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Abstract 

Rift Valley fever virus (RVFV) is a vector-borne zoonotic pathogen endemic to sub-

Saharan Africa and the Arabian Peninsula that causes severe disease in ruminants and humans. 

RVFV is a significant threat to US livestock and public health due to a lack of licensed, 

efficacious vaccines and its ability to become established in non-endemic areas. Subunit vaccine 

candidates based on RVFV N- and C-terminal glycoproteins (Gn and Gc) are a viable option for 

use in ruminants due to their ease of production, safety, and ability to induce immune responses 

that offer differentiation between infected and vaccinated animals (DIVA). Importantly, subunit 

Gn+Gc vaccine candidates have demonstrated efficacy in sheep. However, despite the efficacy 

of a dual glycoprotein vaccine, no studies have directly compared protective efficacies of the 

individual glycoproteins. Furthermore, although RVFV demonstrates 2.1% maximum pairwise 

amino acid strain divergence within Gn/Gc ectodomains, it remains unclear how this may affect 

cross-protective vaccine efficacy. In this study, we used a BALB/c mouse model to determine 

the median lethal dose (LD50) of 3 wildtype RVFV strains and used this information to 

standardize challenge doses in subsequent vaccine efficacy studies using baculovirus-expressed 

Gn/Gc antigens derived from RVFV strain Zagazig Hostpital 1977 (ZH548). Strains Kenya 2006 

(Ken06) and Saudi Arabia 2001 (SA01) demonstrated equally high virulence (LD50= 7.9pfu), 

while recombinant strain South Africa 1951 (rSA51) was less virulent (LD50=150pfu). Following 

prime-boost vaccination, 100% (10/10) of the Gn+Gc vaccinated mice survived challenge with 

x1000 LD50 Ken06 and SA01, while only 50% (5/10) of Gn+Gc vaccinated mice survived 

challenge with rSA51. Additionally, 90% (9/10) of Gn-only vaccinated and 40% (4/10) of Gc-

only vaccinated mice survived challenge with Ken06. These data suggest that a Gn-only subunit 

vaccine is an efficacious alternative to dual glycoprotein vaccine candidates and that our ZH548-



  

derived Gn+Gc vaccine has the potential to cross-protect against divergent RVFV strains. 

Results from this study can be used to optimize current vaccine formulations and inform future 

vaccine efficacy and licensure studies in ruminants. 
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Chapter 1 - Rift Valley Fever Virus Literature Review 

 1.1 Introduction 

Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever (RVF), is a 

vector-borne zoonotic virus of the genus Phlebovirus in the family Bunyaviridae that is endemic 

to sub-Saharan Africa, Egypt, and countries of the Arabian Peninsula.1  Since the first confirmed 

outbreak in 1931 in the Rift Valley of Kenya, RVFV has caused sporadic outbreaks in ruminants 

and humans, the largest of which occurred in Egypt in 1977-78 in which approximately 200,000 

humans developed clinical RVF.2,3 In ruminants, RVF symptoms range from mild febrile illness 

to acute hepatitis, encephalitis, and widespread abortions in pregnant sheep and cattle.1  In 

humans RVF usually manifests as mild fever but in some cases can progress to hemorrhagic 

disease, blindness, neurologic disease, and death.1  RVFV is a significant threat to US livestock 

and public health due to its potential for introduction into non-endemic areas by malicious or 

accidental means and is thus considered an overlap select agent by the Centers for Disease 

Control and Prevention (CDC) and the United States Department of Agriculture (USDA).4 

Despite much effort, there are currently no fully licensed human or veterinary vaccines available 

outside endemic areas.   

The purpose of the studies herein is threefold: 1) to determine the virulence differences 

between 5 wild-derived and recombinant RVFV strains, 2) to study the interstrain cross-

protective efficacy of a recombinant RVFV glycoprotein subunit vaccine, and 3) to consider the 

relative contribution of RVFV glycoproteins against single strain challenge in mice.  The 

information presented in this introductory chapter consists of a general overview of RVFV with 

special emphasis on current vaccine constructs, animal models, and interstrain genetic diversity. 

 



2 

 

 1.2 Bunyaviridae Family 

Bunyaviridae is a large and diverse family of mainly vector-borne animal viruses 

consisting of more than 300 species in 5 genera: Phlebovirus, Hantavirus, Orthobunyavirus, 

Nairovirus, and Tospovirus.  All are characterized as enveloped, tri-segmented, negative or 

ambisense, single-stranded RNA (ssRNA) viruses with similar genetic content and organization. 

Many bunyaviruses such as RVFV, Crimean-Congo Hemorrhagic Fever Virus, Hantaviruses, 

Schmallenberg Virus, and Tomato Spotted Wilt Virus can have significant economic and public 

health consequences.5–8   

 1.3 RVFV Morphology and Genomic Structure 

 The RVFV virion is spherical with a T=12 icosahedral symmetry and diameter ranging 

from 80-120nm (average 100nm).9  The genome is tripartite consisting of three circular ssRNA 

segments (Large [L], Medium [M], and Small [S]) encoding 7 proteins with a combined length 

of ~11.9 kb.10  The L segment encodes the RNA-dependent RNA polymerase (RdRp).11 The M 

segment encodes the non-structural proteins NSm1 (78kDa) and NSm2 (14kDa) and the 

immunogenic amino and carboxy-terminal surface glycoproteins Gn (G2) and Gc (G1)12, and the 

S segment encodes the nonstructural protein NSs and nucleoprotein N.13   

 1.4 RVFV Viral Proteins 

 1.4.1 Non-structural Protein NSs 

NSs is translated from the positive strand of the S-segment vRNA and is considered the 

primary RVFV virulence factor with a number of defined roles in suppressing host innate 

immune responses and regulating host transcription.14–27 NSs primarily functions as a Type I IFN 

antagonist that complexes to SAP30 and other corepressors and recruits directly the IFN-β 
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promoter, thereby excluding transcriptional coactivators necessary for IFN-β expression.18  

Additionally, NSs promotes host and viral translation through specific degradation  of protein 

kinase R (PKR) transcription and subsequent inhibition of eukaryotic initiation factor 2 alpha 

(eIF2α) phosphorylation.19–21  This is a function that is lacking in other phleboviruses and is 

thought to contribute to the relatively high pathogenicity of RVFV.19  Interestingly, although 

RVFV replicates in the cytoplasm, NSs aggregates form in the nucleus and interact with specific 

regions of host DNA causing chromosomal segregation defects in infected cells.24,28,29  These 

aggregates are unique to RVFV infected cells and are thought to contribute to the fetal 

malformations seen in infected ruminants.1  RVFV mutants lacking functional NSs replicate 

poorly in Type I IFN competent cell lines and have reduced virulence in animal models.14,30    

 1.4.2 M-segment Nonstructural Proteins 

RVFV M-segment proteins are encoded from one large open reading frame via 

differential use of 5 in-frame AUG start codons regulated by a leaky scanning mechanism.31 The 

resulting polyproteins are then cleaved by cellular peptidases  into individual proteins.32–35 The 

translational product from AUG1 is an NSm-Gn-Gc polyprotein that is cleaved in the 

endoplasmic reticulum resulting in the non-structural NSm-Gn fusion protein known as the 

78kDa protein (P78).10 Although, the exact function of P78 remains unknown it has been shown 

to be selectively packaged into virus particles derived from mosquito cells but not mammalian 

cells and is essential for virus dissemination in mosquitoes.36,37 Translation initiation from AUG2 

results in an NSm-Gn-Gc polyprotein in which the structural glycoproteins Gn and Gc are 

cleaved from NSm resulting in a 14kDa protein that is retained within the cytosolic aspect of the 

endoplasmic reticulum and eventually trafficked to the outer membrane of the mitochondria 

where it inhibits virus-induced apoptosis via inhibition of p38 mitogen-activated protein 
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kinase.31,38 However, despite this apparent function, NSm is dispensable in mammalian cell 

culture and does not contribute to virulence in mammals.38,39 

Previous research suggested that AUG3 does not contribute to M-segment protein 

expression.35 However, a recent study indicated the presence of a 13kDa N-terminally truncated 

