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Abstract 

The milling and mining operations of metal ores are one of the major sources of heavy 

metal contamination at earth’s surface. Due to historic mining activities conducted in the Tri-

State mining district, large area of land covered with mine waste, and soils enriched with lead 

(Pb), zinc (Zn) and cadmium (Cd) remain void of vegetation influencing ecosystem and human 

health. It has been hypothesized that if these minewaste materials are disposed of in the flooded 

subsidence pits; metals can be transformed into their sulfide forms under reduced conditions 

limiting their mobility, and toxicity. These mine waste materials are high in pH, low in organic 

carbon (OC) and sulfur (S). The objective of this study was to examine the effect of OC and S 

addition on the biogeochemical transformations of Pb, Zn and Cd in submerged mine waste 

containing microcosms. Advanced molecular spectroscopic and microbiological techniques were 

used to obtain a detail, mechanistic, and molecular scale understanding of the effect of natural 

and stimulated redox conditions on biogeochemical transformation and dynamics of Pb, Zn and 

Cd essential for designing effective remediation and mitigation strategies.  

The results obtained from these column studies indicated that Pb, Zn and Cd were 

effectively immobilized upon medium (119-day) and long-term (252-day) submergence 

regardless of treatment. The OC plus S treatment enhanced sulfide formation as supported by 

scanning electron microscopy- energy dispersive X-ray technique, and synchrotron based bulk-, 

and micro-X-ray fluorescence and absorption spectroscopy analyses. Microbial community 

structure changed with OC and S addition with the enhancement sulfur reducing bacteria genes 

(dsrA/B), and decreased metal resistance genes over time. The long-term submergence of 

existing mine tailings with OC plus S addition reduced trace metals mobility most likely through 

dissimilatory sulfate reduction under stimulated reduced conditions. Colloidal assisted metal 



 

transportation (<1% of both Pb and Cd) occurred during initial submergence. Retention filters 

are suggested to avoid colloidal metal transport in order to meet the maximum concentration 

limit for Pb and Cd in surface and groundwater. 

This research enhances our understanding of the redox processes associated with the 

sequestration of non-redox sensitive metals through dissimilatory reduction of sulfates in mine 

waste materials and/or waste water and provides regulators with useful scientific evidence for 

optimizing remediation goals. 
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Abstract 

The milling and mining operations of metal ores are one of the major sources of heavy 

metal contamination at earth’s surface. Due to historic mining activities conducted in the Tri-

State mining district, large area of land covered with mine waste, and soils enriched with lead 

(Pb), zinc (Zn) and cadmium (Cd) remain void of vegetation influencing ecosystem and human 

health. It has been hypothesized that if these minewaste materials are disposed of in the flooded 

subsidence pits; metals can be transformed into their sulfide forms under reduced conditions 

limiting their mobility, and toxicity. These mine waste materials are high in pH, low in organic 

carbon (OC) and sulfur (S). The objective of this study was to examine the effect of OC and S 

addition on the biogeochemical transformations of Pb, Zn and Cd in submerged mine waste 

containing microcosms. Advanced molecular spectroscopic and microbiological techniques were 

used to obtain a detail, mechanistic, and molecular scale understanding of the effect of natural 

and stimulated redox conditions on biogeochemical transformation and dynamics of Pb, Zn and 

Cd essential for designing effective remediation and mitigation strategies.  

The results obtained from these column studies indicated that Pb, Zn and Cd were 

effectively immobilized upon medium (119-day) and long-term (252-day) submergence 

regardless of treatment. The OC plus S treatment enhanced sulfide formation as supported by 

scanning electron microscopy- energy dispersive X-ray technique, and synchrotron based bulk-, 

and micro-X-ray fluorescence and absorption spectroscopy analyses. Microbial community 

structure changed with OC and S addition with the enhancement sulfur reducing bacteria genes 

(dsrA/B), and decreased metal resistance genes over time. The long-term submergence of 

existing mine tailings with OC plus S addition reduced trace metals mobility most likely through 

dissimilatory sulfate reduction under stimulated reduced conditions. Colloidal assisted metal 



 

transportation (<1% of both Pb and Cd) occurred during initial submergence. Retention filters 

are suggested to avoid colloidal metal transport in order to meet the maximum concentration 

limit for Pb and Cd in surface and groundwater. 

This research enhances our understanding of the redox processes associated with the 

sequestration of non-redox sensitive metals through dissimilatory reduction of sulfates in mine 

waste materials and/or waste water and provides regulators with useful scientific evidence for 

optimizing remediation goals. 
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1 

Chapter 1 - Introduction 

 

The milling, mining, and smelting operations are one of the main sources of heavy metal 

contamination of surface waters, groundwater, soils, and sediments in the world, especially 

generation of sulfide rich tailings, have a heavy impact on the neighboring water bodies 

(Edwards et al., 2000; Baker et al., 2003; Bhattacharya et al., 2006). The acid mine drainage 

resulting from the exposure of sulfide rich minerals to oxygen rich water leads to the leaching of 

several contaminants affecting groundwater quality (Johnson et al., 2005; Vega et al., 2006). 

Thus, metal contamination and acid mine drainage are highly prioritized environmental concern 

in any part of the world (Nordstrom et al., 1999; Concas et al., 2006). 

The Tri-State mining district situated in parts of southeast Kansas, southwest Missouri, 

and northeast of Oklahoma has a history of 120 years of Pb, and Zn-ore mining activities. After 

the first commercial ore discovery of Pb was made in southwestern Missouri in 1838, it was 

mined only for Pb to be used in making bullets for initial 20 years (KGS, 2001). Zinc production 

started after the civil war in 1870 as mining became easier with access to heavy mining 

equipment via railroad transportation. The production from the Tri-State mining peaked between 

1918 and 1941 (Pope, 2005). The extensive mining left a very large quantity of minewaste on the 

surface as chat and tailings which contain trace levels of various sulfide minerals such as pyrite 

(FeS2), galena (PbS), sphalerite (ZnS), and others (Newfields, 2003). Metals have been dispersed 

heterogeneously throughout the district via aerial and fluvial transport (Beyer et al., 2004). The 

movement of soluble metals and metal-laden sediments from the landscape into surface 

waters via surface runoff are the primary ecological concerns for both aquatic and terrestrial 

organisms (Pierzynski and Vaillant, 2006).  



2 

Research has been done on the application of different amendments to stabilize and 

reduce the bioavailability of trace elements in minewaste materials in the Tri-State mining 

district (Pierzynski et al., 1993; 2005; Hettiarachchi et al., 2001; Baker et al., 2014). Application 

of high rates of compost, P amendment, and the mixture of biosolids, lime and compost in the 

minewaste materials have been somewhat successful in reducing the bioavailability and toxicity 

of Pb and Zn, however frequent application of amendments are required (Gudichuttu et al., 2013; 

Baker et al., 2014; Brown et al., 2014). Disposal of minewaste materials in flooded subsidence 

pits (i.e., wetland treatment) was the most preferred remediation strategy proposed by the 

USEPA. It has been hypothesized that if these minewaste materials are disposed of in the flooded 

subsidence mine pits, these metals can be transformed back into their sulfide forms, limiting their 

mobility and toxicity. Subsurface submergence of minewaste may result in seepage of leachate 

containing some Pb and Zn into groundwater regardless of liners/barriers. Requiring large 

volumes of clean soil for capping, and long term continuous monitoring could make this 

remedial action expensive (USEPA, 2010). The pre-assessment and screening was conducted in 

Waco, MO in order to evaluate the ability of this treatment to reduce metal loading to surface 

water. A flooded subsidence pit was backfilled with 4.4x104 m3 tailings, and then capped with 45 

cm of topsoil/ biosolids mixture. Water samples collected from four nearby ponds for one year, 

two shallow aquifer wells, and a central well indicated no changes in parameters except for a 

short-term spike in Zn concentration observed at one site (Newfields, 2003).  

The minewaste materials are low in dissolved OC and that could have a significant 

impact on redox processes (Zhang et al., 2005; Hayes et al., 2006; Stein et al., 2007) as OC is the 

driver of biogeochemical cycling of major and trace elements (Evans et al., 2006; Borch et al., 

2010). As a consequence of leaving minewaste materials on the surface, more S would leach out 
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as compared to immobile trace elements like Pb, Zn and Cd. Therefore, insufficient S content in 

minewaste materials could limit sulfide formations and promote carbonate precipitation 

depending on pH and carbonate concentration (Falkowski et al., 2000; Toevs et al., 2006).  

Remediation approach that involves microbial sulfate reduction for metal remediation comprises 

reduction of metals via biogenic sulfide formation (Labrenz et al., 2000; Finneran et al., 2002; 

Moreau and Banfield, 2004), which is going to be affected by a multitude of complex and 

interactive biogeochemical processes such as sorption/desorption, precipitation/dissolution and 

redox transformations (Wang et al., 2006; Violante et al., 2010). The toxicity exerted by heavy 

metals may suppress the microbial community and may lead to a shift in community structure 

affecting the related microbial processes. For example, enzymes controlling C-cycling are least 

affected due to presence of heavy metals compared to the enzymes involved in N, P and S 

cycling (Fliegbach et al. 1994). Therefore, the mobilities of metals depend on the metal 

speciation that is highly controlled by a dynamic interplay of physical, chemical, and biological 

processes in wetlands (Adriano et al., 2001; Gadd et al., 2004; Toevs et al., 2006).  A multiple 

approach is required to fully understand these complex systems. The effectiveness of OC and S 

addition on reducing the bioavailability of trace elements were assessed by measuring solution 

chemistry dynamics. Scanning electron microscopy-energy dispersive X-ray (SEM-EDXA) was 

used to obtain an indirect evidence of metal sulfide formations via measuring colocalization of 

metals with S. Any possible colloidal assisted trace metals transport were measured to 

continuously meet the maximum concentration limits for Pb, Zn and Cd in groundwater. A 

synchrotron based X-ray technique; X-ray fluorescence (XRF) was used to assess the elemental 

distribution, and their relationship. Direct Pb and Zn speciation were done via synchrotron based 

X-ray absorption near edge structure (XANES), and X-ray absorption fine structure (XAFS) to 



4 

understand underlying mechanisms responsible for effluent water chemistry indicating metal 

transformations and sequestrations. The impact of OC and S on the dynamic of microbial 

community structure, and the role of SRB gene in metal sulfide formations were assessed via 

advanced microbial analysis; functional gene array (GeoChip 4.2). This dissertation consists of 

three studies, and their specific objectives are given below:  

1. The objectives of the first study; Biogeochemical transformations of trace elements in a 

contaminated minewaste material under reduced conditions (Chapter 3), were to 

understand the role(s) and mechanisms of biogeochemical redox transformations of Pb, 

Zn and Cd, and their dynamics under submerged conditions over time. 

2. The objectives of the second study; Understanding subsurface transformation and 

dynamics of Pb and Zn in contaminated minewaste materials using synchrotron based X-

ray analysis (Chapter 4), were to determine biogeochemical transformations of Pb and Zn 

by identification and semi quantification of the dominant forms of Pb and Zn minerals in 

submerged columns containing treated and non-treated materials with OC and S. 

3. The objectives of the third study; Microbial population dynamics and role of SRB genes 

in stabilizing Pb and Zn under subsurface environment (Chapter 5), were to characterize 

the microbial communities playing a role in the biogeochemical transformation of Pb and 

Zn under reduced conditions, to measure the impact of OC and S on the dynamic of 

microbial community structure, and the role of SRB gene in the metal sulfide formation 

over time. 
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Chapter 2 - Literature Review 

 

 History of the Tri-State Mining District 

The Tri-State Mining District located in southeast Kansas, southwest of Missouri, and 

northeast of Oklahoma covers an area of 6475 square km and has a history of 120 years of Pb 

and Zn ore mining activities. The district has been mined for the sulfide forms of Pb (galena) and 

Zn (sphalerite) and to a lesser extent for Zn carbonate (smithsonite), Pb carbonate (cerrusite), Pb 

phosphate (pyromorphite), and other less abundant ores (Beyer et al., 2004). Since the first 

commercial ore discovery of Pb was made in southwestern Missouri in 1838, it was mined only 

for Pb that was used for making bullets for initial 20 years (KGS, 2001). Zinc production started 

after the civil war in 1870 as mining became easier with an access to heavy mining equipment 

via railroad transportation (Pope, 2005). More smelters were constructed in the early 1900's after 

the discovery of a shallow gas field in southeastern Kansas. That is how the production from the 

Tri-State mining peaked between 1918 and 1941 (KGS, 2001). The shallow mining that was 

done by using hand tools and a simple hoisting devices (man-made or animal-powered) were 

replaced by deeper mining with the improved blasting equipment, drills, hoists, and pumps. 

During this period the value of the Tri-State mining region production exceeded one billion 

dollars, and until 1945 it was the world’s leading producer of Pb, and Zn concentrate. The 

process of mining galena, and sphalerite generated some smelter slag, and plenty of chat, and 

mine tailings were skimmed off and discarded that were typically stored on the site. The 

groundwater flooding control was lost when pumpage declined in 1950’s, and 1960’s, and 

became a threat to the quality of neighboring ground and surface water (Bark, 1977). In the lack 

of efficient milling and mining, residual Pb and Zn remained in chat and tailings. An average 
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concentration of Pb and Zn in chat ranges 360-1500 mg kg-1, and 6000-13000 mg kg-1 

respectively (USEPA, 1997). In addition Hettiarachchi et al. (2001) reported that Pb and Zn 

concentration in slag ranges 9111- 25313 mg kg-1, and 42592- 67654 mg kg-1 respectively. With 

such elevated trace elements concentration, the movement of soluble metals and metal-laden 

sediments from the landscape into surface waters via surface runoff can be of great concern. 

 Effect of Pb, Zn, and Cd on Human Health 

Any trace metals at an elevated concentration can be toxic to plant productivity, 

ecosystem, and human health (Rasmussen, and Gardener, 2009). The potential health risk 

assessment calculated using USEPA model based on life time exposure (ingestion and 

inhalation) determined Zn, Cd, Pb, Co, Ni, Cu, Cr and Mn as the cumulative carcinogenic and 

non-carcinogenic risk for children and adults (ASTDR, 2008). Lead is a soft metal and can exist 

in the form of very small particles in air. Therefore Pb is ubiquitous in air through volcanic 

eruptions, and increased anthropogenic activities like smelting, milling and mining operations, 

soil erosion, waste incinerations, battery recycling, and renovations of old unsafe houses with 

Pb-based paint (Brown et al., 2004). An inhalation of dust with high concentration of Pb is the 

main exposure pathway in adult, whereas ingestion pathway is mainly associated with hand and 

mouth activities among children (Pierzynski and Gehl, 2004). There is no known physiological 

benefits of Pb in the body; however, it has numerous harmful effects as it interferes with a 

variety of human body system (Hsiang et al., 2011). Exposure to Pb is more dangerous for 

unborn, and young children. The fetus can get exposed through mother resulting premature 

births, reduced growth, and decreased mental ability in infant and unborn children. A child who 

ingests large amounts of Pb may develop blood anemia, severe stomachache, muscle weakness, 

brain damage, and also death is probable if blood Pb level is 150 µg dL-1. Even with smaller 
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ingestion, Pb can affect a young childrens’ mental and physical growth (ATSDR, 2007). 

Therefore, the effect of Pb in soil is always associated with elevated Pb blood levels in children 

(ASTDR, 2007). With elevated Pb, Zn and Cd (result of smelting locally mined ores), children in 

Joplin, MO area were detected with higher levels of Pb in blood (Ryan et al., 2001). The children 

blood Pb level of concern recommended by the United States Center for Disease Control and 

Prevention (CDC) is 10 μg dL-1 (ATSDR, 2007). 

Zinc is a bluish-white shiny metal, naturally occurring in the earth’s crust. It is also 

produced from smelting, milling, and mining operations, and is ubiquitous in air, soil and water. 

Zinc compounds are widely used in industry to make paint, rubber, dyes, wood preservatives, 

and ointments. In addition, Zn is considered to be relatively non-toxic to humans (Fosmire, 

1990), and is considered as an essential trace element not only for humans, but for all organisms. 

It plays very significant role for human health as it is a constituent of more than 300 enzymes, 

and even higher number of proteins. Therefore sufficient amount of Zn is required in the body 

for proper functioning of protein metabolism, and cell growth (Vallee et al., 1993). Despite all 

such importance, Zn could also be an ecological risk, because it is known to adversely affect 

aquatic receptors and can be phytotoxic at high concentrations (US EPA, 2003). In addition, an 

excess of Zn can cause brain lethargy, focal neuronal deficits, nausea, vomiting, and epigastric 

pain (ATSDR, 2005). Three major exposure pathways; inhalation, absorption through skin, and 

ingestion have been suggested for their entry into the human body (Plum, 2010).  

Cadmium is a natural element in the earth's crust, and is found as a mineral in 

combination with other elements such as CdO, CdCl2, CdSO4, and CdS. Mostly all soils, rocks 

including coals, and fertilizers contain some amount of Cd. Cadmium is usually extracted along 

with other metals like Pb, Zn and Cu (Adriano, 2001). Cadmium has commercial use in 
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producing batteries, pigments, metal coatings, and plastics. In typical inactive metal mine 

districts, huge piles of sulfide containing minewaste also contain Cd. Mostly inhalation of the 

dust containing Cd is the main exposure pathway. After few days of acute Cd inhalation, severe 

pulmonary edema, and chemical pneumonitis develop leading to death due to respiratory failure. 

Chronic exposure to Cd causes itai itai disease in elderly women that results in decrease of bone 

mineral density, increased risk for fractures, and osteoporosis. The Department of Health and 

Human Services has identified Cd as a human carcinogen (Seidal et al., 1993).  

 

 Impact of mining on surface and groundwater quality 

Water is required to support all flora, and fauna (Vanloon and Duffy, 2005), and it is 

gained from two principal natural sources; surface water (fresh water, lakes, rivers, and streams), 

and groundwater (borehole water and well water) (Mendie, 2005). Due to its unique properties, 

such as polarity, and hydrogen bonds, it can dissolve, absorb, adsorb or suspend various 

compounds (WHO, 2007). Therefore, water is more susceptible to a wide varieties of 

contaminants that persists in all dissolved, particulate, and colloidal phases (Adepoju-Bello et al., 

2009).  

The milling and mining operations of metal ores are one of the major sources of heavy 

metal contamination on the earth’s surface, in particular, the generation of sulfide rich tailings 

has a heavy impact on neighboring water bodies (Baker et al., 2003). Acid mine drainage 

resulting from the exposure of sulfide rich minerals to oxygen rich water leads to leaching of 

several contaminants that may impact on surface and groundwater quality (Vega et al., 2006). 

Thus, metal contamination and acid mine drainage are high priority environmental concerns, 

particularly where minewaste materials rich in metal-sulfides are abandoned without any 
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mitigation provisions in place (Concas et al., 2006).The groundwater quality is affected by the 

characteristics of media through which water passes on its way to the groundwater zone of 

saturation indicating a significant relationship between surface and ground water contamination 

(Adeyemi et al., 2007).  

In addition, the heavy metals discharged by industries, traffic, municipal wastes, and 

hazardous waste sites as well as from fertilizers for agricultural purposes and accidental oil 

spillages from tankers can result in a steady rise in contamination of groundwater (Igwilo et al., 

2006). Therefore, it is essential to supply high-quality water for the overall health of the high 

Plains agricultural economy, the viability of its cities and rural communities, and the 

environmental well-being of the landscape by running consistent with maximum contamination 

limit for all possible (eg., USEPA MCL for Pb in groundwater is 15 µg L-1, and Cd is 5 µg L-1) 

(McMahon et al., 2007).  

 Remediation 

As mentioned earlier, a primary source of Pb, Zn and Cd contamination in soils is the 

mining and smelting of ores containing these trace elements. In addition, mining related highly 

contaminated wastes such as rocks, chat, and tailings represent potential sources of metals that 

can be redistributed to the surrounding environment by aerial and fluvial transport (Schaider et 

al, 2007). When Pb, Zn and Cd are present in soils at high concentrations that can affect human 

health and environment, this is specifically true for Pb (Davies and Wixson, 1988). Given the 

widespread contamination of soil with Pb, Zn and Cd due to anthropogenic activities, and the 

associated potential human and ecological risks require remediation of contaminated soils. There 

are several commonly used remedial processes that includes excavation, and landfilling of 

smelter/mine contaminated soil/minewaste materials. However, presently less invasive, and 
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inexpensive in situ remediation techniques focus on reducing metal bioavailability have been 

favored (Adriano, 1997).  

 Excavation of metal-contaminated soils  

Excavation of metal contaminated soils is not always practical due to an excessive cost 

involved with magnitude (area, depth and volume) of the contaminated soil/minewaste materials 

that needs to be excavated along with the degree of disruption incurred at the site. Containment 

alternatives such as soil caps, are often inconsistent with the desired end use for the site and may 

be viewed negatively by the regulatory community and the public (Mulligan et al., 2001).  

 Phytoremediation 

Phytoremediation refers to a diverse collection of plant-based technologies that use either 

naturally occurring or genetically engineered plants, and associated microbiota to extract, 

contain, or immobilize contaminants (Flathman and Lanza, 1998; Helmisari et al., 2007). This 

technology is an innovative, cost-effective alternative to the more established treatment methods 

used at hazardous waste sites (Zhang et al., 2010). Plants should be tolerant of site conditions 

(e.g., low pH, high metal concentration, and salinity), rapidly growing with higher biomass, 

relatively dense roots to provide an additional surface area for metal precipitation or adsorption 

to occur (Berti et al., 1998). Red fescue (Festuca rubra L.) is frequently used to establish 

vegetative cover in mine impacted soils previously treated with stabilization amendments 

(Vangronsveld and Cunningham, 1998; Li et al., 2000). 

Phytoremediation technologies have different applications; phytoextraction (Jadia and 

Fulekar, 2009), phytostabilization, phytodegradation and phytovolatilization (Long et al., 2002). 

Phytoextraction technology refers to the process in which plants absorb metals from soil and 
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translocate, or further accumulate in the shoots that are subsequently harvested to remove the 

contaminants from soils (Salt et al., 1995).  

 In phytostabilization, contaminant mobility and bioavailability in the soil is limited by 

use of plant in combination with in situ inactivation or chemical stabilization via addition of soil 

amendments. This technique has been effective for remediating Cd, Cu, As, Zn and Cr, and it is 

very effective when rapid immobilization is needed to preserve ground and surface waters 

(USEPA, 2000). Phytodegradation is also known as phytotransformation. This approach 

remediates organic compounds, including herbicides, insecticides, chlorinated solvents, and 

inorganic contaminants (Pivetz, 2001) via breaking down by plant produce enzymes such as 

dehalogenase and oxygenase that help catalyze degradation. In this approach, plants and the 

associated microbial communities play a significant role in attenuating contaminants. In 

phytovolatilization, the plants uptake contaminants from the soil, and transform them into 

volatile forms to further release into the atmosphere (USEPA, 2000). Phytovolatilization of Se 

has been reported by Banuelos (2000), where Se is transformed into dimethylselenide and 

dimethyldiselenide in high Se media, and released into the atmosphere.  

Phytoremediation techniques are not as well developed but could be useful for areas of 

low contamination, where longer treatment times may be necessary to remediate contaminants. 

There are several issues associated with this technique such as enhancing the accumulation of 

metals by plants, developing methods to extract meals from plants and determining correlations 

between soil components and bioavailability. However, for mining/smelter impacted areas less 

invasive, and inexpensive in situ remediation methods such as in place inactivation through soil 

amendments and phytostabilization, have been favored to reduce ecosystem health risk (Adriano, 

1997).  
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 In situ Remediation 

There are seven commonly identified in situ remediation technologies such as 

solidification/stabilization, vitrification, electrokinetic remediation, soil flushing, 

phytoextraction, phytostabilization, and chemical stabilization. Altogether, in situ remediation 

approach is based on three remedial strategies; isolation, removal, and stabilization. The isolation 

technologies refer to those that are implemented to reduce contaminant availability by reducing 

the exposed surface area, reducing the soil permeability, and/or reducing the contaminant 

solubility. Removal technologies refer to those that are employed in situ to remove metals from a 

contaminated soil matrix through the use of physical and/or chemical processes (Ruby et al., 

2004; Zhang et al., 2010). For the purpose of this thesis we will be focusing on chemical 

stabilization. 

