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Abstract 

Wheat yields are variable in dryland environments due to the erratic weather regime and 

the consequent conservative management practices adopted by producers, leading to large yield 

gaps. Our objectives were to disentangle management × genotype interactions and identify 

management practices associated with increased wheat yield in dryland Kansas environments. 

Producer-reported yield and management data were collected from 656 commercial fields during 

the 2016-18 harvest seasons, including 43 management practices, five weather, and two soil 

variables. Grain yield ranged from 0.3 to 7.1 Mg ha-1 with yield gap averaging 44%. Foliar 

fungicide, nitrogen (N) rate, and method were the most common management strategies to affect 

yield. Two field experiments were conducted during 2018, 2019, and 2020 in several Kansas 

environments. In experiment one, we evaluated the grain yield response of four commercial 

wheat varieties to six different management intensities in six environments. Across environments 

and genotypes, managing for the yield potential increased yield by 1.4 Mg ha-1 (30%) as 

compared to the farmer practice. Aboveground biomass and kernel number related more strongly 

to yield than harvest index and kernel weight. Experiment two evaluated the colimitation of 

nitrogen (N) and sulfur (S) to wheat yield and its effects on N and S use efficiencies (and its 

components of uptake and utilization) in eight environments. Across environments, wheat grain 

yield increased with increases in N rate; however, S application only increased grain yield at two 

environments. Minimum N and S uptake to maximize yield at 5.7 Mg ha-1 was 120 and 7 kg ha-1. 

Nitrogen limitation impacted S use efficiency and vice versa, and the limitation of both nutrients 

increased the wheat yield gap. This research identified several genotype × management practices 

associated with wheat yield in commercial and experimental settings, and reinforced the need for 

integrated management practices according to site-specific limitations to improve wheat yields.  
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Chapter 1 - General introduction 

Wheat (Triticum aestivum L.) is one of the most important crops in the world behind rice 

(Oryza sativa L.) and maize (Zea mays L.) (FAO, 2014). Within the U.S., the central Great 

Plains region (Kansas, Oklahoma, Colorado, Nebraska, and Texas) is the largest producing 

region of winter wheat. In Kansas, winter wheat is sown on more than 2.7 million hectares which 

produced 9.9 million metric tons in 2020 (USDA-NASS, 2020). However, wheat yields have 

been stagnant in this region and range between 2.2 and 3.4 Mg ha-1 (USDA-NASS, 2017) which 

is well below the rainfed yield potential of 5.0-6.8 Mg ha-1 (Patrignani et al., 2014; Lollato et al., 

2017; Jaenisch et al., 2019). While a number of independent field experiments have been 

conducted to improve the current knowledge about wheat yield response to management 

intensification, no attempts have been made to do so with on-farm surveys. These surveys offer 

an opportunity to test the association of wheat yield with a number of independent management 

practices, as well as to quantify the magnitude and potential causes of yield gaps; and are 

currently missing in this important wheat-growing region of the world.  

Winter wheat grain yield is determined by its yield components (i.e., biomass, harvest 

index, heads m-2, kernels head-1, kernels m-2, and kernel weight) and their association has been 

researched for decades across a wide range of environments (Evans et al., 1980; Austin et al., 

1989; Calderini et al., 1999; Acreche et al., 2008; Slafer et al., 2014). Wheat yields are often 

limited by the sink rather than the source with increases in wheat yield coming from the 

contribution of kernels m-2 rather than kernel weight (Slafer and Savin, 1994; Borrás et al., 2004; 

Slafer et al., 2014; and citations therein). Thus, management practices that affect kernels m-2 as 

compared to kernel weight would result in larger increases in grain yield (Cruppe et al., 2021). 

Despite the current knowledge about the importance of yield components to maximize wheat 
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yields, research is lacking to understand the effects of increasing management intensity on crop 

development that determine wheat yield components.  

Among important management practices adopted during the season, the application of 

nitrogen (N) and sulfur (S) essential nutrients can increase wheat grain yields (Girma et al., 

2005; Lollato et al., 2021) and quality (Wilson et al., 2020). Nitrogen management has been 

studied extensively over the decades (Goos et al., 1982; Moll et al., 1982; Sinclair and Rufty, 

2012), but few experiments have evaluated N and S interaction on N and S use efficiencies, 

especially through the lenses of its components of uptake and utilization efficiency (de Oliveira 

Silva et al., 2020). Additionally, no attempts have been made to identify the contribution of N 

and S colimitation to minimizing wheat yield gaps. Sulfur fertilization has shown to increase 

NUE in wheat through increases in N recovery efficiency (Salvagiotti et al., 2009). Similarly, to 

NUE, few experiments have evaluated S rates on SUE and its components of uptake and 

utilization efficiency in Kansas.  

The main objectives of these research projects were to fill the knowledge gaps above 

through 1) performing an on-farm survey to determine the magnitude of the yield gap in 

commercial wheat fields in Kansas, as well as management practices associated with increased 

wheat yields; 2) conducting a field experiment to determine the contribution of wheat yield 

components and their effects on wheat yield across a range of management intensities and 

associated yield gaps; and 3) conducting another field experiment to determine the effects of 

different N and S rates on the grain yield, N and S use efficiency, and yield gaps of different 

winter wheat varieties through a colimitation theory.  
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Chapter 2 - On-farm data-rich analysis explains yield and quantifies 

yield gaps of winter wheat in the U.S. central Great Plains   

 

 Highlights 

• Wheat yield (Ya) and management data were surveyed from 656 wheat fields.  

• Water-limited yield potential (Yw) was simulated for each field using crop models. 

• Ya ranged from 0.34 to 7.1 Mg ha-1 and yield gap (YG) averaged 44%. 

• Clustering the data by crop zone accounted for regional-specific crop management  

• Data-rich analysis highlighted many management × weather interactions impacting Ya     

 Abstract 

With an annual production of ~60 Mt, the U.S. accounts for about 8% of the global wheat 

(Triticum aestivum L.) production. Still, quantification of the yield gaps (YG) and major 

management factors to reduce it are scarce. We used Kansas, the largest wheat producing state in 

the U.S. located in the central Great Plains, for an initial assessment of on-farm yield and YG. 

We collected field-level management (37 variables), weather (8 variables), soil (two variables) 

and yield data from 656 commercial wheat fields over three harvest years (2016-2018) to (i) 

quantify management adoption levels, Ya, and YG, and (ii) identify interactions among 

management practices and weather variables using a data-rich approach. We also used our data 

as a case-study to detect whether differences in crop management among regions justified data 

clustering by crop zones. Water-limited yield potential (Yw) was simulated for each field-year 

using actual soil and weather data and the SSM-Wheat model. Fields were grouped in three 

climate zones based on their long-term climatology and important differences in cropping 
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systems between zones. Grain yield averaged 3.8 Mg ha-1 and ranged from 0.3 to 7.1 Mg ha-1 

across all regions and years. The YG averaged 44%, with seasons with high Yw resulting in 

greater YG. Management practices most often associated with grain yield were management of 

nitrogen (N), phosphorus (P), and sulphur (S) fertilizer, as well as foliar fungicide and its 

interaction with variety reaction to major diseases, although these depended on in-season 

weather. Our analyses highlighted many other genotype × management × environment 

interactions explaining winter wheat Ya, such as regional-specific cultivar maturity and the 

dependency of sowing date (and its relation to seeding rate) on cropping system. 

 Introduction 

Water-limited yield potential (Yw) is the yield of a crop grown with no limitations other 

than water (Neumann et al., 2010). In rainfed cropping systems, Yw is an important benchmark 

as the difference between the Yw and the average yield (Ya) defines the yield gap (YG), which 

can identify environments where grain yield can increase economically (Lobell et al., 2009). 

Many methods have been proposed to quantify Yw for YG analysis, with crop simulation models 

being the most robust (Grassini et al., 2011b; Van Ittersum et al., 2013). In a context in which 

food production must increase to feed a growing global population (Tilman et al., 2001; Foley et 

al., 2005), reducing the YG of staple crops through management (e.g., Herrera et al., 2020) will 

be essential for food security (Cassman, 1999), especially in regions with large YG, such as 

winter wheat (Triticum aestivum L.) in the U.S. Great Plains (Patrignani et al., 2014). 

The U.S. central Great Plains (Kansas, Oklahoma, Colorado, Nebraska, and Texas) is the 

largest contiguous winter wheat producing region in the world (Fischer et al., 2014). Winter 

wheat Ya ranges between 2.2 and 3.4 Mg ha-1 (USDA-NASS, 2017a) and evidence suggests that 

it is well below the Yw of ~5.0-5.5 Mg ha-1 estimated through modeling (Patrignani et al., 2014; 
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Lollato et al., 2017) or well conducted field experiments (de Oliveira Silva et al., 2020; Jaenisch 

et al., 2019; Lollato and Edwards, 2015). A comparison between YG estimates using 

government-reported yield data (YG of ~50%, Lollato et al., 2017) versus YG in highly managed 

fields (YG of ~15%; Lollato et al., 2019b) suggested that management practices are currently the 

main limitation to Ya. A range of practices has the potential to increase Ya in this region, from 

foliar fungicides (Jaenisch et al., 2019), plant population (Bastos et al., 2020), agricultural lime 

and variety selection (Lollato et al., 2013; 2019b), increased N rates (de Oliveira Silva et al., 

2020b), seed treatment (Pinto et al., 2019), etc. However, these experiments evaluated few 

practices at a time, and a more comprehensive analysis of yield-limiting factors is warranted.  

 On-farm surveys provide a unique opportunity to evaluate a number of sensitive 

practices potentially associated with crop Ya (Rattalino Edreira et al., 2017; Mourtzinis et al., 

2018; Lollato et al., 2019b). While some previous work evaluated the explanatory power of a 

relatively large number of management factors to Ya (e.g., Grassini et al., 2015; Mourtinzis et 

al., 2018b), a review of studies investigating YG in different crops suggested that the average 

number of variables investigated was three, ranging from zero to 29 (Beza et al., 2017). Among 

the studies considered, fertilization was the most often evaluated factor (45% of the studies), 

with fewer studies evaluating other managerial practices such as planting practices, crop 

protection, weeding, etc. Additionally, while most studies focused on the quantity of input 

applied; when considered, timing of input application explained the YG more often than quantity 

(Beza et al., 2017). Here we hypothesize that a data-rich approach, evaluating a large number of 

management factors, can provide further insights into potential avenues to increase Ya.  

A challenge when using farmer-reported yield data spanning large and/or heterogenic 

geographies are management × environment interactions in which the optimal agronomic 
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practices preclude the combination of fields (Rattalino Edreira et al., 2017; Mourtzinis et al., 

2018). While smaller and more homogenous geographies might not require data stratification 

(e.g., Grassini et al., 2011a; Silva et al., 2017), studies spanning large and variable regions have 

clustered fields into smaller homogenous regions based on climate and soil characteristics 

(Lobell et al., 2005; Van Wart et al., 2013; Mourtzinis et al., 2018; Rattalino Edreira et al., 2018; 

Munaro et al., 2020). This approach is static, thus it has succeeded for crops grown in regions 

with small year-to-year variation such as soybeans (Glycine max L. Merr.) in North Central U.S. 

where it accounted for up to 96% of the variability in Ya (Rattalino Edreira et al., 2017). 

However, for crops grown in less predictable environments such as winter wheat in the U.S. 

Great Plains (Couedel et al., 2021), clustering based on long-term annual weather only accounted 

for 46% of the Ya variability, with up to 37% assigned to year (Munaro et al., 2020).  

While explaining a lower proportion of Ya variability, this regional stratification might 

still be warranted as it can capture important differences in crop management among regions. For 

example, the range in sowing dates among 798 winter wheat yield trials conducted in three states 

in the U.S. central Great Plains varied from an early and short sowing period (i.e., from day of 

year [DOY] 245 to 286, optimum: 266) in cooler, semi-arid, high altitude sub-regions; to a later 

and wider sowing period (from DOY 252 to 327, optimum: 296) in warmer, subhumid, low 

altitude regions (Munaro et al., 2020). Other region-specific management factors included crop 

sequence (e.g., fallow in semi-arid regions versus more intense rotations in subhumid regions), 

genotypes, and row spacing (Munaro et al., 2020). Thus, failure to cluster the data into regions 

with distinct levels of management adoption could confound the interpretation of the outcome.  

As an alternative to the static regional clustering, Di Mauro et al. (2018) combined field-

level management, soil, and weather data to identify causes of YG for soybeans in central 
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Argentina in a data-rich analysis. While the data collected spanned four Argentinean provinces, 

the study region was relatively homogenous in terms of weather, with the majority of the fields 

classified in about two climate zones (Van Wart et al., 2013) (Di Mauro, personal 

communication). Meanwhile, the state of Kansas has 13 different climate zones with a much 

greater environmental variability (Van Wart et al., 2013). Thus, we hypothesize that the 

combination of the two aforementioned methods, namely regional clustering (to address region-

specific management adoption) and field-level data-rich analysis (to address the static nature of 

regional clustering), together with YG estimates using a mechanistic crop simulation model, 

could enable for a realistic quantification of the magnitude and the possible determinants of YG.       

Given the importance of the U.S. central Great Plains to the global wheat production and 

its large YG due to sub-optimal management, coupled with the need to synthesize crop yield, 

management, and weather data from different areas (Lobell and Asner, 2003), we conducted a 

survey of management practices adopted in commercial winter wheat fields in Kansas during 

three growing seasons. Our specific objectives were to (i) quantify field-specific level of 

adoption of management practices, Ya and YG; (ii) identify the interactions of environmental 

and management practices associated with increased Ya; and (iii) test whether a large number of 

explanatory variables (management, weather, soils, and simulated outputs) would provide more 

insights into the determinants of Ya than the usually evaluated variables (Beza et al., 2017). 

Additionally, we used data representing widely varying environmental conditions to demonstrate 

the need for subdividing a wider geography into smaller, more homogenous regions to account 

for differences in management adoption between regions. 
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 Materials and Methods 

 Study region 

 Kansas is the largest winter wheat producing state in the U.S., with more than 3 

Mha sown annually for a production of ~9 Mt (USDA-NASS, 2017a). Winter wheat sowing 

occurs from mid-September until mid-November, and harvest occurs from early June to early 

July, depending on location and crop sequence (Munaro et al., 2020). Kansas experiences a wide 

range of environmental conditions: Annual rainfall is ~450 mm in the west and ~1100 mm in the 

east (Lollato et al., 2020a), resulting in winter wheat growing season precipitation ranging from 

~200-650 mm (Lollato et al., 2017). Average growing season temperature ranges from 7 to 12℃ 

from west to east owing to elevation, which ranges from ~200 to 1,200 m (Lollato et al., 2017). 

 Database description and data quality assessment 

 Field-specific geo-coordinates, agronomic management, and grain yield were 

collected during three consecutive seasons (i.e., 2016-2018) in central and western Kansas (Fig. 

1), representing ~92% of the state’s wheat area. We focused exclusively on non-irrigated fields, 

as they represent 96% of the wheat in the region (USDA-NASS, 2019). Producers were 

identified by county extension agents or in extension meetings, and completed the survey by 

telephone, e-mail, mail, or face-to-face.  

The survey consisted of questions about different management practices, input usage, and 

grain yield adopted in commercial winter wheat fields (i.e., field-level data; Table 1). No 

variables were physically measured (e.g., soil fertility status), and grain yield verbally reported 

by producers derived either from yield maps or from elevator tickets combined with field size. 

Prior to conducting the survey, the questionnaire was approved by the Committee for Research 

Involving Human Subjects (Kansas State University Application number 8945) and, at each 



11 

survey, producers signed a data sharing agreement permitting the use of the data and the sole 

presentation of aggregated data for privacy protection. Data was homologized to account for the 

variation in producer responses for a specific management practice (i.e., producers reported 

seeding rate in seeds ha-1 or in kg ha-1; thus, data was transformed into kg ha-1 according to the 

majority of the responses). We collected the commercial name of the variety and used this 

information to retrieve year-specific variety characteristics from extension reports (DeWolf et 

al., 2016, 2017, 2018), including resistance to stripe rust [Puccinia striiformis f.sp. tritici] and 

leaf rust [Puccinia triticina], wheat streak mosaic virus, maturity, height, straw strength, and 

drought tolerance. All varietal ratings used a 1-to-9 scale, where one is highly resistant, early 

maturity, and short; and nine is highly susceptible, late maturity, and tall. The resulting database 

had 656 field-years (Fig. 1). A total of 37 management-related variables were either collected or 

calculated and used to explain wheat grain yield. 

 
 

Figure 2-1.Map of the surveyed region showing the three surveyed regions in Kansas (North 

Central, NC; South Central, SC; and West) as different colors. The red dots represent 

commercial wheat fields that were surveyed during the 2016, 2017, and 2018 harvest years. 

Upper right inset table shows the range of cumulative rainfall and growing degree days in each 

region. Lower right inset panel shows the location of Kansas within the contiguous United 

States. Lower left inset panel shows the weather stations used to collect daily rainfall and 

maximum and minimum temperature (green dots) and weather stations used to collect solar 

radiation and reference evapotranspiration (black dots).  
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Table 2-1. List of variables collected from comercial wheat fields in Kansas during three crop 

seasons (2016-2018). 

 

Variable Unit (or classes) 

Geographic coordinate Latitute/Longitude 

Previous crop Crop species name or fallow 

Sowing date Day of year 

Pre-plant control of volunteer wheat Yes/No 

Variety (or blend) name  Unitless, used to retrieve different seven variety traits 

Variety traits (seven, see methods) 1-9 

Seeding rate Kg ha -1 

Row spacing cm 

Fungicide seed treatment Yes/No 

Insecticide seed treatment Yes/No 

Cattle grazing Yes/No 

Tillage Coventional or no-till 

In-furrow phosphorus Yes/No 

Broadcast or banded phosphours  Yes/No 

Phosphours rate Kg ha -1 

Manure Yes/No 

Lime Yes/No 

1st Nitrogen Source Urea, urea ammonium nitrate, or anhydrous ammonoia  

1st Nitrogen Rate Kg ha -1 

1st Nitrogen Application Method Streamer nozzle, broadcast, or knife 

1st Nitrogen Timing Pre-plant, Zadoks’ 20 or 31 

2nd Nitrogen Source Urea, urea ammonium nitrate, or anhydrous ammonoia  

2nd Nitrogen Rate Kg ha -1 

2nd Nitrogen Application Method Streamer nozzle, broadcast, or knife 

2nd Nitrogen Timing Pre-plant, Zadoks’ 20 or 31 

Total N rate Kg ha-1 

Sulfur Yes/No 

Chloride Yes/No 

Zinc Yes/No 

Zadoks’ 25-31 Fungicide Yes/No 

Zadoks’ 39-55 Fungicide Yes/No 

Harvest date Day of Year 

Grain yield Mg ha-1 

 

To account for the geographical influence on wheat Yw (Lollato et al., 2017) and for 

important region-specific management factors (Munaro et al., 2020), we clustered fields into 

three surveyed zones based on long-term annual cumulative growing degree days, aridity index, 

and temperature seasonality. While we followed the approach by Van Wart et al. (2013), we used 
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coarser weather ranges to delineate crop zones in this study because 1) we were interested in 

capturing major regional differences in crop management (Munaro et al., 2020), and 2) we used 

field-specific weather data in the analyses (see next sections). These zones will be referred to as 

crop zones. The weather classification we adopted resulted in three crop zones: north-central 

(635-890 mm annual precipitation and 3,792-4,829 °C annual thermal units; n = 220), south-

central (635-890 mm, 4,830-5,949 °C; n = 285), and West (<635 mm, 3792-4829 °C; n = 151). 

A power analysis suggested that approximately 150 fields were required within crop zone to 

detect significant effects at a power of 0.8. We note in passing that despite clustering fields by 

crop zones, the high year-to-year variability in growing conditions still led to a significant year 

effect on grain yield (~86% of the variability in the yield data was accounted for by year), but a 

significant zone × year interaction supported our zoning scheme.  

 Weather data retrieval and processing, simulated Yw, and YG calculation 

Winter wheat Yw was simulated for each field-year using the Simple Simulation Model 

(SSM) – Wheat (Soltani and Sinclair, 2012), which is a process-based model that simulates 

wheat growth and development on a daily basis. We used previously calibrated parameters for 

winter wheat grown under non-limiting conditions in the U.S. Great Plains (Lollato and 

Edwards, 2015), which resulted in accurate simulation of crop phenology and Yw across a wide 

range of environments (Lollato et al., 2017, 2019b; Sciarresi et al., 2019). Harvest maturity dates 

were simulated with a ME of -2.8 days (-1.1%) and a RMSE of 8.1 days (3.2%) when compared 

to actual harvest dates in the current dataset (R2 = 0.7, P < 0.001).  

The SSM model requires daily weather data including precipitation, maximum (Tmax) 

and minimum temperatures (Tmin), and solar radiation, as well as relevant soil characteristics 

such as soil depth and available water holding capacity. The weather data were retrieved from in-
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situ observations collected from federal, regional, and state weather and climate networks. For 

daily Tmax, Tmin, and precipitation data, we selected weather stations from the National 

Weather Service Cooperative Observer Program and Automated Surface Observing Systems in 

Kansas, which include 455 stations (inset in Fig. 1). The data quality control was implemented 

by Applied Climate Information System for daily maximum and minimum temperature as well 

as precipitation (Leeper et al., 2015). The 62 Kansas Mesonet stations (Patrignani et al., 2020) 

were used to collect daily solar radiation and reference evapotranspiration (ETo). All daily 

station’s data were supported by using two standards: (i) outliers in daily maximum and 

minimum temperature were identified as more than 3.5 standard deviations away from 

climatological mean temperature for the day (Frich et al., 2002); (ii) daily homogeneity of 

temperature and precipitation observations were visually assessed by the monthly average time 

series because our study period is relatively short. Site weather data were then interpolated by 

using the natural neighbor interpolation method (Amidror, 2002) on a daily step.  

The available water holding capacity (AWHC) and textural class of each field were 

collected from the Web Soil Survey (USDA-NRCS, 2015) for the 0-20 cm and 20-200 cm depths 

by: (i) creating an area of interest using the field boundaries, (ii) quantifying the percentage of 

each different soil class within each field, and (iii) calculating the weighted-average AWHC 

across the different soil types for each depth. A depth of 200 cm is sufficient to represent wheat 

rooting depth in the region (Awad et al., 2018). Soil curve number, albedo, bulk density, and 

drainage factor were retrieved from Soltani and Sinclair (2012) and Ratliff et al. (1983).   

Simulations used actual sowing date for each field-year to account for sowing delays due 

to a previous summer crop, and optimal plant population (Paulsen et al., 1997). When wheat was 

sown following a long (11 to 14-m) or short (3-m) fallow period, the SSM-Model was initiated 
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in the beginning of the fallow period at 50% available water and the soil-water balance 

component of the model estimated the available water at wheat sowing (Lollato et al., 2016). 

