in Figure 4-2.
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Figure 4-2 Monotonic and hysteretic stress-strain relation of (a) plain and (b) confined concrete

fibers

In order to model uniaxial monotonic behavior of longitudinal steel bars, four models
were assessed in the presented study: idealized bilinear model, Menegotto-Pinto’s model (1973),
Esmaeily’s model(Esmaeily and Xiao 2005), and the model by Mander et al. model (1984)
(Figure 4-3). These models were selected because of their widespread usage and numerical
stability. The initial line in the idealized bilinear curve had a slope equal to the steel modulus of

elasticity (E,), followed by the second line with a specific slope calculated with consideration of

fracture strength ( f ; ) and fracture strain (& ) of steel material.
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Figure 4-3 Uniaxial monotonic stress-strain models for longitudinal steel
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The Menegotto-Pinto model (1973) had a bilinear backbone curve, and the initial line had

the slope of steel modulus of elasticity up to yield strength ( f , ). The post-yield linear function

had a slope equal to a portion of steel modulus of elasticity, defined as hardening ratio. The first
line of the Menegotto-Pinto model was connected to the second line using a transition curve with
curvature R;. The effect of yield plateau was ignored. Esmaeily’s monotonic model (Esmaeily
and Xiao 2005) accounted for effects of strain hardening and softening of longitudinal steel using

four parameters (K;, K,, K;, K,). These parameters defined the ratio of ultimate and fracture
stress and strain with respect to yield strength and strain (&, ), respectively. In the model by

Mander et al.(1984), only the strain hardening effect was considered, and the ultimate point

(point with maximum strength) was defined as the fracture point of the steel material.

When no information was available regarding uniaxial behavior of the reinforcing steel

except yield strength ( f, ), the ultimate strain (&, ) and strength ( f,) for longitudinal steel were

considered to be 24.9xg (&, is the yield strain of steel) and 1.3xf,, respectively, as

sy !

recommended by Esmaeily and Xiao (2005).

Utilization of Menegoto-Pinto’s (1973) and linear hysteretic models to predict hysteretic
behavior of longitudinal steel bars of columns under uniaxial and biaxial lateral forces,
respectively, provided results with the closest agreement to experimental data. The linear cyclic
model used in this study had linear unloading and reloading with a slope equal to the steel
modulus of elasticity. Unlike the linear cyclic model, Menegotto-Pinto’s model accounted for the

Bauchinger effect during unloading and reloading cycles.
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4-2-2 Validation of Analytical Model

4-2-2-1 Moment-Curvature Analysis

Moment-curvature analysis is the preferred analysis to assess accuracy of material
behavior because no assumption of curvature distribution along the column height (plastic hinge
model) is required. To the author’s knowledge, no experimental biaxial moment-curvature curve
exists in the literature; therefore, to verify accuracy of moment-curvature response performed in
this study, unidirectional cyclic moment-curvature analysis of a circular section (specimen TP-

21) was compared to existing experimental data (Yoneda et al. 2001).
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Figure 4-4 Geometry and reinforcement details of specimen TP-21: (a) elevation, (b) cross

section
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The circular column had a diameter of 400 mm and a clear cover of 25.4 mm. This
specimen was reinforced longitudinally using 12 No. 16 evenly distributed steel bars, Grade
SD295 (nominal yield strength in tension is 374 MPa) and reinforced laterally using No. 6 steel
tie, Grade 295, with 150 mm spacing. Details of longitudinal and lateral reinforcement of
specimen TP-21 are shown in Figure 4-4. The strength of plain concrete was 30 MPa. The
column specimen was tested under constant axial force of 185 kN and reversed cyclic uniaxial
lateral force. Detailed information regarding experimental setup is presented in Yoneda et al.

(2001).

Fiber representation of the circular cross section is shown in Figure 4-5. The model by
Mander et al. (1988) was used in conjunction with the linear cyclic rule to model behavior of
confined and unconfined concrete fibers. Based on moment-curvature responses obtained using
the three monotonic and cyclic models for reinforcing steel bars, the Menegotto-Pinto model was
selected to simulate behavior of longitudinal steel fibers when a section is under uniaxial cyclic
loading. The monotonic curve backbone coefficient (b) in the Menegotto-Pinto model was set to

0.01, and cyclic parametersR,, a,, and a, were considered 2.0, 2.0, and 0.18, respectively.

Cyclic moment-curvature analysis of specimen TP-21, obtained by the developed analytical
model, was compared to experimental data in Figure 4-6. In this figure, the purple dashed line
and the blue solid line demonstrate calculated analytical results and measured experimental data,
respectively. As shown in Figure 4-6, flexural capacity of the circular section was accurately

predicted using the analytical model.
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Figure 4-5 Fiber representation of TP-21
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Figure 4-6 Comparison of analytical uniaxial moment-curvature with experimental data for
specimen TP-21

In order to explore the effect of mesh size on accuracy of results, the maximum fiber area
was set to a series of values from 05cm’ to 4cm’. Refinement of the mesh did not have a
considerable effect on the general moment-curvature curve. Therefore, the bending moment of
the point with maximum positive curvature was compared to the experimental value for the

various mesh sizes. As shown in Figure 4-7, the difference was less than 2% for all mesh sizes.
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Although accuracy improved by decreasing the margin from 2% to approximately 1.17%, when

mesh size decreased from 4cm’ to 0.5cm?, the computational time increased approximately

250%, as shown in Figure 4-7.
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Figure 4-8 Curvature distribution along column height as assumed in (a) Priestley and Park
method (1987) and (b) Esmaeily-Xiao second method (2002)

4-2-2-1 Force-Deflection Analysis

The force-deflection response of a column can be evaluated using two approaches. In the
first approach, flexural deformation of column is calculated using the Finite Element Method

(FEM) in which curvature of the critical section (with maximum moment) falls into the
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descending branch of the moment-curvature curve. The corresponding stiffness matrix does not
remain positive-definite, and displacement-controlled adaptive methods are needed to capture the
force-deflection response (Esmaeily and Xiao 2004). Accordingly, computational demand

increases significantly in this approach.
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Figure 4-9 Geometry and reinforcement details of specimens PB01-N13, PB12-N15, and PB12-
N16: (a) elevation, (b) cross section

In the second approach, a plastic hinge method with proper curvature distribution along
the beam-column height is employed to calculate the force-deflection response when curvature
falls into the descending branch of the moment-curvature curve. Considering the plastic hinge

model, curvature distribution along the column height is divided into two regions. Curvature
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distribution in the top region (as shown in Figure 4-8) is linear, leading to elastic deformation of
the RC column’s tip; whereas curvature distribution along the bottom region (plastic hinge
region denoted as plastic hinge length) may not be linear, leading to plastic deformation at the
top of the column. Plastic hinge length depends on the curvature distribution model and may or
may not change during force-deflection analysis. Total displacement at the top of the RC column

is a summation of elastic and plastic deformations.