 Chemical stabilization 

Chemical stabilization technologies include those that involve the use of chemical 

amendment(s) and/or plants to reduce the leachability and/or bioavailability of metals in 

contaminated soils. In situ stabilization like other approaches such as natural attenuation, in situ 

capping and in situ confinement, has several advantages as it is less expensive, and less 

disruptive to ecosystem compared to ex situ methods (Smith et al., 1995).  

 Types of amendments 

Numerous studies have been conducted using different chemical amendments that 

include organic material, alkaline material, phosphate fertilizer, and metal oxides adsorbents for 

remediation of Cd, Pb and Zn (Sauve et al., 2003; Bhattacharya et al., 2006; Baker et al., 2008). 

The general mechanisms underlying the immobilization of metals are adsorption, surface 

complexation, precipitation/co-precipitation, and cation exchange. 
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 Organic amendment 

With the proven significant role of soil organic matter (OM) in the restoration, and 

sustainability of ecosystem processes, organic amendments have also been used in the 

remediation of heavy metal contaminated soils (Clemente et al., 2005). Mine tailings are often 

characterized by poor soil properties including very low organic C, P, N, and low to neutral pH. 

Organic matter often has high CEC and may adsorb metals on pH-dependent exchange sites. It 

also forms strong complexes with Pb, Cu or Zn present in contaminated soils or mine spoils. 

Some organic amendments that contain high levels of P or Fe or have a high pH may have 

additional capacity to inactivate soil metals. Many organic materials e.g., composts, sludges, 

manures have been in use to improve the soil properties such as water holding capacity, 

enhanced water infiltration, increased nutrient supply, improved aggregation, proper aeration, 

and higher microbial activity. As OC is consumed by microbial communities, the large amount 

of organic amendment is required to be done over time to establish a new equilibrium at which 

the contaminants can be retained and ecosystem functions can be restored (Sauve et al., 2003; 

Bhattacharya et al., 2006; Baker et al., 2008).  

It has been reported that the adsorption ability of heavy metals on OM is 30 times higher 

than clay minerals (Sauve et al., 2003). The stability complex may influence the bioavailability 

and extraction of heavy metals by plants, and affect the acidity, and redox properties of soils 

(Walker et al., 2003). Therefore, in recent years, composted materials or biosolids application 

have been done in attempt to remediate heavy metal contaminated soils. Application of OM in 

forms of cattle manure, pig manure, chicken manure, peat and crop straw are inexpensive, highly 

available and feasible in the restoration of heavy metal contaminated soils, however the 
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outcomes may be site specific, and therefore it is difficult to make any generalization (Walker et 

al., 2003).  

Phosphorus amendments 

The majority of bench-scale laboratory investigations have been conducted in particular 

to evaluate the effects of phosphate amendments on Pb solubility, reporting phosphate as an 

effective amendment at stabilizing Pb. The phosphate minerals have the potential to sorb and/or 

co-precipitate trace metals (Cunningham, 1997; Chaney et al., 1997; Hettiarachchi and 

Pierzynski, 2002) forming highly insoluble Pb phosphate minerals with low bioavailability and 

mobility that are stable under different environmental conditions (Ruby et al., 1994). Phosphates 

may be added to contaminated soil or mine spoil as phosphoric acid, di- and tri-basic potassium 

phosphate, calcium phosphates, sodium phosphate, mono- and di-ammonium phosphate, and 

rock phosphate or apatite (Berti et al., 1997). 

Alkaline Materials Amendment 

Several studies have used alkaline materials for in situ chemical stabilization of heavy 

metals. The alkaline materials commonly used in agricultural practice, and mine spoil re-

vegetation are CaCO3, CaCO3+MgCO3), Ca(OH)2, CaO and they have been used to raise soil pH 

desirable for plant growth (Gray et al., 2006). In addition, liming materials may also be used to 

immobilize metals in waste products (sludges, composts, slags, flyashes), or in contaminated 

sludge-amended soils and sediments (Berti et al., 1998). Generally, an increase in soil pH ionizes 

pH-dependent exchange sites, raising cation exchange capacity (CEC), which subsequently 

increases metal sorption to soil particles (Lindsay, 1979). Additionally, increased soil pH, and 

carbonate buffering can lead to the formation of metal carbonate precipitates, complexes, and the 

formation of secondary minerals that decrease metal solubility, and mobilities. However, the 
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effect of added alkaline materials may no longer take effect after pH-buffering capacity of the 

amendment is depleted. Therefore frequent application of alkaline materials is required 

especially in mine impacted area with lower pH (Berti et al., 1998). The researches show that 

alkaline materials may not always be successful as an individual treatment. However when 

combined with other inorganic and organic amendments, it will provide more binding sites to 

effectively immobilize the cationic contaminants. The increased pH by alkaline materials will 

further enhance effectiveness by making surface adsorption sites more reactive due to reduced 

competition with proton. The lime and composted manure applied simultaneously reduced the 

extractable concentration of both Pb and Zn (Lothenbach et al., 1998). Additionally, it should be 

noted that the addition of alkaline materials may increase DOC concentration resulting in high 

contaminant mobility through dispersion of organically bound metals (Korthals et al., 1996). 

Majority of the studies are focused on Pb because of its known negative impacts on human 

health (Nriagu, 1984). There is a significant concern regarding As mobility with phosphate 

amendments, however that can be potentially mitigated by inclusion of Fe as hydrous ferric 

oxide along with phosphate amendment (Jones, 1997). Another concern is the continuous uptake 

of P due to plant growth that could reduce the effectiveness of P amendments on Pb 

bioavailability, unless sufficient excess was applied or P amendment added in combination with 

other sorbents such as Mn oxides (Hettiarachchi and Pierzynski, 2002). In fact many 

contaminated sites contain several trace elements simultaneously, which commonly possess 

different chemical properties controlling their mobility and toxicity. As such, no single additive 

is expected to immobilize all inorganic contaminants. Therefore, a combination of soil 

amendments is needed for immobilizing co-existing multi-element contaminants in soil and 

sediments through synergistic, and superposition effects (Schreier et al., 1994). Still, it is 
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unrealistic to assume that once metal is complexed or precipitated in a solid phase, it is removed 

from the system forever, therefore, stability of immobilized contaminants over time should be 

examined (Scheckel, and Ryan, 2002). In addition, more research need to be conducted in 

multiple soil chemical environments with different amendments. 

Wetland Treatment Systems 

The high cost of conventional remedial approach has emphasized to explore creative, cost 

effective, and environmentally sound technology from contaminants removal (Woulds and 

Ngwenya, 2004). Wetland construction is an alternative low cost means to remove heavy metals 

from soil, and water (Matagi et al., 1998; Woulds and Ngwenya, 2004). Wetlands are defined as 

the land where water surface is near the ground surface long enough to maintain saturated 

conditions, along with the related vegetation. Wetlands are both naturally, and artificially 

constructed. The naturally constructed wetlands are marshes, bogs and swamps that have been 

used as a sink where a very large amounts of environmental contaminants are assimilated (Gray 

et al., 2000). Constructed wetland systems are simulated natural wetland systems which can be 

controlled, and manipulated, therefore usually the contaminants load rate, and their removal 

efficiency rate is higher in constructed wetland compared to natural ones (Mays and Edwards, 

2001). There are two types of artificially constructed wetlands; free water surface and subsurface 

flow. The free water surface type wetlands are mainly basins or channels with a barrier to 

prevent any seepage; however they are provided with suitable depth of porous media. Subsurface 

wetland has water above the media; it provides enough surface for treatment, and the risk of 

odor, exposure, and vectors are inhibited. Therefore subsurface type wetland is advantageous 

over free water surface wetland, especially for the metals that needs to stay reduced for 

stabilization. Multiple processes undergoing in the wetlands are responsible for such as uptake of 
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nutrient by plants, bacterially mediated degradation, oxidation of contaminants, sedimentation, 

and adsorption of particles, and dissolved substances in the waste on the substrate, and 

deposition of suspended solids due to low flow rates. (Mays and Edwards, 2001; Marchand et al., 

2010). However, the efficiency of systems depend strongly on inlet contaminant concentrations 

and hydraulic loading (Kadlec and Knight, 1996). In addition to adsorption, precipitation and co-

precipitation, the redox reactions play a significant role in contaminant removal under subsurface 

environment. Metals can also form insoluble compounds through reductive or oxidative sorption; 

for example, under chemically reducing conditions (Eh < 50 mV) sulfates can be reduced to 

sulfides that can further combine with various elements, and form 

CuS<PbS<CdS<ZnS<NiS<FeS<MnS that are relatively insoluble precipitates (Murray-Gulde et 

al., 2005; Stein et al., 2007).  

 Biogeochemistry of Pb, Zn, and Fe in subsurface environment 

When soil is submerged, the pore space is mostly filled with water, and O2 in soil 

becomes insignificant a few hours after submergence. It creates a barrier between the water and 

atmosphere via limited movement of O2 into soil. Reduction of submerged soil proceeds roughly 

in the sequence. Descending from aerobic to anaerobic conditions, the major electron acceptors 

available for microbial respiration are: O2, NO3
-/N2+, NO2

-/N2, Mn2+, Fe2+, SO4
2- and CO2. The 

sequence of these electron acceptors more or less follows the order of decreasing free energy 

change, and explains the utilization order for microbial respiration. Functional microbial 

community changes as aerobic organisms are replaced by facultative or obligate anaerobes. 

During anaerobic respiration, OM is oxidized and redox sensitive soil components are reduced 

(Ponnamperuma, 1972; Kirk, 2004). In addition, submerging soil brings about a variety of results 

in several electrochemical changes such as decrease in redox potential, an increase in pH of acid 
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soils and a decrease in pH of alkaline soils, changes in specific conductance and ionic strength, 

drastic shifts in mineral equilibria, cation and anion exchange reactions, and sorption and 

desorption of ions. Similarly, in subsurface wetlands, after soil reduction occurs, mainly four 

mechanisms affect metal removal processes (Lesage et al., 2007a): (1) adsorption to fine textured 

sediments and organic matter (Gambrell, 1994), (2) precipitation as insoluble salts (mostly 

sulfides and oxyhydroxides), (3) absorption and induced changes in biogeochemical cycles by 

plants and bacteria (Kadlec and Knight, 1996), and (4) deposition of suspended solids due to low 

flow rates. All these reactions lead to accumulation of metals in the substrate of wetlands. The 

efficiency of systems depends strongly on (i) inlet metal concentrations and (ii) hydraulic 

loading (Kadlec and Knight, 1996). 

Sorption is the mechanism in which transfer of ions from a soluble phase to a solid phase 

occurs. It is an important mechanism for removal of metals in wetlands as it helps in short-term 

retention or long-term stabilization of metals. Sorption refers to a group of processes including i) 

adsorption, ii) absorption and iii) precipitation. 

Adsorption is a surface process resulting in the accumulation of a dissolved substance (an 

adsorbate) at the interface of a solid (adsorbent) and the solution phase. This interfacial region 

incorporates the volume of soil solution under the direct influence of surface, and is commonly 

referred as solid-solution interphase (Essington, 2004). Adsorption processes could occur via 

physical processes with weak bindings (physisorption), or chemical processes with strong 

bindings (chemisorption). Metals are adsorbed to particles by either ion exchange depending 

upon factors such as the type of element and the presence of other elements competing for 

adsorption sites (Seo et al., 2008) or chemisorption. Retention of Pb, Cu and Cr by adsorption is 

greater than Zn, Ni and Cd (Sheoran and Sheoran, 2006).  
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Absorption can retain inorganic, and organic substances via diffusion into three-

dimensional framework of a solid structure. It also refers to a biochemical processes when a 

compound from the external media is entering into a living organism).  

Precipitation reactions of an element can take place due to its high concentration in soil 

solutions. This reaction takes place when the solution becomes supersaturated with respect to 

that element. The precipitation refers to a mechanism via which the crystal structure of mineral 

increases in volume as a result of the three-dimensional growth of the structure. Metal carbonates 

are formed through precipitation at higher carbonate concentration under alkaline pH, and are 

effective for Pb and Ni. Despite metal carbonates are less stable than sulfides, they can 

contribute to initial sequestration of metals.  

The degradation of OM rapidly lowers the redox potential (Gaillard et al., 1994). The 

reduction process in waterlogged soil enriched with OM influences the behavior of siderophilic 

(iron loving) trace elements. As redox progress due to Fe and Mn oxy(hydroxide) reductive 

dissolution, trace elements will be released in to soil solution, or get deposited via co-

precipitation of Fe hydroxides or carbonates. Most metals in the pore water precipitate as metal 

oxides or adsorb on OM at redox potentials higher than 100 mV (Clark et al., 1998; Machemer et 

al., 1992; and Du Liang et al., 2009). Under chemically reducing conditions (Eh < 50 mV), in 

sulfate rich environment, sulfates can be reduced to sulfide minerals (Sheoran and Sheoran, 

2006). Trace metals with the variable valence (Cr, Se, As and Mo) respond immediately to the 

decreasing redox potential in the soil (Fendorf et al., 2000). Trace elements with the constant 

valence (Co, Ni, Cu, Pb and Zn) respond indirectly by the reduction of iron (hydr)oxides as the 

carriers of heavy metals (Plekhanova et al., 2003). Upon a moderate decrease in redox potential, 

the mobility of heavy metals rises (Plekhanova et al., 1999). However, very strong reduction and 
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abundance of S in the soil lead to the opposite result, i.e., the formation of insoluble sulfides of 

heavy metals (Peltier et al., 2003). 

 Lead Minerals and Their Stability 

The equilibrium reactions of different Pb minerals and complexes are summarized in 

Table 2-1. It is very unlikely that metallic Pb (Pb0) may persist in natural environment that can 

be well explained by the following half-cell reaction: 

Pb2+ 2e-           Pb (c)      logK0 = -4.33 

Since Pb2+ in soil is expected to approach 10-8.5 M, an electron activity (pe) of < -6.41 is required 

for elemental Pb to form in soils. Thus it is unlikely for elemental Pb to form in soils as pe 

ranges from -6.0- 13.0 in soils (Sposito, 1989).   

 

 



25 

Table 2-1: Equilibrium reactions for some Pb minerals and their equilibrium constants at 25° C 

used for creating stability diagram 2-1. 

No. Equilibrium reaction Log K° 

1 PbS (Galena)          Pb2+ + S2-  -27.51 

2 

3 

4 

PbO (yellow) + 2H+          Pb2+ + H2O 

PbO (red) + 2H+          Pb2+ + H2O 

Pb(OH)2) (c) + 2H+           Pb2+ + 2H2O 

12.89 

12.72 

8.16 

5 

6 

7 

PbCO3 (cerussite) + 2H+          Pb2+ + CO2(g) + H2O 

PbCO3.Cl2 (Phosgenite) + 2H+          Pb2+ + CO2(g) + H2O + 2Cl- 

Pb(CO3)2.(OH)2 (c) + 6H+          3Pb2+ + 2CO2(g) + 4H2O  

4.65 

-1.80 

17.39 

8 

9 

10 

11 

PbSO4 (anglesite) + 2H+            Pb2+ + SO4
2- 

PbSO4.PbO (c) + 2H+          2Pb2+ + SO4
2- + H2O 

Pb5(PO4)3OH (c) (hydroxypyromorphite) + 7H+            5Pb2+ + 3H2PO4
- 

Soil-Pb            Pb2+ 

 

-7.79 

-0.19 

-4.14 

-8.50 

Adapted from Lindsay (1979). 
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Galena (PbS) is the most common mineral under reduced condition, it transforms into 

other common Pb minerals such as anglesite (PbSO4), cerrusite (PbCO3), and other phosphate 

minerals upon exposure to oxygen rich environment. In the oxidized system with higher pH 

values, Pb carbonates (cerrusite, PbCO3), basic Pb carbonates (Pb3(CO3)OH), and Pb hydroxides 

(Pb(OH)2) are the most stable minerals. Under low pH environment, Pb also forms many mixed 

minerals containing carbonate, sulfate, oxide, and chloride. These mixed minerals have an 

intermediate solubilities, and some even have very low solubility to be important in soils. For 

example, under lower pH, anglesite (PbSO4) is predicted to have lower solubility compared to Pb 

carbonates, oxides, and hydroxides depending on the sulfate activity in that particular 

environment (Lindsay, 1979). Lead pyromorphite is one of the stable minerals among the Pb 

phosphates minerals under a wide range of environmental conditions. Figure 2-1 was constructed 

assuming sulfate activity to be 10-3 M that shows the relative solubility of several Pb minerals 

with respect to anglesite (PbSO4). Of the minerals included in Figure 2-1, anglesite (PbSO4) is 

most stable below pH 6, whereas cerrusite (PbCO3) is most stable at higher pH. The oxides; 

PbO(red), and PbO(yellow) are the most soluble minerals of those depicted in the diagram. The 

Pb(OH)2 (c) is considerably more stable at pH 8. Both PbCO3, and PbCO3(OH)2 (c) have similar 

solubilities at 0.0003 atm of CO2 (diagram is constructed based on 0.003 atm. With increase in 

CO2, PbCO3 is more stable (Figure 2-1). Among mixed Pb minerals, PbSO4.PbO, and Pb3 

(CO3)2(OH)2 minerals are more stable compared to others that is explained in the diagram 

(Lindsay, 1979).  
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Figure 2-1: The solubility of selected various lead oxides, carbonates, and sulfates when SO4
2- 

and Cl- are 10-3 M and CO2 is 0.003 atm.   
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 Zinc Minerals and Their Stability  

The oxidation state of Zn in natural environment like soils is Zn2+ exclusively. Metallic 

Zn(c) formation is possible only in highly reduced environments; it is unlikely to occur in soil 

environments as demonstrated by the reaction given below: 

Zn2+ +2e-           Zn (c)      logK0 = -25.80 

Considering Zn2+ to be 1 M, an electron activity (pe) of -12.90 is required to form Zn(c). As 

discussed earlier, the pe in soils ranges from -6 to -13 (Sposito, 1989). Therefore, it is unlikely 

that Zn concentration will reach 1 M in solution, and metallic Zn will form in soils.  

 

Table 2-2: Equilibrium reactions of some Zn minerals at 25 °C in soils used for creating stability 

in Figure 2-2. 

No. Equilibrium reaction Log K° 

1 Soil-Zn + 2H+          Zn2+ 5.80 

2 

3 

ZnO (zincite) + 2H+          Zn2+ + H2O 

Zn(OH)2) (amorphous) + 2H+           Zn2+ + 2H2O 

11.16 

12.48 

5 

6 

7   

    

 

Zn2SiO4 (willemite) + 4H+          2Zn2+ + H4SiO4
0  

ZnCO3 (smithsonite) + 2H+          Zn2+ + CO2(g) + H2O  

ZnFe2O4(franklinite) + 8H+          Zn2+ + 2Fe3++ 4H2O 

13.15 

7.91 

5.80 

 

Adapted from Lindsay (1979). 
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Since the specific minerals controlling the activity of Zn2+ in soils are not known, 

reference solubility is used that permits Zn2+ solubility relationships to be compared to those of 

known Zn minerals (Novell and Lindsay, 1969; 1972). Most of the Zn production is done from 

Zn sulfide minerals; sphalerite, and wurtzite as they have higher percentage of Zn by weight 

compared to other minerals. Zinc sulfide minerals are common under reduced conditions, 

however on exposure to oxygen rich environment, ZnS are readily transformed into Zn silicate, 

oxide, carbonate, sulfate, and phosphate minerals. 

The solubilities of different Zn minerals are plotted in figure 2-2. It shows that all of the 

Zn(OH)2 minerals, ZnO (zincite), and ZnCO3 (smithsonite) are too soluble to persist in soils. 

Willemite (Zn2SiO4) has intermediate solubility, and is highly dependent on H4SiO4 in soils that 

is further controlled by quartz (SiO2) (Lindsay, 1979). Franklinite can be the most insoluble of 

these minerals, depending upon the Fe(III) oxides controlling Fe3+ activity. Zn minerals 

solubilities are highly influenced by pH, and with each unit of pH increase, solubility of all Zn 

minerals is increased by 100-fold (Fig 2-2). In addition, the existence of Zn phosphate mineral 

(hopeite) is highly dependent upon the concentration of phosphate in soils (Lindsay, 1979).  
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Figure 2-2: The solubility of several Zn minerals compared to soil-Zn. 
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 Metal Sulfides and Their Solubility 

The solubility relationships of the various S species and the sequence of metal sulfide 

precipitations are significant in soil particularly under submerged conditions, or exposed to 

fluctuating redox conditions (Lindsay, 1979). Sulfate is recognized as stable species in all but 

highly reduced soils. In highly reduced soils, hydrogen sulfide (H2S) becomes an important 

solution species and is predominantly present below pH 7.02. Under this conditions relatively 

higher partial pressure of H2S (g) is maintained that is sufficient enough to get released. Between 

pH 7.02 and 12.90 HS- is a major solution species while S2- is dominant above pH 12.90. Figure 

2-3 was constructed using the thermodynamic equations provided in Lindsay (1979), and 

assuming SO4
2- at 10-3 M. Figure 2-3 depicts the first formed sulfide as Hg2S (c). The S 

(rhombic) formation is unlikely in soils due several reasons; required pe+pH of 2.5- 4.0, total S > 

10-1.55 M, required confined system to avoid H2S escape, and reaching all those conditions are not 

practical. Thus, the likely loss of H2S (g) makes it unlikely to form CaS, and MgS in soils 

(Lindsay, 1979). βeta-Ag2S (c) has similar solubility as α-Ag2S. Pyrite (FeS2) is the most stable 

mineral among all the iron sulfide minerals, however at lower redox some of the stability 

relationships may shift. 
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Figure 2-3: The redox at which various metal sulfides precipitate in soils when SO4
2- is 10-3 M. 
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Activity of Zn2+ cannot be significantly depressed by ZnS (sphalerite) as redox is poised by the 

transformation of iron oxides into FeS2 (Pyrite). Since soil has more Fe than Zn, this 

transformation will require sufficient enough S. Only after labile iron oxides transforms into 

pyrite, pe+pH will drop, and ZnS will precipitate to control Zn2+ solubility (Lindsay, 1979). 

 Biogeochemical cycling of Sulfur, Carbon, and Iron 

Biogeochemical cycles describe the pathways by which chemical elements move through 

both biotic (the biosphere) and abiotic compartments (the atmosphere, hydrosphere, and 

lithosphere) on earth. In addition to energy flows, biogeochemical cycles establish the relations 

among ecosystem compartments at local, regional and global scales. In this system of inputs, 

outputs, sources and sinks, elements are moved from one part of an ecosystem (e.g., ocean, soil, 

and atmosphere) where the element may temporarily accumulate to another, back and forth 

among organisms, and from living organisms to the abiotic environment and back again. Simply, 

in biogeochemical cycling, chemical elements are cycled and reused within and among earth's 

various compartments over and again (Manahan, 2004; Lin et al., 2010).  

The biogeochemical cycles proceed via biological, geological and chemical interactions 

along hydrological, gaseous, and mineral (Pérez-Guzmán et al., 2010). Some of the most 

ecologically important and well known element cycling are for carbon, nitrogen, oxygen, 

phosphorus, sulfur, water, and iron (Pérez-Guzmán et al., 2010). 

