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Abstract 

Accurate and realistic assessment of the performance of columns in general, and those in 

critical locations that may cause progressive failure of the entire structure, in particular, is 

significantly important. This performance is affected by the load history, pattern, and intensity. 

Current design code does not consider the effect of load pattern on the load and displacement 

capacity of columns. A primary research sponsored by Kansas Department of Transportation 

(KDOT) was conducted as the initial step of the present study (No. K-TRAN: KSU-11-5). The 

main goals of the KDOT project were: (1) investigation of new KDOT requirements in terms of 

the column design procedure and detailing and their consistency with AASHTO provisions; (2) 

verification of the KDOT assumptions for the plastic hinge regions for columns and bridge piers, 

(3) provide assessment of the load capacity of the existing columns and bridge piers in the light 

of the new specifications and using the new load demand as in the new provisions; and finally 

recommendations for columns and bridge piers that do not meet the new requirements. A 

conclusion was drawn that there is a need for conducting more studies on the realistic 

performance of Reinforced Concrete (RC) sections and columns. The studies should have 

included performance of RC members under various loading scenarios, assessment of columns 

capacity considering confinement effect provided by lateral reinforcement, and investigation on 

performance of various monotonic and cyclic material models applied to simulate the realistic 

performance.  

In the study reported here, monotonic material models, cyclic rules, and plastic hinge 

models have been utilized in a fiber-based analytical procedure, and validated against 

experimental data to simulate behavior of RC section under various loading scenarios. 

Comparison of the analytical predictions and experimental data, through moment–curvature and 



 

 

force–deflection analyses, confirmed the accuracy and validity of the analytical algorithm and 

models. The performance of RC columns under various axial and lateral loading patterns was 

assessed in terms of flexural strength and energy dissipation.  

FRP application to enhance ductility, flexural strength, and shear capacity of existing 

deficient concrete structures has increased during the last two decades. Therefore, various 

aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of 

concrete members confined and reinforced by FRP, have been studied in many research 

programs, suggesting various monotonic models for concrete confined by only FRP. Exploration 

of existing model performances for predicting the behavior of several tested specimens shows a 

need for improvement of existing algorithms. The model proposed in the current study is a step 

in this direction. FRP wrapping is typically used to confine existing concrete members 

containing conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral 

steel reinforcement in analytical studies has been uniquely considered in various models. Most 

models consider confinement due to FRP and ignore the effect of conventional lateral steel 

reinforcement. Exploration of existing model performances for predicting the behavior of several 

tested specimens confined by both FRP and lateral steel shows a need for improvement of 

existing algorithms. A model was proposed in this study which is a step in this direction. 

Performance of the proposed model and four other representative models from literature was 

compared to experimental data from four independent databases. 

In order to fulfill the need for a simple, yet accurate analytical tool for performance 

assessment of RC columns, a computer program was developed that uses relatively simple 

analytical methods and material models to accurately predict the performance of RC structures 

under various loading conditions, including cyclic lateral displacement under a non-



 

 

proportionally variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007). 

However, it was limited to circular, rectangular, and hollow circular/rectangular sections and 

uniaxial lateral curvature or displacement. 

In this regards, a computer program was developed which is the next generation of the 

aforesaid program with additional functionality and options. Triangulation of the section allows 

opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined 

with any sequence of axial load provides opportunity to analyze the performance of a reinforced 

concrete column under any load and displacement path. Use of unconventional reinforcement, 

such as FRP, in lateral as well as longitudinal direction is another feature of this application.  
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Abstract 

Accurate and realistic assessment of the performance of columns in general, and those in 

critical locations that may cause progressive failure of the entire structure, in particular, is 

significantly important. This performance is affected by the load history, pattern, and intensity. 

Current design code does not consider the effect of load pattern on the load and displacement 

capacity of columns. A primary research sponsored by Kansas Department of Transportation 

(KDOT) was conducted as the initial step of the present study (No. K-TRAN: KSU-11-5). The 

main goals of the KDOT project were: (1) investigation of new KDOT requirements in terms of 

the column design procedure and detailing and their consistency with AASHTO provisions; (2) 

verification of the KDOT assumptions for the plastic hinge regions for columns and bridge piers, 

(3) provide assessment of the load capacity of the existing columns and bridge piers in the light 

of the new specifications and using the new load demand as in the new provisions; and finally 

recommendations for columns and bridge piers that do not meet the new requirements. A 

conclusion was drawn that there is a need for conducting more studies on the realistic 

performance of Reinforced Concrete (RC) sections and columns. The studies should have 

included performance of RC members under various loading scenarios, assessment of columns 

capacity considering confinement effect provided by lateral reinforcement, and investigation on 

performance of various monotonic and cyclic material models applied to simulate the realistic 

performance.  

In the study reported here, monotonic material models, cyclic rules, and plastic hinge 

models have been utilized in a fiber-based analytical procedure, and validated against 

experimental data to simulate behavior of RC section under various loading scenarios. 

Comparison of the analytical predictions and experimental data, through moment–curvature and 



 

 

force–deflection analyses, confirmed the accuracy and validity of the analytical algorithm and 

models. The performance of RC columns under various axial and lateral loading patterns was 

assessed in terms of flexural strength and energy dissipation.  

FRP application to enhance ductility, flexural strength, and shear capacity of existing 

deficient concrete structures has increased during the last two decades. Therefore, various 

aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of 

concrete members confined and reinforced by FRP, have been studied in many research 

programs, suggesting various monotonic models for concrete confined by only FRP. Exploration 

of existing model performances for predicting the behavior of several tested specimens shows a 

need for improvement of existing algorithms. The model proposed in the current study is a step 

in this direction. FRP wrapping is typically used to confine existing concrete members 

containing conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral 

steel reinforcement in analytical studies has been uniquely considered in various models. Most 

models consider confinement due to FRP and ignore the effect of conventional lateral steel 

reinforcement. Exploration of existing model performances for predicting the behavior of several 

tested specimens confined by both FRP and lateral steel shows a need for improvement of 

existing algorithms. A model was proposed in this study which is a step in this direction. 

Performance of the proposed model and four other representative models from literature was 

compared to experimental data from four independent databases. 

In order to fulfill the need for a simple, yet accurate analytical tool for performance 

assessment of RC columns, a computer program was developed that uses relatively simple 

analytical methods and material models to accurately predict the performance of RC structures 

under various loading conditions, including cyclic lateral displacement under a non-



 

 

proportionally variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007). 

However, it was limited to circular, rectangular, and hollow circular/rectangular sections and 

uniaxial lateral curvature or displacement. 

In this regards, a computer program was developed which is the next generation of the 

aforesaid program with additional functionality and options. Triangulation of the section allows 

opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined 

with any sequence of axial load provides opportunity to analyze the performance of a reinforced 

concrete column under any load and displacement path. Use of unconventional reinforcement, 

such as FRP, in lateral as well as longitudinal direction is another feature of this application. 
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Chapter 1 - Introduction 

1-1 Introduction 

Experimental and analytical studies have shown significant effects of material models, 

including monotonic and cyclic (hysteresis) rules, assumption on curvature distribution along a 

structural member, loading pattern, and the analytical strength evaluation procedure, on 

performance assessment accuracy of reinforced concrete (RC) columns. A primary research, 

sponsored by KDOT was conducted as the initial step of the present study (No. K-TRAN: KSU-

11-5). A conclusion was drawn that there is a need for conducting more studies on the realistic 

performance of Reinforced Concrete (RC) sections and columns. The studies should have 

included performance of RC members under various loading scenarios, assessment of columns 

capacity considering confinement effect provided by lateral reinforcement, and investigation on 

performance of various monotonic and cyclic material models applied to simulate the realistic 

performance. 

RC member response under various loading scenarios is a research area that has not been 

sufficiently addressed compared to more traditional areas in civil engineering. Loading history, 

pattern, intensity, and linear combination of loads, specifically lateral and axial loads in a 

column, can significantly affect RC members’‎behavior. The loading pattern of combined axial 

load and lateral force affects flexural and shear strength, ductility, stiffness, and energy 

dissipation of RC members. When exposed to dynamic excitation of any source, such as wind or 

earthquake, columns are subjected to a loading pattern in combined but non-proportional in 

lateral and axial directions, especially in earthquake excitations in near-fault regions with high 

accelerations of vertical and horizontal ground motions, large velocity pulses, directional effects, 

repetitive pulse effects, and aftershocks. 
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A majority of experimental research related to various parameters that affect RC member 

behavior has been limited to monotonic or cyclic lateral displacement (force) on columns under 

no or constant axial load (Jiang and Saiidi 1990, Jaradat et al. 1998, Kowalsky et al. 1999, 

Ridrigues et al. 2013). In an early works, the importance of concurrent amounts of axial load and 

bending moment was emphasized for dynamic analysis of coupled shear walls (Saatcioglu et al. 

1983). A limited number of researchers, such as Gilbertsen and Moehle (1980) and Abrams 

(1987), considered axial load variation in RC column behavior. Abrams investigated the 

influence of proportionally variable axial force on flexural behavior of RC columns. He 

recommended additional analytical and experimental studies for a good understanding of the 

influence of these variations on flexural behavior of RC columns. Kreger and Linbeck (1986) 

considered uncoupled variations of axial and lateral force by experimentally testing a single 

column. They demonstrated that column behavior depends strongly on axial force history. 

Sadeghvaziri and Foutch (1991) analytically studied RC column behavior under 

nonproportionally‎ varying‎ axial‎ load.‎ They‎ argued‎ that‎ “non-proportional variations in axial 

load are not just another parameter that can be considered within the framework of current 

approaches, but that its effects are so significant that new methodology and models are needed 

to assess the inelastic cyclic response of RC columns under uncoupled fluctuations in axial and 

lateral loads.” They concluded that axial load history significantly affects moment-curvature and 

axial load-flexural moment interaction curve (Saadeghvaziri 1996). 

Ono et al. (1996) observed a strange failure mode in their experimental studies which 

they concluded may have been caused by vertical motion. Alaghebandian et al. (1998) concluded 

that fluctuation in axial force can cause failure, especially in low-rise buildings and interior 

columns. Elanashai utilized inelastic analysis of RC columns and reached the same conclusion as 
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Alaghebandian et al. (Papazoglou and Elnashai 1996; Ghobarah and Elnashai 1998). Ranzo et al. 

(1999) conducted nonlinear time-history analysis on columns and discovered that seismic codes 

must provide special recommendation in order to consider fluctuation in axial force due to 

vertical acceleration of ground motions.  

During an earthquake, the majority of buildings are subjected to biaxial lateral earthquake 

motion in addition to vertical component of earthquake. Biaxial motion is induced in columns of 

an irregular building even against one-directional earthquake motions. Experimental studies and 

investigations of damaged structures after earthquakes have proven that damage caused by bi-

directional earthquake motions is different and, in most cases, more extensive than damages 

caused by uniaxial earthquake motions. When cyclic seismic loading in one direction is strong 

enough to push a RC section into its nonlinear range, it consequently affects stiffness in that 

direction and the perpendicular direction. The coupling effect of two directions significantly 

reduces overall seismic strength of the column in some cases.  

Since all methods related to seismic strength assessment of structures are based on 

uniaxial experimental data, in recent years researchers have investigated methods to address the 

biaxial effect of dynamic excitations such as earthquakes. Many experimental and analytical 

studies have been conducted to investigate column behavior under biaxial cyclic loading. Most 

analytical investigations utilize finite element modeling software such as Abaqus. Unfortunately, 

available commercial software, such as Abaqus or OpenSees, are not the first choice of design 

firms interested in assessing the real performance of existing or new RC structural members, 

though, because the learning curves for these applications are very steep. However, this 

assessment is critically important for existing structural members in relation to decisions to 

retrofit or replace those members.  
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Experimental works conducted on concrete columns under axial forces and cyclic biaxial 

lateral loading are presented in Qiu et al. (2002), Hsu et al. (2009), Chang (2010), Rodrigues et 

al. (2012a), Rodrigues et al. (2012b), and Wang et al. (2013). In addition, analytical researches, 

such as Sfakianakis (2002), Bonet et al. (2006), Charalampakis and Koumousis (2008), Pallares 

et al. (2009), and Fossetti and Papia (2012), have studied the effect of axial force and biaxial 

bending on composite section behavior as behavior relates to axial force and biaxial bending 

moment interaction. Researchers also have attempted to model cyclic behavior of composite 

columns under axial force and biaxial lateral forces (Lee et al. (2005), Liang (2008), and Liang 

(2009)) 

 

1-2 Objectives 

The primary objective of this research is to model and assess the behavior of concrete 

columns under various cyclic and monotonic loading scenarios. To achieve this goal, the 

following tasks must be completed: 

1. Evaluate the performance of concrete columns confined by conventional lateral steel or 

FRP under biaxial displacement paths and fluctuating axial force, benchmarked against 

experimental data. 

2. Evaluate the performance of RC columns in concrete structures located in near-fault 

regions. 

3. Assess various material monotonic models and cyclic rules for confined concrete, 

unconfined concrete, Fiber Reinforced Polymer (FRP), and steel by extensively studying 

and improving existing models or developing new models.  

Develop a new model for concrete confined by FRP and steel tie/spiral. 
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4. Develop a new constitutive model for concrete confined by FRP and lateral steel 

(tie/spiral), or FRP and lateral steel. 

5. Assess and improve existing plastic hinge models or develop a new model if necessary. 

6. Develop window-based software to model the performance of concrete columns under 

various monotonic and cyclic loading scenarios in uniaxial and biaxial directions with a 

smooth learning curve and user-friendly interface. 

 

1-3 Scopes 

This dissertation includes five chapters and an appendix that detail the performance of 

RC structural members with various material types and arrangements under various loading 

scenarios.  

 Chapter 1 introduces the goals of this study and contents of the chapters. 

 Chapter 2 reviews the literature through three subjects: (1) effect of lateral 

displacement/loading pattern on performance of RC column; (2) effect of axial loading 

pattern on performance of RC column; and (3) material (steel, plain concrete, confined 

concrete by lateral steel, FRP warp, and both lateral steel and FRP wrap) and plastic 

hinge models. 

 Chapter 3 introduces the analytical algorithm, material and plastic hinge models which 

were used in this study. In addition, a constitutive stress-strain relationship for FRP-steel-

confined concrete is presented. Performance of the proposed stress-strain model is 

assessed through experimental data and analytical analyzes.  

 Chapter 4 presents parametric studies conducted to investigate the effect of loading 

pattern, including lateral and axial, on performance of RC columns. 
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 Chapter 5 presents summary, conclusion and recommendations.  

 Appendix A presents a help file for the developed computer application. 
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Chapter 2 - Literature Review 

2-1 Introduction 

This chapter reviews literature in three different topics; effect of lateral 

displacement/loading pattern on performance of RC columns, effect of axial loading pattern on 

performance of RC columns and material (monotonic and cyclic) and plastic  hinge models.  

 

2-2 Effect of Lateral Displacement/Loading Pattern on Performance of RC 

Members 

A comprehensive review of studies about effect of lateral displacement/loading pattern is 

presented, chronologically, as follows. 

 

2-2-1 Kim and Lee (2000) 

Failure of brittle material such as concrete demonstrates two major mechanisms: (a) 

uncracked condition and (b) cracked condition. In the uncracked condition, applied axial force 

and bending moment do not have any coupling effect. However, in the cracked condition, the 

axial force may affect curvature about the bending axis and the bending moment may influence 

the axial strain. The axial force and bending about the other principal axis may affect the 

curvature about each principal axis when the section is under axial force and bidirectional 

bending moment and stress is beyond the elastic range.  

Kim and Lee proposed a numerical model to assess behavior of RC columns under axial 

and biaxial bending moments. To demonstrate validity of analytical results, they conducted a set 

of experimental tests in which they tested a total of 16 tied RC columns with square and 

rectangular cross section. Eccentricity of the axial load for all tests was 40 mm. The angle 
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between the principal axis and direction of eccentricity was 0, 30, and 45 for columns with 

square cross section and 0, 30, 45, 60, and 90 for columns with rectangular cross section.  

Fafitis and Shah’s (1985) model and Vebo‎and‎Ghali’s‎ (1977)‎stress-strain model were 

used to model behavior for concrete in compression and tension, respectively, in conjunction 

with Ottor and Naaman’s (1989) cyclic stress-strain model. Stress-strain behavior of reinforcing 

steel bars was simulated using elastic-perfectly plastic model in conjunction with a linear cyclic 

model with slope equal to modulus elasticity of the steel material. Analytical results were in 

good agreement with experimental data. Comparisons between moment magnification factor 

(using the moment magnification factor to consider the slenderness effect of columns) predicted 

by the proposed numerical method and the American Concrete Institute (ACI) method revealed 

that the ACI moment magnification factor was conservative.  

 

2-2-2 Sfakianakis (2002) 

Sfakianakis used an alternative fiber model with computer graphics as a computational 

tool to calculate stress integration. The developed model was employed to analyze conventional 

reinforced concrete section as well as members repaired by jacketing and steel-concrete 

composite sections under bidirectional bending and axial force. Due to using no iteration, 

Sfakianakis’ method has the benefit of convergence in all cases. In order to prove the validity 

and functionalities of the developed method, four representative numerical examples were 

discussed in his work. The following assumptions were included in the proposed method: (1) 

Based on Bernoulli-Euler assumption, plane sections remain plane after deformation, (2) Elastic-

perfectly plastic stress-strain model is used to predict steel bar behavior, (3) Tensile strength of 

concrete is neglected, and (4) Monotonic behavior of concrete is modeled using a stress-strain 
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model proposed by Tassios (1988) with parabolic initial ascending branch up to the concrete 

strength, followed by a descending linear branch.   

 

2-2-3 Qiu et al. (2002) 

The coupling effect of two principal directions significantly decreases seismic resistance 

of structures. Therefore, assessment of RC column behavior under biaxial loading is a primary 

subject of current studies of RC structures. In order to investigate behavior of RC columns under 

biaxial loading, Qiu et al. (2002) conducted an experimental study that included biaxial quasi-

static loading of seven RC columns. The strength and stiffness degradation, hysteretic energy 

dissipation, and damage index of the seven columns were analyzed considering six loading 

paths. According to test results, the conclusion was made that‎ the‎ column’s‎ capacity‎ under‎

biaxial bending differed significantly from the capacity of the column under uniaxial loading. 

Accumulative energy dissipation of the column under biaxial bending was significantly higher 

than the column under uniaxial loading. In addition, the plastic deformation capability of the 

column under biaxial loading was much lower than the plastic deformation under uniaxial 

loading. 

 

2-2-4 Lejano (2007) 

Most RC sections design charts apply to unidirectional bending of RC sections. 

Utilization of Bresler’s‎(1960)‎Load‎Contour‎Method and Reciprocal Load Method allows design 

charts to be used for bidirectional bending of RC columns. Lejano (2007) used a fiber model to 

predict biaxial behavior of an RC section and to develop design charts for bidirectional bending. 

In‎ this‎ fiber‎ method,‎ Bazant’s‎ Endochoronic (1980) theory and Ciampi’s model (1982) were 
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used to simulate the behavior of concrete and steel fibers, respectively. However, this study was 

limited to biaxial analysis of a square cross section with uniform and symmetrical reinforcement 

distribution and the effect of slenderness was ignored.  

 

2-2-5 Charalampakis and Koumousis (2008) 

Charalampakis and Koumousis developed a generic fiber model algorithm to analyze an 

RC section under biaxial bending and axial load. The developed fiber model can be used for any 

arbitrary composite section. In their study, a prismatic beam with arbitrary cross section was 

assumed, following the Bernoulli-Euler assumption in which the plane section remains plane and 

perpendicular to the longitudinal axis of the beam. Using developed fiber model, Charalampakis 

and Koumousis addressed the following problems in their study: (1) construction of moment-

curvature diagram, (2) construction of interaction curves and failure surface, and (3) 

determination of the deformed cross section after loading.  

Failure of a three-dimensional (3D) surface of a section can be produce using four 

techniques: (1) conducting interaction curves with the bending moment ratio, (2) conducting load 

contours with the level of axial force, (3) calculating stress resultant extending along an arbitrary 

oriented straight line, and (4) conducting a chart of isogonic 3D curves, as used in 

Charalampakis‎and‎Koumousis’s‎developed‎model. The stress-strain law of materials of a section 

can be defined using any number and any combination of linear and cubic polynomial segments 

in‎ Charalampakis‎ and‎ Koumousis’s‎ developed‎ fiber‎ model. Charalampakis and Koumousis 

compared the calculated results of the developed fiber model were compared to results calculated 

by Chen et al. (2001) for an arbitrary shape cross section with a circular hole.   
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2-2-6 Papanikolaou (2012) 

Papanikolaou developed a methodology to calculate the ultimate strength and moment-

curvature response of an arbitrary composite section under biaxial bending and axial load. Using 

the presented methodology and arbitrary material laws, any composite section with unlimited 

number of components and unconditionally shape complexity can be analyzed.  

Papanikolaou categorized stress integration schemes into three main categories: (1) fiber 

integration, (2) analytical integration using closed form functions, and (3) numerical integration 

in a form of Gaussian sampling on a Green path integral. The third scheme was used in 

Papanikolaou’s study due to lake of efficiency in the first two schemes. Application and validity 

of the presented methodology were proven through moment-curvature analysis and interaction 

curves of five composite sections, including the well-known composite section reported by Chen 

et al. (2001).  

 

2-2-7 Rodrigues et al. (2012) 

In order to assess the behavior of RC columns under biaxial bending, Rodriques et al. 

conducted an experimental study that included four types of full-scale quadrangular columns. A 

total of 24 columns were tested under constant axial force and displacement controlled condition. 

Six displacement paths were considered in their study, including uniaxial loading path about the 

weak and strong axes of the section, quadrangular, expending square, expanding circular and 

expending rhombus displacement paths. Three cycles were repeated in each level of 

displacement. The global behavior of these RC columns and their energy dissipation and 

damping capacity were discussed in their studies.  
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Rodrigues et al. defined four branches in the force-deflection response of an RC column: 

(1) pre-cracking response, (2) post-cracking response until the reinforcing steel yields, (3) post-

yield hardening zone, and (4) a softening phase. According to experimental results, biaxial 

loading did not affect initial stiffness of the RC columns. Strength degradation in biaxial loading 

was higher than the strength degradation in uniaxial loading, and ultimate ductility decreased in 

columns under biaxial loading.  

Rodrigues et al. studied the cumulative energy dissipation and individual cycle energy for 

all tested columns. They concluded that biaxial cumulative energy dissipation was significantly 

higher than uniaxial cumulative energy dissipation, but the summation of cumulative energy 

dissipation about two principal axes was similar to the biaxial summation of cumulative energy 

dissipation. The expanding circular path had maximum dissipated energy between applied 

displacement paths and the quadrangular path had the least dissipated energy. Energy dissipated 

of quadrangular path was less than the summation of dissipated energy about two principal axes. 

In‎ addition‎ to‎ the‎ column’s‎ geometry,‎ the‎ axial‎ load‎ level‎ and‎ number‎ of‎ cycle‎ reputation‎

affected total energy dissipation.  

According to experimental results, the displacement path significantly affected equivalent 

viscous damping of the RC columns; however, the number of repetitive cycles did not affect 

viscous damping. The quadrangular displacement path demonstrated the highest viscous 

damping. Proposed expressions in literature for estimating viscous damping of RC structures 

were validated against experimental data, and two simplified expressions were proposed to 

calculate equivalent viscous damping of RC column under biaxial bending.  
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2-2-8 Rodrigues et al. (2013) 

Yield displacement differentiates behavior of an RC column in elastic and plastic 

regimes, and various techniques in the literature have been proposed to calculate yield 

displacement/curvature. In order to calculate yield displacement, Rodrigues et al. adopted the 

procedure originally proposed by Park (1989) to be used in conjunction with the complete cyclic 

response of the column.  

According to experimental results achieved from a series of 24 columns under biaxial and 

uniaxial cyclic loading, Rodrigues et al. concluded that: (1) Biaxial loading decreases maximum 

strength of columns approximately 8% and 20% in the strong and weak direction of the columns, 

respectively. However, biaxial loading does not affect initial stiffness. (2) Ultimate ductility of a 

column under biaxial loading is significantly less than ultimate ductility of the column under 

uniaxial loading . (3) Strength degradation is more pronounced in biaxial loading than uniaxial 

loading. (4) Biaxial loading does not significantly affect stiffness degradation.  

Finally, displacement-based performance limits were calculated using experimental data 

and Part 3 of Eurocode (EC) 8 that accurately predicted drift demand of columns under uniaxial 

loading compared to experimental results.  

 

2-2-9 Dutta and Kunnath (2013) 

Based on modern seismic design codes, structures should undergo elastic behavior under 

minor earthquake and damage controlled avoiding collapse under severe earthquakes. However, 

this design philosophy is only related to service ability and ultimate limit states. Many 

experimental and analytical studies have been conducted to evaluate accurate seismic demands 

for performance-based design. However, a majority of these studies considered seismic motion 
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only in one principal direction. In the few studies that considered seismic motion in two 

perpendicular principal directions, intensity of applied ground motion in one direction was small 

compared to the other direction. In order to increase research of ground motion with similar 

intensity in both principal directions, Dutta and Kunnath assessed story drift of single-story and 

multi-story idealized systems under uniaxial and biaxial seismic motions. They proposed a 

simple and reasonably accurate hysteretic model that considered 20 far-fault ground motions. 

Based on results, they concluded that biaxial interaction may lead to increased drift demand. 

However, because they used a lumped nonlinear model, calculated results may be slightly 

overestimated. The period of single-story system increased under biaxial interaction, but the 

same trend was not demonstrated in the multi-story system.  

 

2-2-10 Bouchaboub and Samai (2013) 

Bouchaboub and Samai used finite difference method to calculate the capacity of a 

slender, high-strength RC column. The column in their study was subjected to bidirectional 

bending and axial force, and the stress-strain model in the Federation International de la 

Precontrainte (FIB) textbook was used to simulate behavior of concrete in compression. Tensile 

strength of concrete was ignored. Steel behavior was assumed to be elastic-perfectly plastic. The 

developed analytical method was validated by comparing calculated results and experimental 

data for tests conducted by Olivier Germain and Espion (2005) and Pallares et al. (2000).  

 

2-3 Effect of Axial Loading Pattern on Performance of RC Members 

In this section a comprehensive review of studies about effect of axial loading pattern or 

in other words fluctuating axial force is presented, chronologically, as follows. 
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2-3-1 Saadeghvaziri and Foutch (1990) 

Sadeghvaziri and Foutch were the first researchers to conduct analytical studies of RC 

columns under non-proportional axial load and lateral force. The behavior of RC column under 

lateral force and non-proportional axial loading was simulated using FEM. Based on analytical 

results, Sadeghvaziri and Foutch concluded that non-proportional axial loading and lateral force 

can‎cause‎an‎abnormal‎phenomena‎called‎“negative‎energy”‎in‎RC‎columns‎and‎that‎hysteretic‎

force-deflection curves are not of the Masing type. Negative energy was explained 

bySaadeghvaziri and Foutch in light of axial deformation. The effect of phasing in applied axial 

loading was also investigated; calculated results showed that hysteretic loops did not follow a 

unique pattern as a result of phasing.  

 

2-3-2 Saadeghvaziri and Foutch (1991) 

As discussed by Saadeghvaziri and Foutch, considering the maximum vertical 

acceleration less than horizontal one is the lack of provisions in the seismic design of the RC 

structures including buildings and bridges. Based on information gathered by Saadeghvaziri and 

Foutch, reports of some earthquakes indicated that the vertical acceleration of an earthquake is 

large and the vertical acceleration can exceed the amount of the horizontal acceleration. In order 

to assess the effect of seismic motion’s‎ vertical‎ component‎ on‎ behavior‎ of‎ highway‎ bridges,‎

Saadeghvaziri and Foutch modeled bridge column and deck behavior using a 3-nodes element 

and a set of beam elements, respectively. The developed analytical model was employed to 

analyze several bridges under two major cases: considering horizontal motion and considering 

uncoupled horizontal and vertical motions. Based on analytical results, Saadeghvaziri and Foutch 
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concluded that hysteretic moment-curvature loops are unstable and asymmetric. Increased 

applied compressive axial force caused the moment and shear in the column to increase, 

consequently increasing the failure possibility in the column, foundation, and abutments. 

However, increasing tensile axial force reduced the shear and the moment of the column, 

possibly increasing the failure possibility of the column in shear. Sadeghvaziri and Foutch listed 

other undesirable effects such as greater damage in plastic hinge or transition zone, increased 

ductility demand, cracking of the entire cross section of RC column, possibility of buckling and 

pullout of reinforcing steel bars, and increased load carried by the abutments. The effects of 

variable and uncoupled axial and lateral forces were studied in the foundation, abutment, and 

connections of bridges in Saadeghvaziri and Foutch studies. Detailed results for these portions of 

bridges are presented in Saadeghvaziri and Foutch (1991). 

 

2-3-3 Papazoglou and Elnashai (1996) 

Papazoglu and Elnashai collected field evidence from three earthquakes in addition to 

results from dynamic analysis considering vertical ground motion. They believed that results of 

previous strong earthquakes underestimated the ratio of vertical-to-horizontal peak acceleration 

for near-fault regions. Moreover, fluctuation of axial force was believed to potentially cause the 

shear and flexural failure. They categorized all evidence into two main categories: filed evidence 

and analytical evidence. Both categories included evidence from the buildings and bridges.  

Based on field evidence, the vertical component of an earthquake influences shear 

capacity of RC members (columns and shear wall) and creates the likely possibility of 

compressive failure in vertical elements such as columns and walls. The vertical component of 

an earthquake causes a uniform increase in the axial force of all columns of a story, considering a 
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uniform distribution of axial stiffness. Because overturning effect does not significantly affect 

interior column design, these columns are more vulnerable to compressive failure, such as 

interior columns in the 3-story parking building located at California State University, Long 

Beach, California. The buildings appear to be stiffer in vertical direction than horizontal 

direction; therefore, their vertical period is shorter than the horizontal period. The vertical period 

is not influenced greatly by lateral stiffness and building height. In the other words, during 

vertical motion, a wide varieties of buildings experience identical dynamic amplification. 

After providing various field evidences and analytical studies, Papazoglou and Elnashai 

concluded that failure modes occur which cannot be explained properly considering only shear 

and flexural capacities. They asserted that, in such failures, the effect of axial overstressing 

provides more reasonable justification for observed damages. They also stated that, in addition to 

compressive overstressing failure, the vertical component of an earthquake may cause shear and 

flexural failure. The contribution of concrete in shear reduces when the section is under reduced 

compression or mild tension.  

 

2-3-4 Saadeghvaziri (1997) 

Sadeghvaziri categorized variation of axial load with respect to lateral force/displacement 

into two main categories: proportional and non-proportional. In the proportional category, the 

axial load and lateral force/displacement reach their extreme values at the same time and they are 

applied simultaneously. In the second category, axial load and lateral force/displacement are 

uncoupled. The axial force-moment diagram was calculated with and without considering the 

loading history. The flexural capacity of the section considering loading history in some level of 

axial load was significantly less than the value calculated without considering loading history. 
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Therefore, Saadeghvaziri suggested use of composite columns such as concrete-filled steel 

tubular columns because uniform distribution of the reinforcement causes the effect of varying 

axial load to be less pronounced. Otherwise, code-based axial force-moment diagrams should be 

modified considering the worst case of the non-proportional axial load and lateral force. Using 

an analytical model, a cantilever column was analyzed under proportional and non-proportional 

varying axial load. Comparison of obtained results from these two cases showed that ductility 

demand of the column increased significantly by considering non-proportional varying axial 

loading.  

 

2-3-5 Collier and Elnashai (2001) 

Many design codes suggest use of a scaled spectral shape, originally derived for the 

horizontal component of an earthquake to take care of the vertical component, meaning that 

these design codes considered frequency contents of vertical and horizontal motions to be 

identical, which is incorrect. Although S-waves cause horizontal motions, the vertical component 

of an earthquake is associated with P-waves that have higher frequencies than S-waves. Because 

of this lack of design codes, Collier and Elnashai developed a new procedure to calculate the 

elastic and inelastic vertical vibration period considering vertical and horizontal motions. The 

proposed procedure requires an engineering seismology and site-specific study. Using records of 

past earthquakes, they concluded that the time interval between peak horizontal and peak vertical 

accelerations increased when the distance from the earthquake source increased. The time 

interval was influenced by earthquake magnitude, and for distances less than 5 km, peak vertical 

and peak horizontal acceleration could occur coincidently. Utilization of a graph originally 

developed by Elnashai and Papazouglou (1997) and knowledge regarding horizontal 
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acceleration, distance, and magnitude from the earthquake source, allow vertical acceleration to 

be specified. Vertical accelerations also can be calculated using the equation proposed originally 

by Ambraseys and Simpsons (1996): 

( ) 1.74 0.273 0.954 log( ) 0.076 0.058v s A SLog a M r S S           
(2-1)  

where 
sM  is earthquake magnitude and 2 2 24.7r d   and d  is durance from the earthquake 

source. Parameters 
AS  and 

SS  depend on the soil type: For rock, the parameters are equal to 0; 

for stiff soil, 
AS  is 1.0 and 

SS  is 0; for soft soil, 
AS  is 0 and 

SS  is 1.0. 

 

 

Figure ‎2-1   Vertical-to-horizontal earthquake GPA ratio (Elanashi and Papazoglou, 

1997) 

 

Collier and Elnashai recommended a method for calculating force caused by the vertical 

component of an earthquake using the vertical period and a vertical response spectrum. Based on 
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the observed interaction, a procedure was proposed for the combination of forces due to vertical 

and horizontal components of the earthquake. 

 

2-3-6 Esmaeily and Xiao (2004) 

Because of overturning moment effect, columns in tall buildings and multi-column bent 

bridges are subjected to axial force proportional to lateral force under seismic or wind loading. 

However, when the tall building or bridges are located in near-fault regions, axial force acts 

proportional to lateral horizontal loading. Most studies conducted to assess the effect of seismic 

loading of structural columns have used constant level of axial force or axial force proportional 

to lateral loading despite considering complicated lateral loading patterns. In order to perform 

more studies on seismic behavior of columns under non-proportional axial force and lateral 

loading, Esmaeily and Xiao conducted a set of experimental tests in which they tested six large-

scale RC columns with circular cross section under constant and variable axial force and cyclic 

and monotonic lateral loading. Based on recorded force-deflection and calculated moment-

curvature responses, they concluded that peak flexural strength and displacement capacity of 

columns under constant level of axial force and cyclic lateral loading is similar to the flexural 

strength and displacement capacity for monotonic pushover loading case. However, flexural 

strength and displacement capacity of columns under variable axial force with identical 

maximum and minimum values were completely different. In addition, the variation pattern of 

axial force significantly affected column responses.  
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2-3-7 Esmaeily and Xiao (2005) 

In a companion paper, Esmaeily and Xiao (2005) simulated the behavior of RC columns 

under variable axial force using a fiber-based model, and they modeled the monotonic behavior 

of steel using their own proposed stress-strain model. Esmaeily and Xiao also developed a 

multilinear model, explained in detail in Chapter 4, to simulate cyclic behavior of steel bars. 

