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INTRODUCTION

For centuries, the main method of corn storage and feeding has

been at a low moisture content (10-13%) . This reduces the probability

of mold growth within the corn kernel. In the past decade, however,

certain aspects of farm technology have made low-moisture grain a goal

that's difficult to achieve and not always desirable.

Maximum yields for corn are obtained, according to Sauer (1973),

by harvesting when the grain is at about 30% moisture. Thereafter,

yields may decrease because of such things as insects, birds and

weather. Therefore, early harvesting of fall grains at high-moisture

contents increases yields because of maximizing kernel weight and

reducing field losses. Ross and Rea (1959) showed harvesting corn at

27% moisture increased yield 5 to 6 bushels/acre on a dry matter basis.

Farmers often artificially dry high-moisture corn before storage. But

this is not satisfactory for all corn handling procedures. Fuel short-

ages, high fuel costs plus the failure of many drying systems' ability

to keep pace with modern harvesting equipment have producers looking

for alternative methods of storing and handling high-moisture corn.

The ensiling process is a method of storing wet grain which lets

producers harvest early and eliminate drying expense. Fermentation and

spoilage losses are incurred when using this method; however, research

has shown that these losses can be reduced by applying preservatives,

mainly organic acids, to the wet corn prior to ensiling.

1
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High-moisture corn is deficient in protein for growing and finish-

ing beef cattle rations and must be supplemented with protein. There

are two types of protein sources that are utilized by ruminant animals

—

natural protein and non-protein-nitrogen (NPN) . Natural proteins,

especially soybean meal, have been the major supplemental protein used

in high-moisture corn rations. These protein sources are becoming

expensive and in high demand for alternative uses. Non-protein-nitrogen

sources, primarily urea, are effective as supplements to high-moisture

corn in ruminant rations.

Ammonia is also a NPN source which can be utilized by the rumen

microbes, but only if sufficient carbohydrates or energy is available.

Fewer industrial processes and less energy are required to produce

anhydrous ammonia than urea, resulting in lower cost per unit of

nitrogen.

In 1978, the Food and Drug Administration (FDA) approved the use

of "Cold-Flow" ammonia application to corn silage. This process was

developed by engineers and nutritionists at Pennsylvania State Univer-

sity in cooperation with USS chemicals. 3 The heart of the system is

a condensation chamber which converts anhydrous ammonia to liquid

ammonia. The liquid is applied directly to corn silage much easier

and safer than the gaseous or aqueous forms.

Since only limited data have been published with ammonia applica-

tion to high-moisture corn, a series of trials was conducted to evaluate

the effects of liquid (Cold-Flow) ammonia on (1) the fermentation

^SS Chemicals, P. 0. Box 1685, Atlanta, Georgia.



characteristics of reconstituted cracked corn and (2) the performance

of ruminant animals.



LITERATURE REVIEW

High-Moisture Corn Compared to Dry Corn

High-moisture corn has been shown in numerous feeding trials to

be equal or superior to dry corn in animal performance. Ross and Rea

(1959) showed a 1.5% improvement in feed efficiency with no difference

in average daily gain. Daily gains were slightly greater (2.56 lb. vs.

2.33 lb.) for high-moisture corn compared to dry corn in a study by

Beeson and Perry in 1958. However, feed efficiency was improved 10-15%

with high-moisture corn. Riley and Corah (1978) summarized 15 trials

comparing high-moisture corn to dry corn. High-moisture corn, ground

and ensiled, reduced gain an average of 5.6% and efficiency by 0.7%.

A wide variation existed between trials, ranging from an 11.5% improve-

ment in gain to a reduction of 25.4%. They concluded source and level

of roughage to be important variables. Variation could also be due to

loss of volatile fatty acids during drying, leading to underestimation

of dry matter intake and better feed efficiency values than normal.

Storage of High-Moisture Corn

To take full advantage of early harvest and high-moisture corn

feeding, farmers have been storing the wet grain by ensiling. It can

be ensiled in oxygen-limiting, conventional upright, or horizontal

silos. Ensiling causes a loss of total dry matter with losses estimated

in the range of 2-4% in oxygen-limiting silos, 5-10% in conventional



upright and trench silos, to above 10% in dirt-sided trenches without

an adequate seal on the top (Sauer, 1973)

.

High-moisture storage is also conducive to spoilage losses because

of mold contamination. Warden (1969) suggested that at least 1% of the

world's grain supply was lost because of molding in the late 1940' s.

Grain losses in the late 1960 's in the United States exceeded 50 million

dollars, with corn and wheat especially susceptible to mold damage.

The critical moisture levels for these two grains are 14.5-14.7% for

whole grain and 12.3-13.0% when ground (32°C, 70% relative humidity)

(Jones £t al. , 1974)

.

Major effects of fungal invasion on stored grain include: (1)

decreased germinability, (2) discoloration of either the germ, embryo,

or entire seed, (3) heating and mustiness, (4) potential production of

harmful toxins, (5) biochemical changes within the grain, and (6) loss

in weight (Christensen and Kaufman, 1969). These changes may occur

before the mold becomes visible to the naked eye.

Organic Acid Preservation of High-Moisture Corn

In the past decade, organic acids such as propionic, acetic, and

formic have been used for preservation and storage of high-moisture

grain to decrease fermentation and spoilage losses. The amount of

organic acids required depends primarily on the chemical used, the

grain moisture content, and the length of storage. As the moisture

content increases, the application rate must increase. For propionic

acid addition, Sauer (1973) recommends 0.3-0.6% at 18% moisture and

for 26% moisture, 0.6-1.0%. The higher rates are considered safe for
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storage up to a year, while the lower rates are safe for shorter storage

in cool weather.

Sauer and Burroughs (1974) conducted a trial to compare the

efficacy of various chemicals as grain preservatives. Corn and grain

sorghum were reconstituted to various moisture contents and treated

with several chemicals at application rates from 0.2 to 1.0%. Adding

the free acid forms was much more effective in eliminating initial

mold growth than the same acids added as calcium or sodium salts,

especially at lower moisture contents. The salts may be activated

by contact with water; therefore, a low moisture content grain would

not be preserved. Britt and Huber (1975) treated corn harvested at

27% moisture with 1.2% propionic acid. Total fungal colonies were

reduced, but not eliminated. Clark et al. (1973) treated corn harvested

at 24-26% moisture with 1.3% propionic acid. Viable counts of fungi

were significantly (P<.01) reduced during storage. After 270 days of

storage, the control contained greater than 5 x 10" molds/g while the

acid treated corn had 4.5 x 10 molds/g.

Little or no fermentation occurs in properly handled chemically

preserved corn grain (Sauer, 1973) . This agrees with a study by Jones

et al. (1970) where high-moisture (32%) corn was treated with 1.5%

(w/w) propionic acid. Lactic acid analysis suggested that there was

little fermentation in the treated grain. Since fermentation is re-

duced, dry matter losses should also be reduced. Brethour and Duitsman

(1974) treated high-moisture milo, 25.7% and 22.8% moisture, with 1.39%

and .97% propionic acid, respectively. Dry matter loss was essentially
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zero with acid treatment but the control high-moisture milo lost 4.0%

at 25.7% moisture and 6.9% at the 22.8% moisture level.

Effect of Acid Treatment on Beef Cattle Performance

In the last two years, several studies have been reported on the

feeding value of acid-treated high-moisture grains for beef cattle,

especially during the finishing phase. These experiments vary with

regard to grain, species, moisture level, level of acid, processing

method and amount and/or type of roughage fed. Consequently, results

vary.

In a 120-day trial with 28% moisture milo treated with a mixture

of 57% acetic and 40% propionic acids, Harris (1973) indicated dry

milo had poorer feed efficiency by 15.9%. Bolsen _et al. (1972)

observed a significant (P<.05) increase in average daily gain for

steers fed reconstituted, acid-treated whole milo compared to steam-

flaked and reconstituted, rolled and ensiled milo. Feed efficiency

was significantly improved with reconstituted, acid-treated whole milo

compared to reconstituted, rolled and ensiled and was equal to the

steam-flaked treatment. Bolsen e_t al. (1974) in a similar trial found

feed efficiency was higher for reconstituted (29.5% moisture) and

early-harvested (24% moisture) acid-treated milo than those fed recon-

stituted and early-harvested milo ensiled in an oxygen-limiting silo.