 Sulfur cycling  

Sulfur is very essential element for all living organisms. The biogeochemistry of S is of high 

interest due to its influence on many different biogeochemical cycles. Sulfur exists mainly in 

organic forms and partly in inorganic forms. It is transported by physical processes like wind, 

erosion by water, and geological events like volcanic eruptions. However, in its compounds such 
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as SO2, H2S, S2- or organic S, it can be moved from the ocean to the atmosphere, to land and then 

to the ocean through rainfall and rivers. All of the possible inorganic S sources, including SO4
2-, 

S2-, and reactive intermediates such as polysulfide, and thiosulfate can be produced in natural 

environment by microbial processes, therefore microbial mediated oxidation, and reductive 

cycling control the biogeochemistry of S isotopes. The distribution of S is primarily controlled 

by dissimilatory bacterial SO4
2- reduction (Canfield, 2001a). There are two basic pathways by 

which organic S is formed, the first pathway is assimilatory SO4
2- reduction in which active 

uptake of SO4
2- into cells occur, followed by its reduction to produce amino acids and other S 

requiring cellular components. This pathway represents a very small fraction, however the other 

major way of organic S formation is via incorporation of reduced S into OM during digenesis. In 

addition, S isotope distribution is controlled by sedimentary cycle of microbial sulfide oxidation, 

and subsequent disproportionation of intermediate phases of S (e.g., elemental S, and thiosulfate) 

(Habicht et al., 2001), which has discovered an explanation for the discrepancy between 

fractionation observed in nature, and those occurring experimentally during bacterial sulfate 

reduction. 

a. Mineralization: This process involves conversion of organically bound S to inorganic 

forms of S such as SO4
2-, and is assimilated by plants and microorganisms, especially for 

those who prefers SO4
2- as an electron acceptors (e.g. SRBs). Insufficient mineralization 

of organically bound S will inhibit microbial growth affecting the sulfide mineral 

formation in bioremediation approach, where metal sulfide formation is a main goal. 

b. Immobilization: It is a process of microbial mediated conversion of inorganic forms of 

S; SO4
2-, SO3

2-, S2-, thiosulfate (S2O3
2-), trithionite compounds to organic S compounds. 

Organic S compounds are not bioavailable form rather then they are sequestered. 
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c. Oxidation: This process included oxidation of elemental S and inorganic S compounds 

like H2S, SO3
2- and S2O3

2- to SO4
2-. Oxidation of S can be beneficial in agriculture as it 

has ability to alter the pH. Micronutrients like K, Mg, Ca, and others can be solubilized 

and be accessible to plants. On the other hand, in contaminated soils, it can cause 

environmental disasters by mobilizing the harmful trace elements downstream. 

d. Reduction: Dissimilatory bacterial reduction of dissolved sulfate is the primary means 

by which reduced sulfur (H2S) is produced in the natural environment. Dissimilatory 

sulfate reduction is more favorable under anaerobic, and alkaline conditions. Primarily 

sulfur reducing bacterial community (Desulfomonas, Desulfovibrio, Desulfatomaculum 

spp.) plays role in reducing SO4
2- to H2S.  

Iron cycling 

Iron composes more than 30% of the earth's mass, and is a ubiquitous element found in 

the atmosphere, biosphere, lithosphere, and hydrosphere. It is one of the most abundant elements 

on earth and among the most important elements in the biosphere (Morgan, 1988). Iron is an 

essential element for numerous cellular processes and metabolic pathways in both eukaryotic and 

prokaryotic organisms. Despite its abundance, Fe can be in short supply for growing organisms 

as it changes its chemical form, in ways that controls its availability. It is a reactive metal in its 

pure state that oxidizes readily in the presence of oxygen. Iron exists in reduced form (Fe(II)), or 

oxidized form (Fe(III)) depending on the oxygen concentration, pH, and biological activities. 

The oxidized, and reduced form of Fe are abundant in Fe(II), and Fe(III) bearing minerals. The 

Fe cycle is highly influenced by natural processes, anthropogenic activities, and microbial 

communities, and is driven by the oxidation and reduction processes.  
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Under aerobic conditions, highly soluble ferrous ion is converted to insoluble Fe(III) 

ions, or by microbes under acidic pH. Under aerobic condition, Fe exists in Fe(III) 

oxy/hydroxides forms. On the other hand, under anaerobic conditions, Fe is abundant in the form 

of Fe(II)s ions. Under low Fe stress, microbes secrets chelating agent known as siderophores to 

form Fe(III)-siderophore complexes making insoluble Fe bioavailable (Barbeu et al., 2001). Iron 

can be transported to the ocean as dust or volcanic ash, among which coarser particle will sink 

rapidly, while smaller (colloidal) particles will travel further and stay in the surface ocean, 

increasing the amount of bioavailable Fe (Duggen et al., 2009; Thompson et al., 2006). In soil, 

microorganisms play important role in the transformations of Fe in following ways: 

 

Figure 2-4: Biogeochemical cycling of Fe in soil. 
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 Carbon cycling  

Carbon biogeochemical cycling is one of the most significant global element cycling. The 

biogeochemical cycle of C comprises a sequence of events that are key to making the earth 

capable of sustaining life. It describes the movement of C as it is recycled and reused 

among the atmosphere, biota, soil organic carbon (SOC) and ocean (Janzen, 2004). Out of total, 

about 80% (8.06 x107 Pg C) of organic, and inorganic C compounds are buried in earth that 

comprises 4000 Pg of OC held by fossil fuels and  4 x 104  Pg of inorganic C held by ocean 

surface that helps to buffer  atmosphere CO2 which comprises about 750 Pg (McCarl et al., 

2007). On the other hand, soil represents the largest terrestrial pool as it constitutes 1500 Pg C 

which is about three times C storage in vegetation and two times in the atmospheric pool 

(Schlesinger, 1997). With the presence of different fractions of C, there is a continuous exchange 

of C among the pools. Over the long term, the C- cycle was balanced among different pools and 

being able to keep the earth’s temperature relatively stable. However, with increased 

anthropogenic activities during the recent century altered the cycle via shifting C from one to 

another pool. For example, alterations that transferred more C into the atmosphere result in 

warmer temperatures on earth (Kleypas et al., 1999). 

Soil OC is important because it is actively in flux with the atmosphere and as such, it is a 

potential feedback loop to climate change that is still not fully understood (Schmidt et al., 2011). 

Additionally, soil C is important for many soil properties such as pH buffering capacity, nutrient 

and water storage capacity, soil structure, and as a source of nutrients to organisms (Essington, 

2004; Lal et al., 1999). Within soil, C goes through a sub-cycle that is part of the global C- cycle. 

Soil C has multiple pools of C; residue (deceased organisms), biomass (plant root, hyphae), 

humic substances, non humic substances, and inorganic C (carbonate minerals), however soil C 
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is represented via humic and non humic substances. Biomass C becomes residual C once the 

organisms die or release waste products which is broken down by microbes through enzymes 

that is excreted to begin digestion in soil matrix. The residue then becomes non humic substances 

(amino acids, peptides, sugars, etc) that is further transformed to humic substances via a series of 

biochemical reactions; known as humification (Essington, 2004). Humic substances can be 

divided into three main fractions: humic acids (HA), fulvic acids (FA) and humin, and are an 

operationally defined fraction of soil organic matter representing the largest pool of recalcitrant 

OC in the terrestrial environment (Essington, 2004).  

Soil organic matter are increasingly emphasized in aquatic ecosystems or its geochemical 

and ecological roles. Organic matter in aqueous systems acts as a proton donor or acceptor and 

as a pH buffer, and affects the transport and degradation of pollutants. It also participates in 

mineral dissolution and precipitation reactions. Organic matter also influence the availability of 

nutrients, and serve as a carbon substrate for microbially mediated reactions. Dissolved organic 

carbon (DOC) comprises the vast majority of the organic matter in most water samples. (Weishar 

et al., 2003). 

Mechanistic Understanding of Remediation Success  

 Synchrotron based X-ray analysis 

Once element/contaminant enters into soil, it transforms into different forms depending 

on reactivity and biogeochemical properties of soils. Therefore it is required to measure the 

elemental distribution, and chemical speciation in relation to the minerals formed to characterize 

the soil properly. Provided the above information, understanding of mobility, bioavailability and 

toxicity can be measured especially on addition of fertilizers, pesticides, herbicides and 

introduction of contaminants into soils.  
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With the heterogeneity and complexity of soil, any single approach cannot characterize it 

with high precision; therefore an integrated approach is needed to obtain unique but 

complementary information for complete understanding of chemical environment (Fendorf and 

Sparks, 1996). There are several known analytical methods for elemental speciation that are 

restricted to fluid samples. Solid samples can be measured via these methods, only if the solid 

samples are dissolved without losing any species information, which can be very tedious and 

carry high errors (Welter, 2003). Traditionally, metal speciation in soils have been measured by 

sequential extraction that gives information on metal origin, its biological, and physico-chemical 

properties, bioavailability, mobilization, and transport. There are several limitation associated 

with this method as incomplete dissociation of target metals, removal of dissolved species, and 

change in states of redox-sensitive elements may occur (Nachtegaal et al., 2004). Therefore, the 

application of molecular-level spectroscopic techniques that are highly sensitive and non-

destructive to sample integrity would provide definitive answers to complex environmental 

questions that has been supplied by X-ray based technique offered by several synchrotron 

sources (Rehr et al., 2000). X-ray absorption spectroscopy can be used to probe most phases of 

matter including crystalline or amorphous solids, liquids, and gases thus making XAS as one of 

the most versatile research tools to fully investigate the molecular nature of a wide variety of 

substances. (Miller et al., 2012). 

 Argonne National Laboratory located in IL, USA is one of the largest synchrotron 

facilities that offers different X-ray base techniques such as X-ray fluorescence (XRF), X-ray 

absorption spectroscopy (XAS) that includes X-ray absorption fine structure (XAFS) and X-ray 

absorption near edge structure (XANES), and X-ray diffraction (XRD) (Fendorf and Sparks, 

1996). The principle of this technique is based on the X-ray absorption that occurs by 
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bombarding an element of interest with a beam of high energy particles from a synchrotron 

radiation source to excite, and eject electrons of particular element of interest from lower 

electron orbital with lower energy to the higher electron orbital with higher energy that are 

unoccupied or into continuum leaving core hole (Kelly et al., 2008). When the electron from 

outer-shell are expelled, they emit an energy called fluorescence which is collected, and 

measured by computer-controlled detectors. The data collected by the detector yield 

characteristic spectra providing an information on oxidation state, number and type of nearest 

neighboring atoms, coordination environment, and interatomic bond distances enhancing our 

understanding of the fate and transport of toxic elements in the environment (Miller et al., 2012). 

These X-ray based techniques can be used in soils from bulk to micro-scale level based on the 

need to meet specific objectives. The XAS can be measured at both bulk, and micrometer scale 

by focusing beam size in micro-XANES, and micro-XAFS (Liang, 2010). While soils are highly 

heterogeneous at a variety of size scales, the micro-scale studies can be beneficial in 

understanding the species composition at micro-scale level, and the mechanisms involved in 

their formations. It also helps identify the minor minerals formations that could be overlooked by 

bulk level XAS. Whereas bulk XAS has been proven to identify the overall speciation (Kelly et 

al., 2008; Stern et al., 2012; Miller et al., 2012).   

Synchrotron based X-ray fluorescence (XRF) helps to study the elemental distribution, 

their relationship, and associations (Figure 2-3). In addition, it helps to identify the hotspots 

where, XAS can be collected. Therefore, XRF is known as a complementary technique for XAS 

analysis (Kelly et al., 2008).  

The X-ray absorption is typically divided into two regimes: X-ray absorption near edge 

spectroscopy (XANES) and X-ray fine structure spectroscopy (XAFS). X-ray absorption near 
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edge spectroscopy is related to the edge energy. The absorption edge due to the excitation of core 

electrons to the continuum is very specific for every element. Small disturbance is due to change 

in redox state lead to a chemical shift of the edge position that depends on the oxidation state of 

the absorber atom available for excitation. That is why XANES can be used to identify the 

valence states and different oxidation states of elements present in soils. However, with the short 

distance based (small absorption edge) technique, it does not give more information from other 

shells. Therefore, employing XANES on the element with different oxidation states will be more 

useful to predict its bioavailability, toxicity and mobility in soils. For example, Fe is one of the 

most ubiquitous elements of particular interest as it forms highly reactive and often nanometer-

sized Fe(III) oxy-hydroxides in the soil environment. Under reducing conditions, the oxy-

hydroxides transform into Fe(II) minerals, so that redox processes can often be traced back by 

analyzing the Fe oxidation state of fine-grained Fe minerals (Prietzel et al., 2007). The XAFS 

region is the oscillation part in the X-ray spectrum that is found above the edge. It contains 

information on the local molecular bonding environment of the element of interest including type 

and number of atoms in coordination with the absorber, the distance between atoms and the 

degree of bonding disorder (Kelly et al. 2008). The XAFS portion of the spectra is best 

understood in terms of the wave behavior of the photoelectron, therefore it is required to 

transform the energy data to k-space or the wave number of the photoelectron (χ(k)), referred to 

as the chi-function (Kelly et al., 2008).  

In XAS analysis, an unknown sample spectra are compared to reference spectra with 

statistical analyses such as a linear combination fitting (LCF) or principle component analysis 

(PCA) to predict the mineralogical identification of the element (Beauchemin et al., 2002; 

Scheinost et al., 2002; Scheckel and Ryan, 2004). The results provide information on speciation 
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(chemical form or species) identifying its redox state and physicochemical characteristics that 

can be related to their bioavailability, thereby in conjunction with additional experiments, 

reactions of an element of interest under particular environment can be predicted (Miller et al., 

2012). 

The X-ray absorption spectroscopy (XAS) has been in use since 1970s in soil science, 

mineralogy, and geochemistry (Sayers et al., 1988). It is not very practical in soils due to its 

complexity; however it has been very useful in less complex system, or in crystallographic 

studies. Numerous studies have been done over the past two decades that had employed XAS to 

metal/metalloid adsorption complexation mechanisms at the soil or mineral/water interface, and 

has been proven to be very successful (sparks, 2003). A wide range of surface sorption processes 

have been investigated by this method, including surface precipitation (Chisholm-Brause et al., 

1990), co-precipitation (Waychunas et al., 2003), surface redox reactions (Arai et al., 2003) and 

adsorption reactions (Randall, 1999). X-ray absorption spectroscopy has been used in many 

different studies to examine contaminants such as Pb in soils (Cotter-Howells et al., 1994, 1999; 

Ryan et al., 2001; Scheckel and Ryan, 2004). X-ray absorption spectroscopy is one of the only 

methods capable of providing direct molecular-scale speciation of Pb in natural geomedia. 

Several studies have employed XAS to probe Pb speciation in mine tailings (Ostergen et al., 

1999; Brown et al., 1999; O-day et al., 1998). The particular importance of sorbed species in 

mine and smelter impacted soils has been highlighted (Morin et al., 1999). They revealed that 

most of the tailings were carbonate rich, and Pb was principally found in carbonate and sorbed 

phases (Ostergen et al., 1999; O’Day et al., 1998). In addition, Ostergen et al. (1999) used XAS 

techniques to quantitatively speciate Pb in three different types of mine tailings from Leadville, 

CO revealing dramatic variation in Pb speciation compared to chemical extraction, and more 
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conventional micro analytical techniques such as scanning electron microscopy and electron 

probe microanalysis, conducted in the laboratory. The importance of XAS technique has been 

emphasized by Scheckel (2004) especially for the amended soils where extractions are not very 

suitable unless supported by XAS data. There are several studies done in Zn speciation by using 

XAS technique (Manceau et al., 2000; Ford, and Sparks, 2000; Nachtegaal et al., 2005; and 

Voegelin et al., 2005). Nachtegaal et al. (2005) used XAS technique on smelter soils from 

Leadville, CO, and reported several slag-related Zn mineral phases, i.e. willemite, sphalerite, 

gahnite and hemimorphite, in the treated and non-treated soils by bulk and micro-focused EXAFS 

spectroscopy. Isaure et al. (2002) reported that the mentioned minerals were deposited on soil mainly 

by fall out from the chimney stack of the smelter, and sphalerite (ZnS) minerals as the remnants of 

the raw ore that by-passed the pyrometallurgical smelting process due to incomplete oxidation of 

ZnS (up to 20%), generating ZnS containing slags. They also revealed willemite (Zn2SiO4) as a high-

temperature anhydrous silicate that originates from the smelting process. Likewise, hemimorphite 

(Zn4Si2O7(OH)2·H2O) and gahnite (ZnAl2O4) could have been formed in the smelting process.  

For most systems the application of XRD, especially synchrotron based XRD and XAS 

technique in combination is complementary. The X-ray diffraction is one of the highly used 

techniques for characterizing abundant soil, which depends on long range ordering of atomic 

planes to probe crystalline structure at a length scale of approximately 50 Å or more. X-ray 

absorption spectroscopy probes the immediate environment of the selected element, within about 

6 Å, and its theory and interpretation does not rely on any assumption of symmetry or 

periodicity. While both XRD and XAS can be used to determine distances between atoms, the 

information is derived from two very different X-ray interactions with the sample (Fendorf and 

Sparks, 1996).  
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 Microarray Analysis 

As soil sustains a huge diversity of microorganisms, of which about 99% is not 

cultureable. Using a culture-dependent technique would not be feasible to study the complex 

microbial community (Whitman, 1998). Owing to their extremely large diversity and their yet 

cultivable status microbial detection, quantification in the natural system is a great challenge 

especially on a large scale throughput (Fitter et al., 2005). There are several novel methods, most 

of which are based on rRNA and rDNA analyses and have been able to explore the soil microbial 

diversity to a larger extent; however, those techniques could be expensive based on the amount 

of data it provides, labor intensive and time-consuming. The next advancement in microbial 

ecology is to extract genomic, evolutionary and functional information from bacterial artificial 

chromosome libraries of the soil community genomes (metagenome), and sophisticated analyses 

that apply molecular phylogenetics, microarrays and in situ activity measurements. Microarray 

provides huge amounts of new data, potentially increasing our understanding that provide new 

insight into the relationship between phylogenetic and functional diversity (Torsvik et al., 2002; 

Sessitsch et al., 2006). Microarrays are miniaturized arrays of hundreds to thousands of discrete 

DNA fragments or synthetic oligonucleotides attached to a solid substrate such as glass or nylon 

membrane. Microarrays can be divided into two types; 1) DNA microarrays constructed with 

DNA fragments typically generated using polymerase chain reaction (PCR) (Schena et al., 

1995), 2) oligonucleotides microarrays are constructed with shorter 10 to 120-mer sequence that 

are specified to be complementary to specific coding regions of interest. Oligonucleotides are 

often used in detecting mutation and polymorphisms whereas DNA microarray has wider 

applications. Microarrays are widely accepted functional genomics technology for large-scale 

genomic analysis (Schena et al., 1998; Schena, 2003). Recently, the potential research 
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applications of microarray technology to studies in microbial ecology have been explored (Zhou 

and Thompson, 2002; Zhou, 2003). GeoChip constructed with 50-mer oligonucleotides probes 

have evolved over several generations. GeoChip 4.2 relevant to this thesis work, is a functional 

gene array targeting 740 functional genes, and 95847 probes involved in the biogeochemical 

processes and functional activities of microbial communities important to human health, 

ecosystem management, agriculture, energy, global climate change, and environmental cleanup 

and restoration including N-, C-, S- and P- cycling, metal reduction and resistance, and organic 

contaminants degradation (Van Nostrand et al., 2011; Tu et al., 2014).  

Microarray hybridization is based on the association of a single stranded molecule that is 

labeled with a fluorescent tag, with its complementary molecule, which is attached to the 

microarray slide. The specific gene profile is generated by an unknown experimental sample is 

compared with control (reference) pattern. The fluorescein labeled DNA in solution is 

considered as the target, and the DNA strand fixed on the microarray slide is referred as probes. 

Since the sequence of the arrayed molecule is usually known, it is used to investigate the 

unknown target molecule. The technical advancements have enabled microarray-based genomic 

technologies to revolutionized biological systems (Zhou et al., 1998). Adapting microarray 

technology in environmental samples hold several challenges in term of probe design, the 

coverage of gene sequences, specificity, sensitivity and quantitation (Wu et al., 2006). One of the 

greatest challenges in using FGAs for detecting functional genes and/or microorganisms in the 

environmental samples is to design oligonucleotide probes specific to the target genes/ 

microorganisms of interest as sequences of particular functional genes are highly homologous 

and/or incomplete (He et al., 2007), however GeoChip 4.0 has been considered as the most-

comprehensive functional gene array to study the functional diversity, composition, structure and 
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dynamics of microbial communities, and to link their structure to environmental factors and 

ecosystem functioning (Tu et al., 2014). Several studies have been done to study the microbial 

community structure in the metal contaminated sites, and have observed the role of microbes in 

metal reduction (Brodie et al., 2003; He et al., 2007; Van Nostrand et al., 2009; 2011; Wu et al., 

2012; Brodie et al., 2003). These studies have observed the microbial community structure 

changes with the role of SRBs in metal reduction.  

 Colloidal Bound Trace Element Mobilities 

Colloidal material is defined as sub-micro meter mineral particle or bacterial cell that has 

at least one dimension between 1 nm and 1 µm, and are too small to withstand gravitational 

settings (Lead et al., 1997; Weber et al., 2009). Due to its higher surface area, and a large number 

of potentially reactive functional groups exposed to the solution, the colloidal fraction can sorb 

large fraction of trace components, and thereby act as a potential carrier of poorly soluble 

contaminants in the subsurface environment (Lead et al., 1997; Thompson et al., 2006; and 

Weber et al., 2009). Colloidal particles are mainly minerals with amphoteric surface (e.g. iron, 

aluminum and manganese oxides, carbonates) and fixed charge surfaces (phyllosilicates faces) 

including OM coatings on mineral phases and bacteria. The basic mechanism involved in 

association of contaminants with colloidal particles are surface complexation, ion exchange, 

and hydrophobic partitioning. Basically, abundance of colloidal particles, and their dispersion 

depends upon their characteristics at solid/liquid interfaces, which in turn depend on 

environmental variables such as pH, salinity, presence of other competitive and/or complexing 

cations or anions, temperature, bedrock geology/mineralogy, suspended particulate content and 

water velocity (Kretzschmar et al., 1999).  
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The fate of contaminants and eventually their impact on the groundwater quality depends 

on the nature, and behavior of potentially mobile colloids and their size, and connectivity of 

pores, and stability (De Jong et al., 2002). Colloids show tendency to remain in suspension due 

to their very small size, and surface charge characteristics, however their stability in suspension 

is determined by the solution chemistry, ionic strength, number of particles and their size 

distribution, and mixing conditions (Thompson et al., 2006). In fact, the above-mentioned factors 

that control the colloidal stability in suspension are themselves influenced by the dynamic shifts 

in redox status of the environment (Sposito, 2004). Changing redox status has a strong impact on 

Fe chemistry; therefore, the interaction of Fe redox processes with colloidal chemistry is 

complex. This complexity is further accentuated by the fact that soil microbes catalyze at least 

the reduction portion of the Fe redox cycle. Thus, concentrations of electron donors, electron 

acceptors and microbial population dynamics significantly influence colloidal stability in soils 

through biogeochemical pathways (Lovely et al., 2004). 

Colloidal assisted transport has been commonly observed in river basins, and flood plains 

(Voegelin et al., 2007), however it has hardly been studied in reduced environment (Weber et al., 

2009). In SO4
2- rich environment, it is traditionally assumed that metals are effectively 

immobilized by getting sequestered in metal sulfides under reduced conditions (Kirk, 2004). The 

newly precipitated colloidal metal sulfide clusters are highly resistant to oxidation and may 

significantly enhance the metal mobility under reduced conditions (Luther et al., 2005; Borch et 

al., 2009). Copper-rich sulfide colloids or in template with bacterial membrane were reported to 

contribute in Cu, Pb and Cd mobilization in rivers under periodic SO4
2- reducing environment 

(Weber et al., 2009). In addition, there are column studies that reported dispersion of mercury 

sulfide from mine tailings indicating sulfide colloids can also be mobile in porous media (Lowry 
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et al., 2004). Repeated cycling between Fe reduction and oxidation have a cumulative impact on 

colloidal stability as well. Reduction of ferric oxides under suboxic conditions can promote 

colloid dispersion by dissolving Fe-oxide cements that hold aggregates together (Thompson et 

al., 2006; Banfield, 2004; Elimelech et al., 2002).  