When wheat was sown immediately after a preceding summer crop, we simulated the soil water 

balance under the preceding summer crop using either the soybean or the maize (Zea mays L.) 

modules of the SSM model with cultivars of appropriate maturity for the region. The available 

water in the soil profile at harvest of the preceding summer crop was used either as (i) the initial 

water at sowing for wheat following soybeans, or (ii) the initial water content at a short (15- to 

30-d) fallow period prior for wheat sowing following maize. The YG was calculated for each 

field-year by subtracting the Ya from the simulated Yw.   

 Influence of management × environment interactions on wheat grain yield  

On-farm surveys lack replication and experimental design, precluding the establishment 

of causal relationships. Thus, the association of yield and management practices is usually 

quantified using quantile regression (Grassini et al., 2011a, 2015; Rattalino Edreira et al., 2017) 

or multivariate methods such as principal component analysis (Villamil et al., 2012) or 

conditional inference trees (CIT)(Ernst et al., 2016; Lobell et al., 2005; Mourtzinis et al., 2018b). 

In our study, the interactive effects of field-level growing season weather variables, soil available 

water holding capacity and initial soil water at sowing, and management practices on Ya were 

assessed using CIT via the ‘partykit’ package in R software (Hothorn and Zeileis, 2015). CIT use 

unbiased recursive partitioning through data distribution and account for multicollineraty, 

interactions between treatments, interpretability, ability to handle both numerical and categorical 

variables (Hothorn et al., 2006), and heteroscedasticity (Tittonell et al., 2008; Lohr, 2009), which 

are appropriate for analyzing survey data (Hothorn et al., 2006). 
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The weather variables included in the CIT were cumulative rainfall and mean daily Tmax 

and Tmin for the growing season and for the grain filling period, cumulative solar radiation for 

the growing season, and the photothermal quotient [PTQ, the ratio between incident solar 

radiation and average temperature) (Fischer, 1985) using a Tbase = 0 °C (Porter and Gawith, 

1999)] for the critical period [i.e., 20 days before anthesis until 10 days after anthesis (Fischer, 

1985)]. The use of field-level weather data precluded the need to use the nominal variable “year” 

with a more robust agronomic meaning. A total of 48 independent weather (8), management 

(37), soil (2), and simulated (days to anthesis) variables were used in the CIT to explain Ya. 

One CIT was initially created across all 656 fields, and this CIT was evaluated for 

significant effects of seeding rate, previous crop, and sowing date, as these variables are region-

dependent and their significance could confound the interpretation of the results (Munaro et al., 

2020). Because these were significant (see results section below), individual CITs were created 

by crop zone. The best-fit CIT was selected by allowing the intermediate and terminal nodes to 

vary between 5-40% and 5-20% at five percent intervals, and CIT depth to range from 3 to 10. 

Coefficient of determination (r2) and RMSE evaluated the fit of the CITs, and a more 

parsimonious CIT was selected when r2 and RMSE changed less than 5% from a more complex 

CIT. After selecting the final model, we interrogated each node of the individual CITs for the 

next three surrogate splits, which in essence identifies variables that result in a good 

approximation of the primary results in case data for the primary split are missing (i.e., provide 

an insight into correlated variables within the subset of data used in the split; Lawes et al., 2021). 

Because our goal was to assess variable importance and conditional effects instead of future 

prediction, we modeled the entire dataset within each CZ without using a training and a 

validation dataset. 
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 Results 

 Weather during the surveyed growing season as compared to historical conditions 

Mean growing season rainfall ranged from 233 to 737 mm, with an overall dryer 2018 as 

compared to 2016 or 2017 (Fig. 2). Cumulative rainfall and plant available water at sowing were 

greater than the long-term mean in 2016 and 2017. These years had a mild winter and earlier 

spring development, resulting in earlier heading and longer grain filling period. The 2018 season 

was dryer and had a cool winter and early spring, which delayed the onset of wheat stem 

elongation in the spring, delaying wheat heading and shortening the grain fill duration.  

 

Figure 2-2. Frequency distribution of average cumulative precipitation, mean maximum (Tmax) 

and minimum (Tmin) temperatures, photo-thermal quotient during the growing season (PTQ), 

solar radiation (SR), total grass-based reference evapotranspiration (ETo), and plant available 

water at sowing (PAWs) for the winter wheat growing season for all fields collected in three 

Kansas regions (North Central, NC; South Central, SC; and West).  

 Winter wheat Ya, Yw, and YG 

Wheat Ya averaged 3.8 Mg ha-1 and ranged from 0.3 to 7.1 Mg ha-1 across all fields, 

showing a large year × zone variability (i.e., mean Ya ranged from 2.5 Mg ha-1 in SC during 

2018 to 5.0 Mg ha-1 in West during 2016) (Fig. 3). The average producer-reported yields were 
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~19% greater than the average USDA-NASS county-level yields (3.1 Mg ha-1), with a slope of 

1.17 ± 0.11, suggesting that differences were larger under higher yielding conditions. Still, the 

high coefficient of determination (r2=0.61, p < 0.001) suggested that our database was 

representative of the variability in conditions during the study period. 

 

Figure 2-3.Cumulative frequency distributions of (a, f, k) actual grain yield, (b, g, l) water-

limited grain yield, (c, h, m) yield gap, (d, i, n) water productivity, and (e, j, o) transpiration 

efficiency for three years (2016, 2017, and 2018 shown as different colors) and regions (North 

Central – NC, top row; South Central – SC, middle row; and West, lower row) in Kansas.  

Across zones and years, crop simulation modeling suggested an average Yw of 6.8 Mg 

ha-1 (range: 1.2 to 10.9 Mg ha-1) for an average YG of 44% (Fig. 3). These estimates were 

slightly greater than those using boundary function analysis of the 99th percentile yields as 

function of sowing dates (Box 1). The remainder of the manuscript will refer to Yw and YG as 

those calculated through crop modeling. The smallest YG occurred in NC during 2018, while the 

largest YG occurred in West during 2017. The large region × zone effect on Yw and YG was 

reflected on the ranges observed for these variables across fields, as mean Yw within crop zone 

and year ranged from 3.1 to 8.1 Mg ha-1 with an associated YG range of 12 to 57%. Across 

regions and years, YG associated negatively with grain filling Tmin and Tmax (R2 > 0.25, P < 
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0.01) and positively with cumulative solar radiation during grain fill and with the ratio of ETc 

during grain filling over seasonal ETc (R2 > 0.27, P < 0.01) (data not shown). We note in passing 

that the magnitude of the YG depended on crop sequence.   

 Wheat management in Kansas 

The adoption of management practices depended on crop zone and year (Fig. 4, Table 2). 

Average sowing date ranged from DOY 275 in the West (range: 42-d) to 287 in SC (range: 58-

d). Across years, sowing date was similar in the NC region (DOY 282, range: 41-d) but varied 

for SC (DOY 284 in 2016 versus 289 in the other years) and West (DOY 280 in 2018 versus 272 

in the other years). The regional specificity of sowing dates and its effects on wheat yield is 

explored in Box 1. Seeding rates also varied by 23 kg ha-1 across zones, with the central zones 

averaging 90 kg ha-1 and the West averaging 68 kg ha-1. Seeding rate was similar across years in 

the West (68 kg ha-1) but varied by year in NC (90-95 kg ha-1) and SC (88-95 kg ha-1). Row 

spacing was typically narrower in SC (75% adopted 19 cm or less) with a transition zone in NC 

(53% adopted 19 cm or less) and wider in the West [row spacing was mostly 25.4 (66%) or 30.5 

cm (33%)]. Nitrogen rate was greater in the central zones (94 ± 2.7 kg N ha-1) versus West (59 ± 

3.5 N ha-1). No-till occurred in 75, 52, and 48% of the fields in NC, SC, and West. Foliar 

fungicide application at GS55 occurred in 55, 56, and 42% of the fields in NC, SC, and West.  

Expectedly, crop sequence varied by zone: More than 75% of the surveyed fields were in 

a fallow-crop rotation in the West, which was followed by 14% wheat after maize. The most 

common previous crop was either soybeans (44 and 30%) or wheat (42 and 51%) in NC and SC. 

Within a given crop zone, the adoption of management practices also depended on crop 

sequence. For instance, fields following a soybean crop were planted 6-8 days later and with 7-9 

kg ha-1 more seed than fields after wheat in the central zones; while fields following maize were 
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sown approximately 7 days later at 10 kg ha-1 greater seeding rates than fields following a fallow 

period in the West (data not shown). Within crop zone, greater seeding rates related positively 

with later sowing dates (slope: 0.31-0.37 kg ha-1 d-1; r2 > 0.06, p <  0.001). 

Table 2-2. Frequency (%) or mean values of management practices and variety characteristics 

adopted in the surveyed wheat fields across three regions (North Central, South Central, and 

West) of Kansas. For meaning of genotype ratings, please refer to the methods section. 
 

Variable Units 
 North 

Central 

 South 

Central 

 West 

      
Mean 

  

        

Wheat variety rating Leaf rust Unitless  5  4  6 

 Stripe rust Unitless  4  5  4 

 WSM Unitless  7  7  6 

 Maturity Unitless  5  5  5 

 Height Unitless  5  5  5 

 Drought Unitless  6  6  5 

 Straw strength Unitless  3  3  4 

Crop management Variety blend %  24  12  3 

 Volunteer wheat control %  98  96  97 

 Row spacing (19 cm or 

less) 

%  53  75  1 

 Seed fungicide %  81  71  29 

 Seed insecticide %  55  62  28 

 Grazing %  3  3  1 

 Conventional till %  25  48  52 

 No-till %  75  52  48 

Fertilizer In-Furrow P %  70  65  62 

 Manure %  0  4  9 

 Lime %  0  1  0 

 Broadcast or banded P %  20  31  7 

 S %  52  45  28 

 Cl %  6  6  1 

 Zn %  43  14  38 

First N source Anhydrous ammonium %  9  21  11 

 Urea ammonium nitrate %  55  55  71 

 Urea %  34  22  15 

First N method Broadcast %  45  46  48 

 Knife %  6  22  11 

 Stream nozzle %  49  32  38 

First N stage Pre-plant %  37  45  17 

 Zadoks GS20 %  59  51  79 

 Zadoks GS31 %  4  4  1 

Second N source U.A.N %  29  44  15 

 Urea %  2  1  0 

Second N method Broadcast %  14  24  15 

 Stream nozzle  %  18  21  0 

Second N stage Zadoks GS20 %  28  34  15 
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 Zadoks GS31 %  3  11  0 

Foliar fungicide Zadoks GS31 %  10  4  7 

 Zadoks GS39 %  55  56  42 

Previous crop Corn %  2  11  14 

 Fallow %  10  4  75 

 Other  %  1  4  5 

 Soybean %  44  30  1 

 Wheat %  42  51  4 

Available water 

holding capacity 

0-15 cm3 cm-3  0.06  0.06  0.06 

0-60 cm3 cm-3  0.16  0.15  0.18 

 

 

 

Figure 2-4. Cumulative frequency distributions of (a, e, i) of phosphorus rate (kg P ha-1), (b, f, j) 

seeding rate (kg ha-1), (c, g, k) sowing date (Day of Year, DOY), and (d, h, l) total nitrogen rate 

(kg N ha-1) for three different regions (North Central, upper row; South Central, middle row; 

and West, lower row) in Kansas. Black lines represent variables with no statistical difference 

among years. Colored lines represent statistically significant differences among years. 

 Interactions of weather variables and management practices on wheat grain yield  

Across all 656 field-years, the most parsimonious CIT explained 39% of the variability in 

yield, with a RMSE of 0.93 Mg ha-1 (Fig. 5). Cumulative growing season rainfall was the most 

important factor associated with increased Ya, with other weather variables occurring as 

surrogate splits (grain filling Tmin or Tmax, or seasonal Tmax; Table 3). Yield ranged from 3.0 
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to 5.6 Mg ha-1 in fields receiving more than 388 mm precipitation, with the highest yields 

resulting from fields receiving a foliar fungicide application around flag leaf and more than 87 

kg N ha-1 in the first N application. Grain yield ranged from 2.5 to 3.0 Mg ha-1 across fields 

receiving less than 388 mm seasonal precipitation, depending on initial plant available water 

(split at 183 mm). Because five nodes either were, or had as surrogate splits, a variable that was 

region specific [i.e., row spacing (primary node), prior crop (three surrogate nodes), and sowing 

date (one surrogate node)], we further explored CIT by crop zones.    

 

Figure 2-5. Conditional inference tree of weather, soil, and management practices winter wheat 

grain yield across all 656 fields surveyed. Each boxplot represents the interquartile range (gray 

box), median (solid line), fifth and 95th percentiles (whiskers), and outliers (empty circles). The 

mean, number of observations (n), and model fit statistics (R2 and RMSE) are shown. Legend: 

Rain_Cum, total in-season rainfall; PAWS, plant available water at sowing; Flag_Leaf_Fungi, 

application of a flag leaf fungicide (Zadoks GS40-55); RowSpace, row spacing; Tillage, tillage 

practice adopted (NT = no till; CT = conventional till); and First_N_rate, rate of N in the first 

application. 

Table 2-3. Surrogate variables and associated splits for each node of the conditional inference 

trees (CIT) evaluated across all 656 field-years of winter wheat in Kansas during the 2016, 2017, 
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and 2018 growing season (“All”), and individually per crop zone for north central (NC), south 

central (SC), and West. For identification of node number, please refer to Figures 4 and 5.  
CIT No

de 

Surrogate 

var. 1 

Split Surrogate var. 2 Split Surrogate var. 3 Split 

All 1 Grain fill 

Tmin 

17.5°C Grain fill Tmax 31.7°C Seasonal Tmax 16.4°C 

 
2 Previous 

crop 

Soybean vs. 

corn, fallow, 

wheat, or other. 

Seeding rate 73 kg ha-1 First N method Broadcast 

or stream 

vs. knife or 

no.  
5 Seasonal 

Tmin 

2.1°C Second N rate 15 kg ha-1 First N method Broadcast, 

knife, or 

stream vs. 

no.  
6 Seasonal 

solar 

radiation 

3827 MJ m-2 Previous crop Soybean or 

wheat vs. corn, 

fallow, or other. 

Total N rate 73 kg ha-1 

 
8 Presence of S 

fertilizer 

Yes/no Presence of Zn 

fertilizer 

Yes/no First N source AA or 

UAN vs. 

urea or no.  
11 Total N rate 108 kg ha-1 Seasonal Tmax 16°C Presence of 

insecticide seed 

treatment 

Yes/no 

 
12 Previous 

crop 

Soybean vs. 

corn, fallow, 

wheat, or other. 

Sowing date DOY 281 Seasonal solar 

radiation 

4874 MJ m-

2 

NC 1 First N rate 92 kg ha-1 Rate of P 21 kg ha-1 Second N stage No or tiller 

vs. jointing  
2 Presence of 

in-furrow P 

fertilizer 

Yes/no First N stage Jointing or tiller 

vs. pre-plant. 

Presence of Zn 

fertilizer 

Yes/no 

 
3 Seasonal 

Tmin 

1.3°C Grain fill Tmax 31°C Critical period 

PTQ 

1.18 MJ m-2 

d-1 °C-1  
5 Seeding rate 75 kg ha-1 Second N method Broadcast vs. no 

or stream. 

Variety stripe rust 

resistance 

2.8 

 
7 Grain fill 

Tmin 

15°C First N rate 15 kg ha-1 Presence broadcast 

P 

Yes/no 

 
10 Seasonal 

Tmin 

1.9°C Cumulative 

rainfall 

544 mm Days to anthesis 217 days 

 
11 Plant 

available 

water at 

sowing 

92 mm Variety stripe rust 

resistance 

5 Variety wheat 

streak mosaic 

resistance 

7 

 
15 Critical 

period PTQ 

1.3 MJ m-2 d-1 

°C-1 

First N method Knife or stream 

vs. broadcast 

First N source AA or 

UAN vs. 

urea 

SC 1 Grain fill 

Tmin 

16°C Grain fill Tmax 30°C Critical period 

PTQ 

1.14 MJ m-2 

d-1 °C-1  
2 First N rate 80 kg ha-1 First N source No, UAN or 

urea vs. AA 

First N method Broadcast, 

no, or 
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stream vs. 

knife  
5 Second N 

rate 

12 kg ha-1 Second N stage Tiller vs. 

jointing or no. 

Second N method Knife or no 

vs. 

broadcast or 

stream  
6 First N 

method 

Knife vs. 

broadcast or 

strea 

Presence of S 

fertilizer 

Yes/no First N stage Pre-plant 

vs. tiller 

 
9 Second N 

method 

No vs. 

broadcast, 

knife, or stream 

Second N source No vs. AA, 

UAN, or urea 

First N stage Jointing or 

tiller vs. 

pre-plant.  
10 Days to 

anthesis 

199 days Presence of 

broadcast P 

fertilizer 

Yes/no Presence of in-

furrow P fertilizer 

Yes/no 

 
13 Seasonal 

Tmin 

3.5°C Days to anthesis 189 days First N method Knife or 

stream vs. 

broadcast 

West 1 Critical 

period PTQ 

1.8 MJ m-2 d-1 

°C-1 

Seasonal Tmin 3.8°C Grain fill 

precipitation 

389 mm 

 
2 Presence of 

Zn fertilizer 

Yes/no Seasonal solar 

radiation 

4034 MJ m-2 Phosphorus rate 35 kg ha-1 

 
3 Grazing Yes/no Seasonal Tmin 0.2°C Variety stripe rust 

resistance 

2 

 
4 Seeding rate 70 kg ha-1 Second N rate 0 kg ha-1 Second N stage Tiller vs. no  
8 First N rate 65 kg N ha-1 Tillage CT vs. NT Variety straw 

strength 

4 

 
11 Grain fill 

Tmax 

30°C Seasonal Tmin 1.7°C Variety maturity 4 

 
12 First N 

method 

Broadcast or 

knife vs. stream 

Sowing date 273 Grain fill rainfall 192 mm 

 
15 Presence of S 

fertilizer 

Yes/no Presence of in 

furrow P fertilizer 

Yes/no Presence of Zn 

fertilizer 

Yes/no 

 

In NC, the most parsimonious CIT had an R2 of 45% and a RMSE of 0.81 Mg ha-1 (Fig. 

6a). The first node was total N rate, splitting at 110 kg ha-1 with yields ranging between 2.9-4.6 

Mg ha-1 and 4.2-5.1 Mg ha-1 in the low and high N ranges. Surrogate splits first N rate or second 

N timing, or P rate (Table 3). In fields receiving more than 110 kg N ha-1, the next node was 

growing season rainfall, splitting at 512 mm (alternative splits: PTQ, or first N application 

method or source). In fields receiving less than 110 kg N ha-1, row spacing of 19 cm or narrower 

were higher yielding (3.1-4.6 Mg ha-1) than wider row spacing (2.9-3.7 Mg ha-1). Alternative 
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splits were in furrow P; stage of first N application; or Zn application. Yields of fields adopting 

narrow row spacing depended on seasonal rainfall (surrogate splits: Tmin, grain fill Tmax, or 

PTQ), total N (alternative splits: seeding rate, second N method, or variety stripe rust resistance), 

and grain fill Tmax (alternative splits: grain fill Tmin, first N rate, P fertilizer). For fields 

adopting wide row spacing, flag leaf fungicide associated with higher yields (3.7 Mg ha-1; 

alternative splits: Tmin, cumulative rain, and days to anthesis – with later simulated anthesis out 

yielding earlier ones). For fields not receiving fungicide, wheat after fallow or soybeans yielded 

more than after wheat (3.0 versus 2.9 Mg ha-1). In fields absent of fungicide, a surrogate split 

suggested that varieties resistant to stripe rust out yielded susceptible ones.    

In SC, the most parsimonious CIT explained 55% of yield variability, with a RMSE of 

0.78 Mg ha-1 (Fig. 6b). The first node was seasonal precipitation, splitting at 367 mm for low 

yielding (2.1-3.0 Mg ha-1, depending on total N rate) or high yielding fields (3.6-5.1 Mg ha-1, 

depending on the presence of foliar fungicide). Surrogate splits for the first node were grain fill 

Tmin or Tmax, or PTQ (Table 3). For the second node, surrogate splits were first N rate, source, 

and method. Surrogate splits for the foliar fungicide node were second N application rate, crop 

stage, and method. In the absence of foliar fungicide, grain yields (3.6 to 3.8 Mg ha-1) depended 

on N source used in the first application (surrogate splits: method and stage of first N 

application, or presence of S fertilizer). For fields receiving foliar fungicides, yields ranged 

between 4.0 and 5.1 Mg ha-1 depending on stage of second N application (surrogates: method or 

source of second N application, or stage of first N application), P rate (surrogates: simulated days 

to anthesis – with early simulated anthesis outyielding late ones; and broadcast or in furrow P 

fertilizer), and seasonal Tmax (surrogates: seasonal Tmin, days to anthesis, and first N method). 
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In the West, the most parsimonious CIT explained 53% of yield variability with a RMSE 

of 0.95 Mg ha-1 (Fig. 6c). The first node was seasonal precipitation, splitting at 672 mm. 