Body weight gains of cattle fed high-moisture acid-treated milo were

equal to that of cattle fed high-moisture milo ensiled in an oxygen-

limiting silo. Brethour and Duitsman (1975) showed a significantly

improved rate of gain and feed efficiency for propionic acid-treated
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high-moisture (24%) milo stored in the whole form compared to dry,

untreated ground high-moisture and propionic acid high-moisture ground

milo. In another trial, Brethour and Duitsman (1974) showed a signi-

ficant increase in body weight gain and efficiency from propionic

acid-treated high-moisture (22.8% and 25.7%) milo over ground, ensiled

milo.

Most of the acid-treated high-moisture grain studies with beef

cattle in North America have involved corn. Macleod e_t al. (1976)

concluded that dry corn and acetic-propionic acid-treated high-moisture

corn are of equal feeding value for growing and finishing cattle fed

with or without limited roughage. This agrees with work done by

Forsyth ^t al. (1970), Tolman and Guyer (1972), and Tonroy et al.

(1974). Acid treating high-moisture corn increased body weight gains

according to W. M. D. Wilson e_t al. (1972), L. L. Wilson et al. (1972),

and Fontenot et al . (1976)

.

Tonroy e_t al. (1974) observed a 7% improvement in feed efficiency

for acid treated corn which is slightly less than the 10% improvement

noted for Forsyth e_t al. (1970) and more than the 4.6% improvement

shown by L. L. Wilson e_t al. (1972).

Jones e_t al. (1974) summarized 12 studies comparing the feeding

value of acid-treated high-moisture shelled corn to dry shelled corn

in beef cattle finishing rations. In general, the summary indicated

acid-treated corn was equivalent to dry corn, on a dry matter basis

for average daily gains, but slightly superior in feed efficiency

(2.3%). Improvement in gain and feed efficiency varied from -6.2 to

+6.8% and -2.4 to +9.0%, respectively.



Chemical and Physical Characteristics of High-Moisture Corn and
Sorghum Grain

The trend of greater efficiency of nutrient utilization with

acid-treated high-moisture and high-moisture grains compared to dry

grain may be due to several factors. High moisture and dry grains

differ in certain physical and chemical characteristics that may

affect rumen fermentation patterns, extent of digestion in the rumen

and (or) overall digestion. Florence et_ al. (1968) observed that

reconstituted sorghum grain had a significant decrease in particle

size, a less distinct cell wall and larger numbers of free starch

granules than dry sorghum grain. These researchers suggested the

increased numbers of starch granules are due to the disruption of

the proteinaceous matrix surrounding the starch granules when recon-

stituted. Prigge et al. (1976b) indicated that starch availability

is greatest when at least 24% of the total nitrogen is in the soluble

form. Thus, the increase in soluble nitrogen during storage of ground

high-moisture and acid-treated high-moisture corn observed by Jones

et al . (1970), McKnight et al. (1973), and Prigge et al. (1976a) may

have directly increased available energy. This may be an important

factor in improving the energetic efficiency of high-moisture corn

rations.

Studies by McKnight e_t al_. (1973) showed high-moisture corn (acid-

treated or ensiled) diets had higher dry matter, organic natter, and

energy digestibilities than dry corn diets. Nitrogen retentions were

similar as were rumen volatile fatty acid proportions. This agrees

with work done by McLaren and Matushima (1968) with cattle where the
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apparent dry matter digestibility of reconstituted, ensiled corn was

significantly increased compared to dry corn. Tonroy e_t al. (1974)

observed nonsignificant increases in the dry matter and energy digesti-

bility with high-moisture corn compared to dry, reconstituted, and

acid- treated high-moisture corn. This agrees with data generated by

Polzin et al. (1972) with sheep and Macleod et al. (1976) with cattle.

Tonroy e_t al. (1974) suggested some of the benefits of feeding

high-moisture corn may result from a significant increase in crude

protein digestibility. McLaren and Matushima (1968) also showed a

significant increase in crude protein digestibility with ensiled,

reconstituted corn over that of dry corn. However, Macleod e_t al .

(1976) and Polzin e_t al. (1972) indicated no significant differences

in crude protein digestibility of high-moisture and acid-treated high-

moisture corn compared to dry corn.

The high-moisture corn rations (ensiled and acid-treated) of

McKnight e_t al . (1973) resulted in a significantly slower rate of

passage from the rumen and increased ruminal digestion of dry matter,

organic matter, and starch compared to dry corn. This explains the

increased overall digestibility of the high-moisture corn observed in

their study. Similar results were obtained by McNeill e_t al . (1971)

with high-moisture sorghum. They observed that less soluble carbo-

hydrate reached the abomasum and ruminal carbohydrate digestion was

greater with reconstituted sorghum than dry sorghum.

These results indicate little difference in nutritional value

between acid-treated high-moisture corn, ensiled high-moisture corn

and dry shelled corn.
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Until recently, the usual alternative to conventional storage or

ensiling was the use of organic acids. But recent experiments (Bothast

et al .
, 1973; Bothast et al. , 1975; Dalmacio, 1976) have shown that

ammonia (NH3) can be used as a preservative for high-moisture corn as

well.

Preservation of High-Moisture Corn With Ammonia

Bothast et al. (1973) applied 2% ammonia on a dry matter basis

(DMB) as NH4OH to 26% moisture corn. One hour after treatment, molds

and yeasts were completely eliminated and remained extinct for two

weeks. Bacterial numbers were reduced from 1.4 x 10' /gram to 1.8 x 10^

and 9.7 x 103/gram at one hour and two weeks after treatment, respec-

tively.

Another trial was conducted by Bothast e_t al. (1975) to compare

ammonia applied as aqueous ammonia, to ammonium isobutyrate (AIB),

isobutyric acid and acetic-propionic acid. Concentrations used were

.5%, .75%, 1.5%, and 2.0%, respectively. The chemicals were applied

to freshly harvested corn containing 27% moisture. All chemicals

initially reduced bacterial counts and eliminated molds and yeasts.

After 10 days, the bacterial population increased similar to control

corn stored in an oxygen-limiting structure (10 3 to 108/gram) . But

ammonia treatment did reduce mold and yeast growth up to 180 days of

storage. The acids controlled bacterial growth more than ammonia or

AIB and therefore appeared to be bacteriostatic as well as fungicidal.

Britt and Huber (1975) demonstrated that treatment of high-moisture

(27%) corn with 1% ammonia (w/w) inhibits heating and fungal growth for

280 days during winter and early spring. Lower amounts of ammonia were
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less effective as a preservative but this may have been because of a

50% loss of ammonia observed at the time of feeding. This agrees with

work, done by Dalmacio (1976) where highest mold counts, after 6 months

storage, were observed for the 0.5% ammonia level compared to 1.0, 1.5,

and 2.0% ammonia. The low level reduced mold counts initially but did

not eliminate them as with the other ammonia treatments.

Results of the Dalmacio (1976) study showed treatments of ammonia,

propionic acid, and combinations of the two were not significantly

different at all levels in influencing mold growth. However, the 0.5%

level seemed ineffective when the initial mold population was high

(about 10^/gram) . The use of propionic acid and (or) ammonia as pre-

servatives of whole corn was found to be superior to drying.

Myco toxins in High-Moisture Grains

The production of mycotoxins in high-moisture grains is of prime

importance since they can be injurious to man and to domestic animals

when consumed. Of these mycotoxins, the aflatoxin has been the most

studied. It has been proven to be carcinogenic and lethal to a large

number of animals (Kadis e_t al
. , 1972; Thiesen, 1977).

Before 1960, the possibility of finding mycotoxins in feeds was

disregarded. Reduced animal growth or death were caused by unknown

factors. In 1960, more than 100,000 turkeys in Great Britain died

after being fed myco toxin-contaminated groundnut meal (Kadis et al.

,

1972). The mycotoxin, subsequently named aflatoxin, is produced by

various fungi, especially Aspergillus species, but also species within

Penicillium . Laboratory studies have shown aflatoxin can occur in

many agricultural commodities like peanuts, soybeans, cottonseed, corn,
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rice, barley, oats, rye, and wheat. Because of this, the Food and

Drug Administration (FDA) has set a maximum level of 20 parts per

billion (ppb) of aflatoxins in agricultural commodities and their

derivative products (Stoloff, 1972).

Aflatoxin contamination of corn as affected by moisture content

and temperature was investigated by Trenk and Hartman (1970) . At

moisture levels above 17.5% and temperatures greater than 24°C,

aflatoxins were formed by A. flavus .

Goldblatt (1966) studied the elimination of aflatoxin from oil-

seed protein concentrates. He found exposure to moist heat and gaseous

ammonia during processing offered a practical means to detoxify afla-

toxin .

Lee ejt al. (1974) also found ammoniation a practical means of

inactivating aflatoxin. Pure aflatoxin was reacted with ammonium

hydroxide at 100°C under 40-50 psig for 1 hour.