In this study, the second approach was employed to perform force-deflection analysis of
an RC column specimen. Although a majority of existing plastic hinge models in the literature
was developed considering uniaxial behavior of RC columns, experimental evidence has
confirmed that plastic hinge length is not affected by biaxial loading (Rodrigues et al. 2013). The
Priestley and Park (1987) model, Esmaeily-Xiao’s first and second models (Esmaeily and Xiao
2002), and Xiao’s model (Esmaeily and Xiao 2002) were used to calculate uniaxial and biaxial
force-deflection response of three RC columns (PB01-N13, PB12-N15, and PB12-N16) tested by
Rodrigues et al. (2012). The columns had a 300x300 mm square cross section. Lateral
reinforcement was provided by No. 6 bars of the European standard (diameter of 6 mm) with
step of 150 mm starting at 1.2 m from the bottom of the columns. For longitudinal
reinforcement, eight No. 12 bars in European standard were evenly distributed (diameter of 12
mm). Reinforcement details of these specimens are shown in Figure 4-9, and experimental setup

is presented in Rodrigues et al. (2012). The specimens were subjected to constant axial force at

approximately 10% of their theoretical section capacity, A, x f, where f and A, are plain

concrete compressive strength and gross cross section area, respectively. Plain concrete strength
was approximately 21.57 MPa, and the grade of steel reinforcement in longitudinal and

transverse directions was A400NR-SD (European standard). Specimens PB01-N13, PB12-N15,
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and PB12-N16 were subjected to uniaxial, biaxial expanding square, and circular lateral

displacement paths, respectively. Applied expanding square and circular paths are shown in

Figure 4-10.

(@) (b)
Figure 4-10 (a) Expanding square and (b) expanding circular displacement path
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Figure 4-11 Comparison of analytical force-deflection with experimental data for specimens
PB01-N13

Compared to various monotonic and hysteretic steel material models, results predicted

using Menegoto-Pinto monotonic and hysteretic models showed the closest agreement with
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experimental data for the column under uniaxial lateral displacement. For columns under biaxial
lateral displacements, idealized bilinear monotonic model and linear cyclic model led to closest

agreement between experimental data and calculated results.

During comparison of plastic hinge models, the Priestly and Park model (Park and
Priestley 1987) showed closer agreement with experimental data for columns under biaxial
lateral displacements; whereas, Esmaeily-Xiao’s second plastic hinge method calculated an
analytical force-deflection response in closer agreement with experimental data when the column
was under uniaxial lateral displacement. Priestly and Park (1987) proposed a constant plastic

hinge length dependent (1,) on column height (L), yield strength of longitudinal reinforcement,

and diameter of longitudinal bars. Curvature distribution along the plastic hinge length was
considered to be constant. Esmaeily-Xiao’s second plastic hinge length included two parts. The

first part (1 ..) was a constant length depending on column height, maximum longitudinal steel

pcons

stress, and longitudinal steel bar diameter. The second part (1 . ) increased linearly when the

ptrans
yield section (section experiencing yield moment) moved upward (Esmaeily and Xiao 2005).
Curvature distribution along column height as assumed in Priestly and Park (1987) and
Esmaeily-Xiao’s second models is shown in Figure 4-8. In this figure, ¢, is curvature next to the
footing and ¢, is curvature at the end of elastic region, equal to yield curvature in Priestly and
Park’s model (1987). Analytical force-deflection prediction of the PB01-N13 column subjected
to constant axial force and uniaxial displacement is compared to experimental data in
Figure 4-11. The dashed purple line and blue solid line represent calculated results and
experimental data, respectively. As shown in this figure, predicted analytical results were in

close agreement with measured experimental data.
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Figure 4-12 Comparison of analytical force-deflection with experimental data (2012) for
specimens PB12-N15 under expanding square path in (a) x- and (b) y-directions
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Figure 4-13 Comparison of analytical force-deflection with experimental data (2012) for
specimens PB12-N16 under expanding circular path in (a) x- and (b) y-directions

Figure 4-12 shows force-deflection curves of analytical and experimental results obtained

for specimen PB12-N15 subjected to the expanding square displacement path. The obtained

force-deflection curve of specimen PB12-N16 under expanding circular path in x- and y-
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directions was compared to experimental data, as shown in Figure 4-13. In general, analytical

results showed good agreement with experimental data.

The calculated results confirmed the reasonable accuracy and validity of the analytical
model to predict moment-curvature and force-deflection of RC columns under axial force and

uniaxial or biaxial lateral forces/displacements with any pattern.

4-2-3 Vital Consideration of Biaxial Analysis

Assessment of the effect of biaxial lateral displacement/force pattern and axial load
variation on performance of RC columns in terms of flexural strength, ductility, and energy
dissipation is required for a realistic prediction of column capacity. In order to demonstrate the
importance of considering the biaxial load pattern on flexural performance of RC columns,
monotonic moment-curvature analysis was conducted for section TP-21, considering various
curvature paths. To investigate the effect of axial load level on uniaxial and biaxial performance
of columns; lateral force strength and energy dissipation of columns PB01-N13, PB12-N15, and
PB12-N16 under “uniaxial”, “expanding square”, and “expanding circular” displacement paths,

as shown in Figure 4-10, were calculated. The axial load level varied from 0% to 20% of the

theoretical section capacity ( A, x f.,) of the section in all cases.

4-2-3-1 Moment-Curvature Analysis of RC Columns under Various Curvature
Paths

The developed analytical model was validated in the cyclic moment-curvature test of the
column specimen, TP-21. As shown in Figure 4-6, flexural capacity (moment-curvature

envelope) of column specimen TP-21 was predicted accurately. Monotonic moment-curvature
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analysis of section TP-21 was performed considering seven curvature paths and five levels of
axial force. Beginning at a point with zero curvature in x- and y-directions, seven curvature paths

were considered in order to reach the point with curvature 0.15741/ m along the x-axis and zero

curvature along the y-axis. Curvature paths are shown in Figure 4-14. In Path 1, the column

experienced uniaxial bending; in other paths, the column was subjected to biaxial bending.

