A COMPUTER PROGRAM FOR INTERNAL DOSIMETRY ANALYSIS USING THE METHODS OF ICRP-30/

by

Ami rodin luda

B.S., Kansas State University, 1985

A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by:

Major Professor
TABLE OF CONTENTS i
LIST OF FIGURES. iii
LIST OF TABLES iv
0.0 INTRODUCTION 1
1.0 FUNDAMENTALS OF RADIATION PROTECTION 3
1.1 Dose Equivalent H 4
1.2 Absorbed Dose D. 4
1.3 Effective Quality Factor \bar{Q} 5
1.4 Collective Dose Equivalent S 5
1.4.1 Radiobiological Assumption 7
1.5 Committed Dose Equivalent H_{50} 7
1.5.1 Non-homogeneous radiation 8
1.5.2 Unequal sensitivity of cells 9
1.5.3 Rate of dose accumulation 9
1.5.4 Age, sex, and dose-dependency 9
1.6 Dose Equivalent Limits for Occupational Exposure 10
1.6.1 Recommended limit for non-stochastic effects. 10
1.6.2 Recommended limit for stochastic effects. 10
1.6.3 External exposures to penetrating radiation 11
1.6.4 Planned special exposures 12
1.6.5 Women of reproductive capacity 12
1.6.6 Occupational exposure of pregnant women 12
1.7 Control of Internal Dose 12
1.7.1 Annual limit on intake (ALI). 12
1.7.2 Derived air concentration (DAC) 13
2.0 EVALUATION OF SPECIFIC COMMITTED DOSE EQUIVALENT. 15
2.1 Specific Effective Energy. 18
2.1.1 Target organs of the GI tract and bladder wall. 22
2.1.2 Target organ in bone. 23
2.1.3 A note on daughters 25
2.2 Number of Transformations in a Source Organ over 50 years. 25
2.2.1 A note on daughters 26
2.2.2 Transfer compartment T. 26
2.2.3 Tissue compartment 32
2.2.4 Respiratory system. 34
2.2.5 Gastrointestinal tract. 47
2.2.6 Activity translocated to the transfer compartment $\mathrm{f}_{\mathrm{T}}{ }^{\mathrm{i}}$. 54
2.2.7 Source organ as bone. 56
2.2.8 Three compartments model for iodine 57
3.0 DOCUMENTATION FOR "DOSE FORTRAN". 61
3.1 Objective. 61
3.2 Requirements for Execution 62
3.3 Execution of the Program 64
3.4 Dose Fortran 65
3.4.1 Decay 1 Fortran 72
3.4.2 Atomno Fortran 77
3.4.3 Iclass Fortran 78
3.4.4 Pclass Fortran 78
3.4.5 F1valu Fortran 78
3.4.6 Frac Fortran 79
3.4.7 Factor Fortran 81
3.4.8 Icrp Fortran 83
3.4.9 Inhale Fortran 84
3.4.10 Respir Fortran 92
3.4.11 Thalf Fortran. 94
3.4.12 Refman Fortran 95
3.4.13 Tfrac Fortran. 97
3.4.14 Trnsfm Fortran 100
3.4.15 Speff Fortran. 104
3.4.16 Decay Fortran. 108
3.4.17 Yerror Fortran 112
3.4.18 Intrpt Fortran 113
3.4.19 Ingest Fortran 115
3.4.20 Result Fortran 120
3.4.21 Submer Fortran 123
3.5 Results and Discussion 124
4.0 REFERENCES 145
ACKNOWLEDGEMENTS 146
APPENDIX A: Listing of Computer Programs 147
Figure Page
1.1 Relationship of units 6
2.1 Mathematical model used by the ICRP to describe the kinetics of radionuclides in the body 27
2.2 Mathematical model used to describe clearance from respiratory system. 36
2.3 Model of deposition of dust in the respiratory system as proposed by the ICRP 38
2.4 Pulmonary clearance classification of inorganic compounds as proposed by the ICRP. 39
2.5 Model of gastrointestinal tract as proposed by the ICRP 48
2.6 Mathematical model proposed by the ICRP for radioactive iodine 57
3.1 Points of call of subroutines in execution of the program 66
3.2 Flowchart of "INHALE FORTRAN". 87
3.3 Flowchart of subroutine "TRAC FORTRAN" 99
3.4 Flowchart of "TRNSFM FORTRAN". 106
3.5 Flowchart of function subprogram "SPEFF FORTRAN". 109
3.6 Flow diagram for "INGEST FORTRAN" 119
1.1 Weighting factors as proposed by the ICRP. 11
Absorbed fractions for dosimetry of radionuclides
in bone as recommended by the ICRP 30. 24

The values of removal half times and compartmental
fractions in the four respiratory regions. 40
Approximate expressions for the number of
transformations in the subcompartments of lung
following inhalation of unit Bq of activity. 42
2.4 Approximate expressions for the number of transformations of a radioactive daughter in the subcompartments of the lung. A_{a} to A_{j} refers to the number of transformations of the immediate parent in subcompartments a to j of the lung. λ_{R} is the radiological decay constant of the daughter43

2.5 Mathematical model used to describe the kinetics
of radionuclides in the gastrointestinal tract as
proposed by the ICRP 49
2.6 Approximate expressions for the number of transformations of the parent in the various regions of the gastrointestinal tract following ingestion of 1 Bq of activity. Based on ICRP Publication 3051

2.7 Approximate expressions for the number of
transformations of a radioactive daughter in the
various sections of the GI tract. $A_{S T}$, $A_{S I}$, $A_{U L I}$. $A_{\text {LLI }}$ are the number of transformations of the parent in the various regions of the tract. λ_{R}^{\prime} is the radiological decay constant of the daughter. Based on ICRP Publication 3052
3.1 Masses of organs and tissues of "Reference Man"
in this program 62
3.2 Specific effective energy absorbed in a target organ from each transformation in a source organ for radionuclide I-13I 129
Table Page
3.3
Specific effective energy absorbed in a target
organ from each transformation in a source organ for radionuclide $\mathrm{In}-113 \mathrm{~m}$ 130
3.4 Specific effective energy absorbed in a target organ from each transformation in a source organ for radionuclide $\mathrm{Te}-121$. 131
3.5 Specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) for selected ingested radionuclides and their daughters. Annual limits of intake are the lesser of the values for stochastic and non-stochastic risks. 132
3.6 Specific committed dose equivalents (Sv/Bq) forselected ingested radionuclides and their daughters.Annual limits of intake are the lesser of the valuesfor stochastic and non-stochastic risks.133
3.7 Specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) forselected ingested radionuclides and their daughters.Annual limits of intake are the lesser of the valuesfor stochastic and non-stochastic risks.134
3.8 Specific committed dose equivalents (Sv/Bq) for selected inhaled radionuclides and their daughters. Annual limits of intake are the lesser of the values for stochastic and non-stochastic risks. 135
3.9 Specific committed dose equivalents (Sv/Bq) for selected inhaled radionuclides and their daughters. Annual limits of intake are the lesser of the values for stochastic and non-stochastic risks 136
3.10 Specific committed dose equivalents (Sv/Bq) for selected inhaled radionuclides and their daughters. Annual limits of intake are the lesser of the values for stochastic and non-stochastic risks 137
3.11 Specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) for selected inhaled radionuclides and their daughters. Annual limits of intake are the lesser of the values for stochastic and non-stochastic risks 138
3.12 Specific committed dose equivalents (Sv/Bq) forselected inhaled radionuclides and their daughters.Annual limits of intake are the lesser of the valuesfor stochastic and non-stochastic risks139
Table Page
3.13 Specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) forselected inhaled radionuclides and their daughters.Annual limits of intake are the lesser of the valuesfor stochastic and non-stochastic risks140
3.14 Comparison of specific committed dose equivalents($\mathrm{Sb} / \mathrm{Bq}$) to the results in ICRP Publication 30 forselected ingested radionuclides and their daughters.Values reported are greater than or equal to 10%of the maximum141
3.15 Comparison of specific committed dose equivalents($\mathrm{Sb} / \mathrm{Bq}$) to the results in ICRP Publication 30 forselected ingested radionuclides and their daughters.Values reported are greater than or equal to 10%of the maximum142
3.16 Comparison of specific committed dose equivalents($\mathrm{Sv} / \mathrm{Bq}$) to the results in ICRP Publication 30 forselected inhaled radionuclides and their daughters.Values reported are greater than or equal to 10% ofthe maximum.143
3.17 Comparison of specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) to the results in ICRP Publication 30 for selected inhaled radionuclides and their daughters. Values reported are greater than or equal to 10% of the maximum 144

0.0 INTRODUCTION

Since the discovery of radioactivity, mankind has been confronted with the challenge of understanding biological effects of radiation. The domestication of nuclear power has heightened the need to fully comprehend the relation between radiation and human heal th for the safety of occupational workers and the public in general. During recent decades, the field of radiation protection has made tremendous strides from its infancy. The rapid growth of knowledge has made it possible to revise the mathematical models for accurate estimation of internal doses from radionuclides, and update the regulatory guidelines for control and management of radioactive materials. In view of this, the International Commission on Radiological Protection approved a new set of basic recommendations dealing with protection from ionizing radiation. These are detailed in the ICRP Publication 26 [IC77]. Further, the methods used to evaluate internal dose to comply with the limits in ICRP-26 along with the tables of specific committed dose equivalents, limits on annual intake, and air concentrations from specific radionuclides are shown in ICRP Publication 30 [IC79].

This report describes a computer program "DOSE" in FORTRAN-77 that generates internal dose factors of the type called for in ICRP-30. The constraints imposed by the ICRP on exposure of different organs and tissues of the body singly or together with other organs, in the case of intake of a radionuclide, are discussed in Chapter 1.0. The general principles, mathematical models, definitions, and calculational
procedures adopted by the ICRP-30 for calculation of specific committed dose equivalent are used in this program. Also, the models presented in Chapter 2.0 for the routes of entry of radionuclides into the body, namely, the respiratory system and the gastrointestinal tract, are the ones recommended by the $I C R P-30$. The metabolic data for the radioisotopes of different elements are also obtained from ICRP-30. In the case of iodine, the program follows the alternate model discussed in the ICRP-30. The specific committed dose equivalents are assumed to be received by a "reference man" of anatomical and physiological characteristics described in ICRP Publication [IC75]. The decay schemes of radionuclides are obtained from Kocher [K081]. The ICRP uses the decay schemes from its publication 38 [IC83]. This difference may reflect on the results for some of the radionuclides.

An important feature of this program is its flexibility. The data files on radiological and biological decay are written in such a manner that addition of new data on a radionuclide or amendment of the present data is easy. Also, as is explained in Chapter 3.0, most of the calculations for important quantities are done by separate, independent subroutines. This design makes future modifications in the program convenient and simple.

1.0 FUNDAMENTALS OF RADIATION PROTECTION

The concept of radiation protection centers around two possible effects in individuals. They are defined as "somatic" and "hereditary".
"Somatic" effects of radiation are limited to the exposed individual while "hereditary" effects are manifested in the individual's progeny. The quality of effect can be described as "stochastic" or "non-stochastic".
"Stochastic" effects involve probability of occurrence as opposed to severity, and are therefore considered a function of dose, without threshold. In contrast, "non-stochastic" effects vary in severity with dose, and hence may involve a threshold. Hereditary effects are considered stochastic at the dose range involved in radiation protection, while somatic effects may be stochastic or non-stochastic. An example of stochastic effects is carcinogenesis at low doses. Non-stochastic somatic effects may range from cataract of the lens to damage of the hematopoietic system.

To quantify health damage, the International Commission on Radiological Protection (ICRP) has proposed the concept of "detriment". "Detriment" in a population is described as the mathematical "expectation" of the deleterious effect from a radiation exposure, taking into account not only the probability of each type of damaging effect but also the severity of the effect. In other words, "detriment" to health G in a group of persons P is given as the summation over all effects i of the product of probability p_{i} of
suffering the effect and the severity of effect expressed by a weighting factor g_{i}, i.e.,

$$
\begin{equation*}
G=P \sum_{i} p_{i} g_{i} \tag{1.1}
\end{equation*}
$$

1.1 DOSE EQUIVALENT, H

This quantity characterizes the severity and probability of the deleterious heal th effects of radiation. The dose equivalent H at a point in tissue is given by

$$
\begin{equation*}
H=D \bar{Q} N . \tag{1.2}
\end{equation*}
$$

where D is the absorbed dose,
$\overline{\mathbf{Q}}$ is the effective quality factor, and
N is the product of all modifying factors such as absorbed dose rate and fractionation specified by ICRP. At present, it is assigned a value of 1 .

The SI unit of dose equivalent is the sievert (Sv). $1 \mathrm{~Sv} \equiv 100$ rem.

1.2 ABSORBED DOSE. D

This refers to the energy locally deposited (and ultimately dissipated as heat) per unit mass of the medium. It applies to both types of radiation, ionizing and non-ionizing. The SI unit of absorbed dose is the gray (Gy). $1 \mathrm{~Gy}=1 \mathrm{~J} \mathrm{~kg}^{-1}$ ($\equiv 100 \mathrm{rad}$).

1.3 EFFECTIVE QUALITY FACTOR, $\overline{\mathbf{Q}}$

Quality factor is introduced to allow for the effect on the detriment of the microscopic distribution of absorbed energy. It is a function of the collisional stopping power in water. For a spectrum of radiation, the $I C R P[I C 77]$ recommends an effective value \bar{Q} to be used for both external and internal radiation:

```
X rays, }\gamma\mathrm{ rays, and electrons 1
Neutrons, protons and singly-
charged particles of rest mass
greater than one atomic mass
unit of unknown energy 10
\alpha particles and multiply-
charged particles (and particles
of unknown charge) of unknown
energy
20
```

A graphic review of the relationship between these quantities is shown in Fig. 1.1.

1.4 COLIECTIVE DOSE EQUIVALENT, S

This concept approximates the relationship between detriment and the distribution of dose equivalent in an exposed population. It is expressed as:

$$
\begin{equation*}
S=\sum H_{i} P_{i} \tag{1.3}
\end{equation*}
$$

where $\quad H_{i}$ is the dose equivalent to the whole body or a specific organ or tissue of an individual who is a member of the subgroup i in the exposed population, and

Flux (ϕ)

FIG. 1.1. Relationship of units.

$$
P_{i} \text { represents the number of members in this subgroup } i
$$

The collective dose equivalent S_{k} from a practice or source (k) is given by

$$
\begin{equation*}
S_{k}=\int_{0}^{\infty} H P(H) d H \tag{1.4}
\end{equation*}
$$

where $P(H) d H$ is the number of individuals receiving a dose equivalent in the whole body or a specific organ or tissue in the range H to $H+d H$.

1.4.1 Radiobiological Assumption:

A simple summation over all subgroups of the population of doses to specific organs or tissues of a typical individual in a subgroup is used as a measure of detriment to estimate the collective dose equivalent in a population [IC77]. This process is based on an assumption regarding stochastic effects; namely, that within the usual range of radiation exposure a linear relationship without threshold exists between dose and the probability of an effect.

1.5 COMMITTED DOSE EQUIVALFNT. H_{50}

This is defined as the total dose equivalent averaged throughout a tissue in the 50 years after intake of a radionuclide into the body. The 50 year period represents a working life. Mathematically, it can be expressed as:

$$
\begin{equation*}
H_{50}=\int_{t_{0}}^{t_{0}+50 y} \dot{H}(t) d t \tag{1.5}
\end{equation*}
$$

where $\dot{H}(t)$ is the relevant dose-equivalent rate, and t_{0} is the time of intake.

In view of the radiobiological assumption above, it is considered practical to conceptualize the term "dose equivalent" as a mean dose equivalent over all cells of uniform sensitivity in a particular tissue or organ for stochastic effects.

1.5.1 Non-homogeneous radiation:

If the doses to individual cells vary due to non-uniform irradiation then the relevance of the mean dose equivalent may be questioned. However, according to the Commission, based on theoretical concepts and epidemiological evidence, a series of "hot spots" in an organ or tissue is less likely to be damaging than a uniform distribution. High doses cause loss of reproductive capacity or death of cells, neither of which may contribute significantly to stochastic effects. Thus, for non-homogeneous irradiation, assessment of dose with the assumption of homogeneous distribution would probably be an overestimation. So far as non-stochastic effects are concerned, the limited amount of cell killing at moderate dose levels is thought not to be a major factor in perturbing the balance of organ function.

1.5.2 Unequal sensitivity of cells:

The problem of dose variance due to differing cell sensitivities of different organs is handled by the Commission by prescribing risk factors according to relative radiosensitivities of the irradiated tissues. A detailed explanation of these risk factors will follow later.

1.5.3 Rate of dose accumulation:

Based on assumptions and explanations summarized above, the Commission has found it unnecessary to recommend a maximum rate of dose accumulation as long as the annual dose equivalent limit is met. The only exception is the case of occupational exposure of women of reproductive potential and pregnant women.

1.5.4 Age, sex, and dose-dependency:

Risk factors for occurrence of malignant cancers are thought to be lessened in older persons due to long periods of latency needed for progression and expression of these effects. Also, development of breast cancer is much more common in females than in males. Such facts emphasize the importance of age, sex, and dose dependency. The Commission however, describes average risk levels based on anatomical and physiological characteristics of "reference man" because, for protection purposes, it is considered sufficiently prudent to use a single dose-equivalent limit for each organ or tissue for all workers regardless of age or sex.

1.6 DOSE EQUIVALENT LIMITS FOR OOCUPATIONAL EXPOSURE

The primary considerations of the Commission in establishing dose equivalent limits were:
i) For stochastic effects, a single value should not only limit uniform irradiation of the whole body but also ensure that the total risk from irradiation to parts of the body does not exceed the value.
ii) To preclude non-stochastic effects, a value should be proposed such that no single tissue receives more dose-equivalent than the value.
1.6.1 Recommended limit for non-stochastic effects:

To prevent non-stochastic effects in all tissues except the lens, the Commission has proposed a limit of 0.5 Sv (50 rem) in a year. The dose equivalent to the lens is limited to 0.15 Sv (15 rem) in a year.

1.6.2 Recommended limit for stochastic effects:

For whole-body uniform irradiation, the limit is

$$
\begin{equation*}
H_{w b}=5 \mathrm{cSv}(5 \mathrm{rem}) \text { in any year. } \tag{1.6}
\end{equation*}
$$

Non-uniform irradiation must adhere to the following condition:

$$
\begin{equation*}
\sum_{T} w_{T} H_{T} \leq H_{w b} \tag{1.7}
\end{equation*}
$$

where $\quad H_{T}$ is the dose equivalent received by tissue T, and

```
wT is a weighting factor involving relative radiosensitivity
    of the tissue T.
```

The values of these weighting factors are given in Table l.1.

TABLE 1.l. Weighting factors as proposed by the ICRP Publication 26.

Tissue	
Gonads	
Breast	0.25
Red bone marrow	0.15
Lung	0.12
Thyroid	0.12
Bone surfaces	0.03
Remainder	0.03

The "remainder" refers to five remaining organs or tissues receiving the highest dose equivalents, with $w_{T}=0.06$ applied to each. All other tissues are neglected. Of course, lens and skin are not members of "remainder" because they are subject to non-stochastic effects. The gastrointestinal tract is treated as four separate organs: stomach, small intestine, upper large intestine, and lower large intestine.
1.6.3 External exposures to penetrating radiation:

In the absence of information on actual distribution of dose equivalent within the body, the maximum value of dose equivalent in a $30-\mathrm{cm}$ spherical phantom when limited to the 0.5 Sv annual limit will permit a comparable level of protection.

1.6.4 Planned special exposures:

The limit under such situations should not exceed twice the relevant annual limit in any single event, and, in a lifetime, five times this annual limit. The exposures however, must be justified and permitted only when alternative techniques are impractical or unavailable.

1.6.5 Women of reproductive capacity:

Occupational exposure of such women should be restricted to insure that the embryo receives no more than 0.005 Sv during the first two months of pregnancy.
1.6.6 Occupational exposure of pregnant women:

Exposure should be minimized and not exceed 30% of the normal annual limits.