Aflatoxic groundnut meal was used by Thiesen (1977) to study

detoxification with ammonia during pelleting. A concentration of 7.4%

ammonia at a moisture content of 30.5% resulted in an 89% detoxifica-

tion. Higher degrees of detoxification (> 99%) were obtained when the

ammonia-treated meal was stored without pelleting. The pelleting

process drove off almost all the ammonia. Treatment with 2.1% ammonia

(without pelleting) at 15% moisture resulted in 90% detoxification of

meal after 11 days of storage.

High-moisture (14-20%) corn containing 32 to 1300 ppb total

aflatoxin was used in a study by Brekke e_t al . (1978). Aflatoxin B±
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comprised 83-94% of the total content. Treatment with 1% ammonia gas

reduced aflatoxin B]_ average levels from 1000 to 4.6 ppb.

Dalmacio (1976) concluded from her study that small amounts of

ammonia could enhance aflatoxin production by A. parasiticus . Potato

dextrose broth was adjusted to pH levels of 4, 7, and 9, and treated

with various ammonia levels from to 2.0 percent. Addition of 0.01%

ammonia enhanced aflatoxin production in media with an initial pH of 9.

No aflatoxins were produced in pH 7 with 0.2% ammonia and at pH 9 with

0.1% ammonia and greater. Aflatoxin production was not influenced by

initial pH, but by the presence of ammonia in the medium.

Sources of Supplemental Proteins

Feeds tuffs used in growing and finishing beef cattle rations are

usually deficient in protein. Common feedstuffs are corn silage and

grains, such as corn and milo. These feeds are high in energy but

deficient in protein. To ensure maximum growth and production, rations

must be supplemented with protein to meet the animals' requirement.

Natural proteins are widely used in cattle supplements. These can

be derived from plants (soybean meal, cottonseed meal, etc.) or animals

(fishmeal, meatmeal, etc.). Plant sources are more commonly used due

primarily to cost. But even plant proteins are becoming expensive and

in high demand for alternative uses, such as for human consumption.

This has led to greater use of urea and other non-protein nitrogen

(NPN) compounds as protein supplements. NPN compounds are rapidly

converted to ammonia in the rumen. The ammonia is then used as a

nitrogen source by bacteria for microbial protein synthesis. The
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microbial proteins then pass to the abomasum where they are broken down

into amino acids for subsequent absorption.

The use of NPN sources, primarily urea, has proven effective as

protein supplements in ruminant rations containing high energy or

readily available carbohydrates. Of major importance to the producer

is that NPN supplementation often results in lower costs of gain than

natural protein supplementation.

Urea Additions to Corn Silage

Studies by Bentley et al . (1955), McClure et al . (1972), Meiske

et al . (1968) and Owens e_t al. (1967) support the conclusion that corn

silages treated with NPN result in similar daily gains as urea supple-

mentation at feeding time. Feed efficiency data are variable, but

cattle fed NPN-treated corn silage have been slightly more efficient

than cattle offered urea at feeding time.

Urea treatment of corn silage results in an increase in pH due to

ammonia formed during fermentation. Ammonia neutralizes fermentation

acids and thereby extends fermentation. This accounts for the signi-

ficantly greater concentrations of lactic acid and total volatile fatty

acids observed with urea-treated silage compared to untreated silage

(Austin et al., 1968; Beattie et al
. , 1971; Britt and Huber, 1975;

Henderson et al. , 1971a; Lopez et al. , 1970; Owens et al. , 1970a).

Urea is commercially manufactured from ammonia and therefore

ammonia has a lower cost per unit of nitrogen. This, in conjunction

with the fact ruminants utilize ammonia as a NPN source for bacterial

protein synthesis has prompted numerous research projects evaluating
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ammonia addition to corn silage but only limited research with high-

moisture corn.

Gaseous Ammonia Addition to Corn Silage

Henderson and Bergen (1972) added ammonia gas at a rate of 7.2

lb./T of corn silage averaging 33.5% and 50.8% dry matter (DM). With

the 33.5% DM silage, ammonia losses to the environment varied from

36.6 to 80.2%, with a mean of 62.7%. Ammonia losses in the 50.8% DM

silage were 92.5% for one load and 80.1% for the other load. There-

fore, an increase in dry matter results in greater ammonia losses when

applied in the gaseous form.

Steers averaging 227 kg were fed all-silage rations of the ammonia-

treated or control corn silage for 98 days. The control corn silage

was supplemented with soybean meal. No supplemental protein was

supplied with the ammonia-treated silage.

Performance was drastically reduced by ammonia treatment. Cattle

consuming control silage compared to those fed ammonia- treated silage

obtained average daily gains (ADG) , dry matter intakes and feed

efficiencies of 1.06, 7.41, 6.99 and .72, 5.73, 8.00 kg, respectively.

In the same study, other groups of steers (227 kg) were placed on

40% shelled corn and 60% control or ammonia- treated corn silage for 98

days. Performance followed the same general trend as the cattle fed

all-silage rations. ADG and dry matter intakes were reduced 18.25 and

13.95%, respectively, with ammonia treatment as compared to the control.

Feed efficiency was 5.35% poorer for cattle consuming the ammonia-

treated ration.
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These researchers concluded treating corn silage with gaseous

ammonia is not recommended. High losses of ammonia to the environment

occurs during the treating process. Crude protein content of the

treated silage was consequently only raised 36% over the control.

Since the treated silage was not supplemented with protein to meet

the cattle's requirement, poor performance occurred.

Treatment of Corn Silage with Aqueous Ammonia

To overcome problems encountered when ammonia gas was added,

research was conducted to investigate other means of applying ammonia.

Henderson e_t al. (1971a) added ammonia as aqueous ammonia to corn

silage. A solution of 16% anhydrous ammonia and 84% water was applied

at the rate of 45 Ib/T (7.2 lb. ammonia/T) of 35% DM silage. This

increased the crude protein content, on a dry matter basis, 60% over

the control silage (11.57 vs. 7.22%).

Steers averaging 234 kg were fed all-silage rations composed of

control, no protein supplement (negative control), control plus soybean

meal (positive control) and ammonia-treated corn silage. ADG for the

ammonia treatment compared to positive control was slightly less (1.13

vs. 1.16 kg). However, ammonia treatment significantly increased ADG

over negative control (.49 kg). Feed efficiencies for the negative

control, positive control and ammonia treatment groups were 8.02, 5.80,

and 5.55, respectively. Henderson e_t al. (1971) in another 100% silage

trial did not see this slight improvement in feed efficiency with

ammonia treatment over positive control. Cattle fed ammonia-treated

silage had a feed efficiency of 6.73 compared to 6.62 for the positive
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control. ADG was slightly higher for the ammonia-treated group, 1.15

kg as opposed to 1.10 kg for cattle on the positive control ration.

When the same silages were fed with 40% shelled corn in the two

studies by Henderson et al. (1971a, b), aqueous ammonia treatment

resulted in similar daily gains and feed efficiency as the positive

controls. Compared to the negative control, which was fed in the

first study, ammonia treatment significantly improved body weight

gains and feed efficiency.

Huber and Santana (1972) compared nitrogen recovery rates of corn

silage treated with 0.3% aqueous ammonia to urea-treated corn silage.

The 89% nitrogen recovery for urea-treated silage was higher than the

79% observed for ammonia treatment. This agrees with later work by

Britt and Huber (1975) where 94% of the nitrogen added to silage as

urea was recovered compared to 68% for aqueous ammonia-treated silage.

The reason for the lower recoveries obtained with urea-treated silages

in these two studies compared to the 100% nitrogen recovery rate ob-

served by Henderson and Bergen (1972) is not known, but may partially

be due to sampling error.

Cold-Flo Application of Ammonia to Corn Silage

In 1973, a system for applying ammonia to corn silage was developed

by Kjelgaard and Anderson at Pennsylvania State University under a grant

from USS Chemicals (Aldrich, 1977) . This system is called the Cold-Flo

method. The heart of the system is the condensation (Cold-Flo) chamber

located downstream of the ammonia nurse tank and regulator. Liquid

ammonia from the nurse tank flows through the regulator under pressure

and into the Cold-Flo chamber. Upon release in the chamber, ammonia
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expands and evaporates. Heat of evaporation is utilized in self-cooling

the remaining ammonia to a stable cold liquid. Because of the high heat

of evaporation for ammonia, normally 15% evaporates to cool and stabil-

ize the remaining 85% as a cold liquid. The liquid portion flows by

gravity through a hose into the silage. Another hose is used to vent

the vaporized ammonia onto the silage.