Moreover, bacteria can also dramatically accelerate the transport of heavy metals in 

groundwater. Šimůnek et al. (2006) conducted both batch and column experiments to investigate 

adsorption of cadmium (Cd) onto Bacillus subtilis spores or Escherichia coli vegetative cells and 

Cd transport in alluvial gravel aquifer media in the presence of these bacteria and they have 

found that Cd traveled 17 to 20 times faster when it traveled with mobile bacteria. 

 Role of Microbes  

Microorganisms are ubiquitous in every habitable environment on earth. They are 

provided with metabolic processes that exclusively affects chemistry, and physical properties of 

surroundings (Newman, 2002).  Microbes have changed the universe in several different ways. 

They have altered the chemistry of the atmosphere via photosynthesis, nitrogen fixation, carbon 

sequestration. They have changed the composition of oceans, rivers, and pore fluids via control 

of mineral weathering rates, and/ or by inducing mineral precipitation. An alteration of chemical 

speciation, and mobilities of almost all the elements (Falkowski et al., 2008) in soil, and 

sediments have been possible by releasing complexing agents and by catalyzing redox reactions 

enzymatically. In addition microbes have help sustain higher trophic level organisms via primary 

production, and remineralizing OC even under extreme environments (Newman, 2002). All the 

microbial metabolic processes that are evolved to perform those functions are the fundamental 

component of biogeochemical cycles (Gadd, 2002). The microbial ability to effect and/or 

mediate mobilization or immobilization processes depends upon their ability to influence metal 
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distribution among soluble and insoluble phases (McLean et al., 2002). Most of the metal-

microbes interactions have been studied as means for contaminant removal, immobilization, and 

detoxification of metal or radionuclide pollutants (Eccles, 1999). Therefore, microbiological 

processes have potential applications in bioremediation. The chemistry of life, however, is based 

on redox reactions, i.e., successive transfers of electrons and protons from a relatively limited set 

of chemical elements (Williams et al., 1996).  

 Microbially mediated mobilization and immobilization of trace elements 

The microbially mediated mobilization of metals are possible via the metabolic 

processes; autotrophic and heterotrophic leaching, chelation by microbial metabolites and 

siderophores, and methylation that may result in volatilization process. All the mentioned 

processes can cause dissolution of insoluble metal compounds and minerals, including oxides, 

phosphates, sulfides and more complex mineral ores, and desorption of metal species from 

exchange sites on, e.g., clay minerals or OM in the soil resulting in mobility of metals in the 

environment. The heterotrophic leaching often occurs when microorganisms acidify their 

environment by proton efflux through plasma membrane H+-ATPases in order to maintain 

charge balance, or may occur as a result of respiratory carbon dioxide accumulation. With 

acidification, metals are released via competition between protons and the metal in a metal-anion 

complex or in sorbed form, efflux of organic acids and siderophores. Microbially mediated 

mobilization have been effectively used in leaching of a variety of wastes and low-grade 

minerals, soils and muds, filter dust/oxides, lateritic ores, copper converter slag, fly ash and 

electronic waste materials (Gadd, 2002). The most autotrophic-leaching of metals is carried out 

by chemolithotrophic, acidophilic bacteria. They fix carbon dioxide and obtain energy from the 

oxidation of Fe(II) or reduced S compounds resulting in the solubilization of metals (Schippers et 

http://www.sciencedirect.com/science/article/pii/S0016706104000060#BIB61
http://www.sciencedirect.com/science/article/pii/S0016706104000060#BIB20


50 

al., 1999). Leaching of metals sulfides by using Thiobacillus species and other acidophilic 

bacteria is well established for industrial scale bio-mining (Rawlings, 1999). 

Microbially mediated metals immobilization help metals to be transformed into insoluble, 

and chemically stable, therefore, it can be employed in bioremediation to minimize their spread, 

and leaching to groundwater. The main drivers of metal immobilization are redox reactions 

coupled with precipitations and sorption by microorganisms, organic substrate, and Fe 

hydroxides. The mechanisms through which metal immobilizations occur are: biosorption, metal 

precipitation by sulfate reduction, redox transformation, methylation, and plant-microbe 

interaction (Kosolapov et al., 2004).  

Metal precipitation is one of the significant processes involved in the long term retention 

of metals in artificial and natural wetlands. Such processes may be accompanied by other 

indirect reductive metal precipitation method which includes dissimilatory sulfate reduction and 

the subsequent precipitation of metal sulfides (Finneran et al., 2002). Since metal sulfides are 

more resistant to oxidation. Even less to moderate sulfide formations can help bring 

contamination to the permissible level as solubility is very low.  

Dissimilatory sulfate reduction also help form FeS and FeS2, among which the systems 

with FeS2 formation are more resistant to solubilization of metals (Huerta-Diaz et al., 1998). 

There are several studies reporting dissimilatory sulfate reduction as a major mechanism in 

immobilizing metals. The natural communities of sulfur reducing bacteria (SRB) generated ZnS 

deposits from dilute groundwater solutions supporting biogenic form of many low-temperature 

metal sulfide formations (Labrenz et al., 2000). In addition, recent evidence indicates that 

hyperthermophillic and mesophilic dissimilatory Fe(III)-reducing bacteria and archaea can 

precipitate Au0 via oxidation of hydrogen to reduce Au3+. Similarly, hyperthermophillic 
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microorganisms can reduce metals leading to the formation of magnetite (Fe3O4) and uraninite 

(UO2) ore deposits at ~100 °C in coupled with oxidation of hydrogen or organics (Kashefi et al., 

2001). Similarly, uranium ((U(VI)) can be reduced to U(IV) by certain Fe(III) reducing bacteria 

such as Geobacter metallireducens (Finnerman et al., 2002). Vanadium (V) has been shown to 

be reduced to blue colored V(IV), and then to black colored V(III), reduction of Hg2+ to less 

toxic Hg0 (Kosolapov, 2004; Wiatrowski, 2006), and reduction of Cr(VI) to Cr(IV), and Cr(III) 

has been reported via dissimilatory sulfate reduction by SRBs; Desulfovibrio desulfuricans that 

is also reported in reduction of toxic Pd(II) to Pd(0). Sulfur reducing bacteria biofilm reactors are 

reported to entrap or precipitate metals such as Cd and Cu (White, and Gadd, 2000). In addition, 

oxidation of Fe(II), and Mn(II) is another mechanism that is common in bioremediation, 

oxidation of reduced Fe and Mn are driven by both abiotic reaction forming Fe(III), which is 

further precipitated as Fe (oxy)hydroxides. This mechanism is very common in metal 

contaminated environments such as acid mine drainage, tailings piles, drainage pipes, sediments, 

bogs, and plant rhizosphere. The precipitated hydroxides of Fe, and Mn can strongly absorb 

other heavy metals such as Cu, Ni, Pb, Co, Cr, and others playing significant role in 

bioremediation (Gadd, 2004).  

 Effect of heavy metal contamination on microbial community structure 

It is well known that microbes can grow under extreme environments (Gadd, 2002); 

however, the long term exposure to a complex mixture of hydrocarbons (HCs) and/or heavy 

metals may be challenging to maintain diversified community structure, and microbial function, 

which is often crucial for any application of remediation strategies. Studies have shown that 

microbial community structure changes with long term exposure to contaminants depending 

upon the concentration of contaminants (Shi et al., 2005). The influence of soil heavy metals 
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pollution on soil microbial biomass, enzyme activity, and community composition near a copper 

smelter soil was also observed by Wang et al. (2007).  

 Sulfate reducing bacteria  

Sulfate-reducing bacteria (SRB) may be one of the primitive forms of life on earth that 

can be traced back billions of years in the geologic rock record when oxygen 

concentrations in earth's atmosphere were low. The SRBs left their first mark on their 

environment in pyrite minerals (FeS2) as old as 3400 million years (Ohmoto et al., 1993). 

Presently SRBs are ubiquitous in both marine and terrestrial environments. Provided by the 

ability to adapt to extreme physical and chemical conditions, they have very significant role in 

biogeochemical cycles. Their role in ore deposits formation have been proven by Labrenz et al. 

(2000). Their study showed the SRBs that can form ZnS mineral precipitate under very low 

oxygen environment. In addition, several studies have reported that SRBs are active in acidic 

sulfide-rich mine tailings and sediments impacted by mining activities; however, it varies under 

fluctuating in situ physico-chemical conditions. There is a strong correlation between C and S 

cycle due to microbial metabolisms, therefore, S cycle is highly influenced by SRBs activities 

(Schidlowski et al., 1983). There is a lack of information regarding the activity of SRB in more 

neutral pH sulfide-rich mine tailings despite the fact that these represent very favorable 

conditions (in terms of pH) for bacterial growth. Dissimilatory sulfate-reducing bacteria use 

sulfate mainly as an electron acceptor in the anaerobic oxidation of inorganic or organic 

substrates such as H2 + CO2, lactate, acetate, and propionate accumulating a large amount of 

sulfide. Further, the large amount of sulfide ions combine with available metal ions to 

form insoluble products resulting in the production and transformation of natural mineral 

deposits (Vasconcelos et al., 2000). Thus, the role played by sulfate-reducing bacteria in natural 
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processes is undoubtedly very important under anoxic or oxygen-free conditions. The role of 

SRBs has been successfully used in bioremediation of contaminated groundwater and soils. Both 

microbially mediated Fe and SO4
2- reduction are being investigated as potential processes that 

are capable of combating acidity and promoting contaminant metal precipitation in mining 

environments (Sen and Johnson, 1999, Wendt-Potthoff et al., 2002; Winch et al., 2008b). 
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Chapter 3 - Biogeochemical Transformations of Trace Elements in a 

Contaminated Minewaste Materials under Reduced Conditions  

 Abstract 

The milling and mining operation of metal ores are one of the major sources of trace 

metal contamination in the earths’ surface due to exposure of unstable sulfides present in 

minewaste to oxygen-rich waters. The spring river and its tributaries in southeast Kansas are 

contaminated with lead (Pb), zinc (Zn), and cadmium (Cd), due to historic mining activities 

conducted in the Tri-State mining district. Trace metal transformations and cycling in 

minewaste/soils could greatly influence ecosystem and human health. It has been hypothesized, 

if mine waste materials are disposed in the flooded subsidence pits; these metals can be 

transformed back into their sulfide forms under reduced conditions limiting their mobility, and 

toxicity. However, the existing mine tailings are low in OC and S. The objective of this study 

was to examine the effect of OC and S addition on the biogeochemical transformations of Pb, Zn 

and Cd in these minewaste materials. Short-, medium- and long-term saturated column 

experiments were conducted in order to study the effect of redox induced biogeochemical 

transformation of Pb, Zn and Cd over time. A reduction in dissolved organic carbon (DOC) 

along with sulfate-S reduction and estimated redox potentials indirectly indicated sulfide 

formation via dissimilatory sulfate reduction. Scanning electron microscopy-energy dispersive 

X-ray analysis conducted on darker patches that appeared in the columns after ~70 days of 

submergence showed colocalization of Pb, Cd or Zn with S, indirectly suggesting metal sulfide 

formation. Further, SEM-EDXA conducted on colloids retained on 0.45 µm- and 15 nm- 

membranes used on column effluent provided evidence that about <1% of total Cd and total Pb 

were transported as freely dispersed, or in-association with the bacterial membranes, during the 
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initial 32-day of submergence. Retention filters may be needed in subsurface treatment systems 

in order to avoid colloidal assisted escape of metals, and to ensure compliance with the 

maximum concentration limits for Pb and Cd in groundwater.   

 Introduction 

The milling and mining operations of metal ores are one of the major sources of heavy 

metal contamination on the earth’s surface, in particular, the generation of sulfide rich tailings 

has a heavy impact on neighboring water bodies (Edwards et al., 2000; Baker et al., 2003; 

Navarro et al., 2008). Acid mine drainage resulting from the exposure of sulfide rich minerals to 

oxygen rich water leads to leaching of several contaminants that may impact groundwater quality 

(Johnson et al., 2005; Vega et al., 2006). Thus, metal contamination and acid mine drainage are 

high priority environmental concerns, particularly where minewaste materials rich in metal-

sulfides are abandoned without any mitigation provisions in place (Nordstorm et al., 1999; 

Concas et al., 2006). 

The Tri State mining district located in parts of southeast Kansas, southwest Missouri and 

northeast Oklahoma was one of the largest Pb and Zn producers in the world, beginning 

operation around 1848 and continuing until around 1970. The district has a large quantity of 

minewaste on the surface as chat and tailings which contain trace levels of sulfide minerals such 

as pyrite (FeS2), galena (PbS), sphalerite (ZnS), and others (Newfields, 2003). The movement of 

soluble metals and metal-laden sediments from the landscape into surface waters via surface 

runoff are the primary ecological concerns for both aquatic and terrestrial organisms (Pierzynski 

and Vaillant, 2006). The USEPA has suggested subsurface disposal (i.e., minewaste disposal in 

flooded subsidence pits) as a remediation strategy for the highly contaminated and abandoned 

minewaste materials. The assumption is that these metals can be transformed back into their 
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sulfide forms under reducing conditions, limiting mobility and toxicity. However, there are 

several challenges associated with this strategy. The mine waste is inherently low in DOC and 

this could slow the reduction processes (Zhang et al., 2005; Hayes et al., 2006; Borch et al., 

2009) as OC is the driver of biogeochemical cycling of major and trace elements (Evans et al., 

2006; Borch et al., 2010). Insufficient S content in minewaste could also limit sulfide formation, 

and promote carbonate precipitation, depending on pH and carbonate concentration (Falkowski 

et al., 2000; Toevs et al., 2007). High carbonate concentration in the Tri-State minewaste 

materials continues to buffer pH, thereby keeping the pH of the materials elevated (KGS, 2010). 

The alkaline pH and carbonate concentration may favor the formation of metal carbonates that 

are not as stable as sulfide minerals (Lindsay, 1979; Toevs et al., 2007; Du Liang et al., 2009). In 

addition, subsurface submergence of minewaste materials may result in seepage of leachate with 

high concentrations of metals into groundwater. Another challenge would be acquiring sufficient 

clean soil for capping, and long term continuous monitoring could make this remedial action 

expensive (USEPA, 2010). 

With the addition of OC and S to minewaste, these metals can be transformed back into 

their sulfide forms under reduced conditions thereby limiting their mobility and toxicity 

(Brookins, 1986; 1988). A typical sulfate reduction reaction using organic matter (OM) as an 

electron donor is: 

SO4
2−+ OM (2C) +2H2O→ H2S+ 2HCO3

− (pH<7.0) (Stein et al., 2007) 

At high metal concentration, metals tend to precipitate as metal sulfides at pH<7.0, as the 

rate of H2S formation increases at pH of 7.0 and is at the maximum at 8.0 (Morris et al., 1972; 

Nielsen et al., 1988; Burton et al., 2008).  

H2S+M2+→MS + 2H+  
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In low metal concentration environments, metals tend to coprecipitate and/or adsorb on 

Fe sulfides (Morse et al., 1993; Rickard et al., 1995). Sulfate reduction does not occur at higher 

redox levels when other more favorable electron acceptors are available (Adriano et al., 2001; 

Stein et al., 2007). Under sulfate-reducing conditions, chalcophile metal contaminants such as 

Pb, Cu, Cd, Zn, Fe and Ni are generally believed to be effectively immobilized as metal sulfides 

(Labrenz and Banfield, 2004; Toevs et al., 2006; Weber, 2009).  

High-resolution SEM-EDXA analysis is a powerful tool that can be used as an indirect 

approach to determine the colocalization of Pb, Zn, and Fe with S, and semi-quantification of 

elemental distribution (Seaman et al., 1997; Moral et al., 2005; Reith et al., 2009). However, 

poor sensitivity of this technique and a lower concentration of elements could limit use of this 

technique (Hettiarachchi et al., 2009). 

The rates of sulfate reduction in wetlands are extremely variable and depend on many 

factors such as pH, redox potential, type of organic matter, and the ratio of OC to S (Lyew and 

Sheppard, 1999; Stein et al., 2007; Pester et al., 2012). Newly precipitated colloidal metal sulfide 

clusters may significantly enhance the metal mobility in reduced conditions (Weber et al., 2009; 

Borch et al., 2010). Metal-rich sulfide colloids or metals associated with bacterial membrane 

were found contributing in Cu, Pb and Cd mobilization in rivers. Colloids (sub micrometer 

mineral particle or bacterial cells) that are small enough to withstand gravitational settling can 

act as a potential carrier of poorly soluble contaminants in the subsurface environment posing the 

risk to river and groundwater quality (Luther et al., 2005; Weber et al., 2009). Therefore, 

remediation planning that involves subsurface wetlands needs to consider possible colloidal 

assisted trace elements movement as a consequence of this treatment strategy. There may be a 

multitude of biochemical transformations and physical processes responsible for such transport.  
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Studies combining both physico- and biogeochemical processes concurrently happening 

in these systems are needed for a better understanding of metal transformations and dynamics 

essential to design and improve effective remediation and mitigation strategies. The objectives of 

this experiment were to study solution chemistry, and understand the role(s), and mechanisms of 

biogeochemical redox transformations of Pb, Zn and Cd, and their dynamics under submerged 

conditions over time. 

 Materials and Methods 

Highly contaminated minewaste material was collected from a secured repository area in 

Baxter Springs, KS; a part of the Tri-State mining district that has a history of 120 years of Pb- 

and Zn-ore mining related activities. Three series of column experiments; short-, medium- and 

long-term were conducted based using a completely randomized, two-way factorial experiment 

(factor 1: organic C with two levels, 0 and 10.7 mM L-1; factor 2: sulfur with two levels, 0 and 

253 mg Kg-1). The minewaste, sieved to 2-mm size, was homogenized and air-dried. About 0.5 g 

of sample was digested using the aqua-regia reflux tube soil digestion method in order to 

determine the background concentrations of elements of interest (Zarcinas et al., 1996). Based on 

the sum of background elemental concentration, Na2SO4 solution was added to the minewaste at 

253 mg S Kg-1 for the S addition treatment. The required amount of Na2SO4 was calculated based 

on the ratio of 1: 2 mM of Ʃ metals (Pb, Zn, Cd, Mn, Fe and S): mM of S. The S treated 

minewaste material was equilibrated for 10 days at room temperature on reciprocating shaker 

(6010, Eberbach Corporation, Ann Arbor, MI) at 192 reciprocations/min for 3 days, and at 98 

reciprocations/min afterwards. The treated and equilibrated minewaste was further leached under 

vacuum with deionized (DI) water until a target of <2 mS cm-1 of electrical conductivity was 

achieved, and air dried. The aqua-regia digestion on post leached samples indicated about 50% 
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recovery of S from the treatment. Both S treated and untreated minewaste materials were 

inoculated with 5 g kg-1 of soil slurry with the purpose of inoculating materials with sulfate 

reducing bacteria. This soil slurry (Ivan, Kennebec, and Kahola silt loams) material was 

collected from the North Agronomy farm closer to the creek at Kansas State University, 

Manhattan, KS. Prior to its addition to the minewaste, the serial dilution of soil slurry was 

cultured on the petridish using postgate’s medium (BP1420500) and incubated overnight at 34 ºC 

in an anaerobic jar (AG0025A used with an oxygen absorber; OXAN0025A, Fisher Scientific, 

USA). The black patches observed on petridish indirectly confirmed the presence of sulfur 

reducing bacteria (SRBs) in the soil slurry. The method used for SRBs culture was adapted from 

Luptakova et al. (2005). The minewaste materials non-treated or treated with S and properly 

mixed with soil slurry, was used to pack the Plexiglas columns (20 cm length, 3.2 cm ID with 3 

windows milled at 2.8 cm, 9.8 cm, and 16.94 cm from the top of the column) to achieve bulk 

density of about 1.7 g cm-3. The packed columns were saturated slowly with DI water using a 

mariotte’s bottle that delivers a constant rate of flow, and the columns were equilibrated 

overnight before they were supplied with eluent. The eluent consisted of a base of simulated 

groundwater (1 mM NaCl, 1mM MgCl2, 1 mM KCl, 1 mM CaCl2 adjusted to pH 7.2) with or 

without 10.7 mM Na-lactate (32 mM OC). This provided four treatments for the columns 

designated C0S0, C1S0, C0S1, and C1S1 where C0 designates simulated groundwater without 

OC, C1 with OC, S0 designates simulated groundwater applied to columns without added S, and 

S1 designates simulated groundwater applied to columns with added S. The eluent solutions 

were supplied using a syringe pump (78-8210, KDS LEGATO 210, KD scientific Inc., Holliston, 

MA) at the rate of 13 mm day-1 simulating slow groundwater discharge rate. Groundwater 

composition and supply rate was adapted from Wan et al. (2005). 
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 Samples collection and handling 

Effluent samples were collected every 3rd, 7th and 15th day, for short-, medium- and long-

term experiments respectively. The collected samples were filtered via 0.2 µm nylon filter 

(SF020N, Environmental express, Charleston, SC), and separated in to several aliquots. The 

sample aliquots for DOC and anion measurements were frozen at -20 °C, and samples for total 

element analysis were acidified and stored at 4 °C until used for measurement. At the end of each 

column experiment eluent supply was stopped, and columns were left overnight for draining out 

an excess water. About 20 g samples were collected inside an anaerobic chamber at 1.2- 3.2 cm 

depth, from the port located at the height of 18 cm (far end). The collected samples were stored 

in an air tight vials, and frozen at -40 °C until sample preparations were done for SEM-EDXA 

analysis. Appropriately preserved samples were also used for synchrotron X-ray based 

spectroscopy analysis and microarray analysis and for further details related to these analyses 

refer Karna et al. (2014b) (Chapter 4) and Karna et al. (2014c) (Chapter 5). 

 Solution chemistry analysis 

The pH, and redox potential (Eh) measurements were done inside the anaerobic glove 

box chamber immediately after sample collection by using Ag/AgCl2 electrodes (pH glass body 

filled combination, model 300731.0; and ORP (redox) combination electrode, model 300746.0, 

Orion, Cole-Palmer, USA). Colorimetric determination of Fe2+ was done by using the 

phenanthroline method (phen method) that was tested for its capability of quantifying ferrous 

and total iron with less errors by Anastàcio et al. (2008), and the color developed via this method 

was measured on a DU 800 series (Beckman Coulter Inc., Fullerton, CA). The DOC 

concentration was measured using a TOC analyzer (TOC-L, Shimadzu, Japan) after purging 

inorganic carbon with 1 mol L-1 HCl. In order to characterize dissolved OM, the dissolved 
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organic matter (DOM) quality measurement was done using a fluorometer (UV-visible 

spectrophotometer (Shimadzu UV-1601, Kyoto, Japan) (Figure 6). The anions (F-, Cl-, Br-, NO2
-, 

NO3
-, SO4

2-and PO4
3-) were measured using ion chromatography (Dionex ICS-1000, Sunnyvale, 

CA, USA). The total dissolved concentrations of Pb, Zn, Cd, Fe, Mn, S, Mg, Ca, Na, K and Cu 

were measured on inductively coupled plasma optic emission spectroscopy (ICP-OES) or 

graphite Furnace atomic absorption spectroscopy (GF-AAS; Varian Inc., USA). The quality 

assurance, and quality control (QA/QC) was maintained by running duplicates of each sample, 

measuring the recovery of spiked samples, and using the SRM water sample NIST 1643e 

(National Institute of Standards and Technology, Gaithersburg, MD). 