1.7 CONTROL OF INTERNAL DOSE

For control of internal dose for workers, the standards are derived from the general limits described in the previous section and are based on the parameters of the "reference man".
1.7.1 Annual limit on intake (ALI) [IC79]:

For a given radionuclide, if I is the annual intake (Bq) either by ingestion or inhalation, and $\hat{H}_{50, T}(\mathrm{~Sv} / \mathrm{Bq})$ is the specific (per unit intake) committed dose equivalent in tissue T from the intake by the
specified mode, weighted for its sensitivity by weighting factor w_{T} described in Table 1.1, then the annual limit on intake is defined as the greater value of I which satisfies both of the following inequalities

$$
\begin{equation*}
\mathrm{I} \sum_{\mathrm{T}} \mathrm{w}_{\mathrm{T}} \hat{\mathrm{H}}_{50, \mathrm{~T}} \leq 0.05 \mathrm{~Sv} \tag{1.8}
\end{equation*}
$$

for stochastic effects, and

$$
\begin{equation*}
\mathrm{I} \hat{\mathrm{H}}_{50, \mathrm{~T}} \leq 0.5 \mathrm{~Sv} \tag{1.9}
\end{equation*}
$$

for non-stochastic effects.
The summation in the first inequality is over all tissues in Table 1.1. including of course the five "remaining tissues" in "remainder" which receive the greatest specific committed dose equivalents. A tissue is considered to be "significantly irradiated" only when it satisfies the following inequality

$$
\begin{equation*}
w_{T} \hat{\mathrm{H}}_{50, \mathrm{~T}} \geq 0.1\left(\mathrm{w}_{\mathrm{T}} \hat{\mathrm{H}}_{50 . \mathrm{T}}\right)_{\operatorname{maximum}} \tag{1.10}
\end{equation*}
$$

1.7.2 Derived air concentration (DAC) [IC79]:

The DAC for any radionuclide is defined as that concentration in air ($\mathrm{Bq} / \mathrm{m}^{3}$) which, if received by "reference man" for a working year of 2000 h (50 weeks at 40 hours per week). would lead to the ALI for inhalation, i.e.,

$$
\mathrm{DAC}=\mathrm{ALI} /(2000 \times 60 \times 0.02)
$$

or

$$
\begin{equation*}
\mathrm{DAC}=\mathrm{ALI} / 2.4 \times 10^{3} \mathrm{~Bq} / \mathrm{m}^{3} \tag{1.11}
\end{equation*}
$$

where $\quad 0.02 \mathrm{~m}^{3}$ is the volume of air breathed at work by "reference man" per minute under conditions of "light activity" as described by ICRP Publication 23.

For radioactive noble gases other than radon and thoron, DAC's are the concentrations which would lead to a cumulative weighted average dose of not more than 0.05 Sv , a dose to the lens of 0.15 Sv , or a dose to the skin of 0.5 Sv in a working year (2000 h).

2.0 EVALUATION OF SPECIFIC COMMITTED DOSE EQUIVALENI

Specific committed dose equivalent from a radionuclide to a target organ or tissue is defined as the committed dose equivalent to the organ or tissue as a result of ingestion or inhalation of unit activity of the nuclide.

Activity or decay rate A is mathematically expressed as

$$
\begin{equation*}
A=\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta t}, \tag{2.1}
\end{equation*}
$$

where ΔN is the number of spontaneous nuclear transformations in a quantity of radionuclide, and
Δt is the time interval.

The unit of activity is the becquerel (Bq). $1 \mathrm{~Bq}=1 \mathrm{~s}^{-1}(\sim 2.7 \mathrm{x}$ $10^{-11} \mathrm{Ci}$).

Committed dose equivalent, as explained in the previous chapter. is the total dose equivalent averaged throughout any tissue in the 50 years following intake of a radionuclide into the body, and hence can be written as

$$
\begin{equation*}
H_{50}=\sum_{i} \frac{\int_{50, i}^{M} D_{D_{i}} N_{i} d m}{\int^{M} d m} \tag{2.2}
\end{equation*}
$$

where $\quad i$ is an index for the type of radiation (α, β, γ, etc.) released by the radionuclide, !
$D_{50, i}$ is the total absorbed dose in the element of mass $d m$ of the specific organ or tissue during a 50 year period following intake of the radionuclide into the body,
\bar{Q}_{i} is the effective quality factor for the radiation type i, N_{i} is the product of all modifying factors such as dose rate, fractionation, etc., and
M is the mass of the organ or tissue under consideration.

A value of 1 is recommended for N by the ICRP (Publication 26) and the value of $\overline{\mathrm{Q}}$ is constant for each type of radiation i; therefore, the above relation can be simplified to

$$
\begin{equation*}
H_{50}=\sum_{i} \overline{\mathrm{Q}}_{\mathrm{i}} \overline{\mathrm{D}_{50, i}}, \tag{2.3}
\end{equation*}
$$

where $\overline{D_{50, i}}$ is the total absorbed dose during the 50 years after intake of the radionuclide into the body, averaged throughout the specified organ or tissue for each radiation type i.

When a radionuclide enters the body, it is distributed in various source organs or tissues where it may decay or be eliminated by normal metabolic processes. The committed dose equivalent in a target organ or tissue T due to the disintegration of a radionuclide j, releasing radiation of type i in source organ S, denoted by, $H_{50}(T \leftarrow S)_{i, j}$, is defined as a product of two factors:
i) the total number of transformations (decays) of radionuclide j in source organ S during the 50 year period following its entry into the body, and
ii) the energy absorbed per unit mass in the target organ T, modified for effective quality factor, from radiation of type i per transformation of radionuclide j in source organ S.

Mathematically, for each radiation type i from radionuclide j,

$$
H_{50}(T \leftarrow S)_{i, j}=\overline{Q_{i}} \overline{D_{50}}(T \leftarrow S)_{i, j},
$$

or

$$
\begin{equation*}
H_{50}(T \leftarrow S)_{i, j}=U_{S, j} \times 1.6 \times 10^{-13} \times \operatorname{SEE}(T \leftarrow S)_{i, j} \times 10^{3} \tag{2.4}
\end{equation*}
$$

where
$\mathrm{U}_{\mathrm{s}, \mathrm{j}}$ is the number of transformations (decays) of radionuclide j in organ S over 50 years following intake of the radionuclide,
1.6×10^{-13} is the number of joules in 1 MeV , $\operatorname{SEE}(T \leftarrow S)_{i, j}$ is the specific effective energy, modified by quality factor, for radiation type i absorbed in T from each transformation in S. The unit is $\mathrm{MeV} / \mathrm{g}$ per transformation, and 10^{3} is the conversion factor from g^{-1} to kg^{-1}.

Thus, for all types of radiation emitted by radionuclide j,

$$
\begin{equation*}
\mathrm{H}_{50}(\mathrm{~T} \leftarrow \mathrm{~S})_{\mathrm{j}}=1.6 \times 10^{-10}\left[\mathrm{U}_{\mathrm{s}, \mathrm{j}} \sum_{\mathrm{i}} \operatorname{SEE}(\mathrm{~T} \leftarrow \mathrm{~S})_{\mathrm{i}}\right]_{\mathrm{j}} \tag{2.5}
\end{equation*}
$$

If the radionuclide decays into a radioactive daughter j^{\prime}, then

$$
\begin{align*}
H_{60}(T \leftarrow S)_{j+j}= & 1.6 \times 10^{-10}\left\{\left[U_{s, j} \sum_{i} \operatorname{SEE}(T \leftarrow S)_{i}\right]_{j}\right. \\
& \left.+\left[U_{s, j} \cdot \sum_{i} \operatorname{SEE}(T \leftarrow S)_{i}\right]_{j}\right\} \tag{2.6}
\end{align*}
$$

For a number of radioactive daughters, the committed dose equivalent in
target T from decays in source S can be generalized as

$$
\begin{equation*}
\sum_{j} H_{50}(T \leftarrow S)_{j}=1.6 \times 10^{-10} \sum_{j}\left[U_{s, j} \sum_{i} \operatorname{SEE}(T \leftarrow S)_{i}\right]_{j} \tag{2.7}
\end{equation*}
$$

Since the target organ T may receive dose from more than one source organ, the total value of H_{50} in target T is given by

$$
\begin{equation*}
\mathrm{H}_{50, \mathrm{~T}}=1.6 \times 10^{-10} \sum_{\mathrm{s}} \sum_{\mathrm{j}}\left[\mathrm{U}_{\mathrm{S}, \mathrm{j}} \sum_{\mathrm{i}} \operatorname{SEE}(\mathrm{~T} \leftarrow \mathrm{~S})_{\mathrm{i}}\right]_{\mathrm{j}} \tag{2.8}
\end{equation*}
$$

Since our interest is the specific committed dose equivalent, we express it per unit activity as

$$
\begin{equation*}
\hat{\mathrm{H}}_{50, \mathrm{~T}}=1.6 \times 10^{-10} \sum_{\mathrm{s}} \sum_{\mathrm{j}}\left[\hat{\mathrm{U}}_{\mathrm{s}, \mathrm{j}} \sum_{\mathrm{i}} \operatorname{SEE}(\mathrm{~T} \leftarrow \mathrm{~S})_{\mathrm{i}}\right]_{\mathrm{j}} \tag{2.9}
\end{equation*}
$$

where $\quad \hat{U}_{S, j}$ is the number of transformations of radionuclide j in S over 50 years after intake of unit activity of the radionuclide.

2.1 SPECIFIC EFFECTIVE ENERGY

Let us denote the specific effective energy absorbed in target T per transformation of radionuclide j emitting all types of radiation i in source S as

$$
\begin{equation*}
\operatorname{SEE}(T \leftarrow S)_{j}=\sum_{i} \operatorname{SEE}(T \leftarrow S)_{i, j} \tag{2.10}
\end{equation*}
$$

As previously stated, each radionuclide may emit a range of different types and energies of radiation indicated by index i. But it is not necessary that every transformation (decay) of radionuclide j should result in emission of all the varied radiations. Hence the concept of yield. Associated with average or unique (as appropriate) energy E_{i} (in MeV) of every radiation type i is a yield Y_{i}. The yield provides the fraction of transformations that result in the release of radiation type i. Also, the amount of the energy absorbed in target T will vary significantly with the energy, kind of radiation, and location (source organ S) of release. This variance is accounted by introducing a quantity $A F(T \leftarrow S)_{i}$ which is defined as the fraction of energy absorbed in target organ T per emission of radiation i in source organ S. Of course, in accordance with the definition in the previous section, the product of all these quantities must be weighted for effective quality factors \bar{Q}_{i} for each radiation type i, and, since we are interested in specific effective energy, the whole product must be taken per unit mass M_{T} (in g) of the target organ T. We can thus write, for each radionuclide j,

$$
\begin{equation*}
\operatorname{SEE}(T \leftarrow S)_{j}=\sum_{i} \frac{Y_{i} E_{i} A F(T \leftarrow S)_{i} \bar{Q}_{i}}{M_{T}} . \tag{2.11}
\end{equation*}
$$

a) Decay Schemes [K081]: The decay schemes of radionuclides used in this report were obtained from "Radioactive Decay Data Tables," by D. C. Kocher, DOE/TIC - 11026(1981). In case of positron emission, a photon of energy 0.511 MeV and yield twice that of the
positron is added to the decay scheme to account for the annihilation photons. The decay scheme used in the ICRP-30 results were from Publication 38 [IC83].
b) Absorbed fraction of energy in target organ: For most target organs, it is assumed that the energies from non-penetrating radiations such as alpha particles, beta particles, positrons, etc. are completely absorbed within the source organ. Hence, if target organ and source organ are the same, then the absorbed fraction is equal to l, else it is equal to zero for non-penetrating radiation, except in the following cases [SN75]:
i) If the source organ is total body then, regardless of the target organ, the specific absorbed fraction $\hat{A F}$ (absorbed fraction per g of target) is given by $\hat{A} F(T \leftarrow$ Total body $)=1 / 69900$. where the denominator represents mass in grams of the total body of Reference Man.
ii) When the target organ is total body and the source organ is either bladder content, stomach content, SI content, ULI content, or LLI content, then $\hat{A F}($ Total body $\in \mathbb{G I}$ tract $/$ Bladder content $)=M_{W} /\left(2 \times M_{c} \times 69900\right)$, where M_{w} is the mass of the wall of the source organs, and
M_{c} is the mass of the contents of the source organs.

If the source is any other organ excluding the above and the target organ is total body then

$$
\hat{A F}(\text { Total body } \& S)=1 / 69900 .
$$

With the specific absorbed fraction, the value of specific effective energy is given by

$$
\begin{equation*}
\operatorname{SEE}(T \leftarrow S)_{j}=\sum_{i} Y_{i} E_{i} \hat{A F}(T \leftarrow S)_{i} \bar{Q}_{i} \tag{2.12}
\end{equation*}
$$

In case of penetrating radiations such as X-rays and γ rays, the absorbed fraction of energy from photons is estimated by the data in ICRP Publication 23 [IC75]. The tables in Publication 23 provide values for discrete energies from 0.01 MeV to 4.0 MeV . If the photon energy is within this range, then the value of absorbed fraction can be interpolated from the tables. However, if the energy of the photon is less than 0.01 MeV , specific absorbed fractions used in calculations are assumed to be the same as defined for non-penetrating radiations [SN78], i.e.,
i) $\hat{\mathrm{A} F}=1 / \mathrm{M}$ if the source and the target are the same, or
ii) $\hat{A F}=0$ in general if the source and the target are different, except for the following conditions:
iii) $\hat{A F}=1 / 69900$ if the source organ is total body.
iv) $\hat{\mathrm{A} F}=\mathrm{M}_{\mathrm{w}} /\left(2 \times \mathrm{M}_{\mathrm{c}} \times 69900\right)$ if the target organ is total body and the source is either bladder content, stomach content, SI content, ULI content, or LLI content.
v) $\hat{\mathrm{A} F}=1 / 69900$ if the target organ is total body and the source is any organ other than the ones described in (iv).

This treatment in calculation of absorbed fractions or specific absorbed fractions is recommended for the majority of target organs. However, there are exceptions, notably the mineral bone, organs of the GI tract, and the bladder wall, which are explained below:

2.1.1 Target Organs of the GI Tract and Bladder Wall:

For non-penetrating radiations, if the source organ is different from a target organ of the GI tract or bladder wall, the specific absorbed fraction is zero except when the source is total body. In that case, $\hat{A F}=1 / 69900$. However, if the source is the content of the target organ in the GI tract or the bladder content, the only dose received is that by the mucosal layer ML of the wall of the organ. The specific absorbed fraction for the mucosal layer of the wall of the target organ is taken to be equal to $0.5 \times v / M_{T}^{\mathrm{c}}$. where $\mathrm{M}_{\mathrm{T}}^{\mathrm{c}}$ (in g) is the mass of the contents of that target organ, and v is a factor between zero and unity representing the degree to which the radiation penetrates the mucus. The factor 0.5 is introduced because the absorbed dose rate at the interface between the contents and the mucus and mucosal layers is approximately half that deep within the contents. For β particles, v is taken to be unity, and for α particles only 0.01 owing to attenuation in the mucus layer.

As far as photons are concerned, the fraction of their energy emitted in source S that is absorbed in the walls of the target T is obtained from the tables in ICRP Publication 23 by interpolating within the 0.01 to 4.0 MeV range. However, if the energy of the photon is less than 0.01 MeV , the specific absorbed fraction is extrapolated as:
i) $\hat{A F}=1 /\left(2 \times M_{c}\right)$ if the source and the target are the same, where M_{c} is the mass of contents of the organ, or
ii) $\hat{A F}=0$ in general if the source and the target are different, except in the following case:
iii) if the source organ is total body, then $\hat{A F}=1 / 69900$.

2.1.2 Target Organ in Bone:

In the case of mineral bone, the two target tissues are the cells near bone surfaces (BS) and the active red bone marrow (RM). The ICRP model describes source tissues as cortical and trabecular bone for all non-penetrating radiation. For photon emitters, S is any organ of the body containing the radionuclide and T is either the BS cells or RM. Cortical bone (CB) is the compact or dense material of the outside of the bone. Trabecular bone (TB) is the cancellous or spongy inner portion of the bone containing the marrow.

Absorbed fractions for non-penetrating radiation are governed by two major criteria:
i) Radionuclides with half lives of less than 15 days are considered to be distributed on bone surfaces, since they are unlikely to move far into the volume of bone before they decay,
ii) Isotopes of alkaline earth elements with half lives greater than 15 days and radionuclides ${ }^{33} \mathrm{P},{ }^{93} \mathrm{~m}_{\mathrm{Nb}},{ }^{94} \mathrm{Nb},{ }^{232} \mathrm{U}^{2},{ }^{233} \mathrm{U}$. ${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{236} \mathrm{U},{ }^{238} \mathrm{U}, \mathrm{Na}, \mathrm{Cr}, \mathrm{Rb},{ }^{65} \mathrm{Zn},{ }^{205} \mathrm{~Pb},{ }^{210} \mathrm{~Pb},{ }^{49} \mathrm{~V}$. $7_{\mathrm{Be},},{ }^{10} \mathrm{Be},{ }^{103} \mathrm{Pd},{ }^{107} \mathrm{Pd},{ }^{113} \mathrm{Sn},{ }^{119 \mathrm{~m}} \mathrm{Sn},{ }^{123} \mathrm{Sn},{ }^{126} \mathrm{Sn},{ }^{182} \mathrm{Ta}$,
$181_{W}, \quad 185_{W}, \quad 188_{W}$ are assumed to be uniformly distributed throughout the volume of bone.

If the source organ is any other organ except total body, trabecular bone, or cortical bone, the specific absorbed fraction is taken to be zero. If the source is total body, $\hat{A F}=1 / 69900$. Recommended values of absorbed fractions for α and β particles in the cases of source tissues as TB and CB are given in Table 2.1. Masses of target organs BS and RM are taken to be 120 and 1500 g respectively.

TABLE 2.1 Absorbed fractions for dosimetry of radionuclides in bone as recommended by the ICRP 30 .

Source Organ	Target Organ	α-emitter uniform in volume	α-emitter on bone surface	β-emitter uniform in volume	β-emitter on bone surface \bar{E}	β-emitter on bone surface
TB	BS	0.025	0.25	0.025	0.025	0.25
CB	BS	0.01	0.25	0.015	0.015	0.25
TB	RM	0.05	0.5	0.35	0.5	0.5
CB	RM	0.0	0.0	0.0	0.0	0.0

For photon emitters, if the energy is within 0.01 to 4.0 MeV , values of absorbed fraction can be interpolated from the tables in ICRP Publication 23 for any source organ. Values of absorbed fraction reported for skeleton in Publication 23 are taken as appropriate for BS cells. If the photon energy is less than 0.01 MeV and the source is TB or CB. absorbed fraction is taken to be $1 / M_{T}$, where M_{T} is 1500 g for
target organ $R M$ and 10500 g for BS cells. If however, the source is any other organ except total body, $A F=0$. In the case of total body, specific absorbed fraction $\hat{A F}=1 / 69900$.

2.1.3 A note on daughters:

The metabolic behavior of daughters is assumed to be the same as that of the parent radionuclide which enters the body (see Section 2.2.1).

2.2 NUMBER OF TRANSFORMATIONS IN A SOURCE ORGAN OVER 50 YEARS

The number of transformations of a radionuclide in any source organ during a period of time is defined as the time integral of the activity of the radionuclide over that period of time.

After ingestion or inhalation of a radionuclide, its translocation to the body fluids is dependent upon the rate constants of the different compartments of the gastrointestinal and respiratory systems. and the decay constant of the radionuclide. A detailed account of the passage of radionuclides through the GI and respiratory system follows later. For now, let us examine the kinetics of a radionuclide after it reaches the body fluid compartment, and how it is deposited in, or passed for excretion from the different compartments of a tissue or organ. The mathematical model recommended by the ICRP is illustrated in Fig. 2.1. Transformations in the body fluid or transfer compartment are assumed to be uniformly distributed throughout the whole body of mass 70000 g . Each source organ or tissue may have one or more compartments where the radionuclide may be retained or translocated at
different rates. A maximum of three compartments per tissue is assumed. From each of these compartments, the radionuclide migrates at an appropriate rate to excretion pathways. In the interest of simplicity, no feedback to the transfer compartment either from the tissue compartments or from routes of excretion is assumed, although in reality the case is otherwise.

2.2.1 A note on daughters:

The immediate daughters and all subsequent progeny produced within the body are assumed to be associated with, and behave metabolically as the inhaled or ingested parent radionuclide. In general, there is little evidence to show whether the daughters behave metabolically like the parent or if, upon production, they exhibit their own metabolic behavior. When experimental evidence contrary to the assumption is available, separate models as shown later are used.

2.2.2 Transfer compartment, T :

Let us represent the radionuclides with an index \mathbf{j}. If we suppose that an initial activity $\mathrm{f}_{\mathrm{T}}^{\mathbf{j}}$, per unit intake, reaches the body fluid or transfer compartment from the GI tract and lungs, then for the parent ($j=1$) a differential equation expressing the time-dependent behavior in accordance with the model in Fig. 2.1, can be written as

$$
\begin{equation*}
\frac{\mathrm{dq}_{\mathrm{Tl}}(\mathrm{t})}{\mathrm{dt}}=-\lambda_{\mathrm{T}} \mathrm{q}_{\mathrm{Tl}}(\mathrm{t})-\lambda_{1} \mathrm{q}_{\mathrm{Tl}}(\mathrm{t}) \tag{2.13}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{T} 1}$ is the activity of the parent in the transfer compartment,

FIG 2.1 Mathematical model used by the ICRP-30 to describe the kinetics of radionuclides in the body.
λ_{1} is the radiological decay constant for species 1 , and
λ_{T} is the rate of loss of the stable element from the transfer compar tment.

