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ABSTRACT 

 

Chemical imaging enables displaying the distribution of different substances within a field of 

view based on their fundamental vibrational frequencies. Mid-IR bands are generally strong and 

feature direct correlation to chemical structure, while near IR spectra consist of overtones and 

combinations of mid-IR bands. Recently, mid-IR microspectroscopy has enabled determination 

of the relative substitution of hydroxyl groups with the modifying agent for  individual waxy 

maize starch granules by using synchrotron source. The brightness and non-divergence of the 

synchrotron source and confocal masking enabled obtaining individual spectra with 5 µm
2
 

masking and 1 µm raster scanned steps. Each 1 µm step results from the coaddition of hundreds 

of scans and lengthy data collection is required to produce data. The recent breakthrough at the 

Synchrotron Research Center uses a multi-beam synchrotron source combined with a focal plane 

array microspectrometer. This major improvement in localized detection of the modifying agent 

within single waxy maize starch granules is the increased efficiency of focal plane array 

detection and an effective spatial resolution of 0.54 µm. Mixtures of granular solids represent an 

analytical challenge due to the range of heterogeneity and homogeneity within samples. Near IR 

imaging provides deeper sample penetration allowing for solid mixture analysis. However, the 

broad, overlapping bands present in the near IR necessitates statistical data treatment. This 

requires imaging specimens representative of the individual components to create spectral 

libraries for classification of each component. Partial least squares analysis then allows 

characterization and subsequent pixel analysis provides quantitative results. The primary break 

system for wheat milling was studied as it is key in releasing endosperm to be further ground 

into fine flour in subsequent processes. The mass balance of endosperm throughout individual 

unit processes was determined by obtaining flow rates of incoming and outgoing millstreams and 



 

 

calculating endosperm content through pixel identification. The feed milling industry requires 

the use of a tracer to determine adequate mixing and mix uniformity to limit the time and energy 

in processing. Near IR imaging allows individual components of a formula feed to serve as a 

self-tracer, eliminating the need of an inorganic tracer. 
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Part 1: Introduction 

1.0 Mid-IR Spectroscopic Imaging  

 Mid-IR microspectroscopic imaging has developed into a widely used technique in the 

study of the molecular chemistry of many different materials. The combination of infrared 

spectroscopy with light microscopy has enabled locating specific areas of samples on a 

microscopic level and obtaining molecular information (1, 2). The first use of a microscope as an 

attachment to a mid-IR spectrometer was introduced in 1950’s (3). The practicality of 

microspectroscopic measurements was later improved by the combination of Fourier transform 

infrared (FT-IR) spectrometry and highly sensitive detectors (4). Messerschmidt and Sting 

patented the first research FT-IR microscope in 1989, featuring a globar source and a liquid 

nitrogen cooled mercury-cadmium-telluride (MCT) detector. The Spectra Tech IR-PLAN
TM

 used 

a Schwarzschild front surface objective and a condenser with confocal remote image plane 

masking. The confocal masking resulted in increased spatial resolution and spectra more 

representative of the target region sampled.  

 The mapping capability of infrared microscopy was subsequently enhanced in 1990 with 

the introduction of the Spectra Tech IRµs
TM

 with a microprocessor controlled stage and a 

decrease in the optical path, which improved signal throughput. Another significant advancement 

to infrared microspectroscopy was the utilization of a synchrotron source. The first synchrotron 

infrared microspectroscopy experiment was performed on beamline U2b at the National 

Synchrotron Light Source (NSLS) in 1993 (5). A synchrotron source provides brightness 100-

1000 times greater than the traditional globar source, resulting in increased spatial resolution and 

a higher signal to noise ratio (SNR). This advance resulted in the ability to image single cells and 

parts of cells (6-8). 
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 In 1994, the focal plane array (FPA) detector was introduced as an alternative to the 

single element detector (9, 10). An array of individual detector elements allowed simultaneous 

collection of spectral data for multiple pixels, measuring the frequency with an interferometer. 

Subsequent advances were made to increase the spatial resolution of SNR for FPA infrared 

microspectroscopy, but the quality of FPA spectral data with a globar source remained inferior to 

confocal operation. Carr et al. (11) proposed an enhancement to FPA microspectroscopy with the 

potential of a synchrotron source (Figure 1.1). Multiple uses of synchrotron sources with FPA 

detection (12, 13) were designed by pioneering groups using single synchrotron beams. In 2010,  

 

Figure 1.1 Diagram of the optical configurations with high numerical aperture (NA) objective 

necessary for use of a microspectrometer with mercury-cadmium-telluride (MCT) focal plane 

array (FPA) detection utilizing a bright synchrotron source. [Reprinted from 11] 

 

a University of Wisconsin-Milwaukee research group at the Synchrotron Research Center (SRC) 

designed a multi-beam synchrotron FPA microspectrometer system called the Infrared 

Environmental Imaging (IRENI) beamline, which provided increased spectral resolution (14). 

 

1.1 Near IR Spectroscopic Imaging 
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  While the first combination of a microscope and mid-IR spectrometer was achieved in 

the 1950’s, pioneering work in near IR transmission spectroscopy was being performed by Kaye 

of Beckman Instruments (15, 16). Later, diffuse-reflectance measurements in the near IR were 

used for routine quantitative analysis in the agriculture commodity industry using multivariate 

statistical analysis at multiple wavelengths. Diffuse reflectance occurs when lights enters a 

sample and is scattered within the sample matrix. The scattered light may then pass through 

multiple scattering-absorption events before reflecting back toward the optics and detector 

elements (Figure 1.2). Mid-IR diffuse reflectance measurements typically require application of  

  

Figure 1.2 Visual representation of diffuse reflectance pathways through a granular sample. 