Surrogate splits were PTQ, Tmin, and precipitation during grain fill (Table 3). For fields 

receiving less than 672 mm precipitation, yield ranged from 2.7 to 4.6 Mg ha-1, with the highest 

yielding fields receiving S fertilizer and more than 73 kg N ha-1. Surrogate splits for S fertilizer 

included presence of Zn or P rate (note that usually S is supplied in combination with Zn and P); 

and surrogate splits for total N rate included first N rate, tillage, and variety’s straw strength. For 

fields not receiving S fertilizer, higher yields (3.9 Mg ha-1) associated with presence of foliar 

fungicide at flag leaf (surrogate splits grazing, Tmin, and stripe rust resistance). In the absence of 

foliar fungicide, growing season Tmax influenced yields between 2.7 and 3.5 Mg ha-1 (surrogate 

variables: seeding rate, and second N rate and stage of application). Grain yield in fields 

receiving more than 672 mm season precipitation ranged from 3.7 to 5.9 Mg ha-1, mostly 

depending on grain fill Tmin, presence of foliar fungicide at flag leaf, and P rate. Surrogate splits 

for grain fill Tmin were grain fill Tmax, seasonal Tmin, and variety maturity (later maturing 

varieties out yielding early maturing ones). Surrogate splits for flag leaf fungicide were first N 

method, sowing date, and rainfall during grain filling; while surrogate splits for P rate were 

presence or absence of S, P, and Zn fertilizer.          
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 1 

Figure 2-6. Conditional inference tree of management practice impacts on normalized wheat grain yield (i.e., difference from the mean 2 

within each year x CZ combination) for the North Central (a), South Central (b), and West (c) regions. Each boxplot represents the 3 

interquartile range (gray box), median (solid line), fifth and 95th percentiles (whiskers), and outliers (empty circles). The mean, 4 

number of observations (n), and model fit statistics (R2 and RMSE) are shown. Legend: Total_N refers to total N applied during the 5 

growing season in kg ha-1; Phosphours_Rate refers to total P applied during the growing season in kg ha-1; SeedInsect refers to the 6 

application of a seed insecticide to the seed before sowing; Flag_Leaf_Fungi refers to the application of a flag leaf fungicide during 7 

approximately at Zadoks GS55; Sow_Date refers to the sowing date in day of year.   8 
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 Discussion 9 

A survey of management practices adopted in a large number of commercial rainfed 10 

winter wheat fields in Kansas exposed to a range of environmental conditions during three 11 

consecutive growing seasons, coupled with detailed crop simulation modeling, revealed 12 

environmental factors and management × environment interactions affecting yield and YG of 13 

winter wheat. Beyond the local implications of our findings to improve wheat management in 14 

dryland regions, our analyses have implications for future YG analyses for other crops and 15 

regions.   16 

 Implications for future yield gap analyses  17 

Our analysis has a few major implications for future YG analyses: (i) we highlighted the 18 

importance of region-specific agronomic practices in supporting the need for regional 19 

subdivision of survey data; (ii) we combined the use of crop zones (to account for the region-20 

specific nature of particular agronomic practices) with growing season weather data (that 21 

determines the crop’s Yw and the impacts of weather × management interactions on Ya) to 22 

explain Ya; and (iii) the large number of agronomic practices evaluated demonstrated that many 23 

management factors beyond the ones most usually evaluated in yield gap analyses (e.g., sowing 24 

date or fertilizer rates) helped to better defined the YG. 25 

An original contribution of our work is that we explicitly highlighted the need to 26 

subdivide a heterogeneous region in smaller and more homogeneous crop zones with the specific 27 

goal of accounting for agronomic practices that are region-specific and can be confounded 28 

otherwise. The use of crop zones was justified by the presence of management variables that 29 

were region-dependent in primary and surrogate splits when a single tree represented all data 30 

(Fig. 5, Table 3), as well as by the better fit of individual trees by crop zone as compared to the 31 
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single tree, despite a smaller number of observations in each crop zone CIT (R2 of 0.45-0.55 vs. 32 

0.38). The addition of field-specific weather variables during different periods of the growing 33 

season was justified due to the high importance of year, which explained 86% of the variability 34 

in grain yield. This approach builds on previous efforts that evaluated grower-reported data by 35 

pre-determined crop zones across years without accounting for season-specific weather (e.g., 36 

Mourtzinis et al., 2018b, 2020; Rattalino Edreira et al., 2017), as well as on efforts evaluating 37 

YG in thousands of fields using field-specific management and weather data in a large but rather 38 

homogenous region (Di Mauro et al., 2018).  39 

The subdivision of large geographies into smaller, more homogenous zones can account 40 

for spatial variation in the biophysical determinants of the crop’s Yw (i.e., soil and long-term 41 

weather) (Rattalino Edreira et al., 2017). Zoning schemes based on long-term weather are static 42 

and do not account for the temporal variation in weather or for its interactions with management. 43 

Due to their static nature, these zoning schemes have been successful in accounting for large 44 

portion of the variation in yield in studies using one or two years of data in regions with high 45 

predictability in weather conditions (e.g., Rattalino Edreira et al., 2017; Silva et al., 2017), and 46 

up to four years of data when all years corresponded to relatively favorable environments 47 

(Mourtzinis et al., 2020). However, in regions with erratic weather pattern, the static nature of 48 

crop zones can be a concern when analyzing yield data across years as it does not account for 49 

year-specific weather conditions, thus potentially masking the effects of management under the 50 

years with contrasting weather conditions. For instance, if the database from a given crop zone is 51 

comprised by a dry and a wet year, management practices either improving yields on dry or wet 52 

years might not be identified as significant when data is analyzed across years (Mourtzinis et al., 53 
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2020). The inclusion of season-specific weather variables as explanatory variables in the CIT 54 

helps to overcome this limitation (e.g., Di Mauro et al., 2018).  55 

Supporting our results, Couëdel et al. (2021) recently showed that accounting for spatio-56 

temporal variation in heat and drought stresses explained 2x to 7x larger portion of the variance 57 

in grain yield of maize, soybeans, and wheat, as compared to the static zoning. Likewise, Di 58 

Mauro et al. (2018) showed that field-level weather, management, and soil data explained 26-59 

31% of soybean yield variability across four Argentinian provinces. We note, however that Di 60 

Mauro et al. (2018) evaluated a relatively homogenous region, thus justifying the analyses across 61 

all data combined, which differs from the conditions in our study region. The better explanatory 62 

power of grouping fields based on clusters of more similar crop-phase specific weather as 63 

compared to crop zones in more erratic cropping systems was speculated by Mourtzinis et al. 64 

(2020), through their results did not support this for soybeans in U.S. North Central, a region 65 

with greater environmental predictability (Couedel et al., 2021). One drawback of our approach 66 

is that it requires site-specific weather data, which might not be available in many regions with 67 

lower population density of weather stations. 68 

Another important contribution of the current work to the YG literature is the opportunity 69 

to better describe Ya with detailed data on crop management. We evaluated 37 producer-reported 70 

management variables, which is a larger number of variables than many other efforts 71 

investigating crop YG. For instance, Beza et al. (2017) extensively reviewed the YG literature 72 

and suggested that the average number of management factors explaining YG was three and 73 

ranged from zero to 29. The authors also highlighted that unavailability of data can be a major 74 

limiting factor in YG analyses, as exemplified by the lack of fertilization data in the Neumann et 75 

al. (2010) analysis and the limited number of experiments used to validate crop models by (Lu 76 
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and Fan (2013). We demonstrated how a rich management dataset, combined to field-specific 77 

weather and soil data, helped to illustrate the challenges brought about by management × 78 

environment interactions in determining best management practices in regions with high year-to-79 

year variability (Munaro et al., 2020). Also of interest to the YG literature is that individual splits 80 

in the CIT correlated with other variables. In some cases, correlated variables were all aspects of 81 

one management practice (i.e., total N rate as primary split, with surrogate variables first N rate, 82 

source, or method), reinforcing that more focus should be given to improve the management of 83 

that specific practice in that particular region. However, in other cases, different variables could 84 

also explain particular splits, suggesting that careful agronomic interpretation is needed to further 85 

improve Ya.    86 

Finally, we note that the first (and most important) split in the CIT as well as its three 87 

surrogate variables were related to weather conditions in SC and in the West (Fig. 6, Table 3), 88 

regions typically more exposed to water deficit stress and heat stress, respectively (Couedel et 89 

al., 2021). Meanwhile, the first split and surrogate variables in NC, a region with cooler weather 90 

than SC and greater moisture availability than the West, were related to crop management (i.e., 91 

N or P rate). This offers insights into the greater relative importance of management practices in 92 

determining wheat yields in favorable environments as compared to harsh environments.  93 

 Wheat grain yield, yield variability, and yield gap in the U.S. central Great Plains 94 

The surveyed fields had slightly greater yields than those reported by official statistical 95 

sources, which is similar to other surveying efforts (Lawes et al., 2021). The high end of winter 96 

wheat grain yield in our database (maximum: 7.1 Mg ha-1) was lower than values reported for the 97 

same region in fields entered in the Kansas Wheat Yield Contest during 2010-2017, which were 98 

as high as 8.3 Mg ha-1 (Lollato et al., 2019b). The high end of the simulated Yw (>8.5 Mg ha-1) 99 
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occurred in 32% of the cases, mostly during 2016 or 2017 when seasonal water availability was 100 

not limiting to yields (mean growing season rainfall among these 213 high Yw fields of 825 ± 6 101 

mm). Still, only 13% of the simulated Yw were greater than the highest reported winter wheat 102 

yield in variety performance tests in the region (i.e., 9.4 Mg ha-1; Lingenfelser et al., 2019, 2016). 103 

Wheat YG averaged 44%, which is similar to a comprehensive estimate of 36% by 104 

Fischer et al. (2014); however, with substantial differences in Yw and Ya. Fischer et al. (2014) 105 

used government reported data to estimate Ya of 2.8 Mg ha-1 and variety trial data to estimate an 106 

attainable yield of 3.8 Mg ha-1, while our respective estimates were 3.8 and 6.8 Mg ha-1. The 107 

differences between these estimates result from a few features of both the current research and 108 

Fischer et al. (2014). First, the group of growers included in our survey had ~19% greater yields 109 

than those reported by the government, resulting in a slight overestimation of Ya in our analysis. 110 

Second, we used crop simulation modeling to derive Yw while Fischer et al. (2014) used variety 111 

trial data to estimate attainable yield. Our estimate of attainable yield was 6.0 Mg ha-1, which 112 

results in more similar YG estimates to Fischer et al. (2014) (i.e., 35%, Box 1). We also note that 113 

two out of three years included in our survey (i.e., 2016 and 2017) had historical state-level 114 

record wheat yields (USDA-NASS, 2016, 2017b), which suggests that the optimal weather 115 

conditions increased the Yw estimates as compared to long-term Yw (6.8 versus 5.2 Mg ha-1, 116 

Lollato et al., 2017). Finally, the conditions experienced in the current research are perhaps not 117 

representative of the technology levels and weather conditions of those reported by Fischer et al. 118 

(2014), as their estimates reflected the year of 2010. Using the progress in Yw and Ya reported 119 

by Fischer et al. (2014) to update their calculations, Ya is estimated as ~3.1 Mg ha-1 and Yw as 120 

~4.0 Mg ha-1 for the last year included in this research. While this Ya estimate agrees with 121 

current yield levels (USDA-NASS, 2018), recent evidence suggests that the yields reported in 122 
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variety performance tests in the region are ~0.9 Mg ha-1 below their potential due to suboptimal 123 

management (Munaro et al., 2020; de Oliveira Silva et al., 2020b). This would increase Fischer 124 

et al. (2014)’s Yw estimate to 4.9 Mg ha-1, which is closer to yields from highly-managed wheat 125 

yields in the region (Lollato and Edwards, 2015; Jaenisch et al., 2019; Lollato et al., 2019a; de 126 

Oliveira Silva et al., 2020b). We note that Fischer et al. (2014) acknowledged that their analysis 127 

could have underestimated Yw depending on the management of the variety performance tests. 128 

About 23% of the surveyed fields had YG less than 25%, threshold below which might 129 

not be economical to increase Ya (Lobell et al., 2009). This suggests that 77% of the fields 130 

included in our survey could still economically improve yields through management. Conditions 131 

leading to high Yw (i.e., low grain filling Tmin and Tmax, high grain filling solar radiation, and 132 

high ratio of ETc during grain fill over crop cycle ETc) partially explained the larger YG, which 133 

is similar to reports for wheat in other parts of the world (e.g., Lawes et al., 2021) and further 134 

discussed in Box 2. A larger YG in higher yielding conditions highlights the risk-averse behavior 135 

of the majority of the wheat producers in this region due to the inconsistent environmental 136 

conditions (Couëdel et al., 2021) coupled with the assumption that other limiting factors will 137 

provide reduced return to management intensification (de Oliveira Silva et al., 2020b).  138 

 Implications for agronomic management of winter wheat in dryland regions 139 

Management of N (rate, timing, source, and placement), P (rate and placement), as well 140 

as other nutrients such as S and Zn offer opportunities to improve winter wheat yield in the U.S. 141 

Great Plains. These results are consistent with previous research from field experiments in this 142 

(Lollato et al., 2013, 2019a; Wilson et al., 2020) and other wheat growing regions (Rodríguez et 143 

al., 1999; Salvagiotti and Miralles, 2008; Hochman and Waldner, 2020; Lawes et al., 2021). 144 

Additionally, these results align with the YG review by Beza et al. (2017), that suggested that 145 
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fertilization practices are among the most important factors reducing YG. We also demonstrated 146 

that producers in the semi-arid West used lower N rates than those in the sub-humid central crop 147 

zones, despite similar yield levels. The lower N rate in the semi-arid region might be associated 148 

with reduced N losses (Schlegel et al., 2003; Edwards et al., 2009) or greater N carryover 149 

(Hergert, 2015; Meier et al., 2021). Additionally, our survey identified that foliar fungicides 150 

applied around GS40-55 associated with increased yields, likely due to stripe rust in 2016 and in 151 

2017 which casued statewide yield losses of 9.1 and 8.6% (Hollandbeck et al., 2019). These 152 

findings are also similar to replicated field experiments (Wegulo et al., 2011; Thompson et al., 153 

2014; Cruppe et al., 2017; Jaenisch et al., 2019). Historically, producers in this region relied 154 

more in the genetic resistance of cultivars than in foliar fungicides (Kelley, 2001) reflecting in a 155 

lingering reluctance to invest in this input to date (only 42-56% adoption), suggesting that it may 156 

be an opportunity for future wheat yield improvements in Kansas. 157 

Beyond the perhaps expected effects of fertility and fungicide management on wheat Ya 158 

(Beza et al., 2017), our analyses including detailed management data exposed other interesting 159 

management × environment as well as management × cropping sequence interactions. For 160 

example, the association of narrower row spacing (or the presence of in-furrow P/Zn fertilizer) 161 

with increased Ya in fields receiving less than 110 kg N ha-1 in NC (Fig. 6; Table 3) likely relates 162 

to earlier canopy cover and radiation interception in these fields, which is also consistent with 163 

experimental data (Rodríguez et al., 1999; Soltani and Galeshi, 2002; Shoup and Adee, 2014). 164 

Along the same lines, fields sown later (i.e., after soybeans in central Kansas and after maize in 165 

the West) were sown at higher seeding rates than earlier sown fields. The decreased fall tillering 166 

potential is a severe yield-limiting factor of late sown winter wheat (Dahlke et al., 1993), 167 

justifying increased seeding rates (Staggenborg et al., 2003). These results also suggest that 168 
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growers are adapting their management practices based on their cropping system. Another 169 

example of how our detailed management data expands on the usual factors leading to increased 170 

Ya included the results suggesting that later variety maturity was beneficial in NC and in the 171 

West, while earlier maturity was beneficial in SC. While there are only slight differences in 172 

maturity among modern winter wheat varieties in the U.S. Great Plains (Maeoka et al., 2020), 173 

these results align with the evaluation of hundreds of thousands yield data points from variety 174 

performance trials in the region (Munaro et al., 2020) with one important difference: The current 175 

report uses real farm data to confirm the previous results from field trials, which not always 176 

represent real farms regarding crop management and soil properties (Beza et al., 2017).        177 

 Conclusion 178 

The analysis of 656 commercial winter wheat fields allowed for quantification of current 179 

levels of technology adoption, evaluation of Ya, Yw, and YG, as well the interactions between 180 

management and weather driving grain yield in Kansas, the largest winter wheat producing state 181 

in the U.S. An average YG of 44% suggests room for future improvement, even for producers 182 

yielding slightly above the state average. Management of fertilizer (N, P, S, and Zn) rate, timing, 183 

source, and placement, as well as adoption of flag leaf foliar fungicide, associated with increased 184 

grain yield across all crop zones and offer opportunities to improve yield in this region. Our data-185 

rich analysis also provided greater insights into other management × weather and management × 186 

cropping systems opportunities to increase wheat Ya, such as row spacing, seeding date and rate 187 

interactions, and variety maturity. Finally, this survey also contributes to the YG literature by 188 

suggesting that clustering of data by crop zone could be justified by the different levels of 189 

management adoption and cropping sequence among regions.  190 
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 Box 1. Regional specificity of crop response to sowing date: A boundary function 191 

analysis 192 

Previous research has demonstrated the potential of boundary functions to delineate the 193 

impact of sowing date on crop attainable yield for soybeans (Grassini et al., 2015; Rattalino 194 

Edreira et al., 2017), rice (Duarte et al., 2021), and spring wheat (Hajjarpoor et al., 2018), as well 195 

as using long-term variety performance data for winter wheat (Munaro et al., 2020). At present, 196 

we used quantile regression (Cade and Noon, 2003) to derive boundary functions between 197 

attainable yield and sowing date to demonstrate (i) the regional specificity of winter wheat 198 

response to sowing date, (ii) the impact of sowing date on winter wheat attainable yield using 199 

grower-reported survey data, and (iii) alternative YG calculations using attainable yield instead 200 

of Yw. First, the ranges in sowing dates (41, 58, and 42 days for NC, SC, and West) were 201 

divided in 10 equally spaced intervals, then the 99th yield percentile in each interval was 202 

identified, and a quadratic function was fitted against the mean sowing date in each range. The 203 

boundary line was assumed to be the attainable yield and YG were calculated for each field 204 

based on actual sowing date. The quadratic nature of winter wheat attainable yield in response to 205 

sowing dates results from different yield-reducing factors on each side of the peak (Sacks et al., 206 

2010). The optimum sowing date was day of year (DOY) 275 in NC, 281 in SC, and 271 in the 207 

West, with average daily losses in attainable yield (calculated as the difference between the yield 208 

predicted at the peak and at the last sowing date included in each crop zone’s database) were 64, 209 

132, and 218 kg ha-1 d-1 in NC, SC, and West. The estimates of optimum sowing dates agree with 210 

those reported for same region using long term variety trial data (optimum DOY: 272, 284, and 211 

268 for NC, SC, and West; Munaro et al., 2020). However, the loss in attainable yields due to 212 

later sowing was greater in SC and West as compared to Munaro et al. (2020) (range: 42-93 kg 213 
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ha-1 d-1). This discrepancy is likely due to a database with a wider spread in sowing dates and 214 

more studied years reported by Munaro et al. (2020). We note that the average attainable yield 215 

across regions using this approach was 6.0 Mg ha-1 with a YG of 35%, which is lower than those 216 

estimated using crop simulation models (6.8 Mg ha-1 and YG = 44%).  217 

 218 

Box Figure 2-7. Producer-reported winter wheat grain yield and attainable yield (solid line) as 219 

function of sowing date in three distinct crop zones in Kansas: (a) North Central, (b) South 220 

Central, and (c) West. Solid line represents the fitted boundary function using quantile regression 221 

(99th percentile). Peak of the boundary function, derived as the first derivative of the convex 222 

quadratic equation, as well as slope between the peak and the last sown crop, significance of the 223 

quadratic equation, average attainable yield, and yield gap (YG) are shown. 224 

 225 

 Box 2. Is it possible to narrow the yield gap in high-yielding seasons? 226 

It is well established that the YG increases with increases in Yw (Hochman et al., 2016; 227 

Lawes et al., 2021; Lollato et al., 2019b; Silva et al., 2017, 2020). At question here is whether 228 

fields exist that achieve narrow YG in seasons with high Yw. To answer this question, we 229 

subdivided the data into Yw terciles (lower tercile, Yw < 5.8 Mg ha-1, mid, and upper tercile, Yw 230 

> 8.4 Mg ha-1) and, within terciles, identified fields with YG < 25% (Lobell et al., 2009). For the 231 

lower, mid, and upper Yw terciles, 52, 20, and 0% of the fields had YG < 25% (Box Fig. 2a), 232 

supporting previous literature that no fields in the upper tercile were within 25% of the Yw. We 233 

note, however, that the Yw in the mid-tercile was relatively high (5.8 to 8.4 Mg ha-1), so we 234 

further explored how the management of fields with YG < 25% (mean yield: 5.6 Mg ha-1) 235 

differed from fields with YG > 25% (mean yield: 3.9 Mg ha-1). Overall, fields attaining small 236 
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YG in the mid tercile were sown earlier, to later maturing varieties, at a lower seeding rate, had 237 

greater adoption of insecticide and fungicide seed treatments, greater adoption of no-tillage 238 

practices, manure, and of an early fungicide application (Zadoks 32), but did not differ in N rate 239 

or fungicide adoption at Zadoks 55 (Box Fig. 2b). All evaluated weather variables also differed 240 

between groups, as fields with low YG had greater available water holding capacity, plant 241 

available water at sowing, growing season rainfall and solar radiation, critical period PTQ, and 242 

had lower growing season Tmin and Tmax (Box Fig. 2c). This analysis highlighted that seasons 243 

with relatively high Yw require an overall more sophisticated management to narrow the YG. 244 

Thus, we propose that the greater YG in high Yw seasons results from farmers that are likely 245 

unwilling to apply sufficient inputs to achieve the high Yw; and that obtaining narrow YG is 246 

further complicated in these seasons due to a higher disease pressure.       247 

 248 

Box Figure 2-8. (a) Actual grain yield and its relationship with simulated rainfed yield potential 249 

(Yw) across the entire 656 field-years database. Dark yellow circles represent the NC region, 250 

blue circles the SC region, and pink circles the West region. Solid circles are fields with YG < 251 

25% and transparent circles are fields with YG > 25%. Dashed lines show the 33rd and 66th 252 

percentile Yw. (b) Relative ratio of technology adoption and (c) incidence of weather variables 253 

in fields with low yield gap (LYG) over high yield gap (HYG) for the mid-tercile Yw as shown 254 

in panel (a). Blue and red bars indicate positive and negative significant difference, grey bars 255 

indicate no significant difference between groups, as suggested by two-tailed t-tests or Wilcoxon 256 

test.   257 
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Chapter 3 - Modulation of wheat yield components in response to 540 

management intensification to reduce yield gaps 541 

 Highlights 542 

• We investigated the modulation of yield through yield components in winter wheat 543 

• Significant environment × management and environment × genotype affected grain yield 544 

• Fertility and fertility plus fungicide maximized yield in dry and wet environments 545 

• Wheat grain yield was modulated by kernels m-2 rather than kernel weight 546 

• Source limitation was evident with a positive green canopy cover × yield relationship   547 

 Abstract 548 

Appropriate genotype selection and management can impact wheat (Triticum aestivum 549 

L.) yield in dryland environments, but their impact on yield components and their role in yield 550 

modulation are not well understood. Our objectives were to evaluate the yield response of 551 

commercial winter wheat genotypes to different management practices reflecting a stepwise 552 

increase in management intensity, and to quantify how the different yield components modulate 553 

wheat yield. A factorial experiment evaluated six management intensities [‘farmer practice’ (FP), 554 

‘enhanced fertility’ (EF), ‘ecological intensification’ (EI), ‘increased foliar protection’ (IFP), 555 

‘water-limited yield’ (Yw), and ‘increased plant productivity’ (IPP)] and four winter wheat 556 

genotypes in two Kansas locations during two seasons. Average grain yield was 4.9 Mg ha-1 and 557 

ranged between 2.0 and 7.4 Mg ha-1, with significant two-way interactions (environment × 558 

management and environment × genotype). The EF usually maximized yields in dry 559 

environments while EI, which consisted of EF plus one fungicide application, maximized yields 560 

in wet environments. Kernels m-2 and aboveground biomass were the strongest modulators of 561 
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yield as compared to kernel weight and harvest index, while heads m-2 and kernels head-1 562 

modulated yields at a similar magnitude. We provide evidence for source limitation of wheat 563 

yield either when fungicides were not applied or when plant population was reduced, supported 564 

by significant relationships between yield and green canopy cover. Treatments more intensive 565 

than EI were not warranted as EF or EI maximized yields at all environments, and practices that 566 

promote biomass and kernels m-2 are to be targeted for future increases in wheat yield. 567 