NSm protein named NSm’ translated from AUG3 and demonstrated that simultaneous deletion 

of AUG2 and 3, which results in the abrogated expression of NSm and NSm’, caused 

significantly reduced virulence in mice.37 This is further supported by the fact that the AUG3 

protein product can partially compensate for NSm when AUG2 is deleted.38 AUG4 and 5 

contribute modestly to Gn and Gc expression, yet their relative importance to virus replication 

and virulence has not been determined.35 

 1.4.3 Glycoproteins Gn and Gc 

Gn (56kDa) and Gc (65kDa) are surface glycoproteins encoded in the M-segment and are 

expressed by a leaky scanning mechanism from AUG 2, 4, and 5.32,35 Gn/Gc are arranged in 5 

and 6 subunit heterodimers on the surface of the RVFV virion.40 Since Gn and Gc are surface 

exposed, they are the major targets of host immunity, the primary antigen used in vaccine 

constructs, and the major determinants of host tropism and infectivity.  Although limited epitope 

mapping studies have been conducted, 4 antigenic regions (I–IV) are well conserved across 

RVFV Gn/Gc except for in some attenuated strains.41–43  

 1.4.4 Ribonucleoproteins Structure and Function 

RVFV ribonucleoproteins (RNPs) consist of genomic vRNA, nucleoprotein (N), and the 

RNA-dependent RNA polymerase (L-protein) and serve as platforms for vRNA replication and 

transcription.44 Although the precise structure of the RVFV RNP remains unclear, the 

mechanism of N and L recruitment to the vRNA has been described.45,46 N is the most abundant 

protein in the RVFV virus particle and is a major immunogen in natural infection and target for 
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differentiation between infected and vaccinated animal (DIVA) compatible vaccines.47–49 N 

forms hexameric ring-like structures that closely associate with vRNA and play key roles in 

RNA replication, transcription, virus assembly, and protection from innate immune 

responses.44,50 The L-protein is a large multi-domain polymerase responsible for replication and 

transcription of vRNA.11,51,52 Although functional motifs (motifs 1-3) have been described for 

RVFV L that resemble other segmented and non-segmented viruses limited functional studies 

have been performed.11 Further structural analysis of RVFV RNPs and its components will be 

beneficial for the development of potential antiviral drugs.  

 1.5 Replication Cycle 

 Although the complete RVFV replication cycle has not been fully elucidated, reverse 

genetics, non-spreading virus particles, and minigenome systems have helped define critical 

processes of attachment, RNA synthesis and packaging.53,54   

 1.5.1 Virus Attachment and entry 

RVFV attachment and entry in most cells is mediated by heparan sulfate, but attachment 

and entry into dermal dendritic cells at the site of initial infection (i.e. skin) is mediated by 

dendritic cell-specific intercellular adhesion molecule 3- grabbing nonintegrin (DC-SIGN).55,56  

After attachment, entry occurs via a dynamin-dependent caveola-mediated mechanism followed 

by membrane fusion by a type II pH dependent mechanism mediated by a Gc conformational 

change and uncoating in the late endosome.31,57,58   

 1.5.2 Genome Replication and Transcription 

Once the virion is uncoated in the cytosol, each segment is immediately transcribed into 

mRNA or replicated into complimentary RNA (cRNA) as an exact genomic copy by the L-

protein using a 5’ nucleoside triphosphate. Since the S segment is ambisense, the NSs cRNA is 

contained in the virion and can be expressed early, which makes evolutionary sense because NSs 
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is involved in suppressing innate immunity.10 Like all other segmented negative strand RNA 

viruses, bunyaviruses employ a “cap-snatching” mechanism of transcription initiation to acquire 

5’ caps from host mRNA via the endonuclease activity of the L-protein.59–61 However, unlike 

Influenza virus, which cap-snatches and replicates in the nucleus, bunyaviruses cap-snatch and 

replicate in the cytoplasm.62 Although the RVFV L-protein is responsible for both replication 

and transcription, the sequence motifs involved in each process are not defined.11   

 1.5.3 Virus Assembly and Release 

Once translated and cleaved from other M segment proteins, Gn and Gc localize to the 

Golgi apparatus independently of other viral proteins via a localization signal present on Gn.63,64  

Other core virion proteins are recruited to the Golgi by unknown signals and mechanisms.10 

Virions formed within the Golgi are then transported in vacuoles to the cell surface where they 

fuse with the cell membrane and exit the cell.10   

 1.6 RVFV Ecology and Vectors 

 RVFV outbreaks are sporadic yet predictively follow periods of El Niño and heavy 

rainfall, which induces hatching of infected mosquitos from flooded soils.65–67 Although many 

RVFV vector species have been documented in experimental and natural settings, the vectors 

most closely associated with RVFV maintenance and transmission are Aedes and Culex species 

mosquitos.  RVFV mosquito vectors are divided into two groups depending on their role in the 

transmission cycle. “Reservoir/maintenance” vectors (primarily Aedes spp.) are associated with 

transiently flooded areas while “epidemic/amplifying vectors” (primarily Culex spp) vectors are 

associated with permanent water bodies.68,69  Upon hatching, infected RVFV mosquitos feed on 

nearby wild or domestic ruminants. Subsequent transmission occurs when naïve mosquitos feed 

upon viremic hosts and transmit the virus to naïve hosts. Importantly, the presence of competent 
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vectors in Europe and the United States demonstrates the potential for global spread and 

establishment of RVFV.70,71   

 Although RVFV is characterized by sporadic outbreaks in domestic livestock and 

humans, seroprevalence and virus isolation studies in Kenyan mammals and mosquitos indicate 

that RVFV circulates in a cryptic enzootic cycle during interepidemic periods.72–77 Thus, 

enhanced surveillance programs may be implemented to more accurately predict RVFV 

outbreaks.   

 1.7 Genetic Diversity of RVFV 

 The genetic diversity of RVFV is low, with Bayesian estimates of maximum inter-strain 

pairwise divergence of 5% and 2% at the nucleic and amino acid levels, respectively.41  This is 

likely because the time to most recent common ancestor (TMRCA) for RVFV is recent, with an 

estimated time of 120-130 years.41,78  Another explanation for this low divergence is the so-

called “double-filter” hypothesis, which suggests that arbovirus genomes are subject to selective 

pressures in both the mammalian and insect host, thus leading to tighter genomic constraint.41,79 

This hypothesis has been supported for RVFV in vitro in which the genomic stability of NSs was 

dependent upon alternative passage between insect and mammalian cells.80 However, genetic 

diversity in RVFV is lower compared to other arthropod-borne bunyaviruses such as Crimean-

Congo Hemorrhagic Fever (CCHF), which lends support to the recent TMRCA hypothesis.78  

Despite this low diversity, phylogenetic patterns can be inferred as RVFV strains generally 

cluster based on geographic location.78,41   

Interestingly, surface exposed epitopes of Gn/Gc show low nucleic acid sequence 

diversity (maximum 5-6% ) despite being targets of neutralizing antibodies.41 In contrast, the 

intracellular and untranslated regions of Gn/Gc show up to 15% nucleic acid sequence 
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divergence.41  Sequence diversity for both the S and L segment are also low, with most sequence 

differences located in intergenic regions.41   

 RVFV genomic reassortment has been experimentally demonstrated in mammalian cell 

culture and live mosquitoes and phylogenetic analysis suggests it occurs in nature.81,82,78,83 

Reassortment events raise safety concerns when using live-attenuated vaccines and may play a 

role in RVFV evolution.78 

 Contrary to the low genetic diversity of RVFV, interstrain variation in virulence among 

wild-derived and recombinant strains is high.41,43 One study determined the LD50 values (plaque 

forming units [pfu]) of 21 RVFV strains in outbred ICR and inbred C57BL/6 mice varied from 

<1 to 1.3x106 pfu.43 A similar study conducted in adult inbred Wistar-Furth (WF) rats also 

indicated interstrain variation in RVFV virulence.84,85 Interestingly, RVFV isolates in Lineage A 

(Egypt 1977-1979) were more pathogenic in WF rats than representative strains from sub-

Saharan lineages85,86.  This, coupled with the fact that the Egypt 1977 outbreak was the largest 

RVFV outbreak in history indicates that geographic spread of RVFV to non-endemic areas may 

increase the virulence of the resulting outbreak strains. Additionally, specific loci have been 

found, which support these virulence differences.41 

 1.8 Disease in Animals and Humans  

 Early experiments to determine RVFV host range showed that non-ruminants such as 

birds, horses, rabbits, and pigs were resistant to RVFV but that mice, rats, and hamsters were 

highly susceptible.87  Since then, mice and rats have been the main platform to conduct RVFV 

pathogenicity and vaccine efficacy studies, while RVF in livestock has mostly been 

characterized anecdotally during outbreaks with some laboratory-based experimental studies. 

