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I. Introduction

In present construction practice, holes are frequently cut in the wehs
of W shape beams to permit the passage of utility components or to pro#ide
access to the inside of box beams. Sometimes the holes are cut in the web
without any attempt to locally reinforce the web. While at other times the
beam is locally reinforced with doubler plates, angles welded to the wel, or
bars or flats welded to the periphery of the hole.

When an opening is cut in the web of the beam, the beam may be weakened
in the viecinity of the opening to the extent that reinforcing is required.
Tests have shown that stresses predicted on the basis of modified elementary
beam theory may lead o an unsafe design of beams with holes.

Therefore, to get an indication of the stress distribution that actually
exists in beams with holes, a more accurate and more powerful methed, the
finite element method, was used in this report to analyze the elastic stresses
around a rectangulay opening in the web of a W shape beam.

The beam [Fig. 1] is simply supported with a concemtrated load applied
at the center of the span. With varicus M/V ratios and with and without
reinforcing bars, the stresses in a portion 30 inches wide, centered ahout
the hole [Fig. 3] were determined using the finite element method as
incorporated in the ICES-STRUDLE computer program.

In this report, the finite element metiiod will he briefly reviewed and
the results calculated by the finfite clement method will be compared witl:

those obtained both experimentally and by the Vierendeel metliod.



II, Literature Review

In the 1920's Muskelishvili (1)* developed a practical method of solving
the so-called plane problem of the theory of elasticity aud in particular,
the problem of the stress distribution in a plane or thin plate which is
weakeuved by any type of hole., Since then the problem of stress coucentration
due to such openings has been much studied aud many papers counceruing this
problem have been published (2, 3, 4, 5, 6).

In the past few years a councentrated effort has been made by steel
industry and university iunvestigators (7) to develop analytical and
experimeutal information on. steel beams with web Openings.

In 1966, Bower (l1l1), uaing the theory of elasticity method incorporating
complex variable techniques investigated the stresses around am hole in a
W shape beam. From this investigation, it was concluded that : a). the
applicability of the analysis depends on the size of the web hole aund on the
magui tude of the moment-shesr ratio st the hole ; b.) the stress distributions
uear the hole in uniformly loaded beams are widely different in magni tude
end in appearauce from the distributions occuring in beams without holes ;
c.) the solution is valid for predicting stresses uear the opening providiug
the opeuniug depth does not exceed half the web depth.

Later Bower (12) used the Viereudeel method to caleculate the elastic
stresses around rectangular holes iu the webs of W shape beams., It was
concluded that this method provided & reasounably accurate predictiou of the
stresses in the vicinity of a rectaungular hole except for stress councentrations
near the coruers.

From Bower's (12) experimental study of the stresses in W shape beams

* Numbers in parentheses refer to corresponding item in the Refereuces.



wvith web-openiugs, it was concluded that : a.) the theoretical results based
on the theory of elasticity and Viereudeel method ore reasounably accurate, and
b.) the elasticity analysis is complex &nd requires a computer solution, while

the Vierendeel aunalysis is relatively simple to perform.



I, Method of Analysis -
A, Iuntroduction

The finite element method imitially proposed by Turuer et al. (13) in
1956 has proved to be quite couvenieut, from an eutomatiou poiut of view, for
the solution of problems iu con tinuum mechanics., The first applications were
iu plane stress problems (14). The finite element method has since been
extended to axi~symmetric stress aualysis, flat plate beundiung, three-dimensional
stress analysis, and shé].‘l. analysis.

The basic concept of the finite elemsut method is that every structure
may be considered to be au assemblage of iudividual structural compoueunts or
elements. The structure must consist of a finite oumber of joints or nodes,
which approximates the esseutlal characteristics of the actual structure,.
When the structure is idealized in this mauner, it cen be analyzed by

standard methods of structural sunalysis.

