A CONTARATIVE STUDY OF OPTIMIZATION TECHNIQUES APPLIED TO INDUSTRIAL MANAGEMENT SYSTEMS

by 500

VIJAY H. MEHTA

B.S. (MECH. ENGG.), Sardar Patel University Vallabh Vidyanagar, India, 1967

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1969

Approved by:

Wason Processon

Li	D											,			•									
26	68																							
R																								ii
19	69						ጥል	Ę	Ţ.ĘŢ	01	P (101	(1715 (1715	270	rs.									
m	43							•		•/-						78.								PAGE
0.	2																							PAGE
1.	INTRO	DUC'	rio	N	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•		•	•	•	1
2.	TEST	PRO:	BLE	MS			٠	÷	•	٠	t	•	•	•	•	٠		•	•	٠	e	٠	•	4
3.	GRADI	ENT	TE	СН	ΝI	QU	JΞ		•	•	•	•	•	•	•	•	•	•	•	•	•		•	11
4.	SIMPL	EX I	PAT	ŢĘ	RN	· S	SEA	RC	H							•	•	•	•		•	٠	•	24
5.	FLETC	HER	AN	D	PC	WE	ELI	. I	ŒI	HC	OD	•	•	•	•	•	•		•	٠	•	٠	•	3 5
6.	FLETC	HER	AN	D	RE	ΈΊ	ÆS	F	ΙΕΊ	HC	מכ	•		•	•	•	•	•	•	•	•	٠	•	45
7.	A COM	PAR	[SO	Ŋ	AN	D	TH	Ε	DJ	SC	US	SS]	ON	Į (OF	RE	ESI	JL	rs	•	•	•	•	53
REF	ERENCE	s.	•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	59
ACKI	NOWLED	GME	TS	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
APP	ENDIX	ı.	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•		•	•	•	62
APPI	ENDIX	II.	•	•		•			•	ě	•	•	•	•	•	•	•	•	•	•	•	٠		72
APPI	ENDIX	III	•	•	• ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81

APPENDIK IV

1. INTRODUCTION

There are several optimization techniques available for the various types of optimization problems faced by the management of the modern industries. The search techniques are considered to be efficient procedures among these optimization techniques. The search techniques are contrasted as alternate ways of solving problems to the usual available algorithmic techniques of operations research such as linear programming [6], dynamic programming [1] and the maximum principle [3]. The well known search procedures for multivariables optimization problems are Powell's method [17], gradient methods [19], Fletcher and Powell method [4], Fletcher and Reeves method [5], Hooke and Jeeves pattern search [9] and simplex pattern search [16].

In recent years some of these techniques have been applied in some of the industrial management systems. The effectiveness and behavior of these techniques are entirely depend upon the types and situations of the problems to which they are applied. Each technique claims its superiorarity in certain conditions and in certain situations.

The purpose of this study is to compare the behavior of some of the search techniques for optimization under identical conditions. In this report a comparison of the four well known unconstrained optimization techniques is presented. The four selected techniques are gradient technique, simplex pattern search, Fletcher and Powell method and Fletcher and Reeves method. To see the effect of these techniques on the dimension-

ality of the optimization problem, each technique is applied to two test problems. One of them is two dimensional problem and another is twenty dimensional problem. Thus it provides the comparison of each technique with other techniques and the effect of each technique on the dimensionality of the problem.

The production and inventory control and the aggregate production and employment scheduling represent the typical problems of the industrial management systems. For this reason they are selected as test problems in this study. The first test problem is a two period production planning problem in which the objective is to determine the optimum production level at each period such that the total operating cost is minimized. The cost is composed principally of the sum of the production cost and inventory cost. This model with 5 stages of planning period was solved by Hwang, et. al. [11] using the discrete maximum principle.

The well known Holt, Modigliani, Muth and Simon [8] paint factory model with planning horizon of ten months is selected as a second test problem. There are two decision variables at each month, namely, production rate and workforce level which are to be determined so as to minimize the total cost. The model was solved by Holt, Modigliani, Muth and Simon [8] using linear decision rule approach. It was also solved by Taubert [21] using Hooke and Jeeves pattern search. A similar model with 5 stages was solved by Hwang, Tillman and Fan using the discrete maximum principle [11] and using the sequential simplex pattern search [3a].

The gradient technique, simplex pattern search, Fletcher and Powell method and Fletcher and Reeves method are described in section 3, 4, 5 and 6 respectively together with the results of test problems. A comparison and discussion of the results obtained by each technique is presented in section 7.

Four different criteria are used to compare the behavior and convergence of these four techniques. They are the optimum function value, the total computation time, number of iterations and required computer memory storage.

2. TEST PROBLEMS

To campare the behavior and effectiveness of these four optimization techniques, namely, gradient technique, simplex pattern search, Fletcher and Powell method and Fletcher and Reeves method, they are applied to two problems of production planning system. It is also desired to study the effect of each technique on the dimensionality of the problem. For this purpose one of the test problems considered is two dimensional production planning problem and another problem is twenty dimensional production and employment scheduling problem.

A. Two dimensional production planning problem.

This problem is a two periods production scheduling problem in which the objective is to minimize the operating cost for the planning periods. The cost is composed principally of the sum of the production cost and inventory cost. Figure 1 represents the schematic diagram of this problem.

 θ_1 and θ_2 represent the production rate at each period respectively. Q_1 and Q_2 are the given rate of sales at each period. I_1 and I_2 represent the inventory at the end of each period and I_0 is the given initial inventory level. The recurrence relationship of the inventory is given by

$$I_1 = I_0 + \theta_1 - Q_1$$

and
$$I_2 = I_1 + \theta_2 - Q_2$$

FIG. 1. BLOCK DIAGRAM FOR TWO DIMENSIONAL PROBLEM

The objective function of the problem is assumed to be

$$S = C(\theta_1 - \theta_0)^2 + D(E - I_1)^2 + C(\theta_2 - \theta_1)^2 + D(E - I_2)^2$$

where C, D, and E are given constants.

The problem is to determine the optimal production rate at each period, θ_1 and θ_2 , such that the objective function S is minimized. It is obvious that the production rate at each stage should be positive, therefore, $\theta_1 \geq 0$, n=1, 2. Further more it is also given that the back log of orders are permitted that is, negative inventory values are allowed in this problem.

Numerical values of the model are given as follows.

Initial inventory level = $I_0 = 12$ Initial production rate = $\theta_0 = 15$ Sales rate at first period = $Q_1 = 30$ Sales rate at second period = $Q_2 = 10$

C = 100

D = 20

E = 10.

B. Twenty dimensional production and employment scheduling problem.

The well Known Holt, Modigliani, Muth and Simon [8] paint facroty model is selected as a second test problem. This model considers the production and inventory system with two independent variables in each planning period. The schematic of the problem is shown in Figure 2.

One pair of the independent variables is used to represent

BLOCK DIAGRAM FOR TWENTY DIMENSIONAL PROBLEM FIG. 2.

the production rate and work force level at each month. The problem is to determine the optimal production rate and work force level such that the total operating cost for the 10 months planning horizon is minimized.

Let us define

n = a month in the planning horizon

N =the duration, in months = 10

 $P_n = \text{production rate at the nth month}$

 $W_n =$ work force level in the nth month

 $Q_n =$ sale rate at the nth month

 $I_n = inventory level at the end of the nth month$

Inventory level at the end of each month is computed using the recursive relationship between sales, production and inventory as follows

$$I_n = I_{n-1} + P_n - Q_n$$
, $n = 1, 2, ..., N$.

The model considers that the total operating cost consist of following four cost items.

- 1. Regular payroll cost, i.e., direct labour cost.
- 2. Hiring and layoff cost.
- 3. Overtime cost.
- 4. Inventory cost.

These individual cost components of this model are given as follows:

1. Regular payroll cost = 340.0 Wn

- 2. Hiring and layoff cost = $64.3 (W_n W_{n-1})^2$
- 3. Overtime cost = $0.2(P_n 5.67W_n)^2 + 51.2P_n 281.0W_n$
- 4. Inventory cost = $0.0825 (I_n 320.0)^2$

It is assumed that backlog of orders or negative inventories are permitted.

The decision problem can now be stated as to choose the optimum values for production rate, P_n , and workforce level, W_n , at each month of the planning horizon such as to minimize the total cost S_N which is given by

$$S_{N} = \sum_{n=1}^{N} S_{n}$$

where

$$s_{n} = [340.0W_{n}] + [64.3(W_{n} - W_{n-1})^{2}]$$

$$+ [0.20(P_{n} - 5.67W_{n})^{2} + 51.2P_{n} - 281.0W_{n}]$$

$$+ [0.0825(I_{n} - 320.0)^{2}]$$

Here 10 months planning period has been considered. Therefore, there are ten variables for the production rate and ten for the workforce level. Hence the system which we are considering is a twenty dimensional minimization problem.

The numerical data of the model is given as follows:

$$Q_1 = 430,$$
 $Q_6 = 375,$ $Q_2 = 447,$ $Q_7 = 292,$ $Q_3 = 440,$ $Q_8 = 458,$ $Q_4 = 316,$ $Q_9 = 400,$ $Q_5 = 397,$ $Q_{10} = 350,$

Initial inventory = $I_0 = 263.0$ Initial workforce level = $W_0 = 81.0$

3. GRADIENT TECHNIQUE

The gradient direction is the best searching direction for locating a minimum of a function. The method of steepest descent has been used for many years for finding a minimum value of a function. The main disadvantage with the method of steepest descent is the requirement that each new direction be normal to the old direction. Various modifications have been proposed to improve the original method of steepest descent. Rosenbrock and Storey [19] describes many of these modifications in their book and gradient method is one of these modifications.

To begin the search for a minimum by using the gradient method, the direction of steepest descent which is negative of the gradient direction is determined and then a step of length δ is taken in this direction. The process is continued by again locating the direction of steepest descent and taking a step of certain step size δ in that direction. There are several versions of the gradient method which are different in determining this step size. One of these versions of the gradient methods is presented.

The gradient technique which locates the minimum of a function of several variables is very fast converging method when the trial points are far from the optimum. One of the limitations for this particular method is that it is only useful for unconstrained minimization problems.

Let us consider an optimization problem which is at steady state and represented by the following system of equations.

$$T_{1}(w_{1}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$

$$T_{2}(w_{2}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$

$$\vdots$$

$$T_{s}(w_{s}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$
(1)

or in the vector form

$$T(w; z; \theta) = 0 (1a)$$

where w is a given constant, x is a s-dimensional vector representing the state of the system and θ is an r-dimensional vector representing the decision.

Let θ^* be a trial decision vector, then the corresponding state vector \mathbf{x}^* can be obtained from equation (la) such as

$$T(w, x^*, \theta^*) = 0$$
 (2)

If the decision vector is perturbed arbitrarily but slightly from the trial value (It is desired to insure that perturbations in the control vector are small enough that linearization is valid), that is,

$$\theta = \theta^* + \epsilon \psi \tag{3}$$

and the resulting perturbation of state vector is

$$x = x^* + \epsilon y \tag{4}$$

where e♥ and €y represent the stall perturbations of the decision

vector and the state vector. The θ and x presented by equations (3) and (4) also satisfy equation (1). Then a Taylor series expansion of equation (1) around x^* and θ^* gives (neglecting the second and higher order terms)

$$T(w, x, \theta) = T(w, x^*, \theta^*)$$

$$+\frac{\partial T(w, x^*, \theta^*)}{\partial x} \in y + \frac{\partial T(w, x^*, \theta^*)}{\partial \theta} \in \psi$$
 (5)

Therefore we obtain

$$\frac{\partial T(w, x^*, \theta^*)}{\partial x} \in y + \frac{\partial T(w, x^*, \theta^*)}{\partial \theta} \in \psi = 0$$
 (6)

or in short

$$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{x}}\right)^* \in \mathbf{y} + \left(\frac{\partial \mathbf{T}}{\partial \theta}\right)^* \in \mathbf{\psi} = 0 \tag{7}$$

where

$$\left(\frac{3x}{3x}\right)_{SXS}^{*} = \begin{bmatrix} \left(\frac{3x}{3x}\right)^{*} & \left(\frac{3x}{3x}\right)^{*} & \left(\frac{3x}{3x}\right)^{*} & \left(\frac{3x}{3x}\right)^{*} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{3x}{3x} & \left(\frac{3x}{3x}\right)^{*} & \left(\frac{3x}{3x}\right)^{*} & \cdots & \left(\frac{3x}{3x}\right)^{*} \end{bmatrix}$$
(8)

$$(\frac{\partial \overline{T}}{\partial \theta})_{\text{sxr}}^* = \begin{bmatrix} (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* & (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* & (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* \\ \vdots & \vdots & \vdots \\ (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* & (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* & (\frac{\partial \overline{T}}{\partial \theta})_{\text{sym}}^* \end{bmatrix}$$
(8a)

In general, the performance index (or the objective function) can be expressed by

$$\phi(x_1, x_2, ..., x_s) = \phi(x)$$
 (9)

In reality the performance index may include the decision vector, however the system can be transformed into the system represented by equation (9) as follows:

$$T_{1} (w_{1}; x_{1}, \dots, x_{s}; \theta_{1}, \dots, \theta_{r}) = 0$$

$$T_{2} (w_{2}; x_{1}, \dots, x_{s}; \theta_{1}, \dots, \theta_{r}) = 0$$

$$\vdots$$

$$T_{s} (w_{s}; x_{1}, \dots, x_{s}; \theta_{1}, \dots, \theta_{r}) = 0$$

$$\phi(x_{1}, \dots, x_{s}; \theta_{1}, \dots, \theta_{r}) = \phi(x, \theta)$$

$$s-system equations$$

The above original systems equations are transformed to

$$T_{1} (w_{1}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$

$$T_{2} (w_{2}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$

$$\vdots$$

$$T_{s} (w_{s}; x_{1}, ..., x_{s}; \theta_{1}, ..., \theta_{r}) = 0$$

$$T_{s+1}(x_{s+1}; \theta_{1}) = x_{s+1} - \theta_{1} = 0$$

$$\vdots$$

$$\vdots$$

$$T_{s+r}(x_{s+r}; \theta_{r}) = x_{s+r} - \theta_{r} = 0$$

$$(s+r) \text{ system equations}$$

$$\phi(x_1, \ldots, x_s, x_{s+1}, \ldots, x_{s+r})$$
 the new performance index

Consider now adjoining the system equation, equation (1) as an equality constraint with the objective function, equation (9). This gives

$$\phi = \phi(x) + \lambda_{\phi}^{T} T \tag{10}$$

where $\lambda \phi$ is Lagrangian multiplier and superscript T is the transpose of the column matrix. The problem is transformed from the extremization of equation (9) subject to constraint given by equation (1) to the extremization of equation (10).