 Introduction 568 

Bread wheat (Triticum aestivum L.) is cultivated in more than 200 million ha across the 569 

world, being an essential component of the human diet and the primary source of calories for the 570 

world’s population (Reynolds et al., 2012). Thus, increases in wheat production are crucial for 571 

global food security (Shiferaw et al., 2013), especially as yield gains fail to sustain historical 572 

rates (Grassini et al., 2013). Within this context, increasing crop yield in currently cultivated land 573 

can help to meet future food demand while minimizing the expansion of agricultural lands 574 

(Cassman, 1999).  575 

The majority of global wheat production occurs under rainfed conditions. These non-576 

irrigated cropping systems are subject to droughts due to insufficient and/or poorly distributed 577 

precipitation (Sadras, 2002; Sadras and Angus, 2006; Torres et al., 2013; Lollato et al., 2017). 578 

This leads to a more conservative approach from producers in terms of adoption of management 579 

practices with the objective of increasing yield. The underlying rationale is that water availability 580 

is the most yield-limiting factor and reduces the return on added inputs (Jaenisch et al., 2019; de 581 

Oliveira Silva et al., 2020b), following Liebig’s law of the minimum which states that the growth 582 

of a plant is proportional to the scarcest of the essential nutrients available. However, empirical 583 

and theoretical evidence support that crop yields might not be limited by a single factor but 584 
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rather determined by interactions between two or more factors (Sadras, 2004; Cossani and 585 

Sadras, 2018; Carciochi et al., 2020). Thus, it can be hypothesized that improvements in crop 586 

management could increase grain yield despite water limitation (de Oliveira Silva et al., 2020b).  587 

The state of Kansas, U.S., provides a good case-study for testing the management- and 588 

genotype- related opportunities for future yield increases in dryland wheat growing regions. With 589 

3-4 Mha of winter wheat sown annually and a total production of ~8 MMt, Kansas is the largest 590 

winter wheat producing state in the U.S. (USDA-NASS, 2017a). The crop is grown 591 

predominantly under dryland conditions (~94%, USDA-NASS, 2018a), with a 10-yr average 592 

yield of 2.8 Mg ha-1 which corresponds to only 50-55% of the dryland yield potential (~5.2 Mg 593 

ha-1; Patrignani et al., 2014; Lollato et al., 2017). A range of genotypic traits and agronomic 594 

management practices is proposed to modulate wheat yield in this region (Munaro et al., 2020). 595 

For instance, improved fertility management including the adoption of in-furrow starter fertilizer 596 

(McConnell et al., 2010; Lollato et al., 2013; Maeoka et al., 2020), increased nitrogen rates 597 

(Thomason et al., 2002; Walsh et al., 2018; Lollato et al., 2019a, 2021), and use micronutrients 598 

(Zain et al., 2015), have associated positively with yields. Likewise, genetic resistance to major 599 

diseases and its interaction with fungicide management are candidate variables of interest 600 

(Lollato et al., 2019b; de Oliveira Silva et al., 2020b). The role of seeding rate, however, seems 601 

variable and dependent resource availability (Fischer et al., 2019; Lollato et al., 2019b; Bastos et 602 

al., 2020), and thus might interact with other practices (e.g., Jaenisch et al., 2019).   603 

The studies above provided insights into individual management practices to improve 604 

wheat grain yield. Others attempted to quantify wheat yield response to intensified management 605 

combining the prophylactic use of inputs to minimize yield gaps in wheat (Mohamed et al., 606 

1990; Jaenisch et al., 2019; Quinn and Steinke, 2019; Herrera et al., 2020; de Oliveira Silva et 607 
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al., 2020b; Roth et al., 2021; Steinke et al., 2021). However, with few exceptions (de Oliveira 608 

Silva et al., 2020b, 2021), these efforts mostly overlooked the mechanisms behind the yield 609 

responses and simply quantified the magnitude of yield improvements. Because organogenesis is 610 

linked to crop developmental stages (Slafer et al., 2021), we argue that it is relevant to discuss 611 

management opportunities to maximize yield within the timeframe of yield component 612 

determination.  613 

The relationships between wheat yield and its components (i.e., biomass, harvest index, 614 

heads m-2, kernels head-1, kernels m-2, and kernel weight) have been researched for decades 615 

across a wide range of environments (Evans et al., 1980; Austin et al., 1989; Calderini et al., 616 

1999; Acreche et al., 2008; Slafer et al., 2014). The majority of the literature suggests that wheat 617 

is mostly sink-limited, with kernels m-2 explaining a larger variation of yield than kernel weight, 618 

and with changes in assimilate supply only offering modest changes in yield (Slafer and Savin, 619 

1994; Borrás et al., 2004; Slafer et al., 2014; and citations therein). Thus, management practices 620 

that affect kernels m-2 would expectedly have a greater impact on yield. Still, some management 621 

practices that mostly modulate kernel weight might also relate positively to yield in some 622 

environments (Cruppe et al., 2021). To our knowledge, there have been no attempts to explicitly 623 

manipulate management practices that match important stages of crop development when 624 

different organs are produced and quantify their relationship to yield within a context of 625 

management intensification, which is crucial for food security (Cassman and Grassini, 2020).  626 

Organs that eventually become source and sink are initiated during different times in the 627 

vegetative and reproductive stages in wheat (Slafer and Rawson, 1994; Ochagavía et al., 2021). 628 

Plants m-2 are determined during the vegetative stage as seedlings emerge and establish; tillers m-629 

2 (and thus potential heads m-2) are determined between seedling emergence and the terminal 630 



51 

spikelet stage (although less productive tillers can be produced later); potential spikelets head-1 631 

are determined prior to jointing; and kernels spikelet-1 are determined between the onset of stem 632 

elongation until harvest maturity through the process of floret development (which ends by 633 

anthesis) and grain filling (Ochagavía et al., 2021). Grain weight is determined between booting 634 

and maturity, with the different sensitivities between the heading and grain-setting stages 635 

(Calderini et al., 2001), and the grain filling stage (Bergkamp et al., 2018). Meanwhile, the source 636 

capacity (i.e., leaf area index or green canopy cover) is usually maximized prior to anthesis and 637 

decreases with maturity (Lollato and Edwards, 2015). Disentangling the effects of genotype, 638 

environment, and management – with the specific goal of modulating different yield components 639 

and tradeoffs –can provide physiological basis for future yield increases. 640 

 While genotypic and management factors associated with wheat yield gaps in 641 

Kansas and other dryland regions have been explored individually in different studies, their role 642 

to improve crop yield and its components within an integrated management perspective having 643 

as goal to optimize yield components has not been explored. Thus, our objectives were to 644 

evaluate the yield and yield components response in commercial winter wheat genotypes to 645 

different management practices reflecting a stepwise increase in management intensity using as 646 

baseline the current technology level followed by an average producer in the region; and to 647 

quantify how different yield components modulate wheat yield in this dryland region. We 648 

hypothesize that a more intensive management will increase grain yield, and that yield increases 649 

will be genotype- and environment-specific. Additionally, we hypothesize that fertilizer-based 650 

practices will affect yield components that are coarse regulators of yield (i.e., heads m-2 and 651 

kernels m-2) while fungicide-based practices will affect fine regulators of yield (i.e., kernel 652 

weight, kernels head-1) (Slafer et al., 2014). Due to the importance of grain protein concentration 653 
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to the end-product quality (May et al., 1991) and on wheat yield potential (Lollato et al., 2020b), 654 

a secondary objective was to evaluate the  G × E × M effects on grain protein concentration. 655 

 Materials and Methods 656 

 Experimental locations and agronomic management 657 

Rainfed field experiments were conducted near Belleville (39.81°N, 97.67°W; 471 m) in 658 

a moderately well-drained Crete silt loam, and near Hutchinson (37.93°N, 98.03°W; 468 m) in a 659 

well-drained Ost loam during the winter wheat seasons of 2017-18 and 2018-19. Each 660 

environment will be referred to as Bel18, Bel19, Hut18, and Hut19. Winter wheat was sown 661 

under conventional tillage after a summer fallow using a Great Plains 606 no-till drill (7 rows 662 

spaced at 19 cm) with plot dimensions of 1.3 × 9.1 m. Seeds were treated with 6.9 g a.i. ha-1 663 

thiamethoxam, 1.4 g a.i. ha-1 mefenoxam, and 8.9 g a.i. ha-1 difenoconazole, to avoid early-664 

season diseases and insects. Composite soil samples (i.e., 15 individual soil cores) were collected 665 

at sowing from the 0-15 and 15-60 cm depth to quantify initial soil nutrient status (Table 1). 666 

Weeds were controlled and insect pressure was not observed across the study. 667 

Table 3-1. Initial soil fertility at Belleville and Hutchinson, Kansas for the 2017-18 and 2018-19 668 

growing seasons. Soil test includes soil pH, Mehlich-3 extractable phosphorus (P), potassium 669 

(K), calcium (Ca), magnesium (Mg), sodium (Na), ammonium-(NH4-N) and nitrate- (NO3-N) 670 

nitrogen, chloride (Cl), sulfate-sulfur (SO4-S), organic matter (O.M.) and cation exchange 671 

capacity (C.E.C). Sampling depths were 0-15 cm and 15-60 cm.  672 

Location Depth  pH P K Ca Mg Na NH4-N N03-N Cl S04-S  O.M.  C.E.C 

  cm      
mg kg-1 

  %  Meq 

100g-1          

        
2017-18 

         

                 

Belleville  0-15  4.9 29 321 1465 204 13 2 20 2 3  2.7  25 

  15-60  5.7 8 213 2450 300 28 2 14 2 2  2.5  23 

Hutchinson  0-15  6.0 77 218 1886 238 11 4 6 7 3  2.4  20 

  15-60  6.7 55 214 2665 231 10 5 8 6 4  2.4  16 

        
2018-19 

         

                 

Belleville  0-15  5.4 52 437 2056 296 17 3 1 8 3  3.1  28 

  15-60  6.6 8 381 4022 555 58 5 4 9 3  2.4  26 
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Hutchinson  0-15  8.0 27 315 4746 163 35 3 17 8 3  2.9  26 

  15-60  8.1 4 194 5202 132 128 4 13 12 13  2.2  28 

 673 

 Treatment structure and experimental design 674 

Treatments were arranged in a complete factorial structure established in a split-plot 675 

design with four replications. Whole plots were assigned to six management intensities and sub-676 

plots were assigned to four winter wheat genotypes. Treatment combinations represented 677 

stepwise increases in management intensity from a baseline reflecting the level of technology 678 

adoption of an average producer in the region, and will hereafter be referred to as ‘farmer 679 

practice’ (FP), ‘enhanced fertility’ (EF), ‘ecological intensification’ (EI), ‘increased foliar 680 

protection’ (IFP), ‘water-limited yield’ (Yw), and ‘increased plant productivity’ (IPP) (Table 2).  681 

Table 3-2. Description of the six management intensities evaluated in the current study. Farmer 682 

practice (FP) was followed by stepwise additions of five inputs: enhanced fertility (EF), 683 

ecological intensification (EI), increased foliar protection (IFP), water-limited yield potential 684 

(Yw), increased plant productivity (IPP). 685 

 Management intensity 

Treatments FP EF EI IFP Yw IPP 

Nitrogen Rate for Yield Goal (Mg ha-1) 2.4 6.7 6.7 6.7 6.7 6.7 

In-furrow starter N, P, S, and Zn No Yes Yes Yes Yes Yes 

Foliar Fungicide Feekes GS10.5 No No Yes Yes Yes Yes 

Foliar Fungicide Feekes GS6 No No No Yes Yes Yes 

Foliar S, Zn, Mg, and B No No No No Yes Yes 

Seeding rate (million seeds ha-1) 2.7 2.7 2.7 2.7 2.7 1.1 

 686 

The FP consisted of a seeding rate of 2.7 million seeds ha-1 plus a N application at 687 

Zadoks GS23-25 with a rate reflecting a yield goal of the ten-year county-level wheat grain yield 688 

average (~2.4 Mg ha-1). Nitrogen rate was determined considering the soil NO3-N measured at 689 

sowing, potential N released from the organic matter, and a 40 kg ha-1 applied N per Mg ha-1 690 

grain yield goal (Leikam et al., 2003). Due to the residual soil NO3-N carry over from the 691 

previous growing season and N released from organic matter, N rate varied across environments. 692 
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The first increase in intensity was the enhanced fertility (EF) treatment, which included 112 kg 693 

ha-1 micro essentials (MESZ; 13 kg N ha-1, 45 kg P ha-1, 11 kg S ha-1, and 1 kg Zn ha-1) placed 694 

in-furrow with the seed, and increased N rate for a 6.7 Mg ha-1 yield goal applied at Zadoks 695 

GS23-25 in the spring. The fertilizer treatments aimed at increasing tiller and biomass 696 

production. The N rate in this treatment was selected so that N was not a limiting factor based on 697 

the long-term wheat yield potential of ~5.2 Mg ha-1 (Lollato et al., 2017). The next step was 698 

ecological intensification (EI), which consisted of EF plus one fungicide application 699 

(fluxapyroxad-26 g ha-1, pyraclostrobin-171 g ha-1, propiconazole-107 g ha-1) at Zadoks GS55. 700 

Increased foliar protection (IFP) was the next step, consisting of EI plus the same fungicide 701 

product and rate applied at Zadoks GS31. The aim of these fungicide applications was to protect 702 

the green canopy cover of the crop (i.e., source) during the different stages of development. The 703 

water-limited yield potential (Yw) treatment consisted of IFP plus micronutrients (81 g S ha-1, 90 704 

g Zn ha-1, 67 g Mn ha-1, and 2 g B ha-1) applied at Zadoks GS31. The increased plant 705 

productivity (IPP) treatment consisted of Yw with a reduced seeding rate (1.1 million seeds ha-1) 706 

to explore whether a high resource availability scenario allows for reduced plant population 707 

(Table 2). Wheat genotypes were selected based on their adoption by growers, adaptation to the 708 

region, and contrasting performances in regional trials. The genotypes tested and their percent of 709 

seeded area in central Kansas during 2020-21 were WB4303 (<1%), WB4458 (2.2%), WB-710 

Grainfield (5.5%) and Zenda (7.8%) (USDA-NASS, 2020a).  711 

A pressurized CO2 backpack sprayer with a three nozzle boom was used to apply the N as 712 

urea ammonium nitrate (UAN, 28-0-0) with a streamer nozzle (SJ3-03-VP); and foliar fungicide, 713 

and micronutrients using a flat fan nozzle (XR11002) with a constant volume of 140 L ha-1.  714 
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 Measurements 715 

Stand count was recorded in two linear meters per plot, three to four weeks after sowing, 716 

and immediately prior to tiller initiation. Percent green canopy cover was measured 717 

approximately at bi-weekly intervals from heading (Feekes GS10.1) until maturity (Feekes 718 

GS11.4) from downward facing digital photographs from an area of about 1 m2 processed using 719 

Canopeo (Patrignani and Ochsner, 2015). Aboveground biomass was sampled from a one linear 720 

row-meter area (~0.19 m2) from one of the center-rows of each plot same day of wheat harvest. 721 

Samples were dried at 65°C until constant weight and aboveground biomass was measured. The 722 

heads were counted and separated from the stover prior to threshing to remove the chaff from the 723 

kernels. Grain weight was measured after threshing. The grain weight divided by the total 724 

aboveground biomass weight including stover, chaff, and grain, determined the harvest index 725 

(HI). A 1000 kernel weight was determined from a random kernel sub-sample. The ratio between 726 

total grain weight and 1000 kernel weight determined kernels m-2; and the ratio between kernels 727 

m-2 by heads m-2 determined kernels per head. The number of productive tillers per plant was 728 

calculated as the ratio of heads m-2 and plants m-2. Plots were trimmed prior to harvest to avoid 729 

edge effects, and wheat was harvested using a small-plot Massey Ferguson 8XP combine. Grain 730 

moisture was measured at harvest and grain yield was corrected for 135 g kg-1 water content. 731 

Grain samples were cleaned to remove foreign material and subsampled twice and ran on a DA 732 

7200 (Perten Instruments Inc., Springfield IL) for protein quantification (135 g kg-1 water basis).  733 

Weather data including precipitation, reference evapotranspiration (ETo), and maximum 734 

and minimum temperatures, were collected from a station pertaining to the Kansas Mesonet 735 

(Patrignani et al., 2020) located ~50 m from the experiments. Plant available water at sowing 736 

was estimated using non-growing season precipitation and the soil’s available water holding 737 
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capacity (Lollato et al., 2016). At each environment, the weather variables were averaged (Tmax, 738 

Tmin) or accumulated (precipitation) for the entire growing season, as well as separated into four 739 

distinct phases: fall (the period between sowing and December 31); winter (January 1 to March 740 

31), critical period ([20-d prior to anthesis through 10 days afterwards (Fischer, 1985)], and grain 741 

filling (10-d after anthesis through harvest). This sub-division intended to reflect (i) the 742 

conditions surrounding sowing that affect crop establishment and fall tiller initiation; (ii) the 743 

dormant period that can affect tillering and winterkill; and (iii) the yield determination period in 744 

the spring, similar to previous reports in the region (e.g., Lollato and Edwards, 2015).   745 

 Statistical Analyses 746 

Analysis of variance was performed using “lmerTest” in R software version 3.4.0 747 

(Kuznetsova et al., 2017). Management, genotype, environment, and their interactions were fixed 748 

effects, while block nested within environment and management intensity nested within block 749 

were random effects (the latter accounted for the split-plot design). Pearson’s correlation analysis 750 

was performed in R using the “corrplot” package (Wei and Simko, 2017) to determine the degree 751 

of linear association between variables. Because the data only derived from four environments, 752 

we relaxed the assumptions of p-values for the correlation analysis to 0.15. For all other analyses 753 

in this research, effects were considered significant at α = 0.05.   754 

We used the stability method (Eberhart and Russell, 1966) to further understand the 755 

genotypic effect on grain yield, productive tillers per plant, and grain protein concentration. This 756 

method consists of a linear regression of trait expression of each genotype versus an 757 

environmental index calculated as the mean trait expression of all genotypes at each environment 758 

minus the overall mean trait expression. Each management-by-environment combination was 759 

considered an environment (n = 24) (Ferrante et al., 2017; Lollato et al., 2021). The slope (α) 760 
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indicates whether the genotype has broad adaptability (α = 1) or adaptability specific to low (α < 761 

1) or high- (α > 1) trait expression environments, and is associated with phenotypic plasticity 762 

(Sadras and Richards, 2014). The intercept (β) is an estimate of the trait expression across 763 

environments; and a model goodness of fit index (i.e., R2) quantifies stability.  764 

The modulators of yield in response to management were quantified as the relationships 765 

between yield components and grain yield using linear regression for each management 766 

intensity, genotype, and environment (e.g. de Oliveira Silva et al., 2020b). Differences in grain 767 

yield between the FP and each management for each genotype were calculated and regressed for: 768 

(i) all environment and management practices by wheat genotype combinations (n = 96), (ii) on 769 

average of each management intensity (n = 24; 6 managements × 4 environments), and (iii) on 770 

average for each genotype (n = 24; 6 managements × 4 genotypes).  771 

To understand the drivers of yield improvements in response to each step within the 772 

management intensification practices evaluated, we explored the relationships between the 773 

responsiveness of yield and the responsiveness of each yield component using linear regression 774 

(Slafer et al., 2014). Responsiveness was calculated as the ratio of each trait in a given 775 

management intensity over the same trait measured in the preceding management intensity, so 776 

that we could quantify the effects of each management addition (e.g., responsiveness calculated 777 

as EF over FP associated with changes resulting from improved fertility).  778 

Finally, we evaluated the green canopy cover data to better interpret the effects of 779 

fungicide and plant density on grain yield in terms of source limitation (i.e., as a proxy to light 780 

interception). First, we calculated the linear slope of canopy cover dynamics between heading 781 

and maturity to detect whether the presence of foliar fungicides delayed canopy senescence, 782 

which would be indicated by a less negative slope. This comparison was made between 783 
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treatments EF and EI to isolate the effect of a single fungicide application at Feekes GS10.5. 784 

Second, green canopy cover values at anthesis and their association with grain yield were 785 

compared for the Yw and IPP treatments to detect whether grain yield limitations from lower 786 

population could be explained by reduced green canopy cover.       787 

 Results 788 

 Weather conditions and associations with yield components 789 

Growing season total precipitation ranged from 297 to 823 mm and corresponding 790 

seasonal ETo ranged from 637 to 801 mm (Fig. 1). Environments in 2017-18 were characterized 791 

by cold and dry fall, winter, and early spring, and a hot and dry late spring and early summer, 792 

while environments in 2018-19 had warm and moist fall and cool and moist late spring and early 793 

summer (Fig. 1), increasing disease pressure (i.e. stripe rust; Hollandbeck et al., 2019). Above 794 

normal temperatures during the May and June in the 2017-18 environments (average 795 

temperatures between 23 and 27 °C versus 15-23°C in 2018-19) accelerated and shortened the 796 

reproductive crop development (duration of grain fill ranging from 27-29 days in 2017-18 and 797 

from 33 to 52 days in 2018-19; Fig. 1), decreasing the yield potential of the crop. The contrasting 798 

environments resulted in growing season length ranging from 239 to 288 days. 799 

 800 
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 801 

Figure 3-1. Weather conditions experienced during the winter wheat growing season at the four Kansas environments resulting from 802 

two locations (Bell, Belleville; Hut, Hutchinson) and two growing seasons (18, 2017-18 season; 19, 2018-19 season). Upper row 803 

shows plant available water at sowing (PAWS), cumulative reference evapotranspiration (ETo) and precipitation, bottom row shows 804 

maximum and minimum temperatures. Downward facing triangles show respectively dates for N application at Zadoks GS25, 805 

fungicide and micronutrient application at GS32, and fungicide application at GS55. Inset values show cumulative ETo, precipitation, 806 

PAWS, cumulative thermal time between sowing and harvest (CTT), and season duration in days. Two cumulative precipitation 807 

values are shown for 2018 environments as considerable rainfall occurred after the crop was mature. 808 
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Table 3 shows the correlations between weather variables during specific crop 

developmental stages and yield components and protein. Productive tillers plant-1 related 

negatively with fall Tmin and positively with Tmin during the critical period. Harvest index 

related positively to winter Tmin. Heads m-2 related negatively to Tmin and precipitation during 

the winter. The negative relation between winter Tmin and heads m-2 or productive tillers plant-1 

reflects a delayed incorporation of the N fertilizer into the root zone until late spring in these 

environments, reducing the formation of spring tillers, Kernels head-1 related positively to 

precipitation and water supply during the season, fall and grain filling precipitation, and duration 

of the grain filling period; and negatively to Tmax (growing season, and at each stage evaluated), 

and Tmin during grain filling. Kernel weight associated positively with winter Tmin and 

precipitation, as well as critical period precipitation. Grain protein concentration associated 

negatively with PAWS and critical period precipitation, and positively with grain filling Tmax 

and Tmin.  