Bending moments induced along x- and y-directions considering curvature paths are

shown in Figure 4-15 to Figure 4-19 for section TP-21 under constant axial force equal to 0, 5%,

10%, 15%, and 20% of the theoretical section capacity ( A, x f,), respectively. As demonstrated

in the figures, when compressive axial force increased, initial flexural capacity of the section
increased for all paths. Section capacity along the x-axis decreased when curvature increased
along the y-axis, referred to as the “coupling effect” in the literature. For curvature along the y-
axis, even a small value caused reduction in flexural capacity of the section along the x-axis; this

reduction was more pronounced at higher levels of axial loading.
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Figure 4-14 Curvature paths
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Figure 4-16 Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial
force equal to 5% analytical axial capacity of the section considering various curvature paths

The reduction percentage of flexural capacity, or maximum strength in x-direction, for

each level of axial force is summarized in Table 4-1 (the reduction percentage is calculated with
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respect to Path 1 (uniaxial curvature path)). In this table, negative and positive signs indicate
decrease and increase in ultimate flexural capacity of the RC section, respectively. Flexural
capacity of the section in the x-direction decreased, with the exception of two cases of increased
flexural capacity related to 5% axial force. As shown in Table 4-1, the effect of curvature path
for reducing flexural capacity of the section increased significantly when the applied axial force

level increased.

Under zero axial force, the flexural capacity reduction percentage was 1.01 for Path 3-3;
however, this percentage increased to 15.64 when the section was subjected to axial force equal
to 20% of analytical axial capacity of the section. The highest decrement in flexural capacity

along the x-axis was observed under Path 2-3 and Path 3-3.
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Figure 4-17 Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial
force equal to 10% of analytical axial capacity of the section considering various curvature paths
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Figure 4-19 Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial
force equal to 20% of analytical axial capacity of the section considering various curvature paths

In order to clearly demonstrate the effect of load history, the flexural strength percentage

of the RC section at the last point with curvature 0.15741/m along the x-axis and zero curvature

along the y-axis for all six paths are listed in Table 4-2. Although the section experienced

identical curvature along the x-axis and y-axis at the last point in all six paths, flexural strengths
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differed significantly depending on the passed curvature path. In Table 4-2, negative and positive
signs indicate decrease and increase of final flexural strength of the RC section at the last point
of the paths as compared to the straight path as the control path, thereby indicating dependency
of the column flexural strength on load pattern and history. The load path affected strength of the
concrete section at the exact final point in addition to its effects on energy dissipation. For the
section under zero axial force and Path 3-3, the coupling effect caused 6.68% increase of final
flexural strength. However, final flexural strength of the section, experiencing Path 3-3 and 20%
axial force, decreased almost 17% compared to the final flexural strength of the section with Path
1. The presented study is an attempt to show the effect of load history and pattern on flexural
strength of RC columns. However, additional experimental and analytical work is needed before

any solid change in design procedure can be proposed.

Table 4-1 Flexural capacity reduction of TP-21 under various curvature path and axial force

level
Loading Percentage of Axial Force
Path 0 5 10 15 20

Path 2-1 -0.27 +1.32 -0.35 -0.73 -0.21
Path 2-2 -5.49 -3.75 -7.45 -8.30 -7.24
Path 2-3 -9.19 -9.32 -12.81 -13.59 -13.62
Path 3-1 -0.31 +1.15 -0.664 -1.27 -0.63
Path 3-2 -2.82 -2.35 -5.87 -8.55 -8.55
Path 3-3 -1.01 -4.69 -8.73 -12.95 -15.64

Table 4-2 Flexural strength reduction of TP-21 at point with curvature 0.15741/m along the x-
axis and zero curvature along the y-axis under various levels of axial force (compared to the
straight path to this point)

Loading Percentage of Axial Force
Path 0 5 10 15 20

Path 2-1 +0.24 -7.11 +0.19 +0.41 -10.97
Path 2-2 -0.68 -6.19 -2.28 -0.22 -7.41
Path 2-3 -1.37 -8.90 -5.72 -2.53 -12.33
Path 3-1 +0.80 -8.50 +0.18 +0.41 -8.58
Path 3-2 -0.55 -10.46 -3.70 +0.61 -6.99
Path 3-3 +6.68 -7.09 -7.74 -3.15 -16.99
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force, and (e) 20% axial force
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4-2-3-1 Force-Deflection Analysis of RC Columns under Various Loading Paths
General force-deflection performance of PB01-N13, PB12-N15, and PB12-N16 columns

was evaluated considering various axial force levels. Calculated results in terms of general
hysteretic force-deflection performance are presented in Figure 4-20 to Figure 4-24 for PB0O1-
N13, PB12-N15, and PB12-N16 columns under uniaxial, expanding square, and expanding

circular displacement path, respectively.
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Figure 4-23 Force-deflection analysis of column PB12-N16 under expanding circular
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Force-deflection envelopes of columns PB01-N13, PB12-N15, and PB12-N16 under
various levels of axial force and uniaxial lateral displacement, expanding square and expanding
circular lateral displacement paths, respectively, are shown in Figure 4-25. As demonstrated in
Figure 4-25, maximum lateral force increased for all three paths when the axial force level
increased.

Increasing axial force level from 0 to 20% of analytical axial capacity of the section
resulted in a 41.5% increase in lateral force when the column was under uniaxial lateral

displacement path. For columns under expanding square displacement path, the lateral force
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increment was 70.0% and 45.0% in x- and y-directions, respectively. These incremental
percentages were 75.4% and 54.3% for columns under expanding circular displacement path.
The incremental percentages for these three paths highlighted the role of lateral displacement
path and axial force level in specifying required lateral capacity of the section.

Because the level of axial force was more pronounced in performance of columns under

biaxial lateral displacements, biaxial analysis of structures located at near-fault regions is vital.

Individual cycle energy dissipation of the column under three displacement paths and
various axial force levels was calculated. Energy dissipated in each cycle was equal to the area
enclosed in the hysteresis loop, as shown in Figure 4-26. For columns PB01-N13, PB12-N15,
and PB12-N16 under uniaxial, expanding square and circular displacement path, energy
dissipation of 9, 7, and 8 individual cycles is shown in Figure 4-27, Figure 4-28, and Figure 4-29,

respectively, for five levels of axial force.