Stress-strain behavior of concrete fibers was modeled using a parabolic function in conjunction 

with the nonlinear cyclic model proposed by Esmaiely and Xiao. Using rectangular fibers and 

plastic hinge concept, force-deflection analysis of the circular section was modeled and 

compared to experimental data. Analytical results were in good agreement with experimental 

data.  

 

2-3-8 Kim et al. (2011) 

Kim et al. emphasized the importance of vertical peak acceleration and that vertical-to-

horizontal (V/H) acceleration ratio may exceed the value of two-thirds, as recommended by 

design codes. In order to investigate the effect of the vertical component of an earthquake, Kim 

et al. studied the effect of V/H peak ground acceleration and the time interval between arrivals of 

those peaks. During an earthquake, the vertical component of ground motions is caused by P-

waves, and S-waves cause horizontal ground movement. P-waves’‎wavelength‎is‎shorter‎than‎S-

waves’‎wavelength,‎ or,‎ in‎ the‎other‎words‎ the‎ frequency‎content of P-waves is higher than S-

waves. Although energy content over the frequency range of P-waves is less than the S-waves, 

the large amount of energy is concentrated in a narrow frequency range, causing large 

amplifications in a short time. Kim et al. utilized the Pacific Earthquake Engineering Research 

next-generation attenuation project database and other observations from the literature in order to 
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considef V/H ratio limited to 2.0 and time interval limited to 5s in their analytical study. They 

analyzed two bridges (Santa Monica Bridge and the Concept Design Example No. 4 of the 

Federal Administration [FHWA] designed based on AASHTO 1995) under earthquake ground 

motion of five near-source stations. These earthquake records had a vertical GPA greater than 

0.3 and V/H ratio greater than 0.6. Using obtained analytical results, they concluded that 

increasing the variation of axial force caused by the vertical component of an earthquake can 

decrease shear capacity up to 30%. They also concluded that arrival time only minimally affects 

variation of axial force and consequently shear demand; in contrast, the arrival time interval has 

a significant effect on shear capacity. They also added that no clear correlation between the time 

leg and vibration period was observed. 

 

2-3-9 Lee and Mosalam (2013) 

Lee and Mosalam believed that one of the primary reasons bridges fail during 

earthquakes in the last decades is because of lack of redundancy of structural systems. Although 

previous research has shown the effect of axial force on shear capacity of columns, the most 

critical‎element‎of‎bridge’s‎structural‎system,‎current‎design‎codes‎have‎unique‎approaches‎for‎

estimating shear capacity. Failure to consider axial force leads to bending moment capacity 

changes (compression increases and tension decreases) and greater shear force. Lee and 

Mosalam emphasized the importance of the vertical component of an earthquake and explained 

how design codes account for the effect of this excitation. They asserted that the two-thirds ratio 

of peak V/H ground acceleration, as considered in most current design codes, underestimates the 

effect of vertical excitation in near-fault regions. In order to address the lack of experimental 

justification, Lee and Mosalam studied the effect of vertical ground excitation on shear capacity 
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of RC bridge piers using shaking table tests. Although the effect of vertical earthquake excitation 

is more pronounced in a bridge comprised of small column aspect ratios, short spans, and multi-

column bridge bent (Kunnath et al. 2008), Lee and Mosalam studied the single column. Isolation 

of high-frequency vertical excitation of axial force variation caused by overturning moment and 

shaking table size was mentioned as the main reason to study a single column. Vertical 

earthquake excitation caused fluctuating axial force in the column, resulting in degradation of 

shear capacity. Flexural damages occurred at the top of the column earlier than damages at the 

bottom of icolumn due to large mass moment of inertia at the top. Increased scale of ground 

motion caused increased flexural damages at the top and bottom of the column. Shear damages 

occurred because of flexural yielding at the end of the column. Comparison of experimental 

shear force with shear capacity predicted by ACI and Caltrans Seismic Design Code (SDC) 

showed that the SDC predicted shear capacity more conservatively because of it neglected 

concrete contribution under tensile axial force.  

 

2-3-10 Mwafy (2012) 

Using a fiber-based model, Mwafy (2012) investigated the effect of vertical component 

of earthquake in conjunction with horizontal component on seismic response of 12 medium-rise 

RC buildings (24-36 m). The developed analytical model was subjected to the near-filed 

earthquake records. To avoid extreme conclusion, earthquake excitations with unusual V/H peak 

acceleration‎ ratios‎were‎ not‎ considered‎ in‎Mwafy’s‎ studies.‎ Selected‎ earthquake‎ records‎were‎

normalized to obtain equal velocity spectrum intensity in the period range of the buildings. The 

vertical component of an earthquake increased axial force fluctuation in the columns, potentially 

causing variation in column strength and stiffness because flexural and shear capacity of 
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columns is highly affected by axial force level. Therefore, the Zeus-NL platform (Elnahsai et al. 

2010) was used for analytical simulation in order to capture the large displacement behavior of 

buildings under static and dynamic loading, considering material inelasticity and geomantic 

nonlinearities. Using archived analytical results, Mwafy concluded that the vertical component 

of an earthquake significantly affects the seismic response of the member and structure levels. In 

addition, Mwafy suggested that designs of medium-rise RC buildings located at near-fault 

regions should consider maximum amplification‎of‎vertical‎ground‎motion.‎Based‎on‎Mwafy’s‎

results, the vertical ground motion effect increases when a building contains structural 

irregularity, and the contribution of lateral seismic action is small at higher stories.  

 

2-4 Material and Plastic Hinge Models 

Analysis of RC elements or structures requires analytical material models to simulate 

cyclic and monotonic behavior of RC element components. These models should accurately 

reflect monotonic and cyclic behavior of materials. This section provides a comprehensive 

review of material models for monotonic and cyclic stress-strain relationships of steel, plain 

concrete (unconfined concrete), concrete confined by lateral steel (tie/spiral), Fiber Reinforced 

Polymer (FRP), or both lateral steel and FRP. In addition, current assumptions regarding 

curvature distribution over column height, specifically plastic hinge models are reviewed.  

 

2-4-1 Monotonic Material Model 

Real monotonic material models for steel and concrete confined by various lateral 

reinforcements were obtained from tensile tests of steel bars and compressive tests of concrete 

specimens. Numerous models have been developed based on observed behavior of steel, 
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concrete confined by lateral steel, concrete confined by FRP, and concrete confined by both FRP 

and lateral steel. Some of these models are briefly discussed in this chapter.  

 

2-4-1-1 Steel 

Because mild steel is generally used as reinforcing steel in concrete members, only the 

behavior of mild steel is discussed in this section. Actual behavior of steel bars under tensile test 

is shown in Figure ‎2-2. As illustrated in this figure, increased tensile strain caused the steel to 

demonstrate linear elastic behavior up to the yield point ( ,y yf ). After that yield point, steel 

strength did not change significantly with increased tensile strain. This region is referred to as the 

yield plateau in the literature. The strain hardening region followed the second region to the 

ultimate strength of steel (
suf ). In the last region, also known as the post-ultimate stress region, 

steel strength decreased with increased tensile strain.  

 

2-4-1-1-(a) Multilinear Models 

Many researchers have used multilinear models in analytical studies to simulate uniaxial 

behavior of steel bars. In multilinear models, steel behavior is simplified using multiple linear 

functions. Two examples of this type of model are shown in Figure ‎2-3.  

One of the commonly used multilinear models is the elastic-perfectly plastic model which 

includes two lines. The first line has a slope equal to steel modulus of elasticity continuing to the 

yield point. The second line has zero-slope, as shown in Figure ‎2-3.  
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Figure ‎2-2   Typical monotonic curve of mild steel in tension 

 

  
(a) (b) 

Figure ‎2-3   Multilinear models: (a) bilinear or elastic-perfectly plastic model and (b) quad linear 

model 
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Figure ‎2-4   Monotonic stress-strain model for steel proposed by Menegotto-Pinto (1973) 

 

2-4-1-1-(b) Menegotto-Pinto Model 

Menegotto-Pinto’s‎model‎(1973)‎includes‎a‎bilinear‎curve.‎The‎initial‎line‎with‎a‎slope‎of‎

steel modulus of elasticity up to yield strength models elastic behavior of steel material. The 

post-yield strength is defined as a linear function with a slope equal to a portion (defined by b  

parameter)‎of‎ the‎ initial‎part’s‎slope.‎However,‎yield‎plateau‎characterization‎ is‎neglected.‎The‎

Menegotto-Pinto model is summarized in the following equation: 

0
0

1/

(1 )

1

s

ys s

R
R

y y

s

y

b
f

b
f










 

  
  
   

  
  

 (2-2)  

where 
0R  is the exponent that controls the transition between elastic and hardening branch.  

 

2-4-1-1-(c) Mander et al. Model (1984) 

The model of Mander et al. (1984) was developed as a result of many tension and 

compression coupon tests. This model, which takes into account elastic behavior, yield plateau, 

and strain hardening of steel material, has three main regions, as shown in Figure ‎2-5. The first 

region‎is‎a‎linear‎function‎with‎slope‎equal‎to‎steel’s‎modulus‎of‎elasticity;‎the‎region‎ends‎at‎the‎
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yield point with stress equal to yield stress of steel. The second region simulates yield plateau, 

and the third region is an ascending curve up to the maximum strength of steel, simulating the 

strain hardening region of steel behavior. The post-ultimate stress region is not considered in the 

Mander et al. model.  

 

 

Figure ‎2-5   Proposed stress-strain model for reinforcing steel by Mander et al. (1984) 

 

Stress-strain functions for these three regions can be summarized as 
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where 
s , 

sh , 
su , 

sf , 
yf , 

sE , and 
suf  are steel strain, steel strain at commencement of strain 

hardening region, steel strain corresponding to ultimate strength, steel stress, steel yield stress, 

steel modulus of elasticity, and steel ultimate strength, respectively. Parameter P  is defined as 
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2-4-1-1-(d) Balan et al. Model (1998) 

The monotonic response of reinforcing steel in tension is typically assumed to be 

identical to its response in compression. The tensile and compressive responses were considered 

to be identical; therefore, the linear strength degradation of compressive response due to local 

buckling was ignored in Balan et al. model. Balan et al. (1998) considered two coordinate 

systems in order to model linear strength degradation. They considered identical curve for steel 

in tension and compression in engineering coordinate system, resulting in varied behavior for 

tension and compression in a natural coordinate system. Their proposed stress-strain curve for 

reinforcing steel in tension in the engineering coordinate system was 

2
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 (2-5)  

where 
h sE E  is hardening ratio and 

hE  is slope of asymptote in the strain hardening region. 

Eq. (4-4) describes a family of parallel hyperbolas with two asymptotes that depend on 

parameter  . Parameter   is defined as 
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(2-6)  

where 
0  is the area of triangle bounded by two asymptotes and the tangent to the hyperbola. 

Balan et al. (1998) extended Eq. (4-4) to define the linear elastic region, yield plateau, and strain 

hardening behavior of reinforcing steel in a single equation in the engineering coordinate system 

as follows: 
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where 
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Eq. (2-7) was used to define the tension curve in the engineering coordinate system, and Eq. (2-

12) converted the tensile monotonic curve: 

ln(1 )s s    

ln(1 )s sf f   

(2-13)  

where 
s  and sf  are strain and stress, respectively, in the natural coordinate system.  

 

2-4-1-1-(e) Esmaeily and Xiao Model (2005) 

Esmaeily and Xiao’s‎ steel‎ monotonic‎ model‎ simulates behavior of longitudinal 

reinforcement when additional detailed reinforcing steel information is available. This model 

takes into account yield plateau, strain hardening, and softening of steel material. As shown in 

Figure ‎2-6, four parameters ( 1K , 2K , 3K , and 4K ) were used to simulate stress-strain behavior of 

various steel types. These four parameters are defined as: 
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1K = ratio of strain at the start of the strain hardening region to yield strain 

2K = ratio of strain corresponding to ultimate strain to yield strain 

3K = ratio of ultimate strain to yield strain 

4K = ratio of ultimate stress to yield stress 

 

 

Figure ‎2-6   Esmaeily-Xiao (2005) monotonic stress-strain model curve of steel 

 

2-4-1-2 Concrete 

Compressive behavior of plain or unconfined concrete is commonly obtained from 

compressive tests of cylinder specimens with a height-to-diameter ratio of 2. Tensile strength of 

plain concrete also can be obtained directly from tensile tests. However, the direct tensile test is 

rarely used due to difficulties associated with holding the specimen and uncertainties of 

secondary stress caused by the holding tools. Therefore, tensile strength can also be measured 

indirectly using a split-cylinder test. Experimental data has been used to develop numerous 

stress-strain models for unconfined concrete. A few of those models are described in the 

following sections.  
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2-4-1-2-(a) Hognestad Model (1951) 

The ascending portion of the stress-strain‎curve‎in‎Hognestad’s‎model‎is‎defined‎using‎a‎

parabolic function. The descending branch of the model is defined using a linear function as 

follows: 
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where 
cf , 

0cf  , 
c , and 

0c  are axial compressive stress of concrete, maximum strength of plain 

concrete, strain of concrete, and strain corresponding to the maximum strength of plain concrete, 

respectively.‎In‎Hognestad’s‎model,‎fracture‎strain‎of‎plain‎concrete‎is‎assumed‎to‎be‎0.0038. 

 

2-4-1-2-(b) Mander et al. Model (1988) 

Mander et al. proposed a stress-strain model that considers Popovics equation as follows: 
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(2-15)  

where 
sp  is spaling strain of plain concrete, and r  is defined as 
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cE  is the concrete modulus of elasticity, and 
secE  is defined as 
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2-4-1-3 Concrete Confined by Lateral Steel 

2-4-1-3-(a) Richart et al. Model (1928) 

Richart et al. (1928) conducted one of the first studies on the effect of transverse 

reinforcement on enhancement of concrete compressive strength. Richart et al. used test results 

of 100 200mm mm  cylindrical specimens under various transverse pressures to conclude that 

strength and corresponding strain increases in proportion to transverse pressure increase. Based 

on experimental results, they proposed the following equation to predict compressive strength of 

confined concrete by lateral reinforcement: 

0cc c lf f k f     (2-18)  

where 
0cf  , 

lf , 
ccf  , and k  are plain concrete compressive strength, transverse pressure, 

compressive strength of confined concrete, and experimental coefficient, respectively. Strain 

corresponding (
cc ) to maximum stress of confined concrete was given as 
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where 
0c  is strain corresponding to maximum strength of plain concrete.  

 

2-4-1-3-(b) Mander et al. Model (1988) 

The model of Mander et al. (1988) was developed analytically for circular or rectangular 

cross sections. Researchers have used this model to simulate monotonic behavior of concrete 

confined by conventional reinforcement. The RC section may contain any general confinement 
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type provided by spiral or circular hoops, or rectangular hoops with or without supplementary 

cross-tie. In this model, the effect of any confinement type is taken into account by defining an 

effective lateral confining pressure. Effective lateral confining pressure in this model depends on 

lateral and longitudinal reinforcement configuration.‎ The‎ model’s‎ stress-strain relationship is 

based on an equation proposed by Popovics: 
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where 
cc  is strain corresponding to maximum strength of confined concrete (

ccf  ) calculated by 
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and 
sec cc ccE f  . Maximum strength of confined concrete is expressed as 
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In Eq. (2-23), 
lf   is effective lateral confining pressure defined as 

1

2
l e s yhf k f    (2-24)  

where 
s is the ratio of volume of transverse reinforcement, 

yhf  is yield strength of the 

transverse reinforcement, and 
ek is confinement effectiveness coefficient. ek  for a circular 

column can be calculated by 
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 (2-25)  

s , sd , and cc  are clear spacing between spiral or hoop bars, diameter of spiral or hoop, and 

ratio of area of longitudinal steel to area of core of section, respectively. For a rectangular section 

reinforced laterally by rectangular tie and cross-tie, the confinement effectiveness coefficient is 

defined as 

 
2

1

1 1 1
6 2 2

1

n
i

c ci

e

cc

w s s

b d
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



      
        
      





 

(2-26)  

where 
cb  and 

cd  are core dimensions to centerlines of perimeter hoop in x- and y-directions, 

respectively. To predict strain corresponding to first fracture, Mander et al. used an energy 

balance approach by equating strain energy stored in the concrete caused by confinement to 

strain energy capacity of lateral reinforcement (Mander et al. 1988).  

0

0 0

110 0.017

cu cu

s c c sl c cf d f d f

 

        (2-27)  

where 
slf  is stress in longitudinal steel reinforcement. 

 

2-4-1-3-(c) Cussan et al. Model (1995) 

Because proposed stress-strain models for normal-strength concrete may overestimate 

strength and fracture strain of high-strength concrete, Cusson and Paultre (1995) proposed a 

model to predict monotonic behavior of high-strength concrete confined by steel ties using 
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experimental results of 50 large-scale high-strength concrete-tied columns tested under eccentric 

loading. Cusson and Paultre considered effects of tie-yield strength, concrete compressive 

strength, tie configuration, and lateral and longitudinal reinforcement ratios when developing 

their‎ model‎ (Cussan‎ and‎ Paultre‎ 1995).‎ The‎ initial‎ part‎ of‎ Cusson‎ and‎ Paultre’s‎ stress-strain 

curve for confined and unconfined concrete is a relationship originally proposed by Popovics 

(1973). The second part of the curve is a modification of the relationship proposed by Fafitis and 

Shah (1985) for high-strength confined concrete. The mathematical expression of this model is 

  2

'

'
1

1

exp

c
cc

cc
c ccr

c
c

cc

k

cc c cc c cc

f r

f r

f k




 





   


 

 
       
  

    


 (2-28)  

where 
1k  and 

2k  are defined as 

 

  2
1

50

ln 0.5
k

C C cc

k
 




 

 
1.4

'
2 00.58 16 le ck f f   

(2-29)  

Maximum strength of confined concrete is calculated using the equation proposed by Press et al. 

(1990): 

0.7

0 0

1.0 2.1cc l

c c

f f

f f

  
   

  
 (2-30)  

Effective lateral pressure (
lf  ) is calculated using equations developed by Mander et al. (1988) 

which consider 
hccf (stress in transverse reinforcement) instead of 

yf . Strain corresponding to 

maximum strength of confined concrete is defined as 
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0.21 l
cc c

c

f

f
 

 
   

 
 (2-31)  

As reported by Cusson and Paultre (1995), yield strength of lateral reinforcement develops at 

peak strength of concrete only for well-confined high-strength concrete specimens; therefore, 

peak strength of confined concrete is computed by employing an iterative process. 

 

2-4-1-3-(d) Kent and Park (1971) 

Based on experimental results, Kent and Park (1971) proposed a stress-strain model with 

three branches for concrete rectangular sections. The mathematical expression of the first branch 

is given as 

2

'

0.002 0.002

c c
c ccf f

   
   

   

 0.002c   (2-32)  

Kent and Park assumed that lateral steel does not affect the shape of the first branch. The second 

branch‎of‎Kent‎and‎Park’s‎stress-strain curve is given as 

 ' 1 0.002c cc cf f Z       200.002 c c    (2-33)  

where 

50 50

0.5

0.002u h

Z
 


 

 (2-34)  

and 

'
'

50 '

3 0.002
( )

1000

cc
u cc

cc

f
f in psi

f


 



 (2-35)  

"

50

3

4
h s

b

s
   (2-36)  
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In Eq. (3-35), 
s , "b , s  are ratio of volume of transverse reinforcement to volume of concrete 

core measured to outside of hoops, width of confine core measured to outside of hoops, and 

transverse reinforcement spacing, respectively. The third branch of the model is 

'0.2c ccf f   20c c   (2-37)  

 

2-4-1-3-(e) Fafitis and Shah’s Model (1985) 

Fafitis and Shah (1985) initially developed a stress-strain model for a circular concrete 

section. They later proposed that square sections can be treated as circular sections with diameter 

equal to the side of square core. Effective lateral pressure caused by lateral reinforcement is 

defined as 

sh yh

l

c

A f
f

d s





 (2-38)  

where 
shA , 

yhf , 
cd , and s are total section area of the transverse reinforcement in vertical cross, 

yield strength of the transverse steel, core concrete diameter, and lateral spacing, respectively.  

Fafitis‎ and‎ Shah’s‎ model includes two branches: ascending and descending branches. 

Mathematical expressions of these two branches are 

' 1 1

A

c
c cc

cc

f f




  
    
   

 0 c cc    

(2-39)  

 
1.15' expc cc c ccf f k       

 
 c cc   

Compressive strength of confined concrete ( '
ccf ), coefficient k , and power A  are defined as 

 

'

cc
c

cc

A E
f


   (2-40)  
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2-4-1-3-(f) Sakino and Sun’s Model (1993) 

Sakino and Sun developed a stress-strain model for circular and square section using 

experimental results of columns under axial loading. Their stress-strain model is given as 

2
'

2

( 1)

1 ( 2)
c cc

AX D X
f f

A X DX

 


  
 (2-41)  

where 
0

c

c

X



 , 0

'

c c

cc

E
A

f


 , and '

ccf  is calculated using the following equation: 

' '
0cc c h yhf f f        (2-42)  

In above equation,   depends on the shape of the concrete section. For a circular section, 

0.8  ; for a square section, 1.0  .   is‎a‎coefficient‎that‎depends‎on‎the‎section’s‎shape.‎For‎

a square section,   is defined as 

"

1.15 1
2 c

d s

C D


  
   

  
 (2-43)  

where 
cD  and C  are the center-to-center dimension of a steel hoop and transverse distance 

between any two anchored longitudinal bars, respectively. Strain corresponding to maximum 

strength of plain concrete can be calculated using the following equations: 

 
 0 0

1 4.7 1 1.5

3.35 20 1.5 1.5
c

K K

K K
 

   
 

  
 (2-44)  
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where 
'

'
0

cc

c

f
K

f
  and 

0  are defined as 

 
1/4

' 3
0 0.5243 10ccf    . (2-45)  

In Eq. (3-44), the concrete modulus of elasticity is calculated using the following equation: 

1/3 2'
54 10

1000 2.4

cc
c

f
E k

   
         

 (2-46)  

where k  is an empirical coefficient that depends on the concrete mixture material. This 

coefficient can be 0.9, 1.0, or 1.2.   is equal to 0.75 for steel tube and 0.5 for square hoops. 

Parameter D  in the stress-strain function is calculated by 

  '
03 '

0

1
1.5 1.68 10

23

c

c

K f
D f 


      (2-47)  

 

2-4-1-3-(g) Saatcioglu and Razavi’s Model (1992) 

Similar to the model proposed by Kent and Park (1971), Saatcioglu and Razavi’s‎model‎

includes a parabolic ascending branch and a linear descending branch. The initial branch is given 

as 

1
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(2-48)  

where 1

'
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l

c

k f
K

f


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0.17

1 6.7 lk f
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lf  is lateral pressure caused by transverse steel 

reinforcement, given as 
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
 (2-49)  
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where   is the angle between transverse reinforcement and 
cb is the dimension of core concrete. 

sA  is the total area of lateral reinforcement. Confined concrete strength ( '
ccf ) is calculated by the 

following equation: 

' '
0 1cc c lef f k f   (2-50)  

where 
lef is effective lateral pressure caused by lateral reinforcement, defined as: 

2le lf k f   (2-51)  

In Eq. (3-50), 
2k  is 1.0 for circular sections, and for square section is given as: 

2

1
0.26 c c

l l

b b
k

s s f

     
             

 (2-52)  

where
ls  is the distance between longitudinal bars. Strain corresponding to compressive strength 

of confined concrete is calculated by 

 0 1 5cc c K    (2-53)  

 

2-4-1-4 Concrete Confined by Fiber Reinforced Polymer 

2-4-1-4-(a) Saaman et al. Model (1998) 

Samaan et al. expressed monotonic behavior of FRP-confined concrete by calibrating the 

Richard and Abbott (1975) relationship. The equation of monotonic stress-strain curve in this 

model is as follows: 
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   

 

(2-54)  

where 
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
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(2-55)  

Samaan et al. used a curve-shape parameter 1.5n  for the Richard and Abbott equation. 

 

2-4-1-4-(b) Lam and Teng’s Model (2003) 

Lam and Tang (2003) proposed a design-oriented stress-strain model for FRP-confined 

concrete. Their model contained the following basic assumptions based on test observations of 

FRP-confined concrete with a monotonically increasing stress-strain curve: 

 The stress-strain curve includes a parabola first portion and a straight line second 

portion. This assumption leads to a stress-strain curve similar to models implemented in 

codes for unconfined concrete.  

 The parabola slope at the initial point (𝜀𝑐 = 0) is equal to the slope of unconfined 

concrete curve (𝐸𝑐). This assumption is to account for the fact that initial stiffness of 

FRP-confined concrete due to the passive nature of confinement is affected by FRP. 

 The first parabola portion is affected because of the presence of FRP. This assumption 

reflects the fact that FRP confinement is activated when concrete behavior is nonlinear.  

 The slope does not change when the first portion meets the second portion. 
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Figure ‎2-7  Proposed stress-strain model for FRP-confined concrete (Lam and Teng (2003)) 

 

Based on assumptions in the Lam and Teng model, the following expression is given for this 

stress-strain model: 

 
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c

c c c c

E E
f E

f
 


   0 c t    

(2-56)  

0 2c cf f E    t c cu     

where 
0f  is intercept of the stress axis by the linear second portion, 

cu  is ultimate strain, and 
t  

is strain at which two portions meet, given by: 

 
0

2

2
t

c

f

E E
 


 (2-57)  

where 
2E  is the slope of the linear second portion, given by: 

'
0

2
cc

cu

f f
E




  (2-58)  

where '
ccf  is compressive strength of the confined concrete. To predict ultimate strain, Lam and 

Tang used the constitutive model proposed by Ottosen (1979). The following expression was 

proposed for ultimate strain in order to plot the strain enhancement ratio against the actual 

confinement ratio for Carbon-FRP wraps and Aramid-FRP wraps: 
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 (2-59)  

where 
secE , R , 

frpE , t , and 
,h rup  are second modules of elasticity at the compressive strength of 

unconfined concrete, radius of circular section, elastic modulus of FRP, thickness of FRP, and 

actual FRP hoop rupture strain, respectively. Experimental data from the present database in the 

literature was used to suggest the following equation for obtaining compressive strength of 

confined concrete: 

'
,

' '
0 0

1 3.3
l acc

c c

ff

f f
   (2-60)  

where 
,l af  is confining pressure caused by FRP. To calculate 

0f , Samaan et al. proposed the 

following equation based on experimental data (Samaan et al. 1998): 

'
0 00.872 0.371 6.258 ( )c lf f f MPa      (2-61)  

Using empirical results of 63 specimens, Lam and Teng demonstrated that 
0f  is independent of 

confinement pressure and, for simplicity, they used '
0 0cf f  in their model. 

Lam and Teng also proposed an FRP efficiency factor defined as the ratio of actual FRP 

hoop rupture strain (
,h rup ) in FRP-confined concrete to FRP rupture strain from flat coupon test 

(
frp ). The obtained efficiency factor equaled 0.586 for 52 CFRP-wrapped specimens out of a 

total of 76 specimens. Therefore, the ultimate strain of CFRP-confined concrete can be expressed 

as: 
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 (2-62)  
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2-4-1-4-(c) Berthet’s et al Model (2006) 

Berthet et al. (2006) presented a model based on an analytical approach. They 

categorized the mechanical behavior of confined concrete into two distinct parts. The first part, 

related to the low level of strain, is based on the theory of elasticity and strain compatibility 

between concrete core and composite jacket. The second part, related to the high level of strain, 

corresponds to pseudo-plastic behavior. This second part can be assessed using experimental 

data. The following steps are needed in order to obtain the stress-strain model: 

 Prediction of ultimate behavior 

 Modeling of the second region 

 Modeling of the first region. 

Using Mohr-Coulomb failure criterion, Berthet et al. proposed the following equation to 

determine the ultimate strength of confined concrete ( '
ccf ): 

' '
0 1cc c luf f k f    (2-63)  

where '
0cf , 

luf , and 
1k  are ultimate concrete strength of plain concrete, ultimate confinement 

pressure, and confinement efficiency, respectively. When stress equilibrium is used to obtain 

ultimate confinement pressure, Eq. 3-62 is represented as 

' '
0 1cc c f fu

t
f f k E

r
      (2-64)  

where 
fE , 

fu , t , and r are the Young modulus of FRP jacket, ultimate circumferential strain in 

the jacket, jacket thickness, and radios of the concrete core, respectively. Confinement efficiency 

(hardening parameter) can be presented by regression analysis: 

1 3.45k   '
020 50cf MPa   (2-65)  
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The following expression represents ultimate axial strain (
au ) based on experimental database: 
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 (2-66)  

where 
c , 

1E , and 
0a  are‎ Poisson’s‎ ratio‎ of‎ plain‎ concrete,‎ confinement‎modulus,‎ and‎ axial‎

strain corresponding to the change of slope from pseudo-elastic behavior to the pseudo-plastic 

behavior which is 0.002. Regression analysis was used to obtain the following equation for the 

slope of linear relationship between the pseudo-plastic branch and the confinement modulus: 

12.73 163r E    (2-67)  

Reference plastic stress (𝑓𝑐𝑝
′ ) can be calculated with the following equation: 

 ' '
cp cc r fu rpf f        (2-68)  

Compressive stress for the second branch can be estimated by following equation: 

  ' '
0c cc r c a rp r af f              ap a   (2-69)  

where 
ap  is axial plastic strain corresponding to 

rp , and 
a  is axial strain. 

For the first branch, Berthet et al. (2006) used the following expression proposed by 

Ahmad and Shah (1982) and modified by Toutanji (1999): 

21
c

A
f
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

 


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   
 ap a   (2-70)  

The boundary condition of stress-strain curve was used to obtain constants 𝐴, 𝐵, and 𝐶 as 

follows: 
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 (2-71)  
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where 𝐸𝑐 is Young modulus of plain concrete. 

 

2-4-1-4-(d) Teng et al. (2009) 

In 2009, Teng and his research group (Teng et al. 2009) refined the design-oriented 

stress-strain model originally proposed by Lam and Teng in 2003. Based on the new database 

compiled‎by‎Teng‎et‎al.,‎Lam‎and‎Teng’s‎model‎overestimated‎ultimate‎axial‎strain‎of‎concrete‎

at high level of confinement and underestimated compressive strength at low level of 

confinement. In addition, the effect of confinement stiffness was only considered for the ultimate 

axial strain equation but was not considered in the compressive strength equation. 

In their new work, Teng et al. (2009) posed two refined versions of a stress-strain model. 

In the first version, they updated only the ultimate axial strain and compressive strength of the 

original model. In the second version, they modeled the descending branch not covered in the 

original model. Teng et al. proposed the following expressions for ultimate axial strain and 

compressive strength in the first version: 

'
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f
C F f
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( ) ( )cu
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C F f   


 


    

(2-72)  

where C and C are constant, ( )kF  and ( )kF  are functions of the confinement stiffness ratio, 

and ( )f  , and ( )f  are functions of the strain ratio. Based on experimental results, these 

functions are defined as: 
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(2-73)  

For the second version of their stress-strain relationship, Teng et al. added another part to 

Lam‎and‎Teng’s‎original model when t c cu    : 
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 (2-74)  

where 
2E is‎defined‎in‎Lam‎and‎Teng’s‎model‎(2003).‎‎𝑓𝑐𝑢

′  is defined as follows: 
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(2-75)  

 

2-4-1-4-(e) Lokuge’s et al. Model (2011) 

The stress-strain model proposed by Lokuge et al. is based on 24 tri-axial tests on four 

grades of concrete (40, 60, 75, and 100 MPa) and three confining pressures (4, 8, and 12 MPa). 

In order to predict the relationship between axial strain ( 1 ) and lateral strain ( 2 ), Lokuge et al. 

(2011) used an equation proposed by Candappa (2000): 
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 (2-76)  

where 
cc , '

cc , and a  are axial strain corresponding to peak axial stress, corresponding lateral 

strain, and material parameter depending on uniaxial concrete length, respectively. Parameter a  

is approximated by: 

'
00.0177 1.2818ca f   (2-77)  

a
i  is initial Poisson’s ratio defined in Candappa (2000) as: 

 
2

6 ' '
0 08 10 0.0002 0.138a

i c cf f       (2-78)  

In order to obtain axial strain corresponding to peak axial stress, Lokuge et al. used the 

equation suggested by Attrad and Setunge (Attrad, 1996): 
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 
 (2-79)  

where 
lf  and 

0c  are confining pressure and axial strain corresponding to peak uniaxial 

compressive strength in plain concrete (generally assumed to be 0.002), respectively.  

Compressive strength of confined concrete is given as: 

'

'
0

1

k

cc l

tc

f f

ff

 
  
 

 (2-80)  

where 
tf  is tensile strength. Because the silica fume was not utilized in the work of Lokuge et al, 

tensile strength is given as: 

 
0.67

'
00.9 0.32t cf f   (2-81)  

k  is a constant defined as: 
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Lokuge et al. expressed axial stress, axial strain, and lateral strain behavior of concrete as 

follows: 
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 (2-83)  

where c and d  are material parameters depending on uniaxial concrete strength. Lokuge et al. 

(2011) proposed the following equations to predict these parameters based on best fit curves for 

each concrete strength: 

'
00.0427 7.7381cc f    

'
00.0003 0.0057cd f    

(2-84)  

mp  and 
mp  are maximum shear stress at peak and maximum strain at peak, respectively, defined 

as 

'

2

cc l
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f f



  

'

2

cc cc
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


  

(2-85)  

In Eq. (3-84), confining pressure 
lf  is obtained based on force equilibrium as follows: 

frp

l

s

f n t
f

d

 
  (2-86)  

where 
sd , 

frpf , n , and t  are diameter of the cylinder, hoop stress of the carbon fiber sheet, 

number of sheets, and sheet thickness, respectively. 
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2-4-1-4-(f) Wei and Wu’s Model (2012) 

Wei and Wu (2012) proposed one of the most recent models for stress-strain relationship 

of concrete columns confined by FRP. This model was developed based on the large number of 

database‎from‎authors’‎own‎tests‎and‎tests‎from‎literature.‎The‎most‎unique‎feature‎of‎this‎model‎

is its unified efficiency for use with circular, rectangular, and square sections. 