[Reprinted from 17] 

 

the Kubelka-Monk function for spectral correction, but this is not required for quantitative near 

IR analysis due to weaker absorption bands. 
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 Near IR spectroscopic imaging was first performed in 1990 using a CCD video camera 

and narrow band interference filters (18). Due to a need in the pharmaceutical industry, a 

tunable-filter near IR imaging spectrometer with FPA detection was developed by Spectral 

Dimensions, Inc. The use of a liquid crystal tunable filter (LCTF) allowed electronic wavelength 

switching. Near IR imaging with an FPA allowed detector enabled nondestructive, rapid 

measurements of a sizable field of view (FOV). This technology has enabled the detection of 

germination of wheat kernels (19), bacterial identification (20), mass balance of wheat milling 

intermediates (21), and various pharmaceutical applications (22, 23).  
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Part 2: Multi-Beam Synchrotron Microspectroscopic Analysis of Individual 

Chemically Modified Starch Granules 

 

2.0 Introduction 

 The major product of the uptake of carbon dioxide via photosynthesis is carbohydrate 

polymers. The majority of the carbohydrate is used for starch-hydrolysis (refinery) products, 

while the remaining native starch is used for various polymeric products, about 20% of which are 

used in the food industry as food ingredients (24). In higher plants, starch is universally 

biosynthesized as granules (representing the basic unit of starch). For cereal grains, the starch 

granules vary in size from 2 to 30 um in diameter, with waxy maize starch granules typically 

ranging from 5 to 20 um (25).  

 Chemically modification of starch is used in industry to improve upon the properties of 

native starch. One such modification greatly improves the emulsifying and encapsulating 

properties of starch for use in various products. This modification is achieved by esterifying 

starch granules by reaction with a measured quantity up to 3% based on starch of oct-2-enyl 

succinic anhydride (OSA). The hydrophobic nature of the octenylsuccinyl (OS) hydrocarbon 

chain together with the hydrophilic OH groups on starch generates an amphiphilic polymer, 

which is especially useful for emulsification and encapsulation. A common use of an OS starch 

is to emulsify the hydrophobic oil of orange used to flavor orange sodas. Because chemically 

modified starches are manufactured in very large batches, maintaining uniformity within batches 

is of concern. Ideally, each individual starch granule would be esterified, and the percentage of 

the ester substitution on each granule would be uniform within and between each batch.  
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 The spectral features of carbohydrates are well known from dispersive mid-IR 

spectroscopy (27, 28) in a transmission mode applied to samples in a Nujol mull or a KBr pellet. 

FT-IR spectroscopy on a macro scale, applied to starch, has been reported by multiple research 

groups (29-32). Analysis of individual starch granules is, therefore, a reasonable experiment to 

perform. The spatial resolution of FT-IR microspectroscopy enables the microstructure to be 

revealed at the level of individual starch granules. 

 The emulsifying function of OSA modified starch occurs on a small scale at multiple 

hydrophobic sites on the surface of each granule; therefore, its effectiveness is dependent on 

intragranular as well as intergranular uniformity. Intergranular evidence of the chemical 

modification was reported by Bai et al. (33) by taking a census of ester carbonyl for more than 

350 individual starch granules, via FT-IR microspectroscopy obtained from a 15 µm ×15 µm 

area within flattened granules in a reflection absorption mode. The carbonyl band at 1723 cm
-1

 

band was compared with the complex carbohydrate band centered at 1025 cm
-1

 to reveal the 

presence of the ester carbonyl. Intragranular distribution of the ester population required FT-IR 

microspectroscopy with a synchrotron source (34). The carbonyl 1723 cm
-1

 band area was 

compared with the 1143 cm
-1

 band representative of the complex starch band centered at 1025 

cm
-1

 to reveal the localized presence of ester. 

 The first intragranular study of modification within waxy maize starch was performed at 

NSLS in 2010 using a confocal Continμum
TM

 IMS (Spectra Tech/ Nicolet, Shelton, CT), with a 

single liquid nitrogen cooled MCT detector and 1 μm steps in a raster scan mapping procedure 

with a 5 μm x 5 μm image plane masking (34). The current state-of-the-art experiment was 

performed using the multi-beam synchrotron source and FPA spectrometer at the SRC. The OSA 

modified starch studied at SRC were prepared at the same time as the 2010 article. The two 
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synchrotron experiments are compared in order to show the experimental leap with the multi-

beam synchrotron source with FPA detection. 

 

2.1 Experimental 

2.1.1 Instrumentation 

 The experiments on single modified waxy maize starch granules were performed on the 

unique IRENI beamline at the Synchrotron Research Center, University of Wisconsin-

Milwaukee, Stoughton, WI. The theoretical potential image fidelity enhancement utilized at the 

SRC was first proposed by Carr et al. (11), recommending the use of a high magnification 

Schwarzschild objective from the synchrotron illuminated field of view on the microscope stage 

to a cooled commercially available FPA. The microscope and detector optical scheme was 

subsequently implemented at the SRC using a multi-beam synchrotron source combined with a 

FPA microspectrometer in the optical configuration, shown in Figure 2.1 (35). The IRENI  
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Figure 2.1 Five step diagram of a single synchrotron beam reflection pathway in a high vacuum, 

from the bending magnet to a plane mirror (a), then to a parabolic mirror (b) to move the beam 

out of the axis of the storage ring. The beam emerging from the ZnSe window (c) enters a 

nitrogen purged chamber where a third (d) and fourth mirror (e) direct the beam to the 

microscopic target. Eleven other beams are treated similarly to produce a recombined 4 × 3 

matrix (f) that constitutes the combined multi-beam synchrotron source. [Reprinted from 35] 

 

  
beamline extracts a 320 mrad horizontal × 25 mrad vertical swath of radiation from a single, 

dedicated bending magnet. The radiation is first separated by a set of 12 toroidal mirrors in a 

vacuum chamber. A set of 12 flat mirrors then guide the beams out of the vacuum chamber 

through zinc selenide windows. The beams are then collimated by 12 parabolic mirrors before 

they are rearranged into a 3 x 4 matrix by 12 stacked flat mirrors. An optical feedback system 

follows to stabilize the beam swath, increasing the SNR. The beam swath is then sent to a Bruker 

Vertex 70 spectrometer (Billerica, MA) coupled to a Bruker Hyperion 3000 infrared microscope. 

