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1. INTRODUCTION

There are several optirzization technigues available for the
variocvs tyves of optimization protlens faced by the management
of the modern industries. The search techniques &are considered
to be efficient procedures anong these optimization techniques.
The search techniques are contrasted as alternate ways of solving
~problems to the usual avallable algorithmic techniques of
operatlions research such as linear programming [6], dynanic
programmuing [1] and the maximum principle Lj]. The uell know
searcn procedures for multivariables optimizatlon oroblems e
Powell's method [17], gradient methods [19], Fletcher and Powell
method [4], Fletcher and Reeves method [5], Hooke and Jeeves
pattern search [9] and simplex pattern search [16].

In recent years some of these techniques have been applie?
in some of the industrlal manacement systems. The effectlvencsas
and behavior of these technigues arc entirely denend upon the
types zné situations of the problems to which they sre applied.
Each technigue claims 1ts superlorarity in certzin confitions
and in certain situastions.

fThe purpose of this study is to compare the behavior of
some of the szarch technigues for optimization unier identiqal
conditiors., 1In this report a comparison of the four well krnoun
uriconstraingd optimization tecnniques is ﬁreSEﬁted. The four
sglected technigues are gradient tecrnigue, simnplex pattern
search, Fletcher and Powell mesthod an? F

methci., To see the effect of thace techniques on the dimension-



a2lity of the optimizatiorn. provblen, each technigue 1srapplied to
t#o test problems. One of them 1s twc dimenslional problem and
ancther is twenty dimensional problem. Thus it provides the
comparison of each technlgue with other techniques and the
effect of each technique on the dimensionality of the protlen.

The production and inventory control and the aggrezate
production and employment scheduling represent the typical
problems of the industrial management systems. For this resson
they are selécted as test problems in this study. The first
test problem is a two period preoduction planning problem in
which the objective 1s to determine the optimum production level
at each period such that ﬁhe total operating cost 1s minimized,
The cost 1s composed principally of the sum of the production
cost and inventofy cost, This model with 5 stages of rlanning
period was solved by Hwang, et. al, [11] usinz the discrste
maximum principle.

The well known Eolt, Modigliani, Muth and Simon [ 8] paint
factory model with planning horizon of ten months 1s selecteld
a5 a second test problem. There are two decision variables at
each month, namely, production rate and w@rkforce level which
are to be determined so as to minimize the total cest. The
mcdel was solved by Holt, Modigliani, Muth end Simon [8] using
linear decizlion rils arprocach. It was also solved by Taubert
[ 21] using Hoske and Jesves vattern search. A similar model
with 5 steases was eg2lved by Hvwang, Tillmwan and Fan using the

discrete mwaximum vrincivie [11] and vusing the sequential simplex



The gradient techrnigue, simplex cvattern search, Fletcher and
Powell method and Fletcher and Reévas method are described in
section 3, 4, 5 and 6 respectively tozether with the results of
test problems. A compariéon and discussion of the results
obtained by each technique is presented in section 7.

Four different criteria are ussd to compare the behavior
and convergence of these four techniques. They are the optimum
~function vaiue, the total computation time, number of literations

and required computer memory storage.



2. TEST PROBLEKS

To campare the behavior and effectiveness of tnese four
optinization technigues, nawely, gradient technique, simpvlex
pattern search, Fletcher and Powell metncd and Flestcher and
Hecves method, they are applled to two nroblems of production
planninz system. It is alsc desired to study the effect of
each itechnique on the dimensionality of the problem. Fér this
purpose cne of the test problems considered is two dimensional
production planning problem and another protlem is twenty

dimensionai production and employment scheduling problem,

A. Two dimensional production planning problem.
Trnis problem is a two periods production scheduling prcblem

in which the objective is to minimize the overating cost For the

f

planning periods. The cost is composed principally of the sum
of the production cost =zud inventory cost., Figure 1 reoresents
the schenmatic diagram of this problen.

el and 82 represent the production rate at each period
respectively. Q1 and Q2 are the given rate of sales at ezch
period. I1 and I2 represent the inventory at the end of ezch

period and I, 1is the given initial inventory level. The

0
recurrence relationship of the inventory is given by
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The cbjective functics of the problem is assuzed to he
2 — - N2 2 - id
S = C(ey =~ 85)7 4 D(E -~ I9)7 4 C(8, = 0907 + DHE = I,)

where C, U, &nd E zcre glven constants.

The problen is to determlne the optimal precduction rate
at each period, el and 62, such that the otjective function S is
minimized. It 1s obvious that the production rate at each stage
should be positive, therefore, en‘z 6, n=1, 2. Purther more
it is also given that the back log of orders are permitied that

ig, nezative inventory values are allowed in this proctloa.

Nurierical values of the model are glven as follows.

12

]

Initial inventory level = IG
Initial production rate = 6_ = 15
Sales rate at first vperiod =,Q1 = 30
Sales rate at second period = Qz = 10
C = 1C0

D= 20

E = 10.

B, Twenty dimenslonal production and euployzent scheduling
problemn.

The well Known Holt, Modigliani, Muth znd Simon [87 peint
facroty model is selected as a second test vroblems This model
consicders the production and inventory system with two indeverndent
variébles in each pianning pericd. The schematic of the nroblss
i1s ehown in Figure 2.

One palr of the incsnendent variables is used To repressant
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the production rate and work force level at each nenth. The
problem is to deternine the optimal vroduction rate and worik

Tforce level such that the totsl opersting cost for the 10 =onihs

e
=}
}J-
N
®
o

plarning hoxrizon is min

Let us define

n = a month in the planning horizon

K = the duration, in moniths = 10

Pn = production rate at the nth month

Wn ~ work force level in the nth month

Qn - sale rate at the nth month

In = inventory level at the end of the nth month

Inventory level at the end of each month is computed using
the recursive relationship between sales, profuction and

inventory as followus
I =I +P "Q| 1l = 1' 2, [ B | Nl

The model considers that the total operating cost conzist

of following four cost items.

1. Regular payroll cost, l.e., direct labour cost,
2., Hiring and layoff cost,

3. Overtims cost,.

ct

4, Inventory cos

These in-iividual cost components of this model are glven
as follows:

1. Resular vayroll cost = 340.0 wn



2. Hiring and layoff cost = 64.3 (W_ - Wn_l)z

n

2 T
3. Overtime cost = 0.2(P, =~ 5.6?Wn) + 51.2P, - 281.0u,
L, Inventory cost = 0.0825 {In - 320.0)2

It is assumed that backlogigf orders or negative inventories
are permitted.

The declsion problem can now be stated as to choose the
optimum values for production rate, Pn’ and workforce level, wn.
at each month of the planning horizon such as to minimize tThe

total cost S which is given by

N
N
S = & 8
N n=1 1
Where
o 42
5 = [340.own] + [64.3(dn - W, _q) ]

T 2 ~ T
* [O.ZO(Pn - 5.674)" + 51.2P - 481.own]
+ [0.0825(1_ - 320.,0)%]

Here 10 months planning pericd has been considered.
Therefore, there are ten variables for the production rate and
ten for the workforce level. Hence the system which we are
consldering 1s a fwenty dimensional minimizalion problem.

The numerical data of the melel is given as follows:

Ty



Q = 430, Qg = 375,
Q = Lu7, Q, = 292,
2 fy
QB = 440, Q8 = U458,
= 6! = & ’
Qq 31 Q9 Loo
Q_ = 397, Q = 350,
5 10

Initial inventory = I0 = 263.0

Initial workforce level = wo = 81.0

10
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3. GRADIENT TECHNIQUE

The gradient direction is the best searching directlon for
locating a minimum of a function. The method of steepest descent
has been used fof mény years for finding a nminimum value of a
function. The main disadvantage with the method of stecpest
descent is the requirement that each new direction te normal to
the old direction. Various modificstions have been proposed to
improve the original method of steepest descent. Rosenbrock and
Storey [19] describes many of these modifications in their book
and gradient method 1s one of these modificatlions.

To begin the search for a minimum by using the gradient
method, the direction of steepest descent which is negative of
the gradient direction is determined and then a step of length
& is taken in this direction. The process is continued bty again
locating the direction of steepesé descent and taking a step of
certain step size & in that diresction. There are several
versions of the gradient method which are different in deter-
mining this step size. One of these verslons of the gradient
methods is presented.

The gradient technique which locates the nininmum of a
function of several variables 1s very fast converging method
when the trial points are far from the optimum. One of the
limitations for this particular method is that it 1s only uéeful
gor unconstrained minimization problens.

Let us consider an ovtimization protlem which 1s at steady

state and represented by the followlng system of equations.
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vhere @ 1z & given constant, x is a s-dimensional vecter
representing the state of the systes and € is &n r-dimensionzl
vectar rerresenting the declsion.

Let 'y be & trial declsion vector, then the corresponding

- 4 & -
statez vactor X can be obtained from equation (la) suvch as

g 2y 8) = O o (2}

if the declsion vector is usriurbed arbitrarily bub glightis
from the trial value (It is desiref to insure that verlurtaticnz
in the centrol vector are small enough thet linscarizaeZioun is

valid), ith«i is,
6 = 8 = eq (3)

and the resulting verturtstion of gtate vector 1s
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vector and the state vector. Trne 68 and X presented by ezuations
(3) and (4) also satisfy eaustion (1). Then a Taylor series
expansion of equation (1) arocund ¥ and 6% gives (neglecting the

second and hizher order bterms)
T(w, x, 6) = T(w, x¥, 8%)

T (w, x*, 0%) VT(w, x*, 8¥%)
P o €y + = €y (5)

Therefore we obtaln

OT(w, x*, 0%) DT(w, x%, 6%)

or in short

2T 2Ty \
where
?:c'8xs T 311 Zy ot \Bx
. (8)
(=27 G 5D
L -1 -2 s -
IT.* m 27 s DTy s Ty . x]
(""‘;'fsxr = {,a,\ ) (-aq ) 1 s ® e %“E)-')
- - 1 2 =
. (8a)
N T al_, «
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In general, the performance index (or the objective functien)

can be expressed by

Plxgs Xyn ever x) =P () | (9)

In reclity the performance index may include the declislon
vector, however the system can be transformed into the system

represented by equation (9) as followst

Tl (Wl?}{l,---,X; 61'_.,¢|o-'e ):‘_'D \

s T

T (Wog Xy eeey X3 0o, vee, 0.0 =0 |

2 2" "1 s 17 o s-systen
. \\ egquaticns
. (

TS (WS; Xl, LA ] }CS; 91:' L er) - 0 J

gd(xll s ey XS= 81; 1a0y er) - 96(X, 8)

The above originzl systems equations are transformed to

sey }CSI 61. R er)