Scanning electron microscopy- Energy dispersive X-ray (SEM-EDXA) 

The stored soil samples were gently ground while frozen in the glovebox under anaerobic 

conditions and a thin smear was prepared on a 12 mm OD aluminum stubs affixed with C- 

adhesive tape; Pelco TabsTM (Ted Pella Inc., Redding, CA) to image and analyze the samples at 

micro-scale. Imaging and elemental analysis were performed using a high resolution field 

emission scanning electron microscope; Nova NanoSEM 430 (FEI, Hillsboro, OR) equipped 

with energy dispersive spectroscopy (EDS) silicon drift detector (SDD: 80 mm2) (Oxford 

Instruments, Bucks, United Kingdom). For EDS, the primary electron beam energy was 15 KeV, 

the spot size was 4, and data were collected over 120s for minimum 3 spots per sample under 

vacuum of 0.45 torr to obtain quality images. Copper was used for quantity optimization of the 

EDS. The weight percent (Wt %) of elements were directly calculated and given by the Nova 

NanoSEM 430 system when analyzing the samples. The weight percent were converted into mM 

for better comparison of elements with different molecular weights. 
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To trace the colloidal bound trace elements mobility, SEM-EDXA was conducted on the 

residues retained on 0.45 µm- nylon membrane ( HNWP02500, Millepore, Billerica, MA), and 

15 nm- polycarbonate membrane ( 110601, Whatman, Piscataway, NJ) at the sampling points of 

14, 32, 64, 119 and 252-day. The colloids retained on filters were mounted on 12 mm OD 

aluminum stubs affixed with C- adhesive tape; Pelco TabsTM (Ted Pella Inc., Redding, CA) to 

image and analyze the samples. Imaging and elemental analysis were performed in a similar way 

as mentioned above. As supportive evidence, effluent filtered through 0.45 µm-, and 15 nm- 

membrane were also analysed using ICP-OES unless a lower detection limit was necessary in 

which case GF-AAS was used instead. Use of GF-AAS might have prevented us from estimating 

accurate concentrations of colloidal bound trace metals as GF-AAS gives truly dissolved metal 

concentrations, whereas ICP-OES gives total metal concentrations including atomized 

nanoparticles (Barrett and McBride, 2007; De Livera et al., 2011). In addition, synchrotron based 

micro-scale X-ray analysis ((X-ray fluorescence (XRF) followed by X-ray absorption 

spectroscopy (XAS) and bulk- scale XAS (Karna et al., 2014b (Chapter 4)) were conducted. The 

microarray analysis using geochip 4.2 (He et al., 2007) was also conducted (Karna et al., 2014c 

(Chapter 5)) in order to support our solution chemistry results.  

 Results and Discussions 

The data presented in this section were collected on the homogenized minewaste of <2 

mm size. The particle size distribution (PSD) was done by following the modified method 

developed by Kilmer et al. (1949). The mine waste contained 85% sand (2000 to 50 µm), 11.3% 

silt (50 to 2 µm), and 3.4% clay (<2 µm). The total N and total C concentrations were 0.03 g kg-1 

and 1.56 g kg-1, respectively. The pH of the water extract (1: 2 minewaste: DI Water mass ratio) 

was 7.2, and the electric conductivity was 2.31 mS cm-1. The major element composition of 
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minewaste obtained through aqua-regia digestion is listed in Table 3-1. The SRM 2711a 

(National Institute of Standards and Technology, Gaithersburg, MD) was digested along with 

minewaste as a QA/QC sample in order to assure the recovery percentage of each analyte.  

The Eh measurements did indicate sub-oxic conditions (Figure 2a). This could be 

because of challenges associated with disturbance of the sample due to release or absorption of 

gases such as O2, H2S and reactions at the liquid junction of the reference electrode (such 

precipitation of heavy metal sulfides or the effect of suspended matter). Additionally, low 

exchange current densities, and the predominance of mixed potentials could give less consistent 

results that were also observed by Whitfield (1974); Lindberg and Runnells (1984); Chapelle et 

al. (1996), and Sigg (2000). Due to inherent weaknesses associated with redox measurements, 

researchers tended to calculate the redox status of the system directly by using redox couples 

such as Fe3+/ Fe2+, HS-/ SO4
2-, NH4

+/ NO3
-, NO2

-/ NO3
-, CH4

+ (aq)/ HCO3
- (Lindberg and 

Runnells, 1984). We did redox calculation using Fe3+/ Fe2+ redox couples that revealed our 

system to be more reduced compared to what redox potential probe measurement results 

indicated. Nordstorm (1979) and Lindberg, and Runnells (1984) observed similar results in acid 

mine drainage water and normal groundwater from diversified areas. The pH of our system 

mostly remained alkaline (>7.2) in both treated, and non-treated materials throughout 

submergence. Similar results were observed by Newfields (2003) in the mining district, and this 

could be due to higher carbonate concentrations in minewaste materials. Dissolution of calcite 

provides buffering capacity to maintain circumneutral pH favoring carbonate mineral formations 

that subsequently could influence trace metals mobility (Komárek, 2004). In the current study, an 

alkaline pH should also have helped in reducing Pb, Zn and Cd concentration in effluent 

samples. This result can be supported by earlier studies reporting immobility, and low 
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bioavailability of Pb, Zn and Cd at alkaline pH as fewer H+ ions are available to compete with 

cations for binding sites (Hettiarachchi et al., 2004; Peréz Lopéz et al., 2011; Khaokaew et al., 

2012). At alkaline pH values, with initial higher Zn concentrations, the precipitation of Zn(OH)2, 

Zn(CO3)2, and ZnFe2O4 may control Zn solubility, and PbCO3 may control Pb solubility 

(Manceau et al., 2000; Roberts et al., 2002). Alkaline pH could have a substantial impact on 

sorption/desorption, dissolution/precipitation, complexation, and oxidation/reduction processes 

influencing metal mobilities as observed by Wang et al. (2006) and Violante et al. (2010).  

 At circumneutral pH and above, Fe primarily exists as insoluble, solid phase minerals in 

the Fe(II) and Fe(III) oxidation states. However the solubility of Fe(III) increases and Fe(II) 

primarily exists as an aqueous species even in the presence of oxygen with decreasing pH. 

Reductive dissolution of Fe results in the formation of freshly precipitated Fe(hydr)oxides that 

have ten times higher adsorption capacity for metals compared to aged oxides and it also 

enhances cation exchange capacity by 10 fold thereby immobilizing contaminants trace elements 

(Zn>Pb) at circumneutral pH (Shun et al., 1977; Christian et al., 2008). Thus, repeated iron 

cycling observed in the current study (Figure 2c) explains the transformation between Fe(II) and 

Fe(III) minerals influencing Pb and Zn mobility. Similar results were found by Thompson et al. 

(2006) and Stein et al. (2007) who observed that metal mobility was reduced after repeated soil 

iron redox cycling in treatment wetlands. 

In the current study, effluent concentration of Pb, Cd and Zn decreased rapidly, and 

mostly remained low and stable in C1S1 compared to C1S0, C0S1, and C0S0 under medium-, 

and long -term submergence (Figures 3-1 and 3-3). Lead, Zn and Cd have faster water exchange 

reaction kinetics than Fe2+ that results in more metal sulfides formation prior to FeS formation, 

and subsequent pyrite formation (Morse et al., 1999). The metal reduction results can be further 
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supported by the observed dynamics of DOC and sulfate-S in our system. An initial DOC 

concentration in eluent (~32 mM) were consumed earlier in C1S1 compared to C1S0 (figure 3-

2b) indicating enhanced dissimilatory sulfate reduction via enhanced OC consumption due to 

higher microbial growth and activities upon OC plus S addition. Meanwhile, the effluent sulfate-

S concentration was reduced with OC plus S addition from 574 mg L-1 to 437 mg L-1 under 

medium-term submergence (Figure 3-2a). These results are supported by previous work that 

reported metal sulfide formations via dissimilatory sulfate reduction comprising microbial 

respiration of electron acceptors by following the classical sequence of redox reactions observed 

in submerged soils (Sposito, 1991; Fendorf, 2000; Kim et al., 2005). During this sequence of 

redox reactions in S rich environments, the heterotrophic dissimilatory sulfur reducing bacteria 

(SRBs) use organic C (Na-lactate provided in this study) as an electron donor in order to reduce 

inorganic sulfate or other oxidized S forms (Fortin et al., 1997; Elias et al., 2004). Similar results 

have been found by Luther III (1999), Finneran et al. (2002), Stein et al. (2007), and Banfield 

(2013) in organic rich environments with sufficient available sulfate under reduced conditions. 

The extent of DOC metabolism largely depends on the biochemical composition of the 

DOM (Benner, 2003), which is essential to interpret its’ biogeochemical role in ecosystems 

(Hood, 2010). Because of this reason, change in fluorescence of effluent samples collected at 28, 

112, and 210-day were analyzed. The visual inspection of EEMs or ‘peak picking’ of 

fluorescence peaks (Coble, 1996) indicated peak T (Tryptophan like) as a commonly detected 

peak (Figure 3-9). In addition, Peak A (humic acid like), Peak B (Tryosine like) were also 

detected although they are not clearly visible on EEMs due to the background color. The peaks T 

and B represent microbially derived DOM giving indirect evidence of enhanced microbial 

activities upon OC and S addition over time (Figure 3-9, Table 3-3). Similarly, humic acid like 
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(Peak A) showed increasing trend of humic acid formation over time in OC and S treated 

columns (Table 3). The matured DOM might be indicative of enhanced C-cycling by 

microorganism in OC added systems and they may also ultimately be playing a role in an 

effective mobilization of trace elements by providing adsorption sites (Shi et al., 2013). 

 Scanning Electron Microscopy-Energy dispersive X-ray Analysis (SEM-EDXA) 

Darker regions indicating a microenvironment with higher microbial activity formed in 

submerged soils were observed in C1S1 after 70 days of submergence. Similar dark patches or 

active microsites are commonly observed in submerged soil (Kanazawa et al., 1974; Subba Rao 

et al., 1976). This was a clear indication of the heterogeneous nature of redox reactivity in these 

systems. In order to understand its biogeochemistry, SEM-EDXA mapping was conducted on at 

least 3 spots per sample and those indicated enhanced colocalization of Pb, Zn and Fe with S 

(Figure 3-4). We conducted comparative SEM-EDXA on the starting minewaste materials and 

treated and non-treated minewaste submerged for 252-day. The results indicated similar 

colocalization of Pb with S in all samples (Figure 3-5) suggesting the presence of Pb-S 

association in the starting materials as well. These results provide indirect evidence for the 

immobilization of metals via sulfide formation. The effluent chemistry results were also 

supported by synchrotron based X-ray analysis; X-ray absorption near edge structure (XANES); 

and X-ray absorption fine structure (XAFS) spectroscopy. The micro-scale Pb and Zn XAS 

(XAFS/XANES) indicated enhanced PbS, and ZnS formation with OC plus S treatment (C1S1) 

under long term submergence (Figures 3-7 and 3-8) that was further supported by bulk Pb- and 

Zn-XAS analysis (Karna et al., 2014b, (Chapter 4)). In addition, micro-scale Pb- and Zn-XAS 

indicated enhanced metal sulfide formation even under medium-term submergence indicating 

higher redox reactivity at isolated microenvironments. The observed relationship between Pb, Zn 
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and Cd immobility with metal sulfide formations has been strengthened by the results obtained 

from microbial analysis conducted using functional gene arrays (FGA); GeoChip 4.2. The 

microarray results indicated enhanced SRB genes (Karna et al., 2014c, (Chapter 5)) in OC plus S 

added columns (C1S1), indicating sulfide precipitation as a dominant mechanism controlling 

their solubility. SRBs mediated dissimilatory sulfate reduction rate is highly variable depending 

on the pH, redox potential, type of organic matter, and the ratio of OC to S (Lyew and Sheppard, 

1999; Stein et al., 2007; Pester et al., 2012). This above variability could be due to factors 

influencing SRB activities such as availability of more efficient electron acceptors at higher 

redox levels, and competition with methane producing bacteria (MPB) at low redox levels due to 

altered C: S ratios. The alteration of C: S ratio may occur due to OC load via microbial 

consumption of oxygen (Stein and Hook, 2005). 

Scanning electron microscopy-energy dispersive X-ray conducted on residues collected on 0.45 

μm- and ~15 nm-membranes at different time points exhibited both bacterial associated, and/or 

dispersed colloidal bound trace element mobility more commonly observed in control (C0S0) 

compared to treated (C1S1) (Figure 3-6). Larger size colloid (>0.45 µm) seems to be highly 

involved in Cd and Pb mobility compared to smaller colloids (<15 nm). This result was further 

supported with Pb and Cd concentration measurements in the effluent samples filtered through 

0.45 µm- and 15 nm- nylon membranes (Table 3-2). About 445 µg L-1 of larger and 260 µg L-1 

of smaller colloids associated Cd transport, respectively, was observed in C0S0 compared to 20 

µg L-1 of larger and 3 µg L-1 of smaller colloids associated Cd transport, respectively, observed 

in C1S1. Similarly 280 µg L-1 of larger colloids associated Pb mobility was observed in C0S0 

only, whereas none was observed in C1S1. The Pb and Cd mobility was about 1% of their total 

concentration (Figure 3-6; Table 3-2). The results indicated that the biogenic sulfide formation 



83 

occurred with OC and S addition thereby helping to reduce further leaching of sequestered 

contaminants. We suspect iron oxides and other possibly sulfide, carbonate, and silicate minerals 

as the main possible carriers. The colloids assisted metal transport results from the current study 

are in agreement with Weber et al. (2009). Both bacterial and dispersed colloids assisted metal 

transport were observed during initial submergence that were associated with newly precipitated 

sulfides (Weber et al. 2009). The cycling event may cause wide shifts in the concentration of 

colloidal and dissolved material due to either Fe mineral dissolution or pH shifts associated with 

changes in oxidation state of Fe. The colloidal assisted metals mobility were relevant in current 

study, however considering the % metal escape, it may not be a concern as escaped metals could 

get diluted once mixed with groundwater over time. In any case, a retention filter and other 

engineering controls may be needed to meet the USEPA groundwater MCL for Cd (<5µgL-1) 

and Pb (<15µgL-1). 
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 Conclusions 

The solution chemistry data from our current study indicated that metals were effectively 

immobilized under both medium- and long-term submergence in all the treatments. However, 

C1S1 showed an enhanced effect. Metal immobilization effects observed in this study was 

supported by SEM-EDXA analysis that indicated colocalization of metals with S. This was 

further confirmed via synchrotron based X-ray analysis provided direct evidence of enhanced 

sulfide formation with the C1S1 treatment, and the microarray analysis indicated enhanced sulfur 

reducing bacteria (SRB) genes involved in sulfide formation. Scanning electron microscopy- 

energy dispersive X-ray analysis conducted on colloids in the effluent water retained on 0.45 

µm- or 15 nm-membranes suggested that only about <1% of total Cd and Pb were transported as 

freely dispersed, and in association with the bacterial membrane during initial 32-day of 

submergence. While still indicating a loss of metals, these would readily be diluted in 

groundwater. Retention filters maybe needed in the subsurface treatment systems in order to 

avoid colloidal assisted escape of metals. Uncertainty of the fate of sequestered metals in 

wetland treatment systems under varying redox conditions needs to be studied.   
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.  

Figure 3-1: Pb, Zn and Cd concentration observed in effluent samples under medium-term (119-

day) submergence  in control (C0S0), S treated (C0S1), organic C treated (C1S0), and OC plus S 

treated (C1S1) samples.  
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Figure 3-2: Sulfate-S, DOC concentration and ferrous ion cycling observed in effluent samples 

under medium-term (119-day) submergence  in control (C0S0), S treated (C0S1), organic C 

treated (C1S0), and OC plus S treated (C1S1) samples.  
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Figure 3-3: Pb, Zn and Cd concentration observed in effluent samples under long-term (252-

day) submergence  in control (C0S0), S treated (C0S1), organic C treated (C1S0), and OC plus S 

treated (C1S1) samples. 
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Figure 3-4: Scanning electron microscopy (SEM) secondary electron image, and SEM-EDXA 

mapping analysis for Pb, Zn, Fe, and S, showing elemental distribution, and colocalization of Pb, 

Zn, and Fe with S in the microsites formed in OC plus S treated (C1S1) samples under medium 

term (119-day) submergence.  
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Figure 3-5: Scanning electron microscopy (SEM) secondary electron image, and SEM-EDXA 

mapping analysis for Pb and S, showing elemental distribution, and colocalization of Pb with S 

in starting material, positive control (C0S0) and OC plus S treated columns (C1S1) under long- 

term (252-day) submergence. 
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Figure 3-6: SEM-EDXA showing bacterial associated and freely dispersed colloidal bound trace 

elements mobility observed on residue retained on 0.45 μm, and 15 nm pore size membranes at 

different time points. The elemental analyses are presented in the attached table. The letter ‘d’ in 

the attached table represents for day.  

 

  

  

       

14 d 32 d 56 d 

C1S1 15nm     20 µm                           10 µm                          10 µm              

C0S0 0.45µm  20 µm                       10 µm                        10 µm              

C0S0 15 nm   10 µm                            10 µm                        20 µm              

32 d 56 d 119 d 

C1S1 0.45µm  20 µm                         10 µm                          10 µm              

56 d 119 d 252 d 

l 

g h i 

j k 

a b c

d e f 

 

 



98 

Table 3-1: Total element concentration in minewaste collected from the Tri-State mining 

district. 

Element  Cd Pb Zn Fe Mn S 

mg kg-1  67 5048 23468 6834 97 9458 
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Table 3-2: Cd and Pb concentration in effluent samples filtered through 0.45 µm, and 15 nm 

pore size membrane showing colloidal bound Cd and Pb mobility at different time points.  

     <0.45 µm  <15 nm  <0.45 µm  <15 nm 

      Samples     Cd(µgL-1)  Cd(µgL-1)  Pb(µgL-1)  Pb(µgL-1) 

C0S0 14-d     264  260  280  <DL 

C0S0 32-d     445  103  198  <DL 

C0S0 64-d     178  57  <DL  <DL 

C0S0 119-d 
    

171 
 

84 
 

<DL 
 

<DL 

C0S0 252-d     64  4  <DL  <DL 

C1S1 14-d     20  3  <DL  <DL 

C1S1 32-d     11  1.0  <DL  <DL 

C1S1 64-d     2  <DL  <DL  <DL 

C1S1 119-d     1  <DL  <DL  <DL 

C1S1 252-d     <DL  <DL  <DL  <DL 

⃰DL corresponds to detection limit. Detection limit of 0.6 for Cd, and 0.7 µgL-1 for Pb was 

determined. The letter ‘d’ represents for day on which effluent samples were collected.  
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Figure 3-7: Representative Pb L(III)-edge µ-XANES spectra in OC plus S treated (C1S1) 

sample. Solid lines represent the normalized spectra and the dotted lines represent the best fits 

obtained using statistical analyses; principal component analysis (PCA), and linear combination 

fitting (LCF).  
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Figure 3-8: Representative Zn kα-edge µ-XANES spectra showing enhancement of metal 

sulfide formation over time with OC plus S treatment (C1S1). Solid lines represent the 

normalized spectra and the dotted lines represent the best fits obtained using statistical analyses; 

principal component analysis (PCA), and linear combination fitting (LCF).  
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Figure 3-9: Flourescence dissolved organic matter (DOM) excitation and emission measurement 

(EEM) for control (C0S0), S treated (C0S1), OC treated (C1S0), and OC plus S treated (C1S1) 

samples collected at 32-day, 112-day, and 210-day. The EEM measurement show the positions 

for peak A, T, and B detections. 
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Table 3-3: Fluorescence Index for DOM peaks detected. Peak ‘T’ stands for tryptophan, peak 

‘B’ for tryosine, and peak ‘A’ for humic acid.   

Treatments  Peak T Peak B Peak A 

C0S0 32-d 1.42 1.61 0.80 

C0S0 112-d 1.13 0.99 0.72 

C0S0 210-d 0.13 1.29 0.68 

C0S1 32-d 0.50 0.95 0.85 

C0S1 112-d 0.97 1.72 0.67 

C0S1 210-d 0.95 1.48 0.70 

C1S0 32-d 2.36 2.62 0.75 

C1S0 112-d 2.61 2.85 0.97 

C1S0 210-d 1.44 2.44 0.65 

C1S1 32-d 0.86 2.71 1.10 

C1S1 112-d 0.91 3.49 3.99 

C1S1 210-d 1.81 3.61 4.23 
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Chapter 4 - Understanding Subsurface Transformation and 

Dynamics of Lead and Zinc in Contaminated Minewaste Materials 

using Synchrotron based X-Ray Analysis 

 Abstract 

Metal contamination due to milling and mining operations of metal ores are of great 

concern in the world. The Spring River and its tributaries in southeast Kansas are contaminated 

with lead (Pb), and Zinc (Zn) due to long-term historic mining activities conducted in the Tri-

State mining district in parts of southeast Kansas, southwest Missouri and northeast Oklahoma. 

Trace metals cycling in minewaste materials with low organic carbon (OC) and sulfur (S) could 

greatly influence plant productivity, the ecosystem, and human health. It has been hypothesized 

that if these mine waste materials are disposed of in the flooded subsidence pits; metals can be 

transformed back into their sulfide forms under reduced conditions limiting their mobility and 

toxicity. The objective of this study was to examine the effect of OC and S addition on the 

biogeochemical transformations of Pb, Zn and Cd in minewaste containing microcosms. 

Advanced molecular spectroscopic techniques were used in this study to understand the effect of 

redox induced biogeochemical transformation of Pb and Zn over time. Microscopically focused 

synchrotron-based XRF (µ-XRF) was used to map elemental distribution in the minewaste 

materials. Results showed a higher correlation of Pb and Zn with Fe and Mn during initial stages 

of submergence. Micro-scale X-ray absorption near edge structure (XANES) and X-ray 

absorption fine structure (XAFS) results were unable to give an average Pb and Zn speciation, 

however µ-XAS helped to identify the presence of minor mineral. Bulk XAFS results showed 

enhanced metal sulfide formations with OC and S addition. After integrating these results with 

our previous effluent solution chemistry data and microarray data we conclude that aided-metal 
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sulfide formations through treatment addition is possible in minewaste materials when disposed 

of in flooded mine pits. The mechanistic understanding gained in this study is also relevant for 

remediation of any other waste material rich in Pb, Zn or any similar metals using subsurface 

wetland systems. 

 

 Introduction 

One of the main sources of heavy metal contamination at the earth’s surface are milling 

and mining operations, especially those associated with sulfide rich tailings, which can have a 

heavy impact on the nearby water bodies (Edwards et al., 2000; Baker et al., 2003; Bhattacharya 

et al., 2006). The acid mine drainage resulting from the exposure of sulfide rich minerals to 

oxygen rich water leads to the leaching of several contaminants that can also affect groundwater 

quality (Johnson et al., 2005; Vega et al., 2006). Thus, metal contamination and possible 

associated acid mine drainage are significant environmental concerns globally (Nordstrom et al., 

1999; Concas et al., 2006). 

The Tri-State mining district situated in parts of southeast Kansas, southwest Missouri, 

and northeast of Oklahoma has a 120 year history of Pb- and Zn-ore mining activities. The 

extensive mining left a huge quantity of chat and tailings minewaste on the surface which 

contain trace levels of various sulfide minerals such as pyrite (FeS2), galena (PbS), sphalerite 

(ZnS), and others (Newfields, 2003). The movement of soluble metals and metal-laden 

sediments from the landscape into surface waters via surface runoff are the primary ecological 

concerns for both aquatic and terrestrial organisms (Pierzynski and Vaillant, 2006). The USEPA 

has considered the disposal of minewaste materials in flooded subsidence pits (i.e., wetland 

treatment) as a remediation strategy for the highly contaminated minewaste materials with the 

hypothesis that under reduced conditions in sulfate-rich environments, these metals can be 
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transformed back into their sulfide forms, limiting their mobility, and toxicity. However, there 

are several challenges associated with this strategy. The minewaste materials are inherently low 

in dissolved OC and that could have significant impact on redox processes (Zhang et al., 2005; 

Hayes et al., 2006; Stein et al., 2007) as OC is the driver of biogeochemical cycling of major and 

trace elements (Evans et al., 2006; Borch et al., 2010). Sulfur is relatively mobile element 

compared to trace elements such as Pb and Zn, therefore, insufficient S content remaining in 

minewaste could limit sulfide formation, and promote carbonate precipitation instead, depending 

on pH and carbonate concentration (Falkowski et al., 2000; Toevs et al., 2007). As the Tri-State 

mining district has limestone parent material, higher pH and abundant CaCO3 are expected 

(KGS, 2010), and that may enhance carbonate precipitation which is not stable as sulfides (Toevs 

et al., 2006). Additionally, subsurface submergence of minewaste may result in seepage of 

leachate with high concentrations of Pb and Zn into groundwater regardless of liners/barriers. 