As shown in Figure 4-27, dissipated energy in all individual cycles increased with
increasing axial force level when columns were under uniaxial lateral displacement. However,
dissipated energy of individual cycles for columns under expanding square and circular
displacement paths followed no specific trend. For column PB12-N15 under expanding square
displacement path and axial force equal to the 20% of analytical axial capacity of the section,
force-deflection analysis was performed up to maximum drift of 18.25 mm because axial
capacity of the section could not reach the applied axial force (248.13 kN) when a majority of
concrete fibers failed in compression. Therefore, the dissipated energy bar related to the
maximum drift of 25 mm is not shown in Figure 4-28. Similarly, the last dissipated energy bars

are not shown in Figure 4-29.
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Figure 4-25 Force-deflection peak envelopes analysis of column PB12 under various levels of
axial force and (a) uniaxial lateral displacement, (b) circular expanding lateral displacement path,
and (c) square expanding lateral displacement path
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Figure 4-26 Dissipated energy in reversed cyclic loading

Although the coupling effect of the two transverse directions caused a reduction in
strength and stiffness of columns in both transverse directions, it significantly increased

hysteretic dissipated energy, as demonstrated in Figure 4-27 to Figure 4-29.
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Figure 4-27 Individual cycle energy dissipation for PBO1-N13 under uniaxial lateral
displacement and various axial force levels
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Figure 4-30 Comparison of cumulative dissipated energy for column PB01-N13 under uniaxial
lateral displacement and various axial force levels

Cumulative dissipated energy versus maximum drift of the column for three lateral
displacement paths is demonstrated in Figure 4-30 to Figure 4-32. As shown in Figure 4-30, the
level of axial force only slight affected cumulative energy of the column under uniaxial lateral
force. Columns under zero and 20% axial forces had the lowest and highest cumulative

dissipated energy, respectively.
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Figure 4-31 Comparison of cumulative dissipated energy for column PB12-N15 under
expanding square displacement path and various axial force levels
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Figure 4-32 Comparison of cumulative dissipated energy for column PB12-N16 under
expanding square displacement path and various axial force levels

For the column under biaxial displacement path, cumulative dissipated energy occurred
when the axial force was equal to 10% of analytical axial force capacity of the section.
Cumulative dissipated energy decreased when axial force level increased.

In summary, the coupling effect of the two transverse directions caused a reduction in
strength and stiffness of the column in both transverse directions; however, the coupling effect
increased accumulative hysteretic energy dissipation, as demonstrated in Figure 4-30 to

Figure 4-32.
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4-3 Effect of Axial Loading Pattern on Performance of RC Members

4-3-1 Analytical Model

4-3-2 Validation of Analytical Model

Performance of the developed computer application for predicting behvior of RC
columns under cyclic lateral force/displacements and variable axial load was assessed in
comparison with experimental data of two RC columns (TP-31 and TP-33) originally tested by
Kawashima et al. Both columns had a squre cross section with dimensions of 400x400 mm and
clear cover of 27 mm. They were reinforced longitudinally using 20 No. 13 evenly distributed
bars, Grade SD295A (nominal yield strength of 374 MPa) and laterally using No. 6 tie with 50
mm spacing. Details of longitudninal and lateral reinforcement of these two columns are shown in
Figure 4-33. Cylinder compressive strength of plain concrete was 22.9 MPa for both specimens.
Column specimen TP-31 was tested under cyclic lateral forces/displacements and constant axial
force of 470 kN; however, column specimen TP-33 was tested under cyclic lateral
forces/diplacements in addition to variable axial force. Maximum and minimum applied axial
force in column specimen TP-33 were 310 kN and -10kN, respectively. Lateral displacements and

axial forces for these two columns are shown in Figure 4-34 and Figure 4-35.
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Figure 4-35 (a) Displacement and (b) axial load cycles for specimen TP-33

Monotonic and cyclic behavior of plain and confined concrete fibers was simulated using
the model developed by Mander et al. (1988) in conjunction with the linear cyclic model.
Longitudinal reinforcing steel behavior was modeled considering Menegotto-Pinto’s (1973)
cyclic and monotonic stress-strain relationships. The monotonic curve backbone coefficient (b)

in the Menegotto-Pinto model was set to 0.01, and cyclic parametersR,, a, and a, were
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considered 1.5, 2.0, and 0.18, respectively. The effect of lateral reinforcement was considered
indirectly through uniaxial stress-strain relationship of the confined concrete core. The Esmaeily-
Xiao second plastic hinge model was used to evaluate the force-deflection response of both
column specimens. As shown, this model is more effective than other models when column

specimens are under uniaxial lateral force/displacements.
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Figure 4-36 Moment-curvature analysis for specimen TP-31
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Figure 4-38 Force-deflection analysis for specimen TP-31
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Figure 4-39 Force-deflection analysis for specimen TP-33

Figure 4-36 and Figure 4-37 show moment-curvature curves of specimens TP-31 and TP-
33, respectively, analytically calculated using the fiber element method and measured
experimentally by Kawashima et al. Analytical and experimental force-deflection curves for

columns TP-31 and TP-33 are shown in Figure 4-38 and Figure 4-39, respectively.

4-3-3 Vital Consideration of Axial Force Variation

Many research studies have been conducted to investigate if variable axial load affects
structure behavior, especially columns of structures located in near-fault regions. As a result of
conducted studies in the literature, researchers have agreed that variable axial load affects
performance of structures and special considerations must be taken into account for structures
located in near-fault regions. The primary goal of this section is to determine the importance of

axial force variability and its effect on flexural capacity of RC columns.
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Columns are structural elements that are subjected to a combination of axial forces and
bending moments. Engineers and researchers commonly utilize axial force-bending moment
interaction curves as handy tools to design columns. Based on geometrical properties of a
section, longitudinal reinforcement ratio, and arrangement and strength of concrete material, ACI
provides axial force-bending moment interaction curves. These interaction curves were produced
considering the equivalent stress-strain block proposed by Hognestad for simulating concrete
behavior and elastic-perfectly plastic stress-strain relationship to simulate the behavior of
reinforcing steel. However, lateral steel’s confinement effect was not considered in ACI
interaction curves. Therefore, engineers use ACI interaction curves as reliable, conservative tools
to design RC sections under combined action of axial force and bending moment.

A new axial force-bending moment interaction curve was conducted to investigate the
effect of variable axial load on RC section behavior. In this interaction curve for each level of
axial force, a monotonic moment-curvature analysis was conducted considering variable axial
force. The maximum moment in moment-curvature curve was selected as corresponding moment

for the axial force.