T4 (Wl: 0 = @ \
Tz (wzi Xlg ey ng 91. [N er) = 0

{s+T) systen
TS (w 3 Xy eees XS: el, % g Gr) = equations
J.S+1(xs+1, \.1) = XS+1 - Cl = 0



qb(xl. peey X9 X owees X v}- the new performance
index
Consider now adjoining the system eguation, equation {1}
as an equality constraint with the objective function, equation

(9). This gives

P = Plx) + 12 T . (10)

Where l¢,is Lagrangian multiplier and superscript T is the
transpose of the column matrix. The problen is transformed
from the extremization of equation (9) subject to constraint
given by equation (1) to the extremization of equation (10).
Teking the first variationé on the ébjective function,

equation (10) gives

o |22, 7201y, 2222
d‘i’:[_a:-}- }'QSBXJE‘Y : 195'3?-}- 6‘()“ (11)

where

From the trial decision veector, 6%, and the corresponding
state vector, x¥*, we can calculate (Eg)%, (22)* and {22)* in
X X 20
equation (11). The unknown Lasranglsn multiplier, l¢, in equation

{(11) can be chosen o that

(QQ)* + li;(%g) = (12)

tnerefore, eguation (11) becomes
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il BT* -
¢ =g (23) ey (13)
At the optimal condition | :

ag = 0 (14)

1}
however, d¢ ¢+ 0, in general,

The gradient technique 1s an iterative method which starts
from a trial point (x*; e*) and decldes -a proper €y that gives
the greatestrchange in d¢ so that a¢ + 0. However, it is
desirable to insure that perturbations in the control vector,
elp, are small enough that linearizatlion leading to equations (5)

end (11) is valid. €@ 1is a step size defined eariisy» as &§. Lat

2 T
(dp) " = (e¢) W (&)

2

or

(0012 = iy (e Z 4 vuen o+ U (€4 (15)

be a positive definite guadratic form with W, a matrix of
suitably chosen weighting factors and dp a scalar which is
specified to linmit the magnitude of the perturvations. W is a
(rxr) matrix in general, hovever, a dlagonal matrix is used,
Equation (15) is introduced into equation (13) in terms of an

undetermined Lagrangian multiplier o as follows:
T * i
sp+ rg ey + o L(ap)? - (e¢) w(ey)] (16)

In order to attain thes maximum rate of change of ¢ with
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respect toely, equation (18) is naximized by differentiating

Wlth respect to- ey and egualing the result to zero. This yields

®) T %T T H
E{—;) = ‘P ( 5 - 2 (e@) W = 0 ;? (17}
or
EY = =5 W %'ET ).q: (18)
substitutinz equation (18) into equation (15) gives
T
g (D)0 @D*T

20 = + [ ] (15)
(dp) |

If dp is given, 2a is obtained from equation (19) and then
€@ is obtained from equation (18).

r

Finally, in the iteratlion procedure, the new trlal value

becones

*

*
enew@eom-s-eqz (20)

The determination of the optimal dp for thils gradient
procedure is a very @ifficult task. According to Sage [ 20],
there is some merit in adjusting dv, and a practically efficient
method consists of using the past value of dp, one-half the
past value, and two and ten times the'past value of @dp iIn orderxr
to-détermine a in eguation (19), which in rebturn determines
BZeW' The resulting four values of B:QW are then used to
determine x and ¢b, the performance index. The velue of dp(%dpold’

or 10¢ ) which vrcduces the smallest ¢ is then

2¢p .
* 01(1’ pO].l‘,1

dpold'
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used for the next iteration by the gradient method.

A. Application to two dimensional production scheduling problem.

The function F to be minimized is given by

2 - 2 . \2 2
F = c(e1 “ eo) + D{(E - 11) * c(ez - 61, + D(E = 12}

The problem here is tc find optimal schedule of the produc-
tion level 6 and 6, cuch that the total cost,F, is minimized.
To convert the problem into standard procedure of the gra-

dient technique, we define

?i = Il = IO + 61 - Ql

=1 =1 -
=l =1, +8,-Q,
= 0
X3 1
Xu =] 32 '

Hence system equations can be written as follows:

Ty=% =8+ =0
Tz = xz - xl - 62 + Q2 = 0
T3 = xa - 91 = 0
Tu = Jt’_lr - 62 =0

From the given function F, perfornance index ¢ (x} can be
written as

qb(xl, X XB, x@) - 0(13 - eo)z-+ D(E =~ x1)2

vy

- . 2 E - 2
+ U(XQ 3) “+ D(w 12)
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"From the systems eguations and performsncs index, it is

gl . bt o (DTF
seen that (52) is a 4 x 4 matrix, (55)

(23)* _ ['acp 2¢ 28 7"75] » 15 2 1 x 4 matrix.
2X bxl ax2 ij an

is & 4 x 2 matrix, and

This technique is programmed in WATFOR for an IBN 360/50 system.
The flowchart and the computer program is given in Appendix I.

Initial starting trail values for 6

"l

In the initial iteration, the trizl value of dp = 1 was

and ©_ are assumed to

1 2

be

assumed, which in turn gave a set of four dp values as

0.5, 1, 2, and 10

r

Stopping criteria for computer program was used as

| F

- F < 0.01
n+l n =

After 11 iterations, the optimal answer was obtained upto
an accuracy mentioned above. It was seen that near the optimal,

convergence became slow.

The optimal answer for this problem 1is as followus

%1

e
2

minimumfP = $2960.71

17.82

Il

18.22

|

This problem consumed 16.10 seconds of computer time on an
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IBM 360/50 computer. It reguired 9816 bytes of cornputer memory

storage.

B. Application to twenty dimensionzl CfHMS paint factory model.
As seen earlier in the section 2, the objective function to

be minimized is given by

10
S- L 8
n=1 -
wWhere
2 v 2
8, = 3ho.own * 6&.3(wn - wnul) + 0.2(Pn - 5.67¢9

. 2

To convert the problem into standard procedure of the

gradient technique, let

r

- ai; i= 1, 2| seuy 10, I‘epl‘esent Pi(i | 1. 2, RN 10}'

the production rate at the ith stage,
ej; j=11, 12, ..., 20, represent wi (i=1, 2, «.., 10),
the work force level at the i1th stage

Further let us define

x1=11=10+61-Q1

?2 = 12 = I1 “+ 82 - Qz
%o = Y107 Tg* 10 7 Qo
Xll = 61

127 %



X . =6
30 20

System equatlon for the problem can then be writien as

X1-10-91+Q1=0
xz—xl—92+Q2=O

11 T 11 1
12 1z 2

- - B = 0
Ts0 = ¥30 ™ "20 ,

From the given objective function, the performance index

®(x) can be written as

P (x)

n

10
nilqbn(X)

]

2
340,0[ x(n+20)7] + 64.3[x(n+20) - x(n+19)]
2
+ 0.2[x(n410) - 5.67z(n+20)]
+ 51.2[ x{n+10)7 - 281.0[x(ns20)] + 0.0825[x(n)-320.0]2

P, (=)

# *
In this case (2T/ax) 1s 30 x 30 matrix; (2T/268) 1is 30 x 20
matrix and (B¢Vax)* is 1 x 30 row metrix. The welghting
matrix W is assumed to be an identity matrix of 20 x 20.

Initial trizal valus for ¥ 15 assumed as follous
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In the first iteration initial trial value for dp was g=t

equal to 1 which in turn gave a set of four values of dp as
0.5, 1, 2.and 10
The stopping criteria for the computer program was used as
'F -F | < 5.0
nel n
Tt took 68 iterations to get an optimal result upto an
accuracy mentioned above. As noted earlier, near the optimun
convergence became slow and sometimes the fluctuating behavior

of the technique was also seen.

This problem consumedl 352 seconds of computer time on an
IBM 360/50 computer. The problem required 26312 bytes of computber

memory storage. The optimum result is shown in Table 1.



Table 1. Results of Twenty Dirmenzicrial Problem (Graiient
Technique). '

n Pn wn In
1 bhs.23 7742 278.23
2 432,89 74.22 264,12
3 417.56 71.20 241,68
4 398,71 68 .49 321,39
5 386,67 65.95 314,06
6 372.80 63.75 311.86
7 358,06 61.71 377.92
8 349.15 60.06 269,07
2 329.57 " 58,65 168, 6%

10 303.52 57473 152.16

Minimum cost = %242288,70
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L., SIMPLEX PATTERN SEARCH

There are number of direct search technliques which have
‘beenn developed recently for findinz the minimum or maximum of =2
function of several variables, The simplex'pattern search is
considered tc be most efficient and simplest in the direct search
procedures., There are number of pattern search techniques
available for optimization purposes. The particular method
proposed by Nelder and Mead [16] will be presented here.

In general to use this method for the minimization of a
function of n variables, it 1s necessary to set up a simplex of
(n+l) vertices, that it té select (n+l) trial points in the n
dimensional space. The values of the objective function are
then calculated at each of these points, By comparing the values
of the objective function at thes# (n+l) points, the vertex
or point with the highest value (1.e. the worst voint in
minimization) 1s replaced by a point with a lower value of the
objective function. A discusslon of the operations to select
this point will be described in detail., As the objective
function approacihes the minimum, the point of the simplex with
the highest value is discarded and is replaced by a polnt with a
lower value to form a new simplex of (n+l) points. This
procedure is repeated until the peint corresponding'to the
minimum value of the objecstive function is achleved.

The procedure of the technigue 1s described for a two
dimensional problem in which objective function S = f(xl, x2)

1s to be minimized. A sirplex with (rn+l) = 3 polints 1s required
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to set up as shown in Figure 3. Let P_, P_ and P, are the trial

1l 2 3

points which form the thrse poirnts 1ln the two dimensional space

of xl and Xge The following notations are used to describe the

method.

|
e

the value of the objective function at the point, Pn'

the vertex or point with the lowest value of the
objective function (yl) in the simplex or set of trial

poihts

the vertex or point with the highest value of the
objective function (yj) in the simplex or set of trial

pointé; this point corresponds to Pn+1 for n=2 variables

the vertex or point at which the corresponding value
of the objective function (v,) lies between the values

of the objective function (yl) and (ya) for points P1

and P,
3

the centroid of the vertices or points, P1 and P_, with

2
the value of the objective function (yh). In general
the centroid of a set of n points in a simplex is

given by

P,/n
1 i

e
i

The three operations through which a new point with a lower

value of the oLjective function is found are known as reflectior,
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expanslion and contraction.