Limited studies have been conducted in non-human primate models.      
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 1.8.1 Mice 

Mice are the most widely used animal model to study RVFV pathogenesis and vaccines 

because they are highly susceptible, cost-effective, and mirror disease seen in ruminants and 

humans.1  Mice show severe clinical signs by 2-3dpi characterized by ruffled fur, hunched 

posture, and lethargy and usually succumb to fulminant hepatitis in 2-5 days post infection 

(p.i.).88  However, depending on inoculation route, some survive this stage and succumb to 

encephalitis on day 8-14dpi.88,89  Clinical disease onset is correlated with viral titers in the serum 

liver, and spleen and a significant decrease in blood platelets indicative of hemorrhagic 

disease.88,89 Despite decreases in blood platelets however, mice do not exhibit extreme 

hemorrhagic manifestations.1 Furthermore, mice infected with wild-type RVFV show temporal 

increases in pro-inflammatory cytokines that is thought to contribute to disease severity.89  In 

addition to viral determinants of disease, host factors are thought to play a role in influencing 

disease severity, especially those genes involved in regulating the activation of the Type I IFN 

pathway.90,91 

 1.8.2 Rats 

Unlike mice, rats (Rattus norvegicus) show varied RVFV susceptibility similar to that of 

humans and ruminants making them more appropriate animal models.84 Symptoms in susceptible 

strains such as Wistar-Furth are characterized by fatal hepatic disease and death as early as two 

days, while the more resistant Lewis strain has a significantly higher survival rate but can be 

more susceptible to encephalitis at later time points.92  However, like mice, rats do not develop 

hemorrhagic manifestations in response to RVFV infection.1     

 1.8.3 Ruminants 

Ruminants are the most applicable model for studying RVFV pathogenesis and vaccines 

as they are the natural host of RVFV.  However, lack of large animal biocontainment facilities 
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can limits their usefulness.  Despite this, RVFV infection in sheep has been studied in both 

laboratory and natural settings.  Neonatal and newborn lambs are most susceptible to RVFV 

infection as demonstrated by so-called “abortion storms”, in which rapid virus transmission 

induces widespread abortions in herds of pregnant sheep causing up to 100% neonatal 

mortality.83,93 Although RVF in neonatal and young lambs is nearly uniformly fatal, adult sheep 

are differentially susceptible depending on RVFV strain and sheep breed.3,94–97   

 Other ruminants such as goats and camels are less susceptible to RVFV, though 

experimental and observational data show cattle can develop severe clinical disease 

characterized by febrile illness and high fetal mortality.87,98,99  Interestingly, the gradual 

replacement of native more resistant livestock (such as Zebu cattle) with more susceptible 

European breeds is thought to contribute to the increase of RVFV outbreaks throughout 

Africa.41,93  Although some studies have been performed in cattle, more work is needed to better 

characterize the pathogenesis and efficacy of candidate vaccines in this model.100,101 

 1.8.4 Non-human Primates 

Although most non-human primates show mild clinical RVF, rhesus macaques best 

demonstrate the range of symptoms seen in humans.102 In macaques infected intravascularly, 

symptoms range from mild febrile illness to severe disease characterized by anorexia, lassitude, 

vomiting, and hemorrhagic manifestations.102 However, newer models need to be developed that 

mimic the natural extravascular inoculation route of RVFV by mosquitoes.103  

 1.8.5 Humans 

RVF in humans has been studied during large outbreaks such as the Saudi Arabian 

outbreak of 2000-01 and through cases of laboratory acquired infections in the 1930s-40s.104–106  

Symptoms in humans are usually characterized by self-limiting febrile illness but can progress to 

neurological complications, blindness, thrombosis, and hemorrhagic fever.  Death normally 



11 

occurs in 1-2% of patients but varies widely by outbreak.1  Although increased abortion rates are 

not seen during RVFV outbreaks, vertical transmission has been documented in one case leading 

to the death of a newborn.106  

 1.9 RVFV Vaccines 

 Many RVFV vaccines such as formalin-inactivated, live-attenuated, virus-vectored, 

subunit, and DNA constructs have been developed and tested, to date yet none are approved for 

use in humans or animals outside endemic areas.49  Although cell-mediated immunity has been 

measured for only a few RVFV vaccines, some studies suggest that humoral immune responses 

are sufficient for protection against RVFV.49,107,108     

 Early RVFV vaccines were made from inactivated material such as the mosquito-isolated 

Entebbe strain from Uganda.109  Although this vaccine is efficacious in humans, the multiple 

dose requirement limits its applicability in resource-limited agricultural settings.110,111   

 Live-attenuated vaccines provide a cost-effective alternative to inactivated vaccines and 

some constructs have conditional or full licensure in the United States and African countries.49  

Clone 13 is a naturally attenuated RVFV strain isolated in Central Africa from an infected 

patient that has a 70% deletion in the NSs gene.112  Importantly, unlike other live-attenuated 

RVFV vaccines such as the Smithburn strain, Clone 13 induces protective immunity and does 

not cause abortions or fetal malformations in sheep.113  Although Clone 13 is attenuated, other 

NSs-deficient strains can cause severe neurological disease in mice after intranasal inoculation 

suggesting that some virulence is still retained in strains lacking NSs.114  Importantly, although 

Clone 13 is attenuated in cell culture and animal models, it is not exempt from the federal select 

agent list restricting its use in research to biocontainment laboratories.   

Mutagenized passage 12 (MP-12) is a live attenuated vaccine strain derived from virulent 

strain Zagazig Hostpital 548 (ZH548) after 12 successive cell culture passages in the presence of 
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chemical mutagen 5-fluorouracil.115  MP-12 is efficacious as a vaccine in both humans and 

livestock, causes minimal teratogenicity in livestock, and is attenuated in all 3 strains limiting the 

chances of wild-type reversion.99,116,117  MP-12 is advantageous for research because reverse 

genetics methods have been established and it is exempt from the federal select agent list making 

it conducive to mutation experiments outside biocontainment laboratories.30  In general, live-

attenuated vaccines are efficacious, but issues with potential reversion to virulence and 

recombination with wildtype strains limits their usefulness mostly to outbreak settings in 

endemic areas. 

A number of recombinant vaccines have been developed for RVFV including subunit and 

virus-vectored.49  Recombinant vaccines are advantageous due to their ability to induce targeted 

immunity to specific proteins and epitopes, inability to revert to wild-type, and differentiation 

between immunized and vaccinated animals (DIVA) compatibility.  Thus, these vaccines may be 

more useful in non-endemic areas containing serologically naïve host species.  Recently, a highly 

immunogenic baculovirus-expressed Gn ectodomain/Gc (Gne/Gc) subunit vaccine was 

developed that induced protective immunity against lethal RVFV challenge in sheep.118,119,120 

Unlike other subunit vaccine constructs tested, this vaccine induced potentially protective 

immunity after a single dose.121–123  Ideal RVFV vaccines should elicit protective immunity after 

one dose, be DIVA compatible, and cheap to produce.   

 1.10 Purpose of Research 

 RVFV is a major threat to US agriculture and public health and currently no licensed 

vaccines are available for human or animal use outside of endemic areas.  Based on low genetic 

diversity between RVFV strains, it is assumed that current vaccine candidates will cross-protect 

against all RVFV strains.  However, with the emergence of new outbreak strains and continued 

divergence of the RVFV genome, vaccine constructs based on old RVFV genotypes may not be 
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effective in the future.  Using a BALB/c mouse model the purpose of this study was 2-fold, (1) to 

evaluate the cross-protective efficacy of a recombinant Gn+Gc subunit vaccine candidate, and 

(2) to evaluate the individual protective efficacies of Gn and Gc.  Results from this study can be 

used to inform the development of RVFV vaccines and livestock vaccine-challenge models. 
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Chapter 2 - Materials and Methods 

 2.1 Cells 

VeroE6 cells were cultured in 1x Dulbecco’s Modified Eagle’s Medium (DMEM) or 1x 

MEM with 10% fetal bovine serum (FBS).  Baby Hamster Kidney T7/9 (BHKT7/9) cells were 

cultured in MEM alpha with 10% FBS with or without hygromycin B.  Medical Research 

Council 5 (MRC-5) cells were cultured in 1x MEM with 10% FBS.  All cells were incubated at 

37oC with 5% CO2. 