Taking the first variations on the objective function, equation (10) gives

$$d\phi = \left[\frac{\partial\phi}{\partial x} + \lambda_{\phi}^{T}\frac{\partial T}{\partial x}\right] \in y + \lambda_{\phi}^{T}\frac{\partial T}{\partial \theta} \in \psi$$
 (11)

where

$$\frac{3x}{9\phi} = \left[\frac{3x^2}{3\phi}, \frac{3x^2}{3\phi}, \dots, \frac{3x^2}{3\phi} \right]$$

From the trial decision vector, θ^* , and the corresponding state vector, x^* , we can calculate $(\frac{\partial \phi}{\partial x})^*$, $(\frac{\partial T}{\partial x})^*$ and $(\frac{\partial T}{\partial \theta})^*$ in equation (11). The unknown Lagrangian multiplier, λ_{ϕ} , in equation (11) can be chosen so that

$$(\frac{\partial \dot{\phi}}{\partial x})^* + \lambda \frac{\dot{\phi}}{T} (\frac{\partial \dot{x}}{\partial x})^* = 0$$
 (12)

therefore, equation (11) becomes

$$d\phi = \lambda_{\phi}^{T} \left(\frac{\partial T}{\partial \theta}\right)^{*} \epsilon \phi \tag{13}$$

At the optimal condition

$$d\phi = 0 (14)$$

however, $d\phi \neq 0$, in general.

The gradient technique is an iterative method which starts from a trial point $(x^*; \theta^*)$ and decides a proper $\epsilon \psi$ that gives the greatest change in $d\phi$ so that $d\phi \to 0$. However, it is desirable to insure that perturbations in the control vector, $\epsilon \psi$, are small enough that linearization leading to equations (5) and (11) is valid. $\epsilon \psi$ is a step size defined earlier as δ . Let

$$(dp)^2 = (\epsilon \psi)^T W (\epsilon \Psi)$$

or

$$(dp)^2 = W_1(\epsilon \psi_1)^2 + \dots + W_r(\epsilon \psi_r)^2$$
 (15)

be a positive definite quadratic form with W, a matrix of suitably chosen weighting factors and dp a scalar which is specified to limit the magnitude of the perturbations. W is a (rxr) matrix in general, however, a diagonal matrix is used. Equation (15) is introduced into equation (13) in terms of an undetermined Lagrangian multiplier α as follows:

$$d\phi + \lambda \frac{T}{\phi} \left(\frac{\partial T}{\partial \theta} \right) \stackrel{*}{\in} \psi + \alpha \left[\left(dp \right)^2 - \left(\epsilon \psi \right)^T W(\epsilon \psi) \right] \tag{16}$$

In order to attain the maximum rate of change of $d\phi$ with

respect to $\epsilon \psi$, equation (16) is maximized by differentiating with respect to $\epsilon \psi$ and equating the result to zero. This yields

or

$$\epsilon \psi = \frac{1}{2\alpha} W^{-1} (\frac{\partial T}{\partial \theta})^{*T} \lambda_{\phi}$$
 (18)

substituting equation (18) into equation (15) gives

$$2\alpha = \pm \left[\frac{\lambda_{\phi}^{T} \left(\frac{\partial T}{\partial \theta} \right)^{*} W^{-1} \left(\frac{\partial T}{\partial \theta} \right)^{*T} \lambda_{\phi}}{\left(dp \right)^{2}} \right]^{\frac{1}{2}}$$
(19)

If dp is given, 2α is obtained from equation (19) and then $\epsilon \psi$ is obtained from equation (18).

Finally, in the iteration procedure, the new trial value becomes

$$\theta_{\text{new}}^* \oplus \theta_{\text{old}}^* + \epsilon \psi$$
 (20)

The determination of the optimal dp for this gradient procedure is a very difficult task. According to Sage [20], there is some merit in adjusting dp, and a practically efficient method consists of using the past value of dp, one-half the past value, and two and ten times the past value of dp in order to determine α in equation (19), which in return determines θ_{new}^* . The resulting four values of θ_{new}^* are then used to determine x and ϕ , the performance index. The value of dp($\frac{1}{2}$ dp_{old}, dp_{old}, or 10dp_{old}) which produces the smallest ϕ is then

used for the next iteration by the gradient method.

A. Application to two dimensional production scheduling problem.

The function F to be minimized is given by

$$F = C(\theta_1 - \theta_0)^2 + D(E - I_1)^2 + C(\theta_2 - \theta_1)^2 + D(E - I_2)^2$$

The problem here is to find optimal schedule of the production level θ_1 and θ_2 such that the total cost, F, is minimized.

To convert the problem into standard procedure of the gradient technique, we define

$$x_1 = I_1 = I_0 + \theta_1 - Q_1$$
 $x_2 = I_2 = I_1 + \theta_2 - Q_2$
 $x_3 = \theta_1$
 $x_4 = \theta_2$

Hence system equations can be written as follows:

$$T_1 = x_1 - I_0 - \theta_1 + Q_1 = 0$$
 $T_2 = x_2 - x_1 - \theta_2 + Q_2 = 0$
 $T_3 = x_3 - \theta_1 = 0$
 $T_4 = x_4 - \theta_2 = 0$

From the given function F, performance index $\phi(x)$ can be written as

$$\phi(x_1, x_2, x_3, x_4) = C(x_3 - \theta_0)^2 \div D(E - x_1)^2 + C(x_4 - x_3)^2 \div D(E - x_2)^2$$

From the systems equations and performance index, it is seen that $\left(\frac{\partial T}{\partial x}\right)^*$ is a 4 x 4 matrix, $\left(\frac{\partial T}{\partial \theta}\right)^*$ is a 4 x 2 matrix, and $\left(\frac{\partial \phi}{\partial x}\right)^* = \left[\frac{\partial \phi}{\partial x_1} \frac{\partial \phi}{\partial x_2} \frac{\partial \phi}{\partial x_3} \frac{\partial \phi}{\partial x_4}\right]$, is a 1 x 4 matrix.

This technique is programmed in WATFOR for an IBM 360/50 system. The flowchart and the computer program is given in Appendix I.

Initial starting trail values for θ_1 and θ_2 are assumed to be

$$\theta^* = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$$

In the initial iteration, the trial value of dp = 1 was assumed, which in turn gave a set of four dp values as

0.5, 1, 2, and 10

Stopping criteria for computer program was used as

$$\left| F_{n+1} - F_n \right| \leq 0.01$$

After 11 iterations, the optimal answer was obtained upto an accuracy mentioned above. It was seen that near the optimal, convergence became slow.

The optimal answer for this problem is as follows

$$\theta_{1} = 17.82$$

$$\theta_2 = 18.22$$

minimumF = \$2960.71

This problem consumed 16.10 seconds of computer time on an

IBM 360/50 computer. It required 9816 bytes of computer memory storage.

B. Application to twenty dimensional EMMS paint factory model.

As seen earlier in the section 2, the objective function to be minimized is given by

$$S = \sum_{n=1}^{10} S_n$$

where

$$s_n = 340.0W_n + 64.3(W_n - W_{n-1})^2 + 0.2(P_n - 5.67W_n)^2$$
+ 51.2P_n - 281.0W_n + 0.0825(I_n - 320.0)^2

To convert the problem into standard procedure of the gradient technique, let

$$\theta_i$$
; $i = 1, 2, ..., 10$, represent P_i ($i = 1, 2, ..., 10$), the production rate at the ith stage,

$$\theta_j$$
; $j = 11, 12, \dots, 20$, represent W_i ($i = 1, 2, \dots, 10$), the work force level at the ith stage

Further let us define

$$x_{30} = \theta_{20}$$

System equation for the problem can then be written as

$$T_{1} = x_{1}^{-1}_{0} - \theta_{1} + Q_{1} = 0$$

$$T_{2} = x_{2}^{-1}_{1} - \theta_{2}^{-1}_{2} + Q_{2}^{-1}_{2} = 0$$

$$T_{10} = x_{10}^{-1}_{10} - x_{9}^{-1}_{10} + Q_{10}^{-1}_{10} = 0$$

$$T_{11} = x_{11}^{-1}_{11} - \theta_{1}^{-1}_{12} = 0$$

$$T_{12} = x_{12}^{-1}_{12} - \theta_{2}^{-1}_{2} = 0$$

$$T_{30} = x_{30}^{-1}_{12} - \theta_{20}^{-1}_{2} = 0$$

From the given objective function, the performance index $\phi(\mathbf{x})$ can be written as

$$\phi_{N}(x) = \sum_{n=1}^{10} \phi_{n}(x)$$

$$\phi_{n}(x) = 340.0[x(n+20)] + 64.3[x(n+20) - x(n+19)]^{2}
+ 0.2[x(n+10) - 5.67x(n+20)]^{2}
+ 51.2[x(n+10)] - 281.0[x(n+20)] + 0.0825[x(n)-320.0]^{2}$$

In this case $(\partial T/\partial x)^*$ is 30 x 30 matrix; $(\partial T/\partial \theta)^*$ is 30 x 20 matrix and $(\partial \phi/\partial x)^*$ is 1 x 30 row matrix. The weighting matrix W is assumed to be an identity matrix of 20 x 20.

Initial trial value for θ^* is assumed as follows

$$\theta_{i} = 300.0, i = 1, 2, ..., 10$$
 and $\theta_{j} = 50.0, j = 11, 12, ..., 20$

In the first iteration initial trial value for dp was set equal to 1 which in turn gave a set of four values of dp as

The stopping criteria for the computer program was used as

$$|F_{n+1} - F_n| \le 5.0$$

It took 68 iterations to get an optimal result upto an accuracy mentioned above. As noted earlier, near the optimum convergence became slow and sometimes the fluctuating behavior of the technique was also seen.

This problem consumed 352 seconds of computer time on an IBM 360/50 computer. The problem required 26312 bytes of computer memory storage. The optimum result is shown in Table 1.

Table 1. Results of Twenty Dimensional Problem (Gradient Technique).

n	P _n	Wn	I _n
1	445.23	77.42	278.23
2	432.89	74.22	264.12
3	417.56	71.20	241.68
4	398.71	68.49	324.39
5	386.67	65.95	314.06
6	372.80	63.75	311.86
7	358.06	61.71	377.92
8	349.15	60.06	269.07
9	329.57	7 58.65	198.64
10	303.52	57.78	152.16

Minimum cost = \$242288.70

4. SIMPLEX PATTERN SEARCH

There are number of direct search techniques which have been developed recently for finding the minimum or maximum of a function of several variables. The simplex pattern search is considered to be most efficient and simplest in the direct search procedures. There are number of pattern search techniques available for optimization purposes. The particular method proposed by Nelder and Mead [16] will be presented here.

In general to use this method for the minimization of a function of n variables, it is necessary to set up a simplex of (n+1) vertices, that it to select (n+1) trial points in the n dimensional space. The values of the objective function are then calculated at each of these points. By comparing the values of the objective function at these (n+1) points, the vertex or point with the highest value (i.e. the worst point in minimization) is replaced by a point with a lower value of the objective function. A discussion of the operations to select this point will be described in detail. As the objective function approaches the minimum, the point of the simplex with the highest value is discarded and is replaced by a point with a lower value to form a new simplex of (n+1) points. This procedure is repeated until the point corresponding to the minimum value of the objective function is achieved.

The procedure of the technique is described for a two dimensional problem in which objective function $S = f(x_1, x_2)$ is to be minimized. A simplex with (n+1) = 3 points is required

Fig. 3 Simplex triangle.

to set up as shown in Figure 3. Let P_1 , P_2 and P_3 are the trial points which form the three points in the two dimensional space of x_1 and x_2 . The following notations are used to describe the method.

 y_n = the value of the objective function at the point, P_n .

- P = the vertex or point with the lowest value of the objective function (y₁) in the simplex or set of trial points
- P₃ = the vertex or point with the highest value of the objective function (y₃) in the simplex or set of trial points; this point corresponds to P_{n+1} for n=2 variables
- P_2 = the vertex or point at which the corresponding value of the objective function (y_2) lies between the values of the objective function (y_1) and (y_3) for points P_1 and P_3 .
- P_{4} = the centroid of the vertices or points, P_{1} and P_{2} , with the value of the objective function (y_{4}) . In general the centroid of a set of n points in a simplex is given by

$$P_{c} = \sum_{i=1}^{n} P_{i}/n$$

The three operations through which a new point with a lower value of the objective function is found are known as reflection,

expansion and contraction.

The reflection of the highest valued point, P_3 with respect to the centroid, P_4 , is denoted by P_5 and its coordinates are defined according to the relation

$$P_{5} = P_{4} + \alpha (P_{4} - P_{3})$$
 (1)

where α is a positive constant, the reflection coefficient. Note that P_5 is on the line joining P_3 and P_4 , on the far side of P_4 from P_3 with the distance between points P_4 and P_5 denoted by $\overline{P_4P_5}$ which is equal to α $\overline{P_3P_4}$.

The reflected point P_5 may be expanded to P_6 according to the relation

$$P_6 = P_4 + \gamma (P_5 - P_4) \tag{2}$$

where γ is the expansion coefficient, which is greater than unity, is the ratio of the distances $\overline{P_6P_4}$ to $\overline{P_5P_4}$.

The contraction of the highest valued point, P_3 , with respect to the centroid, P_4 , is presented by P_7 and defined by the relation

$$P_7 = P_4 + \beta (P_3 - P_4)$$
 (3)

where β is a positive number between 0 and 1 and is the ratio of the distances $\overline{P_7P_4}$ to $\overline{P_3P_4}$.