T

4

The reflection of the highest valued peint, P3 with respect

to the centroid, Pq, is denoted by P5 and its coordinates are

defined according te the relation

P. =P, +0 (Pu - P.) i (1)

5 3

where o is 2 positive constant, the reflection coefficient.
Note that P5 is on the line joining P3 and Pb' on the far side
of Pu from P3 with the distance between points P# and P5 deroted
by PP, which is equal to a FB_PE

The reflected point P5 mey be expanded to P6 apcording to

the relation

where ¥ is the expansion coeffilclent, which is greater than
unity, is the ratio of the distances.PsP# to P:Pg-
g
The contraction of the highest valued peoint, P_, with

3

respect to the centroid, P s presented by P? and defined by

l‘.}'
the relation

where B is a positive nunber between 0 and 1 and 1is the ratio of
thg §1stances P?Pu to PBP&'
The values of the cosfficients, a, 8 and y, considered

best by Nelder and Mead [ 16] for faster convergance are

a = 1, ﬁ:lfz, z2nd Yy = 2
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However, the best valvesz for ¢, 2 and may be different for

different problems and shculd be determined from experience.

The details of the procedure for using the method of simpl=six

pattern search are described as follows:

[

Vertices, Pl’ 2

according to the values of the objsctive function at each

P_ and P3 of the initial simnliex are located

point having the relation LY < y2 < yj.

Pu, the cantroid of P, and P2 is deternined.
1 :

First, P3, is reflected to P5 with respect to PQ, and if

< t
1 5 S Yo then P3

rocedure again with a new simplex, i.,e., return to ste
P %)

¥. <y is replaced by P5 and we start the
1.
If yS < yl, that is, if the reflection has produced a new

minirum, we expand P5 to Pg' ,If y6 < yi, We revlace P3 by

" P, an? restart the process by returning to step 1. But ir

6
Vg > y,» we have falled in expansion and must replace P3 by

P5 before starting again,

Ir after refleztion, we find thatrys > ¥y and y5 > ¥,y We

‘&&fine a new P, to be either the old P, or the old P_,

3 3 5

depending on whichever has a lower yn value and then contract

P3 to P?. We replacse PB by P? and restart the procedure by

returning to sten 1, unless yl > ys, that is, unless the
contracted point has a higﬁer:value thar P_. For such a

3
failed contrsction, we replace P2 and P_ by (Fr_ =+ Pl)/z

3 2

and (P, + Pl)/z respectively and restart the process by

3

returning to step 1.
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‘The procedure used here for the two dimensional problen
can easily be extended to the n-dimensicnal problem. The worst
point of a simplex with (n4+l) vertices is reflected, expaﬂded or
contracted in the same manner with respeect to thg centroid of the
remaining n vertices until the stopping criterlon is satisfied.
A flow diagram of the method is given in Aprendix II,

One stopping criterion 1s the occurence of five consecutiﬁe
values of the objective function which are nearly egual in the
desired 1eve1-of accuaracy. Another stopping criterion would be

to compare the "standard error” of the y's in the form

n+1 2 z
{[ z (in -7) :l/n}z
i=1

with a prescribed value of desired accuracy and stop the prograrn
when it falls below this value. ’

The initial simplex for the n-dimensional problem 1is usually
set up as follows.

One point which is the centrold of the initial simplex is
selected and perturbation size is also specified for each componen:
of the selected point. The (n+l) vertices of the initial simplax
then can be formed by (n+l) x (n) matrix which 1s shown as

follows. Let the selected point 1is

T g T
1
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and the perturbetion size lis

s ™
1

d
%
a

W

The matrix of the vertices of the initial simplex will be

.= _ 91 92 93 « s o8 e e Gn .
Point 1 ql- d1 q2- dz q3- d3. " e 8 s qn- dn
2 q1+ dl q2- d2 q3- d s s s e s qn— d
3 ql q2+ 2d2 q3- d3 i @ 4 & & qn— dn
L ds | q2 q3+ 3d3 e s e.e e qn— d
. . . -q3‘ " e s s e qn- d
n _ ql q2 q3 . s s e qn- dn
n+l __91 q2 q3 t e 0 0w qnf nqg

Each point of the simplex of (n+l} vertices represents n

dimensional vector.

A, Application to two dimensional production scheduling problen.

Here the objective function which 1s to be minimlzed 1s



o 111

!
n

12 + 6 = 30
+13

I,=¢ - 28
2 1 7t 62

The problem is to find optimel values of 91 and 92 such
that S is minimized. Simplex patteirn search is programmed in
WATFOR for 360/50 computer. The computer program is given in
Appendix II; -

In this problem the initial simplex 1s formed by selecting
one point as

q 15.0

M|

q2 15.0

and the perturbation slze as

-G

Then the initial starting simplex is glven by

6 6

4 2
pt. 1 10 10
pt. 2 20 10
pée 3 15 25

The stopping criteria is to stop when

Y
2

< €,001.



32

where S 1s the mean function value of a simplex of three points.
Another stopping criteria iz to stop when number of iterations
exceeds over one hundred iterations.

The output result of this problem 1s as followus,

91 = 17.82

2
2

minimum S = $2960.71

18.21

n

This proﬁlem took 30 iterations to get an optimal solution.
The number of objective function evaluated is 53. It consumed
17.33 seconds on IBM 360/50 computer. The problem regquired

19824 bytes of computer memory storage.

B. Application to twenty dimensional HFMS paint factory model.
The function which is to be minimized 1s given by
10

S= ¥ S
n-1 2

Where
p 2 - 2
8, = 340.0wn + 64.3(wn ﬂn_l) + O.Z(Pn 25.6?wn)
+ 51.2Pn - 2.81.Own o+ 0.0825(1n - 320,0)
Let Bizpi, i:ll 2. e wgy 10
aj = 1"}1' J = 11| 12, e g 20

and In = Il’l—l o en - Q.I’l

with initial inventory level, I, = 263.0

Therefore the objective function now can be written as



10
s= £ {3500(n10) 4 64.3 [6(ne10) - 0(ns9)] 2
n=1 2
+ 0.2 [B(n) - 5.67 6(n+10i] + 51.2 8{(n)

- 281.0 6(n+10) + 0.0825 [ I(n} - 320.0 ] 2}

The problem is to find 6(n); n = 1, +.., 20 such that
the objective function S, is minimized.

This problem was solved on an IBM 360/50 computer, The
computer program and the flowchart is glven in Appendix II.

The point which sets up the initial starting simplex

according to the matrix formulation was selected as

Bi = L"OO.O' 1: 1' 2, LR 1 10
0 .= 0.0, j

n

11, 12, ...y 20

end the perturbation size for each component of the twenty

Gimencsional vector was chosen as followus

51 = 5.0' 1 = 1’ 2, *eay 10

dJ = 1-0' J = 11. 121 L | 20

The standard deviation, for the stopping criteries used in the
computer program, was chosen equal to 10.0.

The optimum result was obtained after 375 lteratlons on an
IBM 360/50 ccmpﬁter upto an accuracy mentioned above. It
consumed 612 seconds of couputer time. The probtlem required
20736 bytes of computer memory storaze. The outrut result is

shown in Table 2.
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R i e R

n Pn Wn I -

1 435.06 77.51 268,06
2 468,26 74,66 289.32
3 428 .67 71.24 277.99
L 377.54 68.62 339.53
5 376.02 €5.32  318.55
6 377.62 64.19 321.17
7 339.79 62.02 368.96
8 355.70 60.03 266.66
9 326,11 58,28 192.77

10 277.39 ’56.92 119.16

Minimum cost = 2242177.60
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5. FLETCHER AY¥D POWELL HZITHOD

An efficient search technique for finding the minimum of a
_function of several variables has been developed by Fletcher
and Powell [4]. This search method 1s based on the conjugare
gradient method developed by Davidon [2]. The method also utilizes
the fact that near the optimum the second order terms in a Taylior
series expansion ddmlnate.

The method supposes that the functlion and its first partial
derivatives can be calculated at all points. The application of
this method is restricted to onlyrunconstrained minimization
problems and thus the method of Fletcher and Powell is useful for
finding an unrestricted local optimum.

The conjugate gradient method assumes that 1n a nelghtorhcod
of the miniﬁum the function can bg closely approxinmated by a
positive definite gquadratic form. From this assumptlion Fletcher
and Powell proved in their paper [4] that thelr method has
quadratic convergence. |

The direction for the search are chosen in such a way that
conjugate directions are.generated; and each direction is a
direction of steepest descent. Then the method uses one dimen-
sional searches in these directions. The method 1s descrlbed for
a general minimization problem of n variables.,

Consider a function to be minimized 1is

S f(xl, Xyt wees xn) \§1)

The gradient vector for this function is

(iq
Ll

-g = [51& .%2’ cxry By
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i:l, 2, L I B nl

Where
&y

Assuming a general quadratic function in the vecfor matrix forx

S=f_ + ol x + 1 xTG x ' (2)
O — = 2—-—--—-—-
: T T nd
where a° and X are row vectors, and G is a matrix of 2 order

partial derivatives. The function S is quadratic if

Glj = Gji

Further G 1s a positilve definite matrizx.
From equation (2), gradient vector which consist of first

partial derivatives can be calculated. In vector-matrix form
E=24+G6X - (3)

Because of the fact that at minimum point, the gradient

vanlishes; we have

(&)

=1
n
o

g+ &

where X denotes the column vector at the minimum point,

Subtracting equation (4) from equation (3) we obtain

_&:_G_'_(-“z) (5)

I

The first partial derivatives are known at any point x.

Therefore g is known at any point. From equation (5) we obtain

-x-¢c7g - (6)

11

Wheare Gfl is the inverse of the matrix G.
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To solve this equation, the method of Fletcher and Powell
utilizes a matrix H0 which l1s an approximation to the matrix G-l.
As the optimum is ;;proched the matrix Hgy converges to a1,
Where G™1 is the inverse of G in whick the elements of the
matrix are second partial derivatlives of objective function
evaluated at the optimum,

In the first step of iterstion it is customary to set H0 = I

1 —_ -

where I is an identity matrix. Using H, for G~ ™ in equation (6),

we obtain a direction vector %

g - -

f--Hs (7)

As said above in the first iteration H0 is an identity
matrix and g is the vector consist of partial derivatives of

fhe objective function at the initial assumed point Xqe

Then new point in the direction ? is found by
e (8)

The one dimensional search in the direction.g is econducted
and the value of scalar X which minimizes the objcetive functlon
is determined. This value of . will be denoted by X.

Now define a new vector T as
g=1X5 (9)
also define a new vector y as

L=58 " & | 20}



The improved matrix H is obizined by

H=Hy+ A+ B (11)
where T
g g
.&= T
L4
and
T
. = Hyyy Hy
g._: -*E; —
¥ Ho X

This new improved matrix H is used as the matrix By in the
next iteration to compute a new direction § and a new gradient

1+1 which 1s obtained from equation (8) .

vector at the point x
The one dimensional cuble interpclation search procedure
is usually used in the method of Fletcher and Powell to find
the minimum of equation (1) along'the line given by equation (8)
The procedure 1s terminated when each of the correction Gi
1s less than a prescribed accuracy and when each of the
component of direction vector.g is less than a prescribed accuraczy

€ ; that is we wish to have
§< €

It 1s obvliously practicable to apply this method to find =
local minimum of a general function of a large number of
variables whose first derivatives can be evaluated quickly, even

if only poor initial approximations to a solution are known.