Axial Load

(Pm ax

________ Vo N MY Curvature

Figure 4-40 Axial loading pattern with n triangular cycles
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Axial force variation with respect to curvature along the x-axis considering n number of
cycles is shown in Figure 4-40. In this figure, T is maximum tensile strength coefficient less
than 1.0, ¢, IS maximum curvature, and Ag is the curvature interval in which the axial load

completes one cycle.
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Figure 4-42 Axial force-bending moment interaction curves of the square section with
o, =0.89 %, considering various axial loading patterns

4-3-4 Results and Discussion

In order to investigate the effect of the number of cycles in variable axial load in specific
curvature interval on axial force-bending moment interaction curve, axial force patterns with
Ag=0.01378, 0.0046, 0.00276,0.00137,0.00092, and 0.000921/m were considered to produce interaction
curves. Figure 4-42 to Figure 4-48 show interaction curves of a square section with 0.89% to

8.05% longitudinal reinforcing steel ratio, respectively, considering various curvature intervals.
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Interaction curves considering variable axial force were compared to the interaction curve
predicted by the ACI and the interaction curve produced by considering monotonic moment-

curvature analysis under constant axial force.
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Figure 4-43 Axial force-bending moment interaction curves of the square section with
o, =1.58%, considering various axial loading patterns

Flexural capacity predicted by the ACI was less than flexural capacity calculated with
consideration of fluctuating axial force for high levels of axial force. However, ACI flexural
capacity was less than the predicted ultimate flexural capacity considering fluctuating axial force
for middle to high levels of axial force. For all longitudinal steel ratios, flexural capacity of the
column calculated using moment-curvature analysis and constant axial force was more than
flexural capacity predicted by ACI and the flexural capacity calculated considering fluctuating

axial force.

218



6000

5000 T
4000 |
Ap=0.01378 T~

z 3000 .. Ap=0.0046
3 ——Ap=0.00276
E 2000 —_— Ap—0.00137
= —»— Ap=0.00092
< 1000 | == ACI

—@— Considering Monotonic Moment-Curavture
0 } } } }

-1000

-2000

0 50 100 150 200 250 300
Moment (KN.m)

Figure 4-44 Axial force-bending moment interaction curves of the square section with

o, =2.47 %, considering various axial loading patterns

350
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Overestimation of flexural capacity, predicted by the ACI method as compared to

ultimate flexural capacity calculated considering fluctuating axial force for the square section

with longitudinal steel ratio of 0.89% to 8.05% are shown in Figure 4-49 to Figure 4-55,

respectively. As shown in these figures, when the curvature interval decreased from Ay=0.01378

to 0.000921/m, the ACI overestimation capacity increased; when the steel ratio increased, the

ACI overestimation decreased, as in the occurrence of no overestimation when the steel ratio of

was 8.05%. Therefore, flexural capacity predicted by ACI is conservative for sections with high

steel ratio longitudinal reinforcement.
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Figure 4-51 ACI bending moment overestimation of the square section with p, =2.47 %
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Figure 4-52 ACI bending moment overestimation of the square section with p, =3.56 %
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Figure 4-53 ACI bending moment overestimation of the square section with p, =4.85%
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Figure 4-54 ACI bending moment overestimation of the square section with p, =6.33%
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Figure 4-55 ACI bending moment overestimation of the square section with p, =8.05%

4-4 Summary

Many finite and fiber element methods have been developed to predict cyclic behavior of
RC columns. Most of these models have been used to investigate behavior of RC columns under
uniaxial lateral force/displacement. The primary objective of this chapter was development,
calibration, and validation of a nonlinear fiber-based model of RC columns to simulate the
response of such columns under biaxial and uniaxial lateral forces/displacements and variable
axial loading. The Mander et al. (1988) model was used as the envelope of the uniaxial stress-
strain relationship of confined and unconfined concrete, and the cyclic response was considered
linear. Monotonic and cyclic behavior of reinforcing steel bars were modeled using Menegotto-
Pinto monotonic and cyclic models and an idealized bilinear monotonic model in conjunction
with a linear cyclic model for columns under uniaxial and biaxial lateral force/displacements,

respectively. The plastic hinge approach was applied to obtain force-deflection results of RC
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columns. Force-deflection calculated results using Priestley and Park (1987) and Esmaeily-Xiao
(2002) plastic hinge models led to the closest agreement with experimental data for columns
under biaxial and uniaxial lateral displacements, respectively. Accuracy of the analytical model
was validated against experimental data through uniaxial moment-curvature, uniaxial force-
deflection, and biaxial force-deflection analyses. Calculated results showed good agreement with
experimental data.

The importance of biaxial analysis of RC columns was demonstrated through moment-
curvature and force-deflection analyses using the developed analytical model. Monotonic-
curvature analysis was performed for a circular column under five levels of axial force and seven
curvature paths. Comparison of maximum calculated flexural strength of the circular column
under various curvature paths and levels of axial force demonstrated that the flexural strength
reduction ratio in x-direction increased when the axial force level increased. Force-deflection of
an RC column was calculated considering five levels of axial force and three lateral displacement
paths using the analytical model. The effect of axial force level was assessed on individual cycle
and cumulative dissipated energy. Increased axial force level led to the increase of individual
cycle and cumulative dissipated energy for the column under uniaxial lateral displacements. This
trend was not demonstrated for the column under biaxial lateral displacements. The effect of
axial force level on cumulative dissipated energy was more pronounced for the column under
biaxial compared to uniaxial lateral displacements. In general, cumulative dissipated energy of a
column under biaxial lateral displacements increases when the axial force level increases.
However, cumulative dissipated energy of a column under 10% analytical axial force capacity

did not follow this trend.
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In order to investigate the effect of the variable axial force, a specific type of axial force-
moment interaction curve was developed considering the moment-curvature analysis. The effect
of number of cycles in variable axial load in specific curvature interval, and steel ratio was

assessed on the realistic flexural capacity of the RC columns.
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Chapter 5 - Conclusions and Recommendations

5-1 Summary

The following objectives, related to the analysis, material modeling, and computer

application development were achieved in this dissertation:

1.

Monotonic material models, cyclic rule, and plastic hinge models were utilized in a fiber-
based analytical procedure, validated against experimental data to simulate the behavior
of RC columns under biaxial lateral forces/displacements and axial load.

The importance of considering biaxial analysis of the RC columns was demonstrated
through moment-curvature and force-deflection analyses using the developed analytical
model.

The effect of axial force level was assessed on individual cycle and cumulative dissipated
energy.

A constitutive stress-strain model was proposed for concrete confined by FRP and
conventional lateral steel reinforcement when they act simultaneously. Accuracy of the
proposed model in predicting the monotonic stress-strain relationship of concrete
confined by both FRP and conventional reinforcement was assessed compared to various
experimental data from specimens tested under concentric monotonic load and several
representative models.