Wei‎and‎Wu’s‎model‎contains two parts. The first part of the model is a parabola with an 

initial slope in 0c   equal to the elastic modulus of unconfined concrete. The first part meets 

smoothly with the linear second part. The following equations present these two parts: 

 

20 0
02

0

0 2 0 0

0c
c c c c

c

c c cu

f E
E

f

f E


   



    


  

 
    

 (2-87)  

where 
0 is transitional strain calculated by the following equation: 
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  (2-88)  

2E is the slope of the second portion, defined as: 

'
0

2

0

cu
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f f
E

 





 (2-89)  

In Eqs. (3-87) and (3-88), '
cuf , 

cu , and 
0f  are ultimate stress, ultimate strain, and transitional 

stress, respectively. 
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Figure ‎2-8   Unification of column shapes (Wei and Wu (2012)) 

 

Wei and Wu also introduced two parameters, the cross-sectional aspect ratio ( /h b ) and 

the corner radios ratio ( 2 /r b ), in which h , b , and r  are length of the longer side, length of the 

shorter side, and corner radios of a rectangular section, respectively. Wei and Wu used these two 

parameters to unify their model for circular, square, and rectangular columns, as shown in 

Figure ‎2-8. They used the following equation, achieved by regression of database, to obtain 

ultimate stress of FRP-confined concrete: 

0.730.4 1'
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c c
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b bf f
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 (2-90)  

where 
lf  is calculated by: 

2 f fu

l

E t
f

b


  (2-91)  

where b  is width of columns and is equal to the diameter of circular columns or the length of the 

smaller side of rectangular columns. Wei and Wu used regression of full database to present the 

following mathematical expression for calculating ultimate strain (Wei Y. Y., 2012): 
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 (2-92)  

where 
30f  is concrete strength of unconfined grade C30 concrete and '

0cf  is maximum strength 

of unconfined concrete. In the absence of test values, the value of 
0c  in Eq. 3-91 can be 

calculated using the equation proposed by Popovics (1973): 

'4
0 00.000937c cf   (2-93)  

Regression analysis was used to present the following equation for calculating transitional stress: 
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 (2-94)  

 

2-4-1-4-(g) Youssef et al. Model (2013) 

The model by Youssef et al. is based on results from large-scale tests on circular, square, 

and rectangular sections confined only by FRP wrap. The first part of the model is a polynomial 

that simulates unconfined concrete behavior. The second part of the model is a linear function of 

strain that can predict ascending behavior of moderate- to high-confined concrete sections and 

descending behavior of low- to moderate-confined concrete sections. Stress-strain equations of 

this model are as follows: 
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(2-95)  

where for the circular section, ultimate strength and strain are calculated by the following 

equations: 
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(2-96)  

Slope of the second branch can be calculated using ultimate strain and strength (
cu , '

cuf ) and 

strain and stress in the transition point (
t , 

tf ). 

 

2-4-1-5 Concrete Confined by Lateral Steel and Fiber-Reinforced Polymer 

2-4-1-5-(a) Harajli’s Model (2006) 

Harajli’s‎model‎ for‎ the‎relationship‎between‎strain‎and‎strain‎of‎concrete‎confined‎with‎

FRP contains two parts. The first part is a parabola similar to the model proposed by Scott et al. 

for the ascending branch of the stress-strain relationship for unconfined concrete or confined 

concrete with transverse steel ties: 
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 0c c   (2-97)  

where '
0cf  and 

0c  are stress and strain at the intersection point between the first stage and the 

second stage. 

Harajli et al. proposed the following expression for the second part of the stress-strain 

relationship: 
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where 
1 4.1k  , 

ccA  is the area of concrete core confined with internal transverse ties, and 
gA is 

the gross area of the column section. 
lff  and 

lsf  are lateral passive confining pressure exerted by 

FRP and ordinary transverse steel on the concrete section, respectively. They are expressed as 
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(2-99)  

In Eqs. (3-98), 
ytf  is yield strength of transverse ties and 

sE is modulus of elasticity of steel. 
f  

is the volumetric ratio of FRP sheets, expressed for the circular and rectangular concrete sections 

as 

4 f

f

n t

D
   For circular concrete section 

(2-100)  

 2 f

f

n t b h

bh



  For rectangular concrete section 

where 
fn , t , D , b , and h  are the number of FRP layers, design thickness of FRP fabric, 

diameter of circular section, smaller dimension of rectangular section, and larger dimension of 

rectangular section, respectively. 

The term 
st  is volumetric ratio of transverse steel ties or hoops (volume of ties or hoops 

to volume of concrete core measured to outside of hoops). Based on the approach suggested by 

Sheikh and Uzumeri (1982) and Mander et al. (1988), parameters 
efk , 

esk , and 
vk  are as follows 

for rectangular section using FRP: 
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(2-101)  

For a rectangular section, using hoops, 
esk , and 

vk  parameters are defined as: 
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(2-102)  

where 
xiw  and 

yiw  are 𝑖th
 clear distance between adjacent longitudinal bars along the horizontal 

x- and y-dimensions, respectively (x and y are concrete core dimensions to centerline of 

peripheral hoop). 
cc  is the longitudinal steel ratio relative to the confined concrete core 

measured to outside of hoops, and 's is clear vertical spacing between lateral hoops. 

Parameter 𝑘𝑣  for circular column reinforced laterally with circular hoops and spiral is 

defined as 
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(2-103)  

where 
sd is diameter of spiral or hoop.  

Stress and strain in the intersection point between the first and second part of the two-part 

relationship of the stress-strain model are proposed as follows: 
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 (2-104)  
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where 
0l  is lateral strain equal to yield strain of transverse steel hoops, or 0.002 if no internal 

confinement by transverse steel is available. The stress-strain relationship for the second stage of 

this model is: 
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and 

/ 2lf ef f fE k E  

/ 2ls es s sE k E  
(2-107)  

 

2-4-1-5-(b) Eid’s et al. Model (2008) 

Eid et al. (2008) proposed a model to predict axial and lateral behavior of circular 

concrete columns with transverse steel and FRP. The proposed model integrates the contribution 

of FRP and transverse steel. In order to predict the behavior of confined concrete, an effective 

confinement index was introduced that considers transverse steel and FRP properties 

(mechanical and geometrical). The equation to determine maximum confined concrete stress ( '
ccf

) and its corresponding strain ( '
cc ) are derived from regression analysis of test results conducted 

by Legeron and Paultre (2003): 
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where '
0cf  and '

c  are unconfined concrete strength and its corresponding strain, respectively. 

The following equation can be derived from the force equilibrium of the half cross section: 
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where '
lef  is effective confinement pressure at concrete peak stress, and e  is thickness of the 

uniform equivalent steel tube that replaces discrete steel ties, given as: 
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
 (2-110)  

where s  is lateral reinforcement spacing, and shyA  is the total cross-sectional area of ties in y-

direction. cD  is concrete core diameter, and '
lff  and '

f  are lateral pressure due to FRP and FRP 

circumferential strain at concrete peak stress, respectively. 2 /fl f fE t E D  is measure of the FRP 

composite stiffness or FRP lateral modulus in which ft  and fE  are thickness and elastic 

modulus of FRP, respectively, and D  is diameter of the whole concrete section. p  is lateral 

pressure due to transverse steel reinforcement, and sy  is effective sectional ratio of the 

confining reinforcement, given as: 
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'
hf  is lateral steel stress at concrete peak stress, defined as: 
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where sE  is transverse steel modulus of elasticity. Parameter   is defined as: 
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Tangential (tensile) strain of composite ( '
f ) and tangential strain of transverse steel ( '

h ) 

can be assumed to be equal in elastic range, as for f  and h . Strain in transverse steel can be 

expressed‎as‎a‎function‎of‎the‎concrete‎secant’s‎Poisson’s‎ratio‎corresponding‎to‎peak‎stress‎( '
cc ) 

and‎the‎concrete’s‎secant‎modulus‎elasticity‎at peak stress ( '
cclE ): 
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where  
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'

'
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Substituting Eq. 3-107 into Eq. 3-113 yields: 
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 (2-116)  

Legeron‎and‎Paultre’s‎study‎(2003)‎concluded‎ that‎steel-confined concrete '
cc  is equal to 0.43 

and 0.11  . In another study, Xia and Wu (2003) proposed the following equation for  for 

FRP-confined concrete: 

0.9
'

' 010 c
cc

fl

f

E


 
  

 
 

. (2-117)  

In order to consider the effect of transverse steel on '
cc , the following modified equation was 

proposed: 

'
cc
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where 0c  is‎concrete‎Poisson’s‎ratio‎and‎ sf hy fu   , which is 0.133 for concrete confined by 

transverse steel only. Based on regression analysis of experimental data and Eq. 3-115: 

'
' '

'

h
cc e

c

I


 


    (2-119)  

where   is given as 

'29.8 3.56cc    . (2-120)  

When considering force equilibrium at the half cross section, the equation for effective 

confinement index ( eI ) is given as 
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sy h fl f

e

c c

f E
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f f

 
   (2-121)  

where h s h hyf E f   . When f  is equal to actual FRP rupture strain ( ,fu a ), the effective 

confinement index is at its maximum level: 
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Integration of Eqs. 3-118 and 3-120 yields 
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where 1  and 2  are defined as: 
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f E

EE
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
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where ' ' '
0c c cE f   is concrete secant modulus at peak stress and sl s syE E    is transverse steel 

stiffness.  

Experimental data‎ of‎ various‎ studies‎ showed‎ that‎ adjustment‎ of‎ Lam‎ and‎ Teng’s‎

proposed model (2003) allows ultimate concrete strength ( '
cuf ) and strain ( '

cu ) of concrete 

confined with FRP or FRP and transverse steel to be predicted using the following expressions: 
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(2-125)  

The first stage, or pre-peak branch, of the stress-strain‎ curve‎ is‎ expressed‎ by‎ Sargin’s‎

(1971) proposed equation, with modification as follows: 
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(2-126)  

where ctE  is tangent elasticity modulus of concrete and cuE is slope of the curve after the peak, 

given as: 

' '

'

cu cc
cu

cu cc

f f
E

 





 (2-127)  

 

2-4-1-5-(c) Lee et al. Model (2010) 

In the study by Lee et al., an experimental work was conducted on 24 specimens under 

compressive load with various types of confinements. Based on experimental results, 
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compressive response of the confined concrete column could not be obtained by adding the 

confinement effect of FRP and transverse steel reinforcement due to differences in FRP and steel 

behavior. Using the test data, a set of empirical equations to predict the stress-strain response of 

concrete column confined with FRP and transverse steel was proposed. 

 

 

Figure ‎2-9   Monotonic stress-strain model proposed by Lee et al. for FRP steel spiral-confined 

concrete 

 

The proposed model considers the role of transverse reinforcement and the FRP jacket to 

predict the stress-strain response of the confined concrete column subjected to a compressive 

load. In this three-part model (Figure ‎2-9) for concrete confined by spiral and FRP, the first part 

of the model is a parabolic equation beginning with a slope equal to the modulus of elasticity of 

plain concrete. The first part is followed by a polynomial function after a strain equal to the 

strain of unconfined concrete at maximum compressive strength. The confining effect of FRP 

and spiral steel on the compressive strength of concrete is demonstrated by the second part of the 

curve which ends at the yield point of the steel spiral. The effect of the steel spiral remains 
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constant, and the effect of FRP confinement increases to the ultimate strain of FRP-spiral-

confined concrete in the remaining part of the curve. The formulae of this model are as follows: 
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(2-128)  
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(2-129)  

Ultimate strength and strain are calculated using the following equations: 

'
0 '

0

1 2
lf ls

cu c

c

f f
f f

f

 
    

 
 

0.45

0 '
00

1.75 5.25
lf s ls frp

cu c

cc

f k f

f


 



     
            

 

(2-130)  

where 2s lf lsk f f   for lf lsf f  and 1sk   for lf lsf f . frp  is the rupture strain of FRP. 

 

2-4-1-5-(d) Hu et al. Model (2010) 

In accordance with the concept of passive confinement, Hu et al. proposed a model for 

concrete columns confined with FRP and transverse steel. Axial stress and strain can be 
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calculated from each actively confined stress-strain curve by adopting the stress-strain 

relationship proposed by Popovics (1973): 

 
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 (2-131)  

where  ' '/c c cc ccE E f   . cE is‎Young’s‎modulus‎of‎ the‎concrete;‎ '
ccf  and '

cc are peak stress 

and strain of the actively confined concrete, respectively; cf  and c  are stress and strain of the 

passively confined concrete curve, respectively. Peak stress and strain are calculated as: 
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(2-132)  

where 
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(2-133)  

In Eq. (3-132), lsf  and lff  are given as: 
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(2-134)  

where ek  is a confinement-effectiveness coefficient proposed by Mander et al. (1988). d  is 

diameter of the cross section, cd  is diameter of core concrete, and l  is lateral strain that can be 

calculated using the following equation: 
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where 
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TRS  is defined as: 

23.5
TRS

steel

FRP

k

k

   
(2-137)  

where steel s sp ck E A d  and FRP f fk E t s d .  

 

2-4-2 Cyclic Material Models 

Cyclic behavior of reinforcing steel and concrete, especially core concrete, significantly 

affects RC member cyclic behavior modeling. The following section presents cyclic rules 

proposed in the literature to simulate cyclic behavior of reinforcing steel, concrete confined by 

conventional lateral steel, and FRP. 

 

2-4-2-1 Steel 

2-4-2-1-(a) Linear Hysteretic Model 

A linear hysteretic model uses a linear function with slope equal to modulus elasticity of 

steel‎ in‎ order‎ to‎model‎ unloading‎ and‎ reloading‎ branches‎ of‎ steel’s‎ cyclic‎ behavior.‎ Stiffness‎

degradation is not considered in this model; therefore, calculated results using the linear 

hysteretic model are not as accurate as results obtained using a more realistic hysteretic model. 
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The monotonic model used in conjunction with the linear model as the envelope of the hysteretic 

model may or may not consider the strain hardening effect.  

 

2-4-2-1-(b) Ramberg-Osgood Model 

The Ramberg-Osgood equation is given as 

1
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f f

E f
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 (2-138)  

where 
s , 

si , 
sf , 

sE , 
chf , and r are steel strain, steel strain at zero stress at the beginning of 

loading, steel stress, steel modulus of elasticity, stress dependent on yield strength and plastic 

strain of steel from previous loading, and parameters depending on the loading run number.  

 

2-4-2-1-(c) Balan et al. Model 

Balan et al. developed a macroscopic cyclic model. The backbone of this model is 

expressed as 
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Differentiation of the envelope equation with respect to the strain leads to the tangent modulus 

on the envelope curve in the engineering coordinate: 
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Balan et al. considered three types of reversals: 

 Reversal from yield plateau 

 Reversal from strain hardening region 

 Reversal from reversal curves. 

Complete and incomplete reversals follow the same rules. The only difference between these 

three types of reversals is amplitude parameter. When an unloading/reloading occurs, stress-

strain behavior of steel is simulated using a hyperbolic branch. Mathematical formulation of this 

branch in the engineering coordinate is given as: 
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where k
r , / k

h uE E  , k
uE , k

yf , and k
y  are reversal strain, instantaneous hardening, 

unloading modulus, instantaneous yield stress, and strain, respectively. Superscripts k  in this 

formula indicate the unloading/reloading cycle number. All parameters with superscripts k  are 

updated after each unloading/reloading cycle. Instantaneous stress and strain are calculated suing 

the following equations: 
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In Eqs. (3-146) to (3-148), 
0

k , 
y , k

rf , and k
r  are strain at the intersection of the 

instantaneous unloading asymptote and strain axis after k-reversal, initial yield strain in the 

engineering coordinate, stress, and stress after k-reversal. In the unloading/reloading branch 

equation, k  is degradation parameter, defined as: 
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where k
p  is plastic strain amplitude and 

0  is initial value of   given as: 
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and k a  is amplitude parameter, given as: 
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2-4-2-1-(d) Esmaeily and Xiao’s Model (2005) 

Esmaeily‎ and‎ Xiao’s‎ hysteretic‎ model‎ (2005)‎ for‎ steel‎ is‎ a‎ multilinear‎ model.‎ At‎ the‎

reversal point, the unloading path is a linear function with a slope equal to modulus of elasticity 

of steel material. The Bauschinger effect is taken into account in this model by changing the 

slope‎of‎the‎first‎unloading‎branch‎into‎a‎portion‎of‎steel’s‎modulus‎of‎elasticity.‎In order to more 

realistically simulate cyclic behavior of steel material, this ratio and the strain at which the slope 

change occurs differ in the second (tensile strain and compressive stress) and fourth 

(compressive strain and tensile stress) quarters compared to values in the first (tensile strain and 

stress) and third (compressive strain and stress) quarters. Hysteretic behavior of steel material 

can be changed using five ratios ( 1P , 2P , 3P , 1R , and 2R ) in Esmaeily-Xiao’s‎model.‎Stress-strain 

mathematical expressions of this model in one of the Point 1, 2, and 3, as shown in Figure ‎2-10 

are defined by considering the previous stress and strain state ( p , pf ). 

At Point 1, no unloading/reloading had previously occurred; therefore, the envelope 

curve (monotonic model) is followed. At Point 2, the reversal branches are defined 

mathematically as: 
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In Eqs. (2-153) to (2-155), 
uf , 

yf , and 
u  are ultimate strength, yield strength, and rupture strain 

of steel, respectively.  

At Point 3, the stress-strain reversal branch is similar to Point 2, with one exception: 

1 1( )
1 2

p y p yLine
y s p p

s s

f P f f P f
f P f P E f

E E

   
  

       
 

. (2-156)  

 

 

Figure ‎2-10   Esmaeily‎and‎Xiao’s‎cyclic‎model 
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2-4-2-2 Concrete 

2-4-2-2-(a) Linear Model 

Cyclic behavior of plain and confined concrete can be modeled using a linear model in 

which unloading and reloading curves are simplified using a line with a slope equal to the 

modulus of elasticity of the plain concrete. The linear cyclic model is shown in Figure ‎2-11. 

Although the linear model was developed to simulate hysteretic behavior of plain and concrete 

confined by lateral steel reinforcement, the linear model can also be used to model hysteric 

behavior of concrete confined by FRP or lateral steel and FRP. 

 

 

Figure ‎2-11   Linear cyclic model 

 

2-4-2-2-(b) Park et al. Model (1972) 

Kent and Park developed a cyclic model to model cyclic behavior of plain concrete and 

concrete confined by lateral steel. In this model, the unloading/reloading curve is approximated 

by a bilinear function. Although the envelope curve (monotonic model) for compressive 

behavior‎of‎concrete‎is‎represented‎by‎Kent‎and‎Park’s‎function‎for‎concrete‎confined‎by‎lateral‎

steel reinforcement, this model can be used in conjunction with any monotonic model as its 

envelope curve. Park et al. model is shown in Figure ‎2-12. 
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Figure ‎2-12   Park et al. model for hysteretic behavior of concrete 

 

2-4-2-2-(c) Kuramoto and Kabeyasawa Model (1995) 

Kuramoto and Kabeyasawa developed a linear model in which the slope of 

unloading/reloading branch can be tuned as needed, as shown in Figure ‎2-13. In this figure, 
B  is 

compressive strength of cover concrete (or plain concrete) and K  is confinement coefficient. 

Initial stiffness of plain and confined concrete is considered to be equal to plain concrete 

modulus of elasticity, and secondary stiffness of plain and confined concrete is defined as a 

portion of initial stiffness.  

 

Figure ‎2-13   Kuramoto and Kabeyasawa model for hysteretic behavior of concrete 
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2-4-2-2-(d) Mander et al. Model (1984) 

Mander et al. modified the hysteretic model developed by Takiguchi et al. to be suitable 

for plain and confined concrete. In the Mander et al. model, shown in Figure ‎2-14, the unloading 

path follows a concave-upward parabolic path with a zero-slope at the strain-axis. Tensile 

strength of concrete can be taken into account considering a linear path with a slope of plain 

concrete modulus of elasticity. With increased strain, stress remains zero up to the last strain 

corresponding to zero stress, after which point strain will grow in a linear reloading path with a 

slope equal to plain concrete modulus of elasticity in the strain-axis. 

 

 

Figure ‎2-14   Mander et al. (1984) model for hysteretic behavior of concrete 

 

2-4-2-2-(e) Esmaeily-Xiao Model (2005) 

In Esmaeily-Xiao’s‎ cyclic‎model,‎ shown‎ in‎ Figure ‎2-15, the unloading path follows a 

parabolic path that is concave-upward with a slope of 2cE  on the envelope curve (monotonic 

curve). The monotonic model is followed for ascending and descending within the elastic range 

of concrete. With decreased strain at the unloading path, stress decreases to zero, after which 

point if the tensile strength is ignored, stress remains zero; otherwise, the stress decreases to 
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tensile strength using a linear function with a slope of ctE . The mathematical expression of 

unloading branch is given as: 

2
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2 2

'
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2 2

4

2
0

cc p cc pc
c p cc p
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c p
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f f

E Ef

f f
f
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   

 

 
      
 
 

  

 (2-157)  

where 
cf ,  , 

p , 
pf , 

1cE , and '
ccf  are stress, strain, strain and stress at the point from which 

unloading begins, initial stiffness of reloading branch, and maximum compressive strength, 

respectively. 

 

 

Figure ‎2-15   Esmaeily-Xiao hysteretic model for concrete, descending branch 

 

With increased strain, the stress remains zero until the latest strain corresponding to zero 

stress; then stress increases following a concave-downward parabolic with a slope of 1cE  at the 

strain-axis, as shown in Figure ‎2-16. The following parabolic function is followed for ascension 

from a point with strain 
p  and stress 

pf : 
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 (2-158)  

 

 

Figure ‎2-16   Esmaeily-Xiao hysteretic model for concrete, ascending branch 

 

2-4-2-2-(f) Shao, Zhu, and Mirmiran Model (2006) 

Shao et al. developed a model for predicting behavior of FRP-wrapped concrete cylinders 

using experimental data. Experimental data was developed by testing 24 concrete cylinders with 

dimensions of 152 mm by 305 mm tall. Cylinders were wrapped with carbon or glass FRP and 

then loaded cyclically. During cylinder testing, the discovery was made that using one layer of 

FRP wrap was only beneficial in increasing cylinder ductility but failed to increase compressive 

strength (Zhao et al. 2006). Researchers also discovered that the Glass-FRP caused the cylinder 

to have increased ductility, but Carbon-FRP caused ultimate strengths to increase more than 

Glass-FRP (Zhao et al. 2006). The concluding observation from testing showed that a thick wrap 
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would potentially cause the cylinder to fail during unloading because the FRP squeezes the 

cylinder after loading. 

After completing testing on 24 cylinders, a model was developed by Shao et al. to explain 

observed‎cyclic‎behavior.‎The‎madel‎ is‎ a‎bilinear‎curve.‎The‎concrete‎core’s‎modulus‎governs‎

the first part of the stress-strain curve and the FRP jacket controls the latter part of the curve. The 

stiffness‎of‎each‎part‎is‎a‎primary‎factor‎in‎the‎curve’s‎response,‎given‎by: 

𝑓𝑐 =
(𝐸1−𝐸2)𝜀𝑐

[1 + (
(𝐸1 − 𝐸2)𝜀𝑐

𝑓𝑜
)
𝑛

]

1
𝑛⁄

+ 𝐸2𝜀𝑐 
(2-159)  

where E1 and E2 are slopes of the response, given by: 

𝐸1 = 3950√𝑓𝑐𝑜′  

𝐸2 = 245.61𝑓𝑐𝑜
′0.2 + 1.3456

𝐸𝑗𝑡𝑗

𝐷
 

(2-160)  

where Ej is the modulus of elasticity of FRP, tj is jacket thickness, and f
’
co is unconfined strength 

of the concrete. In addition, n is 1.5 and fo and fr are given by: 

𝑓𝑜 = 0.872𝑓𝑐𝑜
′ + 0.371𝑓𝑟 + 6.258 

𝑓𝑟 =
𝑓𝑗𝑡𝑗

𝐷
 

(2-161)  

where fj is tensile strength of the wrap. Ultimate strength of FRP-confined concrete is given by: 

𝑓𝑐𝑢
′ = 𝑓𝑐𝑜

′ + 6.0𝑓𝑟
0.7 (2-162)  

which can be used to find ultimate strain using 

𝜀𝑐 =
𝑓𝑐𝑢

′ − 𝑓𝑜
𝐸2

 (2-163)  

The unloading branch of the response curve was found by developing a model for the secant 

modulus, given by: 

𝐸𝑆𝑒𝑐𝑢 =
𝑓𝑢𝑛

𝜀𝑢𝑛 − 𝜀𝑝𝑙
 (2-164)  
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where fun and εun are stress and strain at unloading, respectively, and εpl is the plastic strain, given 

by: 

𝜀𝑝𝑙 = 𝜀𝑢𝑛 −
𝑓𝑢𝑛

𝐸𝑠𝑒𝑐𝑢
 (2-165)  

Shao et al. discovered a linear correlation between the secant modulus of unloading and E. 

Analyzing data, a tri-linear model was adopted for Esecu, given by: 

𝐸𝑠𝑒𝑐𝑢

𝐸1
=

[
 
 
 
 
 
 1, 0 ≤

𝑓𝑢𝑛

𝑓𝑐𝑜′
< 1

−0.44 ∗
𝑓𝑢𝑛

𝑓𝑐𝑜′
+ 1.44, 1 ≤

𝑓𝑢𝑛

𝑓𝑐𝑜′
< 2.5

0.34,
𝑓𝑢𝑛

𝑓𝑐𝑜′
> 2.5 

 (2-166)  

Using the above correlation, the unloading response was determined by the following equations: 

𝑥 =
𝜀𝑐 − 𝜀𝑢𝑛

′

𝜀𝑝𝑙 − 𝜀𝑢𝑛
′

 

𝑓𝑐 =
(1 − 𝑥)2

(1 + 2𝑥)2
𝑓𝑢𝑛

′  

(2-167)  

 

2-4-2-2-(g) Lam and Teng Model (2009) 

Lam and Teng used the monotonic model proposed for stress-strain behavior of confined 

concrete with FRP under monotonic loading as an envelope curve for their cyclic model. Based 

on experimental works, Lam and Teng concluded that the unloading path for FRP-confined 

concrete is highly nonlinear except in the initial loading stage. They highlighted two primary 

observations: 

 The degree of nonlinearity or curvature of the unloading path increases by increasing the 

strain. 

 The slope of the unloading path at zero stress usually is nonzero; when the unloading 

strain increases, this value consequently increases. 



78 

 

Based‎on‎Lam‎and‎Teng’s‎observations,‎Shao’s‎cyclic‎stress-strain model is inadequate 

for predicting the unloading path because he considered only a small range of strain in his 

studies. The following equation describes the unloading‎path‎in‎Lam‎and‎Teng’s‎model: 

c c ca b c      (2-168)  

where 

 
 

,0

1

un un un pl

un pl pl un pl

E
a

  

  

    

 


  
 

 1
,0un pl un plb E       

pl plc a b    . 

(2-169)  

In Eqs. (3-168),  is an exponent and 
,0unE  is slope of the unloading path at zero stress, defined 

as 

350 3un    

'
0

,0
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min

c

un

un

un

un pl

f

E




 





 

 

 

(2-170)  

Based‎ on‎ Lam‎ and‎ Teng’s‎ observations‎ from‎ experimental‎ work,‎ they‎ used‎ a‎ linear‎

function as a main part of the reloading path, which continues with a parabola in order to reach 

the monotonic envelope curve. The defined linear portion of the reloading path is 

 c re re c re re c refE            (2-171)  

where 

new re
re re c ref

ref re

E
 

  
 


  


 (2-172)  
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In Eqs. (3-170) and (3-171), 
ref  is reference strain depending on the number of cycles. In order 

to evaluate the degree of stress deterioration under repeated unloading/reloading cycles and 

define the reloading path, the reference strain must be defined as follows: 

,1 , ,1 ,ref un env ref un envand      

, 1 , , 1

,
. , , 1

ref n un n ref n

ref n
un n un n ref n

  


  

 




 


 

, 1 , , 1

,
. , , 1

ref n un n ref n

ref n
un n un n ref n

  


  

 




 


. 

(2-173)  

When the reference strain is defined, 
new  is calculated using linear portion. Once the linear 

portion is calculated, the parabolic portion is defined. The following assumptions define the 

second portion: 

(a) The parabola starts from the reference point  ,ref new  . 

(b) The initial slope of the parabola is equal to 
reE . 

(c) The slope of the parabola at the point which reaches the monotonic curve is equal to the 

envelope curve defined by the monotonic curve. 

The parabola expression is as follows: 

2
,c c c ref c ret envA B C           (2-174)  

where 𝐴, 𝐵, and 𝐶 are constants that must be determined. 𝐴, 𝐵 and 𝐶 are calculated as follows: 

2re refB E A   

2
new ref refC A B      

(2-175)  
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As mentioned, the first linear portion continues with the parabolic portion in order to 

obtain the envelope curve. However, in the following cases the line portion continues to the 

envelope curve: 

Case (1) - When , 0.001un env  , so , , ,un env ret env n   for any value n.  

Case (2) - When , 0.001un env  1: for , ,1 ,1, ret env un envn     if ,1 ,0.85re un env    an

, , 1 ,ret env n un env    if both ,1 ,0.85re un env    and , ,1 ,ret env un env   are satisfied.  

For Cases (1) and (2), the following equation must be used to calculate the slope of the linear 

portion: 

.

.

un env re
re re c ref

un env re

E
 

  
 


  


. (2-176)  

 

2-4-2-2-(h) Varma, Barros and Sena-Cruz Model (2009) 

Varma and Barros (2009) proposed a stress-strain model to model CFRP-confined, short, 

circular concrete columns under cylic and monotonic loading. The theoretical cyclic stress-strain 

model proposed for cyclic loading is based on a three-sectioned monotonic model. The three 

zones (I, II, and III) are defined by a linear section, a nonlinear transition section, and another 

nonlinear transition section. The third section (Zone III) is the only zone significantly influenced 

by FRP. These regions are illustrated in Figure ‎2-17. Zone I uses the following equations for the 

region 0 c cp   : 

c ci cf E    

c ciE E  

0,cp c UPC     

(2-177)  
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where 
ciE  is initial modulus of elasticity for the concrete evaluated experimentally or by 

applicable code equations and 0.4  . 
0,c UPC  is strain corresponding to axial compressive 

strength of unconfined, plain concrete. Zone II uses the following equations for the region 

cp c cQ    : 

 
R

c ca c ca ca c caf f E A        
 
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f f
E
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
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(2-178)  

 

 

Figure ‎2-17   Schematic of FRP-confined envelope curve 
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The‎transition‎zone‎begins‎from‎the‎end‎of‎Zone‎I‎(εca, fca) and ends at the start of Zone 

III‎ (εcb, fcb). In Figure ‎2-17, these points are labeled P  and Q , respectively. Zone II uses the 

following equations for the region  cQ c cu    : 

0, 1 1c c UPCf f k f   

0, 2

0,

1 1c
c c UPC

c UPC

f
k

f
 

  
     

   
 

cc
l fl sl

g

A
f f f

A
    

(2-179)  

Equations‎for‎Zone‎III‎(confined‎concrete)‎are‎taken‎from‎Harajli’s‎(2006)‎paper.‎The‎remaining‎

equations associated with Varma et al. (2009) model are described in Section ‎2-4-1-5-(a). The 

cyclic model was developed to predict four loading conditions: 

 Complete unloading and complete reloading ( A  to B  to C  to D ) 

 Partial unloading and complete reloading ( A  to 
'B  to 

'C  to 
'D ) 

 Complete unloading and partial reloading ( A  to B  to‎E’) 

 Random loading ( A  to 
'B to 

''E to 
'''F ) 

These four unloading and reloading cases are shown in Figure ‎2-18. Shifts in stress and strain 

(denoted‎ as‎ Δεc and‎Δfc) are commonly observed in a confined concrete cyclic loading cycle 

because of change in stiffness (moduli) in which the reloading branch always rejoins the loading 

curve at a higher strain than the unloading strain. 
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Figure ‎2-18    Schematic of FRP-confined concrete cyclic model 

 

The unloading portion of the cyclic stress-strain model uses the same equations as the 

transition zone (Zone II) equations. Points B, C, and D represent the three points of interest in a 

complete reloading cycle. This curve is represented by 

cnew cun cf f f From B to C   

cnew
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un cpl

f
E From B to C

 



 

cre c cref E From C to D   

cre cun c From C to D     
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(2-180)  
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(2-181)  
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0.19c cun     

where 
cpl  is concrete plastic strain, 

cnewf  is new value of stress corresponding to the unloading 

strain (
cun ), and 

cunf  is stress on FRP-confined concrete at unloading before load reversal. 

Equations‎from‎Points‎C‎to‎D‎(denoted‎with‎subscipt‎“cre”)‎correspond‎to‎returning‎stress,‎strain,‎

and modulus of elasticity. 

Partial unloading allows for complete or partial reloading. Both curves calculate modified 

intermediate ( 'C ) and returning points ( 'D ). Stresses and strains associated with partial 

unloading are assumed to be between the envelope curve and the complete unloading curve. 

Varma et al. (2009) denotes these partial points with an asterisk. Partial unloading equations are 

as follows: 

* ' 'cun cro
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 
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f f
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 





 

* ' 'cun cro
cre cun c

cun cpl
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 

  
 


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
 

* * ' '
cre c creE E From C to D   

* * ' '
cre c cref f From C to D  . 

(2-182)  

In addition, experimental results revealed that an imaginary unloading strain (
*
cun ) was valid to 

connect‎the‎“previous‎envelope‎unloading‎strain‎and‎the‎envelope reloading‎strain”‎(Varma‎et‎al.‎

2009) for future load responses of a partial unloaded curve. 

 
'* cunce

cun cun cre cun

cre cpl

 
   

 

 
   

  
 (2-183)  
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2-4-3 Plastic Hinge Models 

Plastic hinge length of RC members is defined as the length over which a concrete 

section experiences severe damage. Three physical zones in the plastic hinge of RC members 

include longitudinal steel yielding, concrete crushing, and curvature concentration zone (Jiang et 

al. (2014)). Extensive damage of the plastic hinge zone, typically occurring at sections with 

bending moment larger than bending moment corresponding to section yielding, can be observed 

in the following forms: comprehensive crushing of the concrete cover, concrete core damage, 

inelastic buckling of longitudinal steel, and lateral steel yielding or FRP rupture (Ho and Pam 

2003). For practical purposes, equivalent plastic hinge length, 𝐿𝑝, is defined as the length over 

which plastic deformation occurs with constant distribution of plastic curvature. This constant 

curvature, known as maximum plastic curvature, p , is assumed to be equal to the difference 

between maximum curvature, 𝜙𝑚, and yield curvature, y : 

p m y     (2-184)  

However, plastic rotation can be related to 𝐿𝑝 and 𝜙𝑝 as follows: 

( )p p m y PL L         (2-185)  

The assumption is made that plastic rotation, p  is concentrated at mid-height of the 

plastic hinge. Therefore, plastic displacement at the top of the cantilever, p  can be obtained by 

the following expression: 

max (1 0.5 ) ( ) ( 0.5 )p y p P m y P PL L L L                (2-186)  

where L  is column length, 
max  is maximum displacement at the top of the cantilever, and y  is 

yield displacement given by the following equation: 
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2 / 3y y L    (2-187)  

The presented procedure to determine 
PL  with respect to 

max and y  has been implemented in 

many researches to determine plastic hinge length from moment-curvature and lateral load-

lateral displacement relationships. 