Table 3-3. Correlations between yield components and protein, averaged across four varieties 

and six management intensities, and daily average or cumulative values of environmental factors 

during specific crop development periods. Weather variables included in the analysis were 

minimum (Tmin, °C) and maximum (Tmax, °C) temperatures, cumulative precipitation (mm), 

plant available water at sowing (PAWS, mm), water supply (growing season precipitation plus 

PAWS, mm), and photothermal quotient (MJ m-2 C-1). Developmental periods evaluated were 

the fall (from sowing date until December 31),the  winter (from January 1st until March 31st), 

the critical period (20-d prior to until 10-d after anthesis), and the grain filling period (from 10-d 

after anthesis until harvest). 

Trait Environmental factor Period r 

Productive tillers plant-1 Tmin Fall -0.99  
Tmin Critical period 0.89 

Harvest index Tmin Winter 0.96 

Heads m-2 Tmin Winter -0.88  
Precipitation Winter -0.87 

Kernels head-1 Tmax Growing season -0.99  
Precipitation Growing season 0.97  
Water supply Growing season 0.96  

Tmax Fall -0.89  
Precipitation Fall 0.96 
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Tmax Winter -0.91  
Tmax Critical period -0.86  
Tmax Grain filling -0.87  
Tmin Grain filling -0.9  

Precipitation Grain filling 0.91  
Duration Grain filling 0.86 

Kernels m-2 Tmax Winter -0.88  
Precipitation Grain filling 0.9 

Kernel weight Tmin Winter 0.9  
Precipitation Winter 0.93  
Precipitation Critical period 0.89 

Protein PAWS Sowing -0.94  
Precipitation Critical period -0.93  

Tmax Grain filling 0.84  
Tmin Grain filling 0.88 

 

 Management effects on grain yield, yield components, and protein concentration 

Across all sources of variation, mean grain yield ranged from 2.3 to 7.2 Mg ha-1 (Fig. 2a). 

Environmental mean yield (across management and genotypes) ranged from 3.3 Mg ha-1 in 

Hut18 to 5.6 Mg ha-1 in Bel19, with overall greater yields in 2019 (5.43 Mg ha-1) as compared to 

2018 (4.28 Mg ha-1). Mean yield across environments and genotypes with increasing 

management intensity was 4.02, 4.47, 5.37, 5.14, 5.39, and 4.82 for FP, EF, EI, IFP, Yw, and 

IPP, respectively. Mean grain yield for the genotypes was highest for WB4303 (5.19 Mg ha-1), 

followed by Zenda (4.99 Mg ha-1), WB-Grainfield (4.73 Mg ha-1), and WB4458 (4.58 Mg ha-1).  

There were significant G × E and M × E interactions for grain yield, but no three-way 

interaction. General trends as related to the G × E interaction were: (i) WB4303 was in the 

highest yielding group at all environments; (ii) Zenda was in the highest yielding group in three 

out of four environments; and (iii) WB4458 yielded well in dryer conditions (i.e., Hut18) but 

yielded poorly at the higher yielding environments (Bel19). General trends as related to M × E 

interaction were: (i) the FP yielded similarly to other treatments only in one environment 

(Bel18); (ii) EF yielded higher from FP in three environments; (iii) increases in grain yield from 
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foliar protection (i.e., EI) only occurred in environments with greater rainfall (i.e., Bel19 and 

Hut19); (iv) the addition of the early fungicide (i.e., IFP) did not increase yields compared to a 

single fungicide application later in the season; (v) wheat grain yield benefited from all the 

management practices combined (i.e., Yw) only in one environment (i.e., Hut19); and (vi) 

reducing plant population under an otherwise highly managed system had no effect on grain 

yield except in one environment (i.e., Hut19).  

Further exploration of the significant interactions through the adaptability and stability 

indices suggested that wheat genotypes varied in stability and adaptability across the different 

yield environments (Fig. 2a). The wheat genotype WB4458 had the lowest slope (0.76 ± 0.11), 

suggesting that this genotype was the least adapted to high yielding environments; and was 

unstable with a high variation about the fitted line (r2=0.69). Due to their slopes equal to one 

(1.17 ± 0.09, 1.11 ± 0.09, and 0.95 ± 0.09 Mg ha-1), the wheat genotypes Zenda, WB4303, and 

WB-Grainfield all showed broad adaptability and greater stability (R2 > 0.83). 

With the exception of 1000 kernel weight, the yield components were not affected by the 

three-way interaction and followed the yield analysis, mostly reflecting G × E and M × E 

interactions. Briefly, management intensification tended to increase aboveground biomass as 

compared to the FP (magnitude: 18-100%), while the latter usually resulted in the greatest HI,  

while the magnitude of change was not large (16-46%). Expectedly, the IPP treatment had less 

plant density (149-163 plants m-2) as compared to other treatments (223-266 plants m-2) which 

resulted in more productive tillers per plant (3.18-4.97 versus 2.16-4.22 productive tillers plant-1. 

The magnitude in the differences in heads m-2 due to management and genotype was similar (38-

72%) as those compared to changes in kernels head-1 (39-64%). The results of kernels m-2 



63 

reflected those for grain yield while 1000 kernel weight was impacted by a G × E × M 

interaction.  

 

Figure 3-2. Wheat grain yield (a) and grain protein concentration (b) as affected by the 

environment index for each wheat genotype (WB4303, WB4458, WB-Grainfield, and Zenda). 

Environmental indices were calculated as the combination of environment (Bel18, Hut18, Bel19, 

and Hut19) and management practices (FP, EF, EI, IFP, Yw, and IPP). 

A significant G × E × M interaction occurred for protein concentration. From an 

environmental perspective, protein concentration was greatest (134 g kg-1) in the driest 

environments (Hut18 and Bel18) as compared to the more moist environments (113-127 g kg-1). 

From a management standpoint, protein concentration was lowest in the FP (range: 94-128 g kg-

1), with significant differences among genotypes at each environment. The greatest gain in grain 

protein concentration occurred when management was intensified from the FP to the EF (protein 
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gain ranged from 2-36 g kg-1) whereas, the other stepwise increases in management resulted in 

smaller (-28 to 17 g kg-1) differences in grain protein concentration, with the lowest increases in 

protein concentration resulting from reductions in population and the highest values resulting 

from micronutrient application. From a genotypic standpoint, wheat genotypes tended to be 

broadly adapted (α = 1) across protein concentration levels, except for WB4458 which showed 

greater protein concentrations at lower protein-environments (α = 0.84 ± 0.07; Fig. 2b). WB-

Grainfield showed the lowest grain protein concentration across environments, followed by 

Zenda and WB4303, which all responded similarly to increases in the environmental index for 

protein concentration. Overall, the stability coefficient was greater for grain protein 

concentration (R2 = 0.85-0.92) than for grain yield. We note in passing that the slopes of the 

relationships between grain protein as affected by grain yield within environment were largely 

non-significant. 

 Yield component modulation of wheat grain yield 

Across E, M, and G, aboveground biomass at maturity explained 77% of the variation in 

yield, showing a positive relationship (Fig. 3a). Although significant, a negative relationship of 

HI only explained 8% of the variation in yield (Fig. 3d). Across environments, differences in 

grain yield were dependent on differences in biomass accumulation (Fig. 3b) and independent of 

differences in HI (Fig. 3e). Following the same trend, differences in biomass accumulation 

among the different wheat genotypes under different management were also strongly related to 

differences in grain yield (Fig. 3c) as compared to HI (Fig. 3f). Increasing management intensity 

(the difference of each management practice to FP) significantly increased biomass 

accumulation, which resulted in a yield increase across environments (Fig. 3b, insert). Likewise, 

increased management intensity increased the responsiveness of biomass accumulation for wheat 
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genotypes, which increased grain yield (Error! Reference source not found.c, insert). 

Meanwhile, increased management intensity had limited effect on HI across environments or 

across genotypes (Fig. 3e, f, inserts). 

 

Figure 3-3. Relationship between yield and aboveground biomass (a-c) or harvest index (d-f) at 

maturity across environments, wheat genotypes, and management systems (n=96) (a,d), on 

average of each management for each environment (n=24; 6 management practices × 4 

environments) (b,e), on average of each genotype for each environment (n=24; 6 management 

practices × 4 genotypes) (c,f). Inset graphs are the relationships between the responses of the 

variables to each management practices (difference between each management practice from the 

FP) averaged across either genotype for each management practice (n=20) or management for 

each environment (n=20) (c,f). 

Kernels m-2 had greater importance in increasing grain yields as compared to kernel 

weight (Fig. 4). Across E, M, and G, a positive relationship of kernels m-2 explained 78% of the 

variation in grain yield (Fig. 4a). No relationship (R2=0.02) between kernel weight and yield 

occurred across all sources of variation (Fig. 4d). Averaged across wheat genotypes, increasing 

management intensity increased grain yield through differences in kernels m-2 (Fig. 4b), and 



66 

yield responses to management practices were associated with increases in kernels m-2 (Fig. 4b, 

insert). Similarly, averaged across management practices, wheat genotypes that had greater 

kernels m-2 also had greater grain yield (Fig. 4c) and yield responses were dependent on the 

genotype’s kernels m-2 responsiveness (Fig. 4, inset). Following a different trend, increases in 

grain yield were independent of kernel weight for both management practices and wheat 

genotypes (Fig. 4d-f); however, increases in kernel weight due to management were associated 

with increased grain yield within each environment (Fig. 4e, inset). Differences in kernel weight 

within each genotype were not associated with increases in grain yield (Fig. 4f, inset). 

 

Figure 3-4. Relationship between yield and kernels m-2 (a-c) or 1000 kernel weight (d-f) across 

environments, wheat genotypes, and management systems (n=96) (a,d), on average each 

management for each environment (n=24; 6 management practices × 4 environments) (b,e), on 

each genotype for each environment (n=24; 6 management practices × 4 genotypes) (c,f). Inset 

graphs are the relationships between the responses of the variables to each management practices 

(difference between each management practice from the FP) averaged across either genotype for 

each management practice (n=20) or management for each environment (n=20) (c,f). 
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Heads m-2 and kernels head-1 both had a positive effect on grain yield (Fig. 5). Across E, 

M, and G, a positive relationship of heads m-2 and of kernels head-1 explained 19 and 39% of the 

variation in yield, respectively (Fig. 5a). Averaged across either management practices or wheat 

genotypes, grain yield differences were dependent on differences in heads m-2 (Fig. 5b, c). 

Likewise, wheat genotype responsiveness to heads m-2 resulted in positive differences in grain 

yield (Fig. 5c, insert). Interestingly, management practices resulting in greater number of kernels 

head-1 also significantly affected yield (Fig. 5e) but there were no differences across genotypes 

(Fig. 5f). Likewise, the responsiveness of kernels head-1 to management practices affected grain 

yield, with no differences among genotypes (Fig. 5f, inserts).  

 

Figure 3-5. Relationship between yield and heads m-2 (a-c) and kernels head-1 (d-f) across 

environments, wheat genotypes, and management systems (n=96) (a,d), on average each 

management for each environment (n=24; 6 management practices × 4 environments) (b,e),on 

each genotype for each environment (n=24; 6 management practices × 4 genotypes) (c,f). Inset 

graphs are the relationships between the responses of the variables to each management practices 

(difference between each management practice from the FP) averaged across either genotype for 

each management practice (n=20) or management for each environment (n=20) (c,f). 
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Each stepwise increase in management intensity modulated different yield components 

(Fig. 6, first row). In the first step (i.e., addition of enhanced fertility to the FP), the 

responsiveness of yield ranged from 0.83 to 2.21 (mean: 1.21 ± 0.03), and was positively linked 

to the responsiveness of biomass (range: 0.51-4.26, mean: 1.27 ± 0.06), heads m-2 (range: 0.53-

2.75, mean: 1.29 ± 0.04), and kernels m-2 (range: 0.39-4.12, mean: 1.34 ± 0.06). We also note 

that yield responsiveness was positively associated to grain protein responsiveness (range: 0.94-

1.52, mean: 1.12 ± 0.01) when fertility was the driving factor behind yield increases. When one 

fungicide application was added to the EF, yield responsiveness ranged from 0.77 to 1.82 (mean: 

1.14 ± 0.02) and associated positively to responsiveness of biomass (range: 0.61-1.90, mean: 

1.14 ± 0.03), harvest index (range: 0.48-1.72, mean: 1.04 ± 0.02), and kernel weight (range: 

0.79-1.58, mean: 1.08 ± 0.02) (Fig. 6, second row). The addition of an early fungicide 

application to the EI had very weak relationships of yield responsiveness (range: 0.65-1.36, 

mean: 1.0 ± 0.01) to the responsiveness of harvest index (range: 0.40-1.84, mean: 1.08 ± 0.03) 

and kernel weight (range: 0.75-1.34, mean: 1.03 ± 0.01) (Fig. 6, third row). The addition of 

micronutrients to the IFP treatment only suggested that responsiveness of harvest index (range: 

0.62-2.35, mean: 1.00 ± 0.03) associated with responsiveness of yield (range: 0.82-1.53, mean: 

1.05 ± 0.01) (Fig. 6, fourth row). Finally, when plant population was reduced from the Yw, 

responsiveness in yield (range: 0.61-1.21, mean: 0.90 ± 0.01) was positively related to 

responsiveness of harvest index (range: 0.41-2.21, mean: 1.02 ± 0.03) and kernel weight (range: 

0.58-2.51, mean: 1.05 ± 0.02), and negatively related to responsiveness of plants m-2 (range: 

0.32-2.75, mean: 0.72 ± 0.06) and protein (range: 0.73-1.10, mean: 1.00 ± 0.01) (Fig. 6, fifth 

row).  
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Figure 3-6. Winter wheat yield responsiveness and its relationship with responsiveness of yield 

components (plants m-2, biomass, harvest index, heads m-2, kernels head-1, and kernel weight) 

and grain protein concentration for each step of management intensification evaluated in the 

current study. Responsiveness values were calculated as enhanced fertility (EF) over farmer’s 

practice (FP)(first row); ecological intensification (EF) adding a fungicide application at Zadoks 

GS55 over EF (second row); increased foliar protection (IFP) adding a fungicide application at 

Zadoks GS31 to EI (third row); rainfed yield potential (Yw) adding micronutrients at Zadoks 

GS31 to the IFP (fourth row); and increased plant productivity (IPP) reducing seeding rate from 

Yw (fifth row). Circles in blue denote a significant positive and circles in red a significant 

negative relationship between variables at p < 0.05. 

The slope of green canopy cover dynamics following fungicide application was 

positively associated with grain yield for the selected treatments that allowed for a direct 

comparison between fungicide and non-fungicide application (EF versus EI) (Fig. 7a). Likewise, 

the difference between slopes of these treatments was highly positively related to grain yield 

difference (Fig. 7a, inset). Following a similar trend, green canopy cover values measured at 

anthesis for the Yw and IPP treatments related positively with grain yield (Fig. 7b), as did their 

differences (Fig. 7b, inset), suggesting that reduced plant population at the IPP could be 
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restricting yields due to less green canopy coverage. We note that this dependency was genotype 

specific, as different varieties had different tillering abilities and adaptation to tillering 

environments; Zenda was the highest tillering variety across environments (mean: 3.81 

productive tillers per plant) with even greater tillering expression in high tillering environments 

(slope of 1.18 ± 0.19); which was followed by WB-Grainfield, WB4458, and WB4303 (3.5, 

2.97, and 2.75 productive tillers per plant). While WB-Grainfield and WB4458 had wide 

adaptability of productive tillers, the ability of WB4303 to produce tillers decreased further as 

tillering environment increased (slope of 0.66 ± 0.13).   

 

Figure 3-7. (a) Relationship between wheat grain yield and slope of the green canopy cover 

dynamics between anthesis and maturity for the enhanced fertility (EF) and and ecological 

intensification (EI) treatments across genotypes and environments. Inset panel in (a) shows the 

relationship between the difference in both grain yield and canopy cover dynamics slope 

between the two treatments. (b) Relationship between wheat grain yield and percent green 
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canopy cover values measured at anthesis for the ‘yield potential’ (Yw) and ‘increased plant 

productivity’ (IPP) treatments across genotypes and environments. Inset panel (b) shows the 

relationship between the difference between IPP and Yw for grain yield and percent green 

canopy cover. (c) Relationship between wheat grain yield and radiation dynamics between 

anthesis and maturity for the EF and EI treatments across genotypes and environments. Inset 

panel in (c) shows the relationship between the difference in both grain yield and radiation 

dynamics between the two treatments. (d) Relationship between wheat grain yield and radiation 

values measured at anthesis for the Yw and IPP treatments across genotypes and environments. 

Inset panel (d) shows the relationship between the difference between IPP and Yw for grain yield 

and radiation.   

 Discussion 

We aimed to expand on the knowledge of the interactions G × E × M to identify 

opportunities for future yield increases for dryland winter wheat through yield component 

manipulation using Kansas, US, as a case-study. The average grain yield in the FP was 4.01 Mg 

ha-1, which compared to 5.38 Mg ha-1 in the highest yielding treatment (Yw), resulting in a yield 

gap of 1.37 Mg ha-1. Similar yield levels and yield gaps have been reported for the area under 

intensified management (Jaenisch et al., 2019; de Oliveira Silva et al., 2020b), confirming the 

opportunity to increase current yields.  

The management comprised of enhanced fertility and one foliar fungicide application 

around heading (i.e., EI) resulted in average yield of 5.36 Mg ha-1, which was similar to the Yw 

treatment though the latter received an additional fungicide application and micronutrients. Thus, 

these additional practices might not be necessary to fill the bulk of the yield gap, although this is 

environment-dependent (i.e. Hut19). Additionally, in environments where water deficit limited 

the yield potential of the crop, EF was sufficient to maximize grain yield, precluding application 

of foliar fungicides. Furthermore, in one dry environment with high NO3-N carryover (Bell18), 

the FP was enough to maximize grain yield. While evaluating the economics of intensified 

management was beyond the scope of this research, these findings support the idea that 

managing to reach the yield potential might not be economical (Lobell et al., 2009).  
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Wheat genotypes responded differently to increased yielding conditions but similarly to 

management (Fig. 2), suggesting that selecting wheat genotypes either with performance specific 

to the most re-occurring environment in a given region or with broad adaptability seems more 

promising than genotype-specific management. We note, however, that the lack of significant G 

× M interaction in this research might be due to a small sample size, as previous research with 

larger sample size showed significant G × M (Thompson et al., 2014).  

 Management practices and their effects on wheat yield components 

Our results align well with previous literature reporting that, across all sources of 

variation, wheat grain yield relates closely to aboveground biomass and kernels m-2, and is 

relatively independent of harvest index and kernel weight (de Oliveira Silva et al., 2020; Slafer et 

al., 2014; Ferrante et al., 2017). However, an original contribution of our research is the detailed 

yield responsiveness analysis and its relation to yield component responsiveness, for each 

individual step in management intensification (Fig. 6). To our knowledge, this has not been 

previously attempted in the existing literature of wheat response to management intensification. 

From this analysis, it was clear that yield responsiveness was greater for added fertility (EF) and 

one fungicide application (EI) (mean responsiveness of 1.21 and 1.14) as compared to the 

remaining practices (mean responsiveness of 0.9-1.0). The added fertility drove improvements in 

yield mostly through greater biomass, heads m-2, and kernels m-2; while the added fungicide 

modulated yield through biomass, harvest index, and kernel weight (Fig. 6). All the remaining 

practices that had little effect on yield only modulated harvest index and kernel weight.  

The modulation of yield thought kernels m-2 driven by the added fertilizer (EF) is 

justified as both in-furrow P fertilizer and N fertilizer increases tiller initiation (Spiertz, 1983; 

Rodríguez et al., 1999),  and N fertilizer can reduce floret abortion (Ferrante et al., 2010; 
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González et al., 2011). Tiller production determines the potential heads m-2 and floret 

development determines the potential kernels head-1. Both yield components interact with 

environmental conditions to determine final kernels m-2, which was highly positively related to 

yield (Fig. 4). Thus, N availability has to meet the requirements for both of these processes 

during the growing season as untimely N deficiency can result in floret abortion and reduce 

kernels m-2, potentially reducing yield. Nitrogen rates offer an opportunity for increased yields 

(Lollato et al., 2021), especially in favorable seasons where the crop can capitalize on a greater 

yield potential (Cruppe et al., 2017; Lollato et al., 2019a). Expected N uptake based on yield 

potential can serve as a guide for managing N rates in the season (Leikam et al., 2003); and for 

wheat, a recent synthesis of global literature suggested that N uptake ranges from ~20 to 400 kg 

N ha-1 (de Oliveira Silva et al., 2020a). Thus, matching N availability with the time when the 

potential kernels m-2 are determined (i.e., early stem elongation) results in yield increases as 

grain number is the dominant driver of yield (Borrás et al., 2004; Slafer et al., 2014). We also 

note that this developmental stage coincides with the greatest N uptake rate by the crop, which 

increases under intensive management (de Oliveira Silva et al., 2021).  

Kernels m-2 and kernel weight are affected by complex interactions among many 

environmental factors in the late reproductive stages. Our results supports available literature that 

suggests that kernels m-2 is a coarse regulator of wheat yield as compared to kernel weight 

(Borrás et al., 2004; Slafer et al., 2014); which is justified as each individual kernel has a narrow 

range in size (Sadras, 2007), thus greater increases in grain yield come from filling more kernels 

(Borrás et al., 2004). We note, however, that increases in kernel weight through management 

associated positively with yield (inset, Fig. 4e), in particular through the application of foliar 

fungicides (Fig. 6). These findings agree with previous reports of highly managed wheat in the 
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US Great Plains (Lollato and Edwards, 2015; Jaenisch et al., 2019) and in higher yielding wheat 

growing regions (Lynch et al., 2017); suggesting that kernel weight might, in some conditions, 

partially explain increases in yield.  

Foliar diseases can occur prior to anthesis and last throughout the grain filling period, 

coinciding with a period of significant demand for photosynthesized resources by the developing 

grain (i.e., a very strong sink; Fischer, 1985). These foliar diseases decrease the green leaf area 

of the plant (Schierenbeck et al., 2019), reducing radiation interception and radiation use-

efficiency (Schierenbeck et al., 2016), and ultimately decreasing the source of assimilates to the 

developing sink. This mismatch between a reduced assimilate supply (i.e., source) during a 

period with large demand can cause kernel abortion and reduce yield (Ferrante et al., 2010; 

González et al., 2011). Foliar fungicides can also increase kernel weight under severe disease 

infestations which can reflect increases in grain yield (Cruppe et al., 2021), though this increase 

is environment-specific (Lynch et al., 2017). Wheat kernel weight is sensitive to environmental 

stresses (e.g., heat or drought) between booting to anthesis when carpel (which will turn into the 

external grain structures) growth increases rapidly (Calderini et al., 2001), and from anthesis to 

maturity during kernel weight determination (Bergkamp et al., 2018). Foliar diseases during 

these developmental stages can reduce kernel weight, which would result in yield reductions as 

compared to wheat yields that received a foliar fungicide (Fig. 4e, insert; Fig. 6). Similarly, 

increases in kernel weight have been associated with kernel-filling rate, and foliar diseases can 

reduce the rate of fill due to their competition for assimilates (Simmons et al., 1982).  