Additionally, the moment-curvature response of two sections confined laterally by FRP
and conventional lateral steel, using the proposed model in a fiber-based analysis, was

compared and benchmarked against several independent experimental results.
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6. A computer application was developed to analyze the nonlinear, cyclic flexural
performance of RC structural members under various types of loading paths, including
non-sequential variations in axial load and biaxial load or displacement.

7. Several monotonic material models and hysteresis rules were implemented in the
computer application. In order to perform force-deflection analysis using proper
assumptions on curvature distribution along the member, three plastic hinge models were
also implemented into the program.

8. Program performance was verified against analytical results in the literature, and
accuracy of the analytical process and implemented models were evaluated in
comparison to experimental results.

9. The developed computer application can be used to predict the response of a member
with arbitrary cross section and type of lateral and longitudinal reinforcement under
various combinations of loading patterns in axial and biaxial directions. The application
can also be used to examine analytical models and methods using proper experimental

data.

5-2 Conclusion

As discussed in the previous section, several objectives were accomplished in this
dissertation. It may be concluded:
1. The material models and analytical methods have an important role in assessment of RC-

sections and columns performance.
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The load history experienced by an RC column has a significant effect on the flexural
capacity. The flexural capacity of the column, assessed in Chapter 4, was decreased
almost 17% when it was under 20% axial force.

The behavior of RC columns under biaxial loading cannot be predicted having the results
of their uniaxial behavior.

For an RC column under uniaxial lateral loading, the individual cycle energy dissipations
have an ascending trend when the level of applied axial force increases. However, for the
same column under biaxial lateral displacements the same trend was not seen.

The realistic flexural capacity of RC-section is less than what is predicted by ACI when
the column in under fluctuating axial force with the maximum less than 20% of its axial
capacity. The effect of varying axial loading decreases when the section has higher steel
ratio.

For RC-sections under high level of axial force (more than 20% of their axial capacities),
fluctuating axial force was not important, since the realistic flexural capacity of the
section under high level of axial force is more than the flexural capacity predicted by

ACI.

5-3 Recommendations

This work can be extended to address the following areas:

1.

Perform dynamic analysis of columns of structures located in near fault regions to
capture the effect of fluctuating axial force more accurately
Develop a new stress-strain model for concrete confined by both FRP and lateral

conventional steel in rectangular sections
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Develop a plastic hinge model for columns confined by FRP and both FRP and lateral
conventional steel
Expand the software application to consider the curvature distribution along column

height by considering multiple section along column height
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Appendix A - Developed Computer Application Help File

Introduction

As mentioned in Chapter 3, the computer program described in this study is the next
generation of the KSU-RC program with additional functionality and options. This appendix

provides an instruction to use the computer program.

Description of Buttons

File Dropdown Button
Open
User can open a saved project using this option. The project which was saved in binary

format is retrieved clicking on “Open”.

Save

Using “Save”, the project is saved in the existing project address that user interred when
the project was saved for the first time. If user has not “Save As” the project, “Save” does the

same as “Save As”.

Save As
Using “Save As”, the defined project can be saved in binary format. When the RC-

Section, monotonic and cyclic material models and Material properties are defined this button is

activated. In binary file, first RC-Section properties, then material properties, then monotonic

243



models and at the end cyclic models are serialized. The address of project will be saved in the

program. In case that user uses “Save” button, the whole project is saved in the existing address.

RC-Section Button

RC-Section Type
The geometrical properties of a section can be specified in RC-Section window. This

window can be called by clicking on RC-Section button D Seven options are currently
available for cross-sectional geometry of an RC section:

e Rectangular Section

e Hollow Rectangular Section

e Circular Section

e Hollow Circular Section

e Caltrans Section (Oval Section)

e T-Shape Section

e |-Shape Section

Transverse Reinforcement Type

Based on the cross section’s shape, the type of lateral reinforcement can be selected using
the Transverse reinforcement drop down button. For example for circular and hollow circular
sections, the type of lateral reinforcement can be one of the following types:

e Tie

e Spiral
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e FRP

e FRPand Tie

e FRP and Spiral

Selecting the transverse reinforcement type, the steel reinforcement or FRP reinforcement

or both of them are activated. In FRP reinforcement group box user can specify the thickness of
FRP and specify if the FRP works in “Only Transverse Direction” which means it has stiffness in
hoop direction and FRP is used only for confining the concrete or “In Transverse and
Longitudinal Direction” which means FRP has the confinement effect for concrete as well as

stiffness in longitudinal direction same as steel longitudinal bars.

Longitudinal Reinforcement

The steel bars numbers and size are defined in this group box. If the “Evenly Distributed”
option is selected in Bar Arrangement dropdown button, the program will arrange the location of
bars automatically. Otherwise, the user should specify the size and location of bars individually

by clicking on the cross section on the main window.

Delete RC-Section

Using the Delete Section button B the defined RC-Section and generated mesh are

deleted.
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Material Properties

Mechanical properties of materials, including concrete, steel in longitudinal and lateral
directions, FRP wraps, and FRP longitudinal bars, are provided in the computer application.
Concrete strength, as measured in the lab or desired for analysis, must be provided. For steel
material, yield strength and modulus of elasticity are provided as basic mechanical properties,
assuming symmetric behavior for steel in tension and compression. Because behavior of FRP
wraps in tension and compressive directions may not be similar in general, tensile and

compressive strength and modulus of elasticity of FRP wraps must be individually provided. The

material properties window can be called by clicking the Material Properties button @ .