The beam swath then passes through a 20x Schwarzschild condenser (NA=0.6) before 
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illuminating the sample on the stage. The condenser focuses the beam at a deliberate slight 

defocus to allow overlap of the individual beams to obtain fairly homogeneous illumination. The 

sample is then imaged through a 74x objective (NA=0.65) onto a 128 pixel x 128 pixel FPA. 

Utilizing the inner 64 pixels x 64 pixels of the FPA resulted in an effective 0.54 um x 0.54 um 

pixel dimension. 

 In each case, data were obtained from the center of the flattened starch granule. A 

transmission mode was used for the IRENI imaging with a flattened granule mounted on a 

barium fluoride 13 mm diameter, 1 mm thick window. To compare individual starch granule 

data, spectra from an approximately 10 μm × 10 μm area in the center of each granule were 

treated to produce an image that described the carbonyl chemical topography of the flattened 

starch granule. All IRENI images were acquired with Bruker OPUS© software, with the spectral 

resolution of 8 cm
-1

 and 256 coadded scans being sufficient for an acceptable SNR.  

 

2.1.2 Sample preparation 

 The modified starch granules studied were the product of reacting commercially available 

waxy maize starch granules (Corn Products Inc., Bridgewater, NJ) in a slurry with 9.0% (starch 

basis) octenyl succinic anhydride under carefully controlled conditions (pH 8.0 and 25 C) by 

Bai et al., as described elsewhere (33). The esterified specimen with an OS degree of substitution 

of 0.056 was rinsed with successive portions of distilled water until no acidity from the reagent 

was detected and then dried. Under a low powered microscope, the starch granules were 

flattened with a small 7 mm diameter stainless steel roller on the surface of a 1 mm thick BaF2 

window. This was necessary to obtain a thickness that would allow transmission of infrared light. 
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2.1.3 Data Processing and Analysis 

 The IRENI imaging data were subsequently processed with OPUS© software (Bruker, 

Billerica, MA). A baseline corrected band area ratio map was produced for each image to show 

the relative concentration of ester carbonyl (1723 cm-1). The ester carbonyl band area was 

ratioed to the area of a representative carbohydrate band (1148 cm-1), which served as an 

internal standard to allow correction for any differences in thickness across the area sampled 

(Figure 2.2). The range used for the ester carbonyl band area was 1764 cm-1 to 1687 cm-1, while 

the range used for the calculation of the representative carbohydrate band area was 1183 cm-1 to 

1121 cm-1 with a baseline from 1181 cm-1 to 1066 cm-1. A false color scale was used to show 

the relative concentration of ester carbonyl from low to high, with red and yellow respectively.  

 

 

Figure 2.2 The typical fingerprint region spectrum of an OSA modified (9%) waxy maize starch 

granule illustrating the baseline corrected absorbance bands for carbonyl (1723 cm-1) and starch 

(1148 cm-1). [Reprinted from 34] 

 

2.2 Results and Discussion 
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 Modified starch imaging results from the IRENI were compared with those obtained from 

a previous short step confocally masked synchrotron IMS experiment to highlight the 

instrumental advance. The baseline corrected band area ratio results were dependent on the 

numerical values obtained from the spectra of each pixel. For these synchrotron IMS 

experiments, the image fidelity registers the difference on the z-axis between pixels that are 

adjacent on the x,y plane. Two important criteria examined for comparison were the absorbance 

range detected and the ability to distinguish between the peak area ratios of adjacent pixels in the 

image. With a figure of merit for comparison defined as the ratio of maximum z-axis value to the 

threshold value, both criteria are accommodated. Comparing the multi-beam synchrotron FPA 

ratios (0.52:0.07 = 7.4) to the short-step confocal ratios (0.66:0.32 = 2.0), results in a 3.6 times 

improvement on the former. Thus, the sensitivity to 3D topographic differences of functional 

group absorbance values shows significant improvement. Furthermore, the contrast between 

adjacent pixels shows the effect of IRENI optics in achieving the theoretical point spread 

function (PSF) for a Schwarzschild optic as shown in a recent Nature Methods article (35). In 

Figure 2.3, the baseline corrected peak area ratios of the carbonyl band at 1723 cm
-1

 to that of a 

representative carbohydrate band centered at 1148 cm
-1

 are plotted by their x,y coordinates. 

Beyond the threshold established by the granule minima, the ratio varies greatly between 

adjacent pixels in numerous cases. This observable variation is a result of the 
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Figure 2.3 Histograms of the population of the intragranular peak area ratio of carbonyl/starch 

(1723 cm
-1

/1148 cm
-1

) for each pixel within each of three individual modified starch granules. 

 

combination of the 74× objective and the 64 × 64 element FPA with 0.54 μm increments. From 

the IRENI data, the root mean square (RMS) noise level was 6 mA units, determined from the 

range of 2100 cm
-1

 to 1900 cm
-1

 where no absorption occurred. This is in contrast to an RMS 

noise level of 8 mA  measured for the light limited confocally masked beam used in the previous 

experiment. 

 The baseline corrected band area ratio maps (Figure 2.4) of two of the granules (1 and 2) 

show a large number of peaks and valleys within the approximately 11 μm × 11 μm selected 

area. Note that across the x, y plane, numerous z-axis excursions are seen among neighboring 

pixels. The numerical values obtained allow comparison between the individual granules  
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Figure 2.4 Chemical images based on the peak area ratio of ester carbonyl (1723 cm-1) to the 

representative starch band (1148 cm-1), taken from the center of three flattened modified starch 

granules. Pixels with high carbonyl content are highlighted by a yellow false color. Note the 

greater excursion in the third image; revealing a physical defect in the granule. 

  

represented in the figure. The difference between the individual granule peak area ratio from the 

average value and the threshold value for each pixel differed from 0.2 to 0.25 to 0.45 between 

the three granules.  The ranges from low to high were also revealed. These intergranular 

observations are summarized by histograms shown in Figure 2.5. Examination of the data for the 

three granules in all three forms (3D image, bar graph, and histogram) revealed a significant 

 

 

Figure 2.5 Bar graphs illustrating the difference in the peak area ratio of carbonyl/starch (1723 

cm-1/1148 cm-1) for each individual image pixel in sequence. The calculated ratios exceeding 

the carbonyl detected threshold of the image are plotted for each of the three granules shown.  