A. Application to two dimensional production scheduling problen.
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‘The objective function to be minimized is

2 . &2 2 2
S = C(ey - 6,)" + D(E - I,)7 4 (o, ~ 6,07 4 D(E - I,)
Let Xl = 61
= @
¥ = %2

Then the inventories at the flrst period and that at the second

period are

I

I2 =I; + %, - 10 - Zy + 12 - 28

12 + x, - 30

Substituting the values of constants and values for'I1 and I2

in the objective function, we getb
S = 100(x. - 15)2 + 20(28 - x)% + 100(x, - x )°
= 1 1o bS]
+ 20(38 - x; = xz)

This problem was solved on IBM 360/50 computer using IBM
scientifie subroutine FMFP [12]. The components of gradient

vector provided in the functlion sub-program are as follous.

D3 - ' - - -
gl = Dxi = 200(x1 - 15) - ko(28 xl) 200(x2 xl)
- 40(38 - x - xz)
_ 258 _ . _ -z -
g2 = 525 - 200(x2 xl) 40(38 X xz)

The stopping criteriz is to stop when

lgi-i-l i gll i =

In this problem & is specified es 0.001. The various data which



are necessary to provide with the use of subroutine FMFP are

provided as follows.

|

Limit = 10

Estimate = 3000.C

1

Epsilon = 0.001

where Limit 1s the upper limit of number of lterations, Estimate
is an estimated optimal objective functional value, and Epsilon,
€, 1s the constant used in the stoppinz criterlion. The initial

trizsl value is set at

x_ = 10.0
|

X = 10.0
2

The output result is found as follows

f

= .8

xl 1¢.82
xz = 18-21

minimum S = $2960.71

It took only 3 iterations to obtain the above optimal
solution. It consumed 10.31 seconds of computer time on an IBM
360/50 computer. The problem required 8412 bytes of computer

menory storage.

B. Application to twenty dimensional HFMMS paint factory model.
As seen sarlier the function which is to be minimized is

given by
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Where

2 2
8 = 3uo.own s 64.3(wn - W ) o+ 0.2(13n - 5.6?wn)

n n-1

2
4+ 51.2P_ - 281.0W + 0.0825(1 = 320.0)
n n n

To convert the problem into the standerd form of Flstcher and

Powell method, let

X = Pi’ i = 1| 2, LRC I 10

™
n
=
[
]

11. 12’ ee 0y 20 and 1 = 1.72! s ey 10
and

I =1 +I—Qn

with initial inventory level I0 = 263.0. Therefore, the

objective function can be rewritten as

10 r 2
S = I [340.0x(n+10) + 64w3-{1(h+10) - x(n+9)}
n=1

+ 0.2 {x(n) - 5.67x(n+10)}2 + 51.2x(n)
- 281.0x(n4+10) + 0.0825 {I(n) - 320.0}2]

where In has recurrence relationship shown above.

This problem was also.solved by an IBM 360/50 computer usinz
scientific subroutine FMFP [12] together with the function
subprogram in the main routine of the computer program.

The components of the twenty dimensional gradlient vector

vere also supplied in the function subprogram. They are as followus

For Now Ly 25 nps 30,
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g(n) = 3%%%7.5 0.4 [x(n) - 5.67x(n+20)] + 51}2

+ 0,165 [I(n-1) + x(n) - Q(n) = 320,0]

FOI‘ n = 11. 12; e e g 19

|

g(n) = %%%BT - 340.0 + 128.6 [x(n) - %(n-1)]
2.268 [x(n-10) ~ 5.67xz(n)] - 281.0
128.6 [x(n+l) - x(n)]

and
g(20) = 5%%%67 = 340.0 + 128.6 [x(20) - x(19)]
- 2.268 [x(10) - 5.67x(20)] - 281.0

The initial starting vector of decision variables was

set at

Xi - 300!0' i = 1, 2, e o) 10 and.

X = 50.0. J

J 11; 12'. l!l; 20

The data for the stopping criteria, 1imit by number of
iterations and estimate of the minimum function value; which are

necessary to provide with the use of FMFP subroutlne, are as

follous.,
Epsilon = 0.1
Limit = 100

Estimate = 300000.0

4 The optimum result was obtained after 19 iterations on an
IEMY 360/50 computer. This problem consumed 59.90 seconds of

computer time to zet an optimal answer upto the accuracy mentioned



above,

storage.

The problem reguired 1257z bytes of computer memory

The opbtimum result ic¢ shown in Table 3.



Table 3.

Adesults of Twenty Dimensionz2l Problem.

(Pletcher and Powell method)

Ly

E

W

I

n n n
1 470.33 77 .66 303.33
2 2 T R 74,24 300,47
3 417.09 70.88 277.56
4 381.70 67 o 343.26
5 376.24 65.03 322,50
6 363.99 62.68 311.50
7 348.89 60,64 368.39
8 359.33 58.97 269.73
9 329.08 57.32 198.81
10 272,04 55.05 120.86

Minimum cost = $241512.10




6. ‘FLETCHER AND BEEVES HETHOD.

The method of Fletcher and Reeves [ 5] is also a quadratically
cbnvergent conjugate gradient method for locating an unconstrained
local minimum of a function of several varlables, It is similar
to the method of Fletcher and Powell [4].

The difference in both the methods is only in finding the
new direction of search. The method of Fletcher and Powell uses
the matrix H for successive improvement in matrix G'l. Hence
this methéd requires larger storage space. Particular advantage
of the method of Fletcher and Reeves is its modest demand on
storage space as only three vectors belng required for storage.

This methéd also has guadratic convergence, meaning that
for guadratic functions it is guranteed that the minimum will be
located exactly, apart from rounding errors, within some finite
numbers of iterations usually n wh;ch 1s the number of variables,
The method also supposes that function and its partial derivatives
can be calculated at all points.

The method can be deseribed for a general minimization

problem of n variables. Consider a function to be mininmized

S - — - f LN I )
(%7, x y xn)

2!

The gradient vector at each point is

E = [,gll 821 vy E’-jn]
where
- OS5
gi T X

i
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It 1s seen in the method of Pletcher and Powell that the

new direction of search is found Ly
§--ng

where H is a matrix., Instead of finding new direction by this
way, the method of Fletcher and Reeves finds new direction of

search as follows

¢

Ti41 = ~ &341 7 ﬁigi (1}_

where 51 is scalar given by

T 7 )
511-1 g—iu.l '
By = =g —— (2)
& &
For the first iteration 51 1 will be zero and hence starting
direction will be negative of gradient direction that is
%1 = = 51

Then the new polint in this direction is found by
PARLPALY PN (3)

Then one dimensional linear séarch in the direction E is
conducted and the value of scalar A which minimlzes the function
1s determined. ‘

This procedure leads to thzs following seneral minimization
alzgorithn.

Initially select an arbitrary point E(l) then gradient



b7

vector at this point is calculated which is denoted by &

The direction of search at this point will be & = - g - Then

——

new point x(121) 40 thie ¢irection is located by equation (3).
Then gradlent wvector at rnew point i1s czleulated and new
direction of search is obtsined by equation (1).

As sald above this process is zuranteed, apart from
rounding errors, to locate the minimum of any quadratic function
of n varlables in the at most n iterations,

The one dimensional cuble interpolation search is usually
incorporat=? in this method to locat the minimum 2lorng the
direction f which determines the value of A.

The procedure is terminated when each of the correction
Gi is less than a prescribed accuracy and when each.of the
component of § 1s less than 2 prescribed value epsilon €,

Sometimes it might be sufficlent to continue the iterations

until a complete cycles of (n+l) iterations.

A. Application to two dimensional productlion scheduling problem.
Here the objective function which is to be minimized is

given by
2 A
)?

2
L7 4 D(E-IZ)

2
= g -~ 6 - -
5 = C( + D(E Il) -+ 0(92 8

1 o
with notations and values for the constants as described in
section 2, The approach of the problem is same as in the method

of the Fletcher and Powell.
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1 1
X =6
2 2
Therefore
I. = 12.0 &+ Xl - 30.0

and

= - 2800
I2 xl + 12

The objective functlion becomes,

S = 100(x1 - 15)2 + 20(28 - xl)z + 100(3:9 - xl)z

. 2
+ 20(38 - x; - x2)

The problem is to find the optimal values of Xl and 12
such that the objective function S is minimized. The components

of two dimensional gradieﬁt vector can be written as

_ s _ - . LOTEE -
gl = EEI = 200(x1 15) 40(23 xl)
- 200(X2 - xl) - 40(38 - X, = xz)
s _ _ _ _ _

An IBM scilentific subroutine FMCG [12] was incorporated
into the maln program together with the function subprogram
which provides the objective functlon and components fo the

gradient vector as shown above.

§n+1 = %;"5 €. The

data for the limit of lterations, estimate of the minimum

The stopping criteria is to stop when

functlon value and epsilon for the above stopping criteria which
are necessary to provlide with the use of subroutine FICG are as

follows,
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"Epsilon = 0.001
Estimate = 3000.0

Limit = 10

The initial triasl value was used as

X 10.0

1

= 10.0
x5

The optimum result for the problem 1s given below.

1

= 18.21
Xy

"minimum S = $2960.71

The method of Fletcher and Reeves took only 3 iterations
to get an optimal result. This problem consumed 8.80 seconds
of computer time on an IBM 360/50 computer. The problem

required 7132 bytes of comput=sr memory storage.

B, Aprlicetion to twenty dimenslional HiMS paint factory model,
The metho? of Fletcher and Reeves was also applied to 20
dimensional EMNM3 paiﬁt factory model.
" As described earlier in the section 2, the objective
function of the model is given by
10

S= £ S

n-1 B

Where :
= ! L] — \ 2 L] - [ 2
sn = BLO.OWH + 64 3(wn hn_l) + 0 2(Pn 5 67wn)

2
+ 51.,2P - 281.0W «+ 0.0825(1_ - 320.0)
n n n
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" wlth ususl notations alresdy described in section 2. To convert
the problem into the standard form 6f the Fletcher and Reeves

method, we define

X ‘_'P ] i:‘..'l, 2. e vy 10

5
ol
™
|

=

] 1::1,. 2. [N Y 10
‘1:11' 12| L IR 20

also In = In-l + xh - Qn with initial given inventory level
Io = 263.0, Now the objective function can be written in the
follouing forn.
10 2
S = T [340.0x(ns10) + 64.3) x(ns10) - x(n+9)'j
n-1 ' 2
4+ 0.2 § x(n) - 5.67x(n+10)} 4 51.2x(n)

- 281.0%(n+10) + 0.(18;35511n - 320-0}2]

This problem was solvsd on an IBM 360 computer using IBM
scientific subroutine FMCG [12] together with the function
subprogram in the main routine of the computer progran.