B, Analysis Procedure (15, 16)

The finite elemeut analysis of an elastic continuum may be divided into
three basic phsses:

a. Structural ideaslization : The first phase of the finite element
technique is the structural idealizatioan or the subdivision of the actual
structure into a finite number of discrete elements that form the substitute
structute. Judgement is }'eqtured in making the subdivision because the
analysis actually is performed oun this substitute structure and the results
can be valid only to the extent that the substitute structure simulates the
behavior of the actual struoturs,

b. Bvaluation of the elsment properties : &ince the elements are

assumed to be interconnected only at a limited number of nodal points, the



essential elastic characteristics of an element are represented hy the
relationships between forces applied at the nodal points and the deflections
resulting therefrom. The force-deflection relationships may be expressed

nost conveniently by the flexibility or stiffuess matrix of the elerents as

follows: :
{Q} = [K] {u}
{u} = [F] {Q}
where [K] = stiffness matrix'

{F] = flexibility matrix

[l

i}

external forces, and

{u} = external displacements,

c. Structural analysis of the element assemblage : When thie clencent
properties have been defined, the calculation of the unknown forces snd
deflections (énd the corresponding stresses and strains) that are caused by
the imposed loads and prescribed displacements along the beoundaries of the
structures can be carried out by a stundard structural analysis. Tierc arc
three conditions which these unknown and known forces and deflections wust
satisfy simultancously. They are :

1. Equilibrium : This condition, involving only force quantities,
simply require# that individual elements of the structure remain inr
equilibrium,

2, Compatibility : All deformations must be such that the structure

remains continuous in its deformed configuration.

3. Constitutive relations: The internal forces and displacewents of

g}



the structure must be related as required by the material properties i. e,
the stress-strain relation of the material must be satisfied.

Either of the two basic appreaches to structural analysis, the force
method or the displacement method, may be applied iu satisfying these
requirements. Iu general, it has been found that for highly complex structures
of arbitary form the displacemsunt method provides the simpler formulation

and computer programming task, so only that method will be described in this

rgport,

C. Displacement Method

The basic operations of the displacement method of aualysis of any

structure follow :

a, Evaluation of the stiffuess properties of the individual structural

elements, expressed in a couvenient set of local coordinate axes.
1y =@ {v} (1)
i i 2

th
where {q} =-matrix of the forces acting oun all the nodes of the i element,
i
(k] = stiffness matrix of the i*? elemeut referred to the local
-

coordivate system, aud

h

{v} = nodal displacement matrix of the b element,
3

b. Transformation of the element stiffuess matrix from the local
coordinate system to a common datum related to the global coordinate system
of the complety, assembled structure.

(k) =() (k] (1) (2)
1 £ 01 1



where (k]i = stiffuess matrix of the i} elemeut referred to the global
coordinate system,
fT]i = trapeformation matrix which relates the local directious
to the global directions, and

(TY); = the trauspose of (T), .

c. Assembly of the iundividual element stiffnesses contributing to each
nodal point to obtain the total nodal stiffuess matrix (K) : This involves
only simple additiouns when all element stiffuesses have beseu expressed in the

same plobal coordinate system.

(x) = 3 (k)y (3)
i=1

i:;l’ 2’ ....--Il...clollﬂl..l., n
v = number of element
d. Formulation of the equilibrium equations expressivg the relatiouship

between the applied nodal forces {Q} and the resulting nodal displacements {u} :
fQ} = (K} . )
A more geueral form of the stiffness equation can be written as
RUOERCTAIRTH

where 1Q }' = golymn matrix of applied loads,

Q¥

it

column matrix of forces introduced to maintain initial
structural shape in the preseuce of thermal gradieuts or
equivalent effects,

{X) total stiffness matrix, and



{u} = total set of nodsl displacemeuts for the unsupported
structure.

This equation is the same as equation (4) in which

{Q} = 1@} - {1}
e. Determination of the nodal displacements by solving the equilibrium

equation as shown below.
{u} = (KJ™Ha) (5)

f. Determivation of the element strains by operating on the nodal
displacements, aud determiuation of the stresses through the use of the
stress-strain relations,

These operatious are common to any structural analysis by the displacement
method. The special aud critical feature of the finite element method is the
analysis of the stiffuess characteristics of the arbitary two-sud three-

dimensioual elemsuts,



IV. Finite Element Stiffness Analysis

The standard element stiffness analysis procedure is carried out
as follows (outlined here for a two-dimensional element):
A. Express internal displacement field in terms of displacement

functions:

{v} = [N] {f} (6)
where [v] is the vector of internal displacements in the element,
[N] is the matrix of assumed displacement functions, and {f} is a
vector of generalized coordinates,

The displacement functions should satisfy internal compatibility
within the element and maintain displacement continuity along the
common element interfaces.