 

localized aberration for granule 3. Examination of the photomicrograph for granule 3 (Figure 

2.6) showed a physical depression within the FOV. This observation explained the chemical  
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Figure 2.6 Photomicrographs of the granules imaged in Figures 2.3, 2.4, and 2.5, with a box 

designating the area from which spectra were extracted for analysis. Note the physical 

deformation in the photomicrograph of granule 3, corresponding to the high variation shown in 

the third image of Figure 2.4. 

 

topographical inconsistency found from treating the spectroscopic data obtained in the image. 

 

2.3 Summary 

 Prior to introduction of the IRENI multi-beam synchrotron FPA dedicated system, 

confocal synchrotron imaging was shown to be far superior to that of a conventional FPA 

instrument. The IRENI beamline, on the other hand, not only offers the high speed of parallel 

data acquisition of the FPA, specifically designed to allow real time experimentation with living 

organisms. As previously reported by others (35), the enhanced image fidelity that appears in the 

3D mapping of IRENI data results from an expanded z-axis contrast and improved spatial 

definition on the x,y axes. Greater difference between the optical expanded scale response of 

adjacent pixels is achieved because of the extreme brightness of the multi-beam synchrotron 

source well exceeding any source noise. The differing values between individual pixels on the 

x,y axes is the experimental performance result of approaching the theoretical point spread 

function of 1.0λ with the Schwarzschild optic discussed by Carr (11, 36) as opposed to 1.22λ 

with a conventional lens. 
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Part 3: Break System Analysis of Flour Milling Intermediate Solid Mixtures 

via Near Infrared Focal Plane Array Chemical Imaging 

 

3.0 Introduction 

 The wheat milling industry, having multiple intermediate processing streams and 

individual unit processes, provides many opportunities for chemical analysis. Milling is a low-

margin process, thus a single change can have significant consequences. Thus, various processes 

in the milling process need to be optimized in order to obtain the maximum endosperm yield. 

The key product in the milling industry is flour (endosperm). Endosperm is typically 83% of the 

composition of a kernel of wheat (37). Additional byproducts of flour milling can include clean 

bran and germ. Typical straight grade flour extraction ranges from 72-75% (38). Ultimately, the 

efficiency of a flour mill is determined by the ability to maximize flour extraction while avoiding 

contamination with bran and germ. 

 Analyzing the endosperm purity of milling fractions has always been a difficult problem 

because we are dealing primarily with a mixture of organic solids. The standard measure is ash 

determination, which measures the inorganic residue remaining after combustion of an 

intermediate stream.  Wheat milling fractions contain several materials besides endosperm; 

lumping these residual organic components together as non-endosperm simplifies analyses as 

binary mixtures. Among the non-endosperm components are the germ, aleurone cells, aleurone 

cell walls, and pericarp.  An analytical chemical procedure for milling fraction analysis using the 

technique of spectroscopic imaging was developed at Kansas State University (21). This 

spectroscopic method targeted mixtures containing varying amounts of wheat endosperm and 

non-endosperm. In each case, parts of the fraction are considered product and all others are 
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considered byproducts that may be subject to rework. For each individual material that comes 

from a “unit process” such as a roll stand, purifier, or sifter, the calculated purity quoted as 

endosperm (product) concentration multiplied by the quantity (expressed as weight or flow rate) 

produces the endosperm yield for a particular intermediate stream. Subsequent analysis of 

intermediate streams leaving a unit process enables endosperm mass balance calculation and 

direct, objective assessment can be made.  

 In the first application of this method (21), Figures 3.1 and 3.2 show the endosperm yield 

of the inbound stream and outbound intermediate product and byproduct streams of a single 

purifier (21). The imaging results on these purifier specimen sets were produced in the 

Microbeam Molecular Spectroscopy Laboratory and the intermediate streams specimen sets were 

from a commercial mill. The two sets of specimens were produced to show maximum contrast. 

Figure 3.1 shows specimens taken before adjustment of purifier variables, which resulted in a 

higher yield of purified endosperm; whereas Figure 3.2 was after adjustment. Previews of 

applying the quantitative near IR imaging direct endosperm determination method to specific 

teaching situations have been reported by Gwirtz (39, 40). In the latter case, the Ross Walking 

mill was operated to simulate a double high first and second break (1BK/2BK) configuration 

followed by sieving with nine progressively smaller sieves (1041-132 µm).  
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Figure 3.1 Endosperm mass balance of a commercial flour mill purifier before adjustment. The 

endosperm mass flow rate (kg/h) of each stream was calculated from the NIR endosperm content 

and the mass flow rates (not shown) of the streams. From the input (IN) to the first (FC), 

endosperm content was enriched from 90.3% to 99.2%, whereas the quantity was reduced from 

796 kg/h to 514 kg/h. The byproduct material was divided into three streams designated as upper 

overtails (UOT), second overtails (SOT), and first overtails (FOT) of varying percentage 

endosperm and endosperm flow. Before adjustment, a 64.6% product yield resulted in 37% 

byproduct subject to rework. A false color scale is used to highlight endosperm and non-

endosperm with warm (red) and cool (blue) color, respectively. [Reprinted from 21] 

 

 

Figure 3.2 Endosperm mass balance of a commercial flour mill purifier after adjustment. In 

contrast to Fig. 3.1, the summation of the FC and SC product was 76.7%, and the combined 

byproduct streams subject to rework was 23.3%.  [Reprinted from 21] 
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.Millers typically optimize the break release for every grinding operation within a mill, 

with special attention to the primary breaks, which affect intermediate stock distribution, 

quantity, and quality. This has been emphasized by the introduction of programmable roll 

adjustment of break releases (41) and pre-set break roll gaps that automatically change settings 

upon changing wheat mix to a mill (42). Millers have traditionally used trial and error to achieve 

optimization. Our study conducted here, utilizes a quantitative near IR imaging method 

developed at Kansas State University to assess the results of variation of 1BK/2BK roll gap. This 

procedure enabled endosperm analysis of intermediate products derived from the primary break 

unit processes (1BK, 2BK, 3BK) in flour milling.  Using the quantitative near IR imaging 

technique for this purpose, we assume a binary mixture of endosperm and non-endosperm.   