The comvonents of the twenty dimensional gradient vector

supplied in the function subprogram are as follows,
For n = 1’ 2’ sa ey 10}

g(n) = . 2S_ = 0.4 [x(n) ~ 5.67x(n+10)] + 51.2
Dxin)
* 9.165 [1{n-1) + x(n) - Q(n) - 320.0]

FOI" . Il = 11’ 12. [ ] 19;



Fy
ot

- 2| -CS

Ly(n 10} - £.67x{n)] - 281.0
- 128,6 [ x{ns1) ~ x{(n)]

and

5(20) = m31;:3 = 3%0,0 « 125.6 [x{20} - x(19)]

NET
- 2,268 [x(10) - 5.67x(20)! ~ 282,0
The initial starting vector of decision variab s saot

at

Ii = 300«0 ’ i = 1, 2, e ey 10 and

X = 5010 1 j = ll’ 12; LI B R | ?.O

The data for the stovping criteria, 1limit of maximum
number of iterations and estimate of the minimur function value
which are necessary to provide 1n 'the subroutine FIFCG, arc as

fellovs,

Epsilon = 0,1

|

Estimete = 300000,0

Limit 100

The method of Fletcher and Reeves took 31 iterations to
get an optimal result. This problem consumed 49,98 seconds of
corpubter time, This problem regquired 11292 bytes of computer

menory storass., The opbinum output result is shown in Table k.



Table 4.

Results of Twenty Dimensionsl Problem -
(Fletcher and Reeves Method)

Minimum cost = $2431517.00

n Pn wn In
1 471,37 77.68 304,37
2 L4l 6L 74,27 362,02

3 416,31 70.90 278 .34

4 380,90 67.75 - 343.24

5 374.88 65.07 | 321.13

6 363.57 62.72 309.70

s 349,92 60.70 367.62

& 359452 59-63 269.15

9 329.82 . 57.40 198.98
10 275.43 56.16 124,41
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7. A COMPARISON AND THE DISCUSSION C©i RESULTS

The results obtained by these four techniques namely,
gradient technique, simplex pattern search, Fletcher and Powell
method and Fletcher and Reeves method are compared with resvect
to following four criteria.

l. The optimum function value obttained upto an accuaracy
prescribed.

2. Total computation time in seconds which is considered as
execution time plus the compilation time.

3. Number of iteration required to arrive at an optimum solution.
An iteration is defined as each successlive move fro=
previous point except in simplex method where an iteration
means formation of each successful simplex.

L, Computer memory storage required in bytes.

These four criteria give the idea about convergence and
effectiveness of each technlgue under 1dentical conditions, that
is, under the same computing system and with the same set of
problems. The initial starting point in each problem is kept
the same for 211 techniques except in the simplex pattern
search, because slmplex pattern search starts its search from
initial simnlex which consist of (n+l) different points as
described in the method.

Table 5 shows a comparison of results of first test
probiem which is two dimenslonzal production planning problem,
It can be seen that each technigue produced the same optimum

function value upto an accuracy c¢f two decimal points. The
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Table 5. A Comparison of Results of Two Dimensional

Problem.

Technique Cptimum Computation Number of Computer
function time in iterations memory
value seconds ' storage

' in bytes

Gradient 2960.71 16.10 11 9816

Simplex 2960.71 17.33 30 19824

Fletcher

& Powell 2960.71 10,31 3 8412

Fletcher

& Reeves 2960.?1 ' 8.80 3 ?132
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computation time and storasze requirement for simplex pattern
search are highest among all the four technigues, Fletcher and
Powell method and Fletcher and Reeves method produced nearly the
same results although Fletcher and Reeves method proves the

best in this test problem. Gradient technique puts itself in the
third place with normal results.

Table 6 shows a comparison of results of second test
problem which is twenty dimensionael HMMS paint factory model.
The optimum fﬁnction values obtained by all the four technigues
ere differ from each other bj less than 1%. Simplex pattern
search took the longest time to arrive at an optimal solution
and Fletcher and Reeves méthod took the minimum time. Gradient
technique gave the nominal result with respect to 21l the four
criteria. The computer memory storage requlired for this problem
is largest for.gradient technique.” In this problem alsoc the
method of Fletcher and Powell and method of Fletcher and Reeves
produce nearly the same results; though Fletcher and Powell
method arrived at an optimum solution in only 19 iterations
whereas for the same problem method of Fletcher and Reeves took
31 iterations.

It is seen from the results shoun in Table 5 and Table 6
that Fletcher and Powell method and Fletcher and Reeves method
gave the highest convergence rate in both the problems. This
1s expected because they have characteristic of quadratic
convergence and the objective functions are in quadratic forms.
Fletcher and Powell methe? requires the storage of matrix H as

described in the method while mathod of Fletcher and Reeves
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Table 6. A Comparison of Results of Twenty Dimensional
Problem.

Tecnnique Optimum Computation Number of Computer
Function time in iterations memory
value seconds storage

in bytes

Gradient 242288,70 352 68 26312

Simplex 242177.60 612 375 20?36_

Fletcher

& Powell 241512.10 59.90 19 12572

Fletcher

& Reeves 241517.00 49.98 31 11292
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requires storage for only three vectors hence the latter took
less computation time snd less number of wemory storage kecations
in the computer.

Simplex pattern search took the longest time to get an
optimal solution izn bobh the test problems. The reason is
obvious becausé simplex pattern search basically searches for
all the possible points on the response surface of the objective
function and hencs it took more number of iterations and
cbmputation time conmpared to other methods;

Gradient technique shows its normal behavior in both the
test problems. It is seen that in the second problem it needed
the largest number of meméry storaze as it requlres to store
three large dimensional metrices as described in the method.

The effect of each method on the dimensionality of the
provlem can also be compared from these two tables., Fletcher
end Powell method and Fletcher and Reeves method have less
effect on increasing %he dimensionality of the protlem with
regard to 8ll the four criteria. Both the methods produced
optinmum results for twenty dimensional problem in less than a
minute of computation time. This shows quite encouraging and
promising behavior of the optimization techniques based on
conjugate gradient method.

In this case also gradlent techniqqe has very normal effect
onrincreasing the dimensionality of the problem except that it
Trequires very larce number of computer storage locations aé the
dimension of the optimization problem increases. It prodﬁced

optimal result for two dimensional problem in only 16 seconds



of computer time whille for twenty dimensional problem it consumed
about & minutes of computer time which is considered to be
normal effect on the dimensionality of the problen.

It can be stated from the above results that simplex
pattern search gets worst as the dimension of the optimization
problem increases. The reason for this is that near to optimuﬁ;
a simplex becomes small and hence 1t takes more time compared to
other optimization techniques. Also it required quite a high
number of iterations to arrive &t an optimum solution in the
second test problem.

The results show that the conjugate gradient method of
Fletcher and Powell and méthod of Fleﬁcher and Reeves present the
most consistent behavior among the group of techniques considered
here. They can be proved highly efficient for many kinds of
unconstrained optimization problems arise in the industrial
management systems. The gradiernt technique 1s also a fast
converging techanique and 1t is easy to apply and program for the
various kinds of optimization problems. Simplex pattern search
is also an efficient direct search optimization technique for
low dimensional problems as it does not require to calculate
the derivatives of the objective function. Therefore this
technique is adequate to tfeat difficult optimization problems

where derivatives are Gifficult to calculate.
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APPENDIX I. Computer Program for Gradient Techniqﬁe.

The computer flow chart which illustrates the computational
procedure is presented Iin Fig.A=Ll;the progran symbols, thelr
explanations and corresponding mathematical notations are summa-
rized in TableA-l. The computer progrom for twenty dlmensional

problem follows the symbol table.



(0l /fo®} trisl g
matrix set Ap=1.0
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Calculate x vector

Calculate (%%ﬁ matrix

lA

Compute vector la

A3 = =(?0/px) (01 /ox) T

1

. Set W equal .
to identity matrix

Compute  Zdp; a 2dp; 106 p

'g

Calculate four values of
2a corresvonding four dpn's

Calculate four vectors

EY - _2_ (-oT/ae) g

|

Ccal. four o ; correéponding to
four dp's i . = o¥ el
8heyw = Zola * =X

Evaluate four function values
corresponding to each dp; P{x)

Compare four function values and

retain minimum one and corresponding

*
do & 8,

Print NO
¢1X)new'
_enew

; Fig.a-1. Flouw diggram for Credient technlque.



Table A-l.Symbol Table
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variables at new point

g;giz?m Explanation Mathematical Symbol
A g8 x ¢ matrix where s - No, (2T /ox)
of state variables
B 8 x r matrix where r = No. {(oT/20)
of decision variables-
P A matrix of partial (o9/ax)
derivatives of a funectlion
l xs
H 1 x s row matrix | xﬁ,
X(I) A vector of state x
variables
TH(I) A vector of decision ezqd
variables at old point -
S 0l1d objective fuiction value dXx)old
Fl New objective function value ®P(X)y .,
T - T
D Numerator in a formula ’ x¢,taT/ba)w l(DTfae) A
for 2a
DP A constant dp
- R |
R(I) A vector to calculate wl(o1/22) 0 g
EQ
ALPHA A constant to calculate 20
E(I) '
E(I) A vector of change in 9 £y
3=
TH1(I) A vector of decision L A-
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APPENDIY II., Computer Prowraw fov Simplex Pattern Search

4

The coxnputer flow cheoit which iliustrates the corputational
procedure 1s illustrated in Fiz.hA-Z2;the prosram symbols and

thelr explsnation are sumsarized in Table A-2.Tne computer

'’
o]
|
ot
=

program for the solutior enty dimenslional problem follous

the symbol tabhle.
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Table £-2.Symbol Table

Program

Symbol Expianation

N Number of decision variables

PCTR(I) A vector of decision variaﬁles

D(I) A vector of perturbation size for starting
initial simplex

ITER Number of iterations

ITOUT o Interval of output iterations

ITMAX Maximum number of iterations

DELTA Accuracy level for st0pping criterion

A(I) Sales rate; I = 1, 2, ese; N

CI(I) Inventory level; I =1, 2, ¢ee, N

NOPT Number of objective function evaluation

NORFT Number of reflection move

NOEXP Number of expanglcn move

NOCNT Number of contraction move

NOCVGT Number of convergence in a simplex

sY Standard deviation in & value of objective
functions

Y(I) Value of objective function at a point P(I) in
a sinplex I = 1, 2, seey N4l

YF - Value of objective function

M Average functlon value of a simplex

YMIN The minimum function value in a simplex

PMIN(J) A point in a simplex which gives minimum

function value
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NCPT=ACPT+1
IF(Y(n421-Y(1})3C,22,22
IFIYIN42Y-¥ () 23,40,40
CC 24 T=1¢0
PLN+Ll,1)=P (M43, 1)
Y{N1Dd=Y (N2}
[fea=11C+1
NCRF1=NGAF T+
GC C 1C<
v AKE EXAPANSICY FOVE /
co 31 Jd=1,% ’
PIN44 4 0)=P (42,3142, 02(P(X+2,0)- pi{ne2,Jd))
PCTR(J)I=2{N+4,0)
CALL CHoob17T=-—=X
CALL CEJFYIRPCTIR N, YY)
CALL CFrChZS=-=(
Y{rN+3)=¥F
NOPT=ACPT+]
TFLY(N423)-Y(1))32,22,+23
CC 33 I=1.%
P41 ,011=P({N+4,1)
¥Y{%41)=Y{1+3)
ITER=ITC 4L
NQEXP=NCTXP+1
o0 10 1Cc
TE(YIA+2I=Y(N41))41,450,50
CC 42 1=1,%™
Plu+]l,1)=P{N+2, 1)
Y{ield=Y(n+2)
pren=177141
MOIFT=AC2FT+1
TENANT CONTRACTION FOYE .