This method can be used to add ammonia to silage either at the

chopper or the blower. If ammonia is added at the chopper, the nurse

tank must be mounted on the chopper or pulled behind. If the method is

used at the blower, the liquid ammonia is added to the silage at the

feeding inlet of the blower. To prevent harmful ammonia vapors at the

silo-filling site, the vapor ammonia must be fed directly into the

blower housing.

The Cold-Flo system was originally developed for applying ammonia

to soil for nitrogen fertilization. Fox and Cook (1976) were the first

to experiment with Cold-Flo ammonia application to corn silage. In

their first trial, 26 steers (230 kg) per treatment were fed 202 days,

four rations: (1) corn silage plus soybean meal (control), (2) corn

silage treated with an ammonia-mineral suspension (AMS), (3) aqueous

ammonia-treated corn silage (AQ) , and (4) Cold-Flo ammonia-treated corn

silage (CFN) . Crude protein level (% in ration DM) , ADG (kg) and feed

efficiency were 11.5, 1.15, 6.92; 11.1, 1.15, 6.73; 12.7, 1.09, 7.19;

10.8, 1.06, 7.45 for control, AMS, AQ and CFN, respectively.

A 40% loss of nitrogen for the CFN treatment resulted in its low

crude protein content and may explain the lower performance for the

CFN treatment compared to the AQ treatment.
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Cook and Fox (1977) evaluated the feeding value of Cold-Flo

ammonia-treated corn silage (CFN) compared to untreated corn silage

(negative control) and untreated corn silage plus soybean meal (control

soy). The decreasing soy ration was started at 12.5% crude protein and

decreased 0.5% for each 100 lb. of gain until the final level of 10.5%

crude protein was reached. The CFN silage was treated with 4.1 kg of

ammonia/metric ton. Feeding results with steers (234 kg) showed ADG

and feed efficiency were improved 5% when decreasing soy was compared

to the CFN treatment; however, there were no significant differences

in gain between CFN, decreasing soy and control soy treatments. All

three treatments gained significantly (P<.05) faster than the negative

control. Feed efficiency values for the negative control, CFN, control

soy and decreasing soy treatments were 14.40, 6.64, 6.35 and 6.21,

respectively.

These results agree with a trial by Lomas et al . (1978). Cattle

receiving protein supplementation (soybean meal or ammonia-treated

silage) had a 44.4% greater ADG (P<.0005) and a 29.2% lower (P<.0005)

feed efficiency than the negative control. Cattle supplemented with

soybean meal gained 7% faster and required 8% less feed dry matter per

kg of gain than cattle consuming silage treated with 4.5 kg ammonia/

metric ton.

Lomas et al. (1978) prepared a summary comparing corn silage

treated with 4.5 kg Cold-Flo ammonia/metric ton to silage supplemented

with soybean meal at feeding. This summary combined results from

studies by Cook and Fox (1977), Fox and Cook (1977) and Lomas et al.
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(1978). Ammonia treatment of silage resulted in 6.0% lower ADG, 2.4%

greater dry matter intake and 7.2% poorer feed efficiency.

Addition of Various Cold-Flo Ammonia Levels to Corn Silage

In the trial by Cook and Fox (1977), the addition of three levels

of ammonia to corn silage by the Cold-Flo method was investigated.

Ammonia additions of 2.3, 3.2, and 4.1 kg/metric ton produced crude

protein levels (% of DM) of 10.3, 11.1 and 12.3 for the three treat-

ments, respectively.

Steer performance during the first 90 days was Improved as level

of ammonia increased. ADG (kg), dry matter intake (kg/day) and feed

efficiency for the 2.3, 3.2, and 4.1 kg ammonia treatments were .68,

5.36, 7.87; .99, 5.83, 5.89; 1.08, 6.08, 5.63, respectively.

Steer performance during the final 92 days showed some differences

from the first 90 days. The 2.3 kg ammonia treatment had a nonsignifi-

cantly greater ADG than the 3.2 kg treatment and a slightly lower ADG

than the 4.1 kg ammonia level. Feed efficiency was best for the low

level with only 6.8 kg of DM required per kg of gain compared to 7.75

and 7.62 for the 3.2 kg and 4.1 kg treatments, respectively.

Lomas et al. (1978) also experimented with different ammonia

levels. Corn silage was treated with Cold-Flo ammonia at 2.3 and 4.5

kg ammonia/metric ton. ADG was increased 13% and feed efficiency was

improved 8% by feeding corn silage treated with the higher level.

In an attempt to compare cost of gains, Lomas et al. (1978) pooled

performance from their trial with that obtained by Cook and Fox (1977)

and Fox and Cook (1977). Feeding corn silage treated with 4.5 kg

ammonia/metric ton resulted in the lowest total cost of gain. Their
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results indicate: (1) corn silage must be supplemented with nitrogen,

(2) decreasing the level of soybean meal as cattle get heavier is an

efficient and economical practice, and (3) the Cold-Flo system of

adding ammonia to corn silage is effective for providing supplemental

nitrogen.

Effect of Soybean Meal Supplementation of Corn Silage Treated with Low

Levels of Ammonia

Fox et al. (1977) and Bergen and Black (1978) noted it was unlikely

that calves started on feed could generate sufficient microbial protein

from the "full-treat" (4.5 kg ammonia/metric ton) silage to meet their

initial protein requirement. Therefore, feeding a natural source of

protein during the animals' initial growth period would seem warranted,

since it would partially escape rumen degradation to ammonia.

Also, as cattle get heavier, the protein requirement, on a per-

centage basis, decreases. Therefore, it was anticipated cattle could

be fed silage treated with low levels of ammonia and supplemented with

soybean meal during the initial portion of the feeding period. When

the cattle reached an approximate weight of 318 kg, the soybean meal

could be withdrawn from the ration without any adverse effects.

Cook and Fox (1977) fed steers (233 kg) corn silage treated with

2.3 and 3.2 kg ammonia/metric ton supplemented with soybean meal until

the steers reached approximately 272 kg. The crude protein content of

these rations was 12.5% prior to withdrawal of soybean meal. After

soybean meal withdrawal, the cattle consumed rations containing 10.1%

and 11.1% crude protein for the 2.3 and 3.2 kg ammonia treatments,

respectively.
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ADG (kg) for the 2.3 kg ammonia plus soy, 3.2 kg ammonia plus soy,

control soy and decreasing soy treatments were 1.18, 1.11, 1.11, and

1.15, respectively. Feed efficiency was 6.30, 6.64, 6.37, and 6.21

for the respective treatments.

Supplementing soybean meal to corn silage treated with low levels

of ammonia resulted in higher performance than cattle fed unsupplemented

ammonia-treated corn silage. ADG was increased with soybean meal supple-

mentation by 32.6% and 6.7% for the 2.3 and 3.2 kg ammonia treatments,

respectively. The soybean meal supplemented 2.3 and 3.2 kg ammonia

treatments had feed efficiency improvements of 14.2 and 2.6%, respec-

tively over the 4.1 kg ammonia treatment.

Lomas et al. (1978) investigated the feasibility of the half-treat

system (2.3 kg ammonia plus soybean meal) for growing and finishing

cattle. Soybean meal was added to the ration until the steers reached

318 kg. Supplementing with soybean meal produced an improvement of

1.70% for ADG and 4.02% for feed efficiency over the 2.3 kg ammonia

unsupplemented treatment. Since differences in performance between

the two treatments were not significant (P>.05), the results of this

study were inconsistent with those of Cook and Fox (1977). Lomas et

al. (1978) concluded the differing responses were related to use of

monensin in their study, but not by Cook and Fox (1977). Future

research is needed to explain a possible protein sparing effect of

monensin in protein withdrawal from ammonia-treated silage rations.

Fermentation Characteristics of Ammonia-Trea ted Com Silage

Fermentation patterns of ammonia-treated corn silage closely

resemble those of urea-treated corn silage. This is expected since
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microbes in ensiled material partially hydrolyze urea to ammonia during

fermentation. Total organic acids are increased by ammonia treatment

compared to untreated silage (Fox and Fenderson, 1978; Lomas et al.

,

1978). Lactic acid (% of DM) is increased by ammonia treatment and as

level of ammonia increases (Cook and Fox, 1977; Fox and Fenderson, 1978;

Henderson et al. , 1971a, b; Henderson and Bergen, 1972; Henderson and

Geasler, 1970; Huber and Santana, 1972; LaLonde et al. , 1975; Lomas

et al,, 1978). Acetic acid levels were increased by ammoniation in

studies by Fox and Fenderson (1978), Henderson and Geasler (1970),

Huber and Santana (1972), Huber et al. (1976), and Lomas et al . (1978),

but either decreased or was not altered in the studies of Cook and Fox

(1977), Henderson et al. (1971a, b), and Henderson and Bergen (1972).