B. Evaluate nodal displacement components in terms of the generalized

coordinates:

ivh, = [A] {f} ., )
The matrix [A] is obtained by substituting the coordinates of the
nodal points into the displacement function matrix [N]. It will be
square if the number of displacement functions has lLeen taken equal
to the number of nodal displacement components,
C. Express the generaliged coordinates in terms of the nodal

displacements:

~1
{f} =[(al"" {v}, . (8
In rare instances, the matrix [A] may be singular, requiring a
modification of the element coordinate system or the deformation

patterns. In general, the inversion is a simple computer process.



10

D. Evaluate the element strains:

{e} = [Bl{f}. (9)
The matrix [B] is obtained from[N] by appropriate differentiation of

the displacement functions.
E. Evaluate the element stresses:

{s} = [D]l{€} = [DI[BI{f} . (10)
Where [D] 1s the matrix of material constants which relate internal
stress to strain. These may be isotropic, elasto—plastic, or any otier

specified characteristics.

F. Compute the generalized coordinate stiffness of the element:
By applying the principle of virtual displacements the following
equality must be satisfied for all arbitary increments in the independent

displacements,

S, =3dv, : (1)
Where 8W; is the virtual work dcne by intemai restraint stresses as
a result of the displacement increments and 8We is the wirtual work done by
the external forces(body and surface forces).

The internal work is equal to

sw = [ o} (sepdv = L sel ey dv
Using eqﬁations(é)andQIO)

S T T T
-{s¢} = (B){8€} i8¢ =23 (B)
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W {Sf}TJ; 815 t0] 81 (£} av (12)

W = {8£}°{Q} (13)

e

where {0} represents thc generalized forces corresponding to the
displacements {f}.

Substituting equations (12) and (13) into equation (11)

tar = J, w1701 01 av [ 12 (1)

By definition of equation (4), the bracketed term represents the

generalized coordinate stiffness of the element :

(€1 = f 17 o1 (81 av (15)
v
G, Transform to the desired nodal point stiffr._::, [i1]
(K] = [A]"L (k] (] (16)

where the transformation matrix [A]“l relates the generalized coorcdinates

to the nodal point diasplacemeuts.



12

V., Plane Stress Element Stiffnesses

Various shapes of finite elements have been employed in plane
stress and plane strain analyses. In general, rectangular elements
(where applicable) appear to yield slightly better approximations of
stresses and deflections for a given nodal pattern than triangular
elements because they employ a more refined deformation approximationm.
However, because of theilr greater adaptability in fitting arbitary
boundary geometries, triangular elements Qave been used more widely
in the development of general purpése analysis prégrams, The stiffness
analysis of a triangular plane stress element will be discussed in
some detail here.
A. Displacement functions

€onsider an arbitary triangular element as sliown in Fig. V-1,
Assume that the element is in a state of plane stress with the three
nodal points at the vertices and with the six nodal displacements or

degrees of freedom shown,

$v

-

%,4)

Fig. V=1 Triangular elemert in plane Stress
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As indiocated iu step (a) of the standard procedure, we can begin the

formlation by assuming a linear displacemeut field for the element.

[ =1
|

= fl"' f2x + fay
(17)

<
n

T AL xef
Lt e

On substituting the boundary counditions,
up = fy I ey
u, = f1+f212+f3y2 ’
uy = f1+f2x3+f3y3 ’

_ (18)
vy = f4+ i‘5x1+ f6y1 ’

Vo = rA+ f5x2-+ f6y2 s 8nd
vy = f4+f5:.3+f613 .
Soiving equatiouns (18) in terms of fj , i=1,....,6

u=-i'-[( +bh,x+0,y)u.+(a,+b.x4c yu +(a +b x +c )u} and
] 1 /% 3 3 m m my m ’

24 J j
1 s 4 (19)
v = ;—; [“i"’ by x +ciy)vi+ (aj +byx +0jy vy +la,+ byx +Gm¥)vm]-
io which
z ai = xjym - x,hyj N i=1, j=2, m=3;
by = Y3¥m = Yin for i=2, j=3, m=l;

oy = Xy=Xy = Xnj i=3, j=1, m=2; and
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i i
2A = 1 xj yj = 2(area of the triangsular element) ,
1 xm ym

If the coordinates are taken from the centroid of the element then

X, + X, + X_ = yi + yj + ym = 0, end

The chosen displacement function automatically guarantees continuity
of displacements with adjacent elements because the displacements vary
linearly along any side of the triangtlar element and, with identical
displacement imposed at the nodes, the same displacement will clearly

exist all along an interface.