Further, the requirement of a large volume of clean soil for capping and long term continuous 

monitoring could make this remedial action expensive (USEPA, 2010). 

The mobility of metals depends on speciation that is highly controlled by a dynamic 

interplay of physical, chemical, and biological processes in wetlands (Adriano et al., 2001; Gadd 

et al., 2004; Toevs et al., 2006). Microbial sulfate reduction for metal remediation requires 

reduction of metals via biogenic sulfide formations (Labrenz et al., 2000; Finneran et al., 2002; 

Banfield et al., 2013). It requires multiple approaches to understand underlying mechanisms of 

metal sequestration and to confirm sulfide formation in a heterogeneous environment (Banfield, 

2013). X-ray absorption spectroscopy is a promising and powerful tool as it is element specific 

and can provide information on metals in a variety of physical states: amorphous or crystalline 

compounds, as well as dissolved species (Nachtegaal et al., 2005). Synchrotron based X-ray 
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fluorescence (XRF) allows to obtain elemental maps at micro-scale resolution that provide 

information such as relative concentrations of elements, their spatial distribution, and 

correlations with other elements. Such approaches may help understand underlying mechanisms 

of trace element transformations. X-ray absorption spectroscopy (XAS) such as X-ray absorption 

near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS) spectroscopy 

can be done in bulk and at micro-scale. Bulk XAS gives overall speciation information in studied 

systems whereas micro-scale spatially resolved XAS would help elucidating underlying 

mechanisms (Roberts et al., 2002). Analysis of bulk XAS demands a library of reference spectra 

in order to perform linear combination fitting that estimates a single average spectrum collected 

from a large spot (Manceau et al., 2000). We hypothesized that it is essential to treat these 

minewaste materials with OC and S to induce metal transformation back to their sulfide forms 

under reduced conditions thereby limiting their mobility and toxicity. Our objective of this 

experiment was to study the biogeochemical transformations of Pb and Zn by identification and 

semi quantification of the dominant forms of Pb and Zn in submerged columns using various OC 

and S treatments. Mechanistic information will be obtained via micro-scale spatially-resolved 

measurements to understand the dominant interfacial processes such as mineral dissolution, 

precipitation/co-precipitation, and sorption/desorption that determine the long-term fate of Pb 

and Zn minerals.  

 Materials and methods: 

Highly contaminated minewaste material was collected from a secured repository area in 

the Tri-State mining region near Baxter Springs, KS. The material was sieved to 2-mm size, 

homogenized, and air-dried. A 0.5 g sample was digested in triplicate following the aqua-regia 

reflux tube soil digestion method in order to determine the background concentrations of selected 
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elements (Zarcinas et al., 1996). Particle size analysis was performed using the method of Kilmer 

et al. (1949). A Na2SO4 solution was added to the minewaste material to provide S at a ratio of 1: 

2 mM of Ʃ metals: mM sulfur. The metals used in the summation were Pb, Cd, Zn, Fe and Mn. 

The treated materials were equilibrated for 10 days at room temperature on a reciprocating 

shaker (6010, Eberbach Corporation, Ann Arbor, MI) at 192 reciprocates/min for 3 days, and at 

92 reciprocates/min for the rest 7 days. The treated and equilibrated minewaste was leached with 

deionized (DI) water until a target electrical conductivity of <2 mS cm-1 was achieved and then 

the materials were air-dried. Both S treated and untreated minewaste materials were inoculated 

with 0.5 g 100g-1 of soil slurry (Ivan, Kennebec, and Kahola silt loams) collected from the North 

Agronomy farm closer to the creek at Kansas State University, Manhattan, KS. Prior to its 

addition to the minewaste, the serial dilution of soil slurry was cultured on the petridish using 

postgate’s medium (BP1420500), and incubated overnight at 34 ºC in an anaerobic jar 

(AG0025A used with oxygen absorber; OXAN0025A, Fisher Scientific, USA). The black 

patches observed on the plate indirectly confirmed the presence of sulfur reducing bacteria 

(SRBs) in the soil slurry. After inoculation, the minewaste was carefully packed in Plexiglas 

columns (20cm length, 3.2 cm ID with 3 windows milled at 2.8 cm, 9.84 cm, and 16.94 cm.) to 

achieve bulk density of about 1.7 g cm-3. The packed columns were saturated slowly with DI 

water using a Mariotte’s bottle that delivers a constant rate of flow, and the columns were 

equilibrated overnight before they were supplied with simulated groundwater.  

The eluent consisted of a base of simulated groundwater (1 mM NaCl, 1mM MgCl2, 1 

mM KCl, 1 mM CaCl2 adjusted to pH 7.2) with or without 10.7 mM Na-lactate (32 mM OC).  

This provided four treatments for the columns designated C0S0, C1S0, C0S1, and C1S1 where 

C0 designates simulated groundwater (Wan et al., 2005) without OC, C1 with OC, S0 designates 
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simulated groundwater applied to columns without added S, and S1 designates simulated 

groundwater applied to columns with added S. The eluent was supplied from the bottom of 

columns in order to avoid gravity influenced water movement. Solutions were delivered using a 

syringe pump (78-8210, KDS LEGATO 210, KD scientific Inc., Holliston, MA) at a rate of 13 

mm day-1 simulating slow groundwater discharge rate as described by Wan et al. (2005). Three 

series of column experiments were conducted: short-, medium- and long-term using a completely 

randomized design with a two-way factorial combination of treatments (factor 1: organic C with 

two levels, 0 and 10.7 mM L-1; factor 2: S with two levels, 0 and 252.7 mg Kg-1). At the end of 

each column experiments, 20 g minewaste samples were collected at 1.2- 3.2 cm depth, from the 

port located at the height of 18 cm (far end). The collected samples were frozen at -40 °C until 

sample preparations were done for synchrotron based X-ray analysis. 

 Micro X-ray fluorescence and X-ray absorption spectroscopy  

The micro X-ray fluorescence (μ-XRF), and micro X-ray absorption spectroscopy (μ-

XAS) was conducted at sector 20-ID-B and 13-ID-E (given synchrotron facility). The 13-ID-E 

beamline source is a 3.6 cm period undulator optimized to provide a tunable energy as low as 2.4 

KeV to 27.5 KeV. This beamline has an unfocused beam size of 3 mm x 1 mm and a focused 

beam size down to 2 μm x 2 μm with a greater X-ray flux. It has solid 13-element solid state Ge 

detector and a double crystal monochromator (DCM); Si (111) and Si (311), and two mirrors 

downstream DCM. Similarly, 20-ID-B utilizes a similar undulator, DCM, and detector as 13-ID-

E, and has an energy range of 3-50 KeV. A week before analysis, the minewaste were dried in an 

anaerobic chamber, gently ground to homogenize, and embedded in electrical resin (Epotek, 401, 

Epoxy Technology, USA) on quartz slides following the modified procedure developed by Arai 

(2003).  
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For XAS, the angle of the incident X-ray beam was ~45o with respect to the sample 

surface. Elemental maps were generated at ambient temperature for Pb, Zn and Fe over an area 

varying from 200 µm x 200 µm to 500 µm x 500 µm with 2 µm steps. Using the XRF maps, five 

points of interest (POIs) (high relative concentrations) for Pb and Zn and 3 POIs for Fe were 

identified and used for more detailed spectroscopic investigations. Micro-XAFS spectra were 

collected from 100 eV below the absorption edge to 300 eV beyond the absorption edge with 

increments varying from 0.05 to 10 eV. About 4-5 successful scans were collected at each 

selected POI at the Pb LIII-edge and Zn K-edge, and 3 scans at the Fe K-edge in fluorescence 

mode. Due to a high level of background noise (a common issue in micro-scale XAFS due to the 

very small amount of sample are being exposed to X-rays), only the XANES region of Pb were 

used for Pb data analysis, however, useable Zn XAFS data were collected and the XAFS (2 to 9 

in k-space) region was used for Zn data analysis. Spectra were processed using the IFEFFIT 

software package (Ravel and Newville, 2005). During processing, replicated spectra were 

aligned and merged, the background was removed and then normalized. A minimal smoothing 

was done using IFEFFIT software by applying four point smoothing algorithm while comparing 

carefully with the unsmoothed spectra. The data were then converted to k space (k is the 

photoelectron wavenumber), and weighted with k1 to compensate for the dampening of XAFS 

amplitude with increasing k. Zn-XAFS processed spectra were analyzed in a two-step process 

using labview software (ALS beamline 10.3.2, Lawrence-Berkeley National Laboratory, 

Berkeley, CA) for principal component analysis (PCA), and the IFEFFIT software package for 

linear combination fitting (LCF) (Ravel, and Newville, 2005). The standards used for micro Zn-

XAS LCF were Zn-ferrihydrite, hydrozincite (Zn5(CO3)2(OH)6), franklinite 

(Zn0.6Mn0.32
+Fe0.12

+Fe1.53
+Mn0.53

+O4), hemimorphite (Zn4Si2O7(OH)2.H2O), smithsonite (ZnCO3), 
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sphalerite (ZnS),Zn(SO4), ZnAl -layered double hydroxide (ZnAl-LDH), and Zn(OH)2 to get the 

consistent fit. Similarly, for micro Pb-XAS LCF, lead nitrate (PbNO3), galena (PbS), anglesite 

(PbSO4), cerussite (PbCO3), lead chloride (PbCl2), hydrocerussite (Pb3(CO3)2(OH)2), leadhillite 

(Pb4(SO4)(CO3)2(OH)2), plumboferrite (Pb2Mn0.2Mg0.1Fe10.6O18.4), plumbonacrite 

Pb10(CO3)6O(OH)6, and plumbogummite (PbAl3(PO4)2(OH)5·H2O were used. The spoil values 

are provided in the supplementary information SI (Table 1). The LCF fittings in combination 

with the lowest χ2 and R-factor close to 1 were considered as the most likely set of components 

in our experimental spectra and were used for the data interpretations.  

 Bulk X-Ray Absorption Spectroscopy (Bulk-XAS) 

Due to the practical limitations of μ-XAS in determining overall speciation (need large 

numbers of μ-XAS spectra per sample), bulk XAS was also conducted at sector 5-BM-D of 

DND-CAT to obtain overall elemental transformations and/or mineral formation at each 

submergence interval. A week before analysis, the collected samples were dried in an anaerobic 

chamber and gently ground to homogenize using an agate mortar and pestle. Samples were 

packed inside the Plexiglas sample holders with slots (1900 μm x 600 μm x 150 μm: L x W x D), 

and were sealed with X-ray transparent Kapton® tape. This beamline has an energy range of 4.5-

25 KeV and a Si (111) double crystal monochromator that has a focused beam size of 15000 μm 

x 500 μm and unfocused beam size of 12 mm x 3 mm. A Canberra 13-element Ge solid state 

detector was used. Two Al foil (0.1 mm) layers were placed on the detector to reduce the low 

energy fluorescence emissions from Fe in the samples. The energy was calibrated using Pb-metal 

foil standard. The angle of the incident X-ray beam was ~45o with respect to the sample surface. 

The samples were analyzed by using the unfocused beam of 12 mm x 3 mm under a continuous 

flow of the X-streamTM cryogenic crystal cooler (Rigaku company, Tokyo, Japan). X-streamTM 
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was used to minimize any beam induced elemental transformations and help maintain the 

integrity of redox-sensitive samples. Bulk-Pb LIII-edge and Zn K-edge spectra were collected 

with 6 scans per sample and were processed by following the steps as previously mentioned 

under µ-XAS analysis. The Pb- and Zn-XAFS region (2 to 10 in k-space) were used for data 

analysis. The LCF was conducted using the set of standards with lower spoil value provided in 

appendix A (supplementary information (SI) Table 1 and 2). 

 Results and Discussions 

The mine waste material consisted of 85% sand (2000 to 50 µm), 11.3% silt (50 to 2 µm), 

and 3.4% clay (<2 µm). The total N and total C concentrations were 0.03 g kg-1, and 1.56 g kg-1 

respectively. The pH of a water extract (water: minewaste ratio of 2:1) was 7.2 and the electrical 

conductivity was 2.31 mS cm-1. Select elemental concentrations of the minewaste are given in 

Table 1. 

 

 Micro-X-ray fluorescence and -X-ray absorption spectroscopy (Micro- XRF and -

XAS) 

Synchrotron based µ-XRF allows mapping of elements in thin sections/samples with 

higher sensitivity, better detection limits, and certainty thereby facilitating better understanding 

of elemental distributions and their relationships (Jassogne et al., 2009). The collection of S µ- 

XRF maps was not possible at the time of data collection at any of these hard X-ray beamlines. 

The µ-XRF maps collected on the C0S0 and C1S1 samples are presented in (Figures 4-1 and 4-

2). In each map, the brightest color (white) represents the highest concentration (high 

fluorescence signal) of an element, while the darkest color (black) represents the lowest 

concentration of an element (low-fluorescence signal), although the shading is relative across 
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each map. The P1-Pn spots indicated on the μ-XRF maps for C0S0 revealed that Pb is more 

(colocalized) with Fe and Mn at short-term submergence which further remained same even 

under medium-term submergence. Whereas, Zn showed less correlation with Fe and Mn 

compared to Pb under short-term submergence that was slightly enhanced under medium-term 

submergence in C0S0 (Figure 4-1). It was apparent in C1S1 treatment where Pb seemed to be 

more associated with Fe and Mn compared to Zn over short-term submergence (Figure 4-2). This 

correlation was decreased over medium- and long-term submergence. The above explanations on 

elemental distribution and their relationship were given based on µ-XRF maps, and correlation 

maps provided in appendix A (SI Figure 1, 2, 3, 4, 5, 6) indicating metals’ immobility was driven 

by adsorption, and co-precipitation of metals with Mn, and Fe(hydr)oxides under short- and 

medium-term submergence as a first stage in redox driven cycling. Similar results were observed 

for Pb and Zn reporting influence of pH and ageing Fe(hydr)oxides on metal adsorption 

(Kinniburgh et al., 1976; Kuo et al., 1979; Agbenin et al., 2000). During initial stages of 

reducing conditions, reductive dissolution of Fe results in formation of freshly precipitated 

Fe(hydr)oxides that has ten times higher adsorption capacity compared to aged oxides. These 

reactions product enhance cation exchange capacity (CEC) by 10 fold thereby immobilizing 

trace elements (Zn>Pb) at circumneutral pH. Cation exchange capacity (CEC) reduces as it 

becomes more crystalline over time (Shun et al., 1977). 

An attempt was made to select five points of interest (POIs) (P1-Pn) to collect Pb and Zn-

XAS, and 3 POI for Fe-XAS, however the µ-XAS data collected from all POIs were not useable. 

Among the useable data, two spectra of Pb and Zn were selected based on the lower χ2 value, R-

factor, and the fitting quality provided in appendix A (SI Table 3 and 4). Based on the 

comparison of µ-XAS results for Pb and Zn with the corresponding bulk-XAS data, it was clear 
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that collected µ-XAS data from few selected points were not able to provide the overall Pb and 

Zn speciation in all short-, and medium-term submerged samples. On the other hand, more 

representative micro-XAS data was observed over the long-term submergence (Figure 4-3, 4-4, 

4-11a, 4-11b 4-12b, 4-12c). This could possibly be explained by significantly more 

heterogeneous Pb speciation/distribution during initial stages of submergence thereby providing 

poorly representative μ-XAS data. Micro-XAS however, was able to provide some minor Pb 

species formed in micro-environments such as hydroxypyromorphite, lead phosphates, and 

plumboferrite (Figure 4-3, 4-4, 4-11a, 4-11b 4-12b, 4-12c). A possible explanation for lead 

phosphates minerals formations could be due to enhanced P solubility that can be expected under 

reduced conditions. Similar results have been reported in several earlier studies where 

pyromorphite formation was observed due to enhanced P solubility under anaerobic conditions 

(Zhang and Ryan, 1999; Basta et al., 2004; Cao et al., 2008). The lack of agreement in micro- 

and bulk-XAS data is common in highly heterogeneous soil environment. Many other 

researchers reported that μ-XAS was unable to give average metal speciation, however was able 

to identify minor species due to heterogeneous metal chemistry (Manceau et al., 2000; 

Nachtegaal et al., 2005). Similarly, µ-XAS data for Zn was also unable to provide an average 

picture of Zn speciation during short- and medium-term submergence, whereas the data collected 

for samples submerged for long-term provided comparatively better representative Zn speciation 

indicating more heterogeneous nature of Zn speciation/distribution during initial stages of 

submergence (4-6a, 4-12b, 4-12c).  

 Bulk-X-ray Absorption Spectroscopy (Bulk-XAS) 

Bulk Pb-XAS linear combination fitting results did not give any galena (PbS) formation 

in C0S0 under all short-, medium- and long-term submergence. It clearly showed that Pb 
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speciation in non-treated control system was dominated by Pb-carbonates (cerrusite, and 

hydrocerrusite) over time. This could be associated with the alkaline pH due to high carbonate 

concentration in minewaste materials. Dissolution of calcite provides buffering mechanism to 

maintain circumneutral pH that favors carbonate mineral formations. Calcite dissolution may 

also cause trace elements mobility and/or redistribution (Komárek, 2004). Other researchers also 

observed Pb-carbonates formation under alkaline pH conditions (Chen et al., 1997; Komárek, 

2004; Toevs et al., 2007; Boynton et al., 2009). At alkaline pH, Pb-carbonate is the most stable 

Pb mineral controlling Pb solubility (Lindsay, 1979). Galena (PbS) formation was evident in 

C1S0 samples, and it seems that C1S0 is capable of overcoming dominating nature of carbonates 

in these systems through enhanced microbial activities (especially S-reducing bacteria) without 

any additional S additions. However, carbonates may potentially become dominating Pb mineral 

controlling the Pb solubility due to enhanced pH and S insufficiency in the long run. Similar 

observation was reported in the study conducted by Toevs et al. (2006) indicating metal 

carbonates controlling metals solubility at alkaline pH.  

Bulk Zn-XAFS results showed that Zn appeared to be mostly transformed as silicate 

(hemimorphite, and willemite) when there was no OC and S addition (4-9a, 4-12a,). 

Hemimorphite was highly abundant in the mining district as it is extracted along with Pb and Zn 

ores (Boni et al., 1998; Shu et al., 2001). Further, in contrast to Pb, Zn was only partially 

transformed to sulfide in the OC plus S treated (C1S1) systems (4-10b, 4-12a). This could be 

explained by the lower affinity of Zn to S, compared to Pb. The relative affinity of free metal 

cation increases with the tendency of cation to form strong bonds, i.e., inner sphere complexes 

(Randall et al., 2001; Stein et al., 2007). Similar results were reported by Brennan and Lindsay 

(1996). Additionally, sphalerite (ZnS), and FeS2 (pyrite) precipitate at similar pe+pH, Zn2+ 
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activity cannot be depressed significantly by the formation of sphalerite (ZnS) as redox will be 

poised by the transformation of iron oxides to FeS2 (pyrite). Since soil contains more Fe than Zn, 

sufficient S is required to make labile Fe oxides to form pyrite and drop pe+pH thereby allowing 

sphalerite (ZnS) to control Zn solubility (Lindsay, 1979). This may be why we observed 

sphalerite (ZnS) formation only in C1S1 treatment where sufficient S was available. Overall, 

galena (PbS) formation in both C1S0 and C1S1 indicated that adding OC to these minewaste 

would make these transformations more efficient. On the other hand, treatment with only S 

addition may not be conducive and/or sufficient for stabilization of Pb, and Zn in the long run, as 

sufficient labile OC must be available for sulfate reduction and is a key rate-limiting factor of 

metal sulfide formation (Morse et al., 2002; Ku et al., 2008).  

Considering the long-term consequences via minerals transformations observed in all 

treatments, adding OC plus S for metal sulfide formation may be a more promising option for 

managing minewaste materials disposed of in flooded subsidence mine pits. Trace metal sulfides 

are more stable than carbonates at wide range of pH and are highly resistant to desorption effects 

of chlorides (Zn, Cu and Cd), hydroxides and bicarbonates (Zn) under anoxic conditions (Du 

Liang et al., 2009). Precipitation of metal sulfides can act as a sink for trace metal contaminants 

(Nordstrom, 1999). Metals such as Pb, Zn, Cu can adsorb to or co-precipitate with iron mono-

sulfide and they can also precipitate directly as discrete phases (Billon et al., 2001). However, 

challenges associated with this strategy would be exposure to oxygen rich waters causing sulfide 

oxidation that could constitute a secondary source of trace metal contamination. Another 

challenge would be maintaining enough sulfate concentration. For sulfide formation to happen, 

sulfate concentration should be at least 30 μM or methanogenic bacteria could out-compete 

sulfate reducers for substrate. Despite these challenges, careful application of OC plus S 
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treatment with agronomic and engineering control would be the best among available options as 

long as the minewaste are submerged in the subsidence pits.   

 Conclusions 

It is clear from the current study that the addition of OC and S promoted metal sulfide 

formation. These observations were also supported by the solution chemistry data (Karna et al., 

2014a (Chapter 3)) indicating effective immobilization of Pb and Zn under both medium- and 

long-term submergence, and the microarray results indicating enhanced sulfur reducing bacteria 

(SRBs) genes on OC plus S addition playing role in dissimilatory sulfate reduction thereby 

forming metal sulfides under a long-term submergence (Karna et al., 2014c (Chapter 5)). This 

study shows that the disposal of minewaste materials high in Pb and Zn in flooded subsidence 

pits could be an effective way of reducing ecological risk associated with leaving Pb and Zn risk 

minewaste materials aboveground. 
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Figures and Tables 

 

Figure 4-1: Micro-XRF maps, showing the elemental distribution of lead (Pb), zinc (Zn), iron 

(Fe), and manganese (Mn) in control (C0S0) samples under short (32-day), medium-term (119-

day) and long-term (252-day) submergence. The µ-XRF map for control (C0S0) submerged for 

252-day could not be collected. In each map, the brightest color (white) represents the highest 

fluorescence signal or highest concentration of an element, while the darkest color represents the 

lowest fluorescence signal or lowest concentration of an element. 
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Figure 4-2: Micro-XRF maps, showing the elemental distribution of lead (Pb), zinc (Zn), iron 

(Fe), and manganese (Mn) in OC plus S treated (C1S1) samples under short (32-day), medium 

(119-day) and long-term (252-day) submergence. In each map, the brightest color (white) 

represents the highest fluorescence signal or highest concentration of an element, while the 

darkest color represents the lowest fluorescence signal or lowest concentration of an element. 
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Figure 4-3: Micro Pb-XANES spectra a) for control (C0S0), b) OC plus S treated (C1S1) 

samples under short (32-day), medium-term (119-day), and long-term (252-day) submergence. 