For most elements, λ_{T} is taken to be equal to $\ln 2 / 0.25$ days, i.e., the biological half life for translocation to the organs and tissues of deposition from the transfer compartment is taken to be 0.25 days. Following are the exceptions:
i) If the element is fluorine, potassium, gold, or thallium, the translocation is assumed to be instantaneous and the biological half life is zero.
ii) If the element is thorium, cobalt, chromium, or phosphorus, the biological half life is 0.5 days.
iii) If the element is technetium or rhenium, the biological half life is 0.02 days.
iv) If the element is ruthenium or rhodium, the biological half life is 0.3 days.
v) If the element is tellurium, the biological half life is 0.8 days.
vi) If the element is bismuth, the biological half life is 0.01 days.

Taking the Laplace transform of Eq. (2.13), we have

$$
\mathrm{s} \overline{\mathrm{q}_{\mathrm{T} 1}}(\mathrm{~s})-\mathrm{q}_{\mathrm{T} 1}(0)=-\lambda_{\mathrm{T}} \overline{\mathrm{q}_{\mathrm{T} 1}}(\mathrm{~s})-\lambda_{1} \overline{\mathrm{q}_{\mathrm{T} 1}}(\mathrm{~s})
$$

This can be written as

$$
\begin{equation*}
\overline{\mathrm{q}}_{\mathrm{T} 1}(\mathrm{~s})=\frac{\mathrm{q}_{\mathrm{TI}}(0)}{\left[\mathrm{s}+\left(\lambda_{\mathrm{T}}+\lambda_{1}\right)\right]} \tag{2.14}
\end{equation*}
$$

Now for the daughters, a similar differential equation (see Fig. 2.1) can be written as

$$
\begin{array}{r}
\frac{\mathrm{dq}_{\mathrm{Tj}}(\mathrm{t})}{\mathrm{dt}}=\lambda_{j} \mathrm{q}_{\mathrm{T}, \mathrm{j-1}}(\mathrm{t})-\lambda_{\mathrm{T}} \mathrm{q}_{\mathrm{Tj}}(\mathrm{t})-\lambda_{j} \mathrm{q}_{\mathrm{Tj}}(\mathrm{t}) \\
\mathrm{j}=2, \ldots, N \tag{2.15}
\end{array}
$$

where $\quad j$ is the index for the daughters.
$q_{T j}$ is the activity of the species j in the transfer compartment.
$q_{T, j-1}$ is the activity of the parent of species j in the
transfer compartment, and
λ_{j} is the radiological decay constant for species j.

Specifically for $\mathrm{j}=2$.

$$
\begin{equation*}
\frac{\mathrm{dq}_{\mathrm{T} 2}(\mathrm{t})}{\mathrm{dt}}=\lambda_{2} \mathrm{q}_{\mathrm{T} 1}(\mathrm{t})-\lambda_{\mathrm{T}} \mathrm{q}_{\mathrm{T} 2}(\mathrm{t})-\lambda_{2} \mathrm{q}_{\mathrm{T} 2}(\mathrm{t}) \tag{2.16}
\end{equation*}
$$

The Laplace transform of Eq. (2.16) is

$$
s \overline{\mathrm{q}_{\mathrm{T} 2}}(s)-\mathrm{q}_{\mathrm{T} 2}(0)=\lambda_{2} \overline{\mathrm{q}_{\mathrm{T} 1}}(s)-\lambda_{\mathrm{T}} \overline{\mathrm{q}_{\mathrm{T} 2}}(\mathrm{~s})-\lambda_{2} \overline{\mathrm{q}_{\mathrm{T} 2}}(\mathrm{~s})
$$

or

$$
\begin{equation*}
\overline{\mathrm{q}_{\mathrm{T} 2}}(\mathrm{~s})=\frac{\mathrm{q}_{\mathrm{T} 2}(0)+\lambda_{2} \overline{\mathrm{q}_{\mathrm{T} 1}}(\mathrm{~s})}{\left[\mathrm{s}+\left(\lambda_{\mathrm{T}}+\lambda_{2}\right)\right]} \tag{2.17}
\end{equation*}
$$

Substituting for $\overline{\mathrm{q}_{\mathrm{T} 1}}(\mathrm{~s})$ from Eq. (2.14) in Eq. (2.17), we obtain

$$
\begin{equation*}
\overline{\mathrm{q}_{\mathrm{T} 2}}(\mathrm{~s})=\frac{1}{\left[\mathrm{~s}+\left(\lambda_{\mathrm{T}}+\lambda_{2}\right)\right]}\left\{\mathrm{q}_{\mathrm{T} 2}(0)+\frac{\lambda_{2} \mathrm{q}_{\mathrm{T} 1}(0)}{\left[\mathrm{s}+\left(\lambda_{\mathrm{T}}+\lambda_{1}\right)\right]}\right\} \tag{2.18}
\end{equation*}
$$

In general form,

$$
\begin{equation*}
\overline{\mathrm{q}_{\mathrm{Tj}}}(s)=\sum_{i=1}^{j}\left\{\frac{\left.\prod_{\underline{k}=i+1}^{j} \lambda_{k}\right] \quad \mathrm{q}_{\mathrm{Ti}}(0)}{\prod_{k=i}^{j}\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]}\right\} . \tag{2.19}
\end{equation*}
$$

Now,

$$
\frac{1}{\underset{k}{j}\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]}=\frac{1}{\left[s+\left(\lambda_{T}+\lambda_{1}\right)\right]\left[s+\left(\lambda_{T}+\lambda_{2}\right)\right] \cdots} .
$$

In partial fractions, this can be written as

$$
\frac{1}{\prod_{k=i}^{j}\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]}=\frac{A_{1}}{s+\left(\lambda_{T}+\lambda_{1}\right)}+\frac{A_{2}}{s+\left(\lambda_{T}+\lambda_{2}\right)}+\ldots \frac{A_{m}}{s+\left(\lambda_{T}+\lambda_{m}\right)}+\ldots
$$

Multiplying throughout by $\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right]$, we have

$$
\frac{s+\left(\lambda_{T}+\lambda_{m}\right)}{\prod_{k=1}^{j}\left[s+\left(\lambda_{T}+\lambda_{K}\right)\right]}=\frac{A_{m}\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right]}{\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right]}+\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right] \sum_{\substack{k=1 \\ k \neq m}}^{j} \frac{A_{k}}{\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]} .
$$

Hence,

$$
\frac{1}{\underset{\substack{k=1 \\ k \neq m}}{j}\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]}=A_{m}+\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right] \sum_{\substack{k=1 \\ k \neq m}}^{j} \frac{A_{k}}{\left[s+\left(\lambda_{T}+\lambda_{k}\right)\right]} .
$$

Let $s=-\left(\lambda_{T}+\lambda_{m}\right)$, then

$$
A_{m}=\frac{1}{\underset{\substack{\mathrm{k}=\mathrm{i} \\ \mathrm{k} \neq \mathrm{m}}}{j}\left(\lambda_{k}-\lambda_{m}\right)}
$$

Thus,

$$
\overline{q_{T j}}(s)=\sum_{i=1}^{i}\left\{\left[\begin{array}{c}
\underset{k}{j} \\
k=i+1
\end{array} \lambda_{k}\right] q_{T i}(0)\left[\sum_{m=i}^{j} \frac{1}{\substack{k=i \\
k \neq m}}\left(\lambda_{k}-\lambda_{m}\right)\left[s+\left(\lambda_{T}+\lambda_{m}\right)\right]\right\}\right.
$$

We know that if $L(f)=1 / s+a$, then $f(t)=e^{-a t}$. Therefore,
where $\prod_{i=m}^{n} a_{i}=a_{m} \times a_{m+1} \times \ldots a_{n}$ if $n \geq m$, and

$$
\prod_{i=m}^{n} a_{i}=1 \text { if } m>n
$$

Now by definition, the number of transformations in the transfer compartment U_{Tj} for species j is given by

$$
\begin{equation*}
U_{T j}=B_{j} \times \int_{0}^{T} q_{T j}(t) d t \tag{2.21}
\end{equation*}
$$

where

$$
T=365.25 \times 50 \text { days, and }
$$

B_{j} is the branching ratio of radionuclide j. For the parent, $\mathrm{B}_{1}=1$.

The result of the integral is
where $\prod_{i=m}^{n} a_{i}=a_{m} \times a_{m+1} \times \ldots a_{n}$ if $n \geq m$.

$$
\prod_{i=m}^{n} a_{i}=1 \text { if } m>n \text {, and }
$$

$q_{T i}(0)$ is the initial activity of species i in the transfer compartment which is assumed to be equal to $\mathrm{f}_{\mathrm{T}}^{\mathbf{i}}$.
Calculation of this quantity is shown later.
If λ values have units d^{-1}, then this formula for $U_{T j}$ must be multiplied by $86400 \mathrm{~s} / \mathrm{d}$ to yield units Bq^{-1} for U_{Tj}.
2.2.3 Tissue compartment, p :

As mentioned earlier, each source organ or tissue can have a maximum of three compartments, i.e., $p=1,2,3$. From the transfer compartment, a fraction f_{2}^{p} may reach each tissue compartment of a source organ. This fraction is biologically eliminated from the compartment with a half life of λ_{p}. Since the daughters are assumed to possess the same metabolic behavior as the parent, the same retention fractions f_{2}^{p} and biological half-lives λ_{p} are used for them. These retention fractions and biological half lives are obtained from the
metabolic data in ICRP Publication 30 for each nuclide taken in the body.

With the knowledge of f_{2}^{p}, the total activity of species j translocated from the transfer to the tissue compartment during the 50 year time period can be given by

$$
\begin{equation*}
Q_{p j}=f_{2}^{p} \lambda_{T} \int_{0}^{T} q_{T j}(t) d t \tag{2.23}
\end{equation*}
$$

But as shown before,

$$
U_{T j}=B_{j} \times \int_{0}^{T} q_{T j}(t) d t
$$

Hence,

$$
\begin{equation*}
Q_{p j}=\frac{f_{2}^{p} \lambda_{T}}{B_{j}} U_{T j} \tag{2.24}
\end{equation*}
$$

If we assume that this total activity is transferred instantaneously as a single intake to the tissue compartment at time $t=0$, then the initial activity deposited in the tissue compartment $q_{p i}(0)$ for species i is equal to

$$
\begin{equation*}
\mathrm{q}_{\mathrm{pi}}(0)=\frac{\mathrm{f}_{2}^{\mathrm{p}} \lambda_{\mathrm{T}} \mathrm{U}_{\mathrm{Ti}}}{\mathrm{~B}_{\mathrm{i}}} \tag{2.25}
\end{equation*}
$$

For the time dependent behavior of species j in the tissue compartment, differential equations similar to the ones described in
the transfer compartment can be written. By a similar treatment of solution, the number of transformations in a tissue compartment for species j can be written as

$$
\begin{equation*}
U_{p j}=B_{j} \times \sum_{i=i}^{j}\left\{\left[\prod_{k=i+1}^{j} \lambda_{k}\right] q_{p_{i}}(0)\left[\sum_{m=i}^{j} \frac{\left[1-e^{-\left(\lambda_{p}+\lambda_{m}\right) T}\right]}{\left(\lambda_{m}\right) \underset{k=i}{j}\left(\lambda_{k}-\lambda_{m}\right)}\right]\right\} \tag{2.26}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{pi}}(0)$ is given by Eq. (2.25).
Thus, for a source which may have a maximum of 3 compartments, the number of source-organ transformations for species j is

$$
\begin{equation*}
U_{s j}=\frac{M_{s} \times U_{T j}}{70000}+\sum_{p=1}^{3} U_{p j} \tag{2.27}
\end{equation*}
$$

where M_{s} is mass of the source organ, and
70000 is mass of the total body in grams.

2.2.4 Respiratory system:

When a radionuclide is inhaled, parts of the respiratory system are irradiated. As a consequence, other organs and tissues of the body may be irradiated either by translocation of the inhaled material from the respiratory system to the body tissues or by radiations originating from the lungs.

Analyses of the dynamics of radionuclide transport within the lung is essential for the evaluation of number of source-organ transformations.

The model representing the respiratory system is proposed by the ICRP Task Group on Lung Dynamics (1966) [IC66]. It is shown in Fig. 2.2. This model partitions the respiratory system into three regions -- the nasal passage ($\mathrm{N}-\mathrm{P}$), the trachea and bronchial tree ($\mathrm{T}-\mathrm{B}$), and the pulmonary parenchyma (P). Each region is further subdivided into two or four compartments. All three regions have pathways directly to the body fluid compartment. Only the P region translocates material to the lymphatic system (L). This pulmonary lymphatic system also serves to remove the dust from the lungs. A subcompartment of the lymphatic system releases material to the body fluids while the other subcompartment is assumed to retain the material indefinitely. The latter subcompartment is deemed appropriate only for a particular class Y of aerosols. Both T-B and N-P regions are involved with mucociliary transport which translocates material to the gastrointestinal tract. Connection between the P region and the $G I$ tract is only through feedback via the $T-B$ region.
a) Deposition and Retention of Inhaled Material: Deposition of inhaled material in the respiratory system is dependent upon the aerodynamic properties of the aerosol distribution. Three terms $\mathrm{D}_{\mathrm{N}-\mathrm{p}}$, $\mathrm{D}_{\mathrm{T}-\mathrm{B}}$, and D_{p} represent the fractions of inhaled material initially deposited in the $N-P, T-B$, and P regions respectively, the balance being the fraction exhaled. The pattern of aerosol distribution is characterized by the activity median aerodynamic diameter (AMAD). This quantity is closely approximated by the mass-median aerodynamic

FIG. 2.2. Mathematical model used to describe clearance from respiratory system.

Source: ICRP Publication 30, Part I.
diameter, the aerodynamic diameter of a particle being the diameter of a spherical particle with the same settling velocity. The pattern of deposition is related to the AMAD of the aerosol according to Fig. 2.3.

To analyze the clearance of inhaled radioactive materials from the lung, the radionuclides are categorized as D, W, or Y. These categories refer to the retention in the pulmonary region. Class D reflects minimal retention, i.e., a rapid clearance within days while, class W material takes weeks for clearance, and class Y is cleared slowly in years. For elements and their compounds, retention classification is given in Fig. 2.4.

For each chemical classification, the sub-compartments have a half time of clearance T (days), and a fraction F that refers to the amount of material leaving each sub-compartment. These values are shown in Table 2.2. Note that the half lives are given in units of days. When converting these decay constants in units of s^{-1}, one must use the factor $86400 \mathrm{~s} / \mathrm{d}$.
b) Clearance Calculations: To calculate the source-organ transformations of a nuclide, we need to evaluate its time dependent activity in each subcompartment. Suppose we represent the subcompartments with an index ℓ such that $\ell=a, b, c, d, e, f, g, h, i$, and j as shown in Fig. 2.2. Now, if a unit activity of nuclide is inhaled at time $t=0$, then the initial activities in each of the subcompartments $a-h$ of Fig. 2.2 can be given as the product of percent deposition in the compartment and the fraction of material entering the

FIG. 2.3. Model of deposition of dust in the respiratory system as proposed by the ICRP-30. The model is intended for use with aerosols with AMAD between 0.2 and $10 \mu \mathrm{~m}$ and with geometric standard deviations of less than 4.5. Provisional estimates of deposition further extending the size range and given by dashed lines.
$C_{\text {art }} \mathrm{F}$-Avhd ruteetiont cleared alowly (yean)
Carbides-eptaides, lanchendden, Zr, Y, Mn
ulfidennene
fulfetersond
Phomphatermana
 and 6b.
Helide-larthanide Auoride
Nutrase-none
Cluy W-Moderata retention: Intermodeste clearance raten (wer bi)
Carbides-Cations of aid Chey Whyroxides except thone llited a Clan Y carbides

Carbonatce-lanthanden ati), and Ia (IV-VI)
Chorbister-lanthandes, Bit and Croup 2e (IV-VII)

Oniden and bydrodden-Group 2a (II-VII), Ja (III-VI), ta (III-VI), Sa (IV-VI), fe (IV-VI), a, 2b
Halldes lanchanides (ereept fucridet), Groupa 2e, ge (IIt-VI). it (IV-VI), 5e (IV-VI), ib, 2b, sb (IV-V), 4b, 5b, to and 7b
Norstep-all endent whowe bydroddea ars Clan Y and W
Cars O_Minimal metentiont rapld cleamnce (depr)
Carbida-aet byircuide
Sulide-all emept Cla W
sulaterall except Clas W
Carbonater-all exerpt Clam W
norphates-all Exerpi Claw W
Orider and Hydroniden-Groupt It, Ie (II), fa (II), Ia (II, III), 6e (III)
Halidet-Group le and Te
Nitrateall exeept Clan W
Nobla Cave-Greap 0
 e. B. byarolyaid reactlon.

Creup																		
Period	18	2a	36	43	3 b	6	76		3		1b	2 b	ge	4 A	3	8	7.	0
t	H																	
11	4	Ba_{4}											B	c	N	0	P	$\mathrm{He}^{\mathrm{He}}$
111	Ne	ME											N	51	F	3	Cl	$\mathrm{Na}^{\text {Ar }}$
IV	\mathbf{x}	C.	5	T	V	C	Mn	Fe	Co	NI	Cu	Zo	Ge	Ge	A	5	Br	Kr
V	db	3 r	\mathbf{Y}	2 r	Nb	Ma	Te	Ru	Rh	Pd	A!	Cd	In	In	5b	Te	1	Xe
$V 1$	c	In	La'	Hf	Tı	W	Ra	Of	If	Pr	A4	H_{4}	7	Pb	81	Po	At	\xrightarrow{R}
VII	Fr	R.	Act															

- Lentharidea	Cs_{6}	Pr	Nd	Pm	3 m	Eu	Od	7b	Dr	Ho	8	Tm	Y	Lu
\uparrow Aerinidee	Th	Pe	U	Np	Pu	Am	Cm	- k	Cr	E.	7 m	Md	Ne	Lu

FIG. 2.4. Pulmonary clearance classification of inorganic compounds as proposed by the ICRP.

Source: Report of ICRP Task Group on Lung Dynamics: Heal th Physics. 12. 173-207 (1966).

TABLE 2.2. The values of removal half times and compartmental fractions in the four respiratory regions as proposed in ICRP-30.

		Class					
		D		W		Y	
Region	Compartment	$\begin{gathered} \mathrm{T} \\ \text { day } \end{gathered}$	F	$\begin{gathered} \mathrm{T} \\ \text { day } \end{gathered}$	F	$\begin{gathered} \mathrm{T} \\ \text { day } \end{gathered}$	F
$\begin{aligned} & \mathrm{N}-\mathrm{P} \\ & \left(\mathrm{D}_{\mathrm{N}-\mathrm{P}}=0.30\right) \end{aligned}$	a	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.99 \end{aligned}$
$\begin{aligned} & \mathrm{T}-\mathrm{B} \\ & \left(\mathrm{D}_{\mathrm{T}-\mathrm{B}}=0.08\right) \end{aligned}$	c	$\begin{aligned} & 0.01 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.99 \end{aligned}$
$\begin{aligned} & \mathrm{P} \\ & \left(\mathrm{D}_{\mathrm{P}}=0.25\right) \end{aligned}$	$\begin{aligned} & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { n.a.* } \\ & \text { n.a. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { n.a. } \\ & \text { n.a. } \\ & 0.2 \end{aligned}$	$\left\lvert\, \begin{aligned} & 50 \\ & 1.0 \\ & 50 \\ & 50 \end{aligned}\right.$	$\begin{aligned} & 0.15 \\ & 0.4 \\ & 0.4 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 500 \\ & 1.0 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.4 \\ & 0.4 \\ & 0.15 \end{aligned}$
L	i	$\begin{aligned} & 0.5 \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { n.a. } \end{aligned}$	$\begin{gathered} 1000 \\ \infty \end{gathered}$	$\begin{aligned} & 0.9 \\ & 0.1 \end{aligned}$

subcompartment. For example, the initial activity in subcompartment d is $q_{d}(0)=D_{T-B} F_{d}$. The clearance of the material from each of the subcompartments is assumed to be governed by first order kinetics, so that each subcompartment is associated with a biological decay constant, e.g.. $\lambda_{d}\left(s^{-1}\right)=\ln 2 /\left(86400 T_{d}\right)$. Activities in each subcompartment may be found by solving the first order differential equations as follows:

For $\ell=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$, and h ,

$$
\begin{equation*}
\frac{\mathrm{dq}_{\ell}}{\mathrm{dt}}=-\left(\lambda_{\mathrm{R}}+\lambda_{\ell}\right) \mathrm{q}_{\ell} . \tag{2.28}
\end{equation*}
$$

Else,

$$
\begin{gather*}
\frac{d q_{d}}{d t}=\lambda_{f} q_{f}+\lambda_{g} q_{g}-\left(\lambda_{R}+\lambda_{d}\right) q_{d}, \tag{2.29}\\
\frac{d q_{i}}{d t}=-\left(\lambda_{R}+\lambda_{i}\right) q_{i}+F_{i} \lambda_{h} q_{h}, \tag{2.30}\\
\frac{d q_{j}}{d t}=-\lambda_{R} q_{j}+F_{j} \lambda_{h} q_{h} . \tag{2.31}
\end{gather*}
$$

Since daughters are assumed to behave metabolically like the inhaled parent, similar systems of equations may be written for them using the partition fractions F and biological half lives as those of the parent.