. DTS Jd=1.7

DL, J =P {42, IV +0.52 (P IN+1 . J}=P (N2, 0} )
PCT=(0J)="0045,4010 :
CALL CRJAFMIPOTL, ,¥F)

¥{#4)=¥YE

76

HT Y& SYNCOVGT, P00,



NOPT=NCPT+

FRAYINSAG)-Y M4 ) )52,450,400

2 LU 33 I=14
53 P4, 1)=0(M15, 1)
Yiv+i}=¥{"+2)
FTECR=T1T2¢)
NCORT=ALCHT+]
MOUVGT =00V 5T+1
60 TC 119 ,
EECLT COWN STER-SIZE
€T CC &2 [=2,M8
0O 61 Jd=1,% .
Plid)=((1,J0¥+PL,,d)¥72.C
61 PLCITA{JI=0(1,J1}
CALL CRJIFM{PCTR s N,¥YF}
€7 Y({1)=YF
FREAMRRANGE CATCR
I=1
NS=N+] B
63 TFLY(I)-Y(NS))5H6,64,84
64 YTow=%{13)
YIuS¥=%{1)
Y{l)=yTCE"
CC 65 J=1,™ ’
PCTR0IYI={NS )
PUNSyd)=21(1,4J}
&5 P{I,0)=22T72{J}
€6 TF{NS-TI-1)6A,63,67
ET NS=nS-1
Go IC &2
67 [=1+1
EF{I-0N=1}03,7C., 73
§9 NS=3t1
G2 IC &3
TG NECPT=ANCPT+N
NCQVSI=N0CYsT+1
102T¥=4
LG 75 U=},
79 PCI{LY=201, 1)

113

1le

127

YaIn=y ()

CALL CLTRUTL INPTE, [TER, ICP T NCEXP G NORFT 4 MCCNT,Y¥35Y,YCGCVET,PCTR,

LYRZ [N, ITCUT LPLLT o N)
GC 1L 12¢

T NCCOVIT=2C

FEXALARIANGE OROCEQ .
ICi=h

[FIYLICR+)-YIIGRAIDIE12,12C,12C

YTz =y(I72A+1)
YIIGs+1)=Y(ICR)

CY(ICR =YL

CG 112 J=1,%
PCT2(0)=21IC+1,J})
PLICHt1,3)="(ICR, )
PLIT,3)=200000)
[FOICR-1)120,120,114
[er=1c3-1

“GC TL 11%

FRTEST F22 CPTIMALLITY
¥YT=Y{1)

Fraa= i

77



56
57
.58
59
€6
€1
62
63
LB
(€5
L&b
LeT
L&£8
(€9
¥ 24
71
(72
L#3
L 74

E#>
E76
L77
L7&

LG 121 1=2,9¥%
121 YIi=yis1{l[)
YiEY /P . 7€
SY=[Y¥Y ({1 )-Yir}&=x2
LR lze 1=2,"1V
122 S5Y=SYe{Y{I}-¥YVF}=%2
SY={Sy/rM)+3:L.5
FF{SY-CELTAILZ23,122,12¢4
123 IF(=COvCT=-20Y128,125,12%
12¢ 1C2li=g¢
S0 132
125 1071x=]
GO0 TC 13z
126 §0278=-

130 N=N

Ge 131 I=1,8
131 PCTRLLI=2(1.T1)
Yellr=Y{1)
CALL CLT=2UTL ICPTH g ITERGNCPT G NCEXPHYNORFT JMCCNT f YI y SY  NOCVGT,PLTR,
CAYNMIANGITOUT 4 ~ULT o N)
[IFIICEIF-1)115C,158C,14C
14C IFULTM25-T1T7)15C,15C,160
154 Srap
EnC



L 75
LEC
LEL
18
L&3
1 E4

Les

186
LET
1€8

189
160

CSUSRACLEINME CuJdT i PCTa, i, YE)
CIoOASILY POTRA0) PO le L)y u(6G) CTLal ) M {al) ) 79

APLT(l 1)) 404 35 {PCTIRLTT -0, )22+, 25 (20T2{2)=5.67%(PCY
]111l*¢2+51-2?ipcrﬂll)3-281.*(PCTR11133*5-C825*(C1}i}*EEJ.)**?
YF=51

CG 2 J=2.1¢

2 YP=VP4240 (130T LC) ) #64,3%(POT LI+ LT)-POTRII4G)I*%24 . 25{ 701

1-5.674C0TR0J+101) 552451, 25(2CTR(III=28 1 (PUTRIJ+LCIIHC.0RZ25% UL
P)-320.0)%%,

RETURMN

END

a
A}

\
T
i

(1

J)

.
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Gl SUSRELIENE CuTPUTHICPTIA s I TZR, NPT NERAP G NCAT T o HOCNT o Y7y Sy NECY 50
IPELL YT oLl MUl T, ™)

52 BIMENSTLS Palsda ) P r{av) b l&Q),CL{a0Y,  V(40)

G4 1C¢ FOWAT(O16,2F 12,3, T, 3%GH: SrTlaues

55 200 FC2yal(sla,2F12.3,184

<6 ECOC FOobaflolE,24 1 H-< 1R, 3X13FF START PLINIL

ST 700 FORVATLAXAINOPTAXA 1T 223290 NCRF T 3ASHANCEAP 3LSHENCINTTA2EY I LOX205Y D00
THNCCVETAYOHEREVARKL

S8 710 FOFATILOX2V XL 3430< HF1O.342H o<

9 7206 FORPATLIOXEFYNIN FR1IB.3 /7K

G IFLICFTi=2)13,420,25

£l 25 IFLICFTE=-5123,53,29

c2 12 PRENT TCC ,

€3 PRIMI 100802 T, ITER ,NORFTHNISXP 4ACCAT oYM SY NCLVET

C4 PRIAT 710, (J.PIN{d)J=1,N])

c5 PRINT T2, YHIN

cé RETUHA

c7 2C¢ IFUTIER-ITOUTHMULTIZS,21.21

c8 21 PRIET (¢

9 PRINT 200, NCPT, ITER G NCRFT NCEXEZNCCAT 4 Y4 SY s WCCVET

‘10 PRINT T10,0J0,PHINVIJ),yd=1 "

1l PRAINT T20,Y¥IN

12 MULT=FLLT L

‘13 29 RATTURN

'14 50 PRINT 1LC -

'15 PRINT B0C MOPT, [TER G NCRFT y NOEXE a NCONT ,NOLY ST

'16 PAINT 710, 0P Ix{J)d=1,A) .

‘17 PRIYT T2, Y HIN .

'18 RETU2A

19 END
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APPENDIX III. Conmputer Program for Fletcher and Powell HMethod

The computer flow chart whieh illustrates the computational
procedure of the method is illustrated in Fig.A=3;the prograﬁ
symbols, thelr explanations and corresponding mathematical
notations are summarized in Table A-3.The computer program for
the solution of twenty dimensional problem follows the symbol

table.



"Head I,

triel wvalues

(1)

for x

Assune
EST, EPS, LIMIT

set Hd: indentity
matrix

Calculate gredient

vector, gy ='%§§§l

82

Evaluate function
value, F

Compute direction vector
By = - Hy_y &

Print

F,

]

Compute stebsize ki
which minimize

j(xi. + Agi}

f l

Calculate new point xl1+1)

L) (1) N

Calculate gradient vector

51+1,at new point x(i+1)

Compute

Yy = 8541 ~ &

Fign A-B L4

Calculate new matrix H1

T g
go_n o mEE Faa¥a¥ifi
C1iti-17d 11-171

Flow diszsran foy Fletcher and FPeowell method.




Table A-3.8ymbol Table
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Progran i Mathematical

Symbol Explanation Symbol

N Number of decision veriables

*x{I) A vector of decision X s D=Ly, 2, eaesy N
variables =k

Q(I) Sales I‘&te; I = 1| 2' s e ey m - -

CI(I) Inventory level; I =1, 2, «» I s n=1, 2, svs,
., M, m=No., of periods n

EST Estimate of minimum function
value

EPS Accuracy level for stopping c
criterion

LIMIT Maximum No., of iterations

F Function value F(x)

G(I) Gradient vector; €3 n=1, 2, «osy N
T Ly Py nawy N , "

H(I) Direction vector; Ein=1,2, «0.o, N
I = 1’ 2] LB B | N I

AMBDA Stepsize A

B

H A Tatrix to approximate
G‘ _— :



H-ﬂhlq“ﬂhdhiﬁﬂlﬂ 2
OO - RN W 00D O NN e

RIS LSO B S Y

~N

]

- AW N O

1LY

CC¥PFLTIER POCGRAF FUY FLoTCRER AWE PUWELL SETRCL
APBLICATICN 10 TwEMNTY ClMERSTCMAL PHCELEN

LXTERNEIL fL“CT
CIFENSENY XU20) 4 T030), 030,003 ),00270)
CorMyIA !"CL*‘\T)C[!C-
REAC 1{C,(CHLTY),I=1,10)

1CC FCP¥ATUILITFS.1)
K=27
£€C 1C 1=1,

1C X(t)=2C¢C.