 2.2 Viruses 

Wild derived RVFV strains 128B-15 (Ken06) and Saudi Arabia 2001 (SA01) were 

acquired from Dr. Barry Miller (Centers for Disease Control and Prevention) via Dr. Richard 

Bowen (Colorado State University) and recombinant RVFV strains South Africa 1951 (rSA51) 

was rescued using the reverse genetics protocol described below. All viruses were propagated in 

VeroE6 cells in the culture conditions described above.     

 2.3 Plaque Assay 

RVFV stocks and tissue-derived virus were titrated via plaque assay.  Briefly, virus was 

diluted 10-fold in MEM containing 10% FBS.  250ul of each dilution was plated onto confluent 

VeroE6 cells in a 12-well plate.  After one hour of incubation, the supernatants were removed 

and monolayers were covered with ~1mL of semi-solid overlay (1:1 ratio 2xMEM w/10% FBS, 

1% antibiotics and methyl cellulose).  After 4-5 days incubation, cells were stained with ~500uL 

of 1% crystal violet fixative and incubated at room temperature for 1hr.  The plates were then 

washed with a stream of cool water and allowed to air-dry before plaque enumeration.   
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 2.4 Reverse Genetics 

rSA51 was rescued using methods previously described.124  Briefly, 3 plasmids encoding 

full-length L, M, and S genomic segments and 3 protein expression plasmids encoding Gn/Gc 

glycoproteins, nucleoprotein N, and L polymerase were transfected onto BHKT7/9 cells cultured 

in MEM alpha containing hygromycin. After 24 hours, the media was removed and replaced 

with fresh MEM alpha without hygromycin. After 5 additional days, supernatants were 

transferred onto confluent VeroE6 cells and monitored daily for cypopathic effect (CPE).  

Supernatants from CPE positive cells were labelled as passage 0 (P0) and stored at -80oC.     

 2.5 RNA Extraction and Sequencing 

RNA from all virus strains were inactivated, extracted, and sequenced as previously 

described.125 Briefly, virus supernatants were mixed 1:4 in TRIzol-LS reagent (Life 

Technologies, MD) to ensure proper inactivation before removal from containment.  RNA was 

then extracted using the RNeasey minikit (Qiagen, CA) via the manufacturer’s instructions.  

Each genomic segment (L, M, and S) was amplified in 2 segments using a T7 ligase-based 

system and subsequently reverse transcribed using SuperScript III first-strand synthesis 

SuperMix (Invitrogen, CA).  After preparation of the sequencing library using the Nextera XT-

DNA kit (Illumina, CA), sequencing was performed using 150 base pair paired-end reads.  

Resulting consensus sequences were compared to reference sequences in GenBank (Table 2-1). 

 

 

 

 

Table 2-1 GenBank accession numbers for RVFV strains Ken06, SA01, and SA51 

Strain L-segment M-segment S-segment 
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Accession #  Accession #  Accession # 
Ken06 (128B-15) KX096938.1 KX096939.1 KX096940.1 

SA01 (SA01-1322) KX096941.1 KX096942.1 KX096943.1 
SA51 DQ375433.1 DQ380195 DQ380158.1 

    
Table 2-1. GenBank accession numbers for the L-, M-, and S-segments of RVFV strains Ken06, SA01, and SA51 

 

 2.6 Analysis of Viral Growth 

 To determine the growth kinetics of wildtype RVFV strains in cell culture, 0.01 MOI of 

RVFV strains were diluted in 1xMEM containing 10% FBS and inoculated onto triplicate wells 

of confluent MRC5 cells in a 24-well plate. After attachment for 1h cells were washed once with 

sterile virus diluent before 500µl media was added. Supernatants were collected at 0, 24, 48, 72, 

96 hours post infection (hpi) and titrated via plaque assay.   

 2.7 LD50 Determination 

 To quantify the virulence of all challenge strains, groups of 5 6-8 week old female 

BALB/c mice were (Charles River Laboratories, Wilmington, MA, USA) challenged 

subcutaneously with 10-fold serial dilutions of RVFV ranging from 1000pfu to 0.1pfu diluted in 

200ul of serum-free MEM (Table 2-2). Negative control mice were mock challenged with 200ul 

of serum-free MEM without virus.  Mice were monitored 3x daily for clinical signs for a 

maximum of 12 days and euthanized when moribund according to pre-defined clinical criteria.  

Culled and found-dead mice were necropsied and tissues collected for downstream analysis.  

During the challenge period, all mice were housed in biosafety level 3(BSL-3) containment at 

the Biosecurity Research Institute (BRI, Kansas State University, Manhattan, KS).  All protocols 

were approved by the Institutional Animal Care and Use Committee (IACUC).   
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 LD50 values were calculated using the Spearman-Karber method (Microsoft Excel) and 

directly compared using Log-Rank test in Graphpad Prism program (GraphPad Software Inc., La 

Jolla, CA).126 Statistical significance was defined as P<0.05.  

 

Table 2-2 LD50 Experimental Design 

 
Dose (pfu) 

	
  
 

0.1 1 10 100 1000 
	
  RVFV Strain Number of Mice Total 

Ken06 5 5 5 5 5 25 
SA01 5 5 5 5 5 25 
rSA51 5 5 5 5 5 25 
rZinga 5 5 5 5 5 25 

 vKen06 5 5 5 5 5 25 
MP-12 5 5 5 5 5 25 
Mock - - - - - 20 

  

 2.8 Tissue Homogenization 

Portions of tissues were added to sterile 1.5mL microcentrifuge tubes with sterile 1x 

MEM and 1-2 steel beads. Following homogenization in a TissueLyser (Qiagen), homogenates 

were centrifuged at 8000xg for 5 min. Then, supernatants were harvested and stored at -80oC 

until titrated.   

 2.9 Vaccination and Challenge 

 Baculovirus expressed, affinity purified recombinant Gn and/or Gc antigen derived from 

RVFV strain ZH548 was emulsified in a 3:1 ratio with Montanide ISA25 VG oil-in-water 

adjuvant (Seppic, France) via 4x passage through a 3/8” 26g needle as described previously119.  

Then, 6-8 week old female BALB/c mice (Charles River Laboratories, Wilmington, MA, USA) 

were vaccinated subcutaneously with either 5ug each Gn and Gc or 10ug Gn or Gc only in a total 

volume of 200ul.  On day 21 post first vaccination (dpfv) mice were boosted with the same 

Table 3-1 Description of the LD50 experimental study design.  Five mice for each of the 5 dilution groups were used. 
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antigen(s) as per prime vaccination.  Five days before challenge, mice were moved to a biosafety 

level 3 vivarium at the BRI to allow for adequate acclimation.  Blood was collected via the 

lateral saphenous vein using a 26g needle and capillary tube on 0, 21, and 35dpfv.  On day 

35dpfv, mice were challenged subcutaneously with x1000 LD50 of RVFV. Animals were 

monitored 3x daily until 12 days post challenge (dpc) as above.  On 3dpc a subset of mice were 

culled and necropsied and whole liver, spleen, and brain were collected for downstream analysis.  

All protocols were approved by the KSU IACUC committee as per above.   

 
Table 2-3 Vaccine-Challenge Study Design 

Challenge 
Strain Vaccine Vaccine 

Dose 
Challenge 
Dose (pfu) 

Number 
of Mice 

Ken06 

Gn+Gc 5ug each 8000 10 
Gn 10ug 8000 10 
Gc 10ug 8000 10 

Mock None 8000 10 

SA01 
Gn+Gc 5ug each 8000 10 
Mock 10ug 8000 10 

rSA51 
Gn+Gc 10ug 150000 10 
Mock None 150000 10 

 
Table 2-3. N=10 mice per group were vaccinated with 5ug each Gn+Gc or 10ug total Gn- or Gc-only and boosted 
with the same antigen and dose on 28dpfv. Mice were then challenged on 35dpfv with x1000 LD50 of RVFV. 
 

 2.10 Enzyme Linked Immunosorbent Assay (ELISA) 

 A previously described ELISA assay was used to measure antibody titers in mice serum 

on 0, 21, and 28dpfv.118  Briefly, 96-well polystyrene (Nunc, Maxisorp) plates were coated 

overnight at 4c with 200ng recombinant Gn or Gc in 100ul Dulbecco’s coating buffer (pH 7.3).  