B. Strain : The {B) matrix of equation (9) representing the internal
strain is obtained by differentiating the displacement functions

appropriately, as follows

) i
Ju b 0 b, O b 0 )

Ex ax * J " !

¢ v 1. "2
SN b E 7 vl R R R S

au __av :

{c. b. c. b, c b
i i J J m m) v5

It will be noted that in this case the [B) matrix is independent

of the position within the element, and hence the strains are constant
throughout it.

In general, the initial strains which may be caused by temperature

changes, shrinkage and sc on may be taken into account. ''he initiul
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strains ¢, are not associated with stress and are usually defined by
averare constxsnt values. This is consistent with the constant strain

conditions “mposed by the prescribed displacement function.
C. 3tresses znd Slasticity Matrix

In general elastiec kehaviour, the relationship Letween stresses

and strains will te linear and of the form

{#} - (0} ({e} - {e}) - (29)

7or wlene snsress in an isotropic material, the form of [D} is

, B (1 v 0 |
I-
0 o ¥
wrere N - eglastic medulusy and
4 = Poission's ratio .
D. The Stiffness Matrix (K]
5 .
(K] = J{B] (D) (B) t dxdy (22)

This is the stiffness matrix of the element i, j, m with thickness
4. If the thickness of the element is assumed to te constant, an
assumption convergent to the truth as size of elements decreases, then,

as neither of the matrices contains x or y we have simply

(k) = B (DBt , (23)



This form is now sufficiently explicit for computatiou with the actual
matrix operatious being left to the computer.

E.

The equivalent nodal forces can be represeunted as follows

)
&

o

b

{q} =4

o#

The nodal forces are equivaleut statically to the boundary stress and
distributed loads of the element,

1. The external forces cau be represented as follows :

!
feb=4. ¢ .

Qt

el

These councentrated forces are applied at the nodes. Any one of them must

have the same unumber of compoueuts as that of the elemeunt reactions counsidered.

In the plsne stress case,

X
{Qi'}z- il
Yi

2. The distributed loads can be represented as follows @

{P}={z} ;

in which X and Y are the body force or surface force compounents,

16
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Nodal forces due to distributed loads can be expressed as

(@}, = <[] {2}

for the body forces aud as

0}, = <[ 1) @

for the surface forces.
If the origin of coordinates is teken at the centroid of the elemeut,
the equivalent forces due to body force sre distributed equally to the nodes

of the elsment, In other words

a/3.

{h =

< P Hg b k4 P

The equivalent forces due to inltiasl strain are giveu by

(@7}, = -jv (B)" (D){e}av

or

{wkz-[mTwHQt.
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VI, Mumerical Example
A, Problem Set Up

In 1970 a saries of 12 W 45 besms which were simple supported ou the ends
and subjected to a couceutrated load applied at the midspan were tested at
Kausas State University (7). Each beam had a 9" x 6" rectangular web opemiug
with its neutral axis centered at the middepth of the beam. The centerline
of the opening, in the longitudinal direction, was 20" from the midspau. By
varying the length of the shear span four different M/V ratios, shown iuv
Fig. 1, were tested.

The beams were tested, uaing the four set ups of Fig. 1, with and without
reinforcement. The reinforcement was of rectengular cross section oriented
parallel to the beam flanges aud welded to the web above and below the

opeuing as shown in Fig. 2.

B. Simplificatiou of The Problem

It the finite element method the structure is discretized into fiuite
elements which simulate its behavior., Since there was more interest io
the stresses around tha opeuing, there was vo need to model the whole beam.
Therefore ounly a portion of the beam was studied. (Fig. 3)

Form the theory of elasticity (17), it is known that if a hole is made in
the middle of a plate, the stress distribution iw the ueighborhood of the hole
will be changed. But it caun be concluded from Saint-Venant's principle that
the change is uegligible at . distances which are large compared with the half
depth of the hole. The length of the portion cut form the beam was 30" long.
It cen be seen from the results that the stress chauges due to the opening

beyond this portion of ths beam have a negligible effect.
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C, Plane Stress Aunalysis

In using the plane stress finlte element method for the analysis, we
have to modify the three~dimeusional structure into a two-dimensional
structure. The procedure followed was to substitute equivalent bar elements
pin-connected to the appropriate nodes of the plate elemeuts for the top and
bottom flanges. These bar elemeuts have oune~dimeunsional material properties
which can ounly ﬁransfer axial forces.