CC 2C J=11,2¢C

2C Xx(J)=¢(.
EPS=C.1 '
EST=3CCLL02.0 '
LIMTII=1CC
CaLL F”FPIFL\CTq\ XeFsGsFESTEPS L[PII.IF 1K)

i}

TCC FCRELZT(1V—, FLETCHER AXLC FP"LL FETHCC ')
PRINT TCC
CECC FCaMATLIH-,¢ P w 1
PRINT E€C% ) e
200 FCRVATU/ X4 F1Ca345X s F1Ta34CX,F1043)
CLC S 1=1,1if '
5 PRINT zC2,X01 ) X(I+1C),CI{])
AT FC2NRATL/FESIFINIFLE= FL12,3)
PRINT 30,F -
ALC FCRVMRATI//LXEFKDULAT=IY)
PRINT . AT, TLNT
STCP
ENL

.



€4
€5
€5

2

o
o

SC

2C°

4 ClJII=1Z2865(2{J)=2{J=1)}=2.268%{X(J-12)-C.£7%4(D)) #3340, 2~2E1.-127,
1e5(X(J41)-%X(J))

SUBRCULTINE FULACT (N X,F,C)"

CINENSICY XU20),50301,00(37),00371,1(032)
CHY¥CN KECUATLC1,C

CI{1)=263,C+X(11-C(L)

CC 1 I=z,1¢C

CLUTY=CIUI-1)4X(1)-CL 1Y

SL=34C, 03Xl 46423 (41 L1-€1.0) 22240, 25 {0 (1)=-S6T¥X(1L p5%2e01.20%

IX(L)-281 . C#AM11 )+ CR20x(CT{1)-32C,.0)%%2
F=S1

CC 2 (=
F=F434C 1K (
124514 23X (I -2E o X(J+12) 4472253 (CHUJI-320.)%%2

ce 10

o T =C.x

CC 1€ I=1,17
TELY=TUI I+ 2,165 {CTI(13~32C.0C)
LC 2C 1=2,1"
TU2)=T(21+C,1€5%{(CI11)~32C.0)
CC 3C 1=3,1C
TE31=T(2)+l.L€5%(LT1(1)~-32C.C)
EC 4C I=4,10
Tlal=T(a)+C 1E5F{CI(1)-32C.2)
CC 5C I=5,14
T(5)=T(5)+0.1€5%{CI([)-32C.C)
CC 6C I=¢,17
T(6)1=T(e1+2.1e5%{CI(I)-32C.0)
CC 7C 1=7,1%
TIT)=T(T7)+47.1€S%(CI(1)-32C.7)
CcC e I=%5,17

C TUAI=T18)+C.1€65%(CI(T)-32C.C)

CC SC 1=5,1¢

T{I =TS+ 1E5%{C1{1)1-32C.2)

TL12)=C 165 (CI{1C)-22C.0) #

CC 2CC I=1.,17
GlIl=aax(A({I)-5,674X{1+1C))451,24T(1)

GULL)=120.6%IXIL1)-C1a) 4340 ,-2,268%(X{1)-5.27%X{11))-2c1l.-12%05%1X

1{12)-x(111)
LC 4 J=12,1%

GU2C)=12P 6= (X{2C)=-X(1G))-2,2€8%{A(i0}-C.£T7%4{22)1)1-28).4247,
RETLRM
ENC

FACIALIEI4E43F(AMI+1IC)-X(J4G) 3524 .23 { A J)-S5. 6T {J+1) )%=

P



€7
€8
€s
¢
11
12
13
14
15
16
17
18
15
£C
€1
€2
€3
€4
€5
€6
€7
€8
€9
<C
51
62
<3
54
<5
<6
€7
58
<9
1€0
11
12
1¢3
1C4
1¢S5
1¢6
1¢7
18
1¢S
11C
111
112
113
114
115
116
117
118
115
12C
121
122
123
124

125

126

Ut

Nal eS|

11
12

13
14

c

i

1¢

17

SURSCLTINE FUFPLFULCT oY 3 XoF g CeEST EFS, LIMITTER,H)

CEFERSIOY FOL) o XE1) 600 ),CI032,0(020)
COMMON ROUANT (147

CALL TULANCT (M, X, F,C)

1e=C

KCUAT=C

N2=N4A

hN3=hz+h

N3l=AZ+1]

K=N31

CC 4 Ud=1,M

H(K)=1.

NJ=h=-J

TF{NJ)EL5,2

£C 3 L=1,NJ

KL=K+L

E(KLY=C.

K=KL+1 ,
KCUNT=KCUNXRT +1
CLLF=F :

EC S J=1,N

k=N+J

H{xY=CtJ}

K=K+M

HIK)=x(J)

K=J+A3

T=Ca

CC B L=1,X
T=T-C(L)*E{K)
IF{L-JIE, Ty 7
K=K+h-L

GC TC € _
K=K+1 /
CCNTINLE

E(J)=1

By"-":c

BENRVM=(.

G‘.\QI\":C-

CC 1C J=1,%
ENRM=FARF+APS(S{J))
GNAN=CARMHAESIGLJI)])
CY=CYy+H{JYFZ 1)
IFICY)1IL+51.%1
IFIEARYJONRIY-EPS)SL,51,12
FV=F
ALFA=Z . *{CST-F)Y/CY
AMBCA=1,
IF(ALFA)1IN,15,13
IF{ALFA-AFECA)L14,15,15
AvpCA=2LFA

BLFL=C.

FX=F¥

Cx=CY

EC 17 [=1.%
X{[)=x{IY+2FS0A%H(T)
CALL FLNCT{ WX FyG)
FY=F

EY=C-

CC 1l I=1,%

} CY=Cv+CtI}*H{1)

86



127

128
129
126
121
122
123
124
125
126
127
128
129
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154

155

156
157
158
159
1€0
1€1
1€2

163
164
1€5
1¢6
167
1€8
1€5
17¢
171
172
173
174
115
176
177
178
179
1€C
1€1
1€2
1€3
184
15
1€6

~
-

21
32

23
34

2
=

3¢&
3e

1F{CY)16,3¢86,22
lF{FY-—k]22s¢¢'L2
ANICA=2¥ILL+ALFA

ALFA=AMECA

IF(FNRMFAMDOTA-1 5100164 1E8,21
1&=2

RETLANM

‘.P.
IFULANELAYZ2E ,26,24
7=34%(FX-FY)}/A¥LEI+TX40Y

ALFM ibAYl[ﬁ“((Z)'»qulil|r~S{EY))
CALFA=Z2/ALTA
CALFA=CALFASCALFA-LXA/ALFASCY/ELED
IF(CALFAYS1 425,425
W=2LFASSCAT(CALFA)

ALFA=LY-CYth1k

IF (ALFA)Y 252,251,25¢C
ALFA=(LY-2¢#W)/ALFA

GC 1C 252
ELFA=(Z¥TY-%}/(Z4CX+Z4CY)
ALFA=ALFAZAVPLA

CC 2€ I=1.M
XEid=xtI¥+(T-2LFA)}=F(T])

CE2LL FLNCT‘N,X,F|G)
[F(F-FX)27427,+22

IF{F-FY)26,3€,2¢

» CALFR=C.

CCT 26 I=14N
C2LFA=CLALFA+CII)*F(T)
IF{CALFAIZO,22,33
TF{F- Fl,aciw.l33 .
IF{Cx-CALFA)32,3€,22
FX=F /
CX=CALFA |
T=ALFA
AFMECCA=2LFA
GC 7€ z3
IFIFY-F)35,324,39
IF{CY-CALFA)2ES,2£,35
Fy=F
CYy=CALFA
AMEDA=AFEDA-ALFA
€EC TC 22
IF{CLLF-F+EPS) S1,738,38
EC 37 leph
K=XN4J
R{KY=ClLIY-FIK)

=854K
Elx)=x(3)-F(K)

[ER={
ITF(RCULANT-MN)Y42,435,434G
T_.- :’.
I=C
CC 4 lej\
K=+
YeiilK])
F=X+\
T=T+2ES(F (7))

=T+ R (F)
EF(FASr-FP5)481,41,42

87



1€7
1€8
1€S
15¢
161
152
153
154
155
156
157
158
155
2C0
201
202
2¢3
zC4
2¢5
2C6
207
28
2¢9
21
211
212
213
214
215
216
217
218
218
2z¢
271
222
223
224
225

41
42

43

44

45

4

47

48

IF{I-EFS)50,2€64542
IF(RCLNI-LEYITYE2,50,57
al Fa=(.,

CC 47 J=1.M

TK=J+A2

h=0.

CC € L=1.N

KL=h+1L

Wt (RLYR(K)
IF{L-C)44,45,45
K=rK4M-L

GC TC 4¢

K=Rkel

CONTINLE

K=h+J
ALFA=2LFa2+h*F(K)
HFld)=bk
IF(Z%2LFA)G&E,1,44E
K=N31

CC 4S5 L=,

KL=N2+L

CC 4S J=L,4XN

ANd=hZ4d

HIK)=E IR+ (KLY =H(AJY/Z2-F(L)=F({JY/ALFA
K=K+1 ’
GC 1C ¢

IEa=1]

RETLZAN

CC 52 J=1.N

K=X2Z2+y

X(dy=F{¥}

CALL FLECT{ N sXy3F,C)
IFICANRM-FPS)IEE,E55,52 /
IF{IER)S56,54,5

[ER=-1

GCTC 1
[ERr=C

RecTLRA

ENC

88
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APPENDIX IV. Computer Program for Fletcher and Reeves Hethod

The computer flow chart which i1llustrates the computational
procedure of the method is illusirated in Fig.A-l;the program
symbols, their explanations and corresponding mathematical
notations are summarized in Teble A-4,The computer program for
the solution of twenty dimensional problem follows the symbel

table.