Foliar fungicides increase grain yield by protecting the upper canopy and spikes, which 

supply a large portion of the carbohydrates that determine yield (Rawson et al., 1983) and can 

increase kernels m-2 (Brinkman et al., 2014). The prolonged green leaf area maintained through 
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fungicides also allow for a longer duration of active photosynthesis, ultimately increasing grain 

yield (Joshi et al., 2019; Nehe et al., 2020), which was shown in the current research as a more 

negative slope of the green canopy cover dynamics after anthesis in the treatments not receiving 

foliar fungicides (Fig. 7). The positive relationship between the slope of canopy cover and grain 

yield also suggests that treatments not receiving foliar fungicides were, at least to some extent, 

source-limited, which was also evidenced by the greater grain protein concentration of 

treatments receiving foliar fungicides. Further evidence for this potential source limitation is 

shown in the inset of Fig. 4e, in which increases in kernel weight through management 

associated positively with yield increases. However, we note that large reductions in the green 

leaf area were needed to cause modest reductions in yield (Fig. 7), likely because wheat is mostly 

sink-limited and very efficient in translocating stem reserves to the developing kernels (Borrás et 

al., 2004). Even though foliar fungicides applied around anthesis have increased wheat yield and 

reduced yield gap in the region (Thompson et al., 2014; Jaenisch et al., 2019), producers may be 

reluctant to apply it consistently due to a high unpredictability in environment (Couedel et al., 

2021) and inconsistencies in yield response (Cruppet al., 2021).  

The evaluation of a reduced population under an otherwise highly managed system (IPP) 

suggested that yield responsiveness was negatively related to responsiveness in plants m-2 (Fig. 

6); reflected on the yield reduction of IPP as compared to Yw (4.82 vs 5.39 Mg ha-1). Thus, it 

seems like the opportunity to reduce plant populations in dryland conditions for winter wheat 

might not be as evident as that for irrigated spring wheat in low latitudes (Fischer et al., 2019), 

likely due to the unpredictability of conditions for tillering in the fall. Nonetheless, we showed 

that there was a large genotypic component of tillering plasticity that might be further explored 

in this region. Tillering allows wheat plants to compensate for a low plant density, with greater 
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opportunities in higher yielding environments (Bastos et al., 2020), which was shown in this 

study with the IPP producing more tillers than other treatments. Tillering plasticity regulates the 

ability of a given genotype to tiller in different environments, which also interacts with seeding 

rate. Thus, a wheat variety with high tillering plasticity such as Zenda has the ability to produce 

more productive tillers at reduced seeding rates and modulate yield through harvest index and 

kernel weight (Fig. 6). Evidence for other cereals suggests that high phenotypic plasticity of 

tillering can result in increased panicle weight under low seeding rates (Kikuchi et al., 2017). 

Thus, selecting wheat genotypes for increased tillering capacity through conventional breeding 

could help reduced the risk associated with reduced seeding rates (Fischer et al., 2019), which 

aligns with the early concept (Fasoula, 1973) and more recent developments (Tokatlidis et al., 

2006; Fasoula, 2013) of selecting per plant yield under nil competition.  

Finally, grain protein concentration was largely unaffected by grain yield when evaluated 

by G × E × M (only 6 out of 96 yield-protein relationships were significant), which contradicts a 

plethora of literature suggesting that both variables are negatively related (e.g., Simmonds, 1995; 

Triboi et al., 2006; and citations therein). Our results showed that increases in protein at greater 

yield resulted from a greater supply of nutrients as compared to the baseline FP treatment (Fig. 

6), as yield was unrelated to protein at the other individual steps in management intensification. 

The greater supply of nutrients would preclude protein dilution at greater yield levels (Barneix, 

2007; Lollato et al., 2021).  

 Genotypic characteristics to increase grain yield 

Wheat genotypes responded to the environment differently but not to management 

practices or to the interaction of management and environment. Thus, our findings suggest that 

wheat genotypes have to be adapted to specific re-occurring environmental conditions or broadly 
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adaptable, and have other desirable agronomic traits such as high yield potential (Ferrante et al., 

2017), disease resistance (Serrago et al., 2011), heat or drought stress tolerance (Bergkamp et al., 

2018), to match those commonly experienced in the environment where the genotype is grown. 

While the lack of G × E × M in our data might result from the limited number of observations 

(i.e., four environments), previous research in the region also only found weak evidence for G × 

E × M ( p = 0.14; de Oliveira Silva et al., 2020b). 

The wheat genotype WB4303 was better adapted to higher yielding environments and 

responded to increased environmental index by producing more kernels m-2, which was highly 

correlated to increases in grain yield (Fig. 4). These findings agree with those for other growing 

regions where modern genotypes were more adapted to higher yielding environments and led to 

the hypothesis that the growers use older genotypes in their lowest yielding soils and modern 

genotypes in their highest yielding soils (Ferrante et al., 2017). While we did not test this 

hypothesis in Kansas, our findings suggest that this could be a promising strategy as the older 

genotype WB4458 was more adapted to lower yielding environments, though further research is 

needed on this topic. For producers, selecting newer released genotypes might offer opportunities 

to capitalize on their ability to capture greater yields in higher yielding environments (Slafer and 

Andrade, 1993; Perronne et al., 2017; de Oliveira Silva et al., 2020b) despite the challenge of 

finding information on new genotypes coupled with their limited lifespan (Perronne et al., 2017).  

 Conclusions 

The results from this research confirmed a large yield gap that can be fulfilled through 

management, while highlighting the opportunity to modulate different yield components through 

specific management practices in a stepwise increase in management intensification. Overall, the 

results reinforced the need for an integrated wheat management based on crop scouting, as 
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environmental conditions determined which management practices resulted in the greatest grain 

yields: In higher yielding, wet environments, increased fertility and one application of foliar 

fungicide at anthesis maximized grain yields; while in lower yielding, dry environments, 

increased fertility alone was sufficient to maximize grain yields and the increased fertility was 

only warranted over farmer’s practice when the soil did not have enough fertility at sowing.  

This research also confirmed the important role of aboveground biomass and kernels m-2 

in maximizing grain yield at the expense of harvest index and kernel weight. Likewise, 

management of fertility led to yield modulation through improved biomass and kernels m-2. We 

note, however, that independent steps in management intensification impacted different yield 

components, and a fungicide application around Zadoks GS55 had an important impact on grain 

yield partially through biomass, kernel weight, and maintenance of green canopy cover longer 

into the grain filling period. While the positive relation between green canopy cover during grain 

filling and yield suggests some potential for source-limitation, large changes in green canopy 

cover were needed to cause modest changes in yield.  

The reduction of seeding rate in an otherwise highly managed system provided varying 

results and seems to limit yield through less green canopy cover at anthesis, harvest index, and 

kernel weight. Thus, future research could focus on optimizing seeding rates and identifying 

cultivars with increased phenotypic plasticity to maximize winter wheat yields within a highly 

managed system.  
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Chapter 4 - Nutrient use efficiency and co-limitation for nitrogen 

and sulfur in bread winter wheat 

 Highlights 

• We investigated the interactions of nitrogen, sulfur, genotypes, and environments and 

their effects on wheat grain yield.  

• Significant environment × N × S and environment × genotype × N affected grain yield  

• Nitrogen and sulfur limitation increased the wheat yield gap. 

 Abstract 

Quantifying the interactions of nutrients in wheat production are essential to reduce the 

yield gap. Nitrogen and S deficiencies (individually or in combination) reduce wheat yields and 

increase the yield gap. Our objectives were to quantify the colimitation of N and S in wheat in 

Kansas. We established an experiment with three N rates, four S rates and three genotypes in a 

split-split- plot design across eight site-years. Grain yields ranged from 0.9 to 5.9 Mg ha-1 across 

all treatment combinations. Grain yield increased with increasing N rate at all locations; 

however, the application of S increased grain yield at two locations. Linear plateau models 

determined N and S uptake reached maximum uptake at 120 and 7 kg ha-1, respectively and 

those uptake levels resulted in a yield value of 5.7 Mg ha-1 (Yp). As expected, NUE decreased 

with increases in N rate and SUE decreased with increases in S rate. The colimitaion (Cns) 

determined the optimal N:S ratios for stover and grain to be 16.4 and 17.3, respectively. The N 

and S rates had significant effects on the NSI and SSI.  
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 Introduction 

Nitrogen (N) is an essential nutrient driving the growth and development of plants 

(Sinclair and Horie, 1989). At historical time scales, N has been the most limiting nutrient to 

crop yields (Sinclair and Rufty, 2012). Consequently, the management of N fertilizer and its role 

in yield determination has been extensively researched. In particular for wheat (Triticum 

aestivum L.), previous research attempted to determine optimal rates (Jaenisch et al., 2019; 

Lollato et al., 2019a, 2021), placement (Schlegel et al., 2003; Gardner and Drinkwater, 2009; 

Subbarao et al., 2013), timing (Mahler et al., 1994a; Gardner and Drinkwater, 2009; Smith et al., 

2019; Lollato et al., 2021), and sources (Christensen and Meints, 1982; Mahler et al., 1994b; 

Grant et al., 2001). Nitrogen requirement for wheat is estimated as an approximately 40 kg ha-1 

of N to produce one Mg ha-1 of wheat grain maintaining c.a. 12.5% protein concentration 

(Leikam et al., 2003).  

Nitrogen use efficiency is defined as grain yield per unit of available N in the soil (Moll 

et al., 1982). Globally, NUE for cereals crops is c.a. 33% (Raun and Johnson, 1999), and for 

wheat it seems to range from 22-30 kg kg-1 (Gaju et al., 2011; Dorsey, 2014). Nitrogen uptake 

efficiency (i.e., the ratio between N uptake and N available) and N utilization efficiency (i.e., the 

ratio between yield and N uptake) determine NUE (Janssen, 1998). Nitrogen use efficiency is 

affected by agronomic management practices such as crop rotation (Timsina et al., 2001), 

genotype selection (Hawkesford, 2017), N management (de Oliveira Silva et al., 2020a), 

environmental conditions such as water availability (Lupini et al., 2021) and radiation 

(Salvagiotti and Miralles, 2008) and, of particular importance to the current study, the 

availability of other nutrients such as sulfur (S) (Duncan et al., 2018).  
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Positive agronomic responses in commercial crops to the addition of S fertilizer seem to 

be more apparent in recent years (Girma et al., 2005; Camberato and Casteel, 2010). The two 

main reasons for the increased S response are the decline in organic matter in cultivated soils as 

compared to native vegetation (Lollato et al., 2012) and the decrease in S dioxide deposition in 

the rainfall, in particular in the U.S. due to the Clean Air Act which removed sulfate from coal 

fired plants, declining S emissions in as much as 30% (Ceccotti, 1996). Consequently, S 

deposition from rainfall decreased from 13.5-19 kg ha-1 in 1980 (Barrie, 1984) to only 4 kg ha-1 

in 2014 (National Atmospheric Deposition, 2014).  

Similarly to N, S is also an essential element to crops, playing variety of roles within the 

plant ranging from the synthesis of amino acids (Coleman, 1966) to the production of 

chlorophyll (Duke et al., 1986). Sulfur use efficiency (SUE) is defined as grain yield per unit of 

available S in the soil (Moll et al., 1982). For cereal crops, SUE was estimated as 18% 

worldwide (Aula et al., 2019) and the reported SUE range for wheat is ~11-13% (Singh et al., 

2014). Wheat requirement for S are lower than for N, with ~10 kg S ha-1 being required for one 

Mg ha-1 grain (Leikam et al., 2003). Not only can S deficiency reduce yield (Withers et al., 2001; 

Salvagiotti and Miralles, 2008), it is also important in the end use quality of wheat (Zhao et al., 

1999a; Wilson et al., 2020) as S application can increase the bread loaf volume (Jarvan et al., 

2008), dough extensibility (Zhao et al., 1999b), and reduce asparagine concentration (Wilson et 

al., 2020).   

In wheat, S seems to interact with N to determine NUE. Previous research demonstrated 

that the application of S improved N use efficiency in wheat by increasing soil N recovery rather 

than increasing N utilization efficiency (Salvagiotti et al., 2009). Sulfur application allowed for 

the production of more shoot biomass which increased root biomass and allowed for greater soil 
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exploration and uptake of N (Salvagiotti et al., 2009). Similarly, other research demonstrated that 

S application increased soil N recovery by ~40% (Tabak et al., 2020), high N rates increased and 

S concentration in the grain  (Randall et al., 1981a). Further research demonstrated that N 

application increased both the N and S concentrations in the grain, but S application had no 

effect on the baking quality of wheat in S sufficiency environments (Randall et al., 1990). 

Nitrogen and S interactions occurred for wheat grain yield the first year wheat was planted but 

the interactions were not measured in later wheat crops due to the mineralization of S from 

organic matter and applications of fertilizer (Ramig et al., 1975). Despite these previous efforts 

to untangle N and S impacts on wheat performance, to our knowledge, to our knowledge, there 

have been no attempts to understand this interaction from a co-limitation perspective. 

Sterner and Elser (2002) developed a co-limitation and stoichiometry theory to 

understand the interaction of plant and animals in an ecosystem. In their case, the limitation of 

plants within the ecosystem will result in an abundance of animals initially (co-limitation is equal 

to zero). However, as time passes, animals will be decreased by the reduction in plants, and the 

co-limitation value will increase until both plants and animals are equally limiting to the 

ecosystem’s productivity. The same theory can be applied to agricultural experiments (Sadras, 

2004). Cossani and Sadras (2018) used this co-limitation theory to disentangle the interactions of 

water and N on wheat grain yield. The stoichiometry theory has used to quantify the optimal N:S 

ratios in maize (Carciochi et al., 2020), N:P:S ratios in maize (Salvagiotti et al., 2017), N:P ratios 

in cereal, grain legume and oilseed crops (Sadras, 2006), and water and N for wheat (Sadras, 

2005). Nutrient stoichiometry determined an optimal N:S level of 12.2 in the stem of soybeans 

(Glycine max (L.) Merr.), suggesting that the stem was a better indicator of S deficiency as 

compared to the leaves (Divito et al., 2016). In maize (Zea mays), shoot N:S ratios were optimal 
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at 9.3-9.8 (Carciochi et al., 2020) though it seems to depend on the plant part evaluated [e.g., 

Pagani and Echeverría (2011) suggested an optimum N:S ratio of 14-16 in maize leaves]. In 

wheat, Maeoka et al. (2020) determined whole plant uptake of a N:S ratio of 15.4. Randall et al. 

(1981) and Byers et al. (1987) determined maximum wheat yield to be achieved at a N:S ratio of 

15-17. The minimum requirement of N:S ratio has been reported at 12:1 and can be as high as 

20:1, beyond which S becomes deficient (Camberato and Casteel, 2010).  

In the current research, our overarching aim was to further the current understanding 

about the interaction of and co-limitation between N and S on wheat productivity, using winter 

wheat in Kansas as a case-study. To do this, we applied the co-limitation theory combined with a 

linear-plateau model of wheat yield potential as determined by N and S uptake to determine N 

and S limitation effects on the nutrient use efficiencies across a range of N and S rates, wheat 

genotypes, and environments.   

 Materials and Methods 

 Experimental environments and agronomic management 

Field experiments were established in eight Kansas environments resulting from the 

combination of locations across three years, namely: Ashland Bottoms (39.14°N, -96.63 °W; 300 

m) during the 2018-19 and 2019-20 winter wheat growing seasons (Belvue silt loam soil); 

Belleville (39.81°N, -97.67°W; 471 m) during the 2017-18 and 2019-20 winter wheat growing 

seasons (Crete silt loam soil); Manhattan (39.22°N, -96.59°W; 311 m) during the 2017-18 season 

(Kahola silt loam soil); Hutchinson (37.93°N, -98.03°W; 468 m) during the 2018-19 and 2019-

20 seasons (Funmar-Taver loam soil); and Viola (37.34°N, -97.67°W; 418 m) during the 2019-

20 season (Milan loam soil). All experiments were conducted under rainfed conditions. 



97 

Winter wheat was sown using no-tillage practices following a previous soybean crop at 

all environments. Plots were established using a Great Plains 606 no-till drill (7 rows spaced at 

19 cm) with plot dimensions of 1.3 × 9.1 m. Seed was treated with 6.9 g a.i. ha-1 thiamethoxam, 

1.4 g a.i. ha-1 mefenoxam, and 8.9 g a.i. ha-1 difenoconazole, to avoid early-season disease and 

insect damage. Composite soil samples consisting of 15 individual soil cores were collected at 

sowing from the 0-15 and 15-60 cm depth to quantify initial soil nutrient status (Table 1). Weeds 

were controlled using pre- and post-emergence herbicides. Insect pressure was not observed in 

this study. Foliar fungicide (fluxapyroxad-26 g ha-1, pyraclostrobin-171 g ha-1, propiconazole-

107 g ha-1) was applied at anthesis (Zadoks GS55) at all locations so that variety-specific disease 

tolerance was not a confounding factor. Plots were trimmed prior to harvest to avoid edge 

effects, and wheat was harvested using a small-plot Massey Ferguson 8XP combine. Grain 

moisture was measured at harvest and grain yield was corrected for 135 g kg-1 water content.  

Each experiment was located within ~12 km of a weather station from the Kansas 

Mesonet (Patrignani et al., 2020), from which we collected daily values for precipitation, 

reference evapotranspiration (ETo), maximum (Tmax) and minimum (Tmin) temperatures, and 

solar radiation. The weather data was either averaged (Tmin and Tmax) or accumulated 

(precipitation, ETo, and solar radiation) for the growing season and for important periods within 

the growing season, including the fall, winter, critical period (20-d before to 10-d after anthesis) 

and grain filling (10-d after anthesis to harvest).  

 

Table 4-1.Initial soil fertility at the studied environments. Soil test variables includes soil pH, 

Mehlich-3 extractable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium 

(Na), ammonium-(NH4-N) and nitrate- (NO3-N) nitrogen, chloride (Cl), sulfate-sulfur (SO4-S), 

organic matter (O.M.) and cation exchange capacity (CEC). Sampling depths were 0-15 cm and 

15-60 cm. 
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Environments Depth  pH P K Ca Mg Na NH4-N N03-N Cl S04-S O.M. CEC Sand Silt Clay 

Year  cm   (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) % Meq 100g-1 % % % 

2017-18                   

Belleville  0-15  5.6 47 510 2032 295 15 6 8 6 2 2.9 26 16 56 28 

  15-60  6.3 24 517 3372 498 40 5 5 6 2 2.5 31 10 50 40 

Manhattan  0-15  7.1 21 233 5033 323 21 3 5 6 2 4.2 29 16 52 32 

  15-60  7.7 11 239 6495 301 16 5 4 5 1.2 3.1 36 10 52 38 

2018-19                   

Ashland Bottoms  0-15  6.2 45 179 1129 138 9 3 3 4 3 1.5 10 34 52 14 

  15-60  6.6 27 116 1284 144 8 3 1 3 1 1.5 8 37 48 15 

Hutchinson  0-15  5.3 50 228 1018 185 8 3 10 4 4 1.8 17 14 60 26 

  15-60  6.4 11 151 1920 330 17 3 3 5 2 1.8 16 10 54 36 

2019-20                   

Ashland Bottoms  0-15  5.9 46 263 1279 141 9 4 6 3 1 1.8 13 34 54.00 12 

  15-60  6.8 22 181 1674 161 10 3 3 3 1 1.4 10 26 60.00 14 

Belleville  0-15  5.5 73 603 1876 237 13 5 10 6 2 3.5 23 14 64.00 22 

  15-60  5.9 48 616 2741 368 24 2 7 9 2 2.9 27    

Hutchinson  0-15  5.4 89 426 1959 348 9 4 8 4 4 2.8 24 28 44 28 

  15-60  6.2 46 369 2779 506 15 5 6 4 5 2.2 26 26 40 34 

Sumner  0-15  5.1 82 116 852 234 16 3 6 5 3 1.6 18 50 32 18 

  15-60  5.7 40 146 1572 446 43 3 4 4 2 1.5 21 44 32 24 
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Treatment structure and experimental design 

The experiment was arranged in a 3 × 3 × 4 split-split-plot design with four replications. 

Three wheat genotypes were assigned to whole plots, three N rates were assigned to sub-plots, 

and four S rates were assigned to sub-sub plots. The three genotypes were selected based on 

being representative of producer’s choices in the region [their seeded area in central Kansas 

during the 2019-20 season were 9.7% for SY Monument, 2.6% for LCS Mint, and 6.4% for 

Zenda (USDA-NASS, 2020)] and for their differences in N uptake levels while maintaining 

similar N utilization efficiency (de Oliveira Silva et al., 2020b). Nitrogen was applied as urea 

ammonium nitrate (28N-0-0) and rates consisted of 50%, 100%, and 150% of KSU 

recommendations for a 4.0 Mg ha-1 yield goal. The actual amount of N applied depended on the 

initial soil NO3-N in the 0-60 cm profile (Table 2). Sulfur was applied as ammonium thiosulfate 

(12-0-0-26S) at 0, 11, 22, or 45 kg S ha-1. The combination of available N at sowing plus N 

fertilizer rate, and available S at sowing plus S fertilizer rate, resulted in available N:S ratios to 

vary across locations and treatments. A pressurized CO2 back sprayer with a three-nozzle spray 

boom was used to apply all fertilizer treatments. The specific streamer nozzles (SJ3-02-VP - SJ3-

05-VP) varied due to the change in N and S rates. The N and S were applied in combination for 

specific treatments and application occurred at Zadoks 30 (Zadoks et al., 1974).   

Table 4-2. Sowing, harvest, and treatment application dates at the nine studied environments. 