Plates were then blocked with PBS (pH 7.3) with 1% skim milk and 0.1% Tween-20 for 15min 

at 37C.  Plates were then washed 3x with PBS with 0.1% Tween-20.  Then, 100ul of test serum 

diluted 1:50 in blocking buffer was added in duplicate to the plate and incubated at 37C for 1h.  

After washing 3x, 100ul Protein-G-HRP (Abcam, Cambridge, MA) diluted 1:50000 in blocking 
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buffer was added to each well and incubated for 1h at 37C.  After washing 3x, 100ul of substrate 

containing 1:1 mixture of 0.1mg/mL 3,3’5,5’-tetra-methylbenzidine (TMB) (Thermo Scientific, 

Rockford, IL) and H2O2 was added to each well and allowed to incubate at room temperature in 

the dark for 25min.  100ul of H2SO4 was added to the wells to stop the reaction.  Optical 

densities (OD) were read at 450nm on a microplate reader (Fluostar Omega, BMG Labtech, 

Cary, NC).   

 2.11 Plaque Reduction Neutralization Test 80% (PRNT80) 

 PRNT80 assays were performed as described previously.119,120  Briefly, mouse serum was 

diluted two-fold from 1:20 to 1:1280 in 1xMEM with 2% bovine serum albumin (BSA) and 1% 

antibiotics.  Diluted serum was then combined 1:1 with 50pfu RVFV (MP-12) in 4% BSA in a 

total volume of 500ul and incubated for 1h at 37C.  The virus-serum mixture was then plaque 

assay titrated as per above.   

 2.12 Statistical Analysis 

Analyses for significant differences between survival curves were performed via Log 

Rank test (Mantel-Cox). One-tailed T-tests were used to compare tissue titers. Differences in 

virus replication in the one-step growth curves were analyzed by one-way ANOVA in 

GraphPrad Prism.  
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Chapter 3 - Results 

 3.1 Sequence Analysis of Wildtype RVFV Strains 

To determine the sequence similarity between the 3 wildtype RVFV strains used in this 

study, we aligned the deduced amino acid (AA) sequences of each strain and calculated the 

pairwise percent identity and total number of AA point mutations between the L, M, and S 

segments of each strain (Tables 3-1, 2, 3). Overall, high conservation was seen between the three 

strains for each segment with pairwise strain similarity ranging from 98.63% (S-segment SA01 

vs SA51) - 99.48% (L-segment Ken06 vs SA01).  The greatest total number of substitutions 

within a gene segment was seen in the L-segment between SA01 and SA51 (13 substitutions) 

and the lowest was seen in the S-segment between Ken06 and SA51 (4 substitutions).  Within 

the M-segment, multiple substitutions were seen within the NSm, Gn, and Gc amino acid 

sequences among all strains compared (Table 3-2). Within the S-segment, all substitutions were 

seen within the NSs amino acid sequence. The nucleoprotein (N) amino acid was completely 

conserved (Table 3-3).   
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Table 3-1 L-segment amino acid sequence comparison between RVFV strains Ken06, 
SA01, and SA51 

	
  
L segment AA Comparisons 

Number Ken06 vs. SA01 Ken06 vs. rSA51 SA01 vs. SA51 

 
Similarity (%) 

	
  
99.48 99.39 99.3 

1 V164I R244K I164V 
2 F291L K249R R244K 
3 S411G I349V K249R 
4 N435D G407D L291F 
5 L440P A426G I349V 
6 K493R N435D G407D 
7 T577A L440P G411S 
8 K947R N446D A426G 
9 S1656N K493R N446D 
10 S1670P K947R A577T 
11 A2001T N1724S N1656S 
12 

 
A2001T N1670S 

13     N1724S 
 
 
Table 3-2 M-segment amino acid sequence comparison between RVFV strains Ken06, 
SA01, and rSA51 

	
  
M segment AA Comparisons 

Number Ken06 vs. SA01 Ken06 vs. rSA51 SA01 vs. SA51 

 
Similarity (%) 

 
99.08 99.25 98.9 

1 E118G (NSm) V60I (NSm) V60I (NSm) 
2 A123T (NSm) N95D (NSm) N95D (NSm) 
3 Y433F (Gn) H408R (Gn) G118E (Nsm) 
4 I589V (Gn) I589V (Gn) T123A (NSm) 
5 T595I (Gn) T595V (Gn) H408R (Gn) 
6 V602I (Gn) V602I (Gn) F433Y (Gn) 
7 A659V (Gn) R605K (Gn) I595V (Gn) 
8 N662D (Gn) I863V (Gc) R605K (Gn) 
9 V685I (Gn) V954I (Gc) V659A (Gn) 
10 V954I (Gc) 

 
D662N (Gn) 

11 D987E (Gc) 
 

I685V (Gn) 
12 

  
I863V (Gc) 

13     E987D (Gc) 
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Table 3-3 S-segment amino acid sequence comparison between RVFV strains Ken06, SA01, 
and rSA51 

	
  
S segment AA Comparisons 

Number Ken06 vs. SA01 Ken06 vs. rSA51 SA01 vs. SA51 

 
Similarity (%) 

 
99.02 99.22 98.63 

1 V62A Y3F  Y3F  
2 V189I K24R  K24R  
3 R202K R202K  A62V  
4 I239V G253E  I189V  
5 M250I 

 
V239I  

6 
  

I250M  
7     G253E  

 
Tables 3-1, 2, and 3. Amino acid sequence comparison of strains Ken06, SA01, and SA51. Percent similarity refers 
to the percent amino acid substitution rate for entire gene segment. (3-1) Comparison of L-segment amino acid 
sequence. Numbers within each amino acid substitution represent the amino acid position starting from the 
beginning of the L polymerase coding region. (3-2) Comparison of M-segment amino acid sequence. Numbers 
within each amino acid substitution represent the amino acid position starting from the beginning of the NSm coding 
region. Designations in parentheses represent corresponding protein in which the mutation is located. (3-3) 
Comparison of S-segment amino acid sequence. Numbers within each amino acid substitution represent the amino 
acid position starting from the beginning of the NSs coding region. No amino acid substitutions were found in the 
nucleoprotein (N) coding region.   
 
 
 

 3.2 One-step Growth Curve Analysis of Wildtype RVFV Strains 

 Because Ken06, SA01, and rSA51 are genetically distinct strains of RVFV, we analyzed 

virus growth kinetics in type I interferon (IFN) competent MRC5 cells using starting inoculum of 

0.01 MOI (Figure 3-1). Replication between strains Ken06 and rSA51 were similar at all time 

points. However, titers of SA01 were significantly less than strains Ken06 and rSA51 at 24 

(P<0.0001), 48 (P=0.0017), 72 (P=0.0255), and 96 (P=0.0052) hours post infection (hpi). This 

suggests that SA01 is less capable of replication in MRC5 cells at MOI 0.01 compared with 

Ken06 and rSA51.   
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Figure 3-1 Growth Curve of Wildtype RVFV Strains in MRC5 Cells 

 

Fig 3-1. MRC5 cells were infected with 0.01 MOI of RVFV in triplicate wells. Supernatants were collectedat 0, 24, 
48, 72, and 96hpi and subsequently titrated via plaque assay. Each data point represents the mean 
of 3 independent experiments, and error bars represent standard error of the mean (*, P<0.05; **, P<0.01; ***, 
P<0.001; ****, P<0.0001).  
 
 

 3.3 LD50 Determination of Virulent WT RVFV Strains 

In order to standardize challenge doses for downstream vaccine-challenge experiments, 

we determined the LD50 of Ken06, SA01, and rSA51 using a BALB/c mouse model. Five mice 

per dilution group were challenged subcutaneously with 10-fold serial dilutions of RVFV 

according to Table 2-1 and monitored for survival for 10 days. All challenge groups 

demonstrated dose-dependent survival excluding the attenuated vaccine strain MP-12, which was 

used as a negative control in this study (Figure 3-2).  Strain-to-strain variation in virulence was 

apparent with calculated LD50 values calculated as 7.9pfu for Ken06 and SA01 and 149.8pfu 

rSA51 (Table 3-4).  Additionally, mean time to death averaged across all doses per strain was 

associated with increasing LD50 values. Thus, our data suggests that RVFV strains Ken06 and 

SA01 are more virulent than rSA51.   
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Table 3-4 LD50 values and mean time to death 

RVFV Strain LD50 (PFU) Mean Time to Death (days) 
Ken06 7.9 3.8 
SA01 7.9 2.75 
rSA51 149.8 4.33 
MP-12 >1000 N/A 

 
Table 3-4. Summary of LD50 and mean time to death of various RVFV strains. 