Monotonic Models

A number of widely-used existing material models were implemented in the computer

application in order to model uniaxial monotonic behavior of fibers with various materials. These

models can be accessed using the Monotonic Models button D Here are the monotonic
material models implemented in the software for each material:
e Plain concrete: Mander et al. model (1988) for normal strength concrete, and Cussan and
Paultre model (1995) for high strength concrete
e Concrete confined by lateral steel (tie/spiral): Mander et al. model (1988) for normal
strength concrete, and Cussan and Paultre model (1995) for high strength concrete,
e Concrete confined by FRP: Youssef et al. model (2007) and Samaan et al. model (1998),
e Concrete confined by FRP and lateral steel: Shirmohammadi et al. model (2015), Lee et

al. model (2009) and Kawashima et al. model (2000),
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e Reinforcing steel: elastic-perfectly plastic model, Esmaeily and Xiao model (2005),
Menegotto-Pinto model (1973), bilinear model, three-linear model, quadric-linear model,
and Mander et al. model (1984),

e Reinforcing FRP: bilinear model

Cyclic Models

Various cyclic models were implemented in the computer application to model cyclic

behavior of materials in a composite section. These models can be accessed by clicking on

Cyclic Models button '1@:. Here are the cyclic rules implemented in the software for each
material:
e Plain and confined concrete: linear model and Esmaeily and Xiao model (2005)
e Reinforcing steel: linear model, Menegotto-Pinto model (1973), and Esmaeily-Xiao
model (1983)

e Reinforcing FRP: linear model

Test Cyclic Models

To test if the cyclic and monotonic material models work well, the user can use “Test
Cyclic Models” dropdown button. Moving the mouse to the right and left, the strain is calculated
based on the location of the mouse. Using the selected cyclic and material models and having
strain calculated from the location of mouse, the stress is calculated. In each strain the stress is

shown in the textbox below left of the window. To restart the form, user may use the “Restart”
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button. In that case, the form will be cleaned and user can test the models again by moving the

mouse to the left and right. To save the drawn cyclic path, user may use the “Save” button.

Interaction analysis

Four types of axial force-bending moment interaction curves can be conducted by the
software: (1) ACI interaction curve, (2) Actual interaction curve considering strain at extreme
fiber, (3) actual interaction curve considering moment-curvature analysis and constant axial
force, and (4) actual interaction curve considering moment-curvature analysis and axial loading
pattern. All four types of analysis are explained in detail in Chapter 4. In the last type of
interaction curve, the axial loading pattern should be interred as a text file. To avoid any error
while reading data from the text file, the following format should be followed. The loading patch
should include three columns of data. First column is axial force coefficient which is between 0
and 1. Second column is curvature along x-axis and third column in curvature along y-axis. The
axial force coefficient (ac) for any combination of x- and y- curvature cannot exceed 1.0,
meaning that the maximum compressive axial force (acxP) in that pattern is equal to the
specified level of axial force (P). The axial force coefficient may consider more than -0.1,
meaning that the maximum tensile axial force capacity of the section should not be considered
more than 0.1xP. We recommend creating those columns in Excel and copy-past data in a text

file. Please do note copy any empty cell from Excel. Here is an example of text file arrangement:
a'Cl (Dx,l q)y,l

ac2 (px,Z ¢y,2

ac, Pxn Pyn
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Moment-curvature analysis

Two types of moment-curvature analyses can be conducted: (1) moment-curvature analysis
based on ACI, and (2) moment-curvature analysis considering material models. The second type

can be conducted having the curvature path.

Force-deflection analysis

As explained in Chapter 3, in fiber-based method, the plastic hinge models are used to predict the
curvature distribution along column height. Three plastic hinge models have been implemented
in the software: (1) Esmaeily and Xiao first model, (2) Esmaeily and Xiao second model, and (3)

Park and Priestley model.

Mesh

Before any analysis, the section should be divided to a number of fibers. The new version

of our software uses triangular cross section fibers. To do the mesh the first button of meshing

A
Py . . .
<< can be used. To refine the mesh and create a finer mesh, use may use the second button in

<=
the mesh section buttons (Refine Mesh) <4 . To delete the mesh for any reason, the third button

K

(Delete Mesh) === can be used. The mesh setting may control in Option window.

X

Option

The general setting of the software can be defined in Options window. The Options

window has four tabs: Units, Data Points, Analysis Setting, and Mesh Setting. In Units tab, the
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unit system of the project can be defined. If a section is defined, the unit system of a project
cannot be changed. To change the unit system, the defined RC-section should be deleted and
then the Units tab will be activated. The Options window with the Units tab as the active tab is

shown in Figure A-1.

[ Options @1

Units | Data Points I Analysis Setting I Mesh Seﬂing|

) Sl System {m, kN)
@ Imperial System {inch, kips)

Cox ) (o

Figure A-1 Units tab in Options widow

The number of data points in each analysis can be defined using the “number of points”
in the second tab of Options window. The number of points is the number of pair points in each
analysis graph. Increasing the “number of points” increases the analysis time since larger number
of pair points should be calculated for each type of analysis.

The analysis setting may define in “Analysis Setting” tab, the third tab of Options
window. Three types of end conditions are defined in the software. The first end condition is

when the moment falls below the specific percentage of the maximum moment. The second one
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is when the strain at one of the concrete fibers reaches a specific value or the ultimate
compressive strain. The third condition is when the steel strain reaches a specific value of the
ultimate tensile/compressive strain.

At the fourth and last tab of Options window, the mesh setting can be defined. There are
two parameters to control the seed setting and three parameters to control triangular mesh
setting. In Sees Setting group box, the first parameter is the number of seeds around each

longitudinal reinforcement bar.

[ Options ﬁ )

Units | Data Points |Analysis Setting | Mesh Seﬁing|

Data Points
Mumber of points: 50

[oc ) [cues ]

Figure A-2 Data Points tab in Options window

To avoid any inaccuracy, the number of seeds around the longitudinal bars should be
more than 4. The number of seeds in each length may vary based on the geometrical properties

of the section.
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Options ﬁ
Anslysis Setting | Mesh Setting

Moment ending condition

[] When the moment fall bellow the |20 percent of

maximum moment.

Concrete Strain ending condition
Corfined concrete strain exceeds:

@ ultimate compressive strain.
@ strain: |0.003
Steel Strain ending condition
Steel strain excesds:

@ ultimate compressive strain.

) strain: |0.005

o] (Comed)

Figure A-3 Analysis setting tab in Options window

[ COptions ﬂ
| Urits | Data Paints I Analysis Setting | Mesh Setting

Seed Setting

Mumber of seeds around each longtudinal bar: g

Mumber of seeds around each length: 70

Triangular Mesh Setting

Minimum Angle of Triangles: 20 degree
Maxdmum Area of Triangles: 025 in"2
Refinement Ratio: 0.8

Lok Coms]

Figure A-4 Mesh setting tab in Options window

To set the triangular meshing, there are three parameters. The first parameter specifies the

minimum angle of triangles. The second parameter is the maximum area of each triangle. And
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the last one is the refinement ratio. When user clicks on “Refine Mesh” buttons, the Maximum

are of triangles will decreases with the refinement ratio.