Nitrogen was applied at rates consisted of 50%, 100%, and 150% of KSU recommendations for a 

4.0 Mg ha-1 yield goal (YG). The actual amount of N applied depended on the initial soil NO3-N 

in the 0-60 cm profile 

Year Location Sowing date N rate for 

50% YG 

(kg N ha-1) 

N rate for 

100% YG 

(kg N ha-1) 

N rate for 

150% YG 

(kg N ha-1) 

Top-dress 

N and S at 

Zadoks 30 

Fungicide 

application 

Zadoks 55 

Harvest 

2017-18 Belleville 10/17/2017 59 107 156 03/08/2018 05/24/2018 06/24/2018 

 Manhattan 10/16/2017 56 104 152 03/01/2018 05/21/2018 06/22/2018 

2018-19 Ashland Bottoms 11/01/2018 82 152 222 03/22/2019 05/22/2019 06/28/2019 

 Hutchinson 11/02/2018 68 125 181 03/18/2019 05/22/2019 07/04/2019 
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2019-20 Ashland Bottoms 10/25/2019 72 131 200 03/06/2020 05/19/2020 06/26/2020 

 Belleville 10/16/2019 48 85 123 03/25/2020 05/29/2020 07/05/2020 

 Hutchinson 10/29/2019 56 102 147 03/11/2020 05/14/2020 06/17/2020 

 Sumner  10/24/2019 74 138 203 03/12/2020 05/04/2020 06/15/2020 

 

Biomass sampling 

Shoot biomass was sampled from a one linear row-meter area (~0.19 m2) from one of the 

center-rows of each experimental unit in the same day of wheat harvest. Samples were dried at 

65°C until constant weight before shoot biomass was weighted. Shoot biomass was partitioned 

into heads and stover. The heads were threshed to separate the grain from the chaff, and grain 

and stover were ground to pass a 2-mm sieve, and sent separately to the laboratory for nutrient 

concentration analysis. Nitrogen and S concentration in plant tissue were determined by 

combustion using the inductively coupled plasma (ICP) (Tabatabai, 2018).  

Calculations 

First, we divided the range of N uptake in nine different intervals and selected the highest 

value within each division. Next, we fit independent linear plateau models for shoot N and S 

uptake (independent variables) versus grain yield (dependent variables) on the nine values and 

forced the intercept to zero. The linear plateau model was built using the R package “nlsLM” 

(Padfield and Matheson, 2020). The linear plateau model consisted of: y =b*x if x<c and y= b*c 

for x≥c. In this equation, “b” is the slope during the linear phase, and “c” is the value of x at 

which the linear model reaches a plateau, equivalent to the yield potential (Yp). The Yp is the 

maximum yield per unit of N or S uptake. Next, the boundary function was used to estimate the 

Yp for each level N and S uptake until the linear plateau model reached a maximum. At the 

break point of the linear plateau model, a default yield value was used for the Yp to calculate the 

yield gap, as yield did not increase with further increases in N or S uptake. This approach was 
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adapted from French and Schultz (1984) and similar to Carciochi et al. (2020) and (Riar et al., 

2016).  

Afterwards, the yield gap was calculated as: 

Yield gap (Mg ha-1) = Ya-Yp        

 (1) 

where Ya is actual grain yield and Yp is potential grain yield.  

 Stress indices for N (NSI) and S (SSI) were calculated as Sadras (2004): 

RSI = (1-Ra/Ryp) if Ra<Ryp         

 (2) 

RSI=0 if Ra>Ryp          

 (3) 

where RSI refers to either NSI or SSI with Ya and resource uptake Ra and Ryp is the 

resource uptake for Yp. Nitrogen stress index (NSI) and SSI range from 0 (no stress) to 1 

(maximum stress). 

 Multiple indices were calculated to quantify the co-limitation and intensity of N 

and S stresses in wheat. Co-limitation (Cns) tends to be 1 when both stresses are of similar 

magnitude. First, we calculated the N and S Cns as the absolute vale of the difference between 

NSI and SSI: 

Cns= 1-|NSI-SSI|         

 (4) 

 Second, we calculated two indices of stress intensity: 

Tns= NSI + SSI         

 (5) 



102 

Mns=Max(NSI, SSI)         

 (6) 

Where Tns is the total N and S stress index (stress intensity) and Mns is the maximum N 

or S stress index (i.e., the largest stress value between NSI and SSI). Third, co-limitation and 

total stress were combined: 

CTns= Cns/Tns         

 (7) 

CMns=Cns/Mns         

 (8) 

Where CTns and CMns are the effects of co-limitation and total stress intensity.  It is 

expected that grain yield is proportionally related to degree of Cns and CTns, and inversely 

related to Tns.  

The N and S use efficiencies were calculated using the definitions provided by Gastal et 

al. (2015) and Weih et al. (2018), which takes into account the soil nutrient available at sowing 

plus the nutrient from applied fertilizer.  

NUE (kg kg-1) = Grain yield (Mg ha-1) / N available (soil + fertilizer) (kg ha-1)  

 (9) 

SUE (kg kg-1) = Grain yield (Mg ha-1) / S available (soil + fertilizer) (kg ha-1) 

 (10) 

A limitation in this nutrient use efficiency calculation is that it does not account for the 

contribution of N and S from the mineralization of soil organic matter during the growing 

season, potentially overestimating nutrient use efficiency. 
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The N:S ratio were calculated for the N and S concentration in the wheat stover or grain, 

respectively.  

N:S ratio = N concentration / S concentration      

 (11) 

Statistical Analyses 

Analysis of variance was performed using “lmerTest” in R software version 3.4.0 

(Kuznetsova et al., 2017). Genotype, N rate, S rate, environment, and their interactions were 

considered fixed effects, while block nested within environment, and genotype nested within 

block, N rate nested within genotype, S rate nested within N rate were random effects (the latter 

accounted for the split-split-plot design). The co-limitation indices were regressed against the 

yield gap, NUE, NUpE, NUtE, SUE, SUpE, or SUtE. A linear or exponential rise to maximum 

models were built using the packages of “lm” (Bates et al., 2015) and “nls” (Fox and Weisberg, 

2011), respectively  to determine the regression coefficients (slope and intercept) and 

coefficients of determination (R2) among the co-limitation and agronomic indices. For the N:S 

stoichiometry, a linear-linear model was built using the “segmented” (Muggeo, 2008) package to 

determine when either N or S were limiting in the wheat shoot or grain.  

 Results 

 Weather conditions 

The 2017-18 wheat growing season (environments: Bell18 and Man18) had a cold and 

dry winter, a cold and dry early spring, and a hot and dry late spring/early summer (Fig. 1). The 

drought and cool temperatures maintained the wheat crop dormant until late April, and the 

reduced rainfall in the season (49-60% of the annual rainfall) combined with above normal May 

and June temperatures, accelerated late-season crop development and decreased the grain-filling 
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period. The 2018-19 wheat growing season (environments: AB19 and Hut19) had a cold and wet 

winter, a cold and wet early spring, and a cool and wet late spring/early summer (Fig. 1). The 

wet and cool temperatures maintained the wheat crop dormant until late April. The cool and 

moist spring reduced spring increased grain fill duration and delayed grain harvest. Overall, the 

environments established in 2019-20 had a cold and wet winter, a cold and wet early spring, and 

a cool and wet late spring/early summer (Fig. 1). These conditions resulted in later than average 

sowing date and the wheat had very limited time to tiller in the fall. 

 

 

Figure 4-1. Precipitation and evapotranspiration (ETo) experienced during the winter wheat 

growing season at the eight Kansas environments (Bel8, Man18, AB19, Hut19, AB20, Bel20, 

Hut20, and Sum20). Cumulative reference evapotranspiration (ETo) and precipitation are shown 

as red and blue lines, respectively. Inset values show cumulative ETo and precipitation that 

occurred between sowing and harvest. 
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Figure 4-2. Minimum and maximum temperature experienced during the winter wheat growing 

season at the eight Kansas environments (Bel18, Man18, AB19, Hut19, AB20, Bel20, Hut20, 

and Sum20). Maximum and minimum temperatures are shown as red and blue lines, 

respectively. Inset values show cumulative thermal time between sowing and harvest and season 

duration in days.  
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 Grain yield 

Across all environments, genotypes, and N and S rates, grain yield averaged 3.7 Mg ha-1 

and ranged from 0.9 to 5.9 Mg ha-1. Grain yield variability resulting from the studied factors (i.e., 

averaged across all other factors) was 3.3 to 4.3 Mg ha-1 depending on environment, 3.4 to 4.0 

depending on N rates, 3.4 to 3.9 depending on S rates, and from 3.5 to 3.9 Mg ha-1 depending on 

genotype. 

Significant three-way interactions for environment (E) × N × S, E × genotype (G) × N 

rate, and E × G × S rate, impacted grain yield. Increased N rate increased grain yields in all eight 

environments, with yield gains ranging from 0.1 to 0.9 Mg ha-1. This benefit of N rate to yield 

depended on S rate in three environments (AB19, AB20, Sum20). In these environments, the 

presence of S increased grain yield in 2.7 to 3.8 Mg ha-1 at the lowest N rate, and allowed the 

crop to more efficiently respond to increases in N rate, increasing grain yield in 2.9 to 4.5 Mg ha-

1 in the higher N rates (Fig. 3). The E × G × N rate interaction was mostly portrayed due to the 

genotype Zenda yielding the least in six of the environments at the lowest N rate and, as N rate 

increased, yielding the highest in three environments. At the highest N rate, SY Monument had 

the highest yield in six environment (range: 3.9 - 4.5 Mg ha-1) and at the lowest N rate, yield 

losses ranged from 0.4 -1.1 Mg ha-1. The E × G × S rate interaction on grain yield occurred 

mostly because genotypes responded similarly to S rates in five environments, with grain yields 

ranging from 2.0 – 3.4 Mg ha-1. However, in two environments (AB19 and AB20), Zenda yield 

less than Monument at the 0 kg S ha-1 (difference: 0.51 Mg ha-1) and, as the S rate increased, 

Zenda seemed to recover from those yield losses and all genotypes yielded similarly. We also 

note that in one environment (Hut19), Zenda was the only genotype to respond to S rate with 

increases in grain yield of 0.27 Mg ha-1 from the 0 to 11 kg S ha-1. 
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Figure 4-3. Average winter wheat gain yield affected by N rate (50, 100, and 150%), S rate (0, 

11, 22, and 45 kg S ha-1), and environments (Bel18, Man18, AB19, Hut19, AB20, Bel20, Hut19, 

and Sum20). The Honest Significant Difference was calculated within each environment. Soil 

samples were taken before sowing to determine organic matter (%) and initial plant available S 

at sowing (kg ha-1).  

 Nutrient use efficiency  

Nitrogen use efficiency (range: 4 to 39 kg kg-1) and SUE (range: 27 to 315 kg kg-1) varied 

across environments and treatments (Fig. 4). Three way interactions occurred for NUE among E 

× N rate × S rate and among E × G × S rate. The average NUE for each N rate across all S rates 
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and environments was 25, 21, 17 kg kg-1 for the 50, 100, 150% N rate, respectively. Increasing N 

rate decreased NUE at all environments. In six environments, NUE decreased from 24 to 17 kg 

kg-1 as N rate increased from 50% to 150%. In two environments, (AB19 and AB20), the zero kg 

S ha-1 rate had significantly lower NUE (range: 9-25) as compared to treatments receiving a S 

application (range: 16X-31). In three environments (Bel18, Bel20, and Sum20), Monument and 

Mint resulted in a higher NUE than Zenda. In one location, Monument had a higher NUE than 

Zenda. In two locations, all three genotypes had the lowest NUE in the absence of S application, 

but at the zero kg S ha-1 rate, LCS Mint and SY Monument still had greater NUE than Zenda 

(mean: 17 vs. 14 kg kg-1).  

Similarly to NUE, three-way interactions among  E × N rate × S rate and E × G × S rate 

occurred for SUE (Fig. 9). Across environments, the zero kg S ha-1 rate resulted in the greatest 

SUE which ranged from 73-228 kg kg-1, while the 45 kg S ha-1 resulted in the lowest SUE 

(range: 36-82 kg kg-1). The only exception was ASB19, where the addition of 11 kg S ha-1 

increased SUE as compared to the zero S rate by 18 and 24 kg kg-1 for the 100 and 150% N rates.  

In five environments, the addition of N increased SUE anywhere from 27 to 153 kg kg-1 within 

the same S rate.   
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Figure 4-4. Mean nitrogen use efficiency (NUE) as affected by N rate (50, 100, and 150%), S 

rate (0, 11, 22, and 45 kg S ha-1), and environment (Bel18, Man18, AB19, Hut19, AB20, Bel20, 

Hut20, and Sum20). The Honest Significant Difference was calculated within each environment. 
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Figure 4-5. Mean sulfur use efficiency (SUE) as affected by N rate (50, 100, and 150%), S rate 

(0, 11, 22, and 45 kg S ha-1), and environment (Bel18, Man18, AB19, Hut19, AB20, Bel20, 

Hut20, and Sum20). The Honest Significant Difference was calculated within each environment. 
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 Potential grain yield as dependent on N and S uptake 

Both boundary functions for N and S uptake determined a Yp of 5.7 Mg ha-1 (Fig. 1) with 

a minimum nutrient uptake of 120 kg N ha-1 (Fig. 6a) and 7 kg S ha-1 (Fig. 6b). The slope of the 

N and S uptake graphs were used to calculate the nutrient requirement to produce maximum 

yield, and it resulted in 40 kg grain kg N-1 and 810 kg grain kg S-1. 

 

 

Figure 4-6. Scatter plots and boundary functions to determine nutrient-limited yield potential. 

The fitted linear plateau models are (a) nitrogen-limited yield potential and (b) sulfur-limited 

yield potential. Data from a complete factorial containing wheat genotypes (LCS Mint, SY 

Monument, and Zenda), N rates (50, 100, 150% of yield goal), and S rates (0, 11, 22, and 45 kg 

S ha-1). Color points represent (a) N rates and (b) S rates. 
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 Yield gaps and co-limitation effects on grain yield, yield gap, and nutrient use-

efficiency 

A three way interaction among E × N rate × S rate impacted yield gap. Averaged across 

all N and S rates, range of yield gaps were -1.5 to -2.5 Mg ha-1. The yield gap decreased from -

2.3 Mg ha-1 to -1.7 Mg ha-1 with increases in N rate from 50% to 150%.  

Similarly, NSI and SSI decreased from 0.3 to 0.1 and 0.2 to 0.0, respectively as the N rate 

was increased from 50 to 150%.  The NSI and SSI both correlated with yield gap at R2= 0.55 and 

0.46, respectively (Fig. 7). Sulfur limitation resulted in a more severe yield gap as compared to N 

stress due to having a more negative slope (3.49 ± 0.15 SSI vs 2.76 ± 0.10 NSI; Fig. 7). The 

yield gap also correlated with Tns, Mns CTns, and CMns (Fig. 7). The yield gap increased at a 

faster rate with increases in Mns as compared to Tns (slope values -2.82 ± 0.09 vs -1.93 ± 0.06).  
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Figure 4-7. Relationship between yield gap and (a) nitrogen stress index, (b) sulfur stress index , 

(c) total N-S stress index (TNS), (d) maximum N-S stress index (MNS), (e) degree of co-

limitation (CTNS), and (f)  degree of co-limitation (CMNS) in a complete factorial in split-split-

plot design containing wheat genotypes (LCS Mint, SY Monument, and Zenda), N rates (50, 

100, 150% of yield goal), and S rate (0, 11, 22, and 45 kg S ha-1).  

The 50, 100, and 150% N rates resulted in average NSI values of 0.3, 0.2, and 0.1. 

Nitrogen use efficiency decreased linearly with increases in SSI, but the rate of decline was 

different among N rates (Fig. 8). As N rate increased from 50% to 150%, the slopes of NUE 

increased from 14.8 to 17.1 kg kg-1, respectively. The highest N rate resulted in the greatest 

decline of 1.7 kg grain kg-1 per 0.1 SSI growth.  The Cns increased with increasing N rate (slope 

values of 9.9 vs 13.7 kg kg-1), but the correlation was weak with R2=0.08 for the 50% N rate as 

compared to R2=0.35 for the 150% N rate (Fig. 8). The indices of CTns plateaued at NUE values 

of 26, 19, and 14 for the 50, 100, and 150% N rates, respectively. However, CMns followed a 
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different trend as 50% N rate increased linearly with increases in CMns values but the 100 and 

150% N rates measured a plateau response.  

The average SSI values ranged from 0.0 to 0.2 across the S rates. As NSI increased, the 

rate of decline for SUE decreased dramatically for the 0 and 45 kg S ha-1 (slope values of 144 vs 

57 kg kg-1). Likewise, the correlations between NSI and SUE increased from R2=0.28 to 0.56 

with increases in S rate (Fig. 9). The slope increased from the low of 69 kg kg-1 for the 45 kg S 

ha-1 to 241 kg kg-1 for the 0 kg S ha-1 as Cns approached ~1. No relationship was measured at the 

zero kg S ha-1 rate for SUE and CTns and CMns. For CTns, SUE plateaued at values of 100, 72, 

and 45 kg kg-1 for the 11, 22, 45 kg S ha-1, respectively. 
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Figure 4-8. Relationship between nitrogen use efficiency (NUE) and sulfur stress index (a), N-S 

co-limitation (CNS) (c), co-limitation (CTNS) (b), and degree of co-limitation (CMNS) (d) in a 

complete factorial in split-split-plot design containing wheat genotypes (LCS Mint, SY 

Monument, and Zenda), N rates (50, 100, 150% of yield goal), and S rate (0, 11, 22, and 45 kg S 

ha-1).  
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Figure 4-9. Relationship between sulfur use efficiency (SUE) and nitrogen stress index (a), N-S 

co-limitation (CNS) (c), co-limitation (CTNS) (b), and degree of co-limitation (CMNS) (d) in a 

complete factorial in split-split-plot design containing wheat genotypes (LCS Mint, SY 

Monument, and Zenda), N rates (50, 100, 150% of yield goal), and S rate (0, 11, 22, and 45 kg S 

ha-1).  

 

 N and S stoichiometry and colimitation 

For N and S limited conditions, the N:S ratios varied was different between plant organs 

and increased linearly until reaching the 95% maximum value for Cns at 16.4 (confidence 

interval [CI]: 16.1-16.7) and 17.3 (CI: 17.1-17.5) for the stover and grain, respectively. The 

relationships were strong and significant for the stover (p<0.001; R2=0.63) and grain (p<0.001; 

R2=0.65; Fig. 10). We note that in situations when CNS was equal to one, N:S ratio in the stover 

ranged from 10.9-17.5 and in the grain from 15.0-21.3 (Fig. 10).  
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Figure 4-10. Relationship between N-S co-limitation (CNS) and nitrogen and sulfur ratio (N:S) 

in (a) stover and (b) grain of wheat measured at physiological maturity. 

 

 Discussion 

 Grain yield and crop response to N and S 

This study aimed at quantify the E × G × N rate × S rate interactions modulating wheat 

yield across a range of environmental conditions. Quantifying these interactions and determining 

the physiological components driving the crop’s responses to nutrient rate and uptake can inform 

management practices to help increase grain yield. Wheat grain yield ranged 0.9 to 5.9 Mg ha-1 

under the experimental conditions evaluated, which is similar to the range in grain yield reported 

in this region from other experiments (Jaenisch et al., 2019; Maeoka et al., 2020).  
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Wheat grain yield increased linearly with increases in N rate at all locations (Fig. 3); 

however, the presence of S had a more modest impact on yield as only two environments 

responded to S fertilizer. The soil in these two environments were inherently low in plant 

available S at sowing and had low organic matter (<1.8%) and applications of 11-22 kg S ha-1 

were sufficient to maximize yields. We note that the environment requiring 22 kg S ha-1 was also 

a higher rainfall environment (AB19). Similarly, Ramig et al. (1975) suggested that plant 

available S at sowing was sufficient at 17 kg S ha-1, and Girma et al. (2005) and Dhillon et al. 

(2019) suggested that yield responses to S fertilizer application are more likely to occur on low 

organic matter (<2%), coarse textured soils (AB19 and AB20), or the combination of both. In the 

remaining environments with greater soil S available at sowing and/or organic matter content, 

yield response to S fertilization was not expected (Lamond, 1997; Leikam et al., 2003; Kaiser et 

al., 2019). We note that determining the amount of organic S that becomes available during the 

growing season is difficult as is it dependent on temperature and moisture regimes (Camberato 

and Casteel, 2010).  

 Wheat yield gap limited by N and S  

Wheat Yp of 5.7 Mg ha-1 as determined by fitted boundary functions on N or S uptake 

was remarkably similar to previous estimates of wheat yield potential in this region, which 

ranged from 5.0 to 6.7 Mg ha-1 (Patrignani et al., 2014; Lollato and Edwards, 2015; Lollato et al., 

2017, 2019b; Jaenisch et al., 2019). However, a novel aspect of this research is that, to our 

knowledge, this is the first estimation of wheat Yp as function of N and S uptake in this region, 

similar to the approach adopted for maize (Carciochi et al., 2020).  

The range in N uptake in the current study (26 to 193 kg N ha-1) is within in the range 

reported in field experiments in this (de Oliveira Silva et al., 2020b, 2021; Lollato et al., 2021) 



119 

and other regions (Salvagiotti et al., 2009; Savin et al., 2019) , as well as within the range 

reported for a global literature synthesis on wheat N uptake and utilization efficiency of c.a. 20 to 

400 kg ha-1 (de Oliveira Silva et al., 2020a). We notice, however, that the maximum N uptake in 

the current study was 193 kg N ha-1, which global (de Oliveira Silva et al., 2020a) and more 

localized (Savin et al., 2019) literature syntheses suggested maximum wheat N uptake in the 

300-400 kg N ha-1 range. This discrepancy is likely due to a relatively late sowing date in the 

current experiment due to all experiments following a previous soybean crop, which delayed 

sowing as compared to the optimal timing (Paulsen et al., 1997; Munaro et al., 2020). These later 

sowing dates can reduce the wheat plants’ ability to uptake N especially early in the season (i.e., 

in the fall for winter wheat crops) (Lollato et al., 2021) and lead to a greater leaching potential 

for N and S around sowing (Arata et al., 2017), which may have been experienced in the AB19 

environment. Still, these results are still locally relevant as this is the predominant system in the 

study region (Staggenborg et al., 2003).  

The maximum yield per unit of nutrient uptake for N was 40 kg kg-1 which is the same 

value Kansas uses to make fertility recommendations for wheat (Leikam et al., 2003). Sulfur 

uptake ranged from 2.9 -12.4 kg S ha-1 which is within the range of what is reported in Kansas 

(Lamond, 1997; Maeoka et al., 2020; de Oliveira Silva et al., 2021). However, maximum yield 

per unit of nutrient uptake for S ranged from 350-750 kg kg-1, which is higher than 255-268 kg 

kg-1 and was reported by de Oliveira Silva et al. (2021).  

 N:S ratios in stover and grain 

Our findings of a N:S ratio of 16.4 and 17.3 in the stover and grain, respectively are 

similar to what has been reported in the literature (Randall et al., 1981b; Byers et al., 1987; 

Maeoka et al., 2020). In S deficient soils, the N:S ratios can be as high as 20:1 or as low as 12:1 
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which is the minimum N requirement (Camberato and Casteel, 2010). The N:S ratio was higher 

in the grain as compared to the stover, perhaps because N can be remobilized to the grain more 

efficiently than S (Haneklaus et al., 2007; Carciochi et al., 2020). This is an important finding as 

rescue applications N can increase the protein concentration in wheat (Woolfolk et al., 2002) but 

it is unlikely that rescue S applications can be made to correct S deficiencies (Dhillon et al., 

2019). Similarly, wheat will have “luxury accumulation” of N (de Oliveira Silva et al., 2021) and 

not of S (Randall et al., 1981a), which could have significant effects on the baking quality (Zhao 

et al., 1999a). Nitrogen and S ratios in the grain offer a great opportunity to check for nutrient 

deficiencies at the end of a growing season for producers (Randall et al., 1981a).  