For quantitative near IR imaging spectral libraries of the individual components must be 

acquired as standards, by subjecting pure forms to chemical imaging to produce a multivariate 

spectroscopic characterization.  Characterization of each standard material was determined using 

multiple wavelengths to produce a recognizable signature for each one. This allowed 

identification of each of the 82,000 pixels in the images of experimental streams obtained from 

the mill. Quantitation is subsequently achieved by a mathematic algorithm using the endosperm 

and non-endosperm characterization images. This method was then used to quantitate the 

endosperm leaving the primary break system for several 1BK/2BK roll gap settings and to 

objectively compare intermediate streams between an optimal and suboptimal primary break 

operation. 

 

3.1 Experimental 
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3.1.1 Instrumentation 

 A Sapphire™ model indium antimonide (InSb) focal plane array (Malvern Instruments, 

Columbia, MD) imaging system was used. A simplified diagram of the instrument used is shown 

in Figure 3.3, where light emitted from four quartz tungsten halogen illuminating lamps is  

 

Figure 3.3 Optical diagram of the near IR FPA imaging system. [Reprinted from 39] 

 

reflected diffusely off of the sample on the stage and captured by a lens in the instrument.  From 

the lens, the light passes through the liquid crystal tunable filter (LCTF), which sorts out the 

wavelengths in sequence. The selected wavelength range for this instrument, 1200-2400 

nanometers, goes to FPA of InSb sensors that produces an 320 x 256 pixel image.  Each pixel 

within the image FOV is from the response of an individual InSb sensing element of the FPA. As 

the filter sequentially changes the wavelength, a complete spectrum is produced in each of 

approximately 82,000 locations in the sample FOV. Before analysis, the instrument is turned on 

and the SapphireGo data acquisition program was used to initialize the instrument. After 

initialization, a dark data cube is obtained by scanning a metal mirror for high specular 
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reflectance and a background data cube is obtained from a white ceramic plate with high diffuse 

reflectance. 

 The granular sample material is placed in a stainless steel planchette and covered with a 

1-in. × 1.5-in. glass microscope slide.  After the material is flattened under the glass and placed 

on the sample stage, the spectra were taken with a LCTF spectrometer (no moving parts) that 

provided electronic wavelength switching prior to the parallel waves striking the 

thermoelectrically (TE) cooled InSb FPA.  The only radiation collected by the lens of the 

imaging system, also defines the FOV, was from the near-infrared source, striking the diffusely 

reflective specimen at a 45-degree angle.  The image intensity of each pixel was mathematically 

converted to Absorbance, which describes optical density. This step is used to produce a 

numerical value that is linear in terms of the concentration of the mixture component targeted, 

and this was done at each optical frequency for each pixel. In the data produced for this report, 

the imaging lens produced a 13 mm x 10 mm FOV that resulted in a 40 µm calculated pixel size. 

To provide reliable detector response, the near IR camera is programmed to coadd measurements 

for a period of 4 minutes. When coarse granular heterogeneous specimens are analyzed, three 

FOVs were averaged to avoid localized sample differences. 

 

3.1.2 Specimens and Procedure 

 For each type of wheat used in the mill, the miller must set the break release, which is the 

main way that a miller can optimize the efficiency of the system via material distribution. 

Accurate break release adjustment combined with optimal tempering will guarantee good flour 

extraction and quality. The release from the primary breaks in the mill affects the distribution of 

all intermediate stocks in the system (38). A two-part study was conducted with the Ross 
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walking mill laboratory setup utilizing three first break (1BK) settings and three second break 

(2BK) settings with a fixed setting for third break (3BK), Sizings (Siz), and first Midds (1M) 

reduction  in a single replication to determine if near IR focal plane array quantitative imaging 

could detect differences in endosperm released from the primary breaks. The 1BK gap settings 

were 0.020, 0.022 and .024 in. (0.508, 0.559, 0.610 mm), and the 2BK gap settings employed 

were 0.010, 0.012 and 0.014 in. (0.254, 0.305, 0.356 mm). 3BK was set at 0.003 in. (0.076 mm), 

Siz gap was 0.005 in. (0.127 mm), and 1M (reduction) was 0.001 in. (0.025 mm). The diagram in 

Figure 3.4 shows the sieve layout. Three different roll gap settings for 1BK and 2BK resulted in 

nine different 1BK/2BK combinations for the first group of experimental millings.  

 

 

Figure 3.4 Sieve box configuration and stock destinations for a 1BK, 2BK, 3BK, Siz, and 1M 

milling operation. 
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 The primary milling experiment to optimize endosperm yield was carried out on the same 

day with 1000 g from the same lot of tempered hard red winter wheat. This experiment focused 

on the use of quantitative near IR imaging to determine the percentage endosperm content in the 

physically combined flour, sizings, and reduction streams, respectively, from 1BK, 2BK, and 

3BK. From the nine millings in which different 1BK and 2BK gap combinations were used, it 

was necessary to deliver the intermediate products of the breaks to the successive process to 

ensure accurate weights of each material. We conducted a second milling experiment later using 

a stop-flow method to show a snapshot of intermediate byproduct fractions for each unit process 

for two different gap settings. The subsequent milling on a later date of 1500 g of wheat with two 

1BK/2BK combinations was focused on the quantitative near IR imaging of the intermediate 

products. In this case, 40 g of each intermediate was retained to enable imaging of three 

replicates of each. 

 Spectra were collected in triplicate for each sample (single samples were collected for 

flours) in the range of 1200–2400 nm and processed using Malvern ISys
TM

 4.0 chemical imaging 

software. Spectra were first converted to Absorbance. The wavelength segments 1200–1539 and 

1851–1999 nm were then removed to eliminate water bands. The spectra were baseline corrected 

and normalized. Prior to any quantitation, we acquired spectral libraries based on approximately 

164,000 spectra from clean bran that was ground (non-endosperm standard) and purified 1M top 

stock from the Kansas State Pilot Mill (endosperm standard). Each pixel in the binary mixture 

was subsequently identified using both the multivariate characterizations of A (endosperm) and 

B (non-endosperm). We then used an algorithm of the two characterizations [A / (A+B)] to 

establish the decimal fraction of endosperm in the milling samples. The product of stream 
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sample weights and their calculated endosperm content enables quantitation of endosperm mass 

flow. 