In each spectrum, ‘d’ represents days of submergence, and P1-P5 represents the points selected 

on micro-XRF maps for XANES data collection. Solid lines represent the normalized spectra and 

the dotted lines represent the best fits obtained using statistical analyses; principal component 

analysis (PCA), and linear combination fitting (LCF).  
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Figure 4-4: Micro Zn-XAFS spectra a) for control (C0S0), b) OC plus S treated (C1S1) samples 

under short (32-day), medium (119-day), and long-term (252-day) submergence. In each 

spectrum d represents days of submergence, and P1-P5 represents the points selected on micro-

XRF maps for XAFS data collection. Solid lines represent the k1-weighted χ-spectra, and the 

dotted lines represent the best fits obtained using statistical analyses; principal component 

analysis (PCA), and linear combination fitting (LCF).  
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Figure 4-5: Micro Pb-XANES spectra collected from microsite formed in OC plus S treated 

(C1S1) submerged for 119-day. Solid lines represent the normalized spectra and the dotted lines 

represent the best fits obtained using statistical analyses; principal component analysis (PCA), 

and linear combination fitting (LCF).  
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Figure 4-6: Micro Zn-XAFS spectra collected from microsite formed in OC plus S treated 

(C1S1) submerged for 119-day. Solid lines represent the k1-weighted χ-spectra, and the dotted 

lines represent the best fits obtained using statistical analyses; principal component analysis 

(PCA), and linear combination fitting (LCF).  
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Figure 4-7: Bulk Pb-XAFS spectra collected for a) control (C0S0), and only S treated (C0S1) 

samples submerged for short (32-day), medium (119-day) and long-term (252-day) 

submergence. Solid lines represent the k1-weighted χ-spectra, and the dotted lines represent the 

best fits obtained using statistical analyses; principal component analysis (PCA), and linear 

combination fitting (LCF).  
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Figure 4-8: Bulk Pb-XAFS spectra collected for a) only OC treated (C1S0), and OC plus S 

treated (C1S1) samples submerged for short (32-day), medium (119-day) and long-term (252-

day) submergence. Solid lines represent the k1-weighted χ-spectra, and the dotted lines represent 

the best fits obtained using statistical analyses; principal component analysis (PCA), and linear 

combination fitting (LCF).  
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Figure 4-9: Bulk Zn-XAFS spectra collected for a) control (C0S0), and only S treated (C0S1) 

samples submerged for short (32-day), medium (119-day) and long-term (252-day) 

submergence. Solid lines represent the k1-weighted χ-spectra, and the dotted lines represent the 

best fits obtained using statistical analyses; principal component analysis (PCA), and linear 

combination fitting (LCF).  
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Figure 4-10: Bulk Zn-XAFS spectra collected for a) only OC treated (C1S0), and OC plus S 

treated (C1S1) samples submerged for short (32-day), medium (119-day) and long-term (252-

day) submergence. Solid lines represent the k1-weighted χ-spectra, and the dotted lines represent 

the best fits obtained using statistical analyses; principal component analysis (PCA), and linear 

combination fitting (LCF).  
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Figure 4-11: a) Bulk Pb-XAFS linear combination fitting (LCF) results for control (C0S0), only 

S treated (C0S1), only OC treated (C1S0), and OC plus S treated (C1S1), b) micro Pb-XANES 

LCF results for OC plus S treated (C1S1), c) micro Pb-XANES LCF results for control (C0S0) 

showing % components of Pb minerals formed under short (32-day), medium (119-day), and 

long-term (252-day) submergence.  
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Figure 4-12: Bulk Zn-XAFS linear combination fitting (LCF) results for control (C0S0), only S 

treated (C0S1), only OC treated (C1S0), and OC plus S treated (C1S1), b) micro Zn-XANES 

LCF results for OC plus S treated (C1S1), c) micro Zn-XANES LCF results for control (C0S0) 

showing % components of Pb minerals formed under short (32-day), medium (119-day), and 

long-term (252-day) submergence.  
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Table 4-1: Total element concentration in minewaste collected from the Tri-State mining 

district. 

Element  Cd Pb Zn Fe Mn S             

mg kg-1  67 5048 23468 6834 97 9458 
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Chapter 5 - Microbial Population Dynamics, and Role of SRB Genes 

in Stabilizing Lead and Zinc under Subsurface Environment 

 Abstract 

 

 

Milling and mining metal ores are some of the major sources of heavy metal 

contamination. The spring river, and its tributaries in southeast Kansas are contaminated with Pb, 

Zn and Cd, due to 120 years of historic mining activities conducted in the Tri-State mining 

district. Trace metal transformations and cycling in minewaste materials could greatly influence 

their mobility and toxicity and therefore affecting plant productivity ecosystem and human 

health. It has been hypothesized that under reduced conditions in sulfate rich environments, these 

metals can be transformed back into their sulfide forms limiting their mobility and toxicity. We 

have attempted to study biogeochemical transformation of Pb and Zn in flooded subsurface 

minewaste materials, natural or treated with organic carbon (OC), and sulfur (S), by combining 

advanced microbiological and X-ray microspectroscopic techniques. The specific objectives of 

the current study were to measure the effect of OC and S on the microbial community structure, 

and identify the dominant functional genes directly involved in the biogeochemical 

transformations, especially metal sulfide formation over time. Short-, medium- and long-term 

saturated column experiments were conducted. The samples collected from the medium- and 

long-term submerged columns were used to investigate the change in microbial community 

structure, their functional roles, and the key genes involved in biogeochemical transformations of 

Pb and Zn via functional gene array (FGA 4.2) that targets 740 functional genes, and 95847 

probes. The total number of detected genes decreased under long-term submergence; however, 

major functional genes were much enhanced with the OC plus S treatment. The microbial 
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community was extremely responsive to OC and S addition, exhibiting a substantial change in 

structure. Sulfur reducing bacteria genes; dsrA/ B were identified as key players in metal sulfide 

formation via dissimilatory sulfate reduction. Integrating the microarray results with synchrotron 

X-ray based spectromicroscopic and solution chemistry analyses, it is suggested that OC plus S 

treatment would be a promising strategy for minewaste materials in the Tri-State mining district 

under similar conditions. 

 Introduction 

The main environmental concern associated with milling and mining activities are related 

to the generation of huge amounts of wastes loaded with several heavy metal contaminants 

(Edwards et al., 2000; Baker et al., 2003; Bhattacharya et al., 2006). Heavy metals are dispersed 

via different pathways such as wind erosion, surface water runoff, and transport of metal laden 

sediments to neighboring water bodies (Johnson et al., 2005; Vega et al., 2006; Almendras et al., 

2009). The Tri-State mining district in parts of southeast Kansas, southwest Missouri and 

northeast Oklahoma was one of the largest Pb and Zn ore mining districts in the world for 120 

years until 1970. The movement of soluble metals and metal-laden sediments from 

the landscape into surface waters via surface runoff are the primary ecological concerns for both 

aquatic and terrestrial organisms (Pierzynski and Vaillant, 2006). The USEPA has suggested 

wetland construction as a remediation strategy for the highly contaminated abandoned 

minewaste materials with the hypothesis that under reduced conditions in sulfate-rich 

environments, these metals can be transformed back into their sulfide forms, limiting their 

mobility, and toxicity.  

However, there are several challenges associated with this strategy. Minewaste material 

with low dissolved OC content could have significant impacts on redox processes (Zhang et al., 
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2005; Hayes et al., 2006; Stein et al., 2007) as OC is the main driver of biogeochemical cycling 

of major and trace elements (Evans et al., 2006; Borch et al., 2009). Limited S in minewaste 

could limit sulfide formation, and promote carbonate precipitation, depending on pH and 

carbonate concentration (Toevs et al., 2006). Therefore, the addition of OC and S could allow 

these metals to be transformed back into their sulfide forms under reduced conditions thereby 

limiting their mobility and toxicity. A sulfate reduction reaction using organic matter (OM) as an 

electron donor is: 

SO4
2−+ OM (2C) +2H2O→ H2S+ 2HCO3

− (pH<7.0) (Stein et al., 2007) 

At high metal concentrations, metals tend to precipitate as metal sulfides at pH<7.0, as the rate of 

H2S formation increases at pH of 7.0 to a maximum of 8.0 (Morris et al., 1972, Nielsen et al., 

1988; Burton et al., 2008).  

H2S+M2+→MS+2H+  

The above mentioned reaction is the result of dissimilatory sulfate metabolism that has 

been successfully tested in removing contaminants via biostimulation. Of all the metal sulfide 

minerals, iron sulfide mineralization is most often attributed to microbial activity (McLean and 

Southam, 2007), especially to the activity of dissimilatory SRBs. Environmentally important 

activities displayed by SRBs are the result of metabolic production of high levels of sulfides that 

are reactive and participate in subsequent mineral formation (Lovely et al., 1995; Bazylinski and 

Frankel, 2003). Sulfate-reducing bacteria encompass 60 genera and 220 species (Barton et al., 

2009) and are ubiquitous as they can tolerate a wide range of environmental conditions including 

temperatures below 5 C and above 50 C and pH values as low as 2.6 and as high as 9.5 (Lee et 

al., 1995; Stein et al., 2007). Sulfate-reducing bacteria can use a large variety of compounds as 

electron donors, and have been proven to perform dissimilatory reduction of U(VI) (Lovely, 
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1995), Cr(VI), Pd(II) as well as some organic compounds (Barton et al., 2009). In addition, 

SRBs biofilm reactors are reported to entrap or precipitate metals such as Cd, Cu and Zn  

reported possible stability of Zn, Cu, and Pb (Zn<Cu<Pb) using SRBs (White and Gadd, 2000; 

Labrenz, 2000; Almendras et al., 2009).  

The ability of microbes to affect and/or mediate metal mobilization or immobilization 

processes depends upon its ability to influence metal distribution among soluble and insoluble 

phases (McLean et al., 2002; Gadd 2010). Most metal-microbes interactions have been studied as 

a means of removal, immobilization, and detoxification of metal or radionuclide pollutants 

(Eccles, 1999; Ramasamy et al., 2007). These previous studies have revealed that microbially 

mediated metals immobilization involves transformation of metals into insoluble and chemically 

stable forms. The mechanisms through which metal immobilizations occur are: biosorption, 

metal precipitation by sulfate reduction, redox transformation, methylation, and plant-microbe 

interactions (Gadd, 2002, 2010; Kosolapov et al., 2004).  

Using a culture-dependent technique would not be feasible to study the complex 

microbial community as 99% of microorganisms have not been cultured yet (Whitman, 1998). 

Therefore culture independent techniques like functional gene arrays (FGA) are required (Van 

Nostrand et al., 2011; Tu et al., 2014). GeoChip 4.2 is a functional gene array targeting 740 

functional genes, and 95847 probes involved in the biogeochemical processes and functional 

activities of microbial communities important to human health, ecosystem management, 

agriculture, energy, global climate change, and environmental cleanup and restoration including 

N, C, S and P cycling, metal reduction and resistance, and organic contaminant degradation (Tu 

et al., 2014). This technique allows detection, characterization and quantification of 

microorganisms in minewaste and to link microbial diversity to ecosystem processes and 
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functions (He et al., 2007; Loick et al., 2014). This technique has been successfully used for 

tracking the dynamics of metal-reducing bacteria and associated communities for an in situ 

bioremediation study (Wu et al., 2007; He et al., 2007; Zhou et al., 2008, Van Nostrand et al., 

2009, 2011; Lu et al., 2012).  

There are not many studies combining microbial analysis with solution chemistry, 

microscopic, and X-ray spectroscopic techniques to develop a molecular-scale understanding of 

complex biogeochemical processes affecting soil and water quality (Brown et al., 1999; Brantley 

et al., 2007). An attempt was made to explore an interplay between geochemical and biological 

processes in the transformation of Pb and Zn in natural subsurface environments biostimulated 

by the addition of OC and S. Stimulating the systems with OC and S would favor SRBs growth 

and activities. We expect that OC plus S treatment would result in a higher abundance of SRB 

genes compared to natural, OC alone, or S alone treatments. The study objectives were: a) to 

characterize the microbial community playing a role in the biogeochemical transformation of Pb 

and Zn under reduced conditions; b) to measure the change in microbial community structure 

with OC and/or S treatment over medium- and long-term submergence; and c) to identify the 

most dominant genes and the associated mechanisms involved in effective immobilization of Pb 

and Zn.  

 Materials and Methods 

 Sample collection, and experimental setup 

The highly contaminated mine tailing materials were collected from a secured repository 

area in Baxter Springs, KS; a part of the Tri-State mining district that has a history of 120 years 

of Pb- and Zn-ore mining related activities. The minewaste was sieved to a 2 mm size and was 

digested following the aqua-regia reflux tube soil digestion method in order to determine the 
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background concentrations of selected elements (Zarcinas et al., 1996).  Based on the sum of 

background elemental concentration of Pb, Zn, Cd, Fe, Mn, Na2SO4 solution was added to a 

portion of minewaste materials. The required amount of a Na2SO4 was calculated based on the 1: 

2 mM ratio of Ʃ metals: S. The S treated minewaste material was equilibrated for 10 days at 

room temperature on a reciprocating shaker (6010, Eberbach Corporation, Ann Arbor, MI) at 

192 reciprocates/min for 3 days, and at 98 reciprocates/min afterwards. The treated and 

equilibrated minewaste was further leached with deionized (DI) water until a target <2 mS cm-1 

electric conductivity was achieved, and then air dried. The S retention after leaching with DI 

water was about 50% of total added S. Both S treated and untreated minewaste materials were 

inoculated with 0.5 g 100g-1 of soil slurry (Ivan, Kennebec, and Kahola silt loams) collected 

from the North Agronomy farm closer to the creek at Kansas State University, Manhattan, KS. 

Prior to its addition to the minewaste, a serial dilution (10-1 to 10-5) of soil slurry was cultured on 

a petri dish using Postgate’s medium (BP1420500) and incubated overnight at 34 ºC in an 

anaerobic jar (AG0025A used with the oxygen absorber; OXAN0025A, Fisher Scientific, USA). 

The black patches observed on the petridish indirectly confirmed the presence of SRBs in the 

soil slurry. The method used for SRB culturing was adapted from Luptakova et al. (2005). The 

minewaste materials (non-treated or treated with S) were well-mixed with soil slurry, and used to 

pack Plexiglas columns (20 cm length, 3.2 cm ID with 3 windows milled to achieve a bulk 

density of about 1.7 g cm-3. The packed columns were saturated slowly with DI water using a 

Mariotte’s bottle that delivers a constant rate of flow before eluent solution was supplied. The 

eluent consisted of a base of simulated groundwater (1 mM NaCl, 1mM MgCl2, 1 mM KCl, 1 

mM CaCl2 adjusted to pH 7.2) with or without 10.7 mM Na-lactate (32 mM OC). This provided 

four treatments for the columns designated C0S0, C1S0, C0S1, and C1S1 where C0 designates 
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simulated groundwater without OC, C1 with OC, S0 designates simulated groundwater applied 

to columns without added S, and S1 designates simulated groundwater applied to columns with 

added S. The eluent solution was supplied using a syringe pump (KD scientific Inc., Holliston, 

MA) at the rate of 13 mm day-1 simulating slow groundwater discharge rate (Wan et al., 2005). 

Three series of column experiments, short-, medium- and long-term, were conducted based on a 

completely randomized design with a two-way factorial experiment (factor 1: OC with two 

levels, 0 and 10.7 mM L-1; factor 2: S with two levels; 0 and 252.7 mg Kg-1). Effluent samples 

were collected every week for medium-term and every two weeks for long-term submergence. 

At the end of each column experiments, about 20 g samples were collected from three windows 

located on the columns and frozen at -80 °C until DNA was extracted. All treatments from 

medium-term including C1S0, C0S1, C1S1 and C0S0 were used for microbial analysis.  

It should be noted that we performed the microarray analysis only on C0S0 and C1S1 

treatments from long-term submergence. The samples were selected based on the geochemical 

and spectroscopic results.  

 DNA extraction, labeling, hybridization, scanning, and data processing  

About 5 g of soil was used for genomic DNA extraction using the PowerMAx® soil DNA 

isolation kit (Mo Bio, Carlsbad, CA, USA). Raw DNA extracts were purified using Wizard® 

Plus SV Minipreps purification system (Promega, USA). Purified DNA was quantified using the 

Quant-iTTM PicoGreen® dsDNA assay kit. DNA was labeled and then hybridized at 42 °C on the 

array as described in Lu et al. (2012). The hybridized arrays were scanned with a NimbleGen MS 

200 Microarray Scanner and scanned images were extracted and quantified using Nimble Scan 

software (Roche NimbleGen, Madison, WI, USA), followed by data preprocessing (Lu et al., 

2012). Positive and negative controls, including (i) 8 degenerate probes targeting 16S rRNA 
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sequences for positive controls, (ii) 563 strain-specific probes targeting 7 hyper thermophile 

genomes for negative controls, and (iii) common oligonucleotide reference standard for data 

normalization and comparison were included for grid alignment and data normalization and 

comparison (Liang et al., 2010). All hybridization data are available at the Institute for 

Environmental Genomics, University of Oklahoma, OK, USA.  

 Results and Discussions 

 Geochemical dynamics after organic carbon (OC), and sulfur (S) additions 

The minewaste material consisted of 85% sand (2000 to 50 µm), 11.3% silt (50 to 2 µm), 

and 3.4% clay (<2 µm). The total N and C were 0.03 g kg-1 and 1.56 g kg-1, respectively. The pH 

of the water extract (DI water: geomaterial mass ratio, 2:1) was 7.2 and the electrical 

conductivity was 2.31 mS cm-1. The major element composition of fine geomaterial obtained 

through aqua-regia digestion is listed in Table 5-1. The standard reference material 2711a 

(National Institute of Standards and Technology, Gaithersburg, MD) was digested along with the 

geomaterial in order to assure the recovery percentage of each element that ranged from 79- 

109%. 

 In the current study, solution chemistry data from medium- and long-term submergence 

indicated that both C1S0 and C1S1 treatments showed rapid immobilization of Pb, Zn and Cd. 

The observed SO4
-2 reduction in relation to the decreasing OC concentration indicated 

dissimilatory sulfate reduction was playing a role in metal’ immobilization. Similar results were 

observed during a study focused on uranium (U) reduction in a contaminated aquifer by Van 

Nostrand et al. (2011), where dissimilatory sulfate reduction was revealed to play a role in U 

reduction. Scanning electron microscopy- energy dispersive X-ray provided indirect evidence of 

sulfide formation via enhanced colocalization of Pb, Zn and Fe with S (Karna et al., 2014a 
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(Chapter 3)). This indirect evidence of metal sulfide formation was further supported with both 

bulk- and micro-scale XAS directly (Karna et al., 2014b (Chapter 4)). Bulk XAS data indicated 

about 62% galena (PbS) formation with C1S0 and C1S1 (Figure 5-1) compared to C0S1 and 

C0S0 under long-term submergence. In addition to this, cerrusite (PbCO3) was another dominant 

Pb mineral formed when only OC was added. Zinc was mostly transformed as silicate minerals 

such as hemimorphite in C1S0 and C0S1 treatments, whereas 31% sphalerite (ZnS) formation 

was observed in C1S1 (Figure 5-2). Metal sulfides are more stable than carbonates over a wide 

range of pH, and are highly resistant to the desorption effects of chlorides of Zn, Cu, Cd, Pb, 

hydroxides and bicarbonates of Zn under anoxic conditions (Moraes et al., 2005; Du Liang et al., 

2009). Precipitation of metal sulfides can act as a sink for trace metal contaminants (Nordstrom, 

1999). The literature suggest that metal carbonate formation may potentially become the 

dominant process controlling metal solubility due to alkaline pH under reduced conditions (Chen 

et al., 1997; Komárek, 2004; Boynton et al., 2009), and insufficient S may limit sulfide 

formation in the long-term (Toevs et al., 2006). Based on our bulk XAS results it appears that the 

OC plus S treatment would be a better strategy over the OC only treatment for facilitating metal 

sulfide formation. More details on solution chemistry, and synchrotron based X-ray analysis can 

be found in Karna et al. (2014a, b) (Chapter 3 and 4). 

 Functional gene diversity  

The p-value from Bray-Curtis dissimilarity test was <0.05 indicating significant 

dissimilarity between the treatments (Table 5-3) over medium- and long-term submergence. The 

p-values provided in the table are based on the total number of detected genes. Functional gene 

richness, indicated by the total number of genes detected, was enhanced in C1S1 under medium-  
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term submergence compared to the other treatments; C0S0, C0S1, C1S0 (Figure 5-3). 

However, under long-term submergence, the total number of detected genes were much lower in 

C1S1 treatment (Figure 5-3). The significant increase in microbial community in C1S1 followed 

by a significant decline may indicate a rapid oxidation of added OC coupled with reduction of 

available terminal electron acceptors (TEAs) and a subsequent decline as suitable TEAs are 

exhausted. This could be explained by the trend that was observed with DOC concentration in 

the current study. Initial concentration of DOC in the eluent was 32 Mm that was reduced to 30 

mM in effluent at 7-day submergence, and further decreased to <detection limit (DL) under long-

term submergence in OC added treatments. On the other hand, non OC treated columns showed 

about <3 mM DOC with no significant change over long-term submergence (Table 5-2). Similar 

result was reported by Brodie et al. (2006), where initial enrichment in total functional genes was 

observed that was subsequently declined with OC addition. On the other hand, no such 

enhancement in functional gene richness was observed without OC addition. This could be due 

to decreased availability of OC (<3 mM) (Table 5-2). Previous literatures revealed that addition 

of OC stimulates biomass and microbial activity in these typically nutrient-poor environments 

and has a significant impact on the microbial biomass, microbial community structure and 

functional genes (Homles et al., 2002; Martin et al., 2002; Nevin et al., 2003; Brodie et al., 2006; 

Yergeau et al., 2007). Sufficient labile OC must be available for sulfate reduction and is a key 

rate limiting factor of metal sulfide formation (Morse et al., 2002; Ku et al., 2008). This process 

can be accelerated by the action of indigenous microorganisms fueled through the addition of 

exogenous carbon (Khan et al., 2010). 
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 Relationships among the microbial communities 

Detrended correspondence analysis (DCA) was used to examine the overall functional 

structure changes in the microbial communities with the OC plus S treatment under medium- and 

long-term submergence. In the DCA ordination plot, more similar samples will cluster more 

closely (Ramette et al., 2007). The overall DCA ordination plot obtained from all detected genes 

resulted in clear clustering of samples from medium- and long-term submergence (Figure 5-4). 

When samples from medium- and long-term submergence were plotted individually, separate 

clusters for each treatment were formed, thus indicating an overall effect of OC and/ or S 

treatments and time on the community structure in relation to dynamics of geochemistry and 

enhanced reduction (Figure 5-4). The positive effect of OC, S and N via enhancement of 

corresponding functional genes, and impact on change in microbial community structure has 

been observed by several studies (Kleikemper et al., 2002; Tokunaga et al., 2003; Furham et al., 

2009). The DCA was also performed for metal resistance (Figure 5-5), C-cycling (Figure 5-6) 

and S-cycling (Figure 5-7) categories separately. The DCA results for metal resistance and S- 

cycling genes showed clear clusters (Figure 5-5, 5-7), however DCA ordination plot for C-

cycling genes showed slight overlapping.  

The DCA was also conducted with individual S- cycling genes; dsrA/ B (Figure 5-8, 5-9) 

that revealed  more clear clusters with dsrB compared to dsrA genes. Overall DCA results 

indicated that decrease in metal resistance and organic remediation functional genes, and 

enrichment in S- and C-cycling functional genes were mainly involved in the observed 

community shift. The change in microbial community structure was observed due to direct and 

indirect involvement of certain functional genes in bioremediation of U study using microarray 

(Van Nostrand et al., 2011). There are several other studies conducted by using other DNA 
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fingerprinting techniques such as phospholipid fatty acid analysis (PLFA), and polymerase chain 

reactions- denaturing gradient gel electrophoresis (PCR-DGGE) that reported changes in 

microbial community structure with addition of OC as substrate (Griffiths et al., 1998; Ellier et 

al., 2003; Calbrix et al., 2009).  

 Total abundance of functional genes categories 

The shifts that were observed in the DCA ordination plots were likely the results of 

changes in total abundance of functional genes. The results from individual gene categories 

revealed that S- and C-cycling functional genes abundance was enhanced by 35%, and 27%, 

respectively with compared to C0S0 over time. On the other hand, metal resistance and organic 

remediation functional genes were decreased by 26% (Figure 5-10) and 21% (Figure 5-11) in 

C1S1, respectively with compared to C0S0. Thus significant enrichment of S- and C-cycling 

genes, and a large decrease in metal resistance and organic remediation genes by 50-60% within 

both treated and untreated samples over time could have resulted in community structure 

changes. As previously mentioned, this could be due to either their direct involvement or absence 

of involvement in bio-reduction (Van Nostrand et al., 2011). For example, if organic remediation 

genes are considered to represent background functional genes, these were greatly decreased 

(Figure 5-11) probably due to lack of involvement in bio-reduction and the corresponding genes 

directly involved in bio-reduction (i.e., dsrA/B) which was also reported by Van Nostrand et al. 