RC member plastic hinge research can be categorized according to variables such as the 

type of reinforcing material (FRP/steel), concrete strength, section geometry, and load pattern. 

Work presented herein consisted of studies categorized based on their consideration of the effect 

of load patterns on plastic hinge determination: 

 No axial load 

1. Monotonic lateral load/displacement 

2. Cyclic lateral load/displacement 

 Constant axial load 

1. Monotonic lateral load/displacement 

2. Cyclic lateral load/displacement 

Uniaxial 

Biaxial 

 Variable axial load 

1. Cyclic lateral load/displacement 

Uniaxial 

Biaxial 

However, few researches have been applicable to RC members under variable axial load 

(Blakeley et al. (1971), Hachem et al. (2003), Esmaeily et al. (2005), Phan et al. (2007), 

Mortezaei et al. (2012), and Mortezaei (2014)) or biaxial lateral load/displacement (Hachem et 
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al. (2003), Esmaeily et al. (2005), Alemdar (2010), and Biskinis et al. (2010)). Among reviewed 

papers in the current study, the only method applicable to all possible load patterns, including 

constant and variable axial loading with monotonic and cyclic biaxial lateral load/displacement, 

is presented in research reported by Esmaeily et al. (2005). Assuming that load pattern 

considerably affects RC member behavior, additional experimental and analytical studies should 

be undertaken to provide increased understanding of the behavior of the plastic hinge region of 

RC columns subjected to various load patterns. For example, investigation of variable axial load 

effects on the behavior of structural elements is essential because observations from previous 

earthquakes have indicated that structures subjected to near-fault ground motions experience 

more severe damage compared to structures under far-fault ground motions. Following, it is a 

review of existing plastic hinge models. 

 

2-4-3-1 No Axial Load-Monotonic Lateral Load/Displacement 

Cohn et al. (1963) tested two series of five two-span continues reinforced concrete beams 

under monotonic concentrated load. Steel ratios at critical sections differed in each beam 

specimen. Calculated plastic hinge lengths from test data were within the range of 0.3d  to 0.9d

where 𝑑 is effective depth of the beam section.  

Mattock (1965) tested 37 simple-span beams under concentrated load. Test variables 

included concrete strength, beam depth, amount and yield point of reinforcement, and distance 

from point of maximum moment to point of zero moment. Based on test results for identical 

degrees of reinforcement, 
'(( ) / )bq q q  plastic hinge length increased with increased ratio /z d

where 
'/y cq f f   is tension reinforcement index, 

' ' '/y cq f f   is compression 
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reinforcement index, 
'/b b y cq f f   is tension reinforcement for balanced ultimate strength 

conditions, z  is distance from section of maximum moment to adjacent section of zero moment 

(in.), d  is distance from extreme compressive fiber to centroid of tensile reinforcement (in.),   

and 
'  are tensile and compressive steel ratios, respectively, yf  is yield point stress of tension 

reinforcement, and 
'

cf  is concrete cylinder strength. In addition, for the same ratio /z d , plastic 

hinge length decreased with increased degree of reinforcement. By analyzing test data, Mattock 

proposed the following equation to estimate plastic hinge length: 

'

1 1.14 1 1
2 16.2

P

b

d z q q d
L

d q

    
         

    
 (2-188)  

Corley et al. (1966) presented test results of 40 simple-span beams under concentrated 

load. These tests were an extension of tests conducted by Mattock (1965). Test variables 

included size of specimens, confinement of concrete in compression, moment gradient, tensile 

reinforcement ratio, and size of loaded area. Based on test results of this study, the following 

equation was proposed for plastic hinge length: 

0.2

2
P

d Z
L

d
   (2-189)  

where z  is the distance along the span from section of maximum moment to adjacent section of 

zero moment (in.) and d is the distance from extreme compression fiber to centroid of tension 

reinforcement (in.). 

Riva et al. (1990) derived an expression to estimate plastic hinge length using a computer 

lumped-plasticity program, STRUPL-LC. A parametric study on 56 simply supported and 32 

cantilevered reinforced and pre-stressed concrete beams tested under monotonic distributed or 

point loads was conducted. Variables of this study included section shape, mechanical 
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percentage of tension steel, q , mixed reinforcing steel,  , load distribution, structural 

configuration, boundary conditions, and pre-stressing cable layout. Terms q  and   are defined 

as follows:  

'

p pu s sl

w c

A f A f
q

b d f

  


 
 

p pu

p pu s sl

A f

A f A f





  
 

(2-190)  

where puf  is ultimate pre-stressing steel stress, 
slf  is reinforcing steel stress at the limiting 

strain, '
cf  is concrete compressive strength, d  is effective depth of the section, 

wb  is web width 

of the section, 𝐴𝑠 is the reinforcing steel area, and pA  is the pre-stressing steel area.  

 

Table ‎2-1   Numerical constants of Eqs. (3-189) to (3-192) (Riva et al. (1990)) 

Beam Model A B C D E F G ( )f   

 

0.58 3.0 3.5 3.0 5.0 6.5 0.5 3/2 1/10(1 0.50 ) q  

 

0.39 7.0 6.5 5.0 5.4 0.0 0.75 3/2 1/10(1 0.75 ) q  

 
0.25 7.0 8.0 6.0 2.8 0.0 0.8 1 0.80  

 

Three plastic hinge length equations were defined for three states of /p py  , where p  is plastic 

curvature and py  is yielding curvature. These three stages and corresponding plastic hinge 

length equations are: 

1. From cracking to yielding limit state ( / 1.0p py   ). In this stage, plastic hinge length 

increases from zero to its maximum value at yielding limit state. 
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2/100 /1000
'

( )
1000

c q p q

pP

py w

L B b
A f

z q b







    

              
 (2-191)  

2. From yielding to reinforcement strain-hardening (1.0 / 7.0p py   ). In this stage 

plastic hinge length drastically decreases.  

2(0.9 0.8 ) /1000
'

( )
1000

p q

pP

py w

L B b
A f

z q b







  
    

              
 (2-192)  

3. Ultimate limit state ( / 7.0p py   ). In this stage, plastic hinge length increases up to the 

value corresponding to the ultimate limit state. 

100 1000

G

puP

py w

L E F b

z b





   
       

  
 (2-193)  

where 
PL  is plastic hinge length, z  is abscissa of the contraflexure point, and b  and 'b  are 

compression flange and tension flange width, respectively. A, B, C, D, E, F, G, and ( )f   

approximated by regression analysis are based on bending moment distribution. These values 

correspond to various loading and support conditions, as shown in Table ‎2-1. 

Zhao et al. (2011) used FEM to study plastic hinge length involving three physical zones: rebar 

yielding, concrete crushing, and curvature concentration. In their study, syL , 
csL  , pcL , and pcsL  

were defined as maximum length of the rebar yielding zone, concrete crushing zone, curvature 

increasing zone, and curvature localization zone, respectively. The curvature increasing zone is 

the region in which increased curvature and insignificant increase in other parts are observed. 

The curvature localization zone is the region of curvature concentration during plastic rotation. 

Zhao et al. believed that dominant deformation in plastic hinge is flexural, so members with 

small aspect ratio were not considered. A parametric study to evaluate the effect of yield strength 
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of reinforcing steel ( yf ), strain hardening stiffness of steel bar (
shE ), compressive strength of 

concrete ( '
cf ) shear span of beam ( z ), effective depth of beam ( d ), tension and compression 

reinforcement ratios (
s  and 

sc , respectively), tension rebar diameter (
bd ), and aspect ratio 

/z h  on syL , 
csL  , pcL , and pcsL  was conducted. Results of this study indicated that 𝐿𝑠𝑦 has the 

maximum value compared to lengths of other zones: Its value is less than two times the effective 

depth. Empirical plastic hinge lengths reported in the literature were close to syL  and pcL  but 

different from 𝐿𝑐𝑠and much larger than pcsL . Results of this study indicated a clear trend of 

increasing 
csL  , syL , pcL , and 

pcsL  with an increase in beam aspect ratio, effective depth, and 

strain hardening stiffness of steel bar for normal range of strain hardening stiffness. However, 

syL , pcL  did not show a clear trend of increased yf  unless the effect of strain hardening stiffness 

of steel bar was considered. In this case, syL , pcL  increased with an increase in yf , syL , and pcL  

increased with an increase in 
s  before rebar yielding and concrete crushing point, after which 

the opposite trend was observed. For smaller values of 
bd , increase in 

bd  caused an increase in 

pL . However, for bars with a very large diameter, syL , pcL  increased if '
cf  increased. For smaller 

values of 
sc , no significant trend was observed, while for larger values of 𝜌𝑠𝑐, length of 

yielding zone increased when 
sc  increased. A comparison of numerical results of this study and 

those of available empirical studies indicated that plastic hinge length given by Paulay and 

Priestley yielded the closest value to plastic hinge length obtained from this study. In addition, 

proposed models by Corley, Mattock, and Sawyer overestimated plastic hinge length for 
shE  less 

than or equal to zero and underestimated plastic hinge length for 
shE  greater than zero. Among 
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the studied parameters, 
s , 

sc , 
shE , and d , had the most significant effect on plastic hinge 

length. 

Zhao et al. (2014) tested five groups of simply supported reinforced concrete beams with 

rectangular cross sections under two symmetrical monotonic loads. Test results indicated that 

equivalent plastic hinge length was approximately equal to beam depth ( h ) for all specimens 

tested in this study. 

Gopinath et al. (2014) conducted a parametric study on 173 test data from the literature to 

determine plastic hinge length of simply supported beams under central point loading. Variable 

parameters included strength of concrete, yield strength of steel reinforcement, geometrical 

dimensions of beams, reinforcing ratio, support conditions, and load configuration. Based on 

results of this study, 𝐿𝑝 decreases with an increase in beam depth and reinforcement percentage 

does not affect plastic hinge length. Among the studied variables, effective depth of the beam 

had the largest correlation with plastic hinge length. The proposed equation to predict plastic 

hinge length is as follows: 

 2 u y

P

u

z M M
L

M

  
  (2-194)  

Variable parameters are defined in Figure ‎2-19 yM  and 
uM  are yield moment and ultimate 

moment, respectively, given by the following equations: 

 0.87 0.42y y st yM f A d X       

 0.87 0.42y y st uM f A d X       

(2-195)  

where yf  and 
stA  are yield strength and area of tension reinforcement, respectively. yX  and 

uX  

are neutral axis depth at yield load and ultimate load, respectively. 
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Figure ‎2-19   Determination of plastic hinge length based on bending moment diagrams 

 (Gopinath et al. (2014)) 

 

2-4-3-2 No Axial Load-Cyclic Lateral Load/Displacement 

Thompson et al. (1980) developed a computer program to investigate the effect of 

variables such as longitudinal prestressing and non-prestressed steel ratio and distribution, 

transverse steel amount, and cover thickness on curvature ductility of prestressed and partially 

prestressed rectangular concrete beams. In order to assess accuracy of the developed analytical 

model, test results from other studies were compared to results obtained from the analytical 

model in this study. Tests were conducted on beam-column assemblies, and earthquake loading 

was simulated by reversing the direction of vertical loads at the beam ends. Assuming a 

rectangular distribution of curvature along the plastic hinge length, the measured equivalent 

plastic hinge lengths of beam specimens were approximately one-half the overall section depth (

/ 2h ). 
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2-4-3-3 Constant Axial Load-Monotonic Lateral Load/Displacement 

Chan et al. (1955) conducted 23 tests on RC frame assemblies under monotonic constant 

axial load on columns and monotonic bending moment. The influence of axial load level and 

lateral binding ratio on plastic hinge length was studied. Because the axial load level was high in 

all tests, primary failure was due to compression. Analysis of test data indicated that plastic 

hinge length does not vary significantly when varying the steel ratio for fixed-end beams. 

Analysis also showed that plastic hinge length had an average value of 0.4 S , where S  is the 

distance between the point of maximum moment and the point of contraflexure. In addition to 

the columns, plastic hinge length increased with an increase in axial load level. However, for 

normal rectangular frameworks, plastic hinge length did not exceed 0.7 S . 

Baker et al. (1964) developed an equation to estimate plastic hinge length based on test 

results of 32 beams under monotonic bending moment with or without axial loading. Test 

variables included grade of concrete and steel, steel ratio, single loads and double loads, axial 

force, shear magnitude, transverse binding, and compression steel ratio. The proposed plastic 

hinge equation is as follows: 

1/4

1 2 3P

z
L k k k d

d

 
    

 
 (2-196)  

where z is the distance of critical section to point of contraflexure and d is effective depth of the 

section. 
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(2-197)  
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where P  is applied axial force and 
uP  is maximum compressive force which the member could 

sustain without any bending moment. 

3

0.6 6000

0.9 2000

When cube Strength psi
k

When cube Strength psi


 


 (2-198)  

For normal values of /z d , the value of pL  lies within 0.2 d  and 0.4 d . 

Paulay and Priestley (1992) proposed an equation to predict plastic hinge length as a 

function of column length ( L ), longitudinal steel reinforcement diameter (
bd ), and yield strength 

of steel reinforcement ( yf ): 

0.08 0.022 ( )p b yL L d f MPa  . (2-199)  

The average value of pL  for typical columns and beams can be approximately taken as 

0.5 h , where h  is the section depth. The theoretical value of plastic hinge length obtained from 

integration of curvature distribution‎did‎not‎ include‎“tensile‎ strain‎penetration”‎ length‎ into‎ the‎

footing. Eq. (3-198)‎considers‎“tensile‎strain‎penetration”‎phenomenon‎and‎steel‎strains‎due‎ to‎

inclined flexure-shear cracking.  

Mendis (2001) compared plastic hinge length measured experimentally to those estimated 

by nine existing expressions. Test results were adopted from experimental work Mendis (1986) 

conducted on nine simply supported beams subjected to axial load, shear, and bending moment. 

In this experimental work, the effect of compression and tension reinforcement ratio, transverse 

steel spacing, shear span ratio, and axial load level on plastic hinge length was evaluated. Axial 

load ranged from 175 to 50,100 KN, while balance axial load on the axial load-moment 

interaction curve for test specimens was approximately 100 KN. Test results showed that plastic 

hinge length increases with increased shear span ratio, compression, and tension reinforcement 

ratio and decreases with increased transverse steel ratio. Results also showed that plastic hinge 
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length is insensitive to axial load level. According to test data of this study, all beams subjected 

to axial load had constant plastic hinge length and were approximately equal to 0.4 d , where 

d  is effective depth of the beam cross section. Compared to other plastic hinge length 

expressions reviewed in this study, the predicted plastic hinge length using the expression 

recommended by ACI Committee 428 in 1968 best matches experimentally observed plastic 

hinge lengths for low axially-loaded columns and high-strength concrete beams (up to 80 MPa).  

 

2-4-3-4 Constant Axial Load-Cyclic Lateral Load/Displacement-Uniaxial 

Park et al. (1977) performed tests on 10 prestressed and non-prestressed reinforced 

concrete beam-columns and beam assemblies with approximately full-size members subjected to 

static cyclic loading. The frame was loaded as depicted in Figure ‎2-20. Cyclic loading was 

simulated by reversing direction of vertical loads on the beams. 

 

Figure ‎2-20   Frame loading 

 

Based on test results, measured plastic hinge length was independent from prestressing 

steel with an average value of half the overall section depth ( / 2h ). 
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Park et al. (1982) tested four square reinforced concrete columns under constant axial 

load and reversal lateral displacement. Test variables included axial load levels varying between 

0.2 and 0.6 and lateral steel reinforcement ratio. Test results indicated that measured equivalent 

plastic hinge lengths have an average value of 0.42 h  and are not influenced by the axial load 

level in which h  is the overall section depth. Plastic hinge length is equal to 0.4 h . Baker and 

Amarakone (1965) and Corley and Gene (1966) proposed equations that predict larger values for 

plastic‎hinge‎lengths‎compared‎to‎measured‎plastic‎hinge‎lengths‎in‎this‎study.‎Corley’s‎equation‎

provides more‎accurate‎results‎at‎higher‎axial‎load‎levels‎compared‎to‎Baker’s‎equation.‎ 

The results of experimental work conducted at the University of Ganterbury (Gill et al. 

1979, Potangaroa et al. (1979), Ghee et al. (1981), Davey et al. (1975), Munro et al. (1976) and 

Heng et al. 1978) indicated that plastic hinge length does not depend on the axial load level with 

a value between 0.35 H  and 0.65 H , where H is the overall depth of the sections. Mander 

(1983) performed further investigations on experimental results of the aforementioned tests and 

suggested that plastic deformation is due to moment gradient and yield penetration of 

longitudinal bars. Test results of four hollow RC columns subjected to constant axial load and 

cyclic lateral displacement and previous studies led Mander to propose the following equation to 

predict equivalent plastic hinge length: 

0.06p pyL L L    

0.32py bL d  

(2-200)  

where L  is column length and 
bd  is the longitudinal bar diameter in mm. The first and second 

terms of Eq. (3-199) denote the contribution of yield penetration and spread of plasticity along 

the member length due to the moment gradient, respectively.  
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Zahn (1985) tested 14 columns with circular, hollow circular, and square sections under 

constant axial compressive load (𝑃) and reversible horizontal load. Axial load ratio differed for 

each‎ specimen.‎Plastic‎hinge‎ length‎ calculated‎using‎Priestley‎ and‎Park’s‎ (1987)‎ equation and 

plastic hinge length observed from tests in the current study were compared. The comparison 

indicated‎ that‎Priestley’s‎ equation‎overestimates‎𝐿𝑝 for square columns with diagonal bending 

and hollow circular columns. In addition, for axial load ratios‎less‎than‎0.3,‎Priestley’s‎equation‎

gives larger values for pL  compared to experimental values. Because overestimating plastic 

hinge length is not conservative, Zahn suggested that, for columns with low axial loads, a 

reduction factor‎should‎be‎applied‎to‎Priestley’s‎equation‎as‎follows: 

 
' '

'
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 (2-201)  

where l  is column length and 
bd  is the diameter of longitudinal reinforcing bars (mm). However, 

for hollow circular columns with one ring of reinforcing bars and no confinement through the 

tube‎walls,‎a‎reduction‎factor‎of‎0.25‎should‎be‎applied‎to‎Priestley’s‎equation‎as‎follows: 

0.06 4.5p bL l d   (2-202)  

As noted in their study, additional experimental data is required to validate equations proposed 

for plastic hinge length, especially columns with 16bd  . 

Priestley et al. (1987) derived an equation for plastic hinge length based on test results of 

RC bridge columns under constant axial load and inelastic cyclic lateral displacement. Test 

variables included cross-sectional shape, column aspect ratio, axial load level, confining 

reinforcement ratio, yield strength, and configuration. Axial load ratio for solid columns was 

between 0.2 and 0.7 and between 0.1 and 0.3 for hollow columns. Curvature distribution was 
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assumed to be constant along the plastic hinge length. Yield penetration and shear spread of 

plasticity were also considered. Curvature distributions along column lengths for all columns 

specimens were measured, and the following relationship to estimate plastic hinge length was 

proposed: 

0.08 6p bL L d   (2-203)  

where L  is the distance from point of contraflexure of the column to the section of maximum 

moment, and 
bd  is the bar diameter (mm). The calculated mean value of the plastic hinge for all 

tests was approximately 0.5 h , where h  is gross section depth in the direction of seismic 

loading. 

Tanaka et al. (1990) tested eight RC columns under constant axial and cyclic lateral 

loading. Test variables included axial load level, shear span-to-depth ratio, lateral reinforcement 

configuration, and anchorage details. Axial load levels varied from '0.1 c gf A   to '0.3 c gf A  , 

where '
cf  and gA  are compressive strength and gross section area of the concrete column. Based 

on observations from the aforementioned tests, the conclusion was made that plastic hinge length 

increases when axial load level increases. Observed plastic hinge length was within the range 

0.4 H to 0.75 H , where H  is overall depth of the column section. 

Sheikh et al. (1993) used test data of four high-strength and six normal-strength concrete 

column large-scale specimens with prismatic and nonprismatic sections subjected to constant 

large axial load level ranging from 0.47 to 0.77 and reversal lateral load. In this study, observed 

plastic hinge lengths, including effects of yield penetration into the stub, were within the range of 

0.85 h  to 1.1 h , with an average value of 1.02 h . In addition, results indicated that plastic 

hinge length is insensitive to axial load level, reinforcement steel configuration, concrete 

strength, and confining steel ratio. 
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Dodd et al. (2000) used a shake table to test 14 cantilever circular bridge concrete 

columns under‎ simulated‎ earthquake‎ loads.‎ Test‎ variables‎ included‎ the‎ column’s‎ aspect‎ ratio,‎

axial load ratio, base flexibility, base input motions, and the effect of initial low-level shaking on 

column response to subsequent higher-level shakes. Axial load ratios varied from 0.05 to 0.45. 

Equivalent plastic hinge length was assumed to be equal to the length over which curvature 

distribution is constant. Experimental results indicated that plastic hinge length increases with 

increased axial load level. Zahn et al. (1986) suggested that, for axial-load ratios less than 0.3, a 

reduction factor of '0.5 1.6 / c gP f A   should be applied to the plastic hinge length equation 

proposed by Priestley et al. (1992). The conclusion was made that plastic hinge length values 

calculated‎with‎Zahn’s‎recommendation‎are‎conservative‎and‎show‎good‎agreement‎with‎values‎

obtained‎from‎tests‎of‎this‎study,‎especially‎for‎lower‎axial‎loads.‎However,‎Priestley’s‎equation‎

yields conservative values for tall and medium columns, but it overestimates plastic hinge length 

for short columns. The authors of this study suggested that no reduction factor should be used for 

an axial load ratio of 0.4. 

Panagiotakos et al. (2001) used test results of 875 RC members under uniaxial bending 

moment with or without axial load to investigate plastic hinge length of RC columns. Test 

variables included test specimen geometry, reinforcement ratio and configuration, concrete 

strength, steel type, and axial load level. The axial load ratio varied from 0 to 0.95. After 

analyzing data of the 875 tests, the following expressions were revised from Paulay and 

Priestley’s‎(1992)‎equation‎to‎estimate‎plastic‎hinge‎length‎in‎this‎study: 

For cyclic loading 

, 0.12 0.014 ( )pl cy s sl b yL L a d f MPa   (2-204)  

For monotonic loading 
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, 0.18 0.021 ( )pl mon s sl b yL L a d f MPa   (2-205)  

where yf  is yield strength of tension reinforcement (MPa), 
sL is shear span of the member, 

bd  is 

the diameter of compression longitudinal reinforcement. 
sla  is 0 when no bar pullout is present 

from the anchorage zone beyond the section of maximum moment; sla  is 1 when bar pullout is 

present. 

Ho et al. (2003) investigated the plastic response of high-strength reinforced concrete 

(HSRC) columns using test results of four column specimens subjected to low axial load level 

and reverse cyclic displacement excursions. Based on experimental results of this study, plastic 

hinge length of HSRC columns under low axial load does not exceed the depth of the column 

cross section and is not affected by the lateral reinforcement ratio. Plastic hinge length, including 

“stub‎effect”‎length,‎was‎suggested‎to‎be‎equal‎to‎overall‎depth‎of‎the‎column‎cross‎section‎( h ).  

Binici et al. (2008) developed an analytical model to investigate ductility of plastic hinge 

zones of RC columns after FRP retrofitting. Obtained results of the proposed model were 

verified against results of numerical analysis and test results, and a parametric study was 

conducted to derive an equation for plastic hinge length. Carbon-FRP and Glass-FRP confined 

RC columns subjected to constant axial load ratio between 0.1 and 0.4 with column aspect ratio (

/L R ) of 10, longitudinal reinforcement ratio between 0.01 and 0.04, and cyclic lateral 

displacement excursions were selected for the parametric study. The following equation was 

proposed to calculate plastic hinge length: 

0.077 8.16
p b

L d

L L
   (2-206)  
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where 
bd  is the longitudinal bar diameter. Plastic hinge length calculated by Eq. (3-205) was 

shown to correlate well with observed plastic hinge lengths of 59 column specimens under 

constant axial load and cyclic lateral displacement. 

Berry et al. (2008) proposed an equation to estimate plastic hinge length using 

experimental data of 37 large-scale circular columns. All test columns were confined by spiral 

reinforcement and subjected to cyclic lateral loading and constant axial load less than 

'0.3 c gf A  , where '
cf  is concrete compressive strength and gA  is the gross section area of the 

column. Shear deformation was disregarded due to the typical aspect ratio of bridge columns of 

this study. After conducting a parametric study, the following equation was proposed to calculate 

plastic hinge length: 

'

0.12
0.0375 ( )

y b

p

c

f d
L L MPa

f
   (2-207)  

where L  is the distance between the point of maximum moment at the column base to the point 

of zero moment at the column top, and yf  and 
bd  are yield strength and diameter of longitudinal 

reinforcing steel, respectively. The second term of Eq. (3-206) reflects the strain penetration 

effect, normalized with respect to '
cf  in order to consider the effect of concrete strength on 

bond strength.  

Bae et al. (2008) conducted four tests on full-scale concrete columns subjected to reverse 

cyclic displacement excursions and axial load levels from moderate to high in order to study the 

effect of axial load and shear span-depth ratio ( /L h ) on plastic hinge length. Using a concrete 

compression strain method and considering bar slip, shear, and flexural displacement, an 

expression to estimate plastic hinge length was proposed. In order to reflect the stub confinement 

effect, 0.25ℎ was subtracted from the length corresponding to strains greater than compressive 
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reinforcing bar strains. As a result, plastic hinge length increased with increased /L h for high 

levels of axial loads (axial load ratio>0.2). However, for low levels of axial loads (

0.2axial load ratio  ), the effect of /L h  on plastic hinge length was not significant and plastic 

hinge length was approximately equal to the constant value of 0.25 h . For high values of axial 

load, plastic hinge length increased with an increase in axial load level. For all axial load levels, 

plastic hinge length increased when longitudinal reinforcement ratio ( /s gA A ) increased. The 

following equation was proposed to estimate plastic hinge length: 

0

0.3 3 0.1 0.25 0.25
p s

g

L AP L

h P A h

     
                 

 (2-208)  

where 
'

0 0.85 ( )c g s y sP f A A f A    (2-209)  

where P  is the applied axial load, 
sA is area of tension reinforcement, gA  is gross area of 

concrete section, L  is the distance from critical section to point of contraflexure, '
cf  is 

compressive strength of concrete, and h  is overall depth of the column. Bae et al. suggested that 

the specified plastic hinge length in ACI 318-05 is not conservative for columns subjected to 

high axial loads. They recommended an increase in column length from h  to 1.5 h  in order to 

require the use of closely-spaced ties.  

Qinghua et al. (2008) implemented five plastic hinge models to develop a computer 

program that investigates the accuracy of calculated damage indices, such as ultimate curvature 

of critical section. Twelve quasistatic tests on bridge pier specimens, simulated by the computer 

program, were subjected to monotonic or cyclic lateral loading and a constant axial load. Axial 

load ratio varied between 0.7 and 0.19 in these tests. The implemented plastic hinge models 

included Priestley and Park, Chang-Mander, Japanese code, and Esmaeily-Xiao’s‎ first‎ and‎
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second models. Details of these models are presented in the study by Qinghua et al. (2008). 

Results of this study showed that although calculated residual displacement does not depend on 

the implemented plastic hinge model, the ultimate curvature value is highly dependent on it. A 

comparison between calculated values of ultimate curvature with various plastic hinge models 

showed that Esmaeily-Xiao’s‎second‎model‎and‎the‎Japanese code model provide minimum and 

maximum values, respectively. All calculated ultimate curvatures were less than experimental 

ultimate curvatures except when Japanese code was implemented. Based on results, Chang-

Mander’s‎ model‎ and‎ Esmaeily-Xiao’s‎ first‎ model gave most accurate values for ultimate 

curvature, and Chang-Mander’s‎and‎Esmaeily-Xiao’s‎ second‎model‎more‎accurately‎ computed‎

maximum tensile strength of outmost longitudinal steel compared to the other three models. 

Among the five studied models, Japanese code and the Priestly-Park model provided most 

accurate results compared to experimental data. All five plastic hinge models underestimated 

maximum compression strain of the core concrete and overestimated maximum tensile strain of 

longitudinal steel, resulting in great statistic discreteness in calculated cycle fatigue indices by 

the program. Qinghua et al. (2008) concluded that the Japanese code model is the most 

conservative among the five models. Qinghua et al. concluded that the Priestly-Park model is 

easy to use, appropriate for high bridge piers, and sufficiently reliable. They suggested the 

Chang-Mander model as a second recommendation. 

Gu et al. (2011) suggested an equation for plastic hinge length estimation based on test 

results from 29 FRP-confined circular concrete columns subjected to simulated seismic load with 

axial load ratio between 0.05 and 0.65. Due to a small lateral-steel ratio, confinement provided 

by lateral reinforcement could be neglected in these tests. No lap splice was observed in the 

plastic hinge region. Results of this study indicated that plastic hinge length increases with 
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increased FRP confinement at low confinement ratio and decreases at high confinement ratio. 

However, the type of confining FRP does not significantly affect plastic hinge length. The 

proposed equation to calculate plastic hinge length is as follows: 

 20.59 2.3 2.28 0.022 0.1p f f y b fL L f d where        (2-210)  

where f  is the confinement ratio, L is column height, 
bd is the diameter of longitudinal 

reinforcement (mm), and yf  is yield strength of longitudinal reinforcement (MPa). Due to lack 

of test data for confinement ratios less than 0.1, Eq. (3-209) is applicable only when 0.1f  . 

The general form of this equation, adopted from Paulay and Priestley (1992), was modified to 

consider the effect of FRP confinement. For 0f  , the original form of the Paulay and Priestley 

(1992) equation for plastic hinge length should be used as follows: 

0.08 0.022 0p y b fL L f d where    . (2-211)  

Jiang et al. (2014) used analytical and experimental studies to evaluate the confining 

effect of FRP on plastic hinge length. Tests were conducted on seven RC square columns under 

constant axial load and monotonic lateral displacement with axial load ratio of 0.35. These 

columns were confined with FRP with various confining ratios. The proposed equation for 

plastic hinge length is a modified version of the Gu et al. (2011) equation in order to be 

applicable to circular and rectangular columns. This expression consists of two terms: 0pL which 

represents the normal plastic hinge adopted from the Paulay and Priestley (1992) model, and pcL  

which represents the FRP confining effect. Because the proposed equation by Gu et al. (2011) is 

applicable to circular columns, the reduction factor 
0.72

2
s

r
k

b

 
  
 

, in which b and r are column 

width and corner radius, respectively, is multiplied by the second term. This reduction factor is 
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applied because the FRP confinement effect on plastic hinge in circular columns is more 

comparable to rectangular or square columns (Wu and Wang, 2009; Wu and Wei, 2010; Wei and 

Wu, 2012). 

0.72

0

2
p p pc

r
L L L

b

 
   

 
 (2-212)  

where  

0 0.08 0.022p b yL L d f   (2-213)  

in which 𝐿 is column height and 𝑑𝑏 and 𝑓𝑦 are diameter and yield strength of longitudinal 

reinforcement, respectively.  

2

3.028 0 1
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 (2-214)  

where f  is the confinement ratio defined as 0/f l cf f  , in which 
0cf  is cylindrical 

compressive strength of unconfined concrete. 

2 f fu

l

E t
f

b


  (2-215)  

where fE , fu , and t  are elastic modulus, ultimate tensile strain, and thickness of FRP jacket, 

respectively. Based on findings of Jiang et al. (2014) studies, the effect of FRP jacketing on 

plastic hinge length depends on the level of confinement. Plastic hinge length increases for low 

level of confinement and decreases for high level of confinement, confirming findings of the 

study by Gu et al. (2011). Because tests were conducted under larger axial load compared to 

other studies, Jiang et al. concluded that, at zero-confinement, test results match better with 

results‎predicted‎by‎Ho’s‎(2003)‎plastic‎hinge‎length‎equation‎compared‎to‎results‎of‎Paulay‎and‎

Priestly’s‎(1992)‎equation. 

 

2-4-3-5 Constant Axial Load-Cyclic Lateral Load/Displacement-Biaxial 

Biskinis et al. (2010) developed an expression for plastic hinge length based on 

experimental data from 1540 cyclic or monotonic uniaxial tests. The proposed equation is 
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applicable to RC beams, rectangular columns, members with T-, H-, U-, or hollow rectangular 

sections and rectangular walls. Biskinis et al. (2010) acknowledged that the proposed model is 

also on the safe side for biaxial loading. Flexural failure was the dominant failure mode in all 

tests. The proposed equation for plastic hinge length 

For cycling loading with earthquake resistance detailing: 

,

1
0.2 1 min 9,

3

s
pl cy

L
L h

h

  
   

  
 (2-216)  

For monotonic loading with or without earthquake resistance detailing: 

, 1.1 0.04min 9, s
pl mon

L
L h

h

  
   

  
 (2-217)  

where h  is cross section depth and 
sL  is shear span. 

Alemdar (2010) used results of 72 dynamic and static tests of modern bridge columns to 

propose two equations to estimate plastic hinge length. In this study, two methods were used to 

determine plastic hinge length. One method used maximum drift capacity and the other method 

utilized curvature distribution along the column length. All tests had axial load ratio of less than 

or equal to 0.3. Multivariable regression analysis of test data was used to propose the following 

equations for plastic hinge length: 

Based on maximum drift capacity: 

'

31
( )

5 1000500

p y b

c

L f d L
psi and in

d f
    (2-218)  

Based on curvature distribution: 

'

3
( )

10 25001000

p y b

c

L f d L
psi and in

d f
   . (2-219)  
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2-4-3-6 Variable Axial Load-Cyclic Lateral Load/Displacement-Uniaxial 

Blakeley (1971) performed four tests on full-scale precast, pre-stressed concrete beam-

column assemblies subjected to static cyclic lateral and variable axial loading. Plastic hinge 

location and confining steel ratio were the test variables. Observed equivalent plastic hinge 

length in columns and beams tested in this study were approximated as one-half of the overall 

depth of the member ( / 2h ). 