Examples

Axial force-bending moment interaction analysis

To conduct an axial force-bending moment interaction analysis following steps should be
followed:

1. Defining RC-section geometrical and reinforcement properties: the section-type, geometrical

properties, longitudinal reinforcement and lateral reinforcement should be defined as the first

step. A sample window of RC-section properties is shown in Figure A-5

F— = =

|1 RC-Section Properties

Section Geometrical Properties Section

Section Type: Circular -

Digmeter
Clear Cover: 05 in.
Diameter 16 in.
Clear Cover
Transferce Reinforcement Longitudinal Reinforcement
Transverse Bar Amanament:  Eyen|
Reinforcement 1= h Y T
Type: Bar Size: No. 5 -
Total No. of Bars: 2
Steel Reinforcement
Bar Size: MNo. 2 -
Transverse Spacing: 5 in.
[ ok | [ concel |

Figure A-5 A sample window of RC-Section
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2. Defining mechanical properties of material: the basic mechanical properties of concrete, steel
and FRP (if section is wrapped with FRP) should be defined as the second step. A sample

window of basic material properties is shown in Figure A-6.

a Material Propertis

Material Properties
Concrete SteelBilinear

Compresive Strength: ksi

Longttudinal Steel Properties

Yeild Strenath 5 ksi

| Modulus of Blasticity: 25000 ksi
Transverse Stesl Properties

Yeild Strength 5 ksi

Modulus of Blasticty: 23000 ksi

30

2000

Figure A-6 A sample window of material properties

[ |7 Monatonic Material Model:

Steel | Core Concrete | Cover Concrete | FRP
Available models Freview
@ Mander's et al. Model Stress-Strain Curve
3
) Cussan and Pauttre’s Model 7
Youssef's et al. Mode! °
5
Samman's e al -
) Custom Model % 3
g2
e of custo s
Two parts B
Three parts .
Four parts 2
y i GeN @M oMz Qoo 0D OM%S 0SG5S 0w
Five parts strain
Parameters
Tensile strength: 07 lesi. StrainCO: 0.002 1 [Linear
Modulus of Blasticty: 4753.962 ksi. Spaling Strain g pog att 2 [lnear
Compresive strength: 7 ksi. Part 3. (Linear
StrainC50U 0.004 4 |Linear
Part 5. [Linear
—

Figure A-7 A sample window of monotonic material models
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d-f-‘- Cyclic Material Models E
Material Cyclic Model
Corfined Concrete
Cyclic Model for Corfined Concrete: | jnear Model -
1.0 1.0
1.0
Uncorfined Concrete ||
Cyclic Model for Unconfined Concrete: | jnear Model -
1.0 1.0
1.0
Steel
Cyclic Model for Steel: Menegotto-Finto Modi
al: q1p RO: 24
az 02 0.0 II
b n.o0s
FRP
Cyclic Model for FRP: Linear Model -
= ——= |

Figure A-8 A sample window of cyclic material models

B Projectt = ol |
I 5 . e - - 73S !
O AR Cfe b B EE R
ACllInteraction Curve 2 Unit: inch
Actual Interaction Curve Based on Strain at Extreme Compressive Fiber
Actual Interaction Curve Considering Moment-Curvature Analysis
Actual Interaction Curve Considering Load Pattern
4 X

Figure A-9 A sample window of project choosing axial force-bending moment interaction
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Defining monotonic behavior of materials: as the third step, the monotonic behavior of plain
concrete, confined concrete, steel and FRP should. Figure A-7 shows a sample window of
monotonic material models.

Defining cyclic behavior of materials: the cyclic behavior of materials is defined in step 4. A
sample window of cyclic material models is shown in Figure A-8.

Meshing the RC-section: by clicking on the mesh button the RC-section is meshed. User may
refine the mesh using the “Refine Mesh” button.

Conducting axial force-bending moment interaction analysis: defining RC-section, material
mechanical properties, monotonic and cyclic behavior of materials and meshing the section,
the program is ready to do any main three types of analyses. Here, the second type of axial
force-bending moment interaction analysis was chosen to conduct. Clicking on “Interaction
Analysis’; dropdown button and choosing “Actual Interaction Curve Based on Strain at
Extreme Compressive Fiber”, axial force-bending moment interaction analysis window
shown in, pops up. The strain at extreme fiber and analysis axis are needed to be defined by

user. Clicking on “OK” button, the analysis is done and the window of results will come up.

p ~
a5l Interaction Analysis &J

Analysis Strain
Concrete Strain:  p.pp3

This Strain is the Maximum Strain at Extreme Concrete Fiber.
Anahysis s
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@ Cur %CurY: 05

[ ok | [ cabesl |

Figure A-10 A sample window of axial force-bending moment interaction analysis
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Figure A-11 A sample window of axial force-bending moment interaction analysis results

To save the data in a text file, user may click on “Save Result” button on axial force-

bending moment interaction analysis result shown in Figure A-11.

Moment-curvature analysis

Since the RC-section, material mechanical properties, monotonic and cyclic behavior of
materials have been defined and meshing the section has been done, the program is ready to do
any main three types of analyses. To conduct a moment-curvature analysis, the user may click on
“Moment-Curvature” dropdown button. In this example, the second type of moment-curvature
analysis is conducted which considered the monotonic and cyclic behavior of the materials as
shown in Figure A-12. By clicking on “Actual Moment-Curvature Analysis” a window will
come up which is shown in Figure A-13. The axial force value and axis of analysis are entered

by the user. In this example, axial force level is 100 kips and the analysis axis is Y-axis.
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Figure A-12 A sample window of project choosing the second type of moment-curvature
analysis
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Figure A-13 A sample window of moment-curvature analysis
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Clicking on “OK” button, the moment-curvature analysis will be performed and a
window will come up containing the moment-curvature graph (Figure A-14). The results of

moment-curvature analysis can be saved clicking on “Save” button on the results window.
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Figure A-14 A sample window of moment-curvature analysis results

Force-deflection analysis

To conduct a force-deflection analysis, one of the three implemented plastic hinge
models is chosen. In this example, Priestely and Park plastic hinge has been used. Clicking on
“Priestley and Park’s Method”, a window comes up (Figure A-15) and the user can inter the
column height, the axial force (constant or variable) and define the analysis axis. In this example,
the cyclic force-deflection of the RC-section along X-axis under constant axial force was

conducted.
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Figure A-15 A sample window of force-deflection analysis

r
o Force-Deflection Result g

Force-Deflection Analysis
20 T T T T T

Lateral Force[kip.in]
o

Displacemnetfin.]

[ Save Result ] [ Close

Figure A-16 A sample window of force-deflection analysis

260



The axial force and displacement along x- and y-axis were given as an input to the
program. The column height is 45 in this example. The force-deflection curve is shown in

Figure A-16.
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