For the reinforcing bars, the equivalent bar elemeunts of the
reinforcement were put ou the appropria%e node points of the plate elements

as shown in Fig.4 .

D. Superposition

The forces acting on & 30" wide plate section, as shown in Fig. 5, may be
regarded as made up of two different forece fields. They are : a). pure
bending, b). eud shear aud beunding. By superimposing, the results cau be
combined for various M/V ratios. The equations for superposition are also
shown in Fig. 3.

A 12 xip coucentrated load was applied at the midspaun when the web was
without reiuforcement and a 24 kip load was spplied when the web was
reinforced.

E. Finite Element Discretization
1. Reotangular plate subjected to iu-plane pure bending
a., Bouandary couditions
The pai‘:tern of the displacement is symmstrical with respect to the
Y axis and antisymmetrical with respect to the X axis. We therefore have
to work with only omne quarter of the plate. The boundary conditions were

intrduced by restraining the X tramslatiom, u, for nodes on the Y and X axes



20

as shown in Fig. 6a.
b. Eguivalent nodal loads
Since the displacement varies linearly along the boundary for 2
constant strain triangle, the equivalent nodal forceas are Jjust the
static resultants. These sre shown in Fig. 7.
2. Plate subjected to in-plane end shear and bending
a. Boundary conditions
The patterns of the displacements are antisymmetrical with
regpect to both the X and Y axes. And agsin we have only to consider
one guarter of the plate. The boundary conditions were introduced by
restreining the X translation, u, for nodes on the X axis and the Y
translation, v, for nodes on the Y axis as shown in Fig. 6b.
b. Equivalent nodal forces
The theoretical surface forces caused by shear and bending
were replaced by two sets of concentrated forces as shown in Fig. 7.
The equivalent nodal forces for both cases are the static resultants of
the theoretical force distributions.
3, Dimensions and material properties
The finite elements shown in Fig. 8, with the following properties,

were used in the analysis.

t = 0.3%36" cemmmmemmmmmm——— -~ thickness of the plate

E = 29000 ksi  -=---------- --~ Young's modulus

A} = 0.3  m-eememccmemmee e Poisson's ratio

G = 11150 k8l  =--cmeeeme—--—-~ modulus of rigidity

Ap= 4,20 in2 ----------- ww==~ effective area of equivalent

bar alements of the top or the bottom flange.



AL = 1446 in®  ccmcmcmcmmmoee- effective area of equivalent
bar element of the reinforcement.

These values of A_ and Ar were calculated as shown below:

f
a. 4, (Fig. 4%b)

£
3
b h 2
Lew = =15~ 2(Af y)
3
A, = §§}:9-§§g§222-ll§ - 4.20 in®
2(6)

b. A (Fig. 44)

Ayz_—.Aryf
1.5(3.4375)° 2
a = 2:282:D3) 1.ukg an®,
(3.5)

4. Discretization
The plate was divided into 270 triangles and nodes were taken at

the corner points. There are 16 bar elements for the flange and 13

bar elements for reinforcement(Fig. 8).

21
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VII, Comperison aud Discussion of Tae Results
4, Location of calculated stresses

The stresses determiuned by a finite element represeantation using constant
strain triangles are constant throught an elemeut, Provided that the material
properties of the elemeuts incident on a wode are the same, the corresponding
stresses in these elements may be averaged and the result attributed to the
common node, Alternatively, the stresses determined for an elemeut may be
assignzd 1o a particular point withiu the element and usually are assigned to
the centroid. In these exsmples we determivned the stress distributions

across thes various sections by using the secound procedure.

B. HNormal Stresses

In Fig. 9 through Fig. 24, the normsl stresses calculated by the finite
elemeunt method are comparsd with stresses calculated by the Viereudeel method
and with the experimeuntal stresses. These stresses were plotied at sectious
x=0, =4.5", =4.875", -7.5", -10.5" measured from the center of the opening.