Phan et al. (2007) tested three one-third scale bridge columns on a shake table. Two of 

the three columns were tested under near-fault ground motions and the other column was tested 

under far-fault ground motions. Axial load ratio was 8% for all specimens, and the two columns 

tested under near-fault ground motions were reinforced with various amounts of longitudinal and 

lateral steel‎reinforcements.‎Paulay‎and‎Priestley’s‎equation‎was‎used‎to‎calculate‎plastic‎hinge‎

length. This equation was found to be conservative for all specimens. Plastic hinge lengths 

measured‎ from‎ the‎ specimen’s‎plastic‎displacements‎were‎ larger‎ than‎ lengths calculated using 

Paulay‎ and‎Priestley’s‎ equation.‎Columns‎ subjected‎ to‎near-fault and far-fault ground motions 

had identical plastic hinge length. 

Mortezaei et al. (2012) performed a numerical study, including nonlinear analysis of 

1350 FRP-confined RC columns, to investigate plastic hinge region length for near-fault and far-

fault earthquakes. Variables in this study included axial load level, high-depth ratio, longitudinal 

reinforcement ratio, and earthquake characteristic. Based on conclusions from this study, for 

axial load ratio less than 0.2 ( 0/ 0.2P P  ), plastic hinge length remains almost constant, or 

0.65 h  for far-fault and 0.55ℎ for near-fault earthquakes. For higher values of axial load, plastic 

hinge length increases with increased axial load level. Although the effect of height-depth ratio 

on plastic hinge length at low levels of axial load ( 0/ 0.2P P  ) was not significant, plastic hinge 

length increases with increased height-depth ratio at higher axial load levels. Columns with high 
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longitudinal reinforcement ratio developed longer plastic hinge length. Results of this study 

showed that columns subjected to far-fault earthquakes have longer plastic hinge length 

compared to columns subjected to near-fault earthquakes. FRP jacketing also increases plastic 

hinge length. 

Recommended equations to approximate plastic hinge length are as follows: 

0
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(2-220)  

where P  is applied axial load, 
0P is nominal axial load capacity, h  is overall depth of the 

column, 
sA  is the area of tension reinforcement, gA  is the gross area of concrete section, and H  

is the distance between the critical section and contraflexure point. Proposed plastic hinge length 

equations‎in‎this‎study‎were‎adopted‎from‎Bae‎and‎Bayrak’s‎(2008)‎study‎with‎an‎adjustment‎to‎

consider shear deformation, deformation caused by bar slip, and flexural deformation. 

Mortezaei (2014) analytically investigated plastic hinge length of RC columns under 

near-fault ground motions by simulating 936 RC columns under variable axial loading and cyclic 

lateral loading/displacement using a finite element program. Variable parameters included axial 

load ratio, height-depth ratio, and strength of concrete. Analytically obtained results were 

verified against experimental results from literature. Results indicated that at low level of axial 

loads (less than 0.2), pL  is almost constant and equal to 0.55h . At higher axial load ratios, pL  

increases with increased axial load levels. In addition, the observation was made that an increase 

in height-depth ratio did not cause significant increase in pL  for axial load ratios less than or 

equal to 0.2. pL increased as height-depth ratio increased at higher axial load levels. RC columns 
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under near-fault axial loading also exhibited longer plastic hinge length compared to columns 

subjected to far-fault ground motions. The following equation for plastic hinge length was 

proposed based on obtained numerical results: 

0.2

0

0

0.85 1 0.45 / 0.2
pL P H

k For P P
h P h

    
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   

(2-221)  

where ℎ is overall column depth, 𝑃 is applied axial load, 𝑃0 is nominal axial load capacity, and 𝐻 

is the distance from critical section to point of contraflexure. Coefficient, 𝑘, depends on concrete 

strength, 𝑓𝑐
′, as follows: 

'
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 (2-222)  

 

2-4-3-1 Variable Axial Load-Cyclic Lateral Load/Displacement-Biaxial 

Hachem et al. (2003) tested four circular reinforced concrete bridge columns under 

bidirectional earthquake loading subjected to near-fault and far-fault ground motions. The 

average axial load level was approximately '0.06 c gf A , where '
cf  and gA  are compressive strength 

and gross section area of the concrete column, respectively. Observed plastic hinge length after 

testing was approximately 0.75D , in which D  is the column section diameter. Values of 

observed plastic hinge lengths were close to values predicted by the Priestley et al. (1992) 

equation. 

Esmaeily et al. (2005) developed a computer program to investigate the effect of axial 

load level and its pattern on lateral behavior of bridge piers. Based on Esmaeily et al. findings, 
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the level of axial load and its pattern significantly affects column behavior. Methods developed 

by Esmaeily et al. are applicable to biaxial monotonic and cyclic lateral loading and 

displacement cases with variable or constant axial loading. Curvature distribution was assumed 

to be linear between the first yield point (concrete or longitudinal bar) and the critical section in 

the first method. pL , defined as the length over which transition occurs, is the distance between 

the first yield point and the critical section. In this method, 𝐿𝑝 is given by: 

(1 )
y

p

u

M
L l

M
   (2-223)  

where l  is total length, yM  is the yield moment for the existing axial load, and 
uM  is the 

moment at the critical section. 

 For the second method, curvature distribution along the column at various hinge regions 

is shown in Figure ‎2-21. 

 

Figure ‎2-21   Assumption of curvature distribution along column height 

 

In Figure ‎2-21, 
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 (2-224)  

where 𝐷 is‎the‎column’s‎section‎depth‎in‎direction‎of analysis. 

2 0.15p s bl f d  (2-225)  

in which 
sf  is maximum tensile stress of the section at the column-footing interface and 

bd  is 

the longitudinal bar diameter. The value of 1pl  (plastic length) is constant, but 2pl  (stress 

penetration length) changes at each step of analysis due to variation of 
sf . The value 

transl  

(transition length) is not constant and varies as the length of the elastic part changes with changes 

in loading and displacement. 

Plastic hinge lengths recommended by codes include: 

I. ACI-ASCE committee 428 on limit design (1968): 
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(2-227)  

d is the distance from extreme compression fiber to centroid of section reinforcement, 
cue is 

elastic component of maximum compressive strain in concrete at ultimate resisting moment and 

axial load, 
0cu is basic maximum compressive strain in concrete to which a value in the range 

0.003 to 0.004 is assigned, 
mM is maximum moment in a length of member, 

uM  is ultimate 
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resisting moment concurrent with ultimate resisting axial load, 
eM  is elastic-limit resisting 

moment, 
zV  is shear adjacent to a concentrated load or reaction at a section of maximum 

moment, and 𝜔 is the uniformly distributed load at a section of maximum moment. If   and a 

concentrated load (or reaction) at this section act in opposite directions, 0  should be used. 

The following are AASHTO guide specifications for Load and Resistance Factor Design 

(LRFD) of seismic bridge design (2007):  

For columns framing into a footing, an integral bent cap, oversized shaft, or cased shaft: 

0.08 0.15 0.3p ye bl ye blL L f d f d    (2-228)  

For noncasted prismatic pile shafts:  

' *0.08pL H D   (2-229)  

For horizontally isolated flared columns: 

0.3p f ye blL G f d   (2-230)  

where L is the length of column from point of maximum moment to point of moment contra-

flexure (in.), yef is expected yield strength of longitudinal column reinforcing steel bars (ksi), 
bld

is nominal diameter of longitudinal column reinforcing steel bars (in.), *D is diameter of circular 

shafts or cross-sectional dimension in direction under consideration for oblong shafts (in.), 'H  is 

the length of pile shaft/column from point of maximum moment to point of contraflexure above 

ground (in.), and fG  is the gap between the isolated flare and soffit of the bent cap (in.). 

The institute research committee on ultimate load design of concrete structures (1962) 

proposes 

1/4
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where 
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(2-232)  

where P is the ultimate axial load for the member (allowing for the bending moment when 

present), 
uP is the ultimate capacity of the member for axial load when no bending moment acts, 

z is the distance of critical section to point of contraflexure, and d is effective depth of the 

section. 
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Chapter 3 - Analytical Models and Algorithm 

3-1 Introduction 

Performance of reinforced concrete sections with arbitrary cross-sectional shapes has 

been studied by many a number of researchers (Yen 1991, Yau 1993, Rodriguez and Aristizabal-

Ochao 1999, Fafitis 2000, Sfakianakis 2002, Bonet et al. 2004, Sousa and Muniz 2007, 

Charalampakis 2008, Rosati et al. 2008, Papanikolau 2012) in an attempt to develop new 

methods and algorithms and small computer applications to calculate axial force-bending 

moment interaction surface of a section. Monotonic loading was employed in these studies to 

construct the failure surface of a section; however, when exposed to a dynamic excitation such as 

wind, tornado, or earthquake, columns can be subjected to combined non-proportional bilateral 

and axial directions which is more pronounced in earthquake excitations, specifically in near-

fault regions with high vertical and horizontal ground accelerations, large velocity pulses, 

directional effects, repetitive pulse effects, and aftershocks. 

Estimation of available force and displacement capacity, energy dissipation, and inflicted 

damage on a structural element or occurrence of a certain limit state with reasonable accuracy 

requires a realistic prediction of structure performance. Accuracy of analytical predictions 

depends on the employed analytical methods and implemented material models, constitutive 

laws hysteresis rules, and distribution of curvature along the member. Detailed finite element 

analysis using available commercial software such as ABAQUS or open source software such as 

OpenSees has a steep learning curve and is not the first choice for a design engineer who prefers 

less sophisticated approaches.  
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Most small computer applications are limited to section analysis under a constant axial 

load, monotonic and very few cyclic, unilateral displacement or force. In order to fulfill the need 

for a simple, yet accurate analytical tool for performance assessment of reinforced concrete 

columns, a computer program was developed that uses relatively simple analytical methods and 

material models to accurately predict the performance of reinforced concrete structures under 

various loading conditions, including cyclic lateral displacement under a non-proportionally 

variable axial load (Esmaeily and Xiao 2005, Esmaeily and Peterman 2007). However, it was 

limited to circular, rectangular, and hollow circular/rectangular sections and uniaxial lateral 

curvature or displacement. 

The computer program described in this study is the next generation of the aforesaid 

program with additional functionality and options. Triangulation of the section allows 

opportunity for cross-sectional geometry. Biaxial lateral curvature/displacement/force combined 

with any sequence of axial load provides opportunity to analyze the performance of a reinforced 

concrete column under any load and displacement path. Use of unconventional reinforcement, 

such as FRP, in lateral as well as longitudinal direction is another feature of this application.  

Accuracy of various material models, hysteresis rules, and other assumptions for 

behavior simulation of a reinforced concrete member tested under a certain loading pattern can 

be examined by the developed computer program. 

Performance of the developed computer application was assessed through various types 

of analysis for RC members compared to respected experimental data, including moment-

curvature analysis of a hollow square cross section, force-deflection analysis of an oval section 

under axial force and uniaxial lateral displacement and a square section under axial force and 
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biaxial lateral displacements, and axial force-bending moment interaction surface for a square 

section. 

 

 

Figure ‎3-1   Main window of the developed window-based computer application 

 

3-1 Applied Analytical Method and Assumptions 

The primary goal of this study was to develop a user-friendly, simple, and accurate 

computer program capable of analyzing the performance of RC columns with any cross section, 

reinforced by conventional or unconventional reinforcement in lateral and/or longitudinal 

directions under any load/displacement pattern. The main window of this computer application is 

shown in Figure ‎3-1. The load/displacement pattern can be a combination of independent biaxial 

curvature or moment with any axial load pattern in a moment-curvature analysis, or independent 



118 

 

biaxial lateral displacement or force under an independently variable axial load. Behavior of an 

arbitrary-shaped section under various loading scenarios was modeled using the Bernoulli-Euler 

assumption in which plane sections remain plane after deformation. The arbitrary-shape section 

may consist of various materials and reinforcements, and the section may have any hole/opening. 

Constitutive material in the arbitrary-shape section may have any monotonic and cyclic behavior. 

Analysis was based on fiber modeling of the section effectively used by others (Prakash 

et al. 1993, Mazzoni et al. 2006). When a fiber model is used to analyze a beam or column, the 

cross section of the member is divided into smaller elements. When these elements are viewed in 

relation‎to‎the‎length‎of‎the‎beam,‎they‎appear‎as‎long‎‘fibrous’‎elements,‎hence the name‎‘Fiber‎

Modeling’.‎The stress and strain on each of these smaller elements is analyzed. When the stress 

and strain on each element is known, the axial load and moment effects on that element are 

easily found. After all of these smaller elements are analyzed, the axial loads and moments from 

each element are added together to determine the forces on the cross section as a whole. The 

accuracy of the analysis depends upon the size of each small element. As the cross section of the 

member is divided into more elements, the smaller these elements become, the more accurate the 

analysis. 

Fiber modeling is a type of finite element analysis. Fiber modeling has two general 

assumptions which separate it from finite element analysis. The first assumption is that as the 

beam or column member bends, the cross section of the member always remains plane to the 

longitudinal axis of the member.  

The second assumption is that the deformation of each fiber is linear across each fiber of 

the cross section. These two assumptions are general and cover the majority of fiber models. It is 
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possible, however, to implement a fiber analysis which does not follow one or both of these 

assumptions. 

Analysis addressed by the developed computer application includes (i) construction of 

code-based 3D axial force-bending moment interaction surface for RC columns with 

conventional lateral steel reinforcement using American Concrete Institute stress-block (ACI 

318-11), (ii) construction of axial force-bending moment interaction surface using material 

models for meshed RC columns laterally reinforced by steel, FRP, or steel and FRP assuming a 

constant strain at the extreme compressive fiber, (iii) construction of real axial force-bending 

moment failure surface considering material models for meshed RC columns laterally reinforced 

by steel, FRP, or steel and FRP with or without considering the axial force loading pattern, (iv) 

code-based biaxial moment-curvature analysis for RC columns with conventional lateral steel 

reinforcement considering ACI stress-block, (v) biaxial moment-curvature analysis considering 

the meshed section, including use of proper material models with any pattern of curvature in the 

two lateral directions and any variation of axial load, and (vi) biaxial force-deflection analysis 

using proper material models and a plastic hinge method, with displacement patterns in two 

lateral directions and arbitrary axial load pattern.  

 

3-2 Cross Section 

As mentioned earlier, a fiber-based method was employed to analyze RC sections in the 

developed computer application. In the triangular mesh algorithm used in the computer 

application,‎ various‎ components‎ of‎ a‎ column’s‎ section‎ are‎ defined‎ as‎ separate‎ regions.‎ Each‎

region is divided into a number of fibers and each fiber, depending on the material and location 

of the region, follows a particular cyclic rule and a monotonic material model as the envelope 
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curve of the cyclic model. Longitudinal bars are considered separately in the model with distinct 

monotonic and cyclic rules and load history. Triangular meshing caused the cross section of a 

beam-column to have an arbitrary shape with or without holes/opening. The composite section 

can be reinforced longitudinally by steel/FRP bars and laterally by conventional steel (tie/spiral), 

FRP warps, or lateral steel and FRP warps. The effect of lateral reinforcement was indirectly 

taken into account in modeling because uniaxial stress-strain behavior of the region enclosed by 

lateral reinforcement is affected by lateral reinforcement. FRP warps can have stiffness in axial 

and lateral directions, depending on the orientation of FRP fibers. The effect of FRP warps with 

fibers only in hoop direction was modeled indirectly through the stress-strain relationship of 

concrete regions. The fiber arrangement of a composite section is shown in Figure ‎3-2, which 

includes four regions: (i) steel or FRP bars, (ii) section core region, (iii) region between FRP 

warps and lateral steel reinforcement (or cover concrete for conventionally reinforced sections), 

and (iv) FRP wraps region.  

 

 

Figure ‎3-2   Composite section 

 

Distribution of longitudinal reinforcement can be evenly distributed or costume 

distribution. Lateral reinforcement can be provided by conventional lateral reinforcement 

(tie/spiral), FRP warps, or FRP warps and steel lateral reinforcement. However, the FRP wrap 
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may have stiffness in only the hoop direction, thereby providing confinement for the concrete 

section or the hoop and longitudinal directions. In the latest case, FRP stiffness contributes to the 

axial and flexural capacity of the RC section.  

3-3 Material Properties 

Mechanical properties of materials, including concrete, steel in longitudinal and lateral 

directions, FRP wraps, and FRP longitudinal bars, are provided in the computer application. 

Concrete strength, as measured in the lab or desired for analysis, must be provided. For steel 

material, yield strength and modulus of elasticity are provided as basic mechanical properties, 

assuming symmetric behavior for steel in tension and compression. Because behavior of FRP 

wraps in tension and compressive directions may not be similar in general, tensile and 

compressive strength and modulus of elasticity of FRP wraps must be individually provided. 

 

3-4 Material Models 

3-4-1 Monotonic Material Models 

A number of widely-used existing material models were implemented in the computer 

application in order to model uniaxial monotonic behavior of fibers with various materials. For 

plain/unconfined concrete, the Mander et al. model (Mander et al. 1988) for low to medium 

strength‎ concrete‎ and‎ Cusson‎ and‎ Paultre’s‎ model‎ (1995)‎ for‎ high-strength concrete were 

implemented into the program. For concrete confined by steel lateral reinforcement, the Mender 

et al. model (1988)‎for‎low‎to‎medium‎strength‎concrete‎and‎Cusson‎and‎Paultre’s‎model‎(1995)‎

for high-strength concrete were chosen because of their accuracy in predicting the behavior of 

circular and rectangular concrete columns with various longitudinal and lateral steel 

configurations.  
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The Mander et al. model (1988) was developed analytically for circular or rectangular 

cross sections under monotonic, cyclic static or dynamic loading. The RC section may have any 

general confinement type provided by either spiral or circular hoops, or rectangular hoops with 

or without supplementary cross-tie. In this model, the effect of any confinement type was taken 

into account by defining an effective lateral confining pressure that depends on lateral and 

longitudinal reinforcement configuration. To predict strain corresponding to first fracture, 

Mander et al. used an energy balance approach by equating strain energy stored in the concrete 

caused by confinement to strain energy capacity of the lateral reinforcement (Mander et al. 

1988). The stress-strain relationship of the Mander et al. model is based on an equation proposed 

by Popovics (1973). Many researchers have used Mander et al. model to simulate model 

monotonic behavior of concrete confined by conventional reinforcement. Because proposed 

stress-strain models for normal-strength concrete may overestimate the strength and fracture 

strain of high-strength concrete, Cusson and Paultre (1995) proposed their model to predict 

monotonic behavior of high-strength concrete confined by steel ties, using experimental results 

of 50 large-scale high-strength concrete tied columns tested under eccentric loading. Cusson and 

Paultre also considered effects of tie-yield strength, concrete compressive strength, tie 

configuration, and lateral and longitudinal reinforcement ratios when developing their model 

(Cussan‎and‎Paultre‎1995).‎Cusson‎and‎Paultre’s‎stress-strain curve for confined and unconfined 

concrete consists of two parts. The initial part is a relationship originally proposed by Popovics 

(1973), and the second part is a modification of the relationship proposed by Fafitis and Shah 

(Fafitis and Shah 1985) for high-strength confined concrete. As reported by Cusson and Paultre 

(1995), yield strength of lateral reinforcement is developed at the peak strength of concrete only 

for well-confined high-strength concrete specimens; therefore, peak strength of confined 
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concrete was computed by employing an iterative process in this model. Formulas of these two 

models are provided in Chapter 3.  

Samaan et al. (1998) and Youssef et al. (2007) models were chosen as representative 

models for concrete confined by FRP. Samaan et al. developed a bilinear stress-strain model for 

FRP-confined concrete based on 30 cylindrical specimens tested under uniaxial compression 

loading (Samaan et al. 1998). They used a four-parameter relationship originally proposed by 

Richard and Abbott (1975) to model initial behavior of FRP-confined concrete. Calculating the 

fracture strain and its corresponding stress, the initial curve is followed by a line connecting the 

initial part to the fracture point.  

Youssef et al. (2007) used results of an experimental program that included large-scale 

circular, rectangular, and square short columns confined by carbon-FRP and E-glass-FRP warps 

in order to develop a stress-strain model for concrete confined by FRP. This model is applicable 

for predicting monotonic behavior of low- to high-confined concrete. The initial relationship of 

this model is a polynomial function followed by an ascending or descending linear part that 

represents low- and moderate- to high-strength confinement, respectively. 

 

 

Figure ‎3-3   Example‎of‎“custom model”‎for‎plain‎or‎confined‎concrete 

 

For concrete confined by FRP and conventional lateral steel, Kawashima et al. (2000), 

Lee et al. (2009), and Shirmohammadi et al. (2014) models were implemented in the computer 
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program. Kawashima et al. stress-strain model was developed by combining the Hoshikuma et 

al. (1997) model for concrete confined by steel tie reinforcement and the Hostani et al. (1998) 

model for concrete confined by carbon-FRP. The initial part of this model is a polynomial 

followed by a linear path. The linear part of this model can be ascending or descending 

depending on the confinement ratio of the concrete section (Kawashima et al. 2000). Lee et al. 

(2009) presented a comprehensive stress-strain model for concrete confined internally by lateral 

steel and externally by FRP wraps based on experimental results of 24 concrete cylinders 

subjected to compression. The Lee et al. model consists of three polynomials: a second-order 

polynomial function, a polynomial at strain corresponding to plain concrete strength, and a 

polynomial at the point representing the lateral steel yield point (Lee et al. 2009). In order to 

estimate ultimate stress and corresponding strain, Lam and Teng (Lam and Teng 2003) equations 

were modified by introducing two new parameters based on experimental results from Lee et al. 

Shirmohammadi et al. developed a constitutive stress-strain relationship to model the behavior of 

concrete confined by FRP and lateral steel. They used Thorenfeldt et al. (1987) stress-strain 

relationship‎ which‎ is‎ the‎ modified‎ version‎ of‎ Popovics’‎ (1973)‎ equation.‎ Using experimental 

data, Shirmohammadi et al. proposed two equations for ultimate strain and corresponding stress 

for FRP and steel confined concrete. The formulations of monotonic stress-strain models for 

concrete confined by FRP or FRP and conventional lateral steel are provided in Chapter 3. 

Concrete tensile strength can be considered by assuming a linear equation with a slope 

equal to modulus of elasticity of plain concrete in all aforementioned monotonic models. In 

addition these models, a custom model option was added to the developed program. Using 

custom model functionality, users can implement and use their own model, including linear and 

second-order polynomial segments for various regions of cross section. Custom Model may 
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include up to five segments, and each segment may be linear or polynomial. An example of a 

Custom Model for plain or concrete confined by steel is shown in Figure ‎3-3. This monotonic 

model consists of four segments; the first and third segments are polynomial, and the second and 

last segments are linear. 

 

  
(a) (b) 

  
(c) (d) 

Figure ‎3-4   Implemented steel stress-strain models in computer application: (a) elastic-perfectly 

plastic model, (b) Mander et al. model (1984), (c) Esmaeily-Xiao model (2005), and (d) 

Menegotto-Pinto model (1973) 

 

For steel, a plastic-perfectly plastic model, Mander et al. model (1984), Esmaeily-Xiao 

model (2005), and Menegotto-Pinto model (1973) were implemented in the computer 

application. Figure ‎3-4 shows these four steel monotonic models. When no information except 

yield strength and modulus of elasticity is available, the plastic-perfectly plastic stress-strain 

model can be used for monotonic behavior of longitudinal steel bars. Esmaeily and Xiao’s‎steel‎

monotonic model can be employed to model behavior of longitudinal reinforcement when 

additional detailed information about reinforcing steel is available. Stress-strain behavior of 



126 

 

various types of steel can be simulated using four parameters ( 1K , 2K , 3K , and 4K ). Yield 

plateau, strain hardening, and softening of steel material were taken into account in this model 

(Esmaeily and Xiao 2015). The hardening and softening branch of steel monotonic model can be 

estimated using coefficients proposed by Esmaeily and Xiao (2002) when no information is 

available except steel yield strength and modulus of elasticity. Based on tensile experiments of 

steel bars, Esmaeily and Xiao proposed the ultimate strain (
su ) and strength ( suf ) for steel to be 

equal to 24.9 sy  and 1.3 syf , respectively (Esmaeily and Xiao 2002). 

The Mander et al. model (1984) was developed as a result of a variety of tension and 

compression tests. This model takes into account elastic behavior, yield plateau, and strain 

hardening of steel material. Menegotto-Pinto’s‎ model‎ (1973)‎ includes‎ a‎ bilinear‎ curve.‎ The‎

initial line has the slope of steel modulus of elasticity up to yield strength, thereby modeling 

elastic behavior of steel material, and post-yield strength is defined as a linear function with a 

slope equal to a portion (defined by b  parameter)‎ of‎ the‎ initial‎ part’s‎ slope.‎ Yield‎ plateau‎

characterization is neglected in Menegotto-Pinto’s‎monotonic‎model. 

A bilinear model was used in the computer application to model uniaxial behavior of 

FRP. The slope of tensile and the slope of compressive branches were equal to tensile modulus 

and compressive modulus of elasticity of FRP wraps, respectively.  

 

3-4-1 Cyclic Material Models 

Various cyclic models were implemented in the computer application to model cyclic 

behavior of materials in a composite section. A sample form of cyclic rules is shown in Error! 

eference source not found.. Cyclic behavior of plain concrete can be modeled using a linear 

model with a slope equal to the modulus of elasticity of concrete, or models developed by 
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Mander et al. (1984) and Esmaeily and Xiao (2005). For cyclic behavior of concrete confined by 

conventional lateral steel, Mander et al. and Esmaeily-Xiao cyclic rules were implemented in the 

developed computer application (Figure ‎3-5). All these cyclic models can work with any 

monotonic model as an envelope curve. In the Mander et al. cyclic model, the unloading path 

follows a concave-upward parabolic path with a zero-slope at the strain-axis. Tensile strength of 

concrete can be taken into account considering a linear path with a slope of plain concrete 

modulus of elasticity. With increased strain, stress remains zero up to the last strain 

corresponding to the zero stress, after which point strain grows in a linear reloading path with a 

slope equal to plain concrete modulus of elasticity in the strain-axis (Mander et al. 1984). In 

Esmaeily-Xiao’s‎ cyclic‎model,‎ the‎ unloading‎ path‎ follows‎ a‎ parabolic‎ path‎which‎ is‎ concave-

upward with a slope of 2cE  on the envelope curve (monotonic curve). This model may account 

for the tensile strength of concrete. With decreased strain at the unloading path, stress decreases 

to zero, after which point, if the tensile strength is ignored, stress remains zero; otherwise, stress 

decreases to tensile strength using a linear function with a slope of ctE . With increased strain, 

stress remains zero up to the latest strain corresponding to zero stress and then stress increases, 

following a concave-downward parabolic with a slope of 1cE  at the strain-axis (Esmaeily and 

Xiao 2005). Cyclic behavior of concrete confined by FRP or lateral steel and FRP can be 

modeled by a linear cyclic model with a slope equal to the modulus of elasticity of plain 

concrete. Mander et al. (1984) and Esmaeily-Xiao (2005) cyclic models were originally 

developed to model cyclic behavior of concrete confined by lateral steel; however, they can also 

be applied to model cyclic behavior of concrete confined by FRP or FRP and lateral steel. The 

Esmaeily-Xiao and linear cyclic models for confined concrete are shown in Figure ‎3-5 in which 

the Mander et al. confined concrete monotonic model is used as the envelope curve. 
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(a) (b) 

Figure ‎3-5   Implemented confined concrete cyclic models: (a) Esmaeily-Xiao model, (b) linear 

model 

 

For steel, Menegotto-Pinto’s‎model‎(1973),‎Esmaeily-Xiao’s‎model‎(2005),‎and‎a‎linear‎

model with a slope equal to the modulus of elasticity of steel were implemented into the 

developed computer program. Menegotto-Pinto’s‎ model‎ has‎ a‎ bilinear‎ backbone‎ curve,‎ as‎

previously explained. Cyclic response of steel material was defined using a nonlinear equation. 

The shape of unloading and reloading curves are defined by three parameters: 0R , 1a , and 2a . 

Because of numerical stability and realistic predictions, many researchers have used this model 

as a basis to propose new models for steel material. 

Esmaeily-Xiao’s‎hysteretic‎model‎for‎steel‎is‎a‎multilinear‎model.‎At‎the‎reversal‎point,‎

the unloading path is a linear function with a slope equal to modulus of elasticity of steel 

material. The Bauschinger effect is taken into account in this model by changing the slope of the 

first‎ unloading‎ part‎ into‎ a‎ portion‎ of‎ steel’s‎ modulus‎ of‎ elasticity‎ beyond‎ a‎ certain‎ stress‎

(Esmaeily and Xiao 2005). In order to realistically simulate cyclic behavior of steel material, this 

ratio and the strain at which the slope change occurs are different in the second (tensile strain and 

compressive stress) and fourth (compressive strain and tensile stress) quarters from their values 

in the first (tensile strain and stress) and third (compressive strain and stress) quarters. Esmaeily-
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Xiao’s‎model‎uses‎five‎ratios‎( 1P , 2P , 3P , 1R , and 2R ) to change the hysteretic behavior of steel 

material. Unlike Menegotto-Pinto’s‎ model,‎ linear‎ and‎ Esmaeily-Xiao’s‎ cyclic‎ models‎ can‎ be‎

used in conjunction with any steel monotonic model as an envelope curve. Figure ‎3-6 shows 

Esmaeily-Xiao’s‎ and‎ Menegotto-Pinto’s‎ cyclic‎ models‎ for‎ steel‎ material.‎ In‎ Figure ‎3-6(a), 

Esmaeily-Xiao’s‎ monotonic‎ model‎ is‎ used‎ as‎ an‎ envelope‎ curve‎ of‎ Esmaeily-Xiao’s‎ cyclic‎

model. The Menegotto-Pinto cyclic model is used in conjunction with Menegotto-Pinto’s‎

monotonic model in Figure ‎3-6(b). 

 

  

(a) (b) 

Figure ‎3-6   Implemented steel cyclic models: (a) Esmaeily-Xiao model, (b) Menegotto-Pinto 

model 

 

3-5 Analysis 

Because shear deformation is not modeled in the computer application, beam-column 

specimens should not be shear-critical. A beam column specimen was modeled cantilever 

considering fix support at the bottom of the specimen. Axial force and lateral 

forces/displacements were assigned to the top of the column. The centroid of a composite section 

was calculated with respect to a global x- and y-axis considered in the program. Considering 
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curvature in x- and y-direction, uniaxial strain of fibers was calculated using the following 

equations: 

si x si y siy x D        

( )ci x ci y ciy x D         

fi x fi y fiy x D        

(4-1) 

In the above equations, si , 
ci , and 

fi  are uniaxial strain at steel bar, concrete fiber, and 

FRP fiber, respectively. 
ix , 

iy , 
x , and 

y  are locations of i
th

 fiber with respect to x- and y-axis 

of the global coordinate system, respectively, and D  is‎strain‎at‎the‎global‎coordinate’s‎centroid‎

(Figure ‎3-7). 

 

 
 

 

(a) (b) (c) 

Figure ‎3-7   Calculation‎of‎fiber’s‎strain‎under‎biaxial‎bending 

 

When strains of all concrete and FRP fibers and longitudinal bars were calculated, stress 

of fibers and bars were calculated through cyclic and monotonic models defined for each fiber or 

bar as follows: 

( , , , , , )p p
si si si si un unSteel Cyclic Model Steel Monotonic Model       (4-2) 
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( , , , , , , , )p p
ci ci ci ci un un RO ROConcrete Cyclic Model Concrete Monotonic Model         

( , , , )p p
fi fi fi fiFRP Cyclic Model FRP Monotonic Model     

where 
si , 

ci , and 
fi  are stresses in i

th
 steel/FRP bar, concrete fiber, and FRP fiber, 

respectively. Stress in each fiber depends on current strain (
i ), previous strain and stress of that 

fiber ( ,p p
i i  ), strain and stress of the last point reached on the monotonic model ( ,un un  ) and in 

concrete fibers, and strain and stress of the last point reached in the unloading branch ( ,RO RO  ). 

When the axial force and bending moments have stresses of all fibers and bars, the axial 

force and bending moments are calculated using the following equations: 

A A

P dxdy dA     
(4-3) 

 

( )x

A

M y y dA    

( )y

A

M x x dA    

(4-4) 

Using discrete fibers, the above equations can be written in the following discrete format: 

1 1 1

fs c
nn n

si si ci ci fi fi

i i i

P A A A  
  

         

1 1 1

( ) ( ) ( )
fs c

nn n

x si si si ci ci ci fi fi fi

i i i

M A y y A y y A y y  
  

               

1 1 1

( ) ( ) ( )
fs c

nn n

y si si si ci ci ci fi fi fi

i i i

M A x x A x x A x x  
  

               

(4-5) 

In the above equations, 
siA , 

ciA , and fiA  are the area of i
th

 steel/FRP bar, i
th

 concrete fiber, 

and i
th

 FRP fiber, respectively. x  and y  are the distances of the cross section of beam-column 

specimen centroid along x- and y-direction, respectively. 
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Figure ‎3-8   Displacement-controlled code-based moment-curvature curve 

 

3-5-1 Moment-Curvature Analysis 

In the developed computer application, monotonic moment-curvature analysis was 

performed with consideration of the code-based method and material models. Code-based 

monotonic moment-curvature analysis can be conducted for RC beam-columns laterally 

reinforced by conventional lateral steel and longitudinally reinforced by steel bars only. 

However, exact monotonic and cyclic moment-curvature analysis considering material models 

can be performed for concrete beam-columns with any longitudinal and lateral reinforcement. 

In code-based moment-curvature‎ analysis,‎ the‎ “ACI‎ stress-block”‎ is‎ used‎ without‎

considering the confinement effect. In this analysis, the angle of neutral axis with respect to x-

axis should be given to the computer application. The approximate code-based moment-

curvature graph contains four essential points. The first point is related to the starting point of 

which‎curvature‎and‎moment‎are‎equal‎to‎zero.‎The‎second‎point‎is‎related‎to‎the‎“First‎Crack.”‎

For displacement control analysis (Figure ‎3-8), when the curvature changes step-by-step and 
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moment is calculated, the bending moment drops when a crack develops. Therefore, at the same 

curvature (
cr ), two moments are present: the moment before ( )cr beforeM 

 and the moment right 

after the crack ( )cr afterM 
. For force-controlled analysis (Figure ‎3-9), when curvature related to a 

given moment is calculated at the first crack point, the curvature jumps to a new curvature 

immediately following the first crack, thereby demonstrating the presence of two curvatures: one 

before the first crack and one after the first crack. The third point of the code-based moment-

curvature‎graph‎is‎related‎to‎“Steel‎Yield,”‎at‎which point the steel bars initially yield. The last 

point‎ is‎ related‎ to‎“Ultimate‎Strength,”‎which‎considers‎ the‎code-based ultimate strength of an 

RC section. 