The approximate expressions for the total number of transformations of the parent and the daughters in each subcompartment of the lung is given in Tables 2.3 and 2.4 respectively. These results are obtained by integrating the activities found from the solution of the above equations, in a pattern similar to that of the transfer compartment. All entries, except that for subcompartment j, are based on the approximation that the clearance times are much less than the 50-year dose evaluation period. In the entry for compartment j, the symbol η represents 50 years in units compatible with those of λ_{R}.

TABLE 2.3. Approximate expressions for the number of transformations in the subcompartments of lung following inhalation of unit Bq of activity. ${ }^{(a)}$

Compar tment	Number of transformations	Compar tment	Number of transformations
a	$\frac{D_{N-P} F_{a}}{\lambda_{a}+\lambda_{R}}$	b	$\frac{D_{N-P} F_{b}}{\lambda_{b}+\lambda_{R}}$
c	$\frac{\mathrm{D}_{\mathrm{T}-\mathrm{B}} \mathrm{~F}_{\mathrm{c}}}{\lambda_{\mathrm{c}}+\lambda_{\mathrm{R}}}$	d	
e	$\frac{D_{p} F_{e}}{\lambda_{e}+\lambda_{R}}$	f	$\frac{D_{p} F_{f}}{\lambda_{f}+\lambda_{R}}$
g	$\frac{D_{p} F_{g}}{\lambda_{g}+\lambda_{R}}$	h	$\frac{D_{p} F_{h}}{\lambda_{h}+\lambda_{R}}$
i	$\frac{D_{p} F_{h} \lambda_{h} F_{i}}{\left(\lambda_{h}+\lambda_{R}\right)\left(\lambda_{i}+\lambda_{R}\right)}$	j	$\frac{D_{p} F_{h} \lambda_{h} F_{j}\left(1-e^{-\eta \lambda_{R}}\right)}{\left(\lambda_{h}+\lambda_{R}\right) \lambda_{R}}$

${ }^{(a)}$ Source: ICRP Publication 30 [IC79].

TABLE 2.4. Approximate expressions for the number of transformations of a radioactive daughter in the subcompartments of the lung. A_{a} to A_{j} refers to the number of transformations of the immediate parent in subcompartments a to j of the lung. λ_{R} is the radiological decay constant of the daughter. ${ }^{(a)}$

Compar tment	Number of transformations	Compar tment	Number of transf ormations
a	$\frac{A_{a} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{a}}+\lambda_{\mathrm{R}}^{\prime}}$	b	$\frac{A_{b} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{b}}+\lambda_{\mathrm{R}}^{\prime}}$
c	$\frac{A_{c} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{c}}+\lambda_{\mathrm{R}}^{\prime}}$	d	$\frac{A_{d} \lambda_{R}^{\prime}}{\lambda_{d}+\lambda_{R}^{\prime}}+\frac{\lambda_{R}^{\prime}}{\lambda_{d}+\lambda_{R}^{\prime}}\left[\frac{A_{f} \lambda_{f}}{\lambda_{f}+\lambda_{R}^{\prime}}+\frac{A_{g} \lambda_{g}}{\lambda_{g}+\lambda_{R}^{\prime}}\right]$
e	$\frac{A_{e} \lambda_{R}^{\prime}}{\lambda_{e}+\lambda_{R}^{\prime}}$	f	$\frac{A_{f} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{f}}+\lambda_{\mathrm{R}}^{\prime}}$
g	$\frac{A_{\mathrm{g}} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{g}}+\lambda_{\mathrm{R}}^{\dot{+}}}$	h	$\frac{A_{h} \lambda_{\mathrm{R}}^{\prime}}{\lambda_{\mathrm{h}}+\lambda_{\mathrm{R}}^{\prime}}$
i	$\begin{aligned} & \frac{A_{i} \lambda_{R}^{\prime}}{\lambda_{i}+\lambda_{R}^{\prime}} \\ & +\frac{A_{h} \lambda_{R}^{\prime} \lambda_{h} F_{i}}{\left(\lambda_{h}+\lambda_{R}^{\prime}\right)\left(\lambda_{i}+\lambda_{R}^{\prime}\right)} \end{aligned}$	j	$\left[A_{j}+\frac{A_{h} \lambda_{h} F_{j}}{\lambda_{h}+\lambda_{R}^{\prime}}\right]\left[1-e^{-\eta \lambda_{R}^{\prime}}\right]$

${ }^{(a)}$ Source: ICRP Publication 30 [IC79].

With the source organ transformations known in each subcompartment, we can sum them all to determine a total value for the respiratory system. However, the ICRP model neglects the values for transformations in the nasopharyngeal region, since for most particle sizes, the dose received by this region is very small compared to the other regions. Hence, defining the lung as a single source organ, the value of transformations for a nuclide k is given by

$$
\begin{equation*}
\mathrm{U}_{\mathrm{L}}^{\mathrm{k}}=\left[\mathrm{U}_{\mathrm{T}-\mathrm{B}}^{\mathrm{k}}+\mathrm{U}_{\mathrm{P}}^{\mathrm{k}}+\mathrm{U}_{\mathrm{L}}^{\mathrm{k}}\right] \times \mathrm{B}_{\mathrm{k}}, \tag{2.32}
\end{equation*}
$$

where $\quad U_{T-B}^{k}=U_{c}^{k}+U_{d}^{k}$
$U_{P}^{k}=U_{e}^{k}+U_{f}^{k}+U_{g}^{k}+U_{h}^{k}$

$$
\mathrm{U}_{\mathrm{L}}^{\mathrm{k}}=\mathrm{U}_{\mathrm{i}}^{\mathrm{k}}+\mathrm{U}_{\mathrm{j}}^{\mathrm{k}}, \text { and }
$$

B_{k} is the branching ratio of nuclide $k\left(B_{1}=1\right)$.
The lung is also treated as a single target organ of mass 1000 g .
c) Transfer of a Radionuclide from the Lungs Directly to Body Fluids or to the GI Tract: From Fig. 2.2 we can see that the rate of transfer of a radionuclide \mathbf{k} directly from the lungs to the body fluids [$B F(t)$] is given by

$$
\begin{equation*}
B F^{k}(t)=\lambda_{a} q_{a}^{k}(t)+\lambda_{c} q_{c}^{k}(t)+\lambda_{e} q_{e}^{k}(t)+\lambda_{i} q_{i}^{k}(t) \tag{2.33}
\end{equation*}
$$

whether the radionuclide is inhaled or produced in lungs. Similarly, the rate of transfer to the GI tract is given by

$$
\begin{equation*}
G^{k}(t)=\lambda_{b} q_{b}^{k}(t)+\lambda_{d} q_{d}^{k}(t) \tag{2.34}
\end{equation*}
$$

Thus, the total activity $f_{B F D I R}^{k}$ of an inhaled radionuclide k transferred directly to the body fluids can be determined as

$$
\begin{equation*}
f_{\mathrm{BFDIR}}^{\mathrm{k}}=\mathrm{B}_{\mathrm{k}} \times \int_{0}^{50 \mathrm{y}} \mathrm{BF}^{k}(\mathrm{t}) \mathrm{dt} \tag{2.35}
\end{equation*}
$$

or

$$
\begin{gather*}
f_{B F D I R}^{k}=B_{k} \times\left[\lambda_{a} \int_{0}^{50 y} q_{a}^{k}(t) d t+\lambda_{c} \int_{0}^{50 y} q_{c}(t) d t+\lambda_{e} \int_{0}^{50 y} q_{e}^{k}(t) d t\right. \\
 \tag{2.36}\\
\left.+\lambda_{i} \int_{0}^{50 y} q_{i}^{k}(t) d t\right]
\end{gather*}
$$

or

$$
\begin{equation*}
f_{\text {BFDIR }}^{k}=B_{k} \times\left[\lambda_{a} U_{a}^{k}+\lambda_{c} U_{c}^{k}+\lambda_{e} U_{e}^{k}+\lambda_{i} U_{i}^{k}\right] \tag{2.37}
\end{equation*}
$$

Similarly, the total activity translocated to the gastrointestinal tract is

$$
\begin{equation*}
f_{G I}^{k}=B_{k} \times\left[\lambda_{b} U_{b}^{k}+\lambda_{d} U_{d}^{k}\right] \tag{2.38}
\end{equation*}
$$

d) Particle Size Correction: If the AMAD is unknown, then a value of $1 \mu \mathrm{~m}$ is used for inhaled materials. Values of specific committed dose are reported for $1 \mu \mathrm{~m}$ in ICRP Publication 30. Correction for other
values of $A M A D$ is made as follows:

$$
\frac{\hat{H}_{50, T}(A M A D)}{\hat{H}_{50, T}(1 \mu \mathrm{~m})}=f_{N-P} \frac{D_{N-P}(A M A D)}{D_{N-P}(1 \mu \mathrm{~m})}+f_{T-B} \frac{D_{T-B}(A M A D)}{D_{T-B}(1 \mu \mathrm{~m})}+f_{P} \frac{D_{P}(A M A D)}{D_{P}(1 \mu \mathrm{~m})}
$$

The fractions f_{N-P}, f_{T-B}, and f_{P} are respectively the proportions of $\hat{H}_{50, T}(1 \mu \mathrm{~m})$ resulting from deposition in the $N-\mathrm{P}, \mathrm{T}-\mathrm{B}$, and P regions.

If the AMAD is not $1 \mu \mathrm{~m}$, then the values of $\mathrm{D}_{\mathrm{N}-\mathrm{P}}$ (AMAD), $\mathrm{D}_{\mathrm{T}-\mathrm{B}}$ (AMAD), and D_{p} (AMAD) are determined from a logarithm fit of Fig. 2.3 as described below:

If the AMAD is between 0.1 and $0.2 \mu \mathrm{~m}$, then

$$
\begin{align*}
\mathrm{D}_{\mathrm{T}-\mathrm{B}} & =-0.163-0.151(\ln \mathrm{AMAD}) \tag{2.39}\\
\mathrm{D}_{\mathrm{N}-\mathrm{P}} & =-0.059-0.068(\ln \mathrm{AMAD}), \text { and } \tag{2.40}\\
\mathrm{D}_{\mathrm{P}} & =0.289-0.126(\ln \mathrm{AMAD}) . \tag{2.41}
\end{align*}
$$

If the AMAD is between 0.2 and $10 \mu \mathrm{~m}$, then

$$
\begin{gather*}
\mathrm{D}_{\mathrm{T}-\mathrm{B}}=0.08 \tag{2.42}\\
\mathrm{D}_{\mathrm{N}-\mathrm{P}}=0.351+0.219(\ln \mathrm{AMAD}), \text { and } \tag{2.43}\\
\mathrm{D}_{\mathrm{P}}=0.289-0.126(\ln \mathrm{AMAD}) . \tag{2.44}
\end{gather*}
$$

If the AMAD is between 10 and $20 \mu \mathrm{~m}$, then

$$
\begin{gather*}
\mathrm{D}_{\mathrm{T}-\mathrm{B}}=0.229-0.065(\ln \mathrm{AMAD}) \tag{2.45}\\
\mathrm{D}_{\mathrm{N}-\mathrm{P}}=0.621+0.110(\ln \mathrm{AMAD}), \text { and } \tag{2.46}\\
\mathrm{D}_{\mathrm{P}} \tag{2.47}\\
=0.141-0.040(\ln \mathrm{AMAD})
\end{gather*}
$$

2.2.5 Gastrointentinal Tract:

Knowledge of transformations of a nuclide in the various organs of the GI tract is very crucial to the calculation of other source-organ transformations, because translocation of the material to the body fluid compartment and then eventually to the source organ is directly dependent, in case of ingestion, and partially dependent, in case of inhalation, upon absorption of the material in the bloodstream through the small intestine.

The model proposed by the ICRP is illustrated in Fig. 2.5. It consists of 4 organs. Table 2.5 provides values of wall mass, contents mass, and mean residence times for the contents of each organ. The rate constant λ for transfer of contents from organ to organ is the reciprocal of the mean residence time.

In general, the only site of absorption from the GI tract to the body fluids is assumed to be the small intestine. The rate constant $\lambda_{B F}$ for transfer from the small intestine to the body fluids after ingestion. can be estimated from the fraction of stable element

FIG. 2.5. Model of gastrointestinal tract as proposed by the ICRP-30.
reaching the body fluids f_{1}, i.e. .

$$
\begin{equation*}
\frac{\lambda_{\mathrm{BF}}}{\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}}=\mathrm{f}_{1} \tag{2.48}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lambda_{B F}=\frac{f_{1} \lambda_{S I}}{1-f_{1}} \tag{2.49}
\end{equation*}
$$

Values of f_{1} for a number of classes of compounds of each element are given in the metabolic data. Radioactive progeny are assumed to have the same f_{1} as the ingested ancestral nuclide.

When a value of $f_{1}=1$ is given, it implies that the radionuclide passes directly from the stomach to body fluids and does not pass through other sections of the GI tract.

TABLE 2.5. Mathematical model used to describe the kinetics of radionuclides in the gastrointestinal tract as proposed by the ICRP-30.

Section of Tract	Mass of Walls (g)	Mass of Contents (g)	Mean Residence time (day)	λ (day $\left.^{-1}\right)$
Stomach (ST)	150	250	$1 / 24$	24
Small Intestine (SI)	640	400	$4 / 24$	6
Upper Large Intestine (ULI)	210	220	$13 / 24$	1.8
Lower Large Intestine (LLI)	160	135	$24 / 24$	1

a) Radionuclide Transport in the GI Tract: Consider the ingestion of unit activity of a radionuclide at time $t=0$. For this parent
radionuclide, the time dependent activity in different sections of the GI tract is governed by the following equations:

$$
\begin{gather*}
\frac{d q_{S T}(t)}{d t}=-\left(\lambda_{S T}+\lambda_{R}\right) q_{S T}(t), \tag{2.50}\\
\frac{d q_{S I}(t)}{d t}=-\left(\lambda_{R}+\lambda_{S I}+\lambda_{B F}\right) q_{S I}(t)+\lambda_{S T} q_{S T}(t) . \tag{2.51}\\
\frac{d q_{U L I}(t)}{d t}=-\left(\lambda_{U L I}+\lambda_{R}\right) q_{U L I}(t)+\lambda_{S I} q_{S I}(t), \tag{2.52}\\
\frac{d q_{L L I}(t)}{d t}=-\left(\lambda_{R}+\lambda_{L L I}\right) q_{L L I}(t)+\lambda_{U L I} q_{U L I}(t), \tag{2.53}
\end{gather*}
$$

where λ_{R} is the radiological decay constant of the radionuclide, and
$\lambda_{B F} q_{S I}(t)$ is the rate of transfer of activity to the body fluids from the small intestine.

A similar set of equations may be written for the radioactive progeny. Solution of these equations can then be used in calculating the number of transformations in each section of the GI tract. Approximate expressions for numbers of transformations of the parent and daughters in the various sections of the tract, following ingestion of unit activity, is given in Tables 2.6 and 2.7 respectively. The approximation is that the residence times are short in comparison to the 50 year dose-evaluation time. These values should, of course, be multiplied by the corresponding branching ratio of the radionuclide.

TABLE 2.6. Approximate expressions for the number of transformations of the parent in the various regions of the gastrointestinal tract following ingestion of 1 Bq of activity. Based on ICRP Publication 30.

Region	Number of Transformations
Stomach	$\frac{1}{\lambda_{S T}+\lambda_{R}}$
Small Intestine	$\frac{\lambda_{\mathrm{ST}}}{\left(\lambda_{\mathrm{ST}}+\lambda_{\mathrm{R}}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}^{+\lambda}}\right)}$
Upper Large Intestine	$\frac{\lambda_{\mathrm{ST}} \lambda_{\mathrm{SI}}}{\left(\lambda_{\mathrm{ST}}{ }^{+\lambda_{\mathrm{R}}}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}^{+\lambda_{\mathrm{R}}}}\right)\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}\right)}$
Lower Large Intestine	$\frac{\lambda_{\mathrm{ST}} \lambda_{\mathrm{SI}} \lambda_{\mathrm{ULI}}}{\left(\lambda_{\mathrm{ST}}{ }^{+\lambda_{\mathrm{R}}}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}+\lambda_{\mathrm{R}}\right)\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}\right)\left(\lambda_{\mathrm{LLI}}+\lambda_{\mathrm{R}}\right)}$

TABLE 2.7. Approximate expressions for the number of transformations of a radioactive daughter in the various sections of the GI tract. ${ }^{A_{S T}}, A_{S I}, A_{U L I}, A_{\text {LLI }}$ are the number of
transformations of the parent in the various regions of the tract. λ_{R}^{\prime} is the radiological decay constant of the daughter. Based on ICRP Publication 30.

Region	Number of Transformations
Stomach	$\frac{A_{S T} \lambda_{R}^{\prime}}{\lambda_{S T}+\lambda_{R}^{\prime}}$
Small Intestine	$\frac{{ }^{A_{S T}} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{ST}}}{\left(\lambda_{\mathrm{ST}}{ }^{+\lambda_{\mathrm{R}}^{\prime}}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}+\lambda_{\mathrm{R}}^{\prime}\right)}+\frac{{ }_{A_{\mathrm{SI}}} \lambda_{\mathrm{R}}^{\prime}}{\left(\lambda_{\left.\mathrm{SI}^{+\lambda_{B F}}+\lambda_{\mathrm{R}}^{\prime}\right)}\right.}$
Upper Large Intestine	$\frac{{ }_{A_{S T}} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{ST}} \lambda_{\mathrm{SI}}}{\left(\lambda_{\mathrm{ST}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}^{\prime}\right)}$
	$\begin{gathered} +\frac{A_{S I} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{SI}}}{\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}{ }^{+\lambda_{R}^{\prime}}\right)\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}^{\prime}\right)}+\frac{A_{\mathrm{ULI}} \lambda_{\mathrm{R}}^{\prime}}{\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}^{\prime}\right)} \\ \frac{\mathrm{A}_{\mathrm{ST}} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{ST}} \lambda_{\mathrm{SI}} \lambda_{\mathrm{ULI}}}{\left(\lambda_{\mathrm{ST}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{RF}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{IIT}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{TIT}}+\lambda_{\mathrm{D}}^{\prime}\right)} \end{gathered}$
Lower Large Intestine	$+\frac{A_{S I} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{SI}} \lambda_{\mathrm{ULI}}}{\left(\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}{ }^{+\lambda_{\mathrm{R}}^{\prime}}\right)\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{LLI}}+\lambda_{\mathrm{R}}^{\prime}\right)}$ $+\frac{A_{\mathrm{ULI}} \lambda_{\mathrm{R}}^{\prime} \lambda_{\mathrm{ULI}}}{\left(\lambda_{\mathrm{ULI}}+\lambda_{\mathrm{R}}^{\prime}\right)\left(\lambda_{\mathrm{LLI}}+\lambda_{\mathrm{R}}^{\prime}\right)}+\frac{A_{\mathrm{LLI}} \lambda_{\mathrm{R}}^{\prime}}{\left(\lambda_{\mathrm{LLI}}+\lambda_{\mathrm{R}}^{\prime}\right)}$

b) Inhaled Radionuclides: In case of inhaled radionuclides, the radioactive material is translocated from the various subcompartments of the lung to the GI tract. The total activity transferred is different for different nuclides and is given by $f_{G I}^{k}$ for species k. In case of the parent, the number of transformations in the various sections of the GI tract can simply be found by multiplying the expressions in Table 2.6 by $f_{G I}^{1}$ ($k=1$ for parent). However, in case of the radioactive daughters, the expressions in Table 2.7 cannot be used, since each daughter may be deposited initially in the GI tract in different amounts, i.e., $f_{G I}^{k}$ is different, and the immediate parent may decay into the daughter in the sections of the tract.