The values of the coefficients, α , β and γ , considered best by Nelder and Mead [16] for faster convergance are

$$\alpha = 1$$
, $\beta = 1/2$, and $\gamma = 2$

However, the best values for α, β and may be different for different problems and should be determined from experience. The details of the procedure for using the method of simplex pattern search are described as follows:

- 1. Vertices, P_1 , P_2 and P_3 of the initial simplex are located according to the values of the objective function at each point having the relation $y_1 < y_2 < y_3$.
- 2. Ph, the centroid of Pl and Pl is determined.
- 3. First, P_3 , is reflected to P_5 with respect to P_4 , and if $y_1 < y_5 \le y_2$, then P_3 is replaced by P_5 and we start the procedure again with a new simplex, i.e., return to step 1.
- 4. If $y_5 < y_1$, that is, if the reflection has produced a new minimum, we expand P_5 to P_6 . If $y_6 < y_1$, we replace P_3 by P_6 and restart the process by returning to step 1. But if $y_6 > y_1$, we have failed in expansion and must replace P_3 by P_5 before starting again.
- 5. If after reflection, we find that $y_5 > y_1$ and $y_5 > y_2$, we define a new P_3 to be either the old P_3 or the old P_5 , depending on whichever has a lower y_n value and then contract P_3 to P_7 . We replace P_3 by P_7 and restart the procedure by returning to step 1, unless $y_1 > y_3$, that is, unless the contracted point has a higher value than P_3 . For such a failed contraction, we replace P_2 and P_3 by $(P_2 + P_1)/2$ and $(P_3 + P_1)/2$ respectively and restart the process by returning to step 1.

The procedure used here for the two dimensional problem can easily be extended to the n-dimensional problem. The worst point of a simplex with (n+1) vertices is reflected, expanded or contracted in the same manner with respect to the centroid of the remaining n vertices until the stopping criterion is satisfied. A flow diagram of the method is given in Appendix II.

One stopping criterion is the occurrence of five consecutive values of the objective function which are nearly equal in the desired level of accuaracy. Another stopping criterion would be to compare the "standard error" of the y's in the form

$$\left\{ \left[\begin{array}{c} n+1 \\ \Sigma \\ i=1 \end{array} (y_i - \overline{y})^2 \right] / n \right\}^{\frac{1}{2}}$$

with a prescribed value of desired accuracy and stop the program when it falls below this value.

The initial simplex for the n-dimensional problem is usually set up as follows.

One point which is the centroid of the initial simplex is selected and perturbation size is also specified for each component of the selected point. The (n+1) vertices of the initial simplex then can be formed by (n+1) x (n) matrix which is shown as follows. Let the selected point is

and the perturbation size is

$$\begin{bmatrix} d_1 \\ d_2 \\ d_n \end{bmatrix}$$

The matrix of the vertices of the initial simplex will be

⊌ ¹² ∴ ≅	e	^θ 2	θ 3	•	•		ř	•	^θ n
Point 1	q1-d1	q ₂ -d ₂	^q 3 ^{-d} 3	•	•	•	•		q - d n n
2	q ₁ + d ₁	^q 2 ^{- d} 2	^q 3 ^{- d} 3	•	•	2.	•	•	q - d n
3	q ₁	q ₂ + 2d ₂	6 ^b -6	•	•	•	•	•	q - d
4	q ₁	^q 2	93+ 3d3	•	•	• .	٠		q - d
•	•	•	^р 3	•	•	•	•	•	q _n -d _n
•	•	•						٠	•
•	•	•	1.						•
•		•	•						•
n	q ₁	^q 2	^q 3	•	•	•	•	•	q - d
n+1	_q ₁	^q 2	^q 3	٠	٠	•	•	٠	q _n + nd _n

Each point of the simplex of (n+1) vertices represents n dimensional vector.

A. Application to two dimensional production scheduling problem.

Here the objective function which is to be minimized is

given by

$$S = C(\theta_1 - \theta_0)^2 + D(E - I_1)^2 + C(\theta_2 - \theta_1)^2 + D(E - I_2)^2$$

where,

$$I_1 = 12 + \theta_1 - 30$$

 $I_2 = \theta_1 + \theta_2 - 28$

The problem is to find optimal values of θ_1 and θ_2 such that S is minimized. Simplex pattern search is programmed in WATFOR for 360/50 computer. The computer program is given in Appendix II.

In this problem the initial simplex is formed by selecting one point as

$$\begin{bmatrix} q \\ 1 \\ q \\ 2 \end{bmatrix} = \begin{bmatrix} 15.0 \\ 15.0 \end{bmatrix}$$

and the perturbation size as

$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 5.0 \\ 5.0 \end{bmatrix}$$

Then the initial starting simplex is given by

The stopping criteria is to stop when

$$\begin{bmatrix} \frac{3}{\Sigma} & (S_{i} - \overline{S})^{2} \\ \frac{1-1}{2} & 2 \end{bmatrix} \stackrel{\frac{1}{2}}{\leq} 0.001.$$

where \overline{S} is the mean function value of a simplex of three points. Another stopping criteria is to stop when number of iterations exceeds over one hundred iterations.

The output result of this problem is as follows,

$$\theta_1 = 17.82$$

$$\theta_{2} = 18.21$$

minimum S = \$2960.71

This problem took 30 iterations to get an optimal solution. The number of objective function evaluated is 53. It consumed 17.33 seconds on IBM 360/50 computer. The problem required 19824 bytes of computer memory storage.

B. Application to twenty dimensional HMMS paint factory model.

The function which is to be minimized is given by

$$S = \sum_{n=1}^{10} S_n$$

where

$$s_n = 340.0W_n + 64.3(W_n - W_{n-1})^2 + 0.2(P_n - 5.67W_n)^2 + 51.2P_n - 281.0W_n + 0.0825(I_n - 320.0)^2$$

Let
$$\theta_{i} = P_{i}$$
, $i = 1, 2, ..., 10$
 $\theta_{j} = W_{j}$, $j = 11, 12, ..., 20$

and
$$I_n = I_{n-1} + \theta_n - Q_n$$

with initial inventory level, $I_0 = 263.0$ Therefore the objective function now can be written as

$$S = \sum_{n=1}^{10} \left\{ 340\theta(n+10) + 64.3 \left[\theta(n+10) - \theta(n+9) \right]^{2} + 0.2 \left[\theta(n) - 5.67 \theta(n+10) \right]^{2} + 51.2 \theta(n) - 281.0 \theta(n+10) + 0.0825 \left[I(n) - 320.0 \right]^{2} \right\}$$

The problem is to find $\theta(n)$; n = 1, ..., 20 such that the objective function S, is minimized.

This problem was solved on an IBM 360/50 computer. The computer program and the flowchart is given in Appendix II.

The point which sets up the initial starting simplex according to the matrix formulation was selected as

$$\theta_{j} = 400.0,$$
 $i = 1, 2, ..., 10$
 $\theta_{j} = 70.0,$ $j = 11, 12, ..., 20$

and the perturbation size for each component of the twenty dimensional vector was chosen as follows

$$d_{i} = 5.0,$$
 $i = 1, 2, ..., 10$
 $d_{j} = 1.0,$ $j = 11, 12, ..., 20$

The standard deviation, for the stopping criteria used in the computer program, was chosen equal to 10.0.

The optimum result was obtained after 375 iterations on an IBM 360/50 computer upto an accuracy mentioned above. It consumed 612 seconds of computer time. The problem required 20736 bytes of computer memory storage. The output result is shown in Table 2.

Table 2. Results of Twenty Dimensional Problem (Simplex pattern search).

n	P _n	W _n	In
1	435.06	77.51	268.06
2	468.26	74.66	289.32
3	428.67	71.24	277.99
4	377.54	68.62	33 9.53
5	376.02	65.32	3 18.55
6	377.62	64.19	321.17
7	3 39•79	62.02	368.96
8	355.70	60.03	266.66
9	326.11	58.28	192.77
10	277.39	56.92	119.16

Minimum cost = \$242177.60

5. FLETCHER AND POWELL METHOD

An efficient search technique for finding the minimum of a function of several variables has been developed by Fletcher and Powell [4]. This search method is based on the conjugare gradient method developed by Davidon [2]. The method also utilizes the fact that near the optimum the second order terms in a Taylor series expansion dominate.

The method supposes that the function and its first partial derivatives can be calculated at all points. The application of this method is restricted to only unconstrained minimization problems and thus the method of Fletcher and Powell is useful for finding an unrestricted local optimum.

The conjugate gradient method assumes that in a neighborhood of the minimum the function can be closely approximated by a positive definite quadratic form. From this assumption Fletcher and Powell proved in their paper [4] that their method has quadratic convergence.

The direction for the search are chosen in such a way that conjugate directions are generated; and each direction is a direction of steepest descent. Then the method uses one dimensional searches in these directions. The method is described for a general minimization problem of n variables.

Consider a function to be minimized is

$$S = f(x_1, x_2, ..., x_n)$$
 (1)

The gradient vector for this function is

$$g = [g_1, g_2, \ldots, g_n]$$

where $g_{i} = \frac{\partial S}{\partial x_{i}}$, i = 1, 2, ..., n.

Assuming a general quadratic function in the vector matrix form

$$S = f_0 + \underline{a}^T \underline{x} + \frac{1}{2} \underline{x}^T \underline{G} \underline{x}$$
 (2)

where \underline{a}^T and \underline{x}^T are row vectors, and G is a matrix of 2^{nd} order partial derivatives. The function S is quadratic if

$$G_{ij} = G_{ji}$$

Further G is a positive definite matrix.

From equation (2), gradient vector which consist of first partial derivatives can be calculated. In vector-matrix form

$$\underline{\mathbf{g}} = \underline{\mathbf{a}} + \underline{\mathbf{G}} \ \underline{\mathbf{x}} \tag{3}$$

Because of the fact that at minimum point, the gradient vanishes; we have

$$\underline{a} + \underline{G} \, \underline{x} = 0 \tag{4}$$

where $\frac{x}{x}$ denotes the column vector at the minimum point.

Subtracting equation (4) from equation (3) we obtain

$$\underline{\mathbf{g}} = \underline{\mathbf{G}}(\underline{\mathbf{x}} - \underline{\overline{\mathbf{x}}}) \tag{5}$$

The first partial derivatives are known at any point \underline{x} .

Therefore \underline{g} is known at any point. From equation (5) we obtain

$$\overline{\underline{x}} = \underline{x} - \underline{G}^{-1}\underline{g} \tag{6}$$

where G-1 is the inverse of the matrix G.

To solve this equation, the method of Fletcher and Powell utilizes a matrix H_0 which is an approximation to the matrix G^{-1} . As the optimum is approached the matrix H_0 converges to G^{-1} . Where G^{-1} is the inverse of G in which the elements of the matrix are second partial derivatives of objective function evaluated at the optimum.

In the first step of iteration it is customary to set $H_0 = I$ where I is an identity matrix. Using H_0 for G^{-1} in equation (6), we obtain a direction vector G

$$\frac{\mathcal{E}}{\mathbf{E}} = -\frac{\mathbf{H}_0}{\mathbf{E}} \mathbf{g} \tag{7}$$

As said above in the first iteration $\underline{H_0}$ is an identity matrix and \underline{g} is the vector consist of partial derivatives of the objective function at the initial assumed point x_0 .

Then new point in the direction & is found by

$$\underline{x}^{(i+1)} = \underline{x}^{(i)} + \lambda_{\underline{s}}^{\underline{c}} \tag{8}$$

The one dimensional search in the direction \S is conducted and the value of scalar λ which minimizes the objective function is determined. This value of λ will be denoted by $\overline{\lambda}$.

Now define a new vector o as

$$\underline{\sigma} = \overline{\lambda} = 0$$
 (9)

also define a new vector y as

$$\underline{y} = \underline{g}_{i+1} - \underline{g}_i \tag{10}$$

The improved matrix H is obtained by

$$\underline{\mathbf{H}} = \underline{\mathbf{H}}_0 + \underline{\mathbf{A}} + \underline{\mathbf{B}} \tag{11}$$

where

$$\underline{\mathbf{A}} = \frac{\underline{\sigma} \ \underline{\sigma}^{\mathrm{T}}}{\underline{\sigma}^{\mathrm{T}} \underline{y}}$$

and

$$\underline{B} = \frac{- \ \underline{H_0} \ \underline{y} \ \underline{y}^T \ \underline{H_0}}{\underline{y}^T \ \underline{H_0} \ \underline{y}}$$

This new improved matrix \underline{H} is used as the matrix \underline{H}_0 in the next iteration to compute a new direction ξ and a new gradient vector at the point x^{1+1} which is obtained from equation (8).

The one dimensional cubic interpolation search procedure is usually used in the method of Fletcher and Powell to find the minimum of equation (1) along the line given by equation (8)

The procedure is terminated when each of the correction Gi is less than a prescribed accuracy and when each of the component of direction vector E is less than a prescribed accuracy E; that is we wish to have

It is obviously practicable to apply this method to find a local minimum of a general function of a large number of variables whose first derivatives can be evaluated quickly, even if only poor initial approximations to a solution are known.

A. Application to two dimensional production scheduling problem.

The objective function to be minimized is

$$S = C(\theta_{1} - \theta_{0})^{2} + D(E - I_{1})^{2} + C(\theta_{2} - \theta_{1})^{2} + D(E - I_{2})^{2}$$
Let
$$X_{1} = \theta_{1}$$

$$X_{2} = \theta_{2}$$

Then the inventories at the first period and that at the second period are

$$I_1 = 12 + x_1 - 30$$

 $I_2 = I_1 + x_2 - 10 = x_1 + x_2 - 28$

Substituting the values of constants and values for I_1 and I_2 in the objective function, we get

$$s = 100(x_1 - 15)^2 + 20(28 - x_1)^2 + 100(x_2 - x_1)^2 + 20(38 - x_1 - x_2)^2$$

This problem was solved on IBM 360/50 computer using IBM scientific subroutine FMFP [12]. The components of gradient vector provided in the function sub-program are as follows.

$$g_1 = \frac{\partial S}{\partial x_1} = 200(x_1 - 15) - 40(28 - x_1) - 200(x_2 - x_1) - 40(38 - x_1 - x_2)$$

$$g_2 = \frac{3s}{3x_2} = 200(x_2 - x_1) - 40(38 - x_1 - x_2)$$

The stopping criteria is to stop when

$$\left|\xi_{i+1} - \xi_{1}\right| \leq \epsilon$$

In this problem & is specified as 0.001. The various data which

are necessary to provide with the use of subroutine FMFP are provided as follows.