Butyric acid production was eliminated by addition of 3.2 kg ammonia/

metric ton (Henderson et al., 1971a, b) and by addition of 2.3 kg

ammonia/metric ton (Lomas et. al .
, 1978). However, in the study by

Lomas e_t al . (1978), when the ammonia level was increased to 4.5 kg/

metric ton, butyric acid was increased to .07% from less than 0.01%

in the control and 2.3 kg ammonia treatments. Fox and Fenderson (1978)

also observed an increase in butyric acid levels with a treatment of

3.6 kg aqueous ammonia, but when ammonia was added as anhydrous ammonia

at the same level, no change in butyric acid was observed. These

differences observed between researchers are difficult to explain but

they may be due to errors in dry matter determination (Fox and

Fenderson, 1978).

Crude protein and pH were increased in all studies by ammonia

treatment and level. Recently there has been concern regarding the
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loss of natural plant proteins (true protein) during fermentation.

Ammonia treated corn silage has been shown by Core e_t al • (1974),

Huber and Santana (1972) and Huber et al. (1973) to contain greater

amounts of true protein than non-treated corn silage.

Forage digestibility decreased as acid detergent fiber (ADF)

increased in studies by Combs et al. (1978) and Lomas et al. (1978).

In both studies, ADF was decreased with ammonia treatment, thus

increasing apparent forage digestibility.

General Discussion of Ammonia Treatment of Corn Silage

Adding ammonia to corn silage is an effective method for providing

supplemental nitrogen for growing and finishing cattle. Treatment with

4.1-4.5 kg ammonia/metric ton will result in nonsignificantly lower

performance than cattle supplemented with soybean meal. Performance

of cattle fed silage treated with 2.3 kg ammonia /metrie ton can be

substantially increased by supplementing with soybean meal during the

initial growing phase. The soybean meal can then be withdrawn when

cattle reach an equivalent weight of 318 kg (272 kg for English cattle

breeds and 318 kg for larger, exotic types of cattle). This is the

system that has the most potential for feeding growing and finishing

cattle ammonia- treated corn silage.

More uniform application of non-protein nitrogen (NPN) is obtained

by ammonia treatment than with urea treatment. This eliminates the

clumping problem associated with urea and therefore, possible ammonia

toxicity problems.

Corn silage treated with ammonia may be stored in upright or

trench silos. Since ammonia is extremely corrosive to zinc, copper,
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and brass, storage in zinc-coated steel silos is not recommended.

Lactic acid and pH are increased due to the buffering action of

ammonia and may cause extended fermentation. Increased dry matter

losses may result during ensiling which would reduce the value of

ammonia treatment. Research is quite limited on the amount of dry

matter losses incurred with ammonia-treated silage compared to

untreated silage.

Ammonia losses are variable depending on silage moisture content,

form of ammonia applied and the regulator setting. A moisture content

of 65-70% is the most desirable. If corn is chopped too wet or too

dry, losses may be as high as 50%. Ammonia losses when added as a

gas are highest (40-60%) but well managed Cold-Flo application with

a proper regulator setting has shown recoveries as high as 85-90%.

Feedlot rations require supplementation in addition to nitrogen,

such as minerals and vitamins. The feeding of ammonia- treated corn

silage may lead some to think the ration is complete. As with any

ration, the proper balance of energy, nitrogen, minerals, and vitamins

is extremely important for maximum performance.

Adding ammonia to corn silage increases labor requirements at

harvesting time which is when labor may already be stressed. Another

serious limitation is the hazards of handling ammonia. Ammonia can

burn the skin, damage eyes, and irritate nasal passages. All hose

connections and fittings should be checked for cracks and leaks.

Safety glasses, rubber gloves, and an apron is advised for protective

clothing. Avoid breathing fumes during treatment and avoid entering
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freshly-treated silos. Fresh water should be available near the

vicinity of treatment in case of skin contact.

It must be emphasized that adding ammonia to corn silage is no

substitute for poor management. Management practices such as fineness

of chop, proper moisture content, and rapid filling of the silo must

be followed.

Feeding Value of Ammonia-Treated High-Moisture Corn

La Londe e_t al. (1975) used the Cold-Flo method to apply ammonia

to corn silage and high-moisture (25-30%) corn at harvest time.

Ammonia was applied at rates of 4.5 kg/metric ton of corn silage and

2% (w/w) to high-moisture corn. Treatments were evaluated in a 183-

day, three period feeding trial with steers (259 kg). During each

successive feeding period 60, 40 and 20% of the dietary energy was

supplied by the corn silage, with the remainder supplied by the grain.

Composition of the rations was: (1) corn silage, high-moisture corn

and soybean meal (control) ; (2) ammonia corn silage and high-moisture

corn (ACS-HMC) ; (3) ammonia corn silage and whole ammoniated high-

moisture corn (ACS-WAC) ; and (4) ammonia corn silage and cracked

ammoniated high-moisture corn (ACS-CAC) . The rations varied in crude

protein, depending on the treatment.

Cattle receiving soybean meal supplementation outperformed cattle

consuming the ammonia treatments in the initial period of the growth

study. However, over the 183-day feeding trial, there were no signi-

ficant differences in performance between control, ACS-HMC and ACS-CAC

treatments. Cattle on the whole ammonia corn ration had a significantly
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lower ADG and were less efficient than cattle on all other rations.

This may have been caused by the excessive heating and visible molding

of the whole ammonia corn.

Davis (1979) evaluated the following storage and processing

methods for dry and high-moisture (25%) corn (HMC) : (1) dry rolled

corn, (2) rolled, ammonia-treated HMC (0.5% ammonia applied in aqueous

form), (3) HMC stored whole in an oxygen-limiting bin, rolled prior to

feeding (oxygen-limiting) , (4) HMC rolled and stored in a concrete

bunker silo (rolled bunker), and (5) HMC ground and stored in a

concrete bunker silo (ground bunker) . A 145-day finishing trial with

steers (300 kg) was conducted. All rations were isonitrogenous (11.5%

crude protein) with urea used as the supplemental protein source except

with the ammonia- treated rations. Rate of gain did not differ signi-

ficantly among treatment groups. Cattle consuming aqueous ammonia-

treated corn had a feed efficiency improvement of 1.7, .7 and 3.5%

over the dry rolled, ground bunker and rolled bunker treatments,

respectively. However, the oxygen-limiting treatment was 3.8% more

efficient than the anhydrous ammonia treatment.

Fermentation Characteristics of Ammonia-Treated High-Moisture Corn

As is the case with corn silage, ammonia treatment of high-moisture

corn increases pH and total nitrogen content (Davis, 1979; LaLonde et

al. , 1975; Srivastava and Mowat, 1978). Thornton et al. (1977) applied

aqueous ammonia to ground high-moisture (27%) corn to supply 0.0, 0.1,

0.15, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.2% ammonia. As ammonia level

increased, pH also increased. Ammonia additions from 0.1 to 0.4%
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increased lactate levels over the control, with peak lactate levels

occurring at 0.3 or 0.4% ammonia. Lactate levels were almost eliminated

with ammonia levels of 0.6 through 1.2%, therefore indicating inhibition

of fermentation. Soluble nitrogen was slightly reduced with increasing

ammonia levels. These workers concluded treatment of high-moisture corn

with less than 0.4% is recommended so that fermentation is stimulated.

Since research conducted with ammonia application to high-moisture

corn is extremely limited, this study was conducted to evaluate the

effects of ammonia on (1) the fermentation patterns of reconstituted

ensiled cracked corn and (2) the performance of ruminant animals.



MATERIALS AND METHODS

Since field harvested high-moisture corn was not available to use

in these studies, cracked corn was reconstituted by adding water and

then allowed to ensile. For brevity in this thesis, reconstituted-

ensiled corn grain will be referred to as high-moisture corn (HMC)

.

Trial 1 . Thirty Hampshire, Suffolk and Rambouillet-Dorset cross

lambs were used in a 42-day trial to compare three treatments: (1) dry

cracked corn (DC), (2) high-moisture corn (HMC), and (3) ammonia- treated

HMC (AHMC).