 

Figure 3-2 LD50 Survival Curves 

 
Fig 3-2. Dose dependent survival of mice infected with RVFV strains. Groups of 5 female BALB/c mice were 
challenged subcutaneously with increasing doses of 10-1, 100, 101, 102, or 103 pfu of RVFV strain MP-12, Ken06, 
SA01, or rSA51and monitored for survival 3x daily for 10 days.   
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 3.4 Liver titers of mice infected with RVFV strains 

To confirm and compare virus replication of RVFV strains in a key target organ, we 

titrated liver homogenates of all mice within the LD50 study challenged with 1000pfu RVFV. 

Virus replicated efficiently in the liver of all mice tested however replication levels differed 

significantly between strains (Figure 3-3). Mean liver virus titers of Ken06-infected mice 

(4.9x105 PFU/mL) were significantly lower than mean liver virus titers of both rSA51-infected 

(9.0x106 PFU/mL, P=0.007) and SA01-infected mice (4.6x106, P =0.0497).  However, no 

significant difference in liver titers were seen between SA01 and rSA51 infected mice (P=0.12).  

These data suggest that there are strain-to-strain differences in RVFV replication kinetics in 

mice. 

Figure 3-3 Virus liver titers of mice challenged with 1000 PFU RVFV strains 

 

Fig 3-3. Liver homogenates from 1000 PFU virus challenge groups for strains Ken06, SA01, and rSA51 were 
titrated via plaque assay. Each bar represents the mean virus titer of 5 independent liver homogenates, and error bars 
represent standard error of the mean (*, P<0.05; **, P<0.01).  
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 3.5 Comparison of Gn and Gc AA sequences between vaccine and challenge 

strains 

The subunit vaccine antigens used in this study were derived from RVFV strain ZH548. 

To infer the level of potential cross-protection between vaccine and challenge strain antigens, we 

determined the amino acid sequence similarity of Gn and Gc between ZH548 and challenge 

strains SA01, Ken06, and SA51. In total compared to ZH548, 8 substitutions were found within 

the Gn and Gc amino acid sequences of SA01, and 9 each were found for Ken06 and SA51. To 

determine the relevance of these mutations in the context of vaccine cross-protection, we 

quantified substitutions within the Gn and Gc ectodomains – the domains demonstrated to elicit 

neutralizing antibodies. Within the ectodomains SA01 demonstrated 3 substitutions in Gn 

(L232Q, Y433F, D566G) and 2 in Gc (D987E, S1059T); Ken06 demonstrated 2 substitutions in 

Gn (L232Q, D566G) and 2 in Gc (I954V, S1059T); and SA51 demonstrated 3 substitutions Gn 

(L232Q, H408R, D566G) and 2 in Gc (I863V, S1059T). Within Gn, Y433F of SA01 and H408R 

of SA51 were unique to those strains.  In contrast, L232Q and D566G were shared among all 3 

challenge strains. Within the Gc ectodomain, D987E was unique to SA01, I954V was unique to 

Ken06, and I863V was unique to SA51. In contrast, S1059T was common to all strains. 

To put these data into a broader context, we compared the Gn and Gc amino acid sequence of 

ZH548 to all known RVFV strains currently available on GenBank in an effort to determine 

which strain is most divergent from ZH548 within Gn and Gc. Based on our alignment, strain 

Ken/Gar-004/06 (M-segment accession #AEB20462., ref. 41) demonstrated the greatest Gn and 

Gc amino acid sequence divergence from strain ZH548. Compared to ZH548, Ken/Gar-004/06 

had 18 total mutations, 15 of which were located within the Gn and Gc ectodomains. 

Additionally, we sought to determine the sequence divergence within 3 known virus 

neutralizing epitopes within Gn.127 Amino acid sequence within these regions were extremely 
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conserved across strains with 100% conservation seen between ZH548 and Ken06, SA01, and 

rSA51. Compared to ZH-548Six strains had single amino acid substitutions in epitope I, 6 strains 

had 1-2 amino acid substitutions in epitope II, and 1 strain had an amino acid substitution in 

epitope III (Table 3-6). No strain had amino acid substitutions in all 3 epitopes.   

Table 3-5 Gn and Gc amino acid sequence comparison of vaccine antigens to challenge 
strain antigens 

Number SA01 Ken06 SA51 Ken/Gar-004/06 
1 L232Q L232Q L232Q L232Q 
2 Y433F D566G H408R K352Q 
3 D566G V589I D566G S410R 
4 I631V I595T I595V C413R 
5 N662D I602V R605K H436R 
6 V685I I631V I631V G449R 
7 D987E V659A V659A D566G 
8 S1059T I954V I863V Y577N 
9 

 
S1059T S1059T C579S 

10 
   

T581S 
11 

   
V589I 

12 
   

I595T 
13 

   
I602V 

14 
   

I631V 
15 

   
V659A 

16 
   

I954V 
17 

   
M1014R 

18 
   

S1059T 
 

Fig 3-3. Comparison of Gn and Gc amino acid sequences between challenge strains and vaccine strain. Highlighting 
colors correspond to specific regions within the Gn and Gc protein: Yellow = Gn ectodomain; Green = Gn 
intermembrane domain; Teal = Gn cytosolic domain; Purple = Gc ectodomain. Text color indicates whether 
mutation is unique to one of the four strains analyzed: Black = not unique to strain; red = unique to strain.  
 
 
 
 
 
 
Table 3-6 RVFV strains with mutations within known neutralizing epitopes in Gn 

Strain Position Epitope M segment Accession number 
2007004194 N261S I EU574031.1 

HV-B375 Y275H I DQ380218 



28 

HB1752 Y275H I KJ782453.1 
763/70 E276G I DQ380188 

ArB1986 Q286L I KJ782456.1 
Zinga  Q286L I, III DQ380217 

ANK-3837 T384K II DQ380215 
ANK-3837 M385L II DQ380215 
ANK-6087 T384K II DQ380216 
ANK-6087 M383L II DQ380216 

Lunyo D386V II KU167026.1 
ZH-501-777 S387P II DQ380202.1 

Entebbe  R391I II DQ380191 
Kenya 57 (Rintoul)  R391I II DQ380192.1 

 
Table 3-6. Summary of known mutations within 3 known Gn-specific neutralizing epitopes. 
 
 
 3.6 Recombinant Gn+Gc vaccination induces a detectable immune response 

and differentially protects mice against challenge with Ken06, SA01, and 

rSA51 

Next, we wanted to test the cross-protective efficacy of an RVFV strain ZH548-derived 

Gn+Gc vaccine against Ken06, SA01, and rSA51.  Three groups of 10 BALB/c mice were 

subcutaneously vaccinated with 5ug each Gn+Gc formulated in ISA25 VG oil-in-water adjuvant 

and boosted with the same dose 21 days later. Mock mice were administered adjuvant and sterile 

media. ISA25 VG adjuvant was used in this study because of its efficacy in both mice and 

sheep.118,128   

Vaccination with Gn+Gc elicited a detectable Gn-specific anamnestic antibody response 

in all mice on 28dpfv (Fig 3-4). However, Gc-specific antibody titers were nearly undetectable 

although they were above the cutoff value of 0.04. On day 35, all mice were challenged 

subcutaneously with x1000 LD50 of RVFV strains Ken06, SA01, or rSA51 (Table 2-2) and 

monitored for survival for 12 days. All vaccinated mice challenged with either Ken06 or SA01 

survived until the end of the study, while only 50% of the vaccinated rSA51 challenged mice 
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survived (Fig 3-5). In contrast, 30%, 10%, and 0% of mock vaccinated mice survived when 

challenged with Ken06, SA01, and rSA51, respectively (Fig 3-4). Although 100% mortality in 

all mock vaccinated animals was not achieved, statistically significant differences in survival 

were seen between vaccinated and mock vaccinated animals. These data suggest that the 

combined Gn+Gc recombinant antigen derived from ZH548 fully protects against lethal 

challenge with Ken06 and SA01, and modestly protects against rSA51.  