 We use the term “endosperm yield” to indicate the amount of endosperm released from 

the first three breaks; for each fraction leaving the break system, it was the product of the weight 

fraction (weight of the fraction divided by the total weight of wheat milled) and the NIR imaging 

percentage endosperm. 
MilledWheatWeightTotal

EndospermPercentageWeightFraction
yieldEndosperm

 


)(
 

Using this calculation for each break flour, break to sizing fraction, and the break to reduction 

fraction, we obtain the endosperm yield. 

 

3.2 Results and Discussion 

 An AOM Technical Committee Survey by Wingfield (43) related to break release and 

flour extraction indicated that the overall extraction percentage of flour and/or semolina that a 

mill can obtain is established in the break system, where the endosperm is removed from the 

bran coat. Further importance is place on the primary break system, as Li and Posner (44) 

showed that setting the break release of 1BK and 2BK significantly affects sizings stock and 

total flour production. Results of the various break gap settings visually show the differences in 

endosperm separation based on the presence of contamination from non-endosperm parts of the 

kernel. Quantitative analysis of the milling process, shown in Figure 3.4, required retaining the 

majority of intermediate products. The three-dimensional Figure 3.5 shows the endosperm yield 

values for the nine 1BK/2BK pairs of settings on the z-axis. The high (75%) and low (67%) 

values. Observations between these two combinations are summarized in Table I. 
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0.020 0.022 0.024

0.010

0.012

0.014

0.65

0.67

0.69

0.71

0.73

0.75

Endosperm Yield

1BK Gap 0.001"

2BK Gap 0.001"

 

Figure 3.5 The endosperm yield (near IR calculated endosperm released from the primary 

breaks) is shown for all of the nine 1BK/2BK gap setting combinations. 

 

                         Table I. Comparison of optimal (.022/.014") and 
inferior (.024/.014") 1BK/2BK gap settings 

 

  Optimal Inferior 

 

 
Endosperm to 4BK 82 157 

 

(grams) 

 
Purity of break flour 99% 92% 

 Purity of cumulative material 
100% 95% 

 
from break to reduction 

 Purity of cumulative 
90% 79% 

 
from break to sizings 

 

Purity of sizings flour 100% 97% 

 Purity of sizings stock 
100% 94% 

 
sent to reduction 

 

 
 

Purity of reduction stock 94% 84% 

 

sent to second reduction 
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 Figure 3.6 reveals the calculation of endosperm yield for the high and low 1BK/2BK gap 

pair settings by multiplying the quantity of endosperm obtained from the flow rate or weight of 

the product by the endosperm content as determined from chemical imaging data. Although the 

masses of the cumulative flour, sizings stock, and reduction stock were relatively unchanged 

among different roll gap setting, the greater purity of the 0.022/0.014 in. 1BK/2BK gap pair 

settings accounts for the high endosperm yield. To achieve the best quantitative and qualitative 

performance from a wheat mix, the greater cumulative yields indicate the better roll gap settings.  
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( 85.2% x 525 g )            +    ( 99.9% x 201 g )        +    ( 97.6% x 86 g )        = 73%  

To Sizings To Reduction Flour

1, 2, 3 BK System Products

Optimum

Inferior

( 79.1% x 517 g )            +    ( 94.9% x 195 g )        +    ( 91.9% x 86 g )        = 67%     

Figure 3.6 Chemical imaging results are displayed for the cumulative break system products 

(material to sizings, reduction, and flour) for both the optimum and inferior 1BK/2BK roll gap 

settings. These results are from the milling of 1000 g of wheat. Note the equations that include 

the endosperm purity and mass of each material, the weight product sums of which equal the 

endosperm yield. A false color scale is used to highlight endosperm and non-endosperm with 

warm (red) and cool (blue) color, respectively. Note the higher purity of each of the products and 

higher endosperm yield of the optimum gap pair milling.  

 

 For the secondary milling experiment, we obtained imaging data for all intermediate 

products of the 1BK, 2BK, 3BK system, as well as a Siz and 1M reduction operation. 
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Observations from the comparison of corresponding fraction images from the two roll gap 

settings on their respective calculated purity are summarized in Table II. Figures 3.7-3.9 provide  

 

.022/.010" .024/.014"

Causes and 

measures

Endosperm to 

subsequent stages

Purity of material 

from 1BK to sizings

Mass of material 

from the breaks

Endosperm in material 

to subsequent breaks

Purity of material from 

2BK to sizings

Flour from sizings
More of Inferior 

Quality
Less

Optimization of roll 

adjustment

Purity of reduction material 

to 1T

Table II.  1BK / 2BK Roll Gap Effects   

Greater release of 

endosperm to 

subsequent 

stages

Smaller release 

from breaks to 

subsequent 

stages

80.7% 76.9%

Less endosperm More endosperm

Same for both settings

42.1% 77.8%

89.0% 67.4%

Corrugations 

characteristics & 

kernel size

Optimization of roll 

adjustment & 

sieves

Adjustment of 

sieves in sifter 

sections

Break corrugation 

characteristics

Purification 

needed

 

 

visual evidence of the differences in endosperm purity for intermediate streams from each 

operation for the two millings. The chemical images in Figures 3.7 and 3.8 both reveal the 

greater break release for the first milling. Figures 3.8 and 3.9 show that 2BK and 3BK release 

more endosperm to sizings and reduction, because more endosperm remains on the bran. 
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Figure 3.7 Comparison of chemical images and calculated percentage endosperm from 1BK 

material destined for 2BK (left) and sizings (right) for two millings. Note the additional 

endosperm remaining in the material to 2BK for the second milling and the endosperm enriched 

material leaving the first milling to sizings. 