 

 

Figure ‎3-9   Force-controlled code-based moment-curvature curve 

 

In moment-curvature analysis using material models, the curvature-path along x- and y-

axis is known and the ultimate bending moment along x- and y-axis are calculated using material 

models. Having 
x  and y in each step during an iterative process, the value of D  is calculated 

to set axial force equal to the applied axial force at the top of the beam-column specimen. Next, 
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bending moments along the x- and y-axis are calculated using Eq. (5-5). Unlike code-based 

moment-curvature analysis, the developed computer application can perform monotonic and 

cyclic moment-curvature analysis using material models.  

 

3-5-2 Force-Deflection Analysis 

Two methods can be employed to calculate flexural deformation of an RC beam-column. 

In the first method, flexural deformation analysis of an RC beam-column specimen is conducted 

using the finite element approach. This approach has high computational demands. In Finite 

Element Method (FEM), displacement approximation has a significant role in the accuracy of 

force-deflection results. When curvature of the critical section (at the bottom of the beam-column 

specimen) falls into the descending branch of the moment-curvature curve, the corresponding 

stiffness matrix becomes negative definite and adaptive methods (resorting trial-error) must be 

employed to capture force-deflection results (Esmaeily and Xiao 2002). 

 

  
 

(a) (b) (c) 

Figure ‎3-10   Curvature distributing along column height as assumed in (a) Priestley and Park 

and‎Priestley‎and‎Park‎revised‎by‎Xiao’s‎methods,‎(b)‎Esmaeily’s first method, and (c) 

Esmaeily’s second method 
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Table ‎3-1   Implemented plastic hinge methods in the computer application 

Method Plastic Hinge Length 

Priestely and Park (1987) 0.08p syl L f d     , 0.022 (0.15 .)mm in   

Priestley and Park Revised by Xiao 

(Esmaeily and Xiao 2002) 
0.08p sl L d      , 0.022 (0.15 .)mm in   

Esmaeily First Method (Esmaeily 

and Xiao 2002) 1
yield
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Esmaeily Second Method 

(Esmaeily and Peterman 2007) 

transp pcons pl l l  , 
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0.08 12.5
p
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M
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In the second method to calculate flexural deformation of an RC beam-column, the 

plastic hinge concept of the critical section (or transition area) and a proper curvature distribution 

along the beam-column specimen height are employed to solve the force-deflection problem 

when curvature falls into the descending branch of the moment-curvature curve. In the plastic 

hinge approach, column height is divided into two elastic and plastic elements. Depending on the 

curvature distribution method, the length of the transition area (plastic hinge length) may or may 

not change during force-deflection analysis. Total displacement at the top of a column is a 

summation of elastic and plastic deformation caused by elastic and plastic elements, respectively. 

In the developed computer application, the second approach was employed to perform 

force-deflection analysis of an RC beam-column under constant or variable axial force and cyclic 

or monotonic lateral forces/displacements. Nearly 30 plastic hinge models are available in the 

literature,‎ of‎which‎ Priestley‎ and‎ Park’s‎model‎ (Prietley‎ and‎ Park‎ 1987),‎ Esmaeily’s‎ first‎ and‎

second model, and Xiao’s‎model‎(Esmaeily‎and‎Xiao‎2002)‎were‎implemented‎into‎the‎window-

based computer program. Although a majority of existing plastic hinge models in the literature 

were developed considering uniaxial behavior of RC columns, experimental evidences have 
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confirmed plastic hinge length is not affected by biaxial loading (Rodrigues et al. 2013); 

therefore, the plastic hinge models developed based on uniaxial testing are applicable for biaxial 

force-deflection‎ analysis.‎ Priestley‎ and‎ Park’s‎ plastic‎ hinge‎ length‎ depends on column height, 

longitudinal steel yield strength, and rebar diameter. Curvature distribution was considered to be 

uniform along the plastic hinge length, and axial force effect was not taken into account in 

Priestley‎and‎Park’s‎model.‎Xiao‎ (Esmaeily‎and‎Xiao‎2002)‎ later‎modified‎Priestly‎and‎Park’s‎

plastic hinge length by employing maximum tensile stress at longitudinal bars instead of steel 

yield strength. These plastic hinge models work well for RC columns under constant axial force 

and monotonic lateral force/displacement. 

Esmaeily’s‎ first‎ plastic‎ hinge‎ method‎ considered‎ a‎ linear‎ distribution‎ along‎ transition‎

zone or plastic hinge length. Plastic hinge length applied in this model depends on yield moment 

and moment at critical section at each step of loading. Therefore, axial force effect and cyclic 

and monotonic behavior of all materials are taken into account in calculation of plastic hinge 

length.‎ Esmaeily’s‎ first‎ plastic‎ hinge‎ length‎ may‎ increase‎ by‎ decreasing‎ the‎ ratio‎ of‎ yield‎

moment to moment of critical section. Plastic hinge length simulates severe damage at column 

footing; therefore, it cannot be decreased after formation (Esmaeily and Xiao 2002). 

In‎ Esmaeily’s‎ second‎ plastic‎ hinge‎ model,‎ divides‎ the‎ transition‎ zone‎ into‎ two‎ parts.‎

Curvature distribution along the part closet to the critical section is assumed to be uniform. The 

length of this part is constant and is equal to the section depth for columns with high to depth 

ratio of less than 12.5; otherwise, it is equal to 0.08×L, where L is the column height. Curvature 

distribution along the second part is assumed to be linear; its length depends on existing axial 

force‎ and‎ level‎ of‎ lateral‎ force.‎ Esmaeily’s‎ first‎ and‎ second‎ models‎ work‎ more‎ accurately‎

compared to Priestley and Park and Priestley and Park-Revised by Xiao models for RC columns 
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under variable axial force and cyclic lateral force/displacement (Esmaeily and Xiao 2002). 

Curvature distribution along column height as assumed in aforesaid models is shown in 

Figure ‎3-10 and their formulation is summarized in Table ‎3-1. 

 

 

Figure ‎3-11   Force-deflection analysis flowchart 

 

The developed computer application can conduct biaxial force-deflection analysis. Axial 

force and lateral forces/displacements are applied at the top of columns. For each combination of 

axial force and lateral displacement in the x- and y-direction using two sets of trial-error process 

for D , 
x  and y , axial force and lateral displacements are set to the applied values. Force-

deflection analysis of an RC section under constant or variable axial force and cyclic or 



138 

 

monotonic lateral displacements can be conducted using aforesaid plastic hinge models 

implemented in the developed computer application. A simplified flowchart for force-deflection 

analysis of an RC column under axial force and biaxial lateral displacements is shown in 

Figure ‎3-11.  

 

3-5-3 Axial Force-Bending Moment Interaction Curves 

Three types of axial force-moment interaction 3D surface of an RC section can be conducted 

using the developed computer program. In the first type, or code-based axial force-moment 

interaction 3D surface, axial force-moment analysis is performed considering the ACI stress-

block concept without considering the confinement effect applied by lateral reinforcement. 

Compressive strain in the extreme concrete fiber is assumed to be 0.003. Considering a specific 

angle for neutral axis with respect to the x-axis, for each level of axial force through an iteration 

process, curvature along the neutral axis is changed to converge to a curvature resulting in the 

considered axial force. When curvature is changed, strain‎at‎ the‎global‎coordinate’s‎centroid‎is‎

changed to maintain strain at the extreme compressive concrete fiber equal to 0.003. Code-based 

axial force-moment analysis can be performed only for concrete sections reinforced laterally by 

lateral steel reinforcement and longitudinally by steel bars. There are two methods to calculate 

the ACI interaction curve as follows: 

In the first method, the strain at the extreme concrete fiber is equal to 0.003. The 

curvature along the analysis axis is increased from zero to the point that strain at the extreme 

tensile steel bars becomes equal to 0.005. Then the curvature is decreased in a way that strain at 

the extreme steel fiber remains 0.005.  
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Figure ‎3-12   Curvature change in Method 1 

 

In the second method, the strain at the extreme concrete fiber is kept constant and equal 

to 0.003 and the curvature will increase to the point and the section fails. 

 

 

Figure ‎3-13   Curvature change in Method 2 

 

The second type of axial force-moment interaction surface is calculated considering user-

selected material models for plain concrete, confined concrete, reinforcing steel, and FRP. This 

type of interaction surface can be calculated for a concrete section confined by conventional steel 
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(tie/spiral), FRP wraps, or FRP wraps and conventional steel. Strain at extreme compressive 

fibers is assumed to be constant and can be defined by the user.  

The third type of interaction 3D surface is referred to as axial force-bending moment 

interaction failure surface in the literature. Four techniques were employed in the literature to 

construct the 3D failure surface of a composite section: (i) interaction curve considering constant 

or variable ratio of curvature along x- and y-axis (constant neutral axis orientation), (ii) 

interaction curve for a given ratio of bending moment in x- and y-direction, (iii) bending moment 

constant for a constant given axial force, and (iv) generation of triplets stress resultant extending 

an oriented strength line. The first technique (constant neutral axis orientation) was utilized in 

the developed computer application.  

In various algorithms developed by researchers to calculate failure surface, ultimate 

moment capacity of an RC section is defined as the maximum moment in monotonic moment-

curvature analysis considering constant axial force (not considering the loading pattern of axial 

force). However, columns exposed to a dynamic excitation are subjected to a loading pattern in 

combined but non-proportional lateral and axial directions. Consideration of axial force loading 

pattern when calculating bending capacity of an RC section is essential in structure columns 

located in near-fault regions. 

The developed computer application is capable of generating the failure surface of a 

composite section using proper material models with or without considering the axial force 

loading pattern. To calculate the failure surface of a section while considering the axial force 

loading pattern for a specific neutral axis orientation and axial force level ( P ), a moment-

curvature analysis was performed considering the pattern of axial force against curvatures along 

x- and y-directions. The maximum moment was selected as the ultimate capacity of the section 
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in that level of axial force. The axial force loading pattern includes a number of points with 

various curvature along the x- and y-axis and axial force coefficient (
x , 

y , ac ). The axial force 

coefficient ( ac ) for any combination of x- and y- curvature cannot exceed 1.0, meaning that the 

maximum compressive axial force ( ac P ) in that pattern is equal to the specified level of axial 

force ( P ). The axial force coefficient may consider more than -0.1, meaning that the maximum 

tensile axial force capacity of the section should not be considered more than 0.1 P . Sinusoidal 

and triangular axial force loading patterns are shown in Figure ‎3-14. 

 

  

(a) (b) 

Figure ‎3-14   (a) Sinusoidal and (b) triangular axial force loading pattern 

 

3-6 Validation Examples 

This section presents the performance and applicability of the developed computer 

application using four examples in which analytical results by the program are compared to 

experimental results from tests conducted on the respected specimen. The first example 

investigates computer application accuracy to predict moment-curvature response of a reinforced 

concrete section. In the second and third validation examples, computer application performance 

for predicting the force-deflection response of two columns with their respected cross sections is 

illustrated. The fourth test investigates computer application capability in constructing the failure 

surface of a square section and interaction curves using the ACI stress-block concept.   
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(a) (b) 

Figure ‎3-15   Geometry and reinforcement of the specimen TP-36; (a) elevation, (b) cross section 

 

3-6-1 Moment-Curvature Analysis 

The developed window-based computer application was employed to conduct moment-

curvature analysis of a hollow square cross section. The hollow square section, as shown in 

Figure ‎3-15, had a width of 400 mm (15.748 in.), cover width of 50 mm (1.97 in.), and hole 

width of 200 mm (7.874 in.). Cylinder strength of concrete was 29.7 MPa (4.05 ksi). The column 

specimen was reinforced longitudinally with 24 No. 13 (24 #4) Grade SD295A (yield strength 
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was 374 MPa (54.24 ksi)), giving the specimen a longitudinal ratio of 2.53%. The longitudinal 

steel rebar arrangement is shown in Figure ‎3-15. The transverse reinforcing steel was Grade 

SD295A with yield strength of 363 MPa (52.64 ksi). Lateral reinforcement was a No. 6 (#2) with 

center-to-center spacing of 100 mm (3.93 in.), giving the specimen volumetric lateral 

reinforcement of 1.23%. 

The column specimen was tested under constant axial force of 230 kN (51.71 kips) and 

cyclic uniaxial lateral force. Bending moment and curvature were measured at the column 

footing. Additional details regarding experimental setup are presented in Kawashima et al. 

(2001). 

The Mander et al. model (1988) for unconfined and confined concrete was employed in 

order to model monotonic behavior of concrete fibers located in the cover and core concrete, 

respectively. The Mander et al. model was developed for circular and rectangular cross sections 

without a hole/opening. An equivalent rectangular section without an opening was considered in 

order to use this model to simulate monotonic behavior of confined concrete in a rectangular 

section with a hole/opening. Dimensions of the equivalent rectangular section were similar to the 

original section; however, only the outer layer of longitudinal and lateral reinforcement original 

section were considered as longitudinal and lateral reinforcement of the equivalent section. 

Maximum strength, ultimate strain, and fracture strain of confined concrete in the hollow 

rectangular section was calculated considering the equivalent rectangular section in the Mander 

et al. model (1988). Tensile strength for confined and unconfined concrete was assumed to be 

10% of the plain concrete compressive strength. Linear cyclic behavior with a slope of plain 

concrete modulus of elasticity was considered for unconfined and confined concrete fibers.  
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Menegotto-Pinto’s‎model‎ (1973)‎was‎ used‎ to‎model‎ cyclic and monotonic behavior of 

longitudinal steel bars. The monotonic curve backbone coefficient ( b ) in Menegotto-Pinto’s‎

model was set to 0.01. Cyclic parameters 0R , 1a , and 2a  were considered 2.0, 2.0, and 0.09, 

respectively.  

 

 

Figure ‎3-16   Comparison of analytical and experimental moment-curvature response curves for 

the hollow square cross section (TP-36) 

 

Experimental and calculated moment-curvature curves at the bottom of the column 

specimen are shown in Figure ‎3-16. As demonstrated in the figure, great agreement exists 

between experimental data and analytical results calculated by the developed window-based 

computer application. 
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3-6-2 Force-Deflection Analysis 

3-6-2-1 Reinforced Concrete Column under Axial Force and Uniaxial Lateral 

Force 

The developed fiber-based computer application was employed for force-deflection 

analysis of an oval section (TP-9) under constant axial force and uniaxial cyclic lateral force, 

tested by Fujikura et al. (1998). Geometrical properties of the oval section are shown in 

Figure ‎3-17 in SI and imperial systems (numbers in parenthesis). The column specimen was 

reinforced longitudinally with 38 No. 10 (38 #3) Grade SD295, giving the specimen a 

longitudinal ratio of 0.83%. The longitudinal steel bar arrangement is shown in Figure ‎3-17. 

Lateral reinforcement was provided using No. 6 (#2) with center-to-center spacing of 150 mm 

(5.905 in.), giving the specimen volumetric lateral reinforcement of 0.9%. Cylinder strength of 

concrete ( '
0cf ) was 22.7 MPa (3.292 ksi) and yield strength of longitudinal and lateral steel was 

379 MPa (54.97 ksi) and 380 MPa (55.114 ksi), respectively. The oval section was under 

constant axial force of 160 kN (35. 97 kips) and lateral uniaxial force in x-direction. Additional 

details regarding experimental setup are presented in Fujikura et al. (1998). 

 

 

Figure ‎3-17   Oval cross section (TP-9) 
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Figure ‎3-18   Comparison of analytical and experimental force-deflection response curves for 

oval section 

 

In order to model the behavior of confined concrete, the Mander et al. model and linear 

cyclic model were used as monotonic and cyclic rules, respectively. Ultimate strain, stress, and 

fracture strain of confined concrete in the oval section were calculated considering only one of 

the circular hoops in the oval section as an equivalent section. Diameter of the equivalent cross 

section was equal to the width of the oval section (400 mm (15.748 in.)). It was reinforced 

longitudinally and laterally using 14 No. 10 (14 #3) and No. 6 @ 150 mm (#2 @ 5.905 in.).  

For plain concrete (located at the cover), the Mander et al. monotonic model and linear 

cyclic model were employed. Menegotto-Pinto’s‎ monotonic‎ and‎ cyclic‎ models‎ modeled‎

longitudinal reinforcement behavior. The monotonic curve backbone coefficient ( b ) in 

Menegotto-Pinto’s‎model‎was‎set‎to‎0.01.‎Cyclic‎parameters‎ 0R , 1a , and 2a  were considered 2.0, 

2.0,‎and‎0.09,‎respectively.‎Esmaeily’s‎first‎plastic hinge method (Esmaeily and Xiao 2005) was 
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employed as curvature distribution along the specimen height. As shown in Figure ‎3-18, fiber-

based analysis predicted cyclic force-deflection of the oval section with reasonable accuracy. 

 

  
(a) (b) 

Figure ‎3-19   Comparison of analytical force-deflection with experimental data for specimen 

PB12-N15 in (a) x-, and (b) y-direction under expanding square path 

 

  
(a) (b) 

Figure ‎3-20   Comparison of analytical force-deflection with experimental data for specimens 

PB12-N16  
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3-6-2-2 Reinforced Concrete Column under Axial Force and Biaxial Lateral 

Force 

The second example of force-deflection analysis is related to biaxial analysis of 

specimens PB12-N15 and PB12-N16 from experimental work by Rodrigues et al. (2012). In that 

work, specimens PB12-N15 and PB12-N16 were tested under expanding square and circular 

displacement paths, respectively, and constant axial force at approximately 10% of theoretical 

axial capacity (equal to '
0 0g cP A f  , where 

0P , '

0cf  and 
gA  are theoretical axial capacity, plain 

concrete compressive strength, and gross cross-sectional area, respectively). These two 

specimens had a square cross section with a dimension of 300 mm (11.81 ksi), and they were 

reinforced longitudinally using eight No. 12 bars in European standard (No. 12 bar diameter is 

12 mm (0.472 in.)), giving the specimen a longitudinal ratio of 1.01%. Lateral reinforcement was 

provided by No. 6 bars in European standard with a step of 150 mm (5.9 in.) (No. 6 bar diameter 

is 6 mm (0.236 in.)), giving the specimen volumetric lateral reinforcement of 0.21%. Cylinder 

strength of concrete ( '
0cf ) was 21.57 MPa (3.13 ksi), and steel reinforcement grade in the 

longitudinal and lateral direction was A400NR-SD (European standard). 

Monotonic behavior of longitudinal bars was modeled using an idealized bilinear model. 

Because no information was available concerning the monotonic curve of reinforcing steel 

material, as recommended by Esmaeily and Xiao (2002), the ultimate strain (
su ) and strength (

suf ) for steel was considered to be 24.9 sy  and 1.3 syf , respectively. The linear model was 

used to model cyclic behavior of longitudinal bars with linear unloading-reloading stiffness. 

For confined and unconfined concrete fibers, the Mander et al. model (1988) for confined 

and unconfined concrete was used, respectively. Cyclic behavior of concrete fibers was 

considered linear with a slope equal to the modulus of elasticity of plain concrete. Priestly and 
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Park’s‎plastic‎hinge‎method‎(1987)‎was‎employed‎as‎curvature‎distribution‎along‎the‎specimen‎

height. 

Experimental and analytical force-deflection curves of specimens PB12-N15 and PB12-

N16 are shown in Figure ‎3-19 and Figure ‎3-20, respectively. As demonstrated in these figures, 

predicted results are in good agreement with experimental data. 

 

 

Figure ‎3-21   Failure curves for square section 

 

3-6-3 Axial Force-Bending Moment Interaction Curves 
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strength of concrete was 35.9 MPa (5.207 ksi), and yield strength of longitudinal and lateral steel 

was 363 MPa (52.65 ksi) and 368 MPa (53.37 ksi), respectively. 

Actual interaction curves and failure surface of the square section are demonstrated in 

Figure ‎3-21 and Figure ‎3-22, respectively. To construct these plots, confined and unconfined 

concrete models of Mander et al. were used to model the behavior of confined and unconfined 

concrete fibers. The Menegotto-Pinto model was applied to model cyclic and monotonic 

behavior of longitudinal steel bars. Monotonic ( b ) and cyclic coefficients ( 0R , 1a , 2a ) in 

Menegotto-Pinto’s‎model‎were‎considered 0.01, 2.0, 2.0, and 0.09, respectively.  

In addition to actual failure surface, axial force-bending moment interaction 3D surface 

of the square section was calculated considering the ACI-stress block method (ACI 318-11). In 

Figure ‎3-23 and Figure ‎3-24, the red and blue dots are related to the ACI-interaction surface with 

consideration of reduction factors and ACI-interaction surface without reduction factors. 

 

 

Figure ‎3-22   Failure-surface of square section 
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Figure ‎3-23   ACI Axial force-bending moment interaction surface 

 

 

Figure ‎3-24   ACI Axial force-bending moment interaction surface 
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3-7 Developing New Model for Circular Concrete Column Confined by 

FRP and Conventional Lateral Steel 

FRP application to enhance ductility, flexural strength, and shear capacity of existing 

deficient concrete structures has increased during the last two decades. Therefore, various 

aspects of FRP-confined concrete members, specifically monotonic and cyclic behavior of 

concrete members confined and reinforced by FRP, have been studied in many research 

programs, resulting in proposal of various monotonic models for concrete confined by only FRP. 

Ozbakkalogu et al. (2013) reported 88 monotonic models for FRP-confined concrete circular 

sections until year 2011. They categorized these models into two design-oriented and analysis-

oriented‎groups‎based‎on‎Lam‎and‎Teng’s‎suggested‎categorization‎(Lam‎and‎Teng‎2003).‎Using‎

selected statistical indicators, model performances were assessed compared to reliable 

experimental data. According to their investigation, models by Lam and Teng (2003) and 

Tamuzs et al. (2006) most accurately predict ultimate strength and strain of FRP-confined 

concrete (Ozbakkalogou et al. 2013). 

FRP wrapping is typically used to confine existing concrete members containing 

conventional lateral steel reinforcement (tie/spiral). The confining effect of lateral steel 

reinforcement in analytical studies has been uniquely considered in various models. A majority 

of related models consider confinement due to FRP and ignore the effect of conventional lateral 

steel reinforcement. Shao et al. (2005) used the model proposed by Samaan et al. (1998) that 

utilizes concrete confined only by FRP to conduct a fiber-based analysis of concrete specimens 

confined by FRP and tie. Although the amount of lateral steel reinforcement was not negligible 

in their test specimens, they ignored its confining effect and achieved a reasonably good 

agreement between experimental data and analytical results. 
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The model by Kawashima et al. (2000) was the first model to consider the confining 

effects of FRP and conventional lateral steel reinforcement. Harajli et al. (2006) consequently 

proposed a novel model for circular and rectangular concrete columns confined by FRP and 

conventional lateral steel. Eid and Paultre (2008) proposed a relatively complicated model 

requiring numerous parameters with good accuracy compared to experimental data. Based on 

test results from 24 specimens, Lee et al. (2009) proposed a new empirical model to predict 

monotonic behavior of concrete confined by FRP and steel spiral in circular sections. Chastre 

and Silva (2010) proposed a model for circular sections using Ricard and Abbott (1975) stress-

strain‎ relationship.‎ Pellegrino‎ and‎ Modena’s‎ model‎ (2010)‎ was‎ proposed‎ for‎ circular‎ and‎

rectangular sections confined by FRP with or without lateral steel reinforcement. Recently, Hu 

and Seracino (2013) proposed a constitutive model using Popovics (1973) equation and modified 

Mander et al. (1988) equations to predict peak stress and corresponding strain for concrete 

confined by FRP and lateral steel reinforcement. However, their model does not predict ultimate 

stress and its corresponding strain, two important parameters of monotonic models. 

A majority of models have been based on experimental data from tests performed only by 

originators. Performance of these models in prediction of experiments conducted by others 

degrades considerably, as discussed later, as proven by a comparison of models proposed for 

conventional confined concrete (Esmaeily and Lucio 2006). Exploration of existing model 

performances for predicting the behavior of several tested specimens shows a need for 

improvement of existing algorithms. The model proposed in the current study is a step in this 

direction. 

In addition to the proposed model, performance of four representative models in the 

literature was assessed in this study. Two of the four models (Samaan et al. 1998; Youssef et al. 
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2007) were proposed for concrete confined only by FRP but used as a model in analytical studies 

for concrete confined by FRP and lateral steel. The other two models (Kawashima et al. 2000; 

Lee et al. 2009), originally proposed for concrete confined by FRP and lateral steel, were chosen 

because of their easy-to-use equations and accuracy in predicting experimental monotonic 

behavior of specimens confined by FRP and lateral steel. 

The new model proposed in this study was developed for concrete confined by FRP and 

conventional lateral steel. Performance of the proposed model and the four representative models 

from literature was compared to experimental data from four independent databases. These 

specimens were reinforced laterally by FRP wraps and steel tie/spiral and tested under 

monotonic concentric loading by Demers and Neale (1999), Eid and Paultre (2008), and Lee et 

al. (2009). 

In order to demonstrate the accuracy of the proposed model compared to the four 

aforesaid models, a blind verification was performed using nonlinear moment-curvature analysis 

and experimental moment-curvature response of two specimens not used to calibrate the 

proposed model. These two specimens originated from experimental works performed by 

Kawashima (2001). They were reinforced by Carbon-FRP and steel tie laterally and were tested 

under constant axial load and cyclic lateral force. 

 

3-7-1 Proposed Stress-Strain Curve 

Most concrete members retrofitted or designed using FRP wraps contain internal lateral 

steel reinforcement. Core concrete in these members is under the confining action of steel 

tie/spiral and FRP warps. However, due to limited experimental data from tests conducted by the 

originator, proposed models for concrete confined by FRP or FRP and tie/spiral do not provide a 



155 

 

reasonably accurate prediction of specimen behavior tested by other researchers. Use of these 

models to analyze performance of columns confined by FRP and lateral steel underestimates or, 

in some cases, overestimates section capacity related to flexibility and flexural strength. 

Development of the proposed model for concrete confined by internal steel and external FRP 

lateral reinforcement is an attempt to address the aforesaid issue. 

Axial stress-strain behavior of concrete confined by FRP and lateral steel (tie/spiral) was 

obtained using the Thorenfeldt et al. equation (1987). This equation is a modified version of the 

Popovics (1973) equation which describes stress-strain behavior of unconfined concrete 

(Popovics 1973). This equation works well for normal-weight concrete. In addition, many 

researchers have used this equation to simulate stress-strain behavior of concrete confined by 

conventional‎ steel‎ reinforcement.‎ Hu‎ and‎ Seracino‎ (2013)‎ used‎ Popovics’‎ equation‎ for‎

monotonic behavior of concrete confined by FRP and lateral steel. The Thorenfeldt equation is 

as follows: 

'

.( )

1 ( )

c c cu

nk
cu c cu

f n

f n

 

 


 
 (2-3)  

where 
'/ ( / )c c cu cun E E f   . 

cE  is the modulus of elasticity of the concrete, 
cf  and 

c  are axial 

stress and axial strain of confined concrete, respectively, 
cu  and 

'
cuf  are ultimate strain and 

ultimate stress of confined concrete, respectively, and Thorenfeldt parameter 0.8k  . 

Many equations for calculating the modulus of elasticity of concrete are proposed in the 

literature. In this study, ACI equations were used because of their relative accuracy in providing 

the modulus of elasticity of concrete. ACI concrete modulus of elasticity equations for normal-

weight concrete is as follows: 
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'
04700 ( )c cE f MPa  

'
057000 ( )c cE f psi  

(2-4)  

where 
'
0cf  is compressive strength of unconfined concrete. 

 

Table 3-‎3-2   Geometrical and mechanical properties of specimens 

    FRP  TSR   

Specimen ( )D m  

'
0cf

 

( )MPa

 

0c
 ( )t mm

 

frpE  

( )GPa

 

fuf  

( )MPa   Type 
ysf  

( )MPa  
( )s m  bd  

( )mm  

'
cuf  

( )MPa

 

cu  

U25-2 (Demers and Neale 

, 1999) 
0.3 25 0.002 0.9 84 3937  Tie 400 0.15 11.3 36.6 0.0104 

U40-3 (Demers and Neale 

, 1999) 
0.3 40 0.0027 0.9 84 3937  Tie 400 0.3 6.4 54.8 0.0065 

C2NP2C (Eid and Paultre, 

2008) 
0.303 31.7 0.002 0.762 78 3350  Spiral 456 0.065 11.3 49.6 0.0124 

C4NP4C (Eid and Paultre, 

2008) 
0.303 31.7 0.002 1.524 78 3350  Spiral 456 0.1 11.3 69.38 0.0243 

C2MP4C (Eid and Paultre, 

2008) 
0.303 50.8 0.0024 1.524 78 3350  Spiral 456 0.065 11.3 92.08 0.0188 

A3NP2C (Eid and Paultre, 

2008) 
0.303 31.7 0.002 0.762 78 3350  Tie 602 0.07 9.5 50.6 0.0124 

S2F2 (Lee et al., 2009) 0.15 36.2 0.0024 0.22 250 4510  Spiral 1200 0.02 5 92.68 0.038 

S2F3 (Lee et al., 2009) 0.15 36.2 0.0024 0.33 250 4510  Spiral 1200 0.02 5 108.0 0.039 

S2F4 (Lee et al., 2009) 0.15 36.2 0.0024 0.44 250 4510  Spiral 1200 0.02 5 115.7 0.0384 

S2F5 (Lee et al., 2009) 0.15 36.2 0.0024 0.55 250 4510  Spiral 1200 0.02 5 150.8 0.043 

S4F2 (Lee et al., 2009) 0.15 36.2 0.0024 0.22 250 4510  Spiral 1200 0.04 5 74.77 0.0225 

S4F3 (Lee et al., 2009) 0.15 36.2 0.0024 0.33 250 4510  Spiral 1200 0.04 5 88.8 0.029 

S4F4 (Lee et al., 2009) 0.15 36.2 0.0024 0.44 250 4510  Spiral 1200 0.04 5 104.2 0.032 

S4F5 (Lee et al., 2009) 0.15 36.2 0.0024 0.55 250 4510  Spiral 1200 0.04 5 123.6 0.036 
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3-7-2 Peak Stress and Strain in Confined Concrete 

Ultimate strength and corresponding strain are important parameters in a stress-strain 

model. Major parameters affecting ultimate strength and corresponding strain of confined 

concrete include (i) cross-sectional dimension, (ii) lateral steel reinforcement bar area, (iii) lateral 

reinforcement spacing, (iv) FRP thickness, (v) FRP tensile strength, (vi) compressive strength of 

unconfined concrete, and (vii) FRP modulus of elasticity and/or FRP rupture strain. 

Coefficients and factors in the following equation for the ultimate strength of concrete 

confined by FRP and conventional lateral reinforcement are based on regression analysis of a set 

of 22 experimental studies. Geometrical and mechanical properties of these specimens are 

presented in Table 3-‎3-2. All specimens were wrapped by CFRP with fibers primarily in the 

hoop direction. CFRP-wrapped specimens with stiffness in the longitudinal direction and a few 

specimens in Demers and Neale (1999) that were damaged before the compression test have 

been excluded. Behavior of concrete confined by lateral steel and FRP wraps was notably 

different from concrete confined by lateral steel and FRP tube because a‎ part‎ of‎ FRP‎ tube’s‎

lateral strain originated from its Poisson’s ratio. Therefore, concrete-filled CFRP tube specimens 

with internal transverse steel reinforcement also have been excluded. 

0.8 0.2 4
' 2

' ' ' ' 2
0 0 0 0

1.1 2.5 3.5
lfcu ls ls c

c c c c

ff f f d

f f f f D

       
                 
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In Eqs. (3-234) and (3-235), 
ft , yff , stA , 

ysf , and s  are FRP thickness, ultimate strength 

of FRP, transverse steel cross section area, steel yield strength, and transverse steel spacing, 

respectively. The confining mechanism for concrete confined by FRP and lateral steel is shown 

in Figure ‎3-25. Relationships between the second and third terms of Eq. 4-224 with experimental 

ultimate strength of confined concrete are shown in Figure ‎3-26 in which normalized 

experimental ultimate strength of confined concrete from the 14 specimens has reasonable linear 

correlation with the second and third terms of Eq. 4-224. 

The second important parameter of the stress-strain curve is the ultimate strain of 

confined concrete, beyond which confined concrete is assumed to fail. Ultimate strain is a 

function of ultimate confining pressure by FRP and conventional steel. FRP jacketing and its 

mechanical properties significantly affect the ultimate strain of confined concrete. Experimental 

data monitoring showed the conventional reinforcement correlation between FRP jacketing 

confinement and confinement. The following equation is proposed for ultimate strain of confined 

concrete: 

 

0.7 0.7 0.04 0.50.8

' ' ' '
0 0 0 0 0

2.0 6.5 6.0
0.5

lf frpcu ls ls

c c c c c

f Ef f s

Df f f f






        

                             
 (2-7)  

where frpE  is FRP modulus of elasticity. Parameters lsf  and frpE  are provided in Eq. (3-236) to 

consider properties related to FRP jacketing. The second term is primarily related to FRP 

confinement, and the third term primarily relates to the confining effect of lateral steel. For two 

specimens with identical lateral steel ratio, ultimate strain provided by the specimen with smaller 

lateral steel spacing is higher than the specimen with larger lateral steel bar area and spacing. 

Therefore, the lateral spacing effect is considered in the third term of the proposed equation for 
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ultimate strain as an individual term in addition to confining pressure caused by lateral steel 

reinforcement. The relationship between the second and third terms of Eq. (3-236) with 

experimental ultimate strain is shown in Figure ‎3-27, which demonstrates a reasonable linear 

correlation between normalized experimental ultimate strain and the second and third term of Eq. 

4-226. Figure ‎3-28 shows a sample of the proposed stress-strain curve for concrete confined by 

FRP and lateral steel. 

 

 

Figure ‎3-25   Confining mechanism for concrete confined by FRP and lateral steel 

 

  
(a) (b) 

Figure ‎3-26   Relationship between (a) second and (b) third term of confinement effectiveness 

and experimental ultimate stress 
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(a) (b) 

Figure ‎3-27   Relationship between (a) second, and (b) third term of confinement effectiveness 

and experimental ultimate strain 

 

 

Figure ‎3-28   Proposed stress-strain curve for confined concrete by FRP and lateral steel 
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curves for specimens S2F2, S2F3, S4F2, A3NP2C, and U25-2, respectively, using the four 
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S2F3, the calculated t  is greater than cu ; therefore, the model by Kawashima is not presented 

in Figure ‎3-29 and Figure ‎3-30. For specimens S2F2 and S2F3 (Figure ‎3-29 and Figure ‎3-30, 

respectively) with considerable lateral steel reinforcement, models by Samaan and Youssef 

underestimate the ultimate strength and ultimate strain. The model by Lee, calibrated against and 

proposed based on their own test data, works generally well for these two specimens, as 

expected.  