For this different set of differential equations for activity in the GI tract, compared to the ones in the case of ingestion, the number of transformations, derived in the pattern described in the transfer compartment, results in

$$
\begin{array}{r}
U_{G j}=B_{j} \times \sum_{i=1}^{j}\left\{\left[\prod_{k=i+1}^{j} \lambda_{k}\right] q_{G i}(0)\left[\sum_{m=i}^{j} \frac{\left(1-e^{-\left(\lambda_{G}+\lambda_{m}\right) T}\right)}{\left(\lambda_{G}+\lambda_{m}\right) \underset{\substack{k=i \\
k \neq m}}{j}\left(\lambda_{k}-\lambda_{m}\right)}\right]\right\}, \tag{2.54}\\
j=2, \ldots, N
\end{array}
$$

where
G is the index for the different sections of the tract, i.e., ST, SI, ULI, and LLI.

T is, of course, the 50 year period.
λ_{G} is the clearance constant corresponding to the section of the GI tract. For example, in case of the stomach, $\lambda_{G}=\lambda_{S T}$. However, in case of small intestine.

$$
\lambda_{\mathrm{G}}=\lambda_{\mathrm{SI}}+\lambda_{\mathrm{BF}}
$$

j is in the index of the radioactive progeny of the parent, and
${ }^{q_{G i}}(0)$ is the total activity deposited instantaneously at time $\mathrm{t}=0$.

The last term is given by the following expression

$$
\begin{equation*}
q_{G i}(0)=\lambda_{G-1, i} \int_{0}^{50 y} q_{G-1, i}(t) d t, \tag{2.55}
\end{equation*}
$$

where G-1 represents the compartment immediately preceding the one for which the transformations are calculated.

But,

$$
\begin{equation*}
\mathrm{U}_{\mathrm{G}-1, i}=\left[\int_{0}^{50 \mathrm{y}} \mathrm{q}_{\mathrm{G}-1, i}(\mathrm{t}) \mathrm{dt}\right] \times \mathrm{B}_{\mathrm{i}} . \tag{2.56}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{Gi}}(0)=\lambda_{\mathrm{G}-1, \mathrm{i}} \mathrm{U}_{\mathrm{G}-1, \mathrm{i}} / \mathrm{B}_{\mathrm{i}} . \tag{2.57}
\end{equation*}
$$

$\mathrm{U}_{\mathrm{G}-1, i}$ is the number of transformations of species i in the preceding compartment. For example, in the case of calculation of the number of transformations in the small intestine, $\mathrm{U}_{\mathrm{G}-1, \mathrm{i}}=\mathrm{U}_{\mathrm{ST}, \mathrm{i}}$ and in the case of stomach. $\mathrm{U}_{\mathrm{G}-1, \mathrm{i}}=\mathrm{f}_{\mathrm{GI}}^{\mathrm{i}}$.
2.2.6 Activity translocated to the transfer compartment f_{T}^{i} :

This quantity was assumed to be known in the calculation of number of transformations in the transfer compartment. After the discussion
of the respiratory and the gastrointestinal system, we are now in a position to calculate this quantity.
a) Ingestion: In the case of ingestion of radionuclides, the total activity of species i translocated to the transfer compartment from the small intestine, per unit activity ingested, i is given by,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{T}}^{\mathrm{i}}=\int_{0}^{50 y} \lambda_{\mathrm{BF}} \mathrm{q}_{\mathrm{SI}}^{\mathrm{i}}(\mathrm{t}) \mathrm{dt} \tag{2.58}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{T}^{i}=\lambda_{B F} U_{S I}^{i} \tag{2.59}
\end{equation*}
$$

where $\quad U_{S I}^{i}$ is given in Tables 2.6 and 2.7 for the parent and the daughters respectively.
If the fraction of the stable element reaching the body fluids f_{1} is 1 , then the translocation is considered to be directly from the stomach. In this case,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{T}}^{\mathbf{i}}=\lambda_{\mathrm{ST}} \mathrm{U}_{\mathrm{ST}}^{\mathbf{i}} \tag{2.60}
\end{equation*}
$$

b) Inhalation: In case of inhalation, there are two pathways to the body fluid compartment. One is directly from the different compartments of the respiratory system and the other is indirectly through the material deposited in the GI tract from the respiratory system. Hence, the total initial activity f_{T}^{i} of species i deposited in the transfer compartment is given by

$$
\begin{equation*}
f_{T}^{i}=\left\{f_{B F D I R}^{i}+f_{G I}^{i}\left[\lambda_{B F} \quad U_{S I}^{i}\right]\right\} \times \frac{1}{B_{i}}, \tag{2.61}
\end{equation*}
$$

where B_{i} is the branching ratio of species i,
$\mathrm{f}_{\mathrm{BFDIR}}^{\mathrm{i}}$ is the total activity of inhaled radionuclide i transferred directly to the body fluid compartment, which is given by equation (2.37), and

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{GI}}^{\mathrm{i}} \text { is the total activity translocated to the } \\
& \text { gastrointestinal tract, given by equation }(2.38) \text {. }
\end{aligned}
$$

Again, in case of $f_{1}=1$, the above equation can be modified as

$$
\begin{equation*}
f_{T}^{i}=\left\{f_{\text {BFDIR }}^{i}+f_{G I}^{i}\left[\lambda_{S T} U_{S T}^{i}\right]\right\} \times \frac{1}{B_{i}} \tag{2.62}
\end{equation*}
$$

2.2.7 Source organ as bone:

According to the ICRP model, the transformations in the cortical and trabecular bone are taken as a fraction of the transformations in the mineral bone calculated by the methods described earlier for any general source organ.
i) For the parent radionuclide assumed to be on bone surface, $U_{\text {trabecular }}^{i}=U_{\text {cortical }}^{i}=0.5 U_{\text {mineral bone }}^{i}$ for any species i including the radioactive progeny.
ii) For the parent radionuclide assumed to be uniformly distributed throughout the volume of mineral bone, $U_{\text {trabecular }}^{i}=0.2 \mathrm{U}_{\text {mineral }}^{i}$ bone, and $U_{\text {cortical }}^{i}=0.8$ $\mathrm{U}_{\text {mineral }}^{\mathrm{i}}$ bone for any species i.

2.2.8 Three compartment model for iodine:

Iodine and all its radioactive isotopes require an exception to the treatment described for all other radionuclides. The metabolic model proposed for iodine by the ICRP is shown in Fig. 2.6. The model consists of three compartments. Since the value of $f_{1}=1$ for isotopes of iodine, the material is translocated from the stomach to the body fluids.

Of iodine entering the body fluid compartment, a fraction 0.3 is assumed to be translocated to the thyroid while the remainder is assumed to go directly to excretion. Iodine in the thyroid is assumed to be retained with a biological half-life of 120 days and to be lost

FIG. 2.6. Mathematical model proposed by the ICRP-30 for radioactive iodine.
from the gland in the form of organic lodine. Organic iodine is assumed to be uniformly distributed among all organs and tissues of the body other than the thyroid and to be retained there with a biological half-life of 12 days. One-tenth of this organic iodine is assumed to go directly to faecal excretion and the rest is assumed to be returned to the transfer compartment as inorganic iodine.

The time-dependent activity of the nuclide in the three compartments in accordance with Fig. 2.6 is given by the following differential equation for species i :

$$
\begin{equation*}
\frac{\mathrm{dq}_{\mathrm{T}, \mathrm{i}}(\mathrm{t})}{\mathrm{dt}}=-\lambda_{\mathrm{T}} \mathrm{q}_{\mathrm{T}, \mathrm{i}}(\mathrm{t})-\lambda_{\mathrm{i}} \mathrm{q}_{\mathrm{T}, \mathrm{i}}(\mathrm{t})+0.9 \lambda_{\mathrm{SO}} \mathrm{q}_{\mathrm{SO}, \mathrm{i}}(\mathrm{t}) \tag{2.63}
\end{equation*}
$$

a $\mathrm{t}=0$.

$$
\begin{gather*}
\mathrm{q}_{\mathrm{T}, \mathrm{i}}(0)=\mathrm{f}_{\mathrm{T}}^{\mathrm{i}} \\
\lambda_{\mathrm{SO}}=\ln 2 / 12 \text { days } . \\
\frac{\mathrm{dq}_{\mathrm{Th}, \mathrm{i}}(\mathrm{t})}{\mathrm{dt}}=0.3 \lambda_{\mathrm{T}} \mathrm{q}_{\mathrm{T}, \mathrm{i}}(\mathrm{t})-\lambda_{\mathrm{Th}} \mathrm{q}_{\mathrm{Th}, \mathrm{i}}(\mathrm{t})-\lambda_{\mathrm{i}} \mathrm{q}_{\mathrm{Th}, \mathrm{i}}(\mathrm{t}) \tag{2.64}
\end{gather*}
$$

(a) $\mathrm{t}=0$,

$$
\mathrm{q}_{\mathrm{Th}, \mathrm{i}}(0)=0
$$

$$
\lambda_{\mathrm{Th}}=\ln 2 / 120 \text { days } .
$$

$$
\begin{equation*}
\frac{\mathrm{dq}_{S O, i}(\mathrm{t})}{\mathrm{dt}}=\lambda_{\mathrm{Th}} \mathrm{q}_{\mathrm{Th}, \mathrm{i}}(\mathrm{t})-\lambda_{\mathrm{SO}} \mathrm{q}_{\mathrm{SO}, \mathrm{i}}(\mathrm{t})-\lambda_{\mathrm{i}} \mathrm{q}_{\mathrm{SO}, \mathrm{i}}(\mathrm{t}) \tag{2.65}
\end{equation*}
$$

(c) $\mathrm{t}=0$,

$$
\mathbf{q}_{\mathrm{SO}, \mathrm{i}}(0)=0 .
$$

Indices SO, T, and TH represent tissue sources, body fluid, and thyroid respectively. Taking the Laplace transform of the above equations, we obtain

$$
\begin{align*}
& {\overline{q_{T}}}(s)=\frac{0.9 \lambda_{S O} \overline{q_{S O}}(s)+f_{T}^{i}}{\left[s+\left(\lambda_{T}+\lambda_{i}\right)\right]}, \tag{2.66}\\
& \overline{\mathrm{q}_{\mathrm{Th}, \mathrm{i}}}(\mathrm{~s})=\frac{0.3 \lambda_{\mathrm{T}} \overline{\mathrm{q}}_{\mathrm{T}, \mathrm{i}}(\mathrm{~s})}{\left[\mathrm{s}+\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{TH}}\right)\right]}, \tag{2.67}\\
& \bar{q}_{S O, i}(s)=\frac{\lambda_{T h} \bar{q}_{S O, i}(s)}{\left[s+\left(\lambda_{i}+\lambda_{S O}\right)\right]} . \tag{2.68}
\end{align*}
$$

Since we are interested in the number of transformations in each of the compartments, which is the 50 year integral of the activities, we can use the final value theorem as follows:

$$
\text { Let } F(t)=\int_{0}^{t} q\left(t^{\prime}\right) d t^{\prime} \text {, then } U=\lim _{t \rightarrow \infty} F(t)=\lim _{s \rightarrow 0} s \bar{F}(s)
$$

But

$$
\bar{F}(s)=\frac{1}{s} \bar{q}(s)
$$

therefore,

$$
U=\lim _{s \rightarrow 0} \bar{q}(s)
$$

Using Cramer's rule, we obtain

$$
\begin{align*}
& U_{T}^{i}=\frac{f_{T}^{i}\left(\lambda_{i}+\lambda_{S O}\right)\left(\lambda_{i}+\lambda_{T h}\right)}{\left(\lambda_{i}+\lambda_{T}\right)\left(\lambda_{i}+\lambda_{T h}\right)\left(\lambda_{i}+\lambda_{S O}\right)-0.3(0.9) \lambda_{T} \lambda_{S O} \lambda_{\mathrm{Th}}} . \tag{2.69}\\
& \mathrm{U}_{\mathrm{Th}}^{\mathrm{i}}=\frac{0.3 \lambda_{\mathrm{T}} \mathrm{f}_{\mathrm{T}}^{\mathrm{i}}\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{SO}}\right)}{\left(\lambda_{i}+\lambda_{\mathrm{T}}\right)\left(\lambda_{i}+\lambda_{\mathrm{Th}}\right)\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{SO}}\right)-0.3(0.9) \lambda_{\mathrm{T}} \lambda_{\mathrm{SO}} \lambda_{\mathrm{Th}}}+\frac{\mathrm{M}_{\mathrm{Th}} \times \mathrm{U}_{\mathrm{T}}^{\mathrm{i}}}{70000}, \tag{2.70}\\
& U_{S O}^{i}=\frac{0.3 \lambda_{T} \lambda_{T h} f_{T}^{i}}{\left(\lambda_{i}+\lambda_{T}\right)\left(\lambda_{i}+\lambda_{T h}\right)\left(\lambda_{i}+\lambda_{S O}\right)-0.3(0.9) \lambda_{T} \lambda_{S O} \lambda_{T h}} \\
& +\frac{\mathrm{U}_{\mathrm{T}}^{\mathrm{i}}\left(70000-\mathrm{M}_{\mathrm{Th}}\right)}{70000} . \tag{2.71}
\end{align*}
$$

where M_{Th} is the mass of thyroid.

3.0 DOCUMENTATION FOR "DOSE FORTRAN"

3.1 OBJECTIVE

"DOSE FORTRAN" is a software package, written in FORTRAN-77, that implements the methods expounded in Part 1 of Publication 30 of the International Commission on Radiological Protection (ICRP) to calculate committed dose equivalents from an internal radionuclide to organs and tissues of an adult "reference man" (as described in ICRP Publication 23). The program can consider any of the three major modes of intake of a radionuclide, namely, ingestion, inhalation, or submersion in a cloud of inert radioactive gas or elemental tritium. Specifically, the program can calculate the following:
i) Specific committed dose equivalent HFIFTY ($\mathrm{Sv} / \mathrm{Bq}$) in 19 target organs,
ii) Weighted committed dose equivalent WDOSE ($\mathrm{Sv} / \mathrm{Bq}$) in selected target organs,
iii) Annual limit of intake ALI (Bq) of the radionuclide,
iv) Derived air concentration $\mathrm{DAC}\left(\mathrm{Bq} / \mathrm{m}^{3}\right)$ of the radionuclide in case of inhalation or submersion, and
v) Specific effective energies in a table for 17 source and 19 target organs.

A list of the source and target organs along with the masses in reference man is given in Table 3.1.

TABLE 3.1 Masses of organs and tissues of "Reference Man" in this program.

No.	Source Organs	Mass (g)	No.	Target Organs	Mass (g)
1.	Bladder content	200.00	1.	Lungs	999.00
2.	Stomach content	250.00	2.	Thyroid	19.60
3.	SI content	400.00	3.	Testes	37.10
4.	ULI content	220.00	4.	Ovaries	8.27
5.	LLI content	135.00	5.	Red marrow	1500.00
6.	Kidneys	310.00	6.	Stomach wall	150.00
7.	Liver	1800.00	7.	SI + contents	1040.00
8.	Lungs	1000.00	8.	ULI wall	209.00
9.	Muscle	48200.00	9.	LLI wall	160.00
10.	Ovaries	11.00	10.	Liver	1810.00
11.	Pancreas	100.00	11.	Kidneys	284.00
12.	Trabecular Bone	1000.00	12.	Bladder wall	45.10
13.	Skin	2600.00	13.	Muscle	48200.00
14.	Spleen	180.00	14.	Bone surface cells	10500.00
15.	Testes	35.00	15.	Skin	2830.00
16.	Thyroid	20.00	16.	Spleen	174.00
17.	Total body	70000.00	17.	Uterus	65.40
18.	Cortical Bone	4000.00	18.	Pancreas	60.30
			19.	Total body	69900.00

3.2 REQUIREMENTS FOR EXECUTION

Some text files of auxiliary subroutines need to be linked to the central program "DOSE FORTRAN" for its execution. The subroutines (explained later) are as follows:
i) DECAY1 FORTRAN,
ii) ATOMNO FORTRAN,
iii) ICLASS FORTRAN in case of inhalation.
iv) FIVALU FORTRAN.
v) FACTOR FORTRAN,

```
            vi) ICRP FORTRAN,
            vii) INGEST, INHALE, OR SUBMER FORTRAN,
            viii) PCLASS FORTRAN in case of inhalation,
            ix) RESPIR FORTRAN in case of inhalation,
            x) DECAY FORTRAN,
            xi) FRAC FORTRAN,
            xii) THALF FORTRAN,
            xiii) REFMAN FORTRAN,
            xiv) TFRAC FORTRAN,
            xv) TRNSFM FORTRAN,
            xvi) SPEFF FORTRAN,
                    xvii) YERROR FORTRAN,
                    xviii) INTRPT FORTRAN.
            xix) ENERGY FORTRAN,
            xx) I1 FORTRAN,
            xxi) SOURCE FORTRAN,
                    xxii) UXP FORTRAN,
                    xxiii) RESULT FORTRAN, and
                    xxiv) FLOW FORTRAN
```

The directly accessed data files for decay schemes of radionuclides, number of transformations for radioactive alkaline earths, dose equivalent rates in body tissues from: submersion, absorbed fractions of photon energies in organs, retention fractions of nuclides

```
in source organs, and the fractional transfer of the nuclides to the
body fluid compartment are:
```

i) ISOTIPS FILE (sequentially accessed).
ii) ISOTOPE FILE,
iii) ALPHA FILE.
iv) BETA FILE,
v) ELECTRN FILE,
vi) DAUTER FILE.
vii) POSITRN FILE,
viii) ABSFRAC FILE,
ix) RETENT FILE,
x) BFFRAC FILE,
xi) INDEXI FILE,
xii) INDEXO FILE,
xiii) EXCEPT FILE,
xiv) LIST FILE, and
xv) NOBLE FILE

3.3 EXECUTION OF THE PROGRAM

This program was written on the IBM Mainframe computer at Kansas State University. Conversational Monitor System (CMS) is the operating system used there to run under global control program (CP) which handles the resources of the mainframe computer. A feature of the CMS is the EXEC processor. A CMS EXEC processor is a CMS file that
contains executable statements. Hence, in this case, the "DOSE EXEC" file contains statements to retrieve, expand, and load the compiled text files of all supporting subroutines and the main program, thus functioning as a catalogued procedure for execution of the program. With the file on "A" (temporary) disk, one can invoke its execution by entering the word "DOSE".

The main program in this package is "DOSE FORTRAN" which calls other subroutines to perform certain calculations. What follows are descriptions of the function and role of each subroutine as it is addressed by the calling program in execution. All three modes of exposure are considered. A summary of the program flow is illustrated in Fig. 3.1. We begin with the central code.

3.4 DOSE FORTRAN

This is an interactive, user-friendly code which prompts the user to enter some basic information for its execution. To avoid confusion, an explanation of the screen-by-screen sequence in actual execution of the program is given below:
i) First and Second Screen: The first screen orients the user with the name of the program as well as the author, with the time and place of documentation of the code. The second screen explains the scope of the program.
ii) Third Screen: There are three ways to provide the preliminary data required for a calculation. They are: 1) data input from the keyboard, 2) data input from a file, or 3) preparation of a

REFMAN (furnishes mass of the target organ in "reference man").

If the nuclide is an alkaline earth or one of the exceptions, number of transformations in a source organ is read from data files: INDEXO, EXCEPT.

TFRAC (retrieves retention fractions and biological half-lives of the nuclide in source organs from data file: RETENT).

TRNSFM (calculates source-organ transformations).

UXP (checks argument of an exponential function for under flow error).

FLOW (checks overflow and underf low error).

* SPEFF (calculates specific effective energy deposited in a target organ due to a source organ).

RESULT (evaluates weighted committed dose equivalent using the 10% exclusion principle, the DAC, and the ALI if the mode of intake is inhalation or ingestion)

FIG. 3.1. Points of call of subroutines in execution of the program.
data input file. The user is queried in this screen to opt for one of three choices. The choice is stored as an integer variable, NDATA which may have a value of 0,1 , or 2 . Under choices 1 or 2 , an error in program execution results in program termination. If the user selects the option of data input from an already prepared file (NDATA = 1) residing on the temporary disk (A disk), the four th screen inquires the name of the input file. The name is saved as a character variable FFILE(3). Since the CMS environment allows only 7 characters for the name of a file, a longer name is therefore truncated to 7 characters. The file is then opened and, according to the data read, the appropriate course of action is taken.