Cracked corn was reconstituted to 27% moisture and allowed to soak

overnight. For determining the flow rate, ammonia flowed for a specified

time period from the Cold-Flo chamber3 into a plastic tub placed on a

scale. After calibration, the chamber was mounted on a portable feed

mixer. Liquid ammonia flowed through a hose into the mixer as the HMC

was being mixed until the desired amount had been added. After mixing

approximately one more minute, AHMC was transferred into black plastic-

lined 55-gallon barrels. Untreated HMC was also transferred into

plastic-lined 55-gallon barrels. All barrels were packed and sealed

for 60 days prior to initiation of the feeding trial. Daily temperatures

of each barrel were monitored for the first two weeks of fermentation by

one thermistor placed in each barrel approximately 60 cm. from the top.

aUSS Agri-Chemicals, P.O. Box 1685, Atlanta, Georgia,

30
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Lambs were withdrawn from feed and water 12 hours, weighed and

allotted by breed and weight to the three treatments with two replica-

tions per treatment. Table 1 shows the composition of the rations that

were fed twice daily, ad libitum . All lambs consumed rations composed

of 30% chopped prairie hay, 60% of the respective corn treatment, and

10% supplement (dry matter basis) . Soybean meal was added to all

supplements to make the rations isonitrogenous (11.0% crude protein)

(Table 2). Refusals were weighed each day and discarded. On day 42,

lambs were held off feed and water for 12 hours and final weights were

recorded.

Table 1. Composition of Rations - Trial l.
a

Ingredient Ration 1 Ration 2 Ration 3

Chopped Prairie Hay

Dry Cracked Corn

High-Moisture Com (HMC)

Ammoniated HMC

Supplement

30

60

10

30

60

10

30

60

10

Percentages are on a dry matter basis.
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Ingredient Ration 1 Ration 2 Ration 3

v

20.36 .93 43.16

69.67 89.10 46.87

5.80 5.80 5.80

3.00 3.00 3.00

.50 .50 .50

.555 .555

g/cwt

27.70

.555

27.70 27.70

5.55 5.55 5.55

19.00 19.00 19.00

Ground Corn

Ground Soybean Meala

Ground Limestone

Salt

Trace Minerals

Aurofac

Vitamin A

Vitamin D

Vitamin E

a46% crude protein.

Weekly samples of DC, HMC, and AHMC were composited for analysis

of dry matter, crude protein, pH, lactic acid, and volatile fatty acids

(VFA) . Crude protein was determined on the fresh HMC and AHMC samples

prior to drying and on the DC samples after drying. Protein analyses

were conducted by the Kjeldahl procedure with the boric acid modifica-

tion (AOAC, 1975). For dry matter analysis, HMC and AHMC samples were

dried at 54°C for three days, weighed, ground and then vacuum dried at

102°C for 16 hours. DC samples were dried at 102°C for 16 hours. All

samples were extracted by placing 25 gm of fresh material in 100 ml

0.2N H2SO4 for VFA and lactic acid analyses. Lactic acid was determined
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by the method of Barker and Sumnerson (1941) . VFA were determined in

a gas chromatograph equipped with a flame ionization detector. The 4M

glass column was packed with Chromasorb 101a (100-120 mesh) . Nitrogen

was the carrier gas.

Trial 2 . Two silos measuring 8' x 8* x 4' were constructed with

plywood sides lined with black plastic. A roof was mounted over the

top of both silos to keep rain and snow out of the grain.

Cracked corn was reconstituted to 27% moisture in a mobile feed

mixer and allowed to mix for 30 minutes. Untreated HMC was elevated

into one silo and packed during filling. The ammonia treatment was

prepared by adding a precise amount of ammonia to approximately 27 kg

water in a plastic tub. Water was used as a carrier for greater dis-

persion within the grain and to increase safety when the ammonia was

added to the grain in the mixer. The application rate was .63% ammonia

(dry matter basis) . Each load of treated corn was mixed approximately

five minutes and then transferred to the silo in the same manner as the

untreated corn.

Six thermocouples were placed in each silo to monitor temperature

during fermentation. Three thermocouples were placed 39 cm. from the

top and 39 cm. from the bottom in the front, middle, and back portions

of each silo. Temperatures were recorded each day for 19 days.

Twelve steers and six heifers were weighed after a 24-hour with-

drawal from feed and water. All cattle were blocked by breed and sex

into partially-sheltered, open-fronted pens with three animals per pen.

Treatments for this trial were: (1) HMC plus soybean meal, (2) HMC

aJohns - Manville, Denver, Colorado,
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plus urea, and (3) ammoniated HMC (AHMC) . The treatments were randomly

allotted to the pens with two replications per treatment.

Nine Hereford steers (412 kg), uniform in weight, were randomly

allotted to individual pens for more reliable measurement of daily feed

intake and individual feed efficiency. The same three treatments of

the group-fed cattle were randomly allotted to the individual pens

with three replications per treatment.

All cattle were initially fed 60% corn silage, 5% supplement, and

35% of the respective corn treatments (dry matter basis) twice daily,

ad libitum . The silage level was decreased in 10% increments every two

to three days of the initial period, with the appropriate corn grain

increased in 10% increments. All cattle were on the final rations

(Table 3) of 15% corn silage, 80% corn, and 5% supplement (dry matter

basis) before the first weigh period (14 days) . Table 4 lists the

supplements' composition.

Table 3. Composition of Rations - Trial 2. a

Ingredient Ration 1 Ration 2 Ration 3

Corn Silage 15 15 15

HMC 80 80

AHMC ~ ~ 80

Supplement 5 5 5

Percentages are on a dry matter basis.
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Ration 1 Ration 2 Ration 3

Corn

Soybean Meala

Ureab

Limestone

Salt

Trace Minerals

Vitamin Ac

19.5

%

73.5 81.0

62.0 -- —

— 7.5 —

14.0 14.5 14.5

1.0 1.0 1.0

2.5 2.5 2.5

1.0 1.0 1.0

a44% crude protein.

b46% N, 287% crude protein equivalent.

cTo furnish 30,000 IU/hd/day.

All cattle were weighed on day 14 and day 31 of the trial. The

individually fed cattle were interval fed on weigh days to facilitate

rumen and blood collection four hours post-feeding. Rumen samples were

collected via a stomach tube and were therefore subject to saliva con-

tamination. pH of the rumen samples was immediately recorded and each

sample was then acidified with 10% of 6. ON HC1 for ammonia analysis.

Blood samples were taken via the jugular vein and 1 ml of 6.66% mercuric

chloride was added per tube (15 ml) to inhibit enzymatic action

(Davidovich et al. , 1977)

.

A 4% shrink was subtracted from each 14 and 31-day weight. This

was done to give more representative gains and feed efficiency values
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without taking cattle off feed and therefore risking lactic acidosis

when feeding was reinstated. This trial was ended on day 31 when the

supply of HMC was depleted.

Weekly samples of HMC and AHMC were composited for laboratory

analysis of dry matter, wet protein, wet ammonia, pH, lactic acid and

VFA. Dry matter, wet protein, lactic acid and VFA were analyzed by

the same procedures as in trial 1. Ammonia was determined by extract-

ing each fresh sample at a rate of 25 gm/100 ml of 0.2N H2SO4 and then

run by the Conway microdiffusion technique (AOAC, 1975). Whole blood

and rumen ammonia were also determined by the Conway microdiffusion

technique

.

Upon depletion of the supply of untreated HMC, a third trial was

immediately initiated to compare dry cracked corn to ammonia-treated

high-moisture corn.

Table 3 . Cattle that were fed untreated high-moisture corn were

fed diets containing 15% sorghum silage, 80% dried corn and 5% supple-

ment (soybean meal or urea-based), on a dry matter basis. The ammonia-

treated HMC was fed in comparable amounts to the ration in trial 2,

except sorghum silage was used as the roughage source. The supplements

were the same as those fed in trial 2.

Final weights of trial 2, adjusted with a 4% shrink, were used as

initial weights. Weights, blood and rumen samples were taken on days

14 and 25 in the same manner as in trial 2. Feed samples were collected

weekly and composited for the same analyses as in trial 2 and as de-

scribed in trials 1 and 2. Blood and rumen samples were analyzed for

ammonia as described in trial 2. The trial was terminated when
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excessive moldiness was observed in the treated HMC 138 days after

ammonia treatment.

Trial 4 . No research has been reported on the aerobic stability

(bunklife) of high-moisture corn treated with ammonia. Therefore, six

non-oxygen exposed samples were taken from the HMC and AHMC storage

bins used in trial 2. Insulated minnow tubs lined with plastic bags

were filled with samples of HMC and AHMC and weighed. A thermocouple

was inserted in the center of each sample and temperatures recorded

twice daily. Every two days, the tub with the highest temperature

from each treatment was weighed off test. Samples of each tub were

frozen for laboratory analysis of dry matter, wet protein, wet ammonia,

pH, VFA and lactic acid. This trial was concluded on day 12 when the

last two tubs were weighed.