For specimen S4F2 (Figure ‎3-31) with less lateral steel reinforcement ratio compared to 

the‎first‎two‎specimens,‎Samaan’s‎model‎underestimates‎the‎ultimate strength and overestimates 

ultimate‎strain.‎Youssef’s‎model‎underestimates‎the‎ultimate‎strength‎and‎strain‎of‎the‎specimen‎

S2F4 and the first two specimens (S2F2 and S2F3). The Kawashima model underestimates 

ultimate strain and overestimates strength of the concrete section for specimen S4F2. 

 

 
Figure ‎3-29   Comparison of confinement models to experimental stress-strain of S2F2 

(monotonic concentric) 
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Figure ‎3-30   Comparison of confinement models to experimental stress-strain of S2F3 

(monotonic concentric) 

 

For A3NP2C specimen (Figure ‎3-32), all models except those proposed by Samaan and 
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from experimental values. 
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S2F5 are not plotted in these figures. As demonstrated in Figure ‎3-34, the proposed model has an 

overall margin of error less than the four representative models for predicting ultimate strength 

of confined concrete.  

 

 

Figure ‎3-31   Comparison of confinement models to experimental stress-strain of S4F2 

(monotonic concentric) 
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data is higher than variability of predicted ultimate strength versus experimental data. 
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overall margin of error for ultimate strain and strength is 20% and 15%, respectively. 
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Figure ‎3-32   Comparison of confinement models to experimental stress-strain of A3NP2C 

(monotonic concentric) 

 

 
Figure ‎3-33   Comparison of confinement models to experimental stress-strain of U25-2 

(monotonic concentric) 
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Figure ‎3-34   Predicted versus experimental ultimate strength 

 

 

Figure ‎3-35   Predicted versus experimental ultimate strain 
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3-7-3-2 Validation of the Proposed Model in Response Prediction of a Member 

under Combined Axial and Lateral Load 

For further verification of the proposed model, experimental data was used from two 

specimens not used for model calibration. Geometrical and mechanical properties of these 

specimens are presented in Table ‎3-3. These two specimens were tested under cyclic lateral load. 

Experimental data included the moment and curvature at the column-footing interface extracted 

from data recorded by local displacement transducers and/or strain gauges affixed to the main 

bars, applied lateral force, and displacement and axial force recorded at the top of the columns 

(Kawashima et al. 2001). Moment-curvature analysis is preferred for accuracy assessment of 

material’s‎monotonic behavior since no assumption on curvature distribution along the column 

height is required. The proposed model and other aforesaid models were implemented into a 

fiber-based moment-curvature analysis and results were compared to experimental data. All 

other factors except the material model for confined concrete were unchanged in the analytical 

process, including the monotonic stress-strain relationship of steel, cyclic rules for steel, and 

plain and confined concrete. 

Analytical procedure is based on a nonlinear fiber-based model in which a section is 

divided into several parts and the column or beam is divided into several segments. Individual 

fiber behavior is then simulated using a proper monotonic model and cyclic rule. Computational 

efficiency of this method is greater than efficiency of the FEM to model flexural behavior of 

concrete members (Rodrigues et al. 2013). Figure ‎3-36 shows a circular section of mesh used in 

fiber-based analysis in this study. The cross section of beam or beam-column was divided into 

core concrete, cover concrete, longitudinal steel, and FRP fibers. The cross section of the fiber-

elements in this study was triangular in accordance with the meshing procedure used in the 

analytical procedure. 
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Table ‎3-3   Geometrical and mechanical properties of TP-22 and TP-23 (Kawashima et al. 2001) 

Specimen TP-22 TP-23 

Diameter (mm)
 

400 400 

Longitudinal reinforcement 12 No. 16 12 No. 16 

Longitudinal steel yield strength (MPa) 374 374 

Tie Reinforcement No. 6 @ 5.9 No.6 @ 5.9 

Tie steel yield strength (MPa) 363 363 

Fiber Type CFRP CFRP 

FRP Thickness (mm) 0.11 0.22 

FRP modulus of elasticity (GPa) 266 266 

FRP fracture Strain  0.0163 0.0163 

Unconfined compressive strength (MPa) 30 27.5 

 

In order to address analytical needs of this study, a windows-based computer application 

was developed. As the next version of a program developed to analyze performance of 

reinforced concrete columns under various load patterns, the developed computer application is 

capable of biaxial nonlinear monotonic and cyclic moment-curvature and force-deflection 

analysis under any load and displacement pattern (Esmaeily and Peterman 2007). 

 

 

Figure ‎3-36   Fiber representation of circular section 
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As shown in Figure ‎3-36, four types of fiber elements are specified for a concrete section 

confined by FRP and lateral steel: (i) concrete fibers confined by FRP and lateral steel located at 

the section core, (ii) concrete fibers confined only by FRP (cover concrete for a conventionally 

reinforced section), (iii) longitudinal reinforcement bars, and (iv) FRP fibers. 

Moment-curvature analysis was conducted for two sections: TP-22 and TP-23 

(Kawashima et al. 2001). Geometrical and material properties of these two sections are listed in 

Table ‎3-3. FRP wraps used in specimens TP-22 and TP-23 were horizontal, thereby acting only 

in the lateral/hoop direction with no stiffness in the longitudinal direction.  

 

 

Figure ‎3-37   Menegotto-Pinto monotonic and cyclic model 

 

The three fiber types (Types i, ii, and iii) followed monotonic and cyclic models and 

rules. In order to analyze section behavior, three cyclic models for steel were implemented in the 

developed window-based computer application, including linear-cyclic model, Esmaeily’s‎cyclic‎

model (Esmaeily and Peterman 2007; Exmaeily and Xiao 2005), and Menegotto-Pinto’s‎cyclic‎

model (1973). When all other parameters remained unchanged, predicted behavior using 

Menegotto-Pinto‎ and‎ Esmaeily’s‎ models was generally closer to experimental data. The 
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Menegotto-Pinto model includes four parameters for setting monotonic and cyclic behavior of 

steel. As shown in Figure ‎3-37, monotonic behavior of steel is bilinear in the Menegotto-Pinto 

model. The first part of the monotonic model is a line with a slope equal to the modulus of 

elasticity of steel, ending at the steel yield point. It is followed by the second line with a specific 

slope set by the first parameter of the Menegotto-Pinto model ( b ) set to 0.01. Cyclic parameters 

of the Menegotto-Pinto model, 0R , 1a , and 2a , were considered 2.0, 2.0, and 0.09, respectively 

(Menegotto and Pinto 1973). 

In order to model behavior of concrete confined only by FRP (concrete fibers located 

between lateral steel reinforcement and FRP, referred to as cover concrete for conventionally 

reinforced‎ sections),‎ Youssef’s‎ and‎ Samaan’s‎ stress-strain models were used in this study. 

Considering functionalities of various models, the Samaan model is used for concrete fibers 

located in the cover concrete region only when behavior of core concrete fibers are predicted by 

the same model.  

Maximum uniaxial compressive strength of a concrete fiber predicted by the Samaan 

model, which considers only FRP, for specimens TP-22 and TP-23 was larger than the ones 

predicted by Kawashima, Lee, and Youssef models in which effects of FRP and lateral steel 

were considered (Figure ‎3-38). Because real FRP confinement for a section is less than 

confinement provided by FRP warp and steel lateral reinforcement, the Samaan model cannot 

logically be used as monotonic behavior of concrete fibers located at the cover region when the 

Kawashima, Lee, or Youssef model is used for monotonic behavior of core-section fibers. 

Therefore, the Youssef model is used for monotonic behavior of concrete fibers located at the 

cover region, and the Kawashima, Lee, Youssef or proposed models are used for monotonic 

behavior of core-concrete fibers. 
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(a) (b) 

Figure ‎3-38   Analytical stress-strain of (a) TP-22 (with one layer of CFRP) and (b) TP-23 

specimen (with two layers of CFRP) (monotonic concentric) 

 

Cyclic behavior of FRP-confined fibers is considered linear with a slope equal to the 

modulus of elasticity of plain concrete. 

Monotonic models developed to predict behavior of concrete columns confined by FRP 

can be categorized into two groups. In the first group, the effect of existing internal lateral steel 

reinforcement (tie/spiral) is ignored. In the second group, however, this effect is implemented. 

The Samaan and Youssef models represent the first group, and the Kawashima, Lee, and 

proposed models represent the second group. Similar to FRP-confined only fibers, cyclic 

behavior of fibers confined by FRP and lateral steel is also considered linear with a slope equal 

to the modulus of elasticity of plain concrete. 

Analytical results obtained from the five models (Samaan, Youssef, Kawashima, Lee, 

and the proposed model) are compared to experimental results for specimens TP-22 and TP-23 in 

Figure ‎3-39 and Figure ‎3-40, respectively. Throughout all analytical processes, only the 

monotonic model for core concrete and cover concrete changed.  

0

10

20

30

40

50

0 0.005 0.01 0.015 0.02

A
x
ia

l 
S

tr
es

s 
(M

P
a)

 

Strain 

Proposed

Lee

Kawashima

Youssef

Samaan

0

10

20

30

40

50

60

0 0.005 0.01 0.015 0.02 0.025 0.03

A
x
ia

l 
S

tr
es

s 
(M

P
a)

 

Strain 

Proposed

Lee

Kawashima

Youssef

Samaan



171 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

  

Figure ‎3-39   Moment-curvature analysis for TP-22 (with one layer of CFRP) using (a) Lee, (b) 

Kawashima, (c) Youssef, (d) Samaan, and (e) proposed model for confined concrete 
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(a) (b) 

  

  
(c) (d) 

  

 
(e) 

  

Figure ‎3-40   Moment-curvature analysis for TP-23 (with two layers of CFRP) using (a) Lee, (b) 

Kawashima, (c) Youssef, (d) Samaan, and (e) proposed model for confined concrete 

 

-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.2 0 0.2 0.4

M
o
m

en
t 

(k
N

.m
) 

Curvature (1/m) 

Experiment

Lee

-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.2 0 0.2 0.4

M
o
m

en
t 

(k
N

.m
) 

Curvature (1/m) 

Experiment

Kawashima

-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.2 0 0.2 0.4

M
o
m

en
t 

(k
N

.m
) 

Curvature (1/m) 

Experiment

Youssef

-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.2 0 0.2 0.4

M
o
m

en
t 

(k
N

.m
) 

Curvature (1/m) 

Experiment

Samaan

-200

-150

-100

-50

0

50

100

150

200

-0.4 -0.2 0 0.2 0.4

M
o
m

en
t 

(k
N

.m
) 

Curvature (1/m) 

Experiment

Proposed



173 

 

Monotonic behavior, cyclic rules of steel, and cyclic rules for fibers located at cover and 

core regions remained unchanged. The‎term‎“performance”‎refers to the ability of the analytical 

procedure to predict real behavior of the specimen. The closer the prediction is to the real values, 

the higher the performance of the model. Stiffness degradation and Bouschinger effect are 

primarily affected by the steel hysteretic model when the level of axial force is low. Therefore, in 

order to compare experimental data and analytical results, the envelope of flexural moment in 

analytical and experimental hysteretic moment-curvature curves was compared. The closer the 

predicted analytical envelope is to the experimental, the higher the performance. The moment-

curvature envelope of specimens TP-22 and TP-23 are shown in Figure ‎3-41. 

As shown in Figure ‎3-39 and Figure ‎3-40, Youssef, Kawashima, and Lee models have 

almost the same predication for specimens TP-22 and TP-23. Moment capacity of the section 

dropped significantly after curvature 0.1 and 0.15 (1/m) in specimens TP-22 and TP-23, 

respectively. Although Kawashima and Lee models are proposed for concrete confined by FRP 

and lateral steel, their predictions are more realistic for a specific range of FRP and steel lateral 

reinforcement. As shown in Figure ‎3-39, the predicted moment capacity of a section is closer to 

the experimental moment for a section with two layers of FRP (higher FRP ratio) compared to a 

section with only one layer of FRP (lower FRP ratio). 

Although the Samaan model was developed for concrete confined only by FRP, 

performance of this model for specimens TP-22 and TP-23 was better than performance of the 

Kawashima and Youssef models, considering the confinement effect of FRP and lateral steel 

reinforcement. Performance of the Samaan model improved by increasing the number of FRP 

layers, as shown in Figure ‎3-40. For other stress-strain models, ultimate strain of confined 

concrete was lower than the one predicted by the Samaan model. Therefore, confined concrete 
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fibers began failing in a curvature less than 0.1 (1/m); when the Samaan model was used, 

curvature at the start of failing for concrete fibers was higher than 0.15 (1/m). As shown in 

Figure ‎3-34, the Samaan model overestimates ultimate compressive strain of specimens confined 

by FRP and lateral steel for 55% when considering the confinement effect of FRP only. The 

Samaan model was proposed using concrete-filled FRP tube specimens, and the effect of FRP 

tube Poisson’s ratio on lateral FRP strain was ignored. Therefore, the Samaan model 

overestimated ultimate strain of specimens TP-22 and TP-23 when considering the confinement 

effect provided only by FRP, thereby leading to better performance compared to other models. 

 

  
(a) (b) 

Figure ‎3-41   Moment-curvature envelope of (a) specimen TP-22 (with one layer of CFRP) and 

(b) specimen TP-23 (with two layers of CFRP) 

 

The proposed model works reliably well for specimens TP-22 and TP -23, as shown in 

Figure ‎3-39 and Figure ‎3-40. Versatility of the proposed model was enhanced by four 

independent experimental databases. Compared to other models, the proposed model calculated 

moment capacity of TP-22 and TP-23 specimens conservatively closer to the experimental data. 
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3-8 Summary 

A fiber-based method was employed to analyze RC sections, and a number of monotonic 

and cyclic material models from the literature were implemented in a developed computer 

application. Because the‎developed‎computer‎application‎utilizes‎triangular‎meshing,‎a‎column’s‎

cross section can have any arbitrary shape. Monotonic and cyclic rules of materials can be 

unconditionally complex. The developed window-based computer application can be used for: 

 Construction of 3D axial force-bending moment interaction surface for RC 

columns with conventional lateral steel reinforcement using the ACI stress-block 

(code-based),  

 Construction of axial force-bending moment interaction surface using proper 

material models for RC columns laterally reinforced by steel, FRP, or steel and 

FRP assuming constant strain at extreme compressive fiber,  

 Construction of real axial force-bending moment failure surface considering 

proper material models for RC columns laterally reinforced by steel, FRP, or steel 

and FRP with or without considering the axial force loading pattern. Ultimate 

moment capacity of an RC section is defined as the maximum moment in 

monotonic moment-curvature analysis with constant or variable axial force, 

 Moment-curvature analysis for RC columns with conventional lateral steel 

reinforcement considering ACI stress-block (code-based), 

 Biaxial moment-curvature analysis considering proper material models under any 

pattern of curvature in the two lateral directions and arbitrary axial load pattern,  
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 Biaxial force-deflection analysis using proper material models and plastic hinge 

method under any pattern of lateral displacement in the two lateral directions and 

an arbitrary axial load pattern. 

Accuracy of the developed‎ computer‎ application’s‎ calculated‎ results‎ was‎ assessed‎

through validation examples in which analytical predictions were compared to experimental 

results. Calculated results demonstrated a close agreement with the experimental data. The effect 

of axial and‎lateral‎forces’‎loading‎pattern‎in‎two‎lateral‎directions‎as‎it‎pertains‎to‎the‎response‎

of concrete columns confined by conventional lateral steel reinforcement, FRP, or lateral steel 

and FRP can be captured using proper monotonic and cyclic material models and assumption on 

curvature distribution along the column height. In addition, accuracy of existing monotonic and 

cyclic material models and curvature distribution assumption (plastic hinges methods) can be 

assessed through various types of analysis when experimental data is available.  

In order to obtain a more versatile model for the stress-strain relationship of concrete 

confined by FRP and lateral steel, a new monotonic model was developed using four 

independent experimental databases, utilizing specimens tested under concentric monotonic axial 

load. Compared to other models, predictions by the proposed model showed good agreement 

with experimental data for the specimens. 

Blind verification of the proposed model was also conducted using experimental data 

from two concrete sections not used to calibrate this model. Because experimental data of these 

two sections included moment and curvature at the column-footing interface, a fiber-based 

moment-curvature analysis was conducted using the proposed model and the other four models 

of monotonic behavior of confined concrete fibers. Use of four independent databases to develop 

the proposed model demonstrated increased versatility and accuracy in performance prediction, 
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especially ultimate failure condition, ultimate strength, and overall stress-strain response 

compared to existing models in the literature. 

This model and other representative models were implemented in a windows-based 

computer program which is explained in detail in Chapter 4. This application can analyze the 

load/displacement pattern and flexural performance of a reinforced concrete section or structural 

members with various cross-sectional geometry, type, and arrangement of reinforcement in 

longitudinal and lateral directions. 
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Chapter 4 - Parametric Study on Load History and Pattern 

4-1 Introduction 

Loading history, pattern, intensity, and linear combinations of loads, specifically lateral 

and axial loads, can significantly affect RC column behavior (Sadeghvaziri and Fouch 1991, Lee 

et al. 2009). During an earthquake, a majority of buildings are subject to biaxial lateral 

earthquake forces and variable cyclic axial force. Biaxial motion is induced in columns of 

irregular buildings, even against one-directional earthquake motions. Experimental studies and 

investigations of damaged structures after earthquakes have proven that damage caused by 

bidirectional earthquake motion differs from and, in most cases, is more extensive than damage 

caused by uniaxial earthquake motions (Marante and Flórez-López 2002, Rodrigues et al. 2013). 

This chapter discusses the effect of lateral displacement/loading pattern and variable axial 

force on performance of RC members. The effect of lateral displacement/loading pattern was 

investigated in relation to performance of RC members’‎flexural‎capacity‎and‎energy‎dissipation.‎

In addition, a new axial force-bending moment interaction curve was conducted that considered 

maximum bending capacity of the section in a moment-curvature analysis with variable axial 

loading.  

 

4-2 Effect of Lateral Displacement/Loading Pattern on Performance of RC 

Members 

4-2-1 Analytical Model 

In order to assess performance of RC column behavior under various loading scenarios, a 

computer application was developed for nonlinear analysis of RC columns under uniaxial lateral 
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forces/displacements and axial loading. Functionalities of this computer application are 

explained in detail in Chapter 4.  

A typical RC column was simulated using a nonlinear fiber-based model in which a cross 

section of an RC column was divided into a number of fibers, including confined concrete fibers 

at the section core enclosed by lateral reinforcement, plain concrete fibers at the section cover, 

and longitudinal steel fibers. Other researchers have effectively utilized the fiber-based model to 

simulate flexural behavior of RC columns (Esmaeily and Xiao 2005, Shao et al. 2005). 

Figure ‎4-1 shows fiber representation of a square cross section with triangular mesh. 

For columns with conventional geometry, deformation compatibility was considered by 

the classical Bernoulli-Euler rule of plane sections remaining plane after deformation. Each fiber 

was assigned to the proper monotonic stress-strain model in which cyclic rules for hysteretic 

performance and confining effects were considered when applicable.  

 

 
Figure ‎4-1   Fiber representation of a square cross section 

 

In the present study, the model developed by Mander et al. (1988) was employed to 

model uniaxial behavior of concrete fibers confined by tie in compression. This model can be 
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used to model normal-weight concrete in circular and rectangular sections confined by spiral, 

circular, or rectangular tie with or without cross ties. Uniaxial monotonic behavior of unconfined 

(plain) concrete fibers was modeled using the model developed by Mander et al. (1988).The 

equation related to the first part of this model for plain concrete was identical to the equation 

used for confined concrete by assuming zero lateral pressure; the second part was a line 

connecting strengths that corresponded to a strain of 
02 c  (

0c  is axial strain in unconfined 

concrete corresponding to maximum compressive stress of plain concrete) and the point of 

concrete spalling ( csp ) with zero strength. Tensile behavior of confined and unconfined concrete 

fibers was modeled by a linear stress-strain relationship with a slope equal to the modulus of 

elasticity of plain concrete. Fibers were shown to lose their tensile or compressive strength after 

the first failure in tension or compression. Tensile strength of concrete is generally less than 20% 

of the compressive strength, and it can be obtained experimentally using a tension test or a split-

cylinder test. In addition, a bending test of a plain concrete beam can be used to obtain tensile 

strength of concrete, known as the modulus of rupture. When experimental data is unavailable, 

tensile strength of concrete is commonly calculated using equation  '
00.7r cf f MPa , proposed 

by the ACI. Tensile strength of plain concrete, for which no direct experimental value exists, has 

commonly been considered to be approximately 10% of the standard compressive strength. 

Cyclic behavior of confined and unconfined concrete fibers was assumed to be linear with a 

slope equal to the modulus of elasticity of plain concrete. The effect of lateral reinforcement was 

taken into account using the proper stress-strain model for concrete confined by lateral 

reinforcement, namely stirrups. Monotonic and hysteretic stress-strain relationships of confined 

and plain concrete fibers are shown in Figure ‎4-2. 



181 

 

 

 
(a) (b) 

Figure ‎4-2   Monotonic and hysteretic stress-strain relation of (a) plain and (b) confined concrete 

fibers 

 

In order to model uniaxial monotonic behavior of longitudinal steel bars, four models 

were assessed in the presented study: idealized bilinear model, Menegotto-Pinto’s‎model‎(1973), 

Esmaeily’s‎ model(Esmaeily and Xiao 2005), and the model by Mander et al. model (1984) 

(Figure ‎4-3). These models were selected because of their widespread usage and numerical 

stability. The initial line in the idealized bilinear curve had a slope equal to the steel modulus of 

elasticity ( sE ), followed by the second line with a specific slope calculated with consideration of 

fracture strength ( sff ) and fracture strain ( sf ) of steel material.  

 

 

Figure ‎4-3   Uniaxial monotonic stress-strain models for longitudinal steel 
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The Menegotto-Pinto model (1973) had a bilinear backbone curve, and the initial line had 

the slope of steel modulus of elasticity up to yield strength ( syf ). The post-yield linear function 

had a slope equal to a portion of steel modulus of elasticity, defined as hardening ratio. The first 

line of the Menegotto-Pinto model was connected to the second line using a transition curve with 

curvature 0R . The effect of yield plateau was ignored.‎Esmaeily’s‎monotonic‎model‎ (Esmaeily 

and Xiao 2005) accounted for effects of strain hardening and softening of longitudinal steel using 

four parameters ( 1K , 2K , 3K , 4K ). These parameters defined the ratio of ultimate and fracture 

stress and strain with respect to yield strength and strain ( sy ), respectively. In the model by 

Mander et al.(1984), only the strain hardening effect was considered, and the ultimate point 

(point with maximum strength) was defined as the fracture point of the steel material. 

When no information was available regarding uniaxial behavior of the reinforcing steel 

except yield strength ( syf ), the ultimate strain (
su ) and strength ( suf ) for longitudinal steel were 

considered to be 24.9 sy ( sy  is the yield strain of steel) and 1.3 syf , respectively, as 

recommended by Esmaeily and Xiao (2005). 

Utilization of Menegoto-Pinto’s‎(1973)‎and‎linear‎hysteretic‎models‎to‎predict‎hysteretic‎

behavior of longitudinal steel bars of columns under uniaxial and biaxial lateral forces, 

respectively, provided results with the closest agreement to experimental data. The linear cyclic 

model used in this study had linear unloading and reloading with a slope equal to the steel 

modulus of elasticity. Unlike the linear cyclic model, Menegotto-Pinto’s model accounted for the 

Bauchinger effect during unloading and reloading cycles.  
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4-2-2 Validation of Analytical Model 

4-2-2-1 Moment-Curvature Analysis 

Moment-curvature analysis is the preferred analysis to assess accuracy of material 

behavior because no assumption of curvature distribution along the column height (plastic hinge 

model) is required.‎To‎the‎author’s‎knowledge,‎no‎experimental‎biaxial‎moment-curvature curve 

exists in the literature; therefore, to verify accuracy of moment-curvature response performed in 

this study, unidirectional cyclic moment-curvature analysis of a circular section (specimen TP-

21) was compared to existing experimental data (Yoneda et al. 2001).  

 

 

 

(a) (b) 

Figure ‎4-4   Geometry and reinforcement details of specimen TP-21: (a) elevation, (b) cross 

section 
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The circular column had a diameter of 400 mm and a clear cover of 25.4 mm. This 

specimen was reinforced longitudinally using 12 No. 16 evenly distributed steel bars, Grade 

SD295 (nominal yield strength in tension is 374 MPa) and reinforced laterally using No. 6 steel 

tie, Grade 295, with 150 mm spacing. Details of longitudinal and lateral reinforcement of 

specimen TP-21 are shown in Figure ‎4-4. The strength of plain concrete was 30 MPa. The 

column specimen was tested under constant axial force of 185 kN and reversed cyclic uniaxial 

lateral force. Detailed information regarding experimental setup is presented in Yoneda et al. 

(2001). 

Fiber representation of the circular cross section is shown in Figure ‎4-5. The model by 

Mander et al. (1988) was used in conjunction with the linear cyclic rule to model behavior of 

confined and unconfined concrete fibers. Based on moment-curvature responses obtained using 

the three monotonic and cyclic models for reinforcing steel bars, the Menegotto-Pinto model was 

selected to simulate behavior of longitudinal steel fibers when a section is under uniaxial cyclic 

loading. The monotonic curve backbone coefficient ( b ) in the Menegotto-Pinto model was set to 

0.01, and cyclic parameters 0R , 1a , and 2a  were considered 2.0, 2.0, and 0.18, respectively. 

Cyclic moment-curvature analysis of specimen TP-21, obtained by the developed analytical 

model, was compared to experimental data in Figure ‎4-6. In this figure, the purple dashed line 

and the blue solid line demonstrate calculated analytical results and measured experimental data, 

respectively. As shown in Figure ‎4-6, flexural capacity of the circular section was accurately 

predicted using the analytical model. 
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Figure ‎4-5   Fiber representation of TP-21 

 

 

Figure ‎4-6   Comparison of analytical uniaxial moment-curvature with experimental data for 

specimen TP-21 

 

In order to explore the effect of mesh size on accuracy of results, the maximum fiber area 

was set to a series of values from 20.5 cm  to 24 cm . Refinement of the mesh did not have a 

considerable effect on the general moment-curvature curve. Therefore, the bending moment of 

the point with maximum positive curvature was compared to the experimental value for the 

various mesh sizes. As shown in Figure ‎4-7, the difference was less than 2% for all mesh sizes. 
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Although accuracy improved by decreasing the margin from 2% to approximately 1.17%, when 

mesh size decreased from 24 cm  to 20.5 cm , the computational time increased approximately 

250%, as shown in Figure ‎4-7. 

 

  
(a) (b) 

Figure ‎4-7   (a) Computational error and (b) computational time using six maximum fiber areas 

 

  
(a) (b) 

Figure ‎4-8   Curvature distribution along column height as assumed in (a) Priestley and Park 

method (1987) and (b) Esmaeily-Xiao second method (2002) 

 

4-2-2-1 Force-Deflection Analysis 

The force-deflection response of a column can be evaluated using two approaches. In the 

first approach, flexural deformation of column is calculated using the Finite Element Method 

(FEM) in which curvature of the critical section (with maximum moment) falls into the 
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descending branch of the moment-curvature curve. The corresponding stiffness matrix does not 

remain positive-definite, and displacement-controlled adaptive methods are needed to capture the 

force-deflection response (Esmaeily and Xiao 2004). Accordingly, computational demand 

increases significantly in this approach.  

 

 

 

(a) (b) 

Figure ‎4-9   Geometry and reinforcement details of specimens PB01-N13, PB12-N15, and PB12-

N16: (a) elevation, (b) cross section 

 

In the second approach, a plastic hinge method with proper curvature distribution along 

the beam-column height is employed to calculate the force-deflection response when curvature 

falls into the descending branch of the moment-curvature curve. Considering the plastic hinge 

model, curvature distribution along the column height is divided into two regions. Curvature 
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distribution in the top region (as shown in Figure ‎4-8) is linear, leading to elastic deformation of 

the‎ RC‎ column’s‎ tip;‎ whereas‎ curvature‎ distribution‎ along‎ the‎ bottom‎ region‎ (plastic‎ hinge‎

region denoted as plastic hinge length) may not be linear, leading to plastic deformation at the 

top of the column. Plastic hinge length depends on the curvature distribution model and may or 

may not change during force-deflection analysis. Total displacement at the top of the RC column 

is a summation of elastic and plastic deformations. 

In this study, the second approach was employed to perform force-deflection analysis of 

an RC column specimen. Although a majority of existing plastic hinge models in the literature 

was developed considering uniaxial behavior of RC columns, experimental evidence has 

confirmed that plastic hinge length is not affected by biaxial loading (Rodrigues et al. 2013). The 

Priestley and Park (1987) model, Esmaeily-Xiao’s‎first‎and‎second‎models‎(Esmaeily‎and‎Xiao‎

2002),‎and‎Xiao’s‎model‎(Esmaeily and Xiao 2002) were used to calculate uniaxial and biaxial 

force-deflection response of three RC columns (PB01-N13, PB12-N15, and PB12-N16) tested by 

Rodrigues et al. (2012). The columns had a 300×300 mm square cross section. Lateral 

reinforcement was provided by No. 6 bars of the European standard (diameter of 6 mm) with 

step of 150 mm starting at 1.2 m from the bottom of the columns. For longitudinal 

reinforcement, eight No. 12 bars in European standard were evenly distributed (diameter of 12 

mm). Reinforcement details of these specimens are shown in Figure ‎4-9, and experimental setup 

is presented in Rodrigues et al. (2012). The specimens were subjected to constant axial force at 

approximately 10% of their theoretical section capacity, '
0g cA f , where '

0cf  and 
gA  are plain 

concrete compressive strength and gross cross section area, respectively. Plain concrete strength 

was approximately 21.57 MPa, and the grade of steel reinforcement in longitudinal and 

transverse directions was A400NR-SD (European standard). Specimens PB01-N13, PB12-N15, 
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and PB12-N16 were subjected to uniaxial, biaxial expanding square, and circular lateral 

displacement paths, respectively. Applied expanding square and circular paths are shown in 

Figure ‎4-10. 

 

  
(a) (b) 

Figure ‎4-10   (a) Expanding square and (b) expanding circular displacement path 

 

 

Figure ‎4-11   Comparison of analytical force-deflection with experimental data for specimens 

PB01-N13 
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experimental data for the column under uniaxial lateral displacement. For columns under biaxial 

lateral displacements, idealized bilinear monotonic model and linear cyclic model led to closest 

agreement between experimental data and calculated results. 

During comparison of plastic hinge models, the Priestly and Park model (Park and 

Priestley 1987) showed closer agreement with experimental data for columns under biaxial 

lateral displacements; whereas, Esmaeily-Xiao’s‎ second‎ plastic‎ hinge‎ method‎ calculated‎ an‎

analytical force-deflection response in closer agreement with experimental data when the column 

was under uniaxial lateral displacement. Priestly and Park (1987) proposed a constant plastic 

hinge length dependent (
pl ) on column height ( L ), yield strength of longitudinal reinforcement, 

and diameter of longitudinal bars. Curvature distribution along the plastic hinge length was 

considered to be constant. Esmaeily-Xiao’s‎second‎plastic‎hinge‎length‎included‎two‎parts.‎The‎

first part (
pconsl ) was a constant length depending on column height, maximum longitudinal steel 

stress, and longitudinal steel bar diameter. The second part (
ptransl ) increased linearly when the 

yield section (section experiencing yield moment) moved upward (Esmaeily and Xiao 2005). 

Curvature distribution along column height as assumed in Priestly and Park (1987) and 

Esmaeily-Xiao’s‎second‎models‎is‎shown‎in‎Figure ‎4-8. In this figure, 
u  is curvature next to the 

footing and 
t  is curvature at the end of elastic region, equal to yield curvature in Priestly and 

Park’s‎model‎(1987). Analytical force-deflection prediction of the PB01-N13 column subjected 

to constant axial force and uniaxial displacement is compared to experimental data in 

Figure ‎4-11. The dashed purple line and blue solid line represent calculated results and 

experimental data, respectively. As shown in this figure, predicted analytical results were in 

close agreement with measured experimental data.  
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(a) (b) 

Figure ‎4-12   Comparison of analytical force-deflection with experimental data (2012) for 

specimens PB12-N15 under expanding square path in (a) x- and (b) y-directions 

 

  
(a) (b) 

Figure ‎4-13   Comparison of analytical force-deflection with experimental data (2012) for 

specimens PB12-N16 under expanding circular path in (a) x- and (b) y-directions 
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directions was compared to experimental data, as shown in Figure ‎4-13. In general, analytical 

results showed good agreement with experimental data.  

The calculated results confirmed the reasonable accuracy and validity of the analytical 

model to predict moment-curvature and force-deflection of RC columns under axial force and 

uniaxial or biaxial lateral forces/displacements with any pattern. 

 

4-2-3 Vital Consideration of Biaxial Analysis 

Assessment of the effect of biaxial lateral displacement/force pattern and axial load 

variation on performance of RC columns in terms of flexural strength, ductility, and energy 

dissipation is required for a realistic prediction of column capacity. In order to demonstrate the 

importance of considering the biaxial load pattern on flexural performance of RC columns, 

monotonic moment-curvature analysis was conducted for section TP-21, considering various 

curvature paths. To investigate the effect of axial load level on uniaxial and biaxial performance 

of columns; lateral force strength and energy dissipation of columns PB01-N13, PB12-N15, and 

PB12-N16‎under‎“uniaxial”,‎“expanding‎square”,‎and‎“expanding‎circular”‎displacement‎paths,‎

as shown in Figure ‎4-10, were calculated. The axial load level varied from 0% to 20% of the 

theoretical section capacity ( '
0g cA f ) of the section in all cases. 

 

4-2-3-1 Moment-Curvature Analysis of RC Columns under Various Curvature 

Paths 

The developed analytical model was validated in the cyclic moment-curvature test of the 

column specimen, TP-21. As shown in Figure ‎4-6, flexural capacity (moment-curvature 

envelope) of column specimen TP-21 was predicted accurately. Monotonic moment-curvature 
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analysis of section TP-21 was performed considering seven curvature paths and five levels of 

axial force. Beginning at a point with zero curvature in x- and y-directions, seven curvature paths 

were considered in order to reach the point with curvature 0.15741/ m  along the x-axis and zero 

curvature along the y-axis. Curvature paths are shown in Figure ‎4-14. In Path 1, the column 

experienced uniaxial bending; in other paths, the column was subjected to biaxial bending. 

Bending moments induced along x- and y-directions considering curvature paths are 

shown in Figure ‎4-15 to Figure ‎4-19 for section TP-21 under constant axial force equal to 0, 5%, 

10%, 15%, and 20% of the theoretical section capacity ( '
0g cA f ), respectively. As demonstrated 

in the figures, when compressive axial force increased, initial flexural capacity of the section 

increased for all paths. Section capacity along the x-axis decreased when curvature increased 

along the y-axis, referred to as the “coupling‎effect”‎in‎the‎literature.‎For curvature along the y-

axis, even a small value caused reduction in flexural capacity of the section along the x-axis; this 

reduction was more pronounced at higher levels of axial loading.  