 

 

 

 

Figure 3.8 Comparison of chemical images and calculated percentage endosperm from 2BK 

material destined for 3BK (left) and sizings (right) for two millings. Note the additional 

endosperm remaining in the material to 3BK and heading to sizings for the second milling. 
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Figure 3.9 Comparison of chemical images and calculated percentage endosperm from 3BK 

material destined for reduction (left), cumulative break material to sizings (center), and reduction 

to tailings (right) for two millings. Note the additional endosperm from reduction to 3BK for the 

second milling and also the purity of sizings stock and tailings stock for the first milling. 

 

3.3 Summary 

 The bottom line in flour milling production is the cumulative endosperm yield. This 

direct method for determining the part of the material that is endosperm and multiplying it by the 

quantity readily enables the quantitation of endosperm. This enables an experimentalist to 

calculate the mass balance for individual or successive unit processes with respect to the product 

exclusively. The ability to determine percentage endosperm by direct analysis of the solid 

mixture of chemical images allows the miller to determine the product (flour) yield rather than 

the presence of non-endosperm or inorganic residue. 

 Among the 1BK/2BK roll gap combinations in this experiment, the pair that provided the 

best recovery of endosperm was set at 0.022 in. (0.559 mm) for 1BK and 0.014 in. (0.356 mm) 

for 2BK. The 1BK/2BK roll gap combination of 0.024/ 0.014 in. (0.610/0.356 mm) resulted in 

the poorest endosperm recovery. The proportion of endosperm per unit of material extracted 

from the break system was 0.92 and 0.83 for the optimal and suboptimal combination, 

respectively. With the more aggressive combination, the total flour produced was higher; 

however, as might be expected, the non-endosperm fraction also increased. This experiment 
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shows the importance of continuous potential on-line optimization of break release settings in the 

mill when wheat mixes or any other variables affecting wheat performance change and is an 

additional step toward development of an effective on-line method for flour milling analysis. 
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Part 4: Application of Near Infrared Focal Plane Array Chemical Imaging to 

Feed Formulation Mixing Uniformity 

 

4.0 Introduction 

 In the formulated feed industry, various ground, solid commodities are combined and 

blended prior to additional processing. Ribbon or paddle mixers are often used to blend the 

ingredients as they flow through the piece of equipment. The key is balancing uniformity of the 

blend with the cost of energy consumption for an adequate residence time. Lengthy mixing may 

also result in overmixing, which may potentially result in the reversal of mixing and segregation 

of materials. Key operational parameters to control in the mixing of solids include the 

revolutions per minute of the shaft, residence time, and ingredient feed rates. Once these 

operational parameters are optimized, future operation with the same product can be repeated 

before pelleting or extrusion cooking (45). 

 The uniformity of a formula feed commodity mixture is routinely monitored by use of a 

tracer. Many tracers used in the feed industry have the common flaw of differing by density, 

shape, or flow characteristics, from the granular commodities in a formulation (46). These 

include rock salt (47), which has differing flow characteristics from traditional commodities, and 

polymer beads that constitute a foreign substance. The ideal tracer would be an edible substance 

that would not effect processing and have the same characteristics as the formulation. 

 The term formulation used in the feed industry describes the ingredients and the 

characteristics which affect pellet quality including pellet ability, fiber, protein, and fat (48). 

Feed formulations start with a bulk commodity, such as ground maize or sorghum, the choice 

often depending on cost or availability. A protein supplement such as soybean meal, fish meal, 
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meat and bone meal, or blood meal is then used to meet guaranteed protein levels. The remainder 

of the ingredients consist of various minerals and organic micronutrients to serve different 

purposes. 

 Significant spectroscopic differences have been observed in the near IR region of the 

spectrum between protein supplements and base material in formulations (49). As such, protein 

supplements have the potential to serve as effective self-tracers of feed commodity mixtures if 

used at the same percentage the formulation specifies. Two tracer experiments were performed to 

determine mixing uniformity of a protein supplement/corn meal mixture (50). The first 

experiment used 48% protein soybean meal, a common and relatively available protein 

supplement. Blood meal, which has a distinct spectrum allowing selectivity among other protein 

supplements, was used as the tracer for the second experiment. Mixing uniformity was 

determined by comparing samples taken along a ribbon mixer shaft after a certain amount of 

ribbon shaft rotation cycles. Optimum mixing was considered to be achieved after the standard 

deviation reached a minimal steady state. 

 

4.1 Experimental 

4.1.1 Instrumentation 

 The Sapphire™ model indium InSb FPA (Malvern Instruments, Columbia, MD) imaging 

system was used for the imaging of granular feed mixtures as previously described in Part 3.2.1. 

The lens used produced a 13 mm x 10 mm FOV resulting in a 40 µm calculated pixel size. 

Spectral measurements were coadded over a period of 4 minutes. Three FOVs were averaged for 

each specimen to avoid localized sample differences. 
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4.1.2 Specimens and Procedure 

 Two tracer experiments were performed to test the potential of near IR imaging for feed 

mixing. Previous experimentation in our laboratory (49) has shown that significant differences 

between the near IR spectra of protein supplements enable single wavelength or multivariate 

distinction (Figure 4.1). The laboratory ribbon mixer (Wenger, Sabetha, KS) used was 66 cm  

 

Figure 4.1 Contrasting single wavelength images for the same FOV highlighting (a) ground corn 

meal and  (b) soybean meal with warm (red) false colors, of a 50/50 corn meal/soybean meal 

mixture. This was accomplished by using a starch band (2100 nm) and a protein band (1740 nm), 

respectively. Partial least squares (PLS) contrast highlighting (c) ground corn and (d) soybean 

meal is also shown for the same FOV. [Reprinted from 50] 

 

long and equipped with a two cycle ribbon.  Before mixing, corn meal was evenly spread out 

along the ribbon shaft. The respective tracer was then placed at the head of the mixer. For both 

experiments, sampling was accomplished by stopping the mixer at five cycle intervals and taking 

grab samples from four equally spaced intervals along the ribbon shaft. A preliminary set of grab 

samples was taken after a one cycle operation to show the early lack of uniformity. Spectra were 

collected for each sample in triplicate in the range of 1200–2400 nm and converted to 

absorbance. For the soybean meal tracer experiment, the wavelength segment 1851–1999 nm 
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was removed to eliminate the major near IR water band centered at 1940 nm. The experiment 

with the selective blood meal tracer (Figure 4.2) was limited to the wavelength range of 1200- 