Figure 9 through Fig. 16 show normal stresses for the unreinforced case,
while Fig. 17 through Fig. 24 are for the reiunforced case,

The finite element method predictions are in very good agreemeut with
both the experimental and the theoretical values at the ceuterline (x=0) of
the opeuing, especially for the low M/V ratios.

At the section x=-3", the fiuite element method predictions are in
excellent agreement with the experimental values. The normal stresses at the
‘edge of openiuvg (x==4.5") are not all in good agreement witn those obtained
by either the Vierendeel or the experimental method. However, the vormal

stresses predicted by the finite element method are more reasconable than



those predicted by the Viereundeel method as they compare with the experimental
values. Theoretically, the discrepaucy between the finite element aund
experimental method is due to the edge effect of the web opeuing and in order
to obtain better accurcy, we would have to use smeller elemsuts iu the regions
of -high stress gradieut. However, this rapidly increases the computational
costs and the improvement in accuracy must then be balanced against those
costs, _

Examining the normal stress distribution across sections x= -4.875", and
=10,5", 1t is apparent that the stress couceutratious attenuate rapidly as
the transwerse distance from the hole increases aud also attenuate raplaly at
the cormer a8 the longltudinal distance from the cormer increases., This
 locsl high stress wes decreased for the reiuforced opening where the vormal
stress, at a point x= - 3/8" from the edge of the opening and 3" above the
middepth, was reduced 33 - 38 % from the value.of the stress at the same

location for the uunreiunforced case.

C. Shear Stresses

The shear stresses (Fig. 25 and Fig., 26) were also.plotted at sections
x=0", =3.375%, -4.5", =5,625", =7.5" and -10.5 measured from the center of
the opening.

Since the same load maguitude was applied for each example in a series,
the shear force at any sectioun iu the beam should have been constaut, and the
corresponding shear stress distribution should also have been coustaunt,
Therefore the average of the shear stress values from the iudividual
exzmples have besu used to represent the results for the serles.

It can be seeun from Fig. 25 that, for the unreiunforced opeuing, the

predicted shear stress at the center of the opening is in poor agreement



with the experimental value. However, the predicted shear stress is in very
reasonable agreement with the results calculated Ly the Vierendesl method.
As can be noted, the measured norﬁal stress at this section for this
particular gage was also quite low, It mighf reasonably be assumed that the
gage was defective. At the same sectiou for the reinforced case the results
of the three methods are in good agreement.

The agreement between the predicted aud the experimental results are
also very good at the edge of opening for the unreinforced case and at the
section x=-7,5" for both unreinforced amd reinforced cases, No experimental
result was measured at the edge of the opening for the reiuforced apeuning.

The predictions at the section x=-10.5" sre in reasouabls agreement uith
both the experimental values and results evaluated by the Viereudeel method.

Comparing the shear stresses, at sectiouns x=~1,125", ~3.375 and -5.625"
where no experimentel or theorstical results are available, for the
unreiuforced aud reinforced cases, it can be seen the shear stress
distributions thanged rapidly due to tne preseunce of the reinforcing bars.
At the sections x==7.5" aud -10.5", the shear stress sign reversed at the
reinforcing bars with poistive shear balow the reinforcement and negative

shear above the reinforcement.



VIII. Conclusions

From the examples analyzed by the fiuite element method the following
conclusious czn bs reached:
l. 4t the ceotar of the opening, the normal stresses predicted by the
finite elenent method had very pood agreemeunt with those determiued
experimentally and by the Viereudeel method.
2. 4t tha edges of the opening, the finiie element method predicted the
normal strosces in mors reasonable agreement with the experimental stresses
then did the Visrendeel method.
3. Iu genercl, the agresmenit of the predicted shear stresses wiﬁh the
experimental results was pood.
4. Ths stress concentrations around the edge of the opeuing, especially at

ras

ths cormer w2rs significantly decressed wheun the reinforcement was added.
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ABSTRACT

This report presents a study of the stress distribution in a W shape
beam with a rectangular web opening ceutered at:the middepth of the beam.

. The method of analysls used in this study was the finite element method.
Results for the tumerical examples were obtaiuned using the ICES-STRUDLE
computer program.

The results caloulated by the finite elemsut method were compared with
those obtained experimentally and by the Vierendeel method.

It was coocluded that the finite element method gave results reasonably
close to both experimental and theoretical results. And the finite elemeut

methoq was very couvemient t0 apply, from au automation point of view.