(2011).  

The abundance of stress related functional genes (Figure 5-11), and metal resistance 

genes decreased over long-term submergence with both C1S1 and C0S0 indicated that in 

addition to OC and S, submergence time is also an evident factor playing role in decreasing 

toxicity in these systems. Heavy metals are predicted to represent a major stress on the microbial 
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community, and adaptation to metal stress may be of particular importance that has been playing 

a major role in shaping microbial community structure (Hemme et al., 2010). There are several 

studies that indicated impact of heavy metals on microbial activities, and their community 

structure (Gao et al., 2010; Hemme et al., 2010; Khan et al., 2010). A study conducted on the 

effect of Pb and Cd on soil microbial activities and their community structure via denaturing 

gradient gel electrophoresis (DGGE) indicated that Pb and Cd together has highly decreased the 

number of bacteria when no nutrients were supplied, and also revealed significant impact on 

community structure dynamics particularly at high Pb and Cd concentrations (Khan et al., 2010).  

On the other hand functional genes involved in S- and C-cycling were significantly 

enhanced in C1S1 despite the total number of detected genes was decreased under long-term 

submergence indicating direct involvement of S- and C-cycling genes in biogeochemical 

transformations processes. Increased activities of S-cycling functional genes could be due to 

readily available sulfate as TEA under more reduced condition thereby favoring dissimilatory 

sulfate reduction (Brodie et al., 2003; Muyzer et al., 2008). Relationship observed between 

enhanced dissimilatory sulfate reduction and increased S-cycling functional genes can be further 

supported by the decrease of sulfate-S concentration in effluent sample (table 5-2) and increase 

in metal sulfide formation (Figure 5-1, 5-2) observed in the current study. Similar results were 

reported by Huerta-Diaz et al. (1998) indicating direct involvement of C-cycling and S-cycling 

genes in dissimilatory S reduction via rapid consumption of OC followed by sulfate reduction. 

 Changes in S-, C-cycling, and metal resistance genes 

To better understand the differences observed in the categories above, changes in 

individual genes were examined. Sulfate-reducing bacteria (SRB) mediate the direct 
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and indirect reduction of heavy metals and metalloids (White et al., 1997; Hao, 2000), and have 

been considered as a key player in anaerobic bioremediation for contaminated soils, waters, and 

subsurfaces (Franzmann et al., 2002; Kirk et al., 2002; Janssen and Temminghoff, 2004). For 

SRB community, dsr gene encodes the dissimilatory sulfite reductase enzyme with subunits; A/B 

that is a key enzyme in reducing sulfite to sulfide and is required by all sulfate reducers (Klein et 

al., 2001). Thus, dsr genes provide the insight into SRB activities and their functional role in 

sulfate reduction. Under S- cycling, dsrA, dsrB, and csyJ were more abundant by 31%, 35%, and 

40%, respectively, in C1S1 compared to C0S0 under long-term submergence (Figure 5-12) 

indicating their major role in dissimilatory sulfate reduction. Similarly among C-cycling 

functional genes; phenol_oxidase, and endochitinase were the most dominant genes and they 

were 35%, and 30% more abundant in C1S1 compared to the C0S0 (Figure 5-12). Metal 

resistance genes for Cd, Zn and Pb were examined and cadA (Cd resistance gene), czcA (Zn 

resistance gene) and pbrA (Pb resistant gene) decreased by 29%, 24% and 15%, respectively, in 

C1S1 compared to C0S0 over time (Figure 5-14). Decrease in some functional genes with 

subsequent increase in some other types of functional genes could be explained as some 

microbial species can be diminished, while tolerant species survive and gets more abundant that 

results due to physiological adaptation and genetic modifications in tolerant species, which may 

lead to replacement of more sensitive species (Briuns et al. 2000). In addition, available 

favorable electron acceptors and sufficient OC availability are other major reasons as previously 

discussed.  

 Relationships of microbial community with environmental factors  

Canonical correspondence analysis (CCA) was performed to examine the relationship 

between microbial community structure and geochemistry (Figure 5-14) to correlate the 
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environmental variables with the functional community structure and determine the most 

significant variable causing the change in community structure. Environmental variables such as 

dissolved organic carbon (DOC), SO4
2-, total S, and NO3

- were used to perform CCA. In CCA, 

the environmental variables are represented as arrows starting at the origin and going out. The 

longer the arrow the more important that variable is in controlling or influencing the 

community. The closer a sample to an arrow, the more that variable influences the sample or 

important to that sample. Arrows going in opposite directions indicates a negative correlation 

between those variables. The smaller the angle between arrows, the more related they are, and 

have similar influence on the community (Wilson et al., 1983; Austin et al., 1987, Witten et al., 

2009). Our CCA results shows that DOC and S are closer with a small angle indicating these 

variables have a stronger correlation and have similar influence on the microbial communities. 

Dissolved organic carbon and NO3
- had a larger angle, indicating these variables have a stronger 

correlation, and have a similar influence on the microbial communities. Dissolved OC and NO3
- 

had a larger angle, indicating a weaker correlation and are influencing the microbial communities 

in different manners. The SO4
2- and total S vectors are in opposite directions indicating that these 

factors are negatively correlated.  

Metal precipitation is one of the most significant processes involved in the long-term 

retention of metals in artificial and natural wetlands. Such processes may be accompanied by 

other indirect reductive metal precipitation (such as redox transformation) including 

dissimilatory sulfate reduction and the subsequent precipitation of metal sulfides (Finneran et al., 

2002). Dissimilatory sulfate reduction helps formation of FeS, and FeS2; the systems with pyrite 

(FeS2) formation are more resistant to solubilization of metals (Huerta-Diaz et al., 1998). There 

are several studies reporting dissimilatory sulfate reduction as a major mechanism in 
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immobilizing metals. Our results suggest that appropriate microbial communities were 

stimulated by OC plus S treatments resulting in biogeochemical transformations of Pb and Zn 

under reduced conditions. The total gene abundance in C1S0 was similar to C1S1 under 

medium-term submergence, which was also supported by bulk XAS indicating similar amount of 

galena formations over time. However, limited S concentration and enhanced pH in C1S0 

treatment, metal carbonates could potentially dominate controlling metal solubility and 

carbonates are not as stable as sulfide minerals. Similar results were observed by Falkowski et al. 

(2000); Toevs et al. (2007) that reported more carbonate formations under alkaline pH under 

anaerobic condition. Metal sulfides are more resistant to oxidation, therefore even less sulfide 

formation would help to maintain low metal concentrations in water, down to permissible levels, 

for long time. There are a handful of studies that looked at non redox sensitive element removal 

via constructed wetland treatment systems (White and Gadd, 2000; Almendras et al., 2009). 

Earlier studies done by Almendras et al. (2009) testing Pb, Cu and Zn stability via sulfide 

formations showed that biostimulation plays a vital role in stabilizing Pb and Zn in the 

subsurface environment. The results from our study also suggest that wetland construction can be 

a better alternative for stabilizing non redox sensitive elements such as Pb and Zn present in 

minewaste materials, or similar geomaterial.  

 Conclusions 

The results obtained from the current study indicated that OC and S addition stimulated 

the microbial growth and activities causing change in functional microbial community structure 

via enhancement or reduction of functional genes in saturated minewaste materials enriched with 

Pb and Zn. The decrease in metal resistance genes with reduced toxicity over time, and 

enrichment of S- and C-cycling genes in OC plus S treated samples (C1S1) indicated that these 
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members played significant roles in maintaining the microbial communities in the subsurface 

environment. Sulfur reducing bacteria gene; dsrA/ B appeared to be a key player in forming 

metal sulfides, which was significantly enhanced in C1S1 over the long-term submergence. On 

the other hand, there was no significant difference in the functional gene richness under any 

categories in C0S0 treatment over time. The information obtained from this study help 

concluding that biostimulation would be helpful for inducing metal sulfide formations in 

minewaste materials and SRBs can be used as key players for in situ bioremediation of Pb and 

Zn in subsurface treatment wetlands. The results are in agreement with solution chemistry and 

molecular scale synchrotron based X-ray data and help understanding of the biogeochemical 

processes involved in Pb and Zn removal via dissimilatory sulfate reductions under reduced 

conditions.  
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Table 5-1: Total element concentration in minewaste materials collected from the Tri-State 

mining district. 

Element  Cd Pb Zn Fe Mn S 

mg kg-1  67 5048 23468 6834 97 9458 
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Table 5-2: Chemical data for the effluent samples that were collected at 119-day and 252-day. 

The soil samples collected at these time points were used for microarray analysis. 

 

  
µg/L   

                              

mg/L     

Sample Zn   Cd Pb  pH DOC sulfate-S 

Nitrate-

N 

C0S0 119-day 723 432 <DL 7.57 5 474 2.0 

C0S0 252-day 517 28 <DL 8.41 62 571 2.0 

C0S1 119-day 30 2 <DL 8.00 4 468 1.8 

C0S1 252-day <DL 1 36 6.39 65 ¶ 2.2 

C1S0 119-day <DL 1 <DL 8.18 5 503 1.9 

C1S0 252-day <DL <DL <DL 7.58 <DL 474 2.0 

C1S1 119-day <DL 1 <DL 7.40 4 437 1.8 

C1S1 252-day <DL <DL <DL 7.02 <DL 288 1.9 

⃰⃰DL corresponds to detection limit. Detection limit of 0.6 for Cd, and 0.7 µgL-1 for Pb was 

determined.  

¶ indicates data not collected      
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Table 5-3: Bray Curtis dissimilarity test giving p-value for each treatments submerged for short 

(119-day) and long-term (252-day). The p-values were calculated based on total number of 

detected genes. 

 

 

 

 

 

 

 

 

 

 

 

 

Group Adonis Bray

Whole 0.001

C0S0 119-day vs C0S0 252-day 0.001

C0S0 119-day vs C1S1 119-day 0.001

C0S0 119-day vs C1S1 252-day 0.001

C0S0 119-day vs C0S1 119-day 0.001

C0S0 119-day vs C1S0 119-day 0.132

C0S0 252-day vs C1S1 119-day 0.11

C0S0 252-day vs C1S1 252-day 0.039

C0S0 252-day vs C0S1 119-day 0.09

C0S0 252-day vs C1S0 119-day 0.013

C1S1 119-day vs C1S1 252-day 0.068

C1S1 119day vs C0S1 119-day 0.001

C1S1 119-day vs C1S0 119-day 0.001

C1S1 252-day vs C0S1 119-day 0.497

C1S1 252-day vs C1S0 119-day 0.001

C0S1 119-day vs C1S0 119-day 0.305
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Figure 5-1: Pb-XAFS of selected Pb standards and bulk XAFS spectra for OC plus S treated 

sample (C1S1) showing Galena (PbS) formation under long-term (252-day) submergence. Solid 

lines represent the k1-weighted x-spectra and the dotted lines represent the best fits obtained 

using statistical analyses; principal component analysis (PCA), and linear combination fitting 

(LCF).  
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Figure 5-2: Zn-XAFS of selected Zn standards and bulk Zn XAFS spectra for OC plus S treated 

sample (C1S1) showing Sphalerite (ZnS) formation under long-term (252-day) submergence. 

Solid lines represent the k1-weighted x-spectra and the dotted lines represent the best fits 

obtained using statistical analyses; principal component analysis (PCA), and linear combination 

fitting (LCF).  
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Figure 5-3: Functional Gene richness under medium (119-day), and long-term (252-day) 

submergence. 
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Figure 5-4: Detrended correspondence analysis (DCA) for total number of detected genes under 

medium (119-day), and long (252-day) submergence indicating community structure changes. 
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Figure 5-5: Detrended correspondence analysis (DCA) of functional genes under metal 

resistance category showing change in community structure under medium (119-day), and long 

(252-day) submergence. 
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Figure 5-6: Detrended correspondence analysis (DCA) of functional genes under C-cycling 

category showing change in community structure under medium (119-day), and long (252-day) 

submergence. 
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Figure 5-7: Detrended correspondence analysis (DCA) of functional genes under sulfur category 

showing change in community structure under medium (119-day), and long (252-day) 

submergence. 
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Figure 5-8: Detrended correspondence analysis (DCA) of dsrA showing change in community 

structure under medium (119-day), and long (252-day) submergence. 
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Figure 5-9: Detrended correspondence analysis (statistics) of dsrB showing change in 

community structure under medium (119-day), and long (252-day) submergence.  
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Figure 5-10: Total abundance of function genes under selected categories for the samples 

submerged for both medium (119-day) and long term (252-day) submergence. 
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Figure 5-11: Total abundance of functional genes under organic remediation, and stress category 

under medium (119-day) and long (252-day) submergence. 
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Figure 5-12: Total abundance of dsrA/dsrB, and csyJ under sulfur category under medium (119-

day) and long (252-day) submergence. 

 



175 

 

Figure 5-13: Total abundance of selected functional genes under C-cycling category under 

medium (119-day) and long (252-day) submergence. 

. 
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Figure 5-14: Total abundance of functional genes under metal resistance category indicating 

reduction of Cd resistance gene (CadA), Zn resistance gene (czcA), and negligible change in Pb 

resistance gene. 
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Figure 5-15: Canonical correspondence analysis (CCA) indicating relationship between 

microbial communities with environmental factors. 
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Chapter 6 - Overall Conclusion 

 

The solution chemistry data from our current study indicated that metals were effectively 

immobilized under both medium- and long-term submergence in all the treatments, however 

C1S1 showed an enhanced effect. Metal immobilization effects observed in this study was 

supported by SEM-EDXA that indicated colocalization of metals with S in the black patches 

observed over medium-term submergence indicating indirect evidence of metal sulfide 

formation. This was further confirmed via synchrotron based fluorescence and absorption X-ray 

analyses. Bulk XAS provided overall speciation indicating enhanced sulfide formation with 

C1S0, and C1S1 treatments. The results obtained from the current study indicated that OC and S 

addition stimulated the microbial growth and activities causing change in functional microbial 

community structure via enhancement or reduction of functional genes in saturated minewaste 

materials enriched with Pb and Zn. Sulfur reducing bacteria gene; dsrA/ B appeared to be the key 

player in forming metal sulfides, which was significantly enhanced in C1S1 over long term 

submergence. Colloidal assisted metal transportation (<1% of both Pb and Cd) occurred during 

initial submergence. Retention filters are suggested to avoid colloidal metal transport in order to 

meet the maximum concentration limit for Pb and Cd in groundwater. 

Based on the overall results, it seemed that C1S0 treatment revealed similar results, 

however considering long term stability of metals, insufficient S could promote carbonate 

formation at alkaline pH under reduced conditions. Considering the fact that sulfides are more 

stable than carbonates addition of OC and S would be the best strategy for stabilizing metals in 

the minewaste materials in the Tri-State mining district and any other similar geomaterials.  
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This research enhances our understanding of the redox processes associated with the 

sequestration of non-redox sensitive metals through dissimilatory reduction of sulfates in mine 

waste materials and/ or waste water and provides regulators with useful scientific evidence for 

optimizing remediation goals. 

The results are in agreement with solution chemistry and molecular scale synchrotron 

based X-ray data and help understanding of the biogeochemical processes involved in Pb and Zn 

removal via dissimilatory sulfate reductions under reduced conditions.  
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Appendix A  

Figures and tables relevant to Chapter 4 
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Figure A-1 Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in control 

(C0S0) samples submerged for short term (32-day) The fluorescence signals of Pb, Zn, Fe, and 

Mn were collected at 14 000 eV. Each point on the graph represents a pixel in Figure 1. 
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Figure A-2: Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in control 

(C0S0) samples submerged for medium term (119-day) The fluorescence signals of Pb, Zn, Fe, 

and Mn were collected at 14 000 eV. Each point on the graph represents a pixel in Figure 1. 
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Figure A-3: Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in control 

(C0S0) samples submerged for long term (252-day).The fluorescence signals of Pb, Zn, Fe, and 

Mn were collected at 14000 eV. Each point on the graph represents a pixel in Figure 1. 
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Figure A-4: Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in OC plus 

S treated (C0S0) samples submerged for short term (32-day). The fluorescence signals of Pb, Zn, 

Fe, and Mn were collected at 14 000 eV. Each point on the graph represents a pixel in Figure 2. 
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Figure A-5: Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in control 

(C0S0) samples submerged for medium term (119-day). The fluorescence signals of Pb, Zn, Fe, 

and Mn were collected at 14000 eV. Each point on the graph represents a pixel in Figure 2. 
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Figure A-6: Correlations between the fluorescence signals of Pb, Zn with Fe and Mn in control 

(C0S0) samples submerged for long term (252-day). The fluorescence signals of Pb, Zn, Fe, and 

Mn were collected at 14000 eV. Each point on the graph represents a pixel in Figure 1. 
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Table A-1: Principle component analysis (PCA) results showing spoil values for Pb and Zn 

mineral standards. 

 

The mineral standards <4 were selected. *on the value indicates the standards that were used to 

run linear combination fittings for bulk Zn-XAFS, and Pb-XAFS. 

  

Zinc minerals Spoil value Lead minerals Spoil value

Ferrihydrite 3.71* Anglesite 7.19

Frnklinte 9.87 Cerrusite 0.97*

Ganhnite 9.49 Galena 2.54*

Hemimorphite 1.57* Hydrocerrusite 3.53*

Hopeite 6.38 Hydroxypyromorphite 7.29

Hydrozincite 2.74* Leadhillite 3.75*

Scholzite 5.23 Magnetoplumbite 2.51*

Smithsonite 2.62* Lead oxide 1.63*

Willemite 9.92 Lead phosphate 4.7*

Zincite 15.4 Plumboferrite 9.63

ZnAl_LDH 2.65* Plumbogummite 4.21

Zinc hydroxide 3.2* Plumboyrosite 7.68

Sphalerite 2.31* Pyromorphite 6.15

Zinc sulfate 1.97* Lead hindsalite 8.01

Zinc oxide 20.5 Plumbonacrite 5.45
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Table A-2: Principle component analysis (PCA) results showing spoil values for Pb and Zn 

mineral standards 

 

The mineral standards <4 were selected. *on the value indicates the standards that were used to 

run linear combination fittings for bulk Zn-XAFS, and Pb-XAFS.

Zinc minerals Spoil value Lead minerals Spoil value

Ferrihydrite 2.63* Anglesite 3.71

Frnklinte 2.66* Cerrusite 3.83*

Ganhnite 5.64 Galena 1.89*

Hemimorphite 2.23* Hydrocerrusite 1.96*

Hopeite 2.19* Hydroxypyromorphite 2.76*

Hydrozincite 5.63 Leadhillite 1.98*

Scholzite 3.11* Magnetoplumbite 3.45

Smithsonite 2.73 Lead oxide 4.4

Willemite 2.03* Lead phosphate 2.29*

Zincite 3.0* Plumboferrite 2.31*

ZnAl_LDH 3.56* Plumbogummite 3.85*

Zinc hydroxide 3.68* Plumboyrosite 4.76

Sphalerite 2.73* Plumbonacrite 2.46*

Zinc sulfate 4.34 Lead phosphate 2.29*

Zinc oxide 2.07* Pyromorphite 5.81
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Table A-3: Micro Pb-XAS linear combination fitting results showing % components of different Pb-minerals formed with OC plus S 

treated (C1S1) samples under short term (32-day), medium term (119-day), and long term (252-day) submergence. 

 

P1-Pn represents the point of interest (POI) on the µ-XRF maps (Figure 1). *indicates the POIs where XAS data collected were not 

useable. 

 

 

  

Treatments over time Galena Cerrusite PbO Hydroxypyromorphite Plumboferrite Plumbogummite Pb3(PO4)2 χ2 R-factor

C1S1 252-day P1* − − − − − − − − −

C1S1 252-day P2 89 − − 11 − − − 0.02 0.0006

C1S1 252-day P8 100 − − − − − − 0.05 0.001

C1S1 252-day P6* − − − − − − − − −

C1S1 252-day P7* − − − − − − − − −

C1S1 119-day P1 − 16 25 − 31 − 28 0.005 0.000065

C1S1 119-day P2 − − 66 − 34 − − 0.02 0.000308

C1S1 119-day P3 6 59 26 9 − 2 0.0188 0.000268

C1S1 119-day P4 29 − 51 − − 20 − 0.01265 0.000166

C1S1 119-day P5 13 − 44 − 18 − 25 0.0162 0.000234

C1S1 32-day P1 − 79 8 13 − − − 0.018 0.00026

C1S1 32-day P3 71 − − − 8 21 − 0.0189 0.00013

C1S1 32-day P4 20 − 69 11 − − − 0.0084 0.00012

C1S1 32-day P5 41 − 56 − 3 − − 0.055 0.000804

C1S1 32-day P6 − 67 21 5 7 7 − 0.02212 0.000322
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Table A-4: Micro Zn-XAS linear combination fitting results showing % components of different Zn-minerals formed with control 

(C0S0) samples under short term (32 and 119-day), and long term (252-day) submergence. 

 

P1-Pn represents the point of interest (POI) on the µ-XRF maps (Figure 3). *indicates the POI where XAS data collected were not 

useable.

Treatments over time Sphalerite Frankellinite Hemimorphite Zn(OH)2 Willemite Smithsonite Ferrihydrite_Zn ZnAl-LDH ZnSO4 χ2 R-factor

C1S1 252-day P2 − 64 − − − − − − 36 3.4 0.49

C1S1 252-day P3 99 − − 1 − − − − − 1.4 0.33

C1S1 252-day P4 82 − − 18 − − − − − 2.04 0.51

C1S1 252-day P6 44 − − − 56 − − − − 0.94 0.67

C1S1 252-day P7 72 − − 28 − − − − − 1.23 0.99

C1S1 119-day P1 24 28 − − 25 22 − − − 0.42 0.53

C1S1 119-day P2 43 21 23 − − 13 − − 0.64 0.29

C1S1 119-day P3* − − − − − − − − − −

C1S1 119-day P4 24 17 − 5 48 2 − 4 − 0.02 0.49

C1S1 119-day P5 16 21 − 2 44 17 − − − 0.28 0.32

C1S1 32-day P1* − − − − − − − − − − −

C1S1 32-day P2 18 22 67 − − − − − − 5.86 0.7

C1S1 32-day P3 − 5 5 − − − − − − 2.84 0.42

C1S1 32-day P4 − 82 − 18 − − − − − 1.23 0.26

C1S1 32-day P5* − − − − − − − − − − −



190 

 

Figure A-7: Micro Fe-XANES spectra OC plus S treated (C1S1) samples under short (32-day), 

medium term (119-day), and long term (252-day) submergence. In each spectrum d represents 

days of submergence, and P1-P5 represents the points selected on micro-XRF maps for Fe-

XANES data collection. Solid lines represent the normalized spectra and the dotted lines 

represent the best fits obtained using statistical analyses; principal component analysis (PCA), 

and linear combination fitting (LCF). 
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Figure A-8: Micro Fe-XANES linear combination fitting (LCF) results for control OC plus S 

treated (C1S1) showing % components of Fe2+, and Fe3+ minerals formed representing redox 

status of system under short (32-day), medium term (119-day), and long term (252-day) 

submergence. 
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Appendix B  

Material summary 

 
 

Figure B-1: Column experiment setup inside an anaerobic chamber.  
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Figure B-2: Column packing.  
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Figure B-3: Eluent solution supply using syringe pump.  
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Figure B-4: Effluent sample collection.  
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Figure B-5: Soil sample collection at the end of experiment.  
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Figure B-6: Sample preparation for bulk X-ray analysis.  
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Figure B-7: Soil smear mounted on epoxy for micro-X-ray analysis. 