Read N,

trial values

for 5(1)

As3une

EST, EPS

and limit

Evaluate function value F,
at initial point 2(1)

Calculate gradient wvector gl
initial point 3(1)

Compute direction Veotox-ﬁl

§1 =~ B3

90

Compute stepslze A, which
minimize §(x 1), ligi)

1

Calculate new point by
(1+1) (1) |
X = X + li%i

r

Evaluate function value F,

at X( i+1)

Coﬁpute gradient vector g
at x(1+1)

1:1

Calculate new direction vector

T

;.1 %3
by$ ._}..f_l._l.%i

Lig1 T -51-:-1 * T g

i

Print

F,

14

Fiz. A-L4,Flow diagranm for Flebtchar end Reeves method,
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Taeble A=l,Symbol Table

Program i Mathematical
Symbol Explanaticn Symbol
N Number of decisicn variables
X(1) A vector of decision X 1 n=121, 2, sees XN
variables n _
Q(I) Sales rate; I = 1, 2, «es, W
CI(I) Inventory level; I jn=1, 2, eesy M
I = 1; 2’ eneyg I n
m = No., of perlods
EST Estimate of minimum function
value .
EPS Accuracy level for stopping €
criterion : '
LIMIT Maximum No. of iterations
F Function value F(x)
I =1, 2, ¢sey N s I
H{I) . Direction vector;
I=1' 2. OOO'H én;n=1, 2' s e 0y I‘I

AMBDA Stepsize A



CC#¥PLTER PRACSRAF FCY FLETCHE® Al REEVES ¥ETHTC
ABPLICATION TC TWENTY CIVENSICAAL FRCBLEW

EXTERAAL FLMTT

CTIFEASTICY X{2T),C30),C0(3C),CH{3T ), (270
COGHEDN FOUNT,LC0, 0

REAC 1€C,(QUT},I=1,41C)

1(0 FCRFATILIOFS.1)

(]

2C X(0J)

LIFIT=1273
CALL EMCHIFUNCT aN X 3Fyf ESTEPS,LIFIT,[ER,F)
CC FCR¥ET(IR—, " FLETCHFCR AND REEVES METHCC ')
PRINT TGO ,
ECC FCRMATIIN-,° P 5 ‘ i
PRINT €CC
200 FORMET(/73X,FL0a395X,F1Ca3,5%,F1C32
CC 5 1=1,1¢
5 PRINT ZCC,X(1)X(T1+1C),CILI)
20 FORNVAT(//7EX3FNINIMLY= FI0.2)

AR FRECFRT TRE TRS e gmm g g g e e e ey b - o G
e A A e D O 00 e O LN N e D 00 O AN S R e

: PRINT 33,F

¢ A0 FCAMATUZZEXERENTUNT=12)
5 PRINT 2(CC,KCLAT

6 SInP

7 END

LT

—



<8
25
2¢

21 -

22
23
34

35
26

ar

38
29
40
41
42
43
44
45
46
47

48

45
£0
€1
£2
£3

€4

€5
Eb

<
-

<8
cs
€0
€l

€2
€3

€4
€5
£6

SUBRCLTINE FLACTIANGX4F,G)
Cl¥ehzlin
COCFMON KULNTLCL .0
CItll=ze2.C42(L)-C1 1)

EC 1 I=2,1"
CUeL)=CI(I-1)+Xx(D)-C{ I
S1=24C ,Cxx (1114 64.22(X(11)-%1

PX{L)-2E1.O%X (11 )+.C8255{CIE1)-220.0)%%

F=51
CC 2 J=2418

XE3C) B A0 T, CT (20 )L 032, T 30D

A AT

L )FFZEC,

L

[ I oV

93

(XUI)=3,E1¥X{11))%5245]), 2%

2 F=F+24C 20X (J41604C4 28 (R{J+10)-XTJ45) 12224423 (A0J)-5,€Tux(J+10) )%

£
(]

%

EC lcc {zlgq

£C 1¢ 1=1,13

TCDI =T+ 1€5*{CI{T)-222.3)
CC 2C [=2,1%C
T(2)=T(2)14C1ES*(CHITIN=-32C.C)
0C 2C I=3,12
TU3)=T(3)+C, 165 (Ci(1)-22C.C)
CC &4C I=4,17
Tla)=T{41+3,1€5F(CI(I)-32C.C)
CC 5C 1=5,1%

TI5)1=T(8)Y4C, 1E€5%(C1(1}-32C.7)
CC &C I=¢,1C
T{6)1=T(E)+0,1£5+(C1(1)-32C.C)
CC 7C [=7,1¢C

TUZI=T (74063 (CTI{1)-32C.7)
CC 8C [=7,12
T(8)1=T(8)~+2,1€65%(CLITI)}-22C.01)
CC SC 1=5,12

TUSI=T(S)+0 1E5¥(CI(1)-220.T)
TU10)=C 185 (CI (10 )-222,.7)

EC 2CC I=1,1C
ClI)=e®[X{I)-3,67FX([+10})1+5

1249123 41d) =281 X (J410)+4.2325% 101 (J)-22C0.)+=2

’
r

1.2+T7(11}

GU11)=122,6%(X(11)-81la)+342.-2.2568%(X[1)-5.6T%X{11))-2%81.-12C.6%(X

1(12)-2(11))

CC 4 J=12,15

GlJ)=1z3.6%(4(J)-x(J-1))-2.2¢

Les(x(o+1)=-Xx1J))

B {X(J-1C)-5,67X[J)¥434C,2-2

5

o

1-"12?.-

GU2C)=128.e%(X(22)=-2{1G) )1 -2, 20EF(A(1C)-Z4€T*X(20)V)-28L.+43247C,

RETLRA
ENC
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€7 SURICLEINE FVYCOULFUNCT o NgXoF s CaEST EFS,LIFTT,1623,F)
1)

&R EIVERSTEN X{1) 3000, F01),C18230),C1 28 9l
f.!; . CONNLM ECL’\I',CI 1C
) KCUANT=(
12 IER=C
13 Nl=n+]
- T4 1 CC 43 11=1,%1
15 KCUAT=KCUNT ¢!
- 16 CLUF=F
?? GP\:{F-=C.
I8 EC 2 J=1.n
i¢ 2 GARM=CAPE4G{J)I%EC 1)
EC [F(CAKRM GG, 48,3
£l 3 IF(II-1)a,44,4€
€2 4 CC 5 J=1,N
E3 5 BE(JY=—CLJ)
&4 GC TC ¢
&5 & ANBUA=CENRF/CLLS
£6 BC 7 <=1,N
£7 T HIJ1=APELA*ELII-C(J)
£8 € LY=L,
ES HARNM=Z.
S9 CC 9 J=1,N
51 K=J4A
52 E{K)=Xx{J)
<3 HARF=FADRN+ABS(R(J))
S4 . S CY=CY+F{J)=S(d)
<5 IF(CY)Y1Csa2q82
cb 1C ShNav=l./bNRY
51 FY=F
€8 ALFA=Z ,*[EST-F}/CY
‘69 A¥aACp=Sr Ay 5
1€0 IF{ALFA)L3,13,11
1C1 11 TF(ALFA-AMECAY12,13,172
1¢2 12 AVEC2=fLFA
1(3 13 ALF2=(C.
1€4 14 Fx=FY
1(5 CxX=CY
1Cs LC 15 I=1l,%\
1€7 15 X(I)=x{I}+2:DCAH(T)
1c8 CALL FLACTIA,X,F,C)
1(S FY=F
110 Cy=C.
111 CC 1€ [=1,4%
112 16 CY=CY4+C{T)*-(1)
113 IFICY)1T7,38,2C0
114 17 1F(FY-FX)18,20,20
115 1 ANBCA=AFICA+ALFA
116 BLFA=ANEDA
117 [F(ENEN£AY20A-1.E10)14,14,15
iie 16 Iz&n=2
115 F=CLLF
1z¢ © CC 1CT J=14N
1z1 GlJY=t (J)
1z2 K=N+tJ
1z3 ICC X{Jd)=t1{K)
124 RETURAM
125 2C 1=".

lz6 21 IFUAFELAYZ 28,22



127
128

129
130
121
122

123
134
125

126

127
138
129
14C
141
142
143
144
145
14¢

147

148
149
150
151
1£2
1£3
154
155
156
157
158
155
1€C
1€l
162
1€3
1€4
1€5
1€6
1€7
1¢€8
1£9
17¢
171
172
173
174
135
176
Y77
178
179
1£C
1£1
1€2

1£3

184
185
| 33

22

24

25
2¢

21

272

211
212

2E

25
20

22
23
24

35
e
27

41
42
42

44

q¢

=3, % (FX-FY)/ANFEDA4TX40Y
ALFA=z2 ALLLARSUZY Sy AESHEX Y 20S{0Y))
CALFa=2/ALFE
CALFA=LALFLAERALFA-CR/ALFASTY/ALFA
IFICALTAY2Z23 427421

CC 24 J=1,4A

K=N+J

x(J]:r(f\l

COtL FLACTIN AZ4F,4C)

TF{TER}GT 26,447

fcid=-1

GCiC 1

R=ALFAESCRTIDALES)
ALFPLA=[Y-CX+hth

IF LALFAY 2734211,27C
AtFA=(CY-Z+%)/ALFA

GC 1C =272
ALFA={Z24CY-G)Y/(Z4CX42+4CY)
ALFA=ALFALANEBEDA

CC 2E [=1,AN
ALL)=211)+(1-ALFA)Y*H{T}

CALL FLNCT{MNXyF,4C)
IF{F-FXx)29,23,3C
IF{F-FY)2E,2E,3¢C

EALF£=CI

EC 31 I=1,A
CALFA=CALFA+CITI)*H(1])
IF{CALFA)22,2%, 35
IF(F~-Fx)34,22,35
[F(CXx-CALFA)I4,35,24

FX=F
Ex=CatLFa
T=ALF
AMBCA=LALFA
CC TC <1
IFi{FY-F127,2¢,
[FIDY-LALFS) 2T
FY=F
CYy=CALFA
AFBCA=AMFACA-ALFA

GC TC <

FF{CLLCF-F+CPS) 1S425,2%
CLEG=CAay

Tz':o

EC 4C J=1l,%

KE=Jd+N

HIKY=x(J}=-}F ()
T=T+ARS(+-{%)}

IF [(KCULNIT=-N1) 462441,41

[F [T~EFSY 45,454,472

IF (ROLAT-LIFIT) 42,44,44
1eu=¢

CC 1C 1

I&n=1

[F{CARM-"PSYALE 48441
TFLICARN-TPSYLELCL) COL TC 4&
TFLIER.NT L) Z2C TC 47
[eR=-1

GC 1C 1

ity

ToE0

-~



187
1€8

47 RETURN
cnls
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In this report a comnarison of the four well known uncoi-
strained optimization techniques is presented. The four selected
techniques are gradient technique, simplex pattern search,
Fletcher and Powell method and Fletcher and Reeves method. The
production planning problem and the ﬁroduction and employment
scheduling problem represent the typlcal problems of the
industrial management systems. For this reason they are selected
as test problems in this study. To see the effect of these four
teéhniques on the dimensionality of the optimization problem, one
of the test problem considered is two dimensional problem and
another is twenty dimensional problem. The second test problen
is the well known Holt, Hédigliani, Muth and Simon paint factory
model.

The basic theory and rrocedure of each technique is described
together with the results of both the test problems. The four
different criteria, namely, the optimal objective function value,
the total computation. time, number of iterations and requiréd
computer memory storage are used to compare the behavior and
effectiveness of these techniques.

The results show that Fletcher and Powell method and
Fletcher and Reeves method gave the highest convergence rate
among the four techniques in both the test problems. It is seen
that they have the least effect on increasing the dimenslionality
of the problem. The gradient technigue proves itself third best
with.regard to all the four criteria and also in the effect of
increasinzg the dimensionality of the pfoblem. Although the

slmplex patfern search 1g an efficient search technique for low



dimensional problems, it seems that the technlque 1is inadequsate

for large dimensional orptimizatlon problems.