Statistical Analysis of Data

Fermentation temperatures, ADG, dry matter intake (DMI), rumen pH

and rumen ammonia were analyzed through analysis of variance. The

means were separated by the Duncan's Multiple Range Test (Barr et al.

,

1976).



RESULTS AND DISCUSSION

Trial 1 . In general, more high-moisture corn (HMC) than ammoniated

HMC (AHMC) visibly spoiled. About 15.5 cm. were discarded from the top

of the HMC barrels compared to about 8 cm. from AHMC barrels. The AHMC

had a musty, dusty appearance but the HMC did not, indicating some

internal spoilage occurred in the treated corn. This may have been due

to the low moisture content (22%) of the HMC when it was treated with

ammonia. By allowing the grain to soak overnight before treatment,

some moisture was lost. The resulting moisture content may have been

too low to retain ammonia, therefore as AHMC was transferred to the

barrels, some ammonia loss may have occurred. The ammonia level re-

tained in the grain may have been too low for adequate preservation

during the storage and feeding period (102 days post-treatment)

.

Figure 1 shows a comparison of fermentation temperatures of HMC

and AHMC. Temperature differences due to treatment were significant

(P<.05) and fermentation time had a highly significant (P<.0001) effect

on temperature. Temperatures of both treatments rapidly increased from

day 4 to day 7, peaked and then rapidly decreased to day 12.

Performance of lambs fed the DC, HMC, and AHMC treatments is

summarized in Table 5. Average daily gain (ADG) , dry matter intake

(DMI) and feed efficiency (F/G) did not differ significantly (P<.05)

and were essentially equal for all three treatments.
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Table 5. Performance of Lambs Fed Dry Cracked Corn (DC), High-
Moisture Corn (HMC) and Ammoniated HMC (AHMC). a

Item DC HMC AHMC

Initial Wt., kg 30.5 30.6 30.5

ADG, kga .25 .24 .25

DMI, kga 1.26 1.22 1.24

F/G, kg DM/kg Gain 5.04 5.08 4.96

aNo significant (P<.05) differences were detected.

Laboratory analyses of the composite samples of DC, HMC, and AHMC

for VFA (% weight basis), lactic acid, pH, and crude protein are pre-

sented in Table 6. Acetic and lactic acid levels of AHMC were 52 and

41% lower than in HMC, respectively. The lower level of lactic acid

in AHMC indicates fermentation was reduced by ammonia treatment.

Propionic and butyric acid levels were equal for both HMC and AHMC.

Crude protein and pH of AHMC were higher than HMC, as expected with

ammonia addition.

Table 6. Crude Protein, VFA, Lactic Acid and pH Levels in
Dry Corn, HMC, and AHMC (Trial l). a

CP Acetic Propionic Butyric Lactic PH

DC 9.80 .05 .01

HMC 9.84 .37 .03 .01 .56 4.13

AHMC 11.86 .20 .03 .01 .23 7.28

*A11 percentages are on a dry matter basis,
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Since lamb performance was not adversely affected by ammonia

treatment, the two trials with cattle were initiated to study the

effects of ammoniation on cattle performance. Fermentation was reduced

in trial 1 with ammoniation; therefore, dry matter loss during storage

may also be reduced. Trials 2 and 3 were conducted to quantitate the

comparative dry matter losses of HMC and AHMC.

Trial 2 . Visible molding occurred in the top 21 cm. of HMC, after

fermentation, and had to be discarded. No spoilage was visible in the

AHMC for the duration of this trial.

Temperatures during fermentation of the two treatments in both top

and bottom locations are shown in Figure 2. Differences due to both

treatment and time were highly significant (P<,0001). The temperature

of the top layer of HMC rapidly increased to 39°C by day 6 and then

leveled off. The bottom layer of HMC, in contrast, gradually increased

over time with the highest temperature of 24°C recorded on day 17. The

bottom layer is considered more representative of the total mass in the

silo since excessive molding was visible in close proximity to the

thermocouples of the top layer. Temperature of AHMC, however, was

essentially the same for both top and bottom layers, slightly decreased

over time and averaged 22°C lower than HMC temperatures.

Table 7 exhibits the chemical analyses of HMC and AHMC before

ensiling and 41 days after the corn was placed in the silos. The 41-

day, post-ensiling samples of both samples were taken via a core

sampler. Acetic and propionic acid (% weight basis of DM) increased

after fermentation in HMC but the acetic acid level in AHMC remained

the same. Butyric acid was not detected in either treatment before or
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after fermentation. Lactic acid production did not occur during fer-

mentation of AHMC, whereas in HMC the lactic acid level increased from

.03% to .7%.

Table 7. Comparison of VFA, Lactic Acid and Ammonia Levels of

Pre-Ensiled and Post-Ensiled HMC and AHMC. a

%

Acetic Propionic Isovaleric Lactic NH3

HMC (Pre) .05 .01 .02 .03 .02

HMC (Post) .51 .06 .01 .70 .06

AHMC (Pre) .17 .01 .01 .04 .34

AHMC (Post) .18 .01 .02 .32

aAll values are on a dry matter basis.

The performance of finishing cattle fed the three treatments is

summarized in Table 8. ADG, DMI, and F/G were not significantly (P<.05)

different during the initial 14 days and the entire trial (31 days).

However, in both periods, ADG was higher, DMI lower and F/G more effi-

cient for AHMC than both HMC treatments. ADG and F/G were favored

during the initial 14-day period by urea compared to soybean meal

supplementation of HMC. However, considerable animal variability

existed during the initial period and performance for the entire trial

showed soybean meal supplementation resulted in slightly higher ADG and

improved feed efficiency.



Table 8. Effect of Feeding AHMC Compared to HMC Supplemented

with Soybean Meal or Urea for Finishing Beef Cattle,

44

Item HMC + SBM HMC + Urea AHMC

Day 0-14:

Initial wt., kg 409 413 407

ADG, kga .58 .94 1.21

DMI, kga 7.72 7.80 7.46

F/G, kg DM/kg gain 13.31 8.30 6.17

Day 0-31:

ADG, kga 1.15 1.08 1.31

DMI, kga 7.59 7.84 7.81

F/G, kg DM/kg gain 6.60 7.26 5.96

aNo significant (P<.05) differences were detected.

Analyses of blood and rumen samples taken from the individually-fed

cattle, four hours post-feeding are shown in Table 9. No significant

differences existed between treatments for rumen pH and rumen ammonia

(NH3) . Therefore, the level of ammonia (.34%) in the AHMC did not

exceed the microbes' capacity for assimilation of ammonia for protein

synthesis. Blood ammonia analyses were performed but results were

highly variable. Future trials should incorporate collections at

hourly intervals for the first four hours after feeding in an attempt

to monitor changes in blood ammonia levels.
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Cable 9. Effect of Treating HMC with Ammonia Compared to

Soybean Meal or Urea Supplementation on Rumen
pH and Ammonia of Finishing Beef Cattle.

Parameter HMC + SBM HMC + Urea AHMC

Day 14:

Rumen pHa 6.00 6.59 6.00

Rumen NH3 , mg/100 mla 1.63 1.84 1.90

Day 31:

Rumen pHa 6.35 6.20 6.28

Rumen NH3, mg/100 mla 2.90 3.20 3.38

aNo significant (P<.05) differences were detected.

Table 10 presents the laboratory analyses of the composite samples

of HMC and AHMC. As with 41-day post-ensiling (Table 7), the pH and

ammonia were higher for AHMC than HMC. Lactic acid was higher in HMC

than in AHMC (.52 vs. .07%). The depressed lactic acid level and

storage temperatures indicate fermentation was inhibited by ammonia

treatment.

Trial 3 . The performance of cattle fed dry cracked corn (DC)

supplemented with soybean meal or urea compared to AHMC is presented

in Table 11. No significant treatment differences in ADG existed

during the initial 14 days. The AHMC tended to have a lower ADG, and

DMI was significantly (P<.05) lower than both DC treatments. Corres-

ponding to the lower ADG, more feed DM tended to be required for body

weight gains in the AHMC treatment than for the dry corn treatments.
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Table 11. Performance of Finishing Cattle Fed AHMC Compared
to Dry Cracked Corn Supplemented with Soybean
Meal or Urea.