Limit = 10

Estimate = 3000.0

Epsilon = 0.001

where Limit is the upper limit of number of iterations, Estimate is an estimated optimal objective functional value, and Epsilon, ϵ , is the constant used in the stopping criterion. The initial trial value is set at

$$x_1 = 10.0$$

$$x_2 = 10.0$$

The output result is found as follows

 $x_1 = 19.82$

 $x_2 = 18.21$

minimum S = \$2960.71

It took only 3 iterations to obtain the above optimal solution. It consumed 10.31 seconds of computer time on an IBM 360/50 computer. The problem required 8412 bytes of computer memory storage.

B. Application to twenty dimensional HMMS paint factory model.

As seen earlier the function which is to be minimized is given by

$$S = \sum_{n=1}^{10} S_n$$

where

$$S_{n} = 340.0W_{n} + 64.3(W_{n} - W_{n-1})^{2} + 0.2(P_{n} - 5.67W_{n})^{2} + 51.2P_{n} - 281.0W_{n} + 0.0825(I_{n} - 320.0)^{2}$$

To convert the problem into the standard form of Fletcher and Powell method, let

$$x_i = P_i$$
, $i = 1, 2, ..., 10$
 $x_j = W_i$, $j = 11, 12, ..., 20$ and $i = 1, 2, ..., 10$

and

$$I_{n} = I_{n-1} + x_{n} - Q_{n}$$

with initial inventory level $I_0 = 263.0$. Therefore, the objective function can be rewritten as

$$S = \sum_{n=1}^{10} \left[340.0x(n+10) + 64.3 \left\{ x(n+10) - x(n+9) \right\}^{2} + 0.2 \left\{ x(n) - 5.67x(n+10) \right\}^{2} + 51.2x(n) - 281.0x(n+10) + 0.0825 \left\{ I(n) - 320.0 \right\}^{2} \right]$$

where I has recurrence relationship shown above.

This problem was also solved by an IBM 360/50 computer using scientific subroutine FMFP [12] together with the function subprogram in the main routine of the computer program.

The components of the twenty dimensional gradient vector were also supplied in the function subprogram. They are as follows

For
$$n = 1, 2, ..., 10$$
,

$$g(n) = \frac{3S}{3x(n)} = 0.4 [x(n) - 5.67x(n+10)] + 51.2 + 0.165 [I(n-1) + x(n) - Q(n) - 320.0]$$

For
$$n = 11, 12, ..., 19$$

$$g(n) = \frac{\partial S}{\partial x(n)} = 340.0 + 128.6 [x(n) - x(n-1)]$$

$$- 2.268 [x(n-10) - 5.67x(n)] - 281.0$$

$$- 128.6 [x(n+1) - x(n)]$$

and

$$g(20) = \frac{\partial S}{\partial x(20)} = 340.0 + 128.6 [x(20) - x(19)]$$

$$- 2.268 [x(10) - 5.67x(20)] - 281.0$$

The initial starting vector of decision variables was set at

$$x_1 = 300.0,$$
 $i = 1, 2, ..., 10$ and $x_1 = 50.0,$ $j = 11, 12, ..., 20$

The data for the stopping criteria, limit by number of iterations and estimate of the minimum function value; which are necessary to provide with the use of FMFP subroutine, are as follows.

Epsilon = 0.1

Limit = 100

Estimate = 300000.0

The optimum result was obtained after 19 iterations on an
 IBM 360/50 computer. This problem consumed 59.90 seconds of
 computer time to get an optimal answer upto the accuracy mentioned

above. The problem required 12572 bytes of computer memory storage. The optimum result is shown in Table 3.

Table 3. Results of Twenty Dimensional Problem. (Fletcher and Powell method)

n	P _n	W _n	In
1	470.33	77.66	303.33
2	444.14	74.24	300.47
3	417.09	70.88	277.56
4	381.70	67.71	343.26
5	376.24	65.03	322.50
6	363.99	62.68	311. 50
7	348.89	60.64	368.3 9
8	359.33	58.97	269.73
9	329.08	57.32	198.81
10	272.04	56.05	120.86
	M	inimum cost = \$	241512.10

6. FLETCHER AND REEVES METHOD.

The method of Fletcher and Reeves [5] is also a quadratically convergent conjugate gradient method for locating an unconstrained local minimum of a function of several variables. It is similar to the method of Fletcher and Powell [4].

The difference in both the methods is only in finding the new direction of search. The method of Fletcher and Powell uses the matrix H for successive improvement in matrix G⁻¹. Hence this method requires larger storage space. Particular advantage of the method of Fletcher and Reeves is its modest demand on storage space as only three vectors being required for storage.

This method also has quadratic convergence, meaning that for quadratic functions it is guranteed that the minimum will be located exactly, apart from rounding errors, within some finite numbers of iterations usually n which is the number of variables. The method also supposes that function and its partial derivatives can be calculated at all points.

The method can be described for a general minimization problem of n variables. Consider a function to be minimized

$$S = f(x_1, x_2, ..., x_n)$$

The gradient vector at each point is

$$\underline{\mathbf{g}} = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_n]$$

where

$$g_i = \frac{\partial S}{\partial x_i}$$

It is seen in the method of Fletcher and Powell that the new direction of search is found by

where H is a matrix. Instead of finding new direction by this way, the method of Fletcher and Reeves finds new direction of search as follows

$$\frac{\xi_{-i+1} = -g_{i+1} + \beta_i \xi_i}{(1)}$$

where β_i is scalar given by

$$\beta_{1} = \frac{g_{1+1}^{T} g_{1+1}}{g_{1}^{T} g_{1}}$$
 (2)

For the first iteration $\mathfrak{s}_{\mathbf{i-l}}$ will be zero and hence starting direction will be negative of gradient direction that is

$$\frac{\mathcal{E}}{\mathbf{E}_1} = -\mathbf{E}_1$$

Then the new point in this direction is found by

$$\underline{x}^{(i+1)} = \underline{x}^{(i)} + \lambda \hat{S}_i \tag{3}$$

Then one dimensional linear search in the direction $\frac{\mathcal{E}}{2}$ is conducted and the value of scalar λ which minimizes the function is determined.

This procedure leads to the following general minimization algorithm.

Initially select an arbitrary point $\underline{x}^{(1)}$ then gradient

vector at this point is calculated which is denoted by $\underline{g_1}$. The direction of search at this point will be $\underline{\xi_1} = -\underline{g_1}$. Then new point $x^{(i+1)}$ in this direction is located by equation (3). Then gradient vector at new point is calculated and new direction of search is obtained by equation (1).

As said above this process is guranteed, apart from rounding errors, to locate the minimum of any quadratic function of n variables in the at most n iterations.

The one dimensional cubic interpolation search is usually incorporated in this method to locat the minimum along the direction ξ which determines the value of λ .

The procedure is terminated when each of the correction G_1 is less than a prescribed accuracy and when each of the component of E is less than a prescribed value epsilon E. Sometimes it might be sufficient to continue the iterations until a complete cycles of (n+1) iterations.

A. Application to two dimensional production scheduling problem.

Here the objective function which is to be minimized is

given by

$$s = c(\theta_1 - \theta_0)^2 + D(E - I_1)^2 + c(\theta_2 - \theta_1)^2 + D(E - I_2)^2$$

with notations and values for the constants as described in section 2. The approach of the problem is same as in the method of the Fletcher and Powell.

Let
$$x_1 = \theta_1$$

 $x_2 = \theta_2$

Therefore

$$I_1 = 12.0 + x_1 - 30.0$$

and

$$I_2 = x_1 + x_2 - 28.0$$

The objective function becomes,

$$s = 100(x_1 - 15)^2 + 20(28 - x_1)^2 + 100(x_2 - x_1)^2 + 20(38 - x_1 - x_2)^2$$

The problem is to find the optimal values of x and x 2 such that the objective function S is minimized. The components of two dimensional gradient vector can be written as

$$g_{1} = \frac{\partial s}{\partial x_{1}} = 200(x_{1} - 15) - 40(28 - x_{1})$$

$$- 200(x_{2} - x_{1}) - 40(38 - x_{1} - x_{2})$$

$$g_{2} = \frac{\partial s}{\partial x_{2}} = 200(x_{2} - x_{1}) - 40(38 - x_{1} - x_{2})$$

An IBM scientific subroutine FMCG [12] was incorporated into the main program together with the function subprogram which provides the objective function and components fo the gradient vector as shown above.

The stopping criteria is to stop when $\left|\xi_{n+1}-\xi_{n}\right|\leq \epsilon$. The data for the limit of iterations, estimate of the minimum function value and epsilon for the above stopping criteria which are necessary to provide with the use of subroutine FMCG are as follows.

Epsilon = 0.001

Estimate = 3000.0

Limit = 10

The initial trial value was used as

$$x_1 = 10.0$$

$$x_2 = 10.0$$

The optimum result for the problem is given below.

$$x_1 = 17.82$$

$$x_2 = 18.21$$

minimum S = \$2960.71

The method of Fletcher and Reeves took only 3 iterations to get an optimal result. This problem consumed 8.80 seconds of computer time on an IBM 360/50 computer. The problem required 7132 bytes of computer memory storage.

B. Application to twenty dimensional HMMS paint factory model.

The method of Fletcher and Reeves was also applied to 20

dimensional HMMS paint factory model.

As described earlier in the section 2, the objective function of the model is given by

$$S = \sum_{n=1}^{10} S_n$$

where

$$S_{n} = 340.0W_{n} + 64.3(W_{n} - W_{n-1})^{2} + 0.2(P_{n} - 5.67W_{n})^{2} + 51.2P_{n} - 281.0W_{n} + 0.0825(I_{n} - 320.0)^{2}$$

with usual notations already described in section 2. To convert the problem into the standard form of the Fletcher and Reeves method, we define

$$x_{i} = P_{i}$$
, $i = 1, 2, ..., 10$
and $x_{j} = W_{i}$, $i = 1, 2, ..., 10$
 $j = 11, 12, ..., 20$

also $I_n = I_{n-1} + x_n - Q_n$ with initial given inventory level $I_0 = 263.0$. Now the objective function can be written in the following form.

$$S = \sum_{n=1}^{10} \left[340.0x(n+10) + 64.3 \left\{ x(n+10) - x(n+9) \right\}^{2} + 0.2 \left\{ x(n) - 5.67x(n+10) \right\}^{2} + 51.2x(n) - 281.0x(n+10) + 0.0825 \left\{ I_{n} - 320.0 \right\}^{2} \right]$$

This problem was solved on an IBM 360 computer using IBM scientific subroutine FMCG [12] together with the function subprogram in the main routine of the computer program.

The components of the twenty dimensional gradient vector supplied in the function subprogram are as follows,

For
$$n = 1, 2, ..., 10;$$

$$g(n) = \frac{\partial S}{\partial x(n)} = 0.4 [x(n) - 5.67x(n+10)] + 51.2 + 0.165 [I(n-1) + x(n) - Q(n) - 320.0]$$

For
$$n = 11, 12, ..., 19;$$

$$g(n) = \frac{\sqrt[3]{5}}{\sqrt[3]{x(n)}} = 340.0 + 128.6 [x(n) - x(n-1)]$$

$$-2.268 [x(n-10) - 5.67x(n)] - 281.0$$

$$-128.6 [x(n+1) - x(n)]$$

and

$$g(20) = \frac{703}{70x(20)} = 340.0 + 128.6 [x(20) - x(19)]$$
$$-2.268 [x(10) - 5.67x(20)] - 281.0$$

The initial starting vector of decision variables is set

$$x_{i} = 300.0$$
, $i = 1, 2, ..., 10$ and $x_{j} = 50.0$, $j = 11, 12, ..., 20$

The data for the stopping criteria, limit of maximum number of iterations and estimate of the minimum function value which are necessary to provide in the subroutine FMCG, are as follows.

Epsilon = 0.1
Estimate = 300000.0
Limit = 100

The method of Fletcher and Reeves took 31 iterations to get an optimal result. This problem consumed 49.98 seconds of computer time. This problem required 11292 bytes of computer memory storage. The optimum output result is shown in Table 4.

Table 4. Results of Twenty Dimensional Problem (Fletcher and Reeves Method)

n P_n W_n I_n 1 471.37 77.68 304.37 2 444.64 74.27 302.02 3 416.31 70.90 278.34 4 380.90 67.75 343.24 5 374.88 65.07 321.13 6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41 Minimum cost = \$241517.00		N. C.		
2 444.64 74.27 302.02 3 416.31 70.90 278.34 4 380.90 67.75 343.24 5 374.88 65.07 321.13 6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	'n	P _n	W _n	I _n
3 416.31 70.90 278.34 4 380.90 67.75 343.24 5 374.88 65.07 321.13 6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	1	471.37	77.68	304.37
4 380.90 67.75 343.24 5 374.88 65.07 321.13 6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	2	444.64	74.27	302.02
5 374.88 65.07 321.13 6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	3	416.31	70.90	278.34
6 363.57 62.72 309.70 7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	4	380.90	67.75	343.24
7 349.92 60.70 367.62 8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	5	374.88	65.07	321.13
8 359.52 59.03 269.15 9 329.82 57.40 198.98 10 275.43 56.16 124.41	6	363.57	62.72	309.70
9 329.82 57.40 198.98 10 275.43 56.16 124.41	7	349.92	60.70	367.62
10 275.43 56.16 124.41	8	359.52	59.03	269.15
	9	329.82	57.40	198.98
Minimum cost = \$241517.00	10	275.43	56.16	124.41
	a	N	inimum cost = \$2415	17.00

7. A COMPARISON AND THE DISCUSSION OF RESULTS

The results obtained by these four techniques namely, gradient technique, simplex pattern search, Fletcher and Powell method and Fletcher and Reeves method are compared with respect to following four criteria.

- 1. The optimum function value obtained upto an accuaracy prescribed.
- 2. Total computation time in seconds which is considered as execution time plus the compilation time.
- 3. Number of iteration required to arrive at an optimum solution. An iteration is defined as each successive move from previous point except in simplex method where an iteration means formation of each successful simplex.
- 4. Computer memory storage required in bytes.

These four criteria give the idea about convergence and effectiveness of each technique under identical conditions, that is, under the same computing system and with the same set of problems. The initial starting point in each problem is kept the same for all techniques except in the simplex pattern search, because simplex pattern search starts its search from initial simplex which consist of (n+1) different points as described in the method.

Table 5 shows a comparison of results of first test problem which is two dimensional production planning problem. It can be seen that each technique produced the same optimum function value upto an accuracy of two decimal points. The

Table 5. A Comparison of Results of Two Dimensional Problem.