Also, if the user wishes to prepare a data input file, ($N D A T A=2$) the fourth screen asks for a name that can be associated to such a file [FFILE(3)] and subsequent screens, then prompt the user for data from the keyboard which is then entered in the file. These screens for input data collection are also displayed in the event the user chooses the first option (NDATA=0) to enter data directly from the keyboard. These screens are explained below.
iii) Fourth screen: The user is prompted to enter a radionuclide identification according to displayed example of cesium-137 as CS-137. This is stored as the character variable WORD. If there is a mistake in the format of entry, the screen is displayed again until the entry is corrected. The screen also informs the user, that to begin termination of the program at this point, the return key may be pressed. When the return key is pressed, the user is questioned again
to confirm if termination is really what is desired. Of course, an assent results in the termination and a dissent shows the fourth screen again.

At this point. with the nuclide identified, a subroutine DECAY1 is called to find the daughters of the given radionuclide.

3.4.1 DECAY1 FORTRAN:

The objective of this subroutine is to access the half-lives and names of the daughters of the radionuclide under consideration. The data files used for this purpose are "ISOTIPS". "ISOTOPE", and DAUTER". The arguments of the subroutine are:

WORD - Identification of the entered nuclide.
RHALF - This is a vector of maximum length 50 . It stores half lives of the given radioisotope and its daughters in sequential order of decay.

ULIFE - This is a character vector of length 50. It saves units of half-lives of nuclides in RHALF as a character, e.g.. S. M, H, D, or Y for seconds, minutes, hours, days, and years respectively.

BRA - This is a vector of branching ratios of the given isotope ($\operatorname{BRA}(1)=1$), and its daughters. Its maximum length is 50.

RADIO - This is a vector of length 50. Its elements are characters, each of length 8 . It stores identities (i.e., symbol-atomic weight. e.g., $\mathrm{CS}-137$) of given nuclide and its daughter.

NO - This is an integer which stands for the number of daughters plus one (for the given isotope).

The given identification WORD of the nuclide is used to find a match in the sequentially accessed data file "ISOTIPS". Once a match occurs, a pointer or record number is read, which is then used to directly access the decay scheme from data file "ISOTOPE". The variables read are:

ERT - Name of the isotope.
JO - Atomic weight of the isotope.
J - Atomic number of the isotope.
B - Half life of the isotope.
U - Half life units (S, M, H, D, or Y).
K - Number of radioactive daughters.
L - Pointer or record no. for first daughter.
M - Number of alpha particles.
N - Pointer or record no. of first alpha particle.
I1 - Number of beta particles.
I2 - Pointer to first beta-particle record.
I3 - Number of positrons.
14- Pointer to first positron record.
I5 - Number of electrons.
16- Pointer to first electron record.
I7 - Number of photons.
I8 - Pointer to first photon record.
The pointer to the first daughter is used to directly access the branching ratio of the daughter from the data file "DAUTER". The variables read are:

I9 - Pointer to daughter isotope. This record number could now be used to access the decay scheme of the daughter from "ISOTOPE", and so on.

YIELD - Branching ratio of the daughter.
The decay mode considered in this program is

$$
A \rightarrow B \rightarrow C \rightarrow \ldots
$$

Hence, if a nuclide decays into more than one daughter, that is, if

$$
A \rightarrow B 1, A \rightarrow B 2, A \rightarrow B 3 \text { etc. }
$$

then the pointer and yield of only the daughter with the highest branching ratio is saved.

An inability to read any of the data files results in display of an appropriate error message and return to the fourth screen of the main program.

The half lives of the parent and the radioactive progeny are first converted into days if they are in any other units. If a daughter is a radioactive noble gas, then the daughter and its subsequent progeny are neglected and assumed to escape from the body. If the ancestral nuclide entered in the fourth screen is a noble gas, then an integer variable OPT is assigned a value of 3, and the following queries are skipped to the output screen, which asks for the output file name.
iv) Fifth Screen: The user is prompted to enter the sex of the exposed subject as either M or F. Character variable SEX stores the entry. An incorrect entry will again lead to same screen display until it is corrected.
v) Sixth Screen: The user is questioned whether or not, a full table of specific effective energies (S-matrix) of the nuclide for 17 source and 19 target organs is desired. To answer yes or no, the user is asked to enter the integer 1 or 2 respectively. Of course, an error is again handled with repeated displays of the same screen until proper entry is made.

If the user opts to see the table, the following screens are shown:
vi) Seventh Screen: It asks for the file name to which the matrix can be written. This name is stored as a character variable FFILE(1).
vii) Eight Screen: There are three units, i.e., MeV/g, rad/micro Ci.h, and mSv/GBq.h in which the S-matrix can be seen. The user is asked to choose one of them as an integer variable $N U$ with a value of 1, 2, or 3 .

If from the earlier call of subroutine "DECAYl" it is found that the radionuclide has daughters, then the ninth screen is as follows:
vii) Ninth Screen: The daughters of the nuclide are shown, and the user is prompted to enter integer 1 or 2 expressing yes or no to whether the S-tables of the daughters are desired. This expression is saved as an integer variable MON.
ix) Tenth Screen: At this point, the user is asked to choose one of the following options:

1) Continue data entry for calculation of dose committments,
2) Conclude data entry and STOP, or
3) Proceed with calculations of S-matrix only. Another choice is added if the user chooses the third option of preparation of a data input file in the third screen. It is:
4) Continue data entry for calculation of S-matrix only. The choice is saved as an integer variable INRE with a value of 1,2 , 3. or 4 respectively. Of course, selection of option (1) here, would result in end of the program. If the user chooses to enter data from the keyboard in the third screen, and option number (3) here, then the query screens end, and the program proceeds with calculation of the S-matrix. However, if the choice was preparation of data input file in the third screen, then a selection of option (3) or (4) here, would first lead to writing of the data obtained from screen queries onto the file named by the user. After that, option (4) would display the fourth screen again, continuing the data entry process, while option (3) would read the written data and advance with calculation of the S-matrix. informing the user with a display of which calculation is being performed.

Now, regardless of the choice of either data entry from keyboard or preparation of an input file in the third screen, if option (1) is selected here, then the screen query continues as follows:
x) Eleventh Screen: The user is prompted to choose a mode of intake of the radionuclide by entering either 1 or 2 for ingestion or inhalation respectively. Integer variable OPT stores the selection.
xi) Twelfth Screen: The user is inquired if the transformations of the nuclide in source organs are fancied. The response can be
expressed as 1 or 2 for yes or no which is stored as integer variable MAIS. If the answer is yes, then the following two screens would ask for the name of a file, saved as character variable FFILE(4), to which the transformations can be written, and whether the transformations of the daughters (if any) are also desired. This response is stored as an integer variable ISAY which has a value of 1 or 2 for yes or no respectively.

3.4.2 ATOMNO FORTRAN:

At this point, this subroutine is called to assign an atomic number to the given radionuclide by comparing its symbol to the 103 in the program. A match results in an assignment of atomic number, or else, the user is asked through an error message to check the symbol and try again. The arguments of this subroutine are:

SYM - First two characters of the variable WORD entered by the user which describes the symbol of the radionuclide. If, for instance in the case of phosphorus, the symbol is represented by only one character " P ", then the second character is "-".
$K Z$ - This is the assigned atomic number by the subroutine and is naturally, an integer variable.

If the mode of intake was chosen to be inhalation in the eleventh screen, then the following subroutine is called.

3.4.3 ICLASS FORTRAN:

This subroutine provides the inhalation class of the given radionuclide. It first displays a laconic definition of the three classes, D, W, and Y, and then, questions the user if a detailed explanation aiding in selection of the pulmonary clearance classification is wished. If the user acquiesces, then another subroutine "PCLASS FORTRAN" is called, and after that the user is prompted to enter the inhalation class of the given radionuclide, which is the argument CLASS of the subroutine.

3.4.4 PCLASS FORTRAN:

This is an information file. It displays pulmonary clearance categories of different inorganic compounds which may aid the user in determining the inhalation class of the radionuclide. Its argument IWISH is merely the selection integer 1 indicating acceptance to view the file.

The next step is the determination of fractional transfer of the element from the GI system to the body fluids. For this purpose, subroutine FIVALU is called.

3.4.5 FIVALU FORTRAN:

An auxiliary function subprogram FRAC FORTRAN is required. The arguments of this subroutine are:

KZ - Integer variable describing the atomic number of the given radionuclide, and

F1 - The fractional transfer of the stable element from the GI system to the body fluids.

3.4.6. FRAC FORTRAN:

This function subprogram retrieves the fractional transfer F1 of the stable element to the body fluid compartment from data file "BFFRAC". Since the fraction may differ according to the inhalation class of the nuclide, the user is asked to enter the appropriate value from choices displayed on screen. Of course, a mistake in reading of data file is handled through an error message, suggested corrective action, and return to the fourth screen. The arguments of this subroutine are the atomic number of the nuclide $K Z$ and the integer ITRACK, which is given a positive value in case of an error.

Again, if the mode of intake was chosen to be inhalation, the following screen is flashed.
xii) AMAD Screen: The user is inquired if the aerodynamic diameter (AMAD) for inhalation, is 1 micrometer. An affirmation or negation assigns a value of 1 or 2 respectively to integer variable LOT. In the event of a negative response, the user is prompted to enter the value of $\dot{A} M A D$ in micrometers between 0.1 and 20 . which is stored as variable AMAD.

With these basic input values, the execution of "DOSE FORTRAN" can be initiated with call to appropriate subroutines. But before that, the name for output table for dose committment results is needed.
xiii) Output Screen: A filename for output table is requested and a character variable FFILE(2) is assigned the name.

If the parent nuclide is a radioactive noble gas then at this point, the subroutine "ICRP" is called, and the following steps are ignored.

If the user is preparing a data input file, then at this stage a selection must be made from the following three choices:

1) Conclude data entry and STOP.
2) Continue data entry, or
3) Proceed with calculations.

Integer variable MORE is assigned a value of 0,1 , or 2 respectively according to choices described above. Except for option (1), choice of any other option would lead to writing of the data onto the named file. After that, option (2) would return to the fourth screen while option (3) would read the written data and progress with execution of "DOSE FORTRAN". To facilitate comprehension of the central code's working, most of the subroutines are explained in sequence of calling.

The step première in execution is S-matrix generation and printing of its results if, a positive response was given in sixth screen to view the S-table. A loop is initiated to do the same for the daughters if there are any, and if the user wishes to see their S-tables too.
3.4.7. FACTOR FORTRAN:

As mentioned earlier, this subroutine is called if a full specific effective energy (SEE) table (S-matrix) is requested in the sixth screen prompt of the main program. While this subroutine is generating the matrix, the main program flashes the message that it is calculating the S-matrix of the radionuclide transferred as an argument, and that the results are stored in the file named by the user. The arguments of this subroutine are:

WORD - This is a character variable of length 8 which describes the parent radionuclide or its daughters found by the call of DECAY1 in the main program.

NU - This is also a character variable. It has a length of 16 bytes, and it particularizes the choice of the user to see the SEE table in any of three sets of units, namely $\mathrm{MeV} / \mathrm{g}$, $\mathrm{rad} / \mathrm{micro} \mathrm{Ci} . \mathrm{h}$, or mSv/GBq.h.

SFACT - This is the matrix of SEE values. Its size is 19 target organs in one dimension and 18 source organs in the other.

NDATA - This is an integer variable which represents the option chosen in the main program of entering the data directly from keyboard or preparing a data input file.

NUCLID - This character variable of length 8 identifies the parent radionuclide as entered by the user in the main program.

PLIFE - This variable represents the half-life of the parent radionuclide converted in units of days.

The SFACT matrix is generated with uses of subroutines such as "DECAY FORTRAN" for the decay scheme of the radionuclide, and the subroutine "SPEFF FORTRAN", which in turn, calls other subroutines for effective energy absorbed in a tissue or organ. A detailed account of these subroutines follows later. The variable NDATA aids in properly redirecting the subroutine to the fourth screen in the main program if it has a value equal to zero or stopping the program if it has a value equal to one, in case of an error.

After generation of SEE values, stored in matrix SFACT, the main program writes these values as a table in the file FFILE(1) named by the user. If the mode of entry of data was keyboard, then these results are also written on screen for user's convenience.

At this juncture, if the user has prepared a data input file or had one on the A disk before the commencement of the program, i.e., if NDATA has a value of either 1 or 2 and, if a selection was made to proceed with calculations (only the S-matrix, INRE=3) in the screen prompt number 10, then the program will end here. However, if variable INRE has a value of 4 representing the wish to generate S-matrices of other nuclides as well, then the program would return to reading the data in the input file and will proceed according to the input. On the other hand, if the user were using the keyboard as mode of data entry. i.e., NDATA $=0$, and if $\operatorname{INRE}=3$, the program would not end but could revert to the fourth screen allowing the user to end it personally or continue for any other nuclide.

Excluding the redirections in the above cases, the program will advance to calculate the dose committments by calling the subroutine "ICRP FORTRAN".
3.4.8 ICRP FORTRAN:

This subroutine calls other appropriate subroutines for dose committments according to the mode of intake. The arguments of this subroutine are:

INTAKE -	Integer variable with a value of either 1,2 , or 3 representing the mode of intake as ingestion, inhalation, or submersion respectively.
WORD -	Name of the given isotope, e.g., IN-113M a character variable.
SEX -	Sex of the subject as either M or F, a character variable.
F1-	Fractional transfer of stable element from the GI system to the body fluids, a real variable.
CLASS -	In case of inhalation, pulmonary uptake classification of the nuclide, a character variable.
AMAD -	This is a real variable describing the activity median aerodynamic diameter of the nuclide in case of inhalation.
ROB -	Mass of whole body (70000 g) minus the masses of those organs and tissues mentioned in the metabolic model of ICRP-30 for a particular radionuclide.
KZ -	Atomic number of the nuclide

HFIFTY - Specific committed dose equivalent to target organ or tissue. This is a vector of length 24.

US(I,J) - Matrix of transformations of nuclide I in source organ J.

NDATA - An integer variable describing the options chosen in the main program of mode of data entry.

DER - In case of submersion, this real variable represents derived air concentration for an inert radioactive gas. RISK - This real variable describes derived air concentration for an inert radioactive gas if it is determined by consideration of non-stochastic effects in case of submersion.

ORGAN - This integer variable gives the organ or tissue number when the derived air concentration is determined by non-stochastic effects in case of submersion.
This subroutine merely calls subroutines "INGEST", "INHALE", or "SUBMER" according to the mode of intake transferred in the argument INTAKE as 1,2 , or 3 respectively. However, in case of inhalation, if the $A M A D$ is not equal to 1 micrometer, then it also calculates the specific committed dose corresponding to the given AMAD from the 1 micrometer specific committed dose by law of proportions. The variable NDATA helps in properly re-routing the subroutine in case of an error. The three important subroutines mentioned above are described below.

3.4.9 INHALE FORTRAN:

This subroutine is called if the user chooses inhalation as the mode of intake. Its purpose is to generate a vector of specific
committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) in target organs or tissues due to inhaled radionuclides. The arguments of this subroutine are:

WORD - This is a character variable of length 8 which identifies the given radionuclide.

KZ - The atomic number of the nuclide.
SEX - This is a character variable of length 1 , and is either M or F for male or female respectively.

HFIFTY(24) - This is a vector of length 24 . The 19 elements of this vector represent the specific committed dose equivalents in 19 target organs or tissues.

FNP(20) - This is a vector of length 20 . The 19 elements represent the fractions of the committed dose equivalent in the reference target tissue resulting from deposition in the naso-pharyngeal ($\mathrm{N}-\mathrm{P}$) compartment of the lung model.
$\operatorname{FTB}(20)$ - The 19 elements of this 20 element vector represent the fractions of committed dose equivalent in the target tissue resulting from deposition in the tracheo-bronchial compartment (T-B) of the model.

FP(20) - The fractions of committed dose equivalent in the target tissue resulting from deposition in the pulmonary (P) region of the lung model are the first 19 elements of this 20 element vector.

ROB - This is a variable which represents the mass of whole body (70000 g) minus the masses of those organs and tissues mentioned in the metabolic model of ICRP-30 for a
particular radionuclide. These organs are named in the data file "RETENT".

CLASS - This is a character variable of length 1 representing the pulmonary uptake classification of the radionuclide.

F1 - Fractional transfer of the stable element from the GI system to the body fluids.

US (I, J) - Matrix of transformations of nuclide I in source organ J.
A flowchart of this subroutine is shown in Fig. 3.2. This subroutine is initiated by calling the subroutine "DECAY1" to find the daughters of the radionuclide. Details of this subroutine were given earlier. After accession of the decay scheme from the above subroutine, half lives of parent and daughters, if not in units of days, are converted into days and then radiological constants are calculated. If the daughter is a radioactive inert gas, then that nuclide and its subsequent progeny are neglected and are assumed to escape out of the body.

With the use of the fraction of stable element F1 the fraction of the radioactive parent and its daughters to the body fluid compartment via the GI tract is calculated. This is saved in a vector of maximum length 50, named FBF.

The lung model of ICRP-30, described in a previous chapter, considers fractions of inhaled material to be deposited in three respiratory regions, the naso-pharyngeal passage ($\mathrm{N}-\mathrm{P}$), the trachea and bronchial tree ($\mathrm{T}-\mathrm{B}$), and the pulmonary region (P), the balance being the fraction exhaled. Initially, it is assumed that the activity

SUBROUTINE INHALE (WORK, KZ, SEX, CLASS, Fl. HFIFTY, FNP, FTB, FP, ROB, US, *)

CALL DECAY1 (WORD, RHALF, ULIFE, BRA, RADIO, NO, *12)
Purpose: Finds half-lives and names of the given isotope and its daughters.

Convert half-lives into days and calculate radiological constants of parent and its daughters.

Evaluate fraction of inhaled radionuclide transferred to the body fluid compartment via the GI tract, FBF.

Assuming the $A M A D=1 \mu \mathrm{~m}$, assign values to fractions of inhaled material deposited in three respiratory regions, the balance being the fraction exhaled.

CALL RESPIR (CLASS, FA, FB, FC, FD, ...)
Purpose: Retrieve fraction and clearance rates for transfer between compartments of the lung.

Calculate transformations in each sub-compartment of the lung. Use these results to find fraction of parent and its daughters going directly to body fluids FBFDIR, fraction going directly to GI tract FGI, and total initial activity in the body fluid compartment FT.

Is the parent nuclide an alkaline earth ($\mathrm{Ba}, \mathrm{Ca}, \mathrm{Ra}$, Sr) or any of the exceptions, i.e., Tc, Re, Te-131, $\mathrm{Te}-132, \mathrm{Te}-131 \mathrm{~m}, \mathrm{Te}-133$, $\mathrm{Te}-133 \mathrm{~m}, \mathrm{Te}-134$, or C ?

TSAVE $=$ THALF (KZ)
Purpose: Determine rate of loss of stable element from the body fluid compartment

FIG. 3.2 Flowchart of "INHALE FORTRAN"
median aerodynamic diameter (AMAD) of the nuclide inhaled is 1 micrometer, and the corresponding deposition fractions in each compartment of the lung are utilized for calculation of specific committed dose equivalent. The reason for this assumption is that, even in alternate cases, when the AMAD is not $1 \mu \mathrm{~m}$, values of HFIFTY for $1 \mu \mathrm{~m}$ AMAD are used to estimate HFIFTY in those cases, using the law of proportions.

The clearance rates and fractions in each sub-compartment of the three major divisions of the lung is first initialized as zero and then, a subroutine "RESPIR" is called for their values.

3.4.10 RESPIR FORTRAN:

This subroutine merely provides the fraction and clearance rates for transfer of nuclide between compartments of the lung according to the inhalation class of the nuclide. The arguments are:

CLASS - Character variable of length 1 describing inhalation class of the nuclide.

FA - Fraction of material deposited in the body fluid compartment from the nasal passage region ($\mathrm{N}-\mathrm{P}$).

FB - Fraction deposited in the GI tract from the nasal passage.

FC - Fraction deposited in the body fluid compartment from the trachea and bronchial tree region (T-B).

FD - Fraction deposited in the GI tract from the trachea and bronchial tree region ($\mathrm{T}-\mathrm{B}$).

FE - Fraction deposited in the body fluids from the pulmonary region (P).

FF - Fraction transferred to the T-B region from the P region with a half-life.

FG - Fraction transferred to the T-B region from the P region with a different half life.
FH - Fraction transferred to the lymphatic system (L) from the P region.

FI - Fraction deposited in the body fluids from the L region with a half life.
CLA - Clearance rate of material from the $N-P$ to the body fluids which is found from dividing $\ln 2$ by the removal half time (in days) in each compartment.
CLB - Clearance rate of material from the N-P to the GI tract.
CLC - Clearance rate of material from the $T-B$ to the body fluids.