 

Figure 4.2 Representative near IR spectra of typical feed protein supplements (a) blood meal, (b) 

soybean meal, (c) fish meal, and (d) meat and bone meal. The spectrum of (e) corn meal is also 

shown for comparison. Note the unique spectrum of blood meal to the left of the 1850 nm 

demarcation. [Reprinted from 50] 

 

1850 nm. The spectra were then baseline corrected and normalized. Prior to quantitation, two 

spectral libraries were acquired, one for soybean meal and corn meal and another for blood meal 

and corn meal. Each spectral library was based on approximately 164,000 pixels from each of 

the two component standards. The libraries allowed subsequent PLS characterization of each 

pixel in the binary mixtures.  An algorithm was subsequently used to establish the percent of A 

(tracer) in a mixture of A and B (corn meal).  
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4.2 Results and Discussion 

 Figure 4.3 shows pairs of the triplicate images most representative of the average,  

 

 

Figure 4.3 Each pair of four images (left to right) shows the population of soybean meal tracer 

along the ribbon shaft. The pairs are representative of the initial mixing (top), partial mixing at 

15 cycles (middle), and a well-mixed sample after 25 cycles (bottom). A binary color scheme is 

used to highlight the soybean meal tracer. [Reprinted from 50] 

 

concentration from the four positions along the shaft (head to tail, left to right) from the number 

of revolution cycles indicated for the soybean meal tracer experiment. Table III displays the  
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Table III Average of triplicate soybean meal percentages at each location along the ribbon shaft.  

 

 
[Reprinted from 50] 

 

percentage soybean meal for each number of ribbon shaft revolution cycles for each position 

along the ribbon shaft. The relative standard deviation of the summation of each replicate for the 

four positions on the ribbon shaft was plotted as a function of the number of revolution cycles in 

Figure 4.4. The deviation dropped off dramatically after the initial mixing, but showed a slight  

 

Figure 4.4 Precision as a function of mixing cycles is displayed for each triplicate image at each 

of the four locations along the ribbon shaft for the soybean meal/corn meal mixture. [Reprinted 

from 50] 

 

decrease afterwards, until leveling off after 35 cycles. The elevated protein to starch ratio of 

soybean meal enabled excellent detection of soybean meal pixels in a binary mixture with corn 

meal in Figure 4.3. 
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 The corresponding imaging results for the blood meal tracer are shown in Figure 4.5 and 

Table IV. A large skew in the percentage blood meal was observed for all samples, due in part to  

 

Figure 4.5 Each pair of four images (left to right) shows the population of blood meal tracer 

along the ribbon shaft. The pairs are from before mixing at 5 cycles (top), partial mixing at 15 

cycles (middle), and a well-mixed sample after 25 cycles (bottom). A binary color scheme is 

used to highlight the blood meal tracer.  [Reprinted from 50] 

  

Table IV Average of triplicate blood meal percentages at each location along the ribbon shaft. 

 
 [Reprinted from 50] 
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the strong intensity of blood meal in the selected wavelength range. In the presence of other 

tracers blood meal showed the greatest selectivity as a tracer. A well-mixed portion of the blood 

meal/corn meal mixture was diluted with soybean meal to produce a 73.6%:20.0%:6.4% (by 

weight) corn meal/soybean meal/blood meal mixture. The blood meal/corn meal PLS 

characterization was then applied to the mixture. The measured percentage blood meal for these 

samples was diminished due to the dilution, but there was no misidentification of soybean meal 

pixels as blood meal. 

 

4.3 Summary 

 While NIR quantitative imaging of heterogeneous commodity mixers may require 

replication, both commodity tracers showed distinct advantages for accurate studies of feed 

mixing uniformity. Soybean meal, as a commonly used protein supplement, would show 

flexibility for a variety of feed formulations. Blood meal unique spectroscopic features among 

other protein supplements would allow its inclusion at low levels in feed formulations. The 

decreased NIR range used for the blood meal study also shows the potential for a simplified 

calibration and online analysis. Both commodity tracers provide the same advantage of matching 

the flow characteristics of the bulk material. However, the sampling procedures described here 

would not be ideal in an industrial environment with moving product. Testing would be 

accomplished by taking samples from the output of the mixer. Uniformity of the feed commodity 

mixtures would be determined by calculating the time necessary for minimization of the standard 

deviation between multiple samples or predetermining the measured amount of tracer in an 

ideally mixed formulation and obtaining that value. Relative heterogeneity found along the mixer 

ribbon shaft for even the well-mixed material was evident in this experiment, as proved by a 
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measure 8.6% RSD for a 60%:40% soybean meal/corn meal mixture. Sampling from the end of 

the mixing unit would ideally improve the representativeness of the samples measured. 
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Part 5: Summary 

 Chemical imaging was successful for the microspectroscopic study of modification 

within single starch granules and the near IR differentiation of starch between another 

component of a binary mixture for both flour milling and feed milling. The combination of a 

multi-beam synchrotron source and FPA detection at the IRENI beamline allows for fast 

acquisition of imaging data with approximately 0.54 µm resolution approaching the diffraction 

limit. The comparison between data from previous confocal synchrotron IMS and the current 

state-of-the-art IRENI data showed greater heterogeneity of localized ester carbonyl modification 

within granules for FPA synchrotron IMS.  

 Near infrared FPA instrumentation allows significant flexibility for the analysis of solid 

mixtures of flour and feed milling products. Specific regions of the near IR spectrum or specific 

wavelength combinations can be utilized for informed analyses. However, the high capital cost 

of the FPA instrumentation and software does not make sense in the case of low-margin 

industries. This instrumentation could make sense for companies with central laboratories where 

samples can be sent in and analyzed could be reasonable, particularly for the optimization of unit 

process. Additionally, further work is trending towards the potential of on-line near infrared 

quantitation for milling applications. The potential of future method development is greatly 

enhanced by the flexibility of the FPA near IR imaging.  
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