Technique	Optimum function value	Computation time in seconds	Number of iterations	Computer memory storage in bytes
Gradient	2960.71	16.10	11	9816
Simplex	2960.71	17.33	30	19824
Fletcher & Powell	2960.71	10.31	3	8412
Fletcher & Reeves	2960.71	8.80	3	7132

computation time and storage requirement for simplex pattern search are highest among all the four techniques. Fletcher and Powell method and Fletcher and Reeves method produced nearly the same results although Fletcher and Reeves method proves the best in this test problem. Gradient technique puts itself in the third place with normal results.

Table 6 shows a comparison of results of second test problem which is twenty dimensional HMMS paint factory model. The optimum function values obtained by all the four techniques are differ from each other by less than 1%. Simplex pattern search took the longest time to arrive at an optimal solution and Fletcher and Reeves method took the minimum time. Gradient technique gave the nominal result with respect to all the four criteria. The computer memory storage required for this problem is largest for gradient technique. In this problem also the method of Fletcher and Powell and method of Fletcher and Reeves produce nearly the same results; though Fletcher and Powell method arrived at an optimum solution in only 19 iterations whereas for the same problem method of Fletcher and Reeves took 31 iterations.

It is seen from the results shown in Table 5 and Table 6 that Fletcher and Powell method and Fletcher and Reeves method gave the highest convergence rate in both the problems. This is expected because they have characteristic of quadratic convergence and the objective functions are in quadratic forms. Fletcher and Powell method requires the storage of matrix H as described in the method while method of Fletcher and Reeves

Table 6. A Comparison of Results of Twenty Dimensional Problem.

Technique	Optimum Function value	Computation time in seconds	Number of iterations	Computer memory storage in bytes
Gradient	242288.70	352	68	26312
Simplex	242177.60	612	375	20736
Fletcher & Powell	241512.10	59.90	19	12572
Fletcher & Reeves	241517.00	49.98	31	11292

requires storage for only three vectors hence the latter took less computation time and less number of memory storage locations in the computer.

Simplex pattern search took the longest time to get an optimal solution in both the test problems. The reason is obvious because simplex pattern search basically searches for all the possible points on the response surface of the objective function and hence it took more number of iterations and computation time compared to other methods.

Gradient technique shows its normal behavior in both the test problems. It is seen that in the second problem it needed the largest number of memory storage as it requires to store three large dimensional metrices as described in the method.

The effect of each method on the dimensionality of the problem can also be compared from these two tables. Fletcher and Powell method and Fletcher and Reeves method have less effect on increasing the dimensionality of the problem with regard to all the four criteria. Both the methods produced optimum results for twenty dimensional problem in less than a minute of computation time. This shows quite encouraging and promising behavior of the optimization techniques based on conjugate gradient method.

In this case also gradient technique has very normal effect on increasing the dimensionality of the problem except that it requires very large number of computer storage locations as the dimension of the optimization problem increases. It produced optimal result for two dimensional problem in only 16 seconds

of computer time while for twenty dimensional problem it consumed about 6 minutes of computer time which is considered to be normal effect on the dimensionality of the problem.

It can be stated from the above results that simplex pattern search gets worst as the dimension of the optimization problem increases. The reason for this is that near to optimum; a simplex becomes small and hence it takes more time compared to other optimization techniques. Also it required quite a high number of iterations to arrive at an optimum solution in the second test problem.

The results show that the conjugate gradient method of Fletcher and Powell and method of Fletcher and Reeves present the most consistent behavior among the group of techniques considered here. They can be proved highly efficient for many kinds of unconstrained optimization problems arise in the industrial management systems. The gradient technique is also a fast converging technique and it is easy to apply and program for the various kinds of optimization problems. Simplex pattern search is also an efficient direct search optimization technique for low dimensional problems as it does not require to calculate the derivatives of the objective function. Therefore this technique is adequate to treat difficult optimization problems where derivatives are difficult to calculate.

REFERENCES

- 1. Bellman, R., Dynamic Programming, Princeton University Press, Princeton, N. J., 1957.
- 2. Davidon, W. C., "Variable Metric Method for Minimization", AEC Research and Development Report, ANL-5990, pp. 21, 1959.
- Fan, L. T. and Wang, C. S., The Discrete Maximum Principle-A Study of Multistage Systems Optimization, John Wiley and Sons, New York, 1964.
- 3a. Fan, L. T., Hwang, C. L. and Tillman, F. A., "A Sequential Pattern Search, Solution To Production Planning Problems", AIIE Transaction, In Press, 1969.
- 4. Fletcher, R., and Powell, M. J. D., "A Rapidly Convergent Descent Method for Minimization", The Computer Journal, Vol. 6, pp. 163, 1963.
- 5. Fletcher, R. and Reeves, C. M., "Function Minimization by Conjugate Gradients", The Computer Journal, Vol. 7, pp. 149, 1964.
- 6. Hadley, G., Linear Programming, Addison-Wesley Publishing Company, Inc., Readin, Mass., 1968.
- 7. Holt, C. C., Modigliani, F., Muth, J. F. and Simon, H. A., Planning, Production, Inventories and Work Force, Prentice Hall, Englewood Cliffs, N. J., 1960.
- 8. Holt, C. C., Modigliani, F., Muth, J. F. and Simon, H. A., "A Linear Decision Rule for Production and Employment Scheduling", Management Science, Vol. 2, No. 1, pp. 1, 1955.
- 9. Hooke, R. and Jeeves, T. A., "Direct Search Solution of Numerical and Statistical Problems", J. Assoc. Comp. Mach., Vol. 8, pp. 212, 1961.
- 10. Hwang, C. L., Tillman, F. A. and Fan, L. T., "Optimization of Production Scheduling", International Journal of Production Research, Vol. 5, pp. 341, 1967.
- 11. Hwang, C. L., Fan, L. T., Tillman, F. A. and Sharma R., "Optimal Production Planning and Inventory Control", Submitted to Int. J. of Production Research, Sept. 1968.
- 12. IBM, "System/360 Scientific Subroutine Package Version III Programmer's Manual", IBM, 1968.

- 13. Kowallic, J. and Osborne, M., Methods for Unconstrained Minimization Problems, American Elsevier Publishing Co., New York, 1968.
- 14. Leitmann, G., Optimization Techniques with Applications to Aerospace Systems, Academic Press, New York, 1962.
- 15. Leon, A., "A Comparison of Eight Known Optimizing Procedures", Recent Advance in Optimization Techniques, Lavi and Voge Editors, John Wiley and Sons, New York, 1966.
- 16. Nelder, J. A. and Mead, R., "A Simplex Method for Function Minimization", The Computer Journal, Vol. 7, pp. 308, 1965.
- 17. Powell, M. J. D., "An Efficient Method for Finding the Minimum of a Function of Several variables without Calculating Derivatives", The Computer Journal, Vol. 7, pp. 155, 1964.
- 18. Rosenbrock, H. H., "An Automatic Method for Finding the Greatest or the Least Value of A Function", The Computer Journal, Vol. 3, pp. 175, 1960.
- 19. Rosenbrock, H. H. and Storey C., Computational Techniques for Chemical Engineers, Pergamon Press, New York, 1966.
- 20. Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1968.
- 21. Taubert, W. H., "A Search Decision Rule for The Aggregate Scheduling Problem", Management Science Vol. 14, No. 6, pp. B-343, 1968.
- 22. Wilde, D. J., Optimum Seeking Methods, Prentice Hall, Englewood Cliffs, N. J., 1964.
- 23. Wilde, D. J. and Beightler, C. S., Foundations of Optimization, Prentice-Hall, Englewood Cliffs, N. J., 1967.

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to his major professor Dr. C. L. Hwang, for his valuable guidance, encouragement and cooperation in the preparation of this report. He sincerely acknowledges the suggestions and encouragement provided by Dr. F. A. Tillman and Dr. L. T. Fan.

APPENDIX I. Computer Program for Gradient Technique.

The computer flow chart which illustrates the computational procedure is presented in Fig.A-1; the program symbols, their explanations and corresponding mathematical notations are summarized in TableA-1. The computer program for twenty dimensional problem follows the symbol table.

Fig.A-1. Flow diagram for Gradient technique.

Table A-1. Symbol Table

Program Symbol	Explanation	Mathematical Symbol
A	s x s matrix where s = No. of state variables	(xg/T6)
В	s x r matrix where r = No. of decision variables	(95/T6)
P	A matrix of partial derivatives of a function 1 x s	(x6/φε)
Н	1 x s row matrix	$\chi_{m{\phi}}^{\mathbf{T}}$
X(I)	A vector of state variables	<u>x</u> *
TH(I)	A vector of decision variables at old point	e*
S	Old objective function value	$\phi_{(x)}$ old
Fl	New objective function value	
D	Numerator in a formula ' for 2α	$\lambda_{\Delta}^{\mathbf{T}}(\mathbf{D}\mathbf{I}/\mathbf{D}\mathbf{\theta})\mathbf{W}^{-1}(\mathbf{D}\mathbf{I}/\mathbf{D}\mathbf{\theta})^{\mathbf{T}}\lambda_{\mathbf{\Phi}}$
DP	A constant	dp
R(I)	A vector to calculate $\underline{\epsilon arphi}$	$\mathbf{W}^{-1}(\nabla \mathbf{T} \wedge \mathbf{F})^{\mathrm{T}} \lambda \boldsymbol{\phi}$
ALPHA	A constant to calculate E(I)	2α
E(I)	A vector of change in $\underline{\theta}^*$	$\underline{\epsilon}\underline{\varphi}$
TH1(I)	A vector of decision variables at new point	e* new

```
65
·政治·C
          COMPUTER PROGRAM FOR GRADIENT TECHNIQUE
    C
          APPLICATION TO THEATY DIMENSIONAL PROBLEM
    C
          DIMENSION A1(900), 81(600), P(30), L1(30), P1(30), T(30)
          DIMENSION C(20), D(10), E(20), B(20), TH(20), TH(20,4), DP(4), E(4)
          DIMENSION A(30,30), H(30,20), X(30), H(20), C(30), F11(4)
          CC 55 I=1.15
       99 TH(I)=300.
          CC 1CC J=11,20
      100 TH(U)=50.
          REAC 200, (C(1), [=1,10]
      200 FERMAT(10F5.1)
      203 FCRMAT(/30X,6FMIN.F=F10.2)
      3C2 FCRMAT(5X,3FCP=[8.3,1CX,2FF=F14.2]
     151 FORMAT(10X, F1C. 2)
          CC 16 I=1,3C
          DC 16 J=1,30
          IF(I-J)13,11,12
       11 A([,J)=1.
          GC TC 16
       12 IF(I-J-1)10.13.10
       13 IF(J-9)14,14,16
       14 \Delta([,J)=-1.
          GC TC 16
       10 A(I,J)=C.
       16 CONTINUE
          CC 1C2 1=1,3C
          DC 102 J=1,30
          K=1+3C*(J-1)
      102 A1(K)=4(I,J)
          CC 26 I=1,37
          DC 26 J=1,25
          [F(I-J)20,21,23
       21 IF(I-10)22,22,23
       22 B(I,J)=-1.
          GC TC 26
       23 IF(I-J-10)20,25,20
       25 0(1,3)=-1.
          GC TC 26
       20 B([,J)=0.
       26 CONTINUE
          CC 1C3 I=1,30
          DC 1(3 J=1,20
          K1=[+3C+(J-1)
      103 B1(K1)=0(1,J)
          K = C
          CP(2)=1.
          N1=30
          CALL MINVIAL, NI, CET, LI, MI)
      101 x(1)=263.+(H(1)-0(1))
          CC 1 I=2,10
        1 \times (1) = \times (1-1) + (1) + (1) - (1)
          CC 2 J=11.31
```

1

2

3

4 5

6 7

8 9

10

11

12

13 14

15

16 17

18 19

20

21

22 23

24

25

26 27

85 29

30

31 32

33

34

35

36

37

38

39

4C

41

42 43

44 45

46

47 48

49 5C

51

52

53

54

55

2 X(J)=TE(J-10)

DC 30 [=1,10

DC 31 J=11,20

30 P(I)=0.165*(X(I)-320.)

```
56
         31 P(J)=.4*(X(J)-5.67*X(J+10))+51.2
 57
            P(21)=34^{\circ}.+128.6*(X(21)-81.)-2.268*(X(11)-5.67*X(21))-281.-128.6*(
           1x(22)-x(21)
 58
            EC 32 [=22,29
         32 P(I)=340.+128.6*(X(I)-X(I-1))-2.268*(X(I-10)-5.67*X(I))-281.-128.6
59
           1 \neq (X(I+1)-X(I))
 60
            P(30)=340.+128.6÷(X(30)-X(29))-2.268÷(X(20)-5.67÷X(30))-281.
            TELK.NE.OJCC TO 601
 £1
 €2
            $1=34C.*X(21)+64.3*(X(21)-81.)**2+.2*(X(11)-5.67*X(21))**2+51.2*X(
           111)-281. $X(21)+.C825$(X(1)-32C.) $$2
 63
            S=S1
 £4
            CG 4C I=2,10
 65
         4C S=S434C.*X(I+20)+64.3*(X(I+2C)-X(I+19))**24.2*(X(I+10)-5.67*X(I+20
           11) **2+51.2*X(I+10)-281.*X(I+20)+.C825*(X(I)-32C.)**2
66
            F1=S
            PRINT 203,F1
 £7
€8
            PRINT 1000
 69
        601 CP(1)=CP(2)/2
 70
            CP(3)=2*CP(2)
 71
            CP(4)=10*DP(2)
72
            S=F1
 73
            CALL CMPRD(P, A1, T, 1, 30, 30)
            DC 104 I=1,30
 74
 75
        1C4 F([]=-1*T(])
            CALL EMPRO(F, 61, C, 1, 30, 20)
76
77
            CALL GATRA(C,R,1,20)
35
            CALL GMPRD(C,R,C,1,2C,1)
            CC 5CC J3=1.4
 75
EC
            ALPHA=SC?T(C(1)/(CP(J3))**2)
 ٤1
            BC 105 I=1,20
 ٤2
        105 E(I)=R(I)/(-ALPEA)
            DC 106 1=1,20
E3
        106 TF1(I,J3)=TF(I)+E(I)
 84
 85
            X(1)=263.+THI(1,J3)-C(1)
            EC 51 I=2,19
 63
 87
         51 X(I) = X(I-1) + T + I(I, J3) - G(I)
 83
            DC 52 J=11.30
 23
         52 X(J) = I + 1(J - LC, J3)
50
            DC 61 I=1.10
 51
         61 P([]=C.165*(X([)-32C.)
 52
            DC 62 J=11.20
 53
         62 P(J)=.4*(X(J)-5.67*X(J+10))+51.2
            P(21)=340.+128.6*(X(21)-81.)-2.268*(X(11)-5.67*X(21))-281.-123.67(
 54
           1 \times (22) - \times (21)
55
            DC 63 1=22.29
         63 P([)=340.+128.6 + (X([)-X([-1)]-2.268 + (X([-10]-5.67 + X([)]-281.-128.5
 56
           1 \neq (x([+1]) - x([]))
            P(3C)=34C.+128.6*(x(3C)-x(29))-2.268*(x(2C)-5.67*x(3C))-281.
 57
            F11(J3)=34c.±x(21)+64.3*(x(21)-81.)**2+.2*(x(11)-5.67*x(21))**2+51
 58
           1.2*X(11)-281.*X(21)+.C825*(X(1)-32C.)**2
55
            F(J3) = F11(J3)
100
            CC 111 I=2,10
        111 F(J3)=F(J3)+340.*X([+20)+64.3*(X([+20)-X([+19))**2+.2*(X([+10)-5.5
101
           17¢X([+2C])¢¢2+51.2¢X([+1C]-281.¢X([+2C)+.C825¢(X([)-32C.)¢¢2
            PRINT 302, CP (J31, F (J3)
102
103
        500 CONTINUE
164
            [F(F(1)-F(2))501,501,502
105
        501 SMALL=F(1)
166
            J=1
```