CLD - Clearance rate of material from the T-B to the GI tract.
CLE - Clearance rate of material from the P to the body fluids.

CLF - Clearance rate of material from the P to the T-B region.
CLG - Clearance rate of material from the P to the $T-B$ region.
CLH - Clearance rate of material from the P to the L region.
CLI - Clearance rate of material from the L to the body fluids.

CLJ - Clearance rate of material from the L to the body fluids.

With the use of these fractions and clearance rates. transformations in various sub-compartments of the lung for the parent and its daughters are assessed, and these transformations allow calculation of the fraction of the inhaled radionuclide and its daughters transferred directly to the body fluid compartment, and the fraction transferred to the GI tract. The former is saved as a vector FBFDIR, and the latter as a vector FGI. Both vectors are of maximum length 50. These results aid in determining the total initial activities of the given radionuclide and its daughters in the body fluid or transfer compartment. The activities are saved as a vector FT (length $=50$).

Since different elements have different clearance times from the body fluid compartment, function subprogram "THALF" is called to determine the suitable half-life of clearance. However, if the parent nuclide is an alkaline earth ($\mathrm{Ba}, \mathrm{Ca}, \mathrm{Ra}, \mathrm{Sr}$) or one of the exception nuclides, i.e., Tc, Re, Te-131, Te-132. Te-131m, Te-133, Te-133m, Te-134, or C, this step is skipped to the target organ loop.

3.4.11 THALF FORTRAN:

This function subprogram uses the argument $K Z$, the atomic number of the nuclide, to provide the half-life of clearance from the transfer compartment. The daughters are assumed to have the same half-life of clearance as the parent.

With this half-life of clearance, the rate of loss of the stable element from the transfer compartment TCONST, is calculated. After that, the source-organ transformations in each source organ for the parent and its daughters are initialized to zero, and then, an outer loop to calculate HFIFTY in each target organ, is commenced. The target organs ovaries and testes are skipped if the sex of the subject is male or female respectively. To determine the mass of each target organ, a function subprogram named "REFMAN" is called.

3.4.12 REFMAN FORTRAN:

This function subprogram uses the target number as the argument and returns the mass as shown in Table 3.1.

Some variables which will be described later as they are used, are initialized to zero at this point. For each target organ in the outer loop, a nested loop to add contribution from all source organs is initiated. As in the target organ loop, if the subject is male, ovaries are omitted as source organ and similarly testes are ignored if the subject is female.

At this juncture, if the ancestral nuclide inhaled is an alkaline earth or one of the exceptions described above, the number of transformations in each source organ are not calculated but retrieved from data files. The first letter of the nuclide symbol is used to search for a match in file "INDEXI". Once a match occurs, the values of F1 (described above) and the class of the nuclide are compared.

Beside each value of Fl and class, is a record number, which is read on proper match. This record number is a pointer for file "EXCEPT". Using this record number, the numbers of transformations for different source organs are read from this file.

In the case of nuclides technetium (Tc) and rhenium (Re), an anomaly exists. The ICRP 30 describes transformations in stomach wall as well as stomach content as source organs. However, in this report both are summed and treated as only one source organ, the stomach content. Similarly, the ICRP-30 also gives specific effective energy values (described later) for both source organs. Since this program cannot generate specific affective energy values for stomach wall as source organ, the summed value of transformations is multiplied by the SEE values for stomach content as source organ. Although this treatment does not affect the results of dose committment in other target organs appreciably, it does lead to underestimation as compared to ICRP-30 in the case of target organ stomach wall and hence, must be used with caution.

For all other nuclides, to find the fractions of nuclide retained in source organs as a result of transfer from the body fluid compartment, a subroutine "TFRAC" is called. The contribution to committed dose in organs of the GI tract and lung through this route is minimal. Since the nuclide enters the body-fluid compartment after passage through these organs, the major contribution is direct. Moreover, this minimal part is taken care of in the source organ total body.

3.4.13 TFRAC FORTRAN:

The purpose of this subroutine is to retrieve the retention fractions F2 and the biological half-lives BHALF of the nuclide in the source organs from data file "RETENT". The auxiliary subroutines needed are "Il" and "SOURCE". The arguments used are:

KZ - The atomic number of the nuclide.
F2 - This describes the fraction retained in source organ except organs of the GI tract and lung. It is a vector of length 3 since source organs are modelled to have 3 compar tments.

BHALF - This vector of length 3 gives the biological half-lives of the fractions in the source organs.

JSORCE - This is the source organ number as shown in Table 3.1. SMASS - This variable invokes the function subprogram "SOURCE" to obtain the mass of the source organ, except when the source organ is total body. In that case, if other organs are linked with retention fractions, then this variable is assigned a value of $70000-\left(\underset{i}{(\underset{i}{i}} M_{i}\right)$ where M_{i} are the masses of organs associated with different retention fractions.

A flow diagram of this subroutine is illustrated in Fig. 3.3. A loop is started to access retention fraction and biological half-lives associated with source organs for a given nuclide. Variable C2 describes the source organ name. Other variables D, E, and F describe the retention fractions in different compartments of source organ, and G, H, B read the corresponding biological half lives. After retrieving
the source organ name associated with retention fractions, and biological half-lives from the data file, function subprogram "Il" is called with the source organ name C2 in alpha numeric characters as argument. "Il" converts C 2 to an integer from the source list presented in Table 3.1.

The source integer is now compared with JSORCE, the argument. If they are equal, then the corresponding retention fractions and biological half-lives associated with C2 are equated with F2 and BHALF respectively. The function subprogram SOURCE is called with source organ integer as argument. This function subprogram provides the mass of the source organ which is equated with variable SMASS. With these values, the subroutine "TFRAC" is returned.

If, however, the source integer linked with C2 does not match the JSORCE, then there are two possiblities. The obvious one is that the loop is continued until a match is found, and then the values returned, or no match found, and values $=0$ are returned. The other route is that if JSORCE is 17 , i.e., the source organ is total body and if the source integer corresponding to C 2 is not 18 . linked with "all other" then the masses of source organs are summed, and the loop continued, until the integer is 18 , and at that time, retention fractions and biological half-lives related to it are taken to be the ones sought. The SMASS variable is, however, assigned a value of 70000 minus the previous sum of source organs, rather than 70000 , the mass of total body. This mode of accession works because the records in the data

FIG. 3.3. Flowchart of Subroutine "TFRAC FORTRAN".
file are entered in such a way that for a given KZ, entry of "all other" is always at the end, after specific organs.

Of course, an error in reading or accessing a data file is disclosed by a display of appropriate message and suggested corrective action.

If a source organ does not have a unique retention fraction, that is, after the subroutine call, the retention fractions and biological half-lives for that organ are zero, then the source organ is skipped because of ten it will be included in the source organ total body. Since the transformations are evaluated in the source organ, their values remain the same for different target organs. Thus, if the target organ number is greater than 1 in the outer loop. repeated evaluation of source organ transformations is bypassed. Also if the source organ is lung, the subroutine for transformations is not called. Instead, the transformations calculated in each subcompartment earlier are summed, except for the N-P region. This treatment, as explained in the previous chapter, is based on the assumption that the dose received by the nasophryngeal region for most particles sizes, is small in comparison with the doses received by other regions and hence, can be neglected. For all other sources, though, the subroutine "TRNSFM" is called.

3.4.14 TRNSFM FORTRAN:

This subroutine provides the source-organ transformations of the parent and its daughters in each source organ. The arguments are:

FT - A vector of length NO (variable dimensioning) which describes the total initial activity of the given radionuclide and its daughters in the transfer compartment.

F2 - A vector of length 3, which describes retention fractions in three compartments of the source organ.
BHALF -

RCONST - This is a vector of length NO which describes the radiological constants of the parent and the daughters. Integer variable describing number of daughters plus one for the parent.

BRA - Branching ratio of the parent $[B R A(1)=1]$ and its daughter saved as a vector of length NO.

US - This is a matrix of size 20 x NO. The first dimension refers to the source integer number, and the second to the nuclide of interest. This array describes the transformations in a particular source organ for a particular nuclide.

TCONST - Rate of loss of stable element from the transfer compartment.

JSORCE - Source integer number.
F1 - Fractional transfer of the stable element to the body fluid compartment.

IPROG - Integer variable identifying the calling subroutine as "INHALE" if value $=1$, and "INGEST" if value $=0$.

FGI - A vector of length NO, describing the fraction of the inhaled radionuclide and its daughter transferred to the GI tract.

SMASS - Variable describing mass of the source organ except if the source organ is total body and other organs of mass Mi have unique retention fractions. In that event, the variable equals $70000-\sum_{i} M_{i}$.

UROB - A vector of length NO describing the total number of transformations of each nuclide in rest of the body of mass, $70000-\sum_{i} M_{i}$ where M_{i} is the mass of organ i for each unique retention fraction.

MROB - This is a real variable which is assigned the value equal to $70000-\sum_{i} M_{i}$ when the source organ is total body.

KZ - Atomic number of the given radionuclide.
This subroutine begins with the calculation of biological constants BCONST from the biological half-lives in different compartments of the source organ. Depending on the mode of intake, i.e., the value of IPROG, the calculations for organs of the GI tract are directed to appropriate line numbers for the evaluation of source-organ transformations by alternate methods.

An outer loop is initiated for the calculation of US for each nuclide. If TOONST is equal to zero, that is, there is instantaneous
transfer to the tissue compartment, then calculation of UTJ, the vector of length NO describing transformations of the nuclide under consideration in the transfer compartment, is omitted. Otherwise, a nested loop calculates UTJ for each nuclide. Another nested loop evaluates the transformations in the three compartments of the source organ, and adds them. Of course, the initial activity of the nuclide in the source organ after transfer from the body fluid compartment is first calculated within the loop. Transformation in each compartment of the source organ is stored as a variable UJ. Use of UTJ and UJ allows calculation of US(JSORCE, J) where J is the nuclide under consideration.

If the source organ is total body, then the source-organ transformations calculated are equated with $\operatorname{UROB}(J)$. This quantity is associated with transformation in "rest of the body" and the source-organ transformations used in conjunction with total body as the source organ is over estimated by multiplying by 70000/SMASS, where SMASS as expplined previously is $70000-\underset{i}{\Sigma} M_{i}, M_{i}$ being the mass of the organ with unique retention fraction. This overestimation in case of total body is compensated for each organ with unique retention fraction by subtracting the quantity, $M_{i} \times \operatorname{UROB}(J) /\left(70000-\underset{i}{\sum} M_{i}\right)$ for organ i. The outer loop for each nuclide is closed at this point and the value of US(JSORCE, J) is returned.

As remarked earlier, for organs of the GI tract, depending on mode of intake, there are separate blocks for calculation of US(JSORCE, J), which follows the loop described above. In the case of iodine, a
separate three compartment model is described in the previous chapter. Transformations in the source organs are calculated using this model. A flow chart can be seen in Fig. 3.4.

After the determination of US, another nested loop is initiated to calculate the product of US and specific effective energy absorbed in the tissue for each nuclide. For this purpose, use of another function subprogram called "SPEFF" is required.

3.4.15 SPEFF FORTRAN:

This function subprogram calculates the specific effective energy deposited in each target organ due to each source organ. The arguments transferred are:

WORD - Identification of the nuclide.
JSORCE - Source integer number.
KTARG - Target mass in grams.
LOOP - Integer variable which has a value of either 0,1 , or 2.
MOTS - Identification of the parent nuclide.
PLIFE - Half life of the parent in days.
At the outset, the source number is compared with the target number according to Table 3.1. If the organs are the same, the integer variable ICOM is assigned a value of 0 , otherwise a value of 1 . For the decay scheme, a subroutine "DECAY" is called which will be explained later. The character variable SAVE stores the identification of the radionuclide when this function subprogram is first called, and

SUBROUTINE TRNSFM (FT, F2, BHALF, RCONST, NO, BRA, US, TCONST JSORCE, FI, IPROG, FGI, SMASS, UROB, MROB, KZ)

I

FIG. 3.4. Flowchart of "TRNSFM FORTRAN"
hence when it is equal to $W O R D$, the function does not have to call "DECAY" again. At this point, if positrons are found in the decay scheme, corresponding annihilation photons are added to the list of decaying photons.

There are alternate methods for calculation of SPEFF for target organs of the GI tract, bladder, and bone. For all organs, there are five blocks for treating particles alpha, beta, positron, electron and photon. For target organs other than the GI tract, bladder, and bone, in the case of charged particles, the specific absorbed fraction in the target organ $\hat{A F}$ is zero if the source and target organs are not equal, except in the following cases:
i) When the source organ is total body, the specific absorbed fraction equals $1 / 69900$.
ii) When the target organ is total body and the source organ is bladder content, the specific absorbed fraction is equal to $45.1 /(2 \times 200 \times 69900)$.
iii) When the target organ is total body and the source organ is stomach content, the specific absorbed fraction equals $150 /(2 \times 250 \times 69900)$.
iv) When the target organ is total body and the source is SI content, $\hat{\mathrm{AF}}=640 /(2 \times 400 \times 69900)$.
v) When the target organ is total body, and the source organ is ULI content, $\hat{A} F=210 /(2 \times 220 \times 69900)$.
vi) When the target organ is total body, and the source organ is LLI content, $\hat{A} F=160 /(2 \times 135 \times 69900)$.
vii) When the target organ is total body, and the source organ is any organ except ones described above, $\hat{A} F=1 / 69900$.

In the case of photons, the same cases hold true if the energy is less than 0.01 MeV . For higher energies a function subprogram "INTRPT" is called which will be explained later.

For target organs of the GI tract, bone and bladder, in the case of charged particles, the specific absorbed fraction is zero, if the sources and targets are not the same except when the source is total body. In that case, $\hat{A F}=1 / 69900$. For photons, the same conditions hold true if the energy is less than 0.01 MeV , or else "INTRPT" is called. A flow diagram is sketched in Fig. 3.5.

3.4.16 DECAY FORTRAN:

This subroutine provides the decay scheme of the radionuclide. The data files are based on the radioactive decay data tables by D. C. Kocher, DOE/TIC-IlO26 (1981). It uses character variable WORD and integer variable ICOUNT as arguments. ICOUNT is normally 0 , until an error occurs, in that case, its value is 1 . Similar to "DECAY1", the symbol in WORD is used to find a match in the sequentially accessed data file "ISOTIPS". Once a match is found, a record number ITR is read which is then used to access directly the decay scheme from data file "ISOTOPE". Any error in this subroutine, is recorded as a particular element of an integer vector, for which subroutine "YERROR" is called, which will be explained later. Variables used to access "ISOTOPE" are:

IS SOURCE = TARGET?

CALL. DECAY (WORD, ICOUNT)
Purpose: Find the decay scheme of the radionuclide

Calculation of SPEFF for $\alpha, \beta, \mathrm{e}^{+}$,
$\mathrm{e}-\mathrm{For}$ calculation of SPEFF for
γ, if $\gamma>0.01 \mathrm{MeV}$
CALL INTRPT (E, ELO, EHI, ILO)
Purpose: Interpolate values of
absorbed fraction
RETURN

\downarrow
Al ternate methods for calculation of SPEFF RETURN

FIG. 3.5. Flowchart of Function Subprogram "SPEFF FORTRAN"

ERT - Name of the isotope.
JO - Atomic weight.
J - Atomic number.
B - Half-life.
C - Half-life units (S, M, H, D, Y).
K - Number of daughters.
L - Pointer to first daughter record.
M - Number of alpha particles.
N - Pointer to first alpha particle record.
I1 - Number of beta particles.
I2 - Pointer to first beta particle record.
I3 - Number of positrons.
I4 - Pointer to first positron record.
I5 - Number of electrons.
I6 - Pointer to first electron record.
I7 - Number of photons.
I8 - Pointer to first photon record.
The pointer to first alpha particle is used to access the data file "ALPHA". The variables read are:

AL1 - Energy in MeV.
AL2 - Intensity.
The pointer to beta is used to access the data file "BETA" with the variable being:

BE1 - Endpoint energy in MeV.

BE2 - Average energy in MeV .
BE3 - Intensity.
The pointer to positron is the key to access the data file "POSITRN" for reading the following variables:

POS1 - Endpoint energy in MeV.
POS2 - Average energy in MeV .
POS3 - Intensity.
The pointer to electron is the record number to access "ELECTRN". Variables read are:

ELE1 - Energy in MeV.
ELE2 - Intensity.
Similarly, pointer to photon is used for file "PHOTON" with variables:

PHO1 - Energy in MeV.
PHO2 - Intensity.
Each of these variables starting from AL1 are stored as a vector for the decay of parent and daughters, and all of these vectors are common to function subprogram "SPEFF". Besides these vectors other variables that are common are M, I1, I3, I5, I7, HLIFE. HLIFE, a variable, describes the half lives in units of days.

3.4.17 YERROR FORTRAN:

This is the error handling subroutine for the subroutine "DECAY FORTRAN". It gives error messages when called from "DECAY" in case of an error in reading data files, discloses the source of error as "DECAY", and suggests appropriate action. The argument of this
subroutine is $\operatorname{DECERR}(7)$. This is an integer vector of length 7. Each kind of error relates to a particular element of this vector. The element is assigned an integer value greater than zero in case of an error.

3.4.18 INTRPT FORTRAN:

This function subprogram is called by "SPEFF" for calculation of SPEFF in the case of photon decay for energy greater than 0.01 MeV . The purpose of this subprogram is to interpolate the values of absorbed fraction. The data file required is "ABSFRAC" and the subroutine "ENERGY". The arguments of this subprogram are:

E - Energy of gamma.
JSORCE - Source integer.
KTARG - Target integer .
It utilizes subroutine "ENERGY" to obtain the upper and lower bounds of energy which aids in interpolation. The data file "ABSFRAC" is used to read absorbed fraction for the upper and lower bounds of energy.

After determining the specific effective energy SEE the product of SEE and US is required for calculation of HFIFTY from contributions of all radionuclides. If the source organ is mineral bone and the target is either red marrow or bone surface cells then the contribution from both trabecular bone and cortical bone as part of mineral bone is calculated by first calling "SPEFF" with a value of variable LOOP as 0
which implies photon decay from radionuclies, then with a value of LOOP $=1$ which takes care of charged particle dose in trabecular bone, and finally with LOOP $=2$ which accounts for charged particle dose in cortical bone.

For other source organs, value of LOOP $=0$. To determine the contribution to committed dose equivalent in target tissue from each source and each nuclide as a result of deposition in the $N-P, T-B$ and P regions of the lung model, three matrices named TNP, TTB, and TP are evaluated which have a maximum size of 20 x NO where 20 represents each source integer, and NO, the number of nuclides.

The products (SEE \times US) are added from contribution of each source in variable GRNSUM. The source loop is now closed at this point. FNP, FTB, FP, and HFIFTY described earlier is calculated at this point for each target organ and the target loop is then closed. The calculated values are returned to the subroutine "ICRP".

If the value of $A M A D$ is not equal to 1 , the subroutine "ICRP" calculates the committed dose by law of proportions, and then returns the calculated value to the control code "DOSE".

As mentioned earlier, the subroutine "ICRP" will call the subroutine "INGEST" to calculate the specific committed dose equivalent in target organs from the ingested radionuclide, if the value of variable, INTAKE is 1 . The mode of operation of this subroutine is very similar to "INHALE" and hence the subroutines called by "INGEST" which are common to "INHALE" are not described to avoid redundancy.

3.4.19 INGEST FORTRAN:

The arguments passed by the subroutine "ICRP" for calculation of the specific committed dose equivalent due to the ingested radionuclide are:

WORD - The character variable of length 8 which identifies the radionuclide.
$K Z$ - The atomic number of the nuclide.
SEX - Character variable of length 1 identifying the sex of the exposed subject.

F1 - Fractional transfer of the stable element from the GI system to the body fluids.

HFIFTY(24) - The first 19 elements of this vector represent the specific committed dose equivalents in 19 target organs or tissues.

ROB - This variable stands for the mass of whole body minus the masses of those organs and tissues with unique retention fractions mentioned in the metabolic model.
US (I.J) - This is a matrix of transformations of nuclide I in source J.

This subroutine like its counterpart "INHALE" is initiated by calling "DECAYI" for half-lives and names of the parent isotope and its daughters. The half-lives are converted into days and radiological constants calculated. 引Again, if the progeny is a radioactive inert gas. it is assumed to escape out of the body.

The initial activity FT of the parent and its daughters in the transfer compartment is evaluated using the fractional transfer of the stable element from the GI tract to the body fluids.