 
 

 

Figure 3-4 Day 21 and 28dpfv antibody responses following vaccination with Gn+Gc 

 

Fig 3-4. Vaccine-induced antigen-specific IgG response to Gn+Gc vaccination. Each bar represents the mean of 10 
absorbance of n=10 mouse sera. Gn and Gc mock bars represent mean absorbance of n=3 time-matched mouse sera. 
The cutoff value for Gn = 0.067 and Gc = 0.0432. Positive control was from a Gn+Gc vaccinated sheep at 28dpfv. 
Gn positive control absorbance was 2.40 and Gc was 2.55.   
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Figure 3-5 Surival of Gn+Gc vaccinated mice challenged with 3 RVFV strains 

 

Fig 3-5. Vaccination with recombinant Gn+Gc antigen differentially protects mice against RVFV challenge strains. 
Groups of 10 mice were vaccinated with 5ug each Gn and Gc formulated in ISAVG adjuvant or mock vaccinated 
with adjuvant formulated in sterile media. On 35dpfv, 7dpsv mice were challenged with x1000 LD50 of RVFV 
rSA51, SA01, or Ken06 and monitored for survival 3x daily until 12 days post-challenge. 

 

Table 3-7 Comparison of survival rates of vaccinated vs. mock vaccinated mice challenged 
with different RVFV strains 

Challenge 
Strain Vaccination Survival 

Rate 

Statistical 
Significance 

(p-value) 
Ken06 Gn+Gc 10/10 

0.0021 
Ken06 Mock 3/10 
SA01 Gn+Gc 10/10 

<0.0001 
SA01 Mock 1/10 
rSA51 Gn+Gc 5/10 

0.0011 rSA51 Mock 0/10 
    

Table 3-4. Comparison of survival rates of Gn+Gc vaccinated and mock vaccinated mice challenged with different 
RVFV strains. Survival curves between vaccinated and mock-vaccinated mice from Fig. 3-5 were analyzed via Log 
Rank test (Mantel-Cox). 
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 3.7 Gn+Gc vaccination reduces virus replication in target tissues following 

challenge with Ken06 and SA01 

To assess the efficacy of Gn+Gc vaccination against heterologous strain challenge in 

target tissues, we vaccinated and boosted a separate group of mice (n=5/group) with 5ug each Gn 

and Gc as above. Mock vaccinated mice were given sterile media with adjuvant. As previously, 

antibody titers to Gn were significantly higher than Gc for both vaccinated groups, though again 

Gc antibody titers were above the determined cutoff value (Fig. 3-6). On 35dpfv all mice were 

challenged with x1000 LD50 of RVFV strains Ken06 and SA01 and subsequent plaque assays 

were performed on homogenized tissues from found-dead or culled mice 3dpc (Fig. 3-7). Mean 

viral titers in liver and spleen were similar in mock vaccinated mice infected with either virus 

(Ken06 liver = 5.48x105 pfu/g, spleen = 2.14x105 pfu/g; SA01 liver = 1.23x106 pfu/g, spleen = 

2.0x105 pfu/g). Mean viral titers in the brains of mock-vaccinated mice, however, were 

approximately 2 logs greater in Ken06 vs. SA01-infected mice (Ken06 = 2.52.x104 pfu/g, SA01 

= 118 pfu/g). Conversely, decreases in mean tissue titers were seen in all tissues for vaccinated 

mice infected with either virus (Ken06 liver = 0 pfu/g, spleen = 56 pfu/g, brain = 12 pfu/g; SA01 

liver = 30 pfu/g, brain = 8 pfu/g). However, none of these differences are statistically significant 

because of the large variation seen in tissue titers within each group (Table 3-8). Although 

sterilizing immunity was not achieved in the vaccinated groups, these data further suggest that a 

ZH548-derived recombinant Gn+Gc vaccine is cross-protective against strains Ken06 and SA01.   
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Figure 3-6 28dpfv ELISA of mice vaccinated with Gn+Gc 

 

Fig. 3-6. Vaccine-induced antigen-specific IgG response to Gn+Gc vaccination. Each bar represents the mean 
absorbance of n=5 Gn+Gc vaccinated mouse sera on 28dpfv. Gn and Gc mock bars represent mean absorbance of 
n=3 time-matched mouse sera. The cutoff value for Gn = 0.067 and Gc = 0.0432. Positive control was from a 
Gn+Gc vaccinated sheep at 28dpfv. Gn positive control absorbance was 2.69 and Gc was 2.68. 
 
 
Figure 3-7 3dpc tissue titers from Gn+Gc vaccinated and mock vaccinated mice challenged 
with Ken06 or SA01 

 

Fig 3-7. Tissue titers of Gn+Gc vaccinated and mock vaccinated mice challenged with Ken06 or SA01 and 
necropsied on 3dpc. N=5 spleen, liver, and brain homogenates from each group were collected at necropsy on 3dpc 
and subsequently homogenized. Tissue homogenates were titered via plaque assay. Error bars on each bar represent 
standard error of the mean. 
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Table 3-8 Statistical comparisons of virus replication between Gn+Gc vaccinated and mock 
vaccinated mice 

Challenge 
Strain Vaccination Tissue Virus Titer 

Range (PFU/g) 
Statistical 

Significance (p-value) 
Ken06 Mock Liver 0 - 2000000 0.093 
Ken06 Mock Spleen 0 - 700000 0.074 
Ken06 Mock Brain 0 - 92000 0.1 
SA01 Mock Liver 0 - 4000000 0.077510326 
SA01 Mock Spleen 0 - 500000 0.071 
SA01 Mock Brain 0 - 410 0.093 

 
Table 3-8. Statistical comparison of vaccinated versus mock vaccinated mice using one-tailed T-test (5th column). 
Range of tissue titers of mock vaccinated animals in various tissues. 
 

 3.8 Gn and Gc differentially protect against homologous RVFV challenge 

Since Gn and Gc elicit a protective immune response when administered together, we 

sought to determine the immunogenicity and protective efficacies Gn and Gc when administered 

individually. Groups of 10 mice were vaccinated with 10ug Gn or Gc in adjuvant and boosted on 

day 21 with the same dose. Serum collected on 21 and 28dpfv was analyzed via ELISA and 

serum collected on 35dpfv was analyzed PRNT80.  As before, Gn elicited an appreciable, 

antigen specific antibody response at 28dpfv (mean OD value = 0.42).  However, although Gc 

did elicit some detectable antibodies above background at 28dpfv (mean OD value =0.08), this 

response was significantly less compared to Gn.  

To compare the relative virus neutralizing efficacies of Gn and Gc antigens, we 

performed PRNT80 assays on 35dpfv serum from mice vaccinated with Gn-only, Gc-only, or 

Gn+Gc (n=5 per group).  Mean reciprocal titers of mice vaccinated with Gn-only was 48, while 

Gn+Gc and Gc-only vaccinated mice had demonstrated reciprocal titers of 20 and <20, 

respectively.  Pooled, pre-immune sera from 0dpfv mice were used as a negative control 

demonstrating non-detectable neutralizing titers.  These data suggest that Gn induces greater 

antigen-specific IgG and neutralizing antibody titers than Gn+Gc and Gc-only.   
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 Figure 3-8 Antigen specific serological responses of mice vaccinated with Gn or Gc  
 

 

Fig 3-8. Vaccine-induced antigen-specific IgG response to Gn+Gc vaccination. Each bar represents the mean 
absorbance of n=10 Gn- or Gc-vaccinated mouse sera on 28dpfv. Gn and Gc mock bars represent mean absorbance 
of n=3 time-matched mouse sera. The cutoff value for Gn = 0.067 and Gc = 0.0432. Positive control was from a 
Gn+Gc vaccinated sheep at 28dpfv. Gn positive control absorbance was 2.31 and Gc was 2.55. 
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 Table 3-9 PRNT80 Titers of Serum from Vaccinated Mice Collected on Challenge Day 

Replicate Vaccine Reciprocal 
Titer Vaccine Reciprocal 

Titer Vaccine Reciprocal 
Titer 

1 Gn+Gc 20 Gn 80 Gc <20 
2 Gn+Gc 20 Gn 20 Gc <20 
3 Gn+Gc 20 Gn 40 Gc <20 
4 Gn+Gc 20 Gn 80 Gc <20 
5 Gn+Gc 20 Gn 20 Gc <20 

Mean Gn+Gc 20 Gn 48 Gc <20 
 
Table 3-9. PRNT80 of 35dpfv mice vaccinated with Gn+Gc, Gn-only, or Gc-only.  