1(7

GC TC 504

```
5C2 SMALL=F(2)
1(8
169
             J=2
        5C4 IF(SPALL-F(3)1505,5C5,5C6
110
111
        506 SMALL=F131
112
             J=3
        505 IF(SPALL-F(4))507,507,508
113
        SCE SMALL=F(4)
114
1.15
             J = 4
        5C7 FI=SMALL
116
             PRINT 203, F1
117
             PRINT 1000
118
119
             CP(2)=[P(J)
             DC 508 [=1,20]
120
        509 TH(I)=THI(I,J)
121
122
             K = 1
             IF (ABS(S-F1)-5.)202,202,101
123
        202 PRINT 151, (TH(I), I=1,20)
124
             STOP
125
             END
126
```

67

```
127
              SUBROLTINE MINV(A, N, D, L, M)
              DIMENSION A(1), E(1), M(1)
128
179
              C=1.C
130
              NK = -\Lambda
131
              DE 8C K=1,1
132
              NK=KK+N
133
              L(K)=K
              Y(K)=K
134
              KK=NK+K
135
136
              BIGA=A(KK)
137
              DC 2C J=K,1
              1Z=N+(J-1)
138
139
              DC 20 I=K.A.
140
              IJ= IZ+1
          10 IF( ABS(BIGA)- ABS(A(IJ))) 15,20,20
141
142
          15 BIGA=#(IJ)
143
              L(K)=I
              M(K)=J
144
145
          20 CONTINUE
146
              J=L(K)
147
              IF(J-K) 35,35,25
          25 KI=K-N
148
149
              DC 30 I=1.N
150
              KI=KI+A
151
              HCLD=-A(KI)
152
              J[=K]-K+J
153
              A(KI) = A(JI)
154
          3C A(JI) =HCLD
155
          35 [=M(K)
              IF(I-K) 45,45,38
156
157
          38 JP=N*([-1]
158
              CC 4C J=1.N
159
              JK=NK+J
160
              JI=JP+J
161
              HCLC=-A(JK)
              A(JK) = A(JI)
162
          40 A(JI) =HELD
163
164
          45 [F(BIGA) 48,46,48
165
          46 C=J.C
166
              RETURN
167
          48 CO 55 I=1.N
              IF(I-K) 50,55,50
168
169
          50 [K=1K+1
              V(IK)=V(IK)/(-BIGA)
17C
171
          55 CONTINUE
172
              CC 65 I=1.N
              IK=NK+I
173
              HCLC=A(IK)
174
              1J=1-1
175
176
              CC 65 J=1,N
177
              11=[]+N
178
              IF(I-K) 60,65,60
179
          60 IF(J-K) 62,65,62
180
          62 KJ=1J-1+K
              A(IJ) = FCLC \Rightarrow A(KJ) + A(IJ)
181
          65 CONTINUE
182
              KJ=K-N
183
              DO 75 J=1,N
184
185
              KJ=KJ+A
              IF(J-K) 70,75,70
166
```

68

```
69
```

```
70 31(3)=4(KJ1/916A
LE7
         73 CCHILALE
831
189
            C=[*[[C:
            AKKE = I.D/EIGA
150
151
         en continte
152
            K = N
        ICC K= (K-1)
153
154
             IF(K) 150,150,165
        105 T=L(K)
155
             [F11-K] 120,120,108
156
        108 JC=X*(K-1)
197
             JR=14(1-1)
158
            DC 110 J=1.N
159
500
             JK=JC+J
            HCLC=/(JK)
125
2C2
             J[=JR+J
             A(JK)=-A(JT)
23
        110 A(JI) = +CLC
254
        120 J=M(K)
65
             IF(J-K) 100,100,125
266
267
        125 KI=K-N
             CC 130 I=1,N
508
             KI=K14V
209
             HCLC=A(KI)
210
             JI=KI-K+J
211
             A(KI) = -A(JI)
212
        13C A(JI) =HELE
213
             GC TC 1CC
214
        150 RETURN
215
             END
216
```

```
117
             SUBPCULINE GMPRC(4,8,8,8,4,L)
118
            DIMENSION A(1), 8(1), 8(1)
119
             I H = 0
120
             18=-8
            CC 1C K=1, L
121
:22
             IK=IK+N
123
            DC 10 J=1,A -
:24
             IR=IR+1
125
             1-J-N
             18=1K
126
            R(IR)=C
127
            CC 1C I=1, F
128
129
             JI=JI+N
130
             18=12+1
131
         10 R(IR)=R(IR)+A(JI)*B(I2)
132
            RETURN
133
             END
```

. 70

```
SUBRCUTINE CHIRALA, R. N. F. 1
234
             DIMENSION A111, R(1)
235
             IR=C
236
             DO 10 I=1,A
237
             1-1=LF
238
239
             DC 10 J=1, M
            11=[]+N
24C
             [R=]R+1
241
242
         10 R(IR)=A(IJ)
             RETURN
243
             END
244
```

APPENDIX II. Computer Program for Simplex Pattern Search

The computer flow chart which illustrates the computational procedure is illustrated in Fig.A-2; the program symbols and their explanation are summarized in Table A-2. The computer program for the solution of twenty dimensional problem follows the symbol table.

simplex pattern search method the diagram for Flow Fig. A-2

Table A-2.Symbol Table

Program Symbol	Explanation	
N	Number of decision variables	
PCTR(I)	A vector of decision variables	
D(I)	A vector of perturbation size for starting initial simplex	
ITER	Number of iterations	
ITOUT	Interval of output iterations	
ITMAX	Maximum number of iterations	
DELTA	Accuracy level for stopping criterion	
A(1)	Sales rate; I = 1, 2,, n	
CI(I)	Inventory level; I = 1, 2,, n	
NOPT	Number of objective function evaluation	
NORFT	Number of reflection move	
NOEXP	Number of expansion move	
NOCNT	Number of contraction move	
NOCVGT	Number of convergence in a simplex	
SY	Standard deviation in a value of objective functions	
Y(I)	Value of objective function at a point $P(I)$ in a simplex $I = 1, 2,, N+1$	
YF	Value of objective function	
MA	Average function value of a simplex	
AWIN	The minimum function value in a simplex	
PMIN(J)	A point in a simplex which gives minimum function value	

```
75
```

```
C
            COMPUTER PROGRAM FOR STUPLEX PATTERN SCARCH
     C
            APPLICATION TO IVENTY DIMENSIONAL PROBLEM
     C
            DIMENSION P(45,40), Y(45), PCTR(40), E(40), PP(3,40), A(40)
 1
 2
            CUNNER A
. 3
      1000 F0384T(4150
 4
            READ 1000, N. ITOUT, ITMAX, DELTA
 5
      1100 FURMATIZETO.24
6
            REAC 1100, (POTR(I), E(I), I=1, M)
 7
      1200 FORMAT(5F10.2K
 8
            READ 1200, [4[]], [=1,10]
     C
            **READ IN ADDITIONAL DATA .
     C
            CALL READING--- <
 9
            NUPT=A+1
10
            FUL T = 1
11
            ITER=C
12
            NORFT = C
13
            NGEXP=C
14
            NOCNI=C
15
            NGCV6T=0
16
            YM=C.C
            SY=C.C
17
18
            FN=N
19
            NN = N + 1
            **SET UP INITIAL SIMPLEX .
     C
20
            DO 4 J=1,"
21
            DC 1 [=1.J
22
          1 P([,J)=PCTS(J)-D(J)
23
            FJ=J
24
            P(J+1.J)=PCTR(J)+FJ+C(J)
25
            IF(J-1)2,4,4
26
          2 JV=J+Z
27
            DO 3 [=J%, Not
28
          3 P(I,J)=PCTR(J)
29
          4 CUMTINUS
30
            DC 6 [=1,NA
31
            Dd 5 J=1,4
          5 PCTR(J)=P(I.J)
32
     C
            CALL CHECKIB--- <
33
            CALL COUPNIECTRINITE
     C
            CALL CHECKE* --- <
34
          6 Y(1)=YF
     C
            **REARRANCE CRDER .
35
            I = 1
36
            NS=X+1
37
          7 [F(Y(I)-Y(\S))][0,8,9
38
          2 YIEN=Y(\S)
39
            Y(SS)=Y(I)
40
            YII)=YIE#
41
            00 9 J=1.N
42
            PCIR(U)=P(YS,J)
43
            P(P(S,J)=P(I,J)
44
         9 P(L,J)=PCT3(J)
45
        IC IF(\S-I-1)12,12,11
46
        11 45=45-1
            GO TO 7
47
48
        12 [=[+1
49
            IF([-A-1)13,14,14
```

```
50
        13 NS=N+1
           GC TC 7
51
                                                                             76
        14 [027] = 5
52
           DO 15 J=1.4
53
        15 PCTR(J)=P(1,J)
54
55
           YMIN=Y(1)
           CALC CUTPUTE TOPTW. HER. NEPT. NEEXP. NORFT, NOCKT, YM, SY, NOCKGT, POTR,
56
           IYMIN, [TOUT, MULT, N.)
            * COMPLIE CENTROID OF THE SIMPLEX .
     C
       160 FN=N
57
           DO 17 J=1.N
58
59
            PXI=P(1,J)
            00 16 I=2.N
60
        16 PXT=FX[4P(I,J)
61
        17 P(N+2,J)=PXT/FN
62
            **MAKE REFLECTION FOVE .
     C
63
            DC 21 J=1.N
            P(M+3,J)=P(M+2,J)+1.C*(P(M+2,J)-P(N+1,J))
64
        21 PCTR(J)=2(143,J)
65
            CALL CHECKIT---<
     C
            CALL COUFNIPCTR, N. YF)
66
            CALL CHECK29----
     C
            Y (N+2)=YF
67
            NOPT=ACPT+1
88
            IF(Y(N+2)-Y(1))3C,22,22
69
        22 [F(Y(N+2)-Y(X))23,40,40
70
71
        23 DO 24 I=1.N
        24 P(N+1, E)=P(N+3, I)
72
73
            Y(N+1)=Y(N+2)
74
            IFER=ITE*+1
            NORFI=NORFI+1
75
            GO TO 100
76
            **MAKE EXPANSION FOVE .
     C
         30 00 31 J=1."
77
            P(N+4,J)=P(M+2,J)+2.C*(P(A+3,J)-P(N+2,J))
78
         31 PCTR(J)=2(X+4,J)
79
            CALL CHECKIT----
     C
            CALL CEUFNIPOIR, NAYED
80
     C
            CALL CHECK25--- <
            Y(N+3)=YF
81
            NOPT=ACPT+1
82
            [F(Y(X+3)-Y(1))32,32,23
23
         32 DC 33 I=1,%
24
٤5
         33 P(N+1,[]=P(N+4,I)
            Y(\forall 41) = Y(\exists 43)
86
            ITER=ITER+L
87
            NOEXP=NCSXP+1
89
            50 Tt 100
89
         40 [F(Y(X+2)-Y(X+1))41,50,50
90
         41 DO 42 T=1.M
91
         42 P(N+1,1)=P(N+3,1)
52
            Y(-1)=Y(N+2)
53
            IffR=ITER+I
54
            NORFT=NORFT+1
95
            ** MAKE CONTRACTION FOVE .
         50 DO 51 J=1."
96
            P(N+5,J)=P(N+2,J)+C.5*(P(N+1,J)-P(N+2,J))
97
         51 PCTR(J)=2(N+5,J)
58
            CALL CRUEN (POTR, ', YE)
59
            Y (444)=YF
ICC.
```

```
101
            NOPI=NEPI+L
.02
             IF(YIN+4)-Y(N+1)152,60,60
                                                                               77
LC3
         52 DU 53 I=1, h
         53 P(\+1.[]=P(\+5.[)
C4
LC5
            Y(X+i)=Y(X+i)
            ITER=ITER+1
106
LC7
            NCCNT=NUCTIT+1
            NECVGT=NECVGT+1
108
169
            GO TO 110
            **CUT COMM STEP-SIZE .
      C
         60 DE 62 [=2.NA
110
            DO 61 J=1,N
111
            P(I,J)=(P(I,J)+P(I,J))/2.0
112
         61 PCTR(J)=P(1,J)
113
            CALL COUFM(PCTR, N.YE)
114
         62 Y(1)=YF
115
            **REARRANGE CROCK .
      C
116
            I = 1
            NS = N + 1
117
         63 IF(Y([)-Y(\S))66,64,64
118
         64 YTEM=Y(NS)
119
120
             Y(NS)=Y([)
121
            Y(I)=YTEN
            DC 65 J=1.14
122
            PCTR(J)=P(NS,J)
123
            P(MS, J) = P(I, J)
124
125
         65 P(I,J)=PCTR(J)
         66 IF(KS-I-1)68,68,67
126
127
         67 NS=NS-1
128
            GO TC 63
129
         6º [=[+1
             IF(I-A-1)69,70,70
130
         69 NS=N+1
131
132
            GO TO 63
         70 NOPT=ACPT+N
133
             NOGVOT=NCCVGT+1
134
1 35
             ICPTE=4
             DO 75 (=1,1)
136
         75 PCTR([)=P(1.[)
137
             (I) Y=VIKY
130
             CALL CUTPUTE TOPTM, ITER, HOPT, NOEXP, NORFT, NOCHT, YM, SY, NOCHST, PCTR,
139
            IYMIN, ITOUT, MULT, NI
             GC TC 120
140
141
        100 NOCVOI=0
      C
             **REARPAMGE ORDER .
142
        110 IC != N
        111 [F(Y(ICR+1)-Y(IGR))112,120,120
143
144
        112 YEE'=Y(ICR+1)
145
             Y(IGR+I)=Y(IGR)
           Y(TOR)=YTEM
146
             DG 113 J=1.%
147
148
             PCTR(J)=2([CR+1,J]
             P(ICH+1,J)=?(ICR,J)
143
         113 P(154,J)=PCPR(J)
150
151
             [F([CR-1)120,120,114
        114 ICT=ICR-1
152
153
            - GC TC 111
             **IEST FOR COTIMALITY .
         120 YT=Y(1)
154
155
             FW's= NP
```

```
.56
            DO 121 1=2,48
57
        121 YF=Yi+Y([)
                                                                               78
            YE=YI/FIX
.58
            SY= [Y(1)-Y) **2
59
            DO 122 1=2,11V
.66
        122 SY=SY+(Y(I)-YF) ##2
.61
            SY=(SY/FY) #40.5
1.62
            [F(SY-CELFA1123,123,124
63
        123 IFINCOVGT-21126,125,125
64
        124 10017 = 2
165
            GO TC 130
166
        125 [0218=1]
167
            GO TO 130
168
        126 ICPIN=3
169
       - 130 N=N
170
            DC 131 I=1.V
171
        131 PCTR(I)=2(1,I)
172
L73
            YATE Y(1)
            CALL CUTPUTE TOPTM, TIER, NOPT, NCEXP, NORFT, NCCNT, YM, SY, NCCVGT, PCTR,
174
          - IYEIN, HITCH, MULT, N)
175
             IFIICPIN-1)150,150,140
        140 IFILINAX-ITER 1150, 150, 160
176
        150 STOP
177
             END
178
```

```
* SUBROUTING COUPTIPOTH, H, YF)
179
            DIMENSIUM PCTR(40), PR(40), W(40), CT(40), A(46)
                                                                          79
180
131
            COMMON A
            CI(1)=263.+PCTR(1)-A(1)
182
183
            00 1 1=2,10
          1 CI(I)=CI(I-1'+PCTP(I)-5(I)
184
            51=34C.*(PCTR(11))+64.3*(PCTR(11)-61.)**2+.2*(PCTR(1)-5.67*(PCTR(1
185
           11)))**2+51.2*(PCTR(1))-281.*(PCTR(11))+0.0825*(CI(1)-320.)**2
            YF=SI
186
            DG 2 J=2.10
187
          2 YF=YF+34C.*(20TR(J+10))+64.3*(PCTA(J+10)-PCTR(J+9))**2+.2*(PCTR(J)
188
           1-5.67*PCTR(J+10))**2+51.2*(PCTR(J))-281.*(PCTR(J+10))+0.9825*(C1(J
           11-320,01442
            RETURN
189
190
            END
```

```
SUBROLLINE COTPUTITOPIN, ITER, NOPT, NCEXP, NORFT, NOCHT, YM, SY, NOCYGI,
91
           IPPIN, YMIN, LIGHT, MULT, NI
           DIMENSION PMIN(40), PR(40), N(40), CI(40), N(40)
92
53
           CCYLEN A
       100 FORMAT(518,2F12.3,18.3Y9H# CPTIMUMS
94
       200 FORMAI(518,2F12.3,18¢
95
       500 FORMATISTE, 24TH-C, TH, 3X13H# START PLINTS
56
       700 FORMAT(4X4HMCPT4X4HITER3X5HMCRFT3X5HMCEXP3X5HMCCNT7X2HYM10X2HSY5X6
97
           THACCACTAX6HREYARKC
       716 FORMAT(16X2HXC13,3FK #F10,3,2H .<
58
       720 FORMATTICX GEYFIN #F15.3.//C
59
            IF(10PTX-2)10,20,25
CO
        25 [FUICETE-5129,50,29
Cl
         10 PRINT 700
CZ
            PRINT 100, MORT, ITER, NORFT, NOEXP, ACCAT, YM, SY, NECVGT
C3
            PRINT 710, (J. PMIN(J), J=1, N)
C4
            PRINT 720, YHIN
C5
            RETURN
C6
         20 IF(||ER-||TOUT#MULT||29,21,21
C7
         21 PRINT 700
C8
            PRINT 200, MOPT, ITER, NORFT, NCEXP, NCCNT, YM, SY, NCCVGT
C9
            PRINT 710, (J, PFIN(J), J=1, N)
10
            PRINT 720.YMIN
11
            MULT=MULT+1
12.
         29 RETURN
113
         50 PRINT 700
114
            PRINT 500, MOPT, ITER, NORFT, NOEXP, NOCHT, NOCYGT
115
            PRINT 710, (J, PMIN(J), J=1, A)
116
            MEY TOST TRISS
117
            RETURN
!13
            END
119
```