Item DC + SBM DC + Urea AHMC

Day 0-14:

Initial wt. , kg 444 446 447

ADG, kg 2.66a 2.32a 1.42a

EMI, kg 11.38a 11.40a 8.35b

F/G, kg DM/kg gain 4.28 4.91 5.88

Day 0-25:

ADG, kg 1.84a 1.63a 1.01b

DMI, kg 11.37a 11.42a 8.45b

F/G, kg DM/kg gain 6.18 7.01 8.37

a '"Means with different superscripts differ significantly (P<.05).

For the entire trial, ADG and DMI were significantly (P<.05) lower

for AHMC compared to both dry corn treatments. The decreased perform-

ance of cattle fed AHMC was probably due to spoilage occurring in this

grain that did not become serious until late in the trial. The length

of this trial was restricted because of a very limited quantity of AHMC.

Table 12 gives the average values of rumen pH and rumen ammonia of

the individually-fed cattle. As in trial 2, no significant differences

in these parameters were observed. Blood ammonia values were highly

variable as in trial 2.
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Table 12. Comparison of Rumen pH and Ammonia of Cattle Fed

AHMC and Dry Cracked Corn (DC) Supplemented
with Soybean Meal or Urea.

Parameter DC + SBM DC + Urea AHMC

Day 14:

Rumen pHa 6.08 5.92 6.17

Rumen NH3 , mg/100 mla 1.07 .45 .89

Day 25:

Rumen pHa 6.53 6.30 6.68

Rumen NH3, mg/100 mla 4.64 1.50 2.35

aNo significant (P<.05) differences were detected.

Since all AHMC was used after this trial, dry matter loss (%) in

the HMC and AHMC silos was determined. A 6.81% dry matter loss for HMC

occurred compared to a .94% loss for AHMC.

Trial 4 . Excessive visible mold was observed in the HMC tubs by

day 4; however, none occurred in AHMC during the entire trial. The

change in temperature as shown in Figure 3 corresponds with increased

moldiness seen in HMC. Within one day after exposure to oxygen, the

temperature of HMC increased 18°C, leveled off for 36 hours and then

peaked at 46°C on day 4. This represents an increase of 25°C within

4 days. In contrast, AHMC peaked in temperature at day 6. The total

change of temperature from day to day 6 was only 18°C. Differences

of temperature due to time of exposure and treatment were highly sig-

nificant (P<.0001) with AHMC averaging 23.4°C lower than HMC.
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Figure 4 graphically exhibits the comparative dry matter loss (%)

of HMC and AHMC. After day 2, AHMC had experienced an average loss of

3.37%. HMC by contrast had dry matter losses of 9.8 and 19.3% by day

4 and day 6, respectively. The average dry matter loss for HMC after

day 2 was 16.06%.

Table 13 shows the laboratory analyses of HMC and AHMC at the

different times after exposure. Crude protein remained relatively

unchanged for HMC and AHMC. The relatively stable level of ammonia

and crude protein for AHMC indicate that ammonia is not lost after

exposure to oxygen. The acetic acid level of HMC appeared unstable

over time of exposure but AHMC slightly declined to .36% on day 6

then rapidly declined to .05 after 8 days and leveled off. Butyric

acid production in AHMC remained zero for the length of the trial but

occurred in the HMC after day 4, averaging .18%. Lactic acid decreased

over time for both treatments but averaged .83% for HMC compared to

.08% in AHMC.
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SUMMARY

Treating high-moisture corn with "Cold-Flo" ammonia appears to

inhibit fermentation. Temperature during fermentation was reduced by

ammoniation in trial 2; however, temperatures of AHMC were higher than

HMC in trial 1. This may have been due to the low moisture content

(22%) of AHMC in trial 1. It should be stressed that a proper moisture

level is needed to prevent ammonia loss and to enhance preservation.

Since fermentation is inhibited, dry matter loss is inhibited. Visual

molding is reduced by ammoniation and occurs much later than in HMC.

The aerobic stability (bunk life) is much greater with ammonia-

treated HMC than untreated HMC. Temperatures and dry matter losses

are dramatically reduced by ammonia treatment. A mold-free state is

retained longer in AHMC than HMC after exposure to oxygen.

The length of the feeding trials was restricted because of a very

limited quantity of HMC and AHMC. This makes estimation of the rela-

tive feeding value difficult. Dry matter intake was not significantly

decreased when compared to HMC but intake of the dry corn was signifi-

cantly higher than with AHMC. Body weight gains and feed efficiency

results of AHMC were similar to HMC, but a high degree of animal

variability existed. Therefore, more feeding trials with greater

numbers of cattle, lighter in weight and conducted for longer lengths

of time should be conducted to obtain a more accurate comparison of

AHMC to HMC supplemented with protein at feeding time. A considerable

53
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economic advantage exists for AHMC by lowering feed costs through

reduced fermentation and spoilage losses and through a lower cost of

protein compared to soybean meal or urea.
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ABSTRACT

Four trials were conducted to ascertain the effects of "Cold-Flo"

ammonia treatment of high-moisture corn on fermentation, feeding value,

and aerobic stability.

In the first trial, 30 Hampshire, Suffolk, and Rambouillet-Dorset

cross lambs (30.5 kg) were assigned to three treatments: (1) dry

cracked corn (DC), (2) high-moisture (22%) corn (HMC) , (3) ammonia-

treated HMC (AHMC) . HMC and AHMC were stored in 55-gallon barrels for

60 days prior to the 42-day feeding trial. Daily temperatures were

significantly (P<.05) higher in AHMC compared to HMC. ADG (kg), DMI

(kg), and F/G for DC, HMC and AHMC were: .25, 1.26, 5.04; .24, 1.22,

5.08; .25, 1.24, 4.96, respectively, which were not significantly

different. Acetic, propionic, butyric, lactic, crude protein (% of

DM) and pH for HMC were: .37, .03, .01, .56, 9.84, and 4.13 compared

to .20, .03, .01, .23, 11.86, and 7.28 for AHMC, respectively.

A second trial was conducted with 21 Hereford and Hereford-Angus

steers and six Hereford and Simmental heifers (410 kg) . Nine of the

Hereford steers were individually fed. All cattle were randomly

allotted by breed and sex to three treatments: (1) HMC + SBM, (2) HMC

+ Urea, and (3) AHMC. HMC and AHMC were stored in plywood-lined 8' x

8' x 4' silos. Daily temperatures were significantly (P<.0001) greater

in HMC compared to AHMC, averaging 22 °C higher.

ADG (kg), DMI (kg), and F/G for HMC + SBM, HMC + Urea, and AHMC

for the 31-day feeding trial were: 1.15, 7.59, 6.60; 1.08, 7.84, 7.26;

1.31, 7.81, 5.96, respectively and were not significantly (P<.05)

different. Rumen pH and rumen ammonia (mg %) were: 6.35, 2.90; 6.20,



3.20; 6.28, 3.38 for the HMC + SBM, HMC + Urea, and AHMC treatments,

respectively.

Dry matter, crude protein (%) , pH, ammonia, acetic, propionic, and

lactic acid levels (%) for HMC were: 64.76, 9.70, 4.53, .11, .30, .10,

and .52 compared to 70.31, 11.32, 5.13, .37, .29, .03, and .07 for AHMC,

respectively.

A third trial was conducted comparing dry cracked corn (DC) supple-

mented with SBM or urea to AHMC. The same cattle fed in trial 2 were

used in this 25-day feeding trial. ADG (kg), DMI (kg), and F/G for

DC + SBM, DC + Urea, and AHMC were: 1.84, 11.37, 6.18; 1.63, 11.42,

7.01; 1.01, 8.45, 8.37, respectively. The performance of AHMC cattle

was significantly lower than both DC treatments. No significant

differences in rumen pH and rumen ammonia were observed.

A 6.81% loss of dry matter occurred in the HMC silo compared to

only 0.94% loss in AHMC.

A fourth trial investigated the aerobic stability of non-exposed

samples of HMC and AHMC placed in minnow buckets at room temperature

for 12 days. AHMC temperatures were significantly (P<.0001) lower than

HMC, averaging 23.4°C lower. After day 2, HMC lost 16.1% dry matter

compared to only 3.4% in AHMC. Crude protein (% of DM) remained un-

changed for the 12 days with HMC, averaging 10.42% and AHMC averaging

12.01%. The pH of HMC slightly increased over time (4.08 to 5.15) but

AHMC remained relatively unchanged (averaging 6.76). Ammonia, propionic,

and lactic acid levels remained unchanged, averaging .12, .05, and .83%

for HMC and .33, .02, and .08% for AHMC, respectively. Acetic acid

remained constant for HMC but decreased 82% from day 0-12 in AHMC.

Butyric acid was produced after day 4 in HMC, averaging .18% but did

not occur in AHMC.