 

 Conclusions 

We reported the first determination of the maximum attainable wheat grain yield as 

limited by N and S uptake. The co-limitation theory determined that yield gap increased as NSI 

and SSI increased. Similarly, NUE and SUE decreased as NSI and SSI increased but the rate of 

decreased was dependent on N or S rate. However, NUE and SUE improved as each as N and S 

became equally limiting or not-limiting (i.e., as Cns approached one), suggesting that the 

limitation of a both nutrients (N and S) was more detrimental to NUE and SUE than the 

limitation of a single nutrients. Our results suggested that soils with high clay and silt content 

and/or organic matter content greater than 1.8% were not responsive to S fertilizer and sufficient 

to maximize yield in multiple environments. Still, further research could focus on better 

quantifying the rate of mineralization of S from organic matter as it is affected by temperature 

and moisture and incorporate these findings into N:S co-limitation studies for wheat and other 

crops.   



121 

 References 

Arata, A.F., S.E. Lerner, G.E. Tranquilli, A.C. Arrigoni, and D.P. Rondanini. (2017). 

Nitrogen×sulfur interaction on fertiliser-use efficiency in bread wheat genotypes from the 

Argentine Pampas. Crop Pasture Sci. doi: 10.1071/CP16330. 

Aula, L., J.S. Dhillon, P. Omara, G.B. Wehmeyer, K.W. Freeman, et al. (2019). World sulfur use 

efficiency for cereal crops. Agron. J. doi: 10.2134/agronj2019.02.0095. 

Bates, D., M. Mächler, B.M. Bolker, and S.C. Walker. (2015). Fitting linear mixed-effects 

models using lme4. J. Stat. Softw. doi: 10.18637/jss.v067.i01. 

Byers, M., J. Franklin, and S.J. Smith. (1987). The nitrogen and sulphur nutrition of wheat and 

its effect on the composition and baking quality of the grain. Asp. Appl. Biol. 15: 337–344. 

Camberato, J., and S. Casteel. (2010). Keep and eye open for sulfur deficiency in wheat. Purdue 

Univ. April 13,2010, Purdue Univ. Depart. of Agron, West Lafayette. 

Carciochi, W.D., V.O. Sadras, A. Pagani, and I.A. Ciampitti. (2020). Co-limitation and 

stoichiometry capture the interacting effects of nitrogen and sulfur on maize yield and 

nutrient use efficiency. Eur. J. Agron. doi: 10.1016/j.eja.2019.125973. 

Ceccotti, S.P. (1996). A global review of nutrient sulphur balance, fertilizers, and the 

environment. Agro Food Ind. Hi. Tech. 7(6): 18–22. 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

0039889976&partnerID=40&md5=ead776d998a9b4099b268c61114564af. 

Christensen, N.W., and V.W. Meints. (1982). Evaluating N fertilizer sources and timing for 

winter wheat. Agron. J. 74: 840–844. 

Coleman, R. (1966). The importance of sulfur as a plant nutrient in world crop production. Soil 

Sci. 101(4): 230–239. 

Cossani, C.M., and V.O. Sadras. (2018). Water–nitrogen colimitation in grain crops. Adv. Agron. 

150: 231–274. doi: 10.1016/bs.agron.2018.02.004. 

Dhillon, J., S. Dhital, T. Lynch, B. Figueiredo, P. Omara, et al. (2019). In‐Season Application of 

Nitrogen and Sulfur in Winter Wheat. Agrosystems, Geosci. Environ. doi: 

10.2134/age2018.10.0047. 

Divito, G.A., H.E. Echeverría, F.H. Andrade, and V.O. Sadras. (2016). N and S concentration 

and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing 

the S status. F. Crop. Res. doi: 10.1016/j.fcr.2016.08.018. 

Dorsey, N. (2014). Nitrogen use efficiency and nitrogen response of wheat varieties commonly 

grown in the Great Plains, USA. 

Duke, S.H., H.M. Reisenauer, and M.A. Tabatabaí. (1986). Roles and requirements of sulfur in 

plant nutrition. Sulfur Agric.: 123–168. 

Duncan, E.G., C.A. O’Sullivan, M.M. Roper, J.S. Biggs, and M.B. Peoples. (2018). Influence of 

co-application of nitrogen with phosphorus, potassium and sulphur on the apparent 



122 

efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. F. 

Crop. Res. doi: 10.1016/j.fcr.2018.07.010. 

Fox, J., and S. Weisberg. (2011). Nonlinear Regression and Nonlinear Least Squares in R. An R 

Companion to Appl. Regres. 

French, R.J., and J.E. Schultz. (1984). Water use efficiency of wheat in a Mediterranean-type 

environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res. 35: 

743–764. doi: 10.1071/AR9840743. 

Gaju, O., V. Allard, P. Martre, J.W. Snape, E. Heumez, et al. (2011). Identification of traits to 

improve the nitrogen-use efficiency of wheat genotypes. F. Crop. Res. doi: 

10.1016/j.fcr.2011.05.010. 

Gardner, J.B., and L.E. Drinkwater. (2009). The fate of nitrogen in grain cropping systems: A 

meta-analysis of 15N field experiments. Ecol. Appl. doi: 10.1890/08-1122.1. 

Gastal, F., G. Lemaire, J.L. Durand, and G. Louarn. (2015). Quantifying crop responses to 

nitrogen and avenues to improve nitrogen-use efficiency. Crop Physiology: Applications for 

Genetic Improvement and Agronomy: Second Edition 

Girma, K., J. Mosali, K.W. Freeman, W.R. Raun, K.L. Martin, et al. (2005). Forage and grain 

yield response to applied sulfur in winter wheat as influenced by source and rate. J. Plant 

Nutr. doi: 10.1080/01904160500203259. 

Grant, C.A., K.R. Brown, G.J. Racz, and L.D. Bailey. (2001). Influence of source, timing and 

placement of nitrogen on grain yield and nitrogen removal of durum wheat under reduced- 

and conventional-tillage management. Can. J. Plant Sci. doi: 10.4141/P00-091. 

Haneklaus, S., E. Bloem, and E. Schnug. (2007). Sulfur interactions in crop ecosystems 

Hawkesford, M.J. (2017). Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. 

Bot. doi: 10.1093/jxb/erx079. 

Jaenisch, B.R., A. de Oliveira Silva, E. DeWolf, D.A. Ruiz-Diaz, and R.P. Lollato. (2019). Plant 

population and fungicide economically reduced winter wheat yield gap in Kansas. Agron. J. 

111: 650–665. doi: 10.2134/agronj2018.03.0223. 

Janssen, B.H. (1998). Efficient use of nutrients: An art of balancing. F. Crop. Res. doi: 

10.1016/S0378-4290(97)00130-5. 

Jarvan, M., L. Edesi, A. Adamson, L. Lukme, and A. Akk. (2008). The effect of sulphur 

fertilization on yield, quality of protein and baking properties of winter wheat. Agron. Res. 

Kaiser, D.E., A.K. Sutradhar, and J.J. Wiersma. (2019). Do hard red spring wheat varieties vary 

in their response to sulfur? Agron. J. doi: 10.2134/agronj2018.12.0798. 

Kuznetsova, A., P.B. Brockhoff, and R.H.B. Christensen. (2017). lmerTest Package: Tests in 

Linear Mixed Effects Models . J. Stat. Softw. doi: 10.18637/jss.v082.i13. 

Lamond, R. (1997). Sulphur in Kansas. Kansas State Univ. MF-2264, Kansas State Univ. Agri. 

Exp. Stat. and Coop. Ext. Serv., Manhattan. 



123 

Leikam, D., R. Lamond, and D. Mengel. (2003). Soil test interpretations and fertilizer 

recommendations. Kansas State Univ. MF-2586, Kansas State Univ. Agri. Exp. Stat. and 

Coop. Ext. Serv., Manhattan. 

Lollato, R.P., and J.T. Edwards. (2015). Maximum attainable wheat yield and resource-use 

efficiency in the Southern Great Plains. Crop Sci. 55: 2863–2876. doi: 

10.2135/cropsci2015.04.0215. 

Lollato, R.P., J.T. Edwards, and T.E. Ochsner. (2017). Meteorological limits to winter wheat 

productivity in the U.S. southern Great Plains. F. Crop. Res. 203: 212–226. doi: 

10.1016/j.fcr.2016.12.014. 

Lollato, R.P., B.M. Figueiredo, J.S. Dhillon, D.B. Arnall, and W.R. Raun. (2019a). Wheat grain 

yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of 

long-term experiments. F. Crop. Res. 263: 42–57. doi: 10.1016/j.fcr.2019.03.005. 

Lollato, R.P., B.R. Jaenisch, and S.R. Silva. (2021). Genotype-specific nitrogen uptake dynamics 

and fertilizer management explain contrasting wheat protein concentration. Crop Sci. doi: 

10.1002/csc2.20442. 

Lollato, R.P., M.A. Lollato, and J.T. Edwards. (2012). Soil organic carbon replenishment 

through long-term no-till on a Brazilian family farm. J. Soil Water Conserv. 67(3): 74A–

76A. 

Lollato, R.P., D.A. Ruiz Diaz, E. DeWolf, M. Knapp, D.P. Peterson, et al. (2019b). Agronomic 

practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers. 

Crop Sci. 59: 333–350. doi: 10.2135/cropsci2018.04.0249. 

Lupini, A., G. Preiti, G. Badagliacca, M.R. Abenavoli, F. Sunseri, et al. (2021). Nitrogen Use 

Efficiency in Durum Wheat Under Different Nitrogen and Water Regimes in the 

Mediterranean Basin. Front. Plant Sci. doi: 10.3389/fpls.2020.607226. 

Maeoka, R.E., V.O. Sadras, I.A. Ciampitti, D.R. Diaz, A.K. Fritz, et al. (2020). Changes in the 

phenotype of winter wheat varieties released between 1920 and 2016 in response to in-

furrow fertilizer: biomass allocation, yield, and grain protein concentration. Front. Plant 

Sci. 10: 1786. doi: 10.3389/fpls.2019.01786. 

Mahler, R.L., F.E. Koehler, and L.K. Lutcher. (1994a). Nitrogen source, timing of application, 

and placement: Effects on winter wheat production. Agron. J. doi: 

10.2134/agronj1994.00021962008600040010x. 

Mahler, R.L., F.E. Koehler, and L.K. Lutcher. (1994b). Nitrogen source, timing of application, 

and placement: Effects on winter wheat production. Agron. J. 86(4): 637–642. doi: 

10.2134/agronj1994.00021962008600040010x. 

Moll, R.H., E.J. Kamprath, and W.A. Jackson. (1982).  Analysis and Interpretation of Factors 

Which Contribute to Efficiency of Nitrogen Utilization 1 . Agron. J. doi: 

10.2134/agronj1982.00021962007400030037x. 

Muggeo, V.M.R. (2008). segmented: An R package to Fit Regression Models with Broken-Line 

Relationships. R News. doi: 10.1159/000323281. 



124 

de Oliveira Silva, A., I.A. Ciampitti, G.A. Slafer, and R.P. Lollato. (2020a). Nitrogen utilization 

efficiency in wheat: A global perspective. Eur. J. Agron. doi: 10.1016/j.eja.2020.126008. 

de Oliveira Silva, A., B.R. Jaenisch, I.A. Ciampitti, and R.P. Lollato. (2021). Wheat nitrogen, 

phosphorus, potassium, and sulfur uptake dynamics under different management practices. 

Agron. J. doi: 10.1002/agj2.20637. 

de Oliveira Silva, A., G.A. Slafer, A.K. Fritz, and R.P. Lollato. (2020b). Physiological basis of 

genotypic response to management in dryland wheat. Front. Plant Sci. 10: 1644. doi: 

10.3389/fpls.2019.01644. 

Padfield, D., and G. Matheson. (2020). nls.multstart: Robust Non-Linear Regression using AIC 

Scores. R Packag. version 1.1.0. 

Pagani, A., and H.E. Echeverría. (2011). Performance of sulfur diagnostic methods for corn. 

Agron. J. doi: 10.2134/agronj2010.0265. 

Patrignani, A., M. Knapp, C. Redmond, and E. Santos. (2020). Technical overview of the Kansas 

Mesonet. J. Atmos. Ocean. Technol. 37: 2167–2183. doi: 10.1175/JTECH-D-19-0214.1. 

Patrignani, A., R.P. Lollato, T.E. Ochsner, C.B. Godsey, and J.T. Edwards. (2014). Yield gap 

and production gap of rainfed winter wheat in the southern Great Plains. Agron. J. 106(4): 

1329–1339. doi: 10.2134/agronj14.0011. 

Paulsen, G.M., R.G. Sears, J.P. Shroyer, H. Kok, C.R. Thompson, et al. (1997). Wheat 

production handbook. Kansas State Univ. C529, Kansas State Univ. Agri. Exp. Stat. and 

Coop. Ext. Serv., Manhattan. 

Ramig, R.E., P.E. Rasmussen, R.R. Allmaras, and C.M. Smith. (1975).  Nitrogen‐Sulfur 

Relations in Soft White Winter Wheat. I. Yield Response to Fertilizer and Residual Sulfur 1 

. Agron. J. doi: 10.2134/agronj1975.00021962006700020012x. 

Randall, P.J., J.R. Freney, C.J. Smith, H.J. Moss, C.W. Wrigley, et al. (1990). Effect of 

Additions of Nitrogen and Sulfur to Irrigated Wheat at Heading on Grain Yield, 

Composition and Milling and Baking Quality. Aust. J. Exp. Agric. doi: 

10.1071/EA9900095. 

Randall, P.J., K. Spencer, and J.R. Freney. (1981a). Sulfur and nitrogen fertilizer effects on 

wheat. I. Concentrations of sulfur and nitrogen and the nitrogen to sulfur ratio in grain, in 

relation to the yield response. Aust. J. Agric. Res. doi: 10.1071/AR9810203. 

Randall, P.J., K. Spencer, and J.R. Freney. (1981b). Sulfur and nitrogen fertilizer effects on 

wheat. I. Concentrations of sulfur and nitrogen and the nitrogen to sulfur ratio in grain, in 

relation to the yield response. Aust. J. Agric. Res. 32(2): 203–212. doi: 

10.1071/AR9810203. 

Raun, W.R., and G. V. Johnson. (1999). Improving nitrogen use efficiency for cereal production. 

Agron. J. doi: 10.2134/agronj1999.00021962009100030001x. 

Riar, A., G. Gill, and G. McDonald. (2016). Effect of post-sowing nitrogen management on co-

limitation of nitrogen and water in canola and mustard. F. Crop. Res. doi: 

10.1016/j.fcr.2016.08.021. 



125 

Sadras, V.O. (2004). Yield and water-use efficiency of water- and nitrogen-stressed wheat crops 

increase with degree of co-limitation. Eur. J. Agron. 21(4): 455–464. doi: 

10.1016/j.eja.2004.07.007. 

Sadras, V.O. (2005). A quantitative top-down view of interactions between stresses: Theory and 

analysis of nitrogen-water co-limitation in Mediterranean agro-ecosystems. Australian 

Journal of Agricultural Research 

Sadras, V.O. (2006). The N:P stoichiometry of cereal, grain legume and oilseed crops. F. Crop. 

Res. doi: 10.1016/j.fcr.2005.01.020. 

Salvagiotti, F., J.M. Castellarín, D.J. Miralles, and H.M. Pedrol. (2009). Sulfur fertilization 

improves nitrogen use efficiency in wheat by increasing nitrogen uptake. F. Crop. Res. 

113(2): 170–177. doi: 10.1016/j.fcr.2009.05.003. 

Salvagiotti, F., and D.J. Miralles. (2008). Radiation interception, biomass production and grain 

yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. 

Agron. doi: 10.1016/j.eja.2007.08.002. 

Salvagiotti, F., P. Prystupa, G. Ferraris, L. Couretot, L. Magnano, et al. (2017). N:P:S 

stoichiometry in grains and physiological attributes associated with grain yield in maize as 

affected by phosphorus and sulfur nutrition. F. Crop. Res. doi: 10.1016/j.fcr.2016.12.019. 

Savin, R., V.O. Sadras, and G.A. Slafer. (2019). Benchmarking nitrogen utilisation efficiency in 

wheat for Mediterranean and non-Mediterranean European regions. F. Crop. Res. doi: 

10.1016/j.fcr.2019.107573. 

Schlegel, A.J., K.C. Dhuyvetter, and J.L. Havlin. (2003). Placement of UAN for dryland winter 

wheat in the Central High Plains. Agron. J. 95: 1532–1541. doi: 10.2134/agronj2003.1532. 

Sinclair, T.R., and T. Horie. (1989). Leaf nitrogen, photosynthesis, and crop radiation use 

efficiency: A review. Crop Sci. doi: 10.2135/cropsci1989.0011183X002900010023x. 

Sinclair, T.R., and T.W. Rufty. (2012). Nitrogen and water resources commonly limit crop yield 

increases, not necessarily plant genetics. Glob. Food Sec. doi: 10.1016/j.gfs.2012.07.001. 

Singh, S.P., R. Singh, M.P. Singh, and V.P. Singh. (2014). Impact of sulfur fertilization on 

different forms and balance of soil sulfur and the nutrition of wheat in wheat-soybean 

cropping sequence in Tarai soil. J. Plant Nutr. doi: 10.1080/01904167.2013.867987. 

Smith, C.J., J.R. Hunt, E. Wang, B.C.T. Macdonald, H. Xing, et al. (2019). Using fertiliser to 

maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental 

cost. Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.106644. 

Staggenborg, S.A., D.A. Whitney, D.L. Fjell, and J.P. Shroyer. (2003). Seeding and nitrogen 

rates required to optimize winter wheat yields following grain sorghum and soybean. Agron. 

J. 95(2): 253–259. doi: 10.2134/agronj2003.2530. 

Steinke, K., J. Rutan, and L. Thurgood. (2015). Corn response to nitrogen at multiple sulfur 

rates. Agron. J. doi: 10.2134/agronj14.0424. 

Sterner, R.., and J.. Elser. (2002). Ecological Stoichiometry: The Biology of Elements from 



126 

Molecules to the Biosphere: Robert W. Sterner, James J. Elser, Peter Vitousek: 

9780691074917: Amazon.com: Books. 

Subbarao, G. V., I.M. Rao, K. Nakahara, Y. Ando, K.L. Sahrawat, et al. (2013). Nitrogen 

management in grasslands and forage-based production systems - Role of biological 

nitrification inhibition (BNI). Trop. Grasslands-Forrajes Trop. doi: 10.17138/TGFT(1)168-

174. 

Tabak, M., A. Lepiarczyk, B. Filipek-Mazur, and A. Lisowska. (2020). Efficiency of nitrogen 

fertilization of winter wheat depending on sulfur fertilization. Agronomy. doi: 

10.3390/agronomy10091304. 

Tabatabai, M.A. (2018). Sulfur. Methods of Soil Analysis, Part 3: Chemical Methods 

Timsina, J., U. Singh, M. Badaruddin, C. Meisner, and M.R. Amin. (2001). Cultivar, nitrogen, 

and water effects on productivity, and nitrogen-use efficiency and balance for rice-wheat 

sequences of Bangladesh. F. Crop. Res. doi: 10.1016/S0378-4290(01)00171-X. 

USDA-NASS. (2020). USDA. Natl. Agric. Stat. Serv. Available at 

https://https://www.nass.usda.gov/Statistics_by_State/Kansas/Publications/Cooperative_Pro

jects/Wheat_Varieities/KS-whtvar20.pdf (verified 23 April 2021). 

Weih, M., K. Hamnér, and F. Pourazari. (2018). Analyzing plant nutrient uptake and utilization 

efficiencies: comparison between crops and approaches. Plant Soil. doi: 10.1007/s11104-

018-3738-y. 

Wilson, T.L., M.J. Guttieri, N.O. Nelson, A. Fritz, and M. Tilley. (2020). Nitrogen and sulfur 

effects on hard winter wheat quality and asparagine concentration. J. Cereal Sci. doi: 

10.1016/j.jcs.2020.102969. 

Withers, P.J.A., F.J. Zhao, S.P. McGrath, E.J. Evans, A.H. Sinclair, et al. (2001). Sulphur inputs 

for optimum yields of cereals. Optimising Cereal inputs its Sci. basis. 

Woolfolk, C.W., W.R. Raun, G. V. Johnson, W.E. Thomason, R.W. Mullen, et al. (2002). 

Influence of late-season foliar nitrogen applications on yield and grain nitrogen in winter 

wheat. Agron. J. 94(3): 429–434. doi: 10.2134/agronj2002.0429. 

Zadoks, J.C., T.T. Chang, and C.F. Konnzak. (1974). A decimal code for growth stages in 

cereals. Weed Res. 

Zhao, F., M. Hawkesford, and S. McGrath. (1999a). Sulphur assimilation and effects on yield 

and quality of wheat. J. Cereal Sci. 30: 1–17. doi: 10.1006/jcrs.1998.0241. 

Zhao, F.J., S.E. Salmon, P.J.A. Withers, J.M. Monaghan, E.J. Evans, et al. (1999b). Variation in 

the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition 

under field conditions. J. Cereal Sci. doi: 10.1006/jcrs.1998.0244. 

 

 

 



127 

Chapter 5 - Conclusions and future research  

This dissertation highlighted the need for future research to focus on improving N and 

fungicide management decisions in this region; on understanding wheat yield components and 

their determination; as well as the interaction of N and S rates for improving wheat grain quality. 

Optimizing the application of N either through rates, timing, placement, or source, has been 

researched for years. In the current research, N application increased wheat yields but the 

optimal rate differed significantly across the regions in Kansas both in the on-farm survey as 

well as in the field experiments. Determining the optimal N rate across the different growing 

regions of Kansas will allow producers to be more profitable. Foliar fungicides increased wheat 

yields; however, only ~50% of the fields in this survey received a fungicide. Thus, it will be 

important to determine why producers are reluctant to apply a fungicide during the winter wheat 

growing season. Informing producers on the genotype response to foliar fungicide application 

will allow producers to improve wheat yield at the commercial level and potentially increase 

their profitability. In dry years of our experiment two, the enhanced fertility treatment 

maximized grain yield and the economical intensification maximized grain yields in wet years 

due to the increased disease pressure, supporting for the need for future research on both topics. 

Kernels m-1 increased grain yields by increases in kernels head-1. This research also suggested 

the potential for increased intensity of management practices to increase kernels head -1. Thus, 

additional research is warranted to fully understand the role of this yield component in 

maximizing wheat yields. The interaction of N and S rates increased wheat grain yields on sandy 

and low organic matter soils. More research locations are needed to fully determine the optimal 

rate of S is on sandy and low organic matter soils. Similarly, determining the supply of S from 

organic matter mineralization during the growing season warrants additional research.  