APPENDIX III. Computer Program for Fletcher and Powell Method

The computer flow chart which illustrates the computational procedure of the method is illustrated in Fig.A-3; the program symbols, their explanations and corresponding mathematical notations are summarized in Table A-3. The computer program for the solution of twenty dimensional problem follows the symbol table.

Fig. A-3. Flow diagram for Fletcher and Powell method.

Table A-3. Symbol Table

Program Symbol	Explanation	Mathematical Symbol
N	Number of decision variables	
x(1)	A vector of decision variables	x_n ; $n = 1, 2,, N$
Q(I)	Sales rate; I = 1, 2,, m	,
CI(I)	<pre>Inventory level; I = 1, 2,, m, m = No. of periods</pre>	I_n ; $n = 1, 2,, m$
EST	Estimate of minimum function value	y.
EPS	Accuracy level for stopping criterion	E
LIMIT	Maximum No. of iterations	
F	Function value	F(x)
G(I)	Gradient vector; I = 1, 2,, N	$g_n; n = 1, 2,, N$
H(I)	Direction vector; I = 1, 2,, N	ξ_n ; n = 1, 2,, N
AMBDA	Stepsize .	λ
H	A matrix to approximate	H

```
84
            COMPLIER PROGRAM FOR FLETCHER AND POWELL METHOD
     C
     C
            APPLICATION TO THENTY DIMENSIONAL PROBLEM
     C
            EXTERNAL FUNCT
            DIMENSION X(30),0(30),0(30),0((30),F(270)
 2
 3
            CEMNEN FOUNT, CI, C
            REAC 100, (C(I), I=1,10)
 4
        100 FCRMAI(10F5.1)
 5
 6
            N=20
            CC 1C I=1,10
 7
         10 X(f)=300.
- 8
            CC 2C J=11,2C
 9
10
         2C X(J)=5C.
            FPS=C.1
11
            EST=300000.0
12
13
            LIMIT=100
            CALL FMFP(FUNCT, N, X, F, G, EST, EPS, LIMIT, IER, H)
14
                               FLETCHER AND POWELL METHOD
        700 FCR##1(1H-, "
15
            PRINT 700
16
        6CC FCRMAT(1H-. *
17
            PRINT 600
18
        200 FCRMAT(/3X,F1C.3,5X,F1C.3,5X,F1J.3)
19
            CC 5 I=1,10
20
          5 PRINT 200, X(1), X([+10], CI(I)
21
         30 FORMATI//6X9FMINIMUM= F10.3)
22
            PRINT BOJE
23
        3CC FCRMAT(//6x6FKOUNT=13)
24
            PRINT 300, KOUNT
25
            STOP
26
            END
27
```

```
SUBROLTINE FUNCTION, X, F, G)
28
                                                                         85
29
           DIMENSION X(30),0(30),0((30),0((30),1((30))
           CEMMEN KOUNT, CI, C
30
31
           C[[1]=263.C+X[]]-G[]]
           CC 1 I=2,10
32
         1 C[(1)=C[(1-1)+X(1)-C(1)]
33
           $1=34C.6*X(11)+64.3*(X(11)-81.C)**2+C.2*(X(1)-5,67*X(11))**2+51.2*
34
          1x(1)-281.C*x(11)+.0825*(C1(1)-320.6)**2
35
           F=51
           CC 2 J=2,1C
36
         2 F=F+34C.*X(J+10)+64.3*(X(J+10)-X(J+9))**2+.2*(X(J)-5.67*X(J+10))**
37
          12+51.2*X(J)-281.*X(J+10)+.0825*(CI(J)-320.)**2
38
           CC 100 [=1.5
39
       100 T(I)=0.0
           CC 1C I=1,10
4C
41
        1C T(1)=T(1)+C.165*(CI(1)-32C.C)
           CC 2C I=2,10
42
        2C T(2)=T(2)+C.165*(CI(I)-320.0)
43
44
           CC 3C I=3,10
        3C T(3)=T(3)+C.165+(CT(1)-32C.C)
45
           DC 40 I=4,10
46
        40 T(4)=T(4)+C.165*(CI(I)-32C.0)
47
48
           CC 50 I=5,10
49
        50 T(5)=T(5)+0.165*(CI(I)-32C.C)
           DG 60 [=6,10
.50
        6C T(6)=T(6)+C.165*(CI(I)-32C.C)
51
           CC 7C 1=7,10
52
        70 T(7)=T(7)+0.165+(CI(I)-320.0)
53
54
           DC 80 I=8,10
55
        EC T(8)=1(8)+C.165*(CI(I)-32C.C)
           DE 90 [=9,10
56
57
        SC T(3)=1(9)+3.165*(C1(I)-320.0)
58
           T(10)=C.165=(C[(10)-320.0)
59
           CC 2CC I=1+15
       2CC G(I)=.4*(X(I)-5.67*X(I+1C))+51.2+T(I)
EC
           G(11)=128.6*(X(11)-81.)+340.-2.268*(X(1)-5.67*X(11))-201.-125.6*(X
61
          1(12)-x(11))
           DE 4 J=12,19
£2
         4 G(J)=128.6*(X(J)-X(J-1))-2.268*(X(J-10)-5.67*X(J))+340.3-281.-128.
63
          16 = (X(J+1) - X(J))
            G(20)=128.6#(X(20)-X(19))-2.268#(X(10)-5.67#X(20))-281.+340.
64
            RETURN
€5
66
            END
```

```
SUBROLTINE EMERIFURGION, X, F, C, EST, EPS, LIMIT, TER, HT
£7
            DIMENSION H(1), X(1), G(1), CI(30), G(30)
83
            CEMMEN ROUNT, CE, C
69
70
            CALL FUNCTION, X, F, C)
            IER=C
71
            KOUNT=C
72
73
            V5=V+V
            N3=N2+N
74
            N31=N3+1
75
          1 K=N31
76
77
             CC 4 J=1,N
             H(K)=1.
78
19
             L-1=L1
EC
             1F(NJ)5,5,2
          2 CC 3 L=1,NJ
13
             KL=K+L
€2
£3
           3 H(KL)=C.
          4 K=KL+1
£4
           5 KOUNT=KCUNT +1
85
             CLCF=F
€6
£7
             CC 9 J=1,N
             K=N+J
83
             H(K)=C(J)
29
SC
             K=K+A
             H(K)=x(J)
51
             K=J+N3
52
             T=0.
53
             DC 8 L=1.N
54
             T=T-G(L) *H(K)
 55
             IF(L-J16,7,7
 56
57
           6 K=K+N-L
             GC TC E
 58
           7 K=K+1
 59
           8 CONTINUE
100
           5 H(J)=1
101
102
             DY=C.
             HNRY=C.
103
164
             GNRM=C.
105
             CC 1C J=1.N
             HNRM=FNRC+APS(H(J))
166
             GNRM=ENRE+AES(G(J))
107
          10 CY=CY+F(J) #6(J)
108
             IF(CY)11.51.51
169
          11 IF (FARY/GNRY-EPS)51,51,12
110
          12 FY=F
111
             ALFA=2. = (EST-F)/CY
112
             AMBCA=1.
113
             IF(ALFA)15,15,13
114
          13 IF(ALFA-AFBCA)14,15,15
115
          14 AMBCA=ALFA
116
          15 ALFA=C.
117
          16 FX=FY
118
             CX=CY
119
             DC 17 I=1.4
120
          17 X([)=X([]+AMECA*E([)
121
             CALL FUNCTION, X, F, G)
122
             FY=F
123
             CY=C.
124
              CC 18 I=1.N.
125
```

18 CY=CY+C(1)*F(E)

126

```
1F(CY)19,36,22
127
128
          19 [F(FY-FX)20,22,22
:129
          20 AMBDA=AMBDA+ALFA
             ALFA=ANECA
136
131
             IF (FARM # AMBDA-1.E10)16,16,21
          21 163=2
132
<sub>2</sub>133
             REILRA
134
          22 T=C.
          23 IF (AMEEA) 24, 36, 24
:135
          24 7=3.*(FX-FY)/AMUDA+DX+DY
136
             ALFA=ANAYI(ABS(Z),ABS(CX),ABS(CY))
137
             CALFA=Z/ALFA
138
             DALFA=CALFA+CALFA-CX/ALFA+CY/ALFA
139
             IF(CALFA)51,25,25
140
141
          25 K=ALFA+SCRT(DALFA)
             ALFA=EY-CX+W+k
142
             IF (ALFA) 250,251,250
143
         25C ALFA=(CY-Z+h)/ALFA
144
             GC TC 252
145
         251 ALFA= (Z+EY-W)/(Z+EX+Z+EY)
146
         252 ALFA=ALFA#AYPCA
147
             CC 26 I=1.N
148
          26 X(1)=X(1)+(T-2LFA)++(1)
149
             CALL FUNCTIN, X, F, G)
150
             [F(F-FX)27,27,28
151
          27 IF(F-FY136,36,28
152
          28 CALFA=C.
153
             DC 29 I=1.N
154
155
          29 CALFA=[ALFA+G(I)+F(I)
156
             IF (CALFA)30,33,33
          30 IF(F-Fx)32,31,33
157
158
          31 IF(CX-CALFA)32,36,32
          32 FX=F
159
             CX=CALFA
160
             T=ALFA
161
             AMECA=ALFA
162
             GC TC 23
163
          33 IF(FY-F)35,34,35
164
          34 IF(CY-CALFA)35,36,35
165
          35 FY=F
166
             CY=CALFA
167
             AMEDA=ALEDA-ALEA
168
             GC TC 22
169
170
          36 IF(CLEF-F+EPS) 51,38,39
          38 DC 37 J=1.N
171
             K= X+ J
172
173
             H(K)=C(J)-F(K)
174
             K=N+K
          37 E(K)=X(J)-P(K)
175
176
177
              IF (KCUNT-N)42,35,39
          39 T=0.
178
             7=0.
179
             CC 4C J=1,1
 180
 161
             K= 1 + J
 182
             4=H(K)
 183
             K=K+1
 184
              T=T+AES(F(K))
          40 Z=Z+v*F(K)
 185
```