 

 3.9 Gn and Gc differentially protect against RVFV challenge 

On day 35, mice were challenged with x1000 LD50 of Ken06 and monitored 12 days for 

survival. All 10 vaccinated with Gn survived until the end of the study except 1 mouse, which 

died on day 12. In contrast, only 4/10 Gc vaccinated animals survived until the end of the study 

(Fig 3). When analyzed via Log Rank test, significant differences in survival time were seen 

between Gn and mock groups but not between Gc and mock groups. Taken together, this 

suggests that Gn alone can elicit protective immunity but Gc cannot.  

Figure 3-9 Survival of mice vaccinated with Gn-only or Gc-only and challenged with RVFV 
Ken06 
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Fig 3-6. Vaccination with Gn but not Gc protects mice against challenge with Ken06. Groups of 10 mice were 
vaccinated with 5ug either Gn or Gc formulated in ISAVG adjuvant or mock vaccinated with adjuvant formulated in 
sterile media. On 35dpfv, 7dpsv mice were challenged with x1000 LD50 of RVFV rSA51, SA01, or Ken06 and 
monitored for survival 3x daily until 12 days post-challenge 
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Chapter 4 - Discussion and Conclusions 

RVFV is considered a major threat to US agriculture and public health due to its ability 

for transboundary spread. Therefore, vaccine development remains a high priority since there are 

currently no fully licensed vaccines outside endemic areas. Though many RVFV vaccine 

candidates are being developed, vaccines such as glycoprotein subunit vaccines remain a viable 

candidate due to their efficacy, production scalability, and DIVA compatibility – the latter of 

which is essential to determining disease eradication. The objectives of this study were to (1) 

characterize the virulence of 3 genetically distinct RVFV strains Ken06, SA01, and rSA51, and 

determine the (2) cross-protective and (3) antigen-specific protective efficacies of recombinant 

RVFV glycoproteins against these three strains. 

RVFV strains Ken06, SA01, and rSA51 demonstrated maximum sequence divergences of 

0.7, 1.1, and 1.37% across the L, M, and S amino acid sequences, respectively. These 

divergences are within the limits of those described elsewhere. When we analyzed these strains 

via one-step growth curves in MRC5 cells, SA01 replicated less efficiently than Ken06 and 

rSA51. This is an interesting result considering that SA01 NSs amino acid sequence differs from 

Ken06 and SA51 by 0.92% (11 substitutions), and 1.1% (13 substitutions), respectively, and that 

NSs is a driver of virus replication and virulence.124 Therefore, one or more of these mutations 

could be contributing to SA01 reduced growth in cell culture.  However, further work needs to 

be conducted to fully elucidate this. 

In order to quantitate virulence and standardize challenge doses for subsequent vaccine-

challenge studies we determined the LD50 of 3 distinct strains of RVFV (Ken06, SA01, and 

rSA51) using a BALB/c mouse model. The LD50 values of Ken06 and SA01 were both 7.9pfu, 

while the LD50 of rSA51 was 149.7pfu. These LD50values are comparable to those determined 

for other virulent wildtype RVFV strains (Darci R. Smith, pers. comm. 2015).43 However, LD50 
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has been shown to be mouse strain dependent. For example, previous researchers showed that 

RVFV strain Ken57 (Rintoul) was highly virulent in C57BL6 mice (LD50 = 2pfu) but severely 

attenuated in ICR mice (LD50 = 3.7x103pfu). Additionally, although our data demonstrated an 

LD50 = 149.7 for rSA51 in subcutaneously challenged BALB/c mice, previous researchers 

calculated an LD50 of <1 and 8pfu in intraperitoneally challenged ICR and C57BL/6 mice, 

respsectively.43 Interestingly, a wild-derived non-recombinant SA51 isolate was used in their 

study, suggesting there may be virulence differences between wild-derived and recombinant 

isolates of the same RVFV strain. In support of this, significant differences in virulence between 

recombinant and wild-derived SA51 were demonstrated in CD1 mice challenged 

intraperitoneally (P=0.0181; Ikegami 2015 unpublished). Taken together, these data suggest that 

mouse breed, challenge route, and virus source can significantly influence LD50.  

Previous researchers have suggested that one vaccine will cross-protect against all known 

strains of RVFV based on the high conservation of immunogenic glycoproteins Gn and Gc.41 

However, this question has not been pursued in animal models or through the analysis of genetic 

diversity in specific immunogenic epitopes of Gn and Gc. This information is critical to 

evaluating vaccine efficacy and informing licensure decisions. Within the 3 strains analyzed, our 

data showed low amino acid sequence diversity within Gn and Gc ectodomains and no 

divergence within 3 characterized neutralizing epitopes within Gn. Although there was some 

sequence variation within these epitopes among the strains available on GenBank, no strains had 

mutations in all 3 neutralizing epitopes. Since monoclonal antibodies specific to these regions 

have been shown to induce protective immunity in vivo, mutations in all 3 epitopes may be 

required for immune escape.  

Gn+Gc vaccinated mice were fully protected against challenge with x1000 LD50 of 

Ken06 and SA01 and partially against rSA51. This expands on our previous data that a ZH548-
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derived subunit Gn+Gc vaccine fully protects sheep against challenge with Ken06. The lack of 

efficient cross-protection against rSA51 may be due to immune escape since rSA51 Gn and Gc 

ectodomains differ somewhat from that of ZH548. However, Gn+Gc vaccinated mice challenged 

with rSA51 had lower Gn-specific ELISA titers on 28dpfv than that of Ken06 and SA01-

challenged mice. Additionally, although challenge doses were standardized by LD50, rSA51-

challenged mice received ~19 times more virus than SA01 or Ken06-challenged mice, which 

could be greater than the maximum amount of antigen able to be neutralized by available serum 

neutralizing antibodies. Ideally, to address this concern in future cross-neutralization studies, a 

wide range of challenge doses should be used.  

To bolster our survival data, and to compare virus titers within vaccinated and mock-

vaccinated animals we vaccinated separate groups of mice with Gn+Gc and challenged as before 

with x1000 LD50 with Ken06 or SA01. Although sterilizing immunity was not seen, decreases in 

viral load were seen in all 3 target organs (liver, spleen, brain) in mice vaccinated with Gn+Gc 

compared to mock vaccinated animals on 3dpi. However, these decreases were not significant 

due to large variation in titers from mock and vaccinated animals, a clear decreasing trend in 

virus titers in each tissue was seen. This large variation tissue titers of mock-vaccinated animals 

may be due to differences replication kinetics within each mouse in the sense that maximum 

tissue titers may be achieved at different time points in each mouse. Because only one sampling 

time point was used this possibility cannot be ruled out. Additionally, subcutaneous challenge 

may be a less efficient route of infection than intraperitoneal.  

Monovalent Gn-based vaccines have been shown to be effective in mouse models57. 

However, no studies have directly compared the protective efficacies of different RVFV 

glycoprotein constructs, i.e. Gn+Gc, Gn-only, Gc-only. Therefore, we vaccinated mice with 3 

different RVFV subunit glycoprotein vaccine constructs and assessed their protective efficacies 



40 

against challenge with Ken06. RVFV glycoprotein constructs Gn+Gc and Gn-only, offered 

100% (10/10) and 90% (9/10) protection against lethal challenge with Ken06, thereby expanding 

on data from our previous study in which Gn+Gc was able to fully prevent virus replication and 

disease in sheep120. Conversely, vaccination with the Gc-only offered no protection. However, 

since Gc was shown not to be antigenic or immunogenic via ELISA and PRNT80 assay in our 

study, but has been shown to be antigenic in other studies, we cannot eliminate the possibility 

that Gc is not a protective immunogen.120 We plan to re-express and purify recombinant Gc and 

repeat this study in the future to account for any potential protein stability issues. These data do 

confirm, however, that Gn alone can induce neutralizing antibodies and protective immunity in 

vivo. This is significant since an efficacious Gn-only vaccine would be cheaper to produce than a 

bivalent vaccine containing both glycoproteins.  

In summary, these data suggest that a Gn-only vaccine is an efficacious alternative to 

Gn+Gc subunit vaccine constructs and that Gn+Gc vaccines have the potential to cross-protect 

against all known RVFV strains. These data can be used to optimize current RVFV vaccine 

strategies, design confirmatory studies in ruminants, and inform vaccine licensure decisions 
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