 

 

Figure ‎4-14   Curvature paths 
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(a) (b) 

Figure ‎4-15   Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under zero-

axial force considering various curvature paths 

 

  
(a) (b) 

Figure ‎4-16   Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial 

force equal to 5% analytical axial capacity of the section considering various curvature paths 
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respect to Path 1 (uniaxial curvature path)). In this table, negative and positive signs indicate 

decrease and increase in ultimate flexural capacity of the RC section, respectively. Flexural 

capacity of the section in the x-direction decreased, with the exception of two cases of increased 

flexural capacity related to 5% axial force. As shown in Table ‎4-1, the effect of curvature path 

for reducing flexural capacity of the section increased significantly when the applied axial force 

level increased.  

Under zero axial force, the flexural capacity reduction percentage was 1.01 for Path 3-3; 

however, this percentage increased to 15.64 when the section was subjected to axial force equal 

to 20% of analytical axial capacity of the section. The highest decrement in flexural capacity 

along the x-axis was observed under Path 2-3 and Path 3-3.  

 

  
(a) (b) 

Figure ‎4-17   Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial 

force equal to 10% of analytical axial capacity of the section considering various curvature paths 
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(a) (b) 

Figure ‎4-18   Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial 

force equal to 15% of analytical axial capacity of the section considering various curvature paths 

 

  
(a) (b) 

Figure ‎4-19   Moment-curvature analysis of TP-21 along (a) x-axis and (b) y-axis under axial 

force equal to 20% of analytical axial capacity of the section considering various curvature paths 
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differed significantly depending on the passed curvature path. In Table ‎4-2, negative and positive 

signs indicate decrease and increase of final flexural strength of the RC section at the last point 

of the paths as compared to the straight path as the control path, thereby indicating dependency 

of the column flexural strength on load pattern and history. The load path affected strength of the 

concrete section at the exact final point in addition to its effects on energy dissipation. For the 

section under zero axial force and Path 3-3, the coupling effect caused 6.68% increase of final 

flexural strength. However, final flexural strength of the section, experiencing Path 3-3 and 20% 

axial force, decreased almost 17% compared to the final flexural strength of the section with Path 

1. The presented study is an attempt to show the effect of load history and pattern on flexural 

strength of RC columns. However, additional experimental and analytical work is needed before 

any solid change in design procedure can be proposed. 

 

Table ‎4-1   Flexural capacity reduction of TP-21 under various curvature path and axial force 

level 

Loading 

Path 

Percentage of Axial Force 

0 5 10 15 20 

Path 2-1 -0.27 +1.32 -0.35 -0.73 -0.21 

Path 2-2 -5.49 -3.75 -7.45 -8.30 -7.24 

Path 2-3 -9.19 -9.32 -12.81 -13.59 -13.62 

Path 3-1 -0.31 +1.15 -0.664 -1.27 -0.63 

Path 3-2 -2.82 -2.35 -5.87 -8.55 -8.55 

Path 3-3 -1.01 -4.69 -8.73 -12.95 -15.64 

 

Table ‎4-2   Flexural strength reduction of TP-21 at point with curvature 0.15741/ m  along the x-

axis and zero curvature along the y-axis under various levels of axial force (compared to the 

straight path to this point) 

Loading 

Path 

Percentage of Axial Force 

0 5 10 15 20 

Path 2-1 +0.24 -7.11 +0.19 +0.41 -10.97 

Path 2-2 -0.68 -6.19 -2.28 -0.22 -7.41 

Path 2-3 -1.37 -8.90 -5.72 -2.53 -12.33 

Path 3-1 +0.80 -8.50 +0.18 +0.41 -8.58 

Path 3-2 -0.55 -10.46 -3.70 +0.61 -6.99 

Path 3-3 +6.68 -7.09 -7.74 -3.15 -16.99 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure ‎4-20   Force-deflection analysis of column PB01-N13 under uniaxial hysteretic lateral 

displacement and (a) zero axial force, (b) 5% axial force, (c) 10% axial force, (d) 15% axial 

force, and (e) 20% axial force 
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(a) 

  
(b) 

  
(c) 

Figure ‎4-21   Force-deflection analysis of column PB12-N15 under expanding square 

displacement path and (a) zero axial force, (b) 5% axial force, and (c) 10% axial force 
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(a) 

  
(b) 

Figure ‎4-22   Force-deflection analysis of column PB12-N15 under expanding square 

displacement path and (a) 15% axial force and (b) 20% axial force 
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(a) 

  
(b) 

  
(c) 

Figure ‎4-23   Force-deflection analysis of column PB12-N16 under expanding circular 

displacement path and (a) zero axial force, (b) 5% axial force, and (c) 10% axial force 
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(a) 

  
(b) 

Figure ‎4-24   Force-deflection analysis of column PB12-N16 under expanding circular 

displacement path and (a) 15% axial force and (b) 20% axial force 
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increment was 70.0% and 45.0% in x- and y-directions, respectively. These incremental 

percentages were 75.4% and 54.3% for columns under expanding circular displacement path. 

The incremental percentages for these three paths highlighted the role of lateral displacement 

path and axial force level in specifying required lateral capacity of the section. 

Because the level of axial force was more pronounced in performance of columns under 

biaxial lateral displacements, biaxial analysis of structures located at near-fault regions is vital.  

Individual cycle energy dissipation of the column under three displacement paths and 

various axial force levels was calculated. Energy dissipated in each cycle was equal to the area 

enclosed in the hysteresis loop, as shown in Figure ‎4-26. For columns PB01-N13, PB12-N15, 

and PB12-N16 under uniaxial, expanding square and circular displacement path, energy 

dissipation of 9, 7, and 8 individual cycles is shown in Figure ‎4-27, Figure ‎4-28, and Figure ‎4-29, 

respectively, for five levels of axial force.  

As shown in Figure ‎4-27, dissipated energy in all individual cycles increased with 

increasing axial force level when columns were under uniaxial lateral displacement. However, 

dissipated energy of individual cycles for columns under expanding square and circular 

displacement paths followed no specific trend. For column PB12-N15 under expanding square 

displacement path and axial force equal to the 20% of analytical axial capacity of the section, 

force-deflection analysis was performed up to maximum drift of 18.25 mm because axial 

capacity of the section could not reach the applied axial force (248.13 kN) when a majority of 

concrete fibers failed in compression. Therefore, the dissipated energy bar related to the 

maximum drift of 25 mm is not shown in Figure ‎4-28. Similarly, the last dissipated energy bars 

are not shown in Figure ‎4-29.  
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(a) 

  
(b) 

  
(c) 

Figure ‎4-25   Force-deflection peak envelopes analysis of column PB12 under various levels of 

axial force and (a) uniaxial lateral displacement, (b) circular expanding lateral displacement path, 

and (c) square expanding lateral displacement path 
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Figure ‎4-26   Dissipated energy in reversed cyclic loading 

 

Although the coupling effect of the two transverse directions caused a reduction in 

strength and stiffness of columns in both transverse directions, it significantly increased 

hysteretic dissipated energy, as demonstrated in Figure ‎4-27 to Figure ‎4-29. 

 

Figure ‎4-27   Individual cycle energy dissipation for PB01-N13 under uniaxial lateral 

displacement and various axial force levels 
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Figure ‎4-28   Individual cycle energy dissipation for PB12-N15 under expanding square 

displacement path and various axial force levels 

 

 

 

Figure ‎4-29   Individual cycle energy dissipation for PB12-N16 under expanding circular 

displacement path and various axial force levels 
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Figure ‎4-30   Comparison of cumulative dissipated energy for column PB01-N13 under uniaxial 

lateral displacement and various axial force levels 
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Figure ‎4-31   Comparison of cumulative dissipated energy for column PB12-N15 under 

expanding square displacement path and various axial force levels 

 

 

Figure ‎4-32   Comparison of cumulative dissipated energy for column PB12-N16 under 

expanding square displacement path and various axial force levels 
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4-3 Effect of Axial Loading Pattern on Performance of RC Members 

4-3-1 Analytical Model 

4-3-2 Validation of Analytical Model 

Performance of the developed computer application for predicting behvior of RC 

columns under cyclic lateral force/displacements and variable axial load was assessed in 

comparison with experimental data of two RC columns (TP-31 and TP-33) originally tested by 

Kawashima et al. Both columns had a squre cross section with dimensions of 400×400 mm and 

clear cover of 27 mm. They were reinforced longitudinally using 20 No. 13 evenly distributed 

bars, Grade SD295A (nominal yield strength of 374 MPa) and laterally using No. 6 tie with 50 

mm spacing. Details of longitudninal and lateral reinforcement of these two columns are shown in 

Figure ‎4-33. Cylinder compressive strength of plain concrete was 22.9 MPa for both specimens. 

Column specimen TP-31 was tested under cyclic lateral forces/displacements and constant axial 

force of 470 kN; however, column specimen TP-33 was tested under cyclic lateral 

forces/diplacements in addition to variable axial force. Maximum and minimum applied axial 

force in column specimen TP-33 were 310 kN and -10kN, respectively. Lateral displacements and 

axial forces for these two columns are shown in Figure ‎4-34 and Figure ‎4-35.  
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(a) (b) 

Figure ‎4-33   Geometry and reinforcement details of specimens TP-31 and TP-33: (a) elevation, 

(b) cross section 
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(b) 

Figure ‎4-34   (a) Displacement and (b) axial load cycles for specimen TP-31 
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Figure ‎4-35   (a) Displacement and (b) axial load cycles for specimen TP-33 
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considered 1.5, 2.0, and 0.18, respectively. The effect of lateral reinforcement was considered 

indirectly through uniaxial stress-strain relationship of the confined concrete core. The Esmaeily-

Xiao second plastic hinge model was used to evaluate the force-deflection response of both 

column specimens. As shown, this model is more effective than other models when column 

specimens are under uniaxial lateral force/displacements. 

 

 

Figure ‎4-36   Moment-curvature analysis for specimen TP-31 
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Figure ‎4-37   Moment-curvature analysis for specimen TP-33 

 

 

Figure ‎4-38   Force-deflection analysis for specimen TP-31 
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Figure ‎4-39   Force-deflection analysis for specimen TP-33 
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33, respectively, analytically calculated using the fiber element method and measured 
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columns TP-31 and TP-33 are shown in Figure ‎4-38 and Figure ‎4-39, respectively. 
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Columns are structural elements that are subjected to a combination of axial forces and 

bending moments. Engineers and researchers commonly utilize axial force-bending moment 

interaction curves as handy tools to design columns. Based on geometrical properties of a 

section, longitudinal reinforcement ratio, and arrangement and strength of concrete material, ACI 

provides axial force-bending moment interaction curves. These interaction curves were produced 

considering the equivalent stress-strain block proposed by Hognestad for simulating concrete 

behavior and elastic-perfectly plastic stress-strain relationship to simulate the behavior of 

reinforcing‎ steel.‎ However,‎ lateral‎ steel’s‎ confinement‎ effect‎ was‎ not‎ considered‎ in‎ ACI‎

interaction curves. Therefore, engineers use ACI interaction curves as reliable, conservative tools 

to design RC sections under combined action of axial force and bending moment.  

A new axial force-bending moment interaction curve was conducted to investigate the 

effect of variable axial load on RC section behavior. In this interaction curve for each level of 

axial force, a monotonic moment-curvature analysis was conducted considering variable axial 

force. The maximum moment in moment-curvature curve was selected as corresponding moment 

for the axial force.  

 

 

Figure ‎4-40   Axial loading pattern with n triangular cycles 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure ‎4-41   Axial loading pattern with (a) one cycle, (b) three cycles, (c) five cycles, (d) 10 

cycles, and (e) 15 cycles 
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Axial force variation with respect to curvature along the x-axis considering n number of 

cycles is shown in Figure ‎4-40. In this figure, T  is maximum tensile strength coefficient less 

than 1.0 , max  is maximum curvature, and   is the curvature interval in which the axial load 

completes one cycle.  

 

 

Figure ‎4-42   Axial force-bending moment interaction curves of the square section with 

0.89 %s  , considering various axial loading patterns 
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Interaction curves considering variable axial force were compared to the interaction curve 

predicted by the ACI and the interaction curve produced by considering monotonic moment-

curvature analysis under constant axial force.  

 

 

Figure ‎4-43   Axial force-bending moment interaction curves of the square section with 

1.58 %s  , considering various axial loading patterns 
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Figure ‎4-44   Axial force-bending moment interaction curves of the square section with 

2.47 %s  , considering various axial loading patterns 
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Figure ‎4-45   Axial force-bending moment interaction curves of the square section with 

3.56 %s  , considering various axial loading patterns 

 

 
Figure ‎4-46   Axial force-bending moment interaction curves of the square section with 

3.56 %s  , considering various axial loading patterns 

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450

A
x
ia

l 
F

o
rc

e 
(k

N
) 

Moment (kN.m) 

Δf=0.01378  

Δf=0.0046  

Δf=0.00276 

Δf=0.00137 

Δf=0.00092 

ACI

Considering Monotonic Moment-Curvature

-4000

-2000

0

2000

4000

6000

8000

0 50 100 150 200 250 300 350 400 450 500 550

A
x
ia

l 
F

o
rc

e 
(k

N
) 

Moment (kN.m) 

Δf=0.01378  

Δf=0.0046  

Δf=0.00276 

Δf=0.00137 

Δf=0.00092 

ACI

Considering Monotonic Moment-Curvature



221 

 

 
Figure ‎4-47   Axial force-bending moment interaction curves of the square section with 

6.33 %s  , considering various axial loading patterns 

 

 
Figure ‎4-48   Axial force-bending moment interaction curves of the square section with 

8.05 %s  , considering various axial loading patterns 
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Figure ‎4-49   ACI bending moment overestimation of the square section with 0.89 %s   

 

 
Figure ‎4-50   ACI bending moment overestimation of the square section with 1.58 %s   
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Figure ‎4-51   ACI bending moment overestimation of the square section with 2.47 %s   

 

 
Figure ‎4-52   ACI bending moment overestimation of the square section with 3.56 %s   
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Figure ‎4-53   ACI bending moment overestimation of the square section with 4.85 %s   

 

 
Figure ‎4-54   ACI bending moment overestimation of the square section with 6.33 %s   
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Figure ‎4-55   ACI bending moment overestimation of the square section with 8.05 %s   
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columns. Force-deflection calculated results using Priestley and Park (1987) and Esmaeily-Xiao 

(2002) plastic hinge models led to the closest agreement with experimental data for columns 

under biaxial and uniaxial lateral displacements, respectively. Accuracy of the analytical model 

was validated against experimental data through uniaxial moment-curvature, uniaxial force-

deflection, and biaxial force-deflection analyses. Calculated results showed good agreement with 

experimental data.  

The importance of biaxial analysis of RC columns was demonstrated through moment-

curvature and force-deflection analyses using the developed analytical model. Monotonic-

curvature analysis was performed for a circular column under five levels of axial force and seven 

curvature paths. Comparison of maximum calculated flexural strength of the circular column 

under various curvature paths and levels of axial force demonstrated that the flexural strength 

reduction ratio in x-direction increased when the axial force level increased. Force-deflection of 

an RC column was calculated considering five levels of axial force and three lateral displacement 

paths using the analytical model. The effect of axial force level was assessed on individual cycle 

and cumulative dissipated energy. Increased axial force level led to the increase of individual 

cycle and cumulative dissipated energy for the column under uniaxial lateral displacements. This 

trend was not demonstrated for the column under biaxial lateral displacements. The effect of 

axial force level on cumulative dissipated energy was more pronounced for the column under 

biaxial compared to uniaxial lateral displacements. In general, cumulative dissipated energy of a 

column under biaxial lateral displacements increases when the axial force level increases. 

However, cumulative dissipated energy of a column under 10% analytical axial force capacity 

did not follow this trend.  
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In order to investigate the effect of the variable axial force, a specific type of axial force-

moment interaction curve was developed considering the moment-curvature analysis. The effect 

of number of cycles in variable axial load in specific curvature interval, and steel ratio was 

assessed on the realistic flexural capacity of the RC columns.  
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Chapter 5 - Conclusions and Recommendations 

5-1 Summary 

The following objectives, related to the analysis, material modeling, and computer 

application development were achieved in this dissertation: 

1. Monotonic material models, cyclic rule, and plastic hinge models were utilized in a fiber-

based analytical procedure, validated against experimental data to simulate the behavior 

of RC columns under biaxial lateral forces/displacements and axial load.  

2. The importance of considering biaxial analysis of the RC columns was demonstrated 

through moment-curvature and force-deflection analyses using the developed analytical 

model.  

3. The effect of axial force level was assessed on individual cycle and cumulative dissipated 

energy.  

4. A constitutive stress-strain model was proposed for concrete confined by FRP and 

conventional lateral steel reinforcement when they act simultaneously. Accuracy of the 

proposed model in predicting the monotonic stress-strain relationship of concrete 

confined by both FRP and conventional reinforcement was assessed compared to various 

experimental data from specimens tested under concentric monotonic load and several 

representative models.  

5. Additionally, the moment-curvature response of two sections confined laterally by FRP 

and conventional lateral steel, using the proposed model in a fiber-based analysis, was 

compared and benchmarked against several independent experimental results. 
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6. A computer application was developed to analyze the nonlinear, cyclic flexural 

performance of RC structural members under various types of loading paths, including 

non-sequential variations in axial load and biaxial load or displacement.  

7. Several monotonic material models and hysteresis rules were implemented in the 

computer application. In order to perform force-deflection analysis using proper 

assumptions on curvature distribution along the member, three plastic hinge models were 

also implemented into the program. 

8.  Program performance was verified against analytical results in the literature, and 

accuracy of the analytical process and implemented models were evaluated in 

comparison to experimental results.  

9. The developed computer application can be used to predict the response of a member 

with arbitrary cross section and type of lateral and longitudinal reinforcement under 

various combinations of loading patterns in axial and biaxial directions. The application 

can also be used to examine analytical models and methods using proper experimental 

data. 

 

5-2 Conclusion 

As discussed in the previous section, several objectives were accomplished in this 

dissertation. It may be concluded: 

1. The material models and analytical methods have an important role in assessment of RC-

sections and columns performance.  
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2. The load history experienced by an RC column has a significant effect on the flexural 

capacity. The flexural capacity of the column, assessed in Chapter 4, was decreased 

almost 17% when it was under 20% axial force. 

3. The behavior of RC columns under biaxial loading cannot be predicted having the results 

of their uniaxial behavior.  

4. For an RC column under uniaxial lateral loading, the individual cycle energy dissipations 

have an ascending trend when the level of applied axial force increases. However, for the 

same column under biaxial lateral displacements the same trend was not seen. 

5. The realistic flexural capacity of RC-section is less than what is predicted by ACI when 

the column in under fluctuating axial force with the maximum less than 20% of its axial 

capacity. The effect of varying axial loading decreases when the section has higher steel 

ratio. 

6. For RC-sections under high level of axial force (more than 20% of their axial capacities), 

fluctuating axial force was not important, since the realistic flexural capacity of the 

section under high level of axial force is more than the flexural capacity predicted by 

ACI. 

 

5-3 Recommendations 

This work can be extended to address the following areas: 

1. Perform dynamic analysis of columns of structures located in near fault regions to 

capture the effect of fluctuating axial force more accurately 

2. Develop a new stress-strain model for concrete confined by both FRP and lateral 

conventional steel in rectangular sections 
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3. Develop a plastic hinge model for columns confined by FRP and both FRP and lateral 

conventional steel 

4. Expand the software application to consider the curvature distribution along column 

height by considering multiple section along column height 
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Appendix A - Developed Computer Application Help File  

Introduction 

As mentioned in Chapter 3, the computer program described in this study is the next 

generation of the KSU-RC program with additional functionality and options. This appendix 

provides an instruction to use the computer program. 

  

Description of Buttons 

File Dropdown Button 

Open 

User can open a saved project using this option. The project which was saved in binary 

format‎is‎retrieved‎clicking‎on‎“Open”.‎ 

 

Save 

Using‎“Save”,‎the‎project‎is‎saved‎in‎the‎existing‎project‎address‎that‎user‎interred‎when‎

the‎project‎was‎saved‎for‎the‎first‎ time.‎ If‎user‎has‎not‎“Save‎As”‎the‎project,‎“Save”‎does‎the‎

same‎as‎“Save‎As”. 

 

Save As 

Using‎ “Save‎ As”,‎ the‎ defined project can be saved in binary format. When the RC-

Section, monotonic and cyclic material models and Material properties are defined this button is 

activated. In binary file, first RC-Section properties, then material properties, then monotonic 
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models and at the end cyclic models are serialized. The address of project will be saved in the 

program. In case that user uses‎“Save”‎button,‎the whole project is saved in the existing address. 

 

RC-Section Button 

RC-Section Type 

The geometrical properties of a section can be specified in RC-Section window. This 

window can be called by clicking on RC-Section button . Seven options are currently 

available for cross-sectional geometry of an RC section: 

 Rectangular Section 

 Hollow Rectangular Section 

 Circular Section 

 Hollow Circular Section 

 Caltrans Section (Oval Section) 

 T-Shape Section 

 I-Shape Section 

 

Transverse Reinforcement Type 

Based‎on‎the‎cross‎section’s‎shape,‎the‎type‎of‎lateral‎reinforcement‎can‎be‎selected‎using‎

the Transverse reinforcement drop down button. For example for circular and hollow circular 

sections, the type of lateral reinforcement can be one of the following types: 

 Tie 

 Spiral 
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 FRP 

 FRP and Tie 

 FRP and Spiral 

Selecting the transverse reinforcement type, the steel reinforcement or FRP reinforcement 

or both of them are activated. In FRP reinforcement group box user can specify the thickness of 

FRP and specify if‎the‎FRP‎works‎in‎“Only‎Transverse‎Direction”‎which‎means‎it‎has‎stiffness‎in‎

hoop‎ direction‎ and‎ FRP‎ is‎ used‎ only‎ for‎ confining‎ the‎ concrete‎ or‎ “In‎ Transverse‎ and‎

Longitudinal‎Direction”‎which‎means‎ FRP‎ has‎ the‎ confinement‎ effect‎ for‎ concrete‎ as‎well‎ as‎

stiffness in longitudinal direction same as steel longitudinal bars. 

 

Longitudinal Reinforcement 

The‎steel‎bars‎numbers‎and‎size‎are‎defined‎in‎this‎group‎box.‎If‎the‎“Evenly‎Distributed”‎

option is selected in Bar Arrangement dropdown button, the program will arrange the location of 

bars automatically. Otherwise, the user should specify the size and location of bars individually 

by clicking on the cross section on the main window. 

 

Delete RC-Section 

Using the Delete Section button  the defined RC-Section and generated mesh are 

deleted. 
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Material Properties 

Mechanical properties of materials, including concrete, steel in longitudinal and lateral 

directions, FRP wraps, and FRP longitudinal bars, are provided in the computer application. 

Concrete strength, as measured in the lab or desired for analysis, must be provided. For steel 

material, yield strength and modulus of elasticity are provided as basic mechanical properties, 

assuming symmetric behavior for steel in tension and compression. Because behavior of FRP 

wraps in tension and compressive directions may not be similar in general, tensile and 

compressive strength and modulus of elasticity of FRP wraps must be individually provided. The 

material properties window can be called by clicking the Material Properties button . 

 

Monotonic Models  

A number of widely-used existing material models were implemented in the computer 

application in order to model uniaxial monotonic behavior of fibers with various materials. These 

models can be accessed using the Monotonic Models button . Here are the monotonic 

material models implemented in the software for each material: 

 Plain concrete: Mander et al. model (1988) for normal strength concrete, and Cussan and 

Paultre model (1995) for high strength concrete 

 Concrete confined by lateral steel (tie/spiral): Mander et al. model (1988) for normal 

strength concrete, and Cussan and Paultre model (1995) for high strength concrete, 

 Concrete confined by FRP: Youssef et al. model (2007) and Samaan et al. model (1998), 

 Concrete confined by FRP and lateral steel: Shirmohammadi et al. model (2015), Lee et 

al. model (2009) and Kawashima et al. model (2000), 



247 

 

 Reinforcing steel: elastic-perfectly plastic model, Esmaeily and Xiao model (2005), 

Menegotto-Pinto model (1973), bilinear model, three-linear model, quadric-linear model, 

and Mander et al. model (1984), 

 Reinforcing FRP: bilinear model 

 

Cyclic Models  

Various cyclic models were implemented in the computer application to model cyclic 

behavior of materials in a composite section. These models can be accessed by clicking on 

Cyclic Models button . Here are the cyclic rules implemented in the software for each 

material: 

 Plain and confined concrete: linear model and Esmaeily and Xiao model (2005) 

 Reinforcing steel: linear model, Menegotto-Pinto model (1973), and Esmaeily-Xiao 

model (1983) 

 Reinforcing FRP: linear model 

 

Test Cyclic Models 

To‎ test‎ if‎ the‎ cyclic‎ and‎monotonic‎material‎models‎work‎well,‎ the‎user‎ can‎use‎ “Test‎

Cyclic‎Models”‎dropdown‎button.‎Moving‎the‎mouse‎to‎the‎right‎and‎left,‎the strain is calculated 

based on the location of the mouse. Using the selected cyclic and material models and having 

strain calculated from the location of mouse, the stress is calculated. In each strain the stress is 

shown in the textbox below left of the‎window.‎To‎restart‎the‎form,‎user‎may‎use‎the‎“Restart”‎
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button. In that case, the form will be cleaned and user can test the models again by moving the 

mouse‎to‎the‎left‎and‎right.‎To‎save‎the‎drawn‎cyclic‎path,‎user‎may‎use‎the‎“Save”‎button. 

 

Interaction analysis 

Four types of axial force-bending moment interaction curves can be conducted by the 

software: (1) ACI interaction curve, (2) Actual interaction curve considering strain at extreme 

fiber, (3) actual interaction curve considering moment-curvature analysis and constant axial 

force, and (4) actual interaction curve considering moment-curvature analysis and axial loading 

pattern. All four types of analysis are explained in detail in Chapter 4. In the last type of 

interaction curve, the axial loading pattern should be interred as a text file. To avoid any error 

while reading data from the text file, the following format should be followed. The loading patch 

should include three columns of data. First column is axial force coefficient which is between 0 

and 1. Second column is curvature along x-axis and third column in curvature along y-axis. The 

axial force coefficient ( ac ) for any combination of x- and y- curvature cannot exceed 1.0, 

meaning that the maximum compressive axial force ( ac P ) in that pattern is equal to the 

specified level of axial force ( P ). The axial force coefficient may consider more than -0.1, 

meaning that the maximum tensile axial force capacity of the section should not be considered 

more than 0.1 P . We recommend creating those columns in Excel and copy-past data in a text 

file. Please do note copy any empty cell from Excel. Here is an example of text file arrangement: 

1ac  ,1x  
,1y  

2ac  ,2x  
,2y  

⋮ 

nac  ,x n  
,y n  
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Moment-curvature analysis 

Two types of moment-curvature analyses can be conducted: (1) moment-curvature analysis 

based on ACI, and (2) moment-curvature analysis considering material models. The second type 

can be conducted having the curvature path.  

Force-deflection analysis  

As explained in Chapter 3, in fiber-based method, the plastic hinge models are used to predict the 

curvature distribution along column height. Three plastic hinge models have been implemented 

in the software: (1) Esmaeily and Xiao first model, (2) Esmaeily and Xiao second model, and (3) 

Park and Priestley model.  

 

Mesh 

Before any analysis, the section should be divided to a number of fibers. The new version 

of our software uses triangular cross section fibers. To do the mesh the first button of meshing 

 can be used. To refine the mesh and create a finer mesh, use may use the second button in 

the mesh section buttons (Refine Mesh) . To delete the mesh for any reason, the third button 

(Delete Mesh)  can be used. The mesh setting may control in Option window.  

 

Option 

The general setting of the software can be defined in Options window. The Options 

window has four tabs: Units, Data Points, Analysis Setting, and Mesh Setting. In Units tab, the 
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unit system of the project can be defined. If a section is defined, the unit system of a project 

cannot be changed. To change the unit system, the defined RC-section should be deleted and 

then the Units tab will be activated. The Options window with the Units tab as the active tab is 

shown in Figure ‎A-1. 

 

 

Figure ‎A-1   Units tab in Options widow 

 

The‎number‎of‎data‎points‎in‎each‎analysis‎can‎be‎defined‎using‎the‎“number‎of‎points”‎

in the second tab of Options window. The number of points is the number of pair points in each 

analysis‎graph.‎Increasing‎the‎“number‎of‎points”‎increases‎the‎analysis‎time‎since‎larger‎number‎

of pair points should be calculated for each type of analysis. 

The‎ analysis‎ setting‎ may‎ define‎ in‎ “Analysis‎ Setting”‎ tab,‎ the‎ third‎ tab of Options 

window. Three types of end conditions are defined in the software. The first end condition is 

when the moment falls below the specific percentage of the maximum moment. The second one 
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is when the strain at one of the concrete fibers reaches a specific value or the ultimate 

compressive strain. The third condition is when the steel strain reaches a specific value of the 

ultimate tensile/compressive strain.  

At the fourth and last tab of Options window, the mesh setting can be defined. There are 

two parameters to control the seed setting and three parameters to control triangular mesh 

setting. In Sees Setting group box, the first parameter is the number of seeds around each 

longitudinal reinforcement bar.  

 

 

Figure ‎A-2   Data Points tab in Options window 

 

To avoid any inaccuracy, the number of seeds around the longitudinal bars should be 

more than 4. The number of seeds in each length may vary based on the geometrical properties 

of the section.  
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Figure ‎A-3   Analysis setting tab in Options window 

 

 

Figure ‎A-4   Mesh setting tab in Options window 

 

To set the triangular meshing, there are three parameters. The first parameter specifies the 

minimum angle of triangles. The second parameter is the maximum area of each triangle. And 
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the‎last‎one‎is‎the‎refinement‎ratio.‎When‎user‎clicks‎on‎“Refine‎Mesh”‎buttons,‎the‎Maximum‎

are of triangles will decreases with the refinement ratio. 

 

Examples 

Axial force-bending moment interaction analysis 

To conduct an axial force-bending moment interaction analysis following steps should be 

followed: 

1. Defining RC-section geometrical and reinforcement properties: the section-type, geometrical 

properties, longitudinal reinforcement and lateral reinforcement should be defined as the first 

step. A sample window of RC-section properties is shown in Figure ‎A-5 

 

 

Figure ‎A-5   A sample window of RC-Section 
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2. Defining mechanical properties of material: the basic mechanical properties of concrete, steel 

and FRP (if section is wrapped with FRP) should be defined as the second step. A sample 

window of basic material properties is shown in Figure ‎A-6. 

 

 

Figure ‎A-6   A sample window of material properties 

 

 

Figure ‎A-7   A sample window of monotonic material models 
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Figure ‎A-8   A sample window of cyclic material models 

 

 

Figure ‎A-9   A sample window of project choosing axial force-bending moment interaction 
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3. Defining monotonic behavior of materials: as the third step, the monotonic behavior of plain 

concrete, confined concrete, steel and FRP should. Figure ‎A-7 shows a sample window of 

monotonic material models. 

4. Defining cyclic behavior of materials: the cyclic behavior of materials is defined in step 4. A 

sample window of cyclic material models is shown in Figure ‎A-8. 

5. Meshing the RC-section: by clicking on the mesh button the RC-section is meshed. User may 

refine‎the‎mesh‎using‎the‎“Refine‎Mesh”‎button. 

6. Conducting axial force-bending moment interaction analysis: defining RC-section, material 

mechanical properties, monotonic and cyclic behavior of materials and meshing the section, 

the program is ready to do any main three types of analyses. Here, the second type of axial 

force-bending‎moment‎ interaction‎analysis‎was‎chosen‎to‎conduct.‎Clicking‎on‎“Interaction‎

Analysis’;‎ dropdown‎ button‎ and‎ choosing‎ “Actual‎ Interaction‎ Curve‎ Based‎ on‎ Strain‎ at‎

Extreme‎ Compressive‎ Fiber”,‎ axial‎ force-bending moment interaction analysis window 

shown in, pops up. The strain at extreme fiber and analysis axis are needed to be defined by 

user.‎Clicking‎on‎“OK”‎button,‎the‎analysis‎is‎done‎and‎the‎window‎of‎results‎will‎come‎up. 

 

 

Figure ‎A-10   A sample window of axial force-bending moment interaction analysis 
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Figure ‎A-11   A sample window of axial force-bending moment interaction analysis results 

 

To save the data in a text file,‎ user‎may‎ click‎on‎“Save‎Result”‎button‎ on‎axial‎ force-

bending moment interaction analysis result shown in Figure ‎A-11.  

 

Moment-curvature analysis 

Since the RC-section, material mechanical properties, monotonic and cyclic behavior of 

materials have been defined and meshing the section has been done, the program is ready to do 

any main three types of analyses. To conduct a moment-curvature analysis, the user may click on 

“Moment-Curvature”‎dropdown‎button.‎ In this example, the second type of moment-curvature 

analysis is conducted which considered the monotonic and cyclic behavior of the materials as 

shown in Figure ‎A-12. By‎ clicking‎ on‎ “Actual‎ Moment-Curvature‎ Analysis”‎ a‎ window‎ will‎

come up which is shown in Figure ‎A-13. The axial force value and axis of analysis are entered 

by the user. In this example, axial force level is 100 kips and the analysis axis is Y-axis.  
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Figure ‎A-12   A sample window of project choosing the second type of moment-curvature 

analysis 

 

 

Figure ‎A-13   A sample window of moment-curvature analysis 
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Clicking‎ on‎ “OK”‎ button,‎ the‎ moment-curvature analysis will be performed and a 

window will come up containing the moment-curvature graph (Figure ‎A-14). The results of 

moment-curvature analysis can‎be‎saved‎clicking‎on‎“Save”‎button‎on‎the‎results‎window.‎ 

 

 

Figure ‎A-14   A sample window of moment-curvature analysis results 

 

Force-deflection analysis 

To conduct a force-deflection analysis, one of the three implemented plastic hinge 

models is chosen. In this example, Priestely and Park plastic hinge has been used. Clicking on 

“Priestley‎ and‎ Park’s‎Method”,‎ a‎window‎ comes‎ up‎ (Figure ‎A-15) and the user can inter the 

column height, the axial force (constant or variable) and define the analysis axis. In this example, 

the cyclic force-deflection of the RC-section along X-axis under constant axial force was 

conducted.  
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Figure ‎A-15   A sample window of force-deflection analysis  

 

 

Figure ‎A-16   A sample window of force-deflection analysis 
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The axial force and displacement along x- and y-axis were given as an input to the 

program. The column height is 45 in this example. The force-deflection curve is shown in 

Figure ‎A-16.  

 