IF (FARA-EPS)41,41,42

186

```
88
```

```
41 IF (T-EFS)56,56,42
187
188
          42 IF (KCUNI-LIMIT) 43,50,50
          43 4LFA= (.
:189
190
             CC 47 J=1.N
            .K=1+73
151
152
             h=G.
153
             DC 46 L=1.N
             KL=A+L
154
195
             N=K+1 (KL) *1 (K)
156
             IF(L-3)44,45,45
157
          44 K=K+N-L
158
             GC TC 46
159
          45 K=K+I
          46 CONTINUE
200
201
             K = N + J
             ALFA=ALFA+h+F(K)
202
203
          47 H(J)=1
             IF(Z*ALFA)48,1,48
204
205
          48 K=N31
             CC 49 L=1,N
206
             KL=N2+L
207
             CC 49 J=L, N
2(8
269
             NJ=N2+J
             H(K)=F(K)+F(KL)*H(AJ)/Z-F(L)*F(J)/ALFA
210
          49 K=K+1
211
212
             GC TC 5
          50 IER=1
213
             RETURN
214
          51 CC 52 J=1,N
215
216
             K= 12+J
          52 X(J)=+(K)
217
             CALL FUNCTION, X, F, C)
218
             IF(GNRM-FPS)55,55,53
219
          53 IF(IER)56,54,54
220
221
          54 IER=-1
             GCTC 1
222
223
          55 [ER=C
          56 RETURN
224
             END
225
```

APPENDIX IV. Computer Program for Fletcher and Reeves Method

The computer flow chart which illustrates the computational procedure of the method is illustrated in Fig.A-4; the program symbols, their explanations and corresponding mathematical notations are summarized in Table A-4. The computer program for the solution of twenty dimensional problem follows the symbol table.

Fig. A-4. Flow diagram for Fletcher and Reeves method.

Table A-4.Symbol Table

Program Symbol	Explanation	Mathematical Symbol
N	Number of decision variables	
X(I)	A vector of decision variables	x_n ; $n = 1, 2,, N$
Q(I)	Sales rate; $I = 1, 2, \ldots, m$	`.
CI(I)	<pre>Inventory level; I = 1, 2,, m m = No. of periods</pre>	I_n ; $n = 1, 2,, m$
EST	Estimate of minimum function value	
EPS	Accuracy level for stopping criterion	€ .
LIMIT	Maximum No. of iterations	¥
F	Function value	F(x)
G(I)	Gradient vector; I = 1, 2,, N	$g_n; n = 1, 2,, N$
H(I)	Direction vector; I = 1, 2,, N	$\{n; n = 1, 2,, N\}$
AMBDA	Stepsize	λ

```
92
```

```
COMPLIER PROGRAM FOR FLETCHER AND REEVES METHOD
           APPLICATION TO TWENTY DIMENSIONAL PROBLEM
    C
    C
           EXTERNAL FUNCT
1
2
           DIMENSION X(30),0(30),0(30),01(30),+(270)
           COMMEN KOUNT, CI, C
4
           REAC 1(C, (Q(I), I=1,10)
      100 FCRMAT(16F5.I)
6
           N=20
7
           DC 10 I=1,10
8
        10 X(I)=300.
           CC 20 J=11,20
9
10
        2C X(J)=5C.
           EPS=C.1
11
           EST=300000.0
12
           LIMIT=100
13
           CALL FMCGIFUNCT, N, X, F, G, EST, EPS, LIMIT, IER, F)
4
                            FLETCHER AND REEVES METHOD
       7CC FCRMAT(1H-,'
15
           PRINT 700
16
                                                                             . )
       600 FORMAT(11:-, "
17
           PRIAT 600
18
       200 FORMAT (/3X,F10.3,5X,F10.3,5X,F10.3)
19
           CC 5 I=1,10
2 C
         5 PRINT 200, X(1), X(1+10), CI(1)
21
        30 FORMATI//6X9FNINIMUN= FIC.3)
12
           PRINT 30.F
23
       3CC FORMAT(//6X6FKOUNT=13)
24
           PRINT 300, KOUNT
15
           SIDP
6
           END
14
```

```
SUBRELIINE FUNCTION, X, F, G)
28
           DIMENSION X(30),G(30),C1(30),C(30),T(30)
                                                                          93
29
30
           COMMON KOUNT, CI, C
           CI(1) = 263 \cdot C + x(1) - G(1)
31
32
           CC 1 I=2,10
        -1 C((1)=C((1-1)+x(1)-C(1))
23
           $1=34C.C*X(11)+64.3*(X(11)-81.C)**2+C.2*(X(1)-5.67*X(11))**2+51.2*
34
          1X(1)-2E1.0*X(11)+.CE25*(CI(1)-32C.C)**2
35
           F=51
           OC 2 J=2,10
36
         2 F=F+34C.*X(J+1G)+64.3*(X(J+1C)-X(J+S))**2+.2*(X(J)-5.67*X(J+1C))**
37
          12+51.2*X(J)-281.*X(J+10)+.0825*(CI(J)-320.)**2
38
           DC 1CC I=1,9
39
       100 T(1)=0.0
           CC 10 I=1,10
40
        10 T(1)=T(1)+0.165#(CI(I)-320.0)
41
42
           DC 20 [=2,10
43
        20 T(2)=1(2)+C.165+(CI(I)-32C.C)
44
           DC 3C I=3,10
45
        30 I(3)=I(3)+C.165+(Ci(I)-32C.C)
46
           DC 40 (=4,10
        4C.T(4)=T(4)+C.165*(CI(I)-32C.C)
47
           DC 50 I=5,10
48
49
        5C T(5)=T(5)+C.165+(C1(I)-32C.C)
50
           DC 60 I=6.10
        &C T(6)=T(6)+C.165+(CI(I)-32C.0)
51
           DC 7C [=7,10
52
.53
        70 T(7)=1(7)+0.165*(CI(I)-320.0)
54
           CC 8C I=0.10
        80 T(8)=T(8)+0.165*(CI(I)-320.0)
55
           DC SC [=9,10
56
57
        50 T(9)=T(9)+C.165*(CI(I)-320.0)
           T(19)=C.165*(CI(1C)-320.0) /
58
59
           DC 2CC [=1,10
€0
       2C0 G([]=.4*(X([)-5.67*X([+10])+51.2+T(])
           G(11)=128.6*(X(11)-81.)+340.-2.268*(X(1)-5.67*X(11))-281.-129.6*(X
£1
          1(12)->(11))
€2
           EC 4 J=12,19
         4 G(J)=129.6*(X(J)-X(J-1))-2.268*(X(J-10)-5.67*X(J))+34C.0-281.-128.
63
          16 \neq (X(z+1)-X(J))
           G(2C)=128.6+(X(20)-X(19))-2.268+(X(1C)-5.67+X(20))-281.+34C.
64
65
           RETURN
66
           END
```

```
SUBSCUTINE FACGIFUNCT, A, X, F, C, EST, EPS, LIFIT, 183, F)
67
                                                                                94
             BIMEASIEN X(1),G(1),F(1),C1(30),G(30)
68
             CONNER KOUNT, CI, C
69
             CALL FUNCT(N,X,F,G)
70
             KEUNT=C
11
             IER=C
72
             N1=N+1
73
          1 CC 43 Il=1,N1
74
             KCUNT=KCUNT+1
75
76
             CLUF=F
             GNRM = C.
77
             CC 2 J=1.N
78
          2 GNRM=GNPD+G(J)*G(J)
75
             [F(GNR)]46,46,3
EC
           3 [F([[-1]4,4,6
13
          4 DC 5 J=1,N
82
           5 H(J)=-6(J)
€3
             GC TC &
84
          6 AMBCA=GNRM/CLEG
€5
             DC 7 J=1,N
£6
           7 H(J)=APBCA+H(J)-C(J)
27
           . 0=Y3 3
83
29
             HARMEC.
             CO 9 J=1, N
50
             K = J + N
51
             H(K)=>(J)
52
             HARK-FARK+ABS(H(J))
53
           S CY=CY+F(J)*G(J)
54
 55
             IF(CY)10,42,42
56
          IC SNRM=1./FNRM
             FY=F
57
             ALFA=2. +(EST-F)/CY
58
             MEMS = ADSMA
59
             IF(ALFA)13,13,11
100
          11 [F(ALFC-AMMEA)12,13,13
101
          12 AMECA=ALFA
102
          13 ALFA=C.
103
          14 FX=FY
1(4
             CX=CY
105
             CC 15 I=1,N
166
          15 X(I)=X(I)+AFCCA++(I)
167
             CALL FUNCTION, X, F, G)
168
169
             FY=F
             CY=C.
110
             CC 16 [=1, N
111
          16 CY=CY+C(1) ++(1)
112
113
             IF(CY)17,38,20
          17 IF(FY-FX)18,20,20
114
          16 AMBDA=AMBDA+ALFA
115
116
             ALFA=AMEDA
             IF(HARM#AM9DA-1.E10)14,14,19
117
118
          15 IER=2
             F=CLCF
119
             EC 166 J=1.N
120
121
             G(J)=f(J)
122
             K = N + J
         1CC \times \{J\} = F\{K\}
123
124
             RETURN
```

20 1=0.

21 [F(AMEDA)22,38,22

125

```
127
         22 Z=3. # (FX-FY)/AFECA+CX+CY
128
             ALFA=ANAKI (ABS(Z), ABS(EX), ABS(EY))
129
             CALFA=Z/ALFA
130
             CALFA=CALFA+CALFA-CX/ALFA+CY/ALFA
131
             IF(CALFA)23,27,27
132
         23 DC 24 J=1,N
123
             K = N + J
134
         24 X(J)=+(K)
135
            CALL FUNCTIN, X, F, G1
136
         25 IF(IER)47,26,47
137
         26 IER=-1
138
             GCTC 1
139
         27 K=ALFA+SGRT (DALFA)
            ALF4=[Y-OX+W+W
140
141
             IF (ALFA) 270,271,270
142
        270 ALFA=(CY-Z+W)/ALFA
143
            GC 1C 272
144
        271 ALFA= (Z+CY-1/)/(Z+CX+Z+CY)
145
        272 ALFA=ALFA*AMBCA
            DC 28 I=1.N
146
147
         28 X([)=X(])+(]-ALFA)#F(])
148
            CALL FUNCT(N.X.F.G)
149
             IF(F-FX)29,29,30
         29 IF(F-FY)38,38,30
150
151
         30 CALFA=C.
152
            CC 31 I=1.A
         31 CALFA=CALFA+G(I)++(I)
153
154
             IF(CALFA)32,35,35
155
         32 [F(F-Fx)34,33,35
         33 [F(CX-CALFA)34,38,34
156
         34 FX=F
157
158
            DX=DALFA
159
            T=ALFA
160
            ANBCA=ALFA
            GC TC 21
161
162
         35 [F(FY-F)37,36,37
163
         36 [F(DY-CALFA]37,38,37
         37 FY=F
164
165
            CY=CALFA
166
            AMBDA=AMBDA-ALFA
            GC TC 2C
167
168
         38 IF(CLCF-F+EPS) 19,25,39
169
         35 CLDG=GNRM
170
            T=C.
171
            CC 4C J=1. N
172
            K=J+N
173
            H(K)=x\{J\}-H(K)
174
         45 T=[+A25(H(X))
175
             IF (KCLNT-N1) 42,41,41
176
         41 [F (T-EPS) 45,45,42
177
         42 IF (KCLAT-LIHIT) 43,44,44
178
         43 IER=C
            GC TC 1
179
1EC
         44 IER=1
181
             IF(GNRN-FPS)46,46,47
182
             IF(ICNRM-ERS).LE.C.) GG TC 46
183
             IFFIER.NE.C) SC TC 47
184
             IER=-1
185
            GE TC 1
         46 [ER=0
186
```

A COMPARATIVE STUDY OF OPTIMIZATION TECHNIQUES APPLIED TO INDUSTRIAL MANAGEMENT SYSTEMS

bу

VIJAY H. MEHTA

B.S. (MECH. ENGG.), Sardar Patel University, Vallabh Vidyanagar, India, 1967

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requiremente for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

In this report a comparison of the four well known unconstrained optimization techniques is presented. The four selected techniques are gradient technique, simplex pattern search, Fletcher and Powell method and Fletcher and Reeves method. The production planning problem and the production and employment scheduling problem represent the typical problems of the industrial management systems. For this reason they are selected as test problems in this study. To see the effect of these four techniques on the dimensionality of the optimization problem, one of the test problem considered is two dimensional problem and another is twenty dimensional problem. The second test problem is the well known Holt, Modigliani, Muth and Simon paint factory model.

The basic theory and procedure of each technique is described together with the results of both the test problems. The four different criteria, namely, the optimal objective function value, the total computation time, number of iterations and required computer memory storage are used to compare the behavior and effectiveness of these techniques.

The results show that Fletcher and Powell method and Fletcher and Reeves method gave the highest convergence rate among the four techniques in both the test problems. It is seen that they have the least effect on increasing the dimensionality of the problem. The gradient technique proves itself third best with regard to all the four criteria and also in the effect of increasing the dimensionality of the problem. Although the simplex pattern search is an efficient search technique for low

dimensional problems, it seems that the technique is inadequate for large dimensional optimization problems.