Except for the alkaline earths and the nuclides Tc, Re. Te-131, Te-131m. Te-132, Te-133. Te-133m. Te-134, and C, for which the number of transformations in source organs are retrieved from a data file "EXCEPT", the half life of clearance for other nuclides is obtained from function subprogram "THALF".

A target organ loop to calculate HFIFTY is started at this point. Mass of each target organ is given by function subprogram "REFMAN". For each target organ, contribution from all source organs is evaluated through a nested source loop.

To calculate the number of transformations in source organs, the retention fractions of the nuclides in these source organs must first be determined. Subroutine "TFRAC" retrieves these retention fractions and their biological half lives in the source organs. After this step, subroutine "TRNSFM" is called for the source organ transformations of each nuclide, and then subroutine "SPEFF" for specific effective energy in each target organ due to each source organ. The product of both the quantities is added from contribution of all sources in each target organ. The source loop is closed and then the specific committed dose equivalent in each target organ is calculated. After covering all 19 target organs, the loop is closed and the values returned to "ICRP" which in turn routes it to "DOSE". A flow diagram for "INGEST" is shown in Fig. 3.6.

SUBROUTINE INGEST (HORD, KZ, SEX, F1, HFIFTY, ROB, US, *)
1
CALL DECAY1 (WORD, RHALF. ULIFE, BRA, RADIO, NO, * 12)
\downarrow
Convert half-lives into days and calculate radiological constants for parent and daughters

I
Is the parent nuclide an alkaline
earth or one of the exceptions?

> TMASS = REFMAN (KTARG)

FIG. 3.6. Flow Diagram for "INGEST FORTRAN"

After receiving all the values that were originally requested, the main program now writes these results onto the named files. To begin with. if the source-organ transformations were asked (i.e., MAIS = 1) in the twelf th screen prompt, then the values of US are written to the file FFILE(4). Again, if the mode of data entry was keyboard, then these values are also written on screen for user's convenience.

Before the results of dose committment can be written onto the named file, a subroutine "RESULT" is called to evaluate weighted committed dose and other quantities as explained below.

3.4.20. RESULT FORTRAN:

The purpose of this subroutine is to evaluate the weighted committed dose equivalent using the 10% exclusion principle. In other words, weighted dose equivalents that are reported are greater than or equal to 10% of the maximum weighted dose. The subroutine also calculates the annual limit on intake. In addition, if the mode of intake is inhalation, it determines the derived air concentration of the nuclide. The arguments of this subroutine are:

HFIFTY(24) - This vector of maximum length 24 , represents the specific committed dose equivalent ($\mathrm{Sv} / \mathrm{Bq}$) in 19 target organs or tissues.

WDOSE(24) - Also a vector of length 24, it describes the weighted committed dose equivalent ($\mathrm{Sv} / \mathrm{Bq}$) in 19 target organs or tissues which are greater than or equal to 10% of the maximum.

ALI - This is a real variable which gives the annual limit on intake (Bq) of the radionuclide. It is equal to variable POST. However, when the annual limit on intake is determined by the nonstochastic limit, this variable stands for the greatest value of the annual intake (Bq) that satisfies the Commission's recommendation for limiting non-stochastic effects.

POST - This real variable describes the greatest value of annual intake (Bq) that proscribes to the criterion for limiting stochastic effects as recommended by the ICRP-30.

IRGANT - When the annual limit on intake is determined by the non-stochastic limit on dose equivalent in a particular organ or tissue, that organ or tissue number (according to Table 3.1) is given by this integer variable.

DAC - This variable gives the concentration of the radionuclide which if inhaled at the (occupational) rate of 9600 liters per day, 5 days per week, 50 weeks per year, would lead to the annual limit of intake for inhalation ($\mathrm{Bq} / \mathrm{m}^{3}$).
$K Z$ - Atomic number of the nuclide.
REMDR - Maximum committed dose equivalent in a target organ or tissue which is not included in the metabolic model. GI tract model, and the table of weighting factors shown in Table 1.1.

WTF - This is a weighting factor determined by the number of target organs and tissues, up to a maximum of 5 , which
are not eliminated under the 10% rule or included in metabolic model. GI tract, and Table 1.1, which also qualify for a weighting factor of 0.06 .

WREMDR - Weighted committed dose equivalent that is obtained by multiplying REMDR and WTF.

SUM - Sum of all the weighted committed dose equivalents $(\mathrm{Sv} / \mathrm{Bq})$.

This subroutine first finds a maximum of target organs or tissues collectively called "remainder" that are not included in organs in Table 1.1, receiving the highest dose equivalents: the exposure of all other remaining tissues is neglected. After that, the weighted committed dose equivalent in each target organ is calculated by multiplying the specific committed dose equivalent with respective weights.

The weighted doses are then compared with the maximum, and if any of the target organ or tissue has a weighted dose less than 10% of the maximum, it is neglected.

The committed dose equivalent assigned to the "Remainder" as a variable REMDR is the maximum committed dose equivalent in any target or tissue which is not included in the GI model. Table 1.1. and the metabolic model. The metabolic model is checked by using the data file "RETENT". A weighting factor WTF is determined by the number of organs, which are not eliminated under the 10% rule or included in the above categories, which also qualify for a weighting factor of 0.06. In the event of no such organ or tissues, no committed dose equivalent,
or weighted committed dose equivalent WREMDR which is merely the product of REMDR and WTF, is given for remainder tissues.

The annual limit on intake for occupational exposure is calcualted as the greatest value which satisfies both the stochastic and non-stochastic limit set forth by the Commission in ICRP-30. If the non-stochastic limit overrides the stochastic, then the value that meets both the criteria are reported with the particular organ or tissue concerned.

With the value of $A L I$, the derived air concentration is then calculated in the case of inhalation, and all these values returned to the main program.

3.4.21 SUBMER FORTRAN:

This is the third possible route from the subroutine "ICRP" when the value of integer variable INTAKE equals 3 . This subroutine opens data files "LIST" and "NOBLE" for dose equivalent rate in target organs from submersion in a semi-infinite cloud of radioactive noble gas or elemental tritium.

The arguments are:
WORD - Identification of the radionuclide.
HRATE (24) - A vector of length 24 , it represents the dose equivalent rate in target organs or tissues from submersion in unit concentration of the isotope.

DER - A real variable representating derived air concentration (DAC).

RISK - A real variable that describes derived air concentration when determined by the non-stochastic 1imit.

ORGAN - An integer variable which gives the organ number when DAC is determined by consideration of non-stochastic effects.

A search is done in data file "LIST" by comparing the variable WORD with the nuclides in the file. In the event of a proper match, a record number beside the identification of nuclide is retrieved. This record number is the pointer to dose equivalent rates and DAC for that nuclide in data file "EXCEPT". After retrieval of these quantities, the values are returned to the subroutine "ICRP" which directs them to the main program "DOSE".

The results from the above subroutine are then written onto the file FFILE(2) named by the user. After that according to the data input in earlier screens, the program is either stopped automatically, returned to the fourth screen for more data entry or manual stop, or reads more data from the input file.

3.5 RESULTS AND DISCUSSION

Sample calculations of specific effective energy in a target organ from each transformation in a source organ is shown in Table 3.2, 3.3, and 3.4 for radionuclides ${ }^{131} \mathrm{I},{ }^{113 \mathrm{~m}} \mathrm{In}$, and ${ }^{121} \mathrm{Te}$ respectively. These radionuclides were chosen due to their different modes of radioactive decay. ${ }^{131}$ I decays by emission of a beta particle into ${ }^{131} \mathrm{Xe} . \quad{ }^{121} \mathrm{Te}$ decays by positron emission into ${ }^{121} \mathrm{Sb}$, and ${ }^{113 \mathrm{~m}} \mathrm{In}$ goes through
> isomeric transition from metastable to stable state by emission of gamma radiation.

Results of calculations of specific committed dose equivalents. along with the annual limits of intake, are presented in Tables 3.5 3.13 for selected radionuclides. Both modes of intake, ingestion and inhalation are considered in these tables. These results are compared against the published values of the ICRP-30 in Tables 3.14-3.17 for a few radionuclides. The ICRP-30 selects data for inclusion in the tables by applying the 10% rule for exclusion of target organs. Only those values are reported which are greater than or equal to 10% of the maximum. Hence, comparison is possible only for selected target organs in tables 3.14-3.17.

One can see from the Tables 3.14-3.17 that except for three radionuclides, namely, ${ }^{89} \mathrm{Sr},{ }^{99 \mathrm{~m}} \mathrm{Tc}$, and ${ }^{131 \mathrm{~m}} \mathrm{Te}$, all values of specific committed dose equivalents are almost identical (differences in decay schemes used by the two programs account for these minor discrepancies) to the results of ICRP-30. The differences in the exceptions are explained below:
a) ${ }^{89} \mathrm{Sr}$: To understand the difference in the specific committed dose equivalent of the target organ red marrow, first the S-table for ${ }^{89} \mathrm{Sr}$ was checked against the one in ICRP-30. The results were identical. After that, the table of number of transformations in source organs was compared. It seemed that the difference was due to the number of transformations in the source organ mineral bone. In the case of ingestion for $\mathrm{f} 1=0.3$, the $\mathrm{ICRP}-30$ reports a value of $1.7 E 05$ for the
number of transformations per unit intake of activity in cortical bone and a value of 1.4 E 05 for trabecular bone as source organ. The half life of ${ }^{89} \mathrm{Sr}$ is 50.5 days. Now, according to the criteria described in Part I of Publication 30, isotopes of alkaline earth elements with radioactive half-lives greater than 15 days should be considered to be uniformly distributed throughout the volume of mineral bone, and for radionuclides assumed to be uniformly distributed throughout the volume of mineral bone, $U_{\text {trabecular }}=0.2 \mathrm{U}_{\text {mineral }}$ and $\mathrm{U}_{\text {cortical }}=0.8$ $U_{\text {mineral }}$. We can see that there is a discrepancy between stated and applied ICRP criteria since the values that are given for $U_{\text {cortical }}$ the number of transformations per unit intake of activity in the cortical bone, and $U_{t r a b e c u l a r ~}$ are not in the required ratio. The same is the case with inhalation as the mode of intake.
b) 99 mc : The difference in the results of specific committed dose equivalents for stomach wall as the target organ, both in the case of ingestion and inhalation, is expected. As described earlier. there is an anomaly in the case of isotopes of elements technetium and rhenium. The ICRP-30 reports both the stomach content and the stomach wall as source organs, and describes transformations for each of them. This is in contrast to all other radionuclides in which only the stomach content is treated as the source organ. In this program. the transformations per unit intake of activity given in the ICRP- 30 for both the stomach content and the stomach wall were summed and treated as only one source organ, the stomach content.
c) ${ }^{131} \mathrm{Te}$: The difference in this cae is due to the mode of radioactive decay. This program, as mentioned earlier, considers only one major branch, i.e.,

$$
A \rightarrow B \rightarrow C \rightarrow . .
$$

whereas, the ICRP program can consider a decay mode like

$$
A \rightarrow B 1, A \rightarrow B 2 \text {, etc. }
$$

For the vast majority of nuclides, this lack of feature does not affect the result appreciably since one major mode of deacy is usually predominant. But in this special case, ${ }^{131 m_{\text {Te }}}$ decays 77.8% of the time into ${ }^{131} \mathrm{I}$ and 22.8% of the time into ${ }^{131} \mathrm{Te}$. But this program can consider only the major path, i.e..

$$
{ }^{131 m_{T e}} \rightarrow{ }^{131} I
$$

and thus will underpredict the results.
d) Features: As explained earlier, the whole program is divided into separate subroutines for calcuation of important quantities. The central code "DOSE" merely calls the subroutine "ICRP" with the given input data and prints the output data received from the "ICRP" in a prescribed format. The "ICRP" subroutine, in turn, calls different subroutines for calculation of different quantities according to the given input. This feature of independent subroutines allows more freedom to manipulate or modify the program, e.g., if the specific committed dose equivalent is described in any other subject other than the "reference man", the masses of source and target organs can be changed in the appropriate subroutines.

This convenience of alteration is also provided in the case of biological and radiological decay data. In the case of biological decay, each element is linked with five lines of records in the data files "BFFRAC" and "RETENT" with the unused ones as blanks, so that new data can be entered or the present data can be changed easily. Also with the use of pointers described earlier, an appendage or change in the data files on radiological decay can be done easily.
table 3.2. 1-131 5-factors for the aduti - Mev/9

				SOURCE	ORCAN				
target									
ORGAK	Bladder	stomach	\$1	ULI	LLI	Kidneys	Liver	Lungs	Muscle
Bladder	5.73E-04	4.84E-07	4.02E-06	2.67E-06	7.97E-06	4.75E-07	3.50E-07		
Stomach	4.20E-07	4.49E-06	4.66E-06	4.85E-06	2.37E-06				
St	3.61E-06	3.47E-06	2.79E-04	2.199-05	1.21E-05			2.46E-06	6
UL!	3.10E-06	4.48E-06	3.07E-05	4.89E-04	5.60E-06	6	2.15-06	3.29E-07	2.06E-06
Ll!	9.37E-06	1.70E-06	9.198-06	4.00E-06	7.73E-06	1.15E-06		33-07	06
Kidneys	4.52E-07	4.49E-06	4.13E-06	3.63E-06	1.18E-06	7.65E-04	5.015-06	1.23E-07	2.2E-06
Liver	3.40E-07	2.66E-06	2.42E-06	3.35E-06	4.28 E				1.89E-06
Lungs	5.41E-08	2.37E-06	4.02E-07	4.20E.07	1.31E-07		1.35-0	3-21E-06	1.46E-06
Muscle	$2.36 \mathrm{E} \cdot 06$	1.88E-06	2.06E-06	1.96E-06	2.25E-06				1.77E-06
Ovaries	8.94E-06	6.88E-07	1.27E-05	1.60E-05	2.34E-05	1.60E-06	1.472-06	.76E-06	5.92E-06
Pancreas	3.71E-07	$2.35 \mathrm{E}-05$	2.73E-06	2.73E-06	9.66E-07		4.54 E	.88E-07	2.64E-06
Bone Surf	8.72E-07	2.24E-06	1.16E-06	1.06E-06	1.52E-0			3.52E-06	2.38E-06
Red Marr.	1.91E-06	1.53E-06	3.75E-06	3.23E-06	4.58E-06		17-06	1.42E-06	1.44E-06
Skin	8.2 IE-07 $^{\text {c }}$	7.22E-07	6.68E-07	6.86E.07	7.51 E	3.59E-06	1.56E-06	1.80E-06	1.95E-06
Spleen	2.65E-07	1.29E-05	2.07E-06	1.73E-06	$1.17 E-06$		7.64E-07	8.54E-07	1.14E-06
Testes	6.41E-06	6.36E-08	4.86E-07	5.83E-07	1.17e-08	1.13E-05	1.30E-06	2.92E-06	1.95E-06
Thyroid	9.95E-09	1.87E-07	4.49E-08	4.85		1.83E-07	1.44E-07	2.70E-08	1.61E-06
Uterus	2.01E-05	1.15E-06	1.19E-05	07		1.12E-07	2.685-07	1.415-06	1.80E-06
Fot. Body	2.79E-06	3.17E-06	$4.80 E-06$	3.84E-06		1.24E-06	5.55E-07	1.30E-07	2.80E-06
				3,04E-06	- 14 l	4.96E-06	4.98E-06	4.65E-06	4.60E-06

target									
ORGAN	Ovaries	Pancreas	Trab lone	Cort Bone	skin	Spleen	Testes	Thyroid	Tot. Body
Bladder	8.96E-06	2.35E-07	7.61E-07	7.81E-07	7.95E-07				
Stomach	1.085-06	2.34E-05	7.71E-07	7.71E-07	.	2.12E-07	0.60t-06	1.01E-08	$5.11 \mathrm{E} \cdot 06$
SI	1.57E-05	2.39E-06	1.05E-06	1.05E-06	7.00E-07	6			6
ULI	1.48E-05	2.89E-06	9.58E-07	9.58E-07	7.002-07	-06		.64E-08	5.35E-08
LLI	1.89\%-05	7.32E-07	1.33E.06	1.33E-06	7.50E-07	7			5.23E-06
Kidneys	1.41E.06	8.31E-06	1.23E-06	1.23E-06	9.43E-07	a.80e-07		8	5.19E-06
Liver	8.02E-07	5.58E-06	9.22E-07	9.22E-07	8.43E-07	6			
Lungs	1.30E-07	3.23E-06	1.31E-06	1.31E-06	8.83E-07	3E-06	6.6		4.98E-06
Muscle	2.84E.06	2.39E-06	1.64E.06	1.44E-06	1.14E-06	E.06			. $715-06$
Ovariea	2.40E-02	5.09E-07	1.23E-06	1.23E-06	5.20E-07	1.12E-06			60E-06
Pancreas	7.28E-07	3.43E-03	1.30E-06	1.30E-06	7.68E-07	1.12E-06	0.00E-01	94E-08	5.03E-06
Bone Surf	1.37E-06	1.34E-06	3.87E-04	3.86t-04	1.14E-06	1.11E-06			$5.24 \mathrm{E}-$
Red Marr.	4.65E-06	2.55E-06	6.78E-05	4.29E.06	1.07E-06	1.66E-06			. 80 E
Skin	6.62E-07	6.38E-07	1.08E-06	1.085-06	6.98E-05	7.74E-07	2.04E.06	1.16E-06	$5.05 \mathrm{E}-$
Spleen	$8.43 \mathrm{E}-07$	2.54E-05	1.02E-06	1.02E-06	8.40E-07		2.04 E	6	3.86E-06
Testes	0.00E.01	9.43E-08	7.95E-07	7.95E-07	1.25E-06			. 715 -07	5.09E-06
Thyroid	1.94E-08	2.20E-07	1.34E-06	1.34E-06	1.07E-06		5.605-03	. 46E-09	4.79E-06
Uterus	2.55E-05	8.42E-07	8.11E-07	8.11E.07	8	. 805 -07	3.45E-09	1.03E-02	4.53E-06
Tot. Body	5.39E-06	5.34E-06	4.63E-06	$4.63 \mathrm{E}-06$	3.72e-07	5.91E-07	0.00E-09	1.83E-08	5.28E-06
				4.63E-06	3.88E-06	4.97E-06	4.59E-06	4.44E-06	4.62E.06

table 3.3. IN-113M S-FAGTORS for the adult $=\mathrm{meV} / \mathrm{g}$

SOURCE ORGAN

target									
ORGAM	8 ladder	Stomach	\$1	ULI	LLI	Kidney:	Liver	bungs	Muscle
Bladder	3.98E-04	3.305-07	2.79E-06	1.78E-06	5.60E-06	3.17E-07	2.48E-07	5.82E-08	1.61E-06
Stomach	2.72E-07	3.12E-04	3.15E-06	3.32E-06	1.61E-06	3.01E-06	1.71E-06	1.67E-06	1.28E-08
51	2.42E-06	2.35E-08	1.94E-04	1.53E-05	8.44E-06	2.49E-06	1.45E-06	2.21E-07	1.40E-06
ULI	2.11E-08	3.05E-08	2.23E-05	3.39E-04	3.92E-06	2.57E-06	2.27E-06	2.93E-07	1.48E-08
LLI	6.39E-06	1.14E-0S	6.47E-06	2.74E-06	5.35E-04	7.74E-07	2.60E-07	8.08E-08	1.54E-06
Kidneys	3.08E-07	3.02E-06	2.79E.06	2.43E-06	7.82E-07	5.33E-04	3.40E-06	8.81E-07	1.30E-06
liver	2.29E-07	1.80E-06	1.63E-06	2.26E-06	2.87E-07	3.55E-08	9.70E-05	2.20E-06	1.00E-06
Lungs	$3.54 \mathrm{E}-08$	1.62E-06	$2.72 \mathrm{E}-07$	2.B1E-07	B.56E-08	8.12E-07	2.18E-06	1.46E-04	1.23E-06
Muscle	$1.62 \mathrm{E}-06$	1.27E-06	1.41E-06	1.34E-06	1.53E-08	1.30E-06	1.00E-06	1.23E-06	4.10E-06
Ovaries	6.10E-06	4.19E-07	8.63E-06	$1.13 \mathrm{E}-05$	1.63E-05	1.05E-06	2.72E-07	1.26E-07	1.83E-06
Pancreas	2.46E-07	1.62E-05	$1.84 \mathrm{E}-06$	1.80E-08	6.50E-07	5.83E.08	3.99E-06	2.41E-06	1.65E-06
Bone Surf	5.81E-07	1.44E-06	7.825-07	7.14E-07	1.05E-06	9.51E-07	7.25E-07	9.74E-07	9.78E-07
Red Merr.	1.27E-06	1.03E-06	2.54E-06	2.20E-06	3.20E-06	2.44E-06	1.05E-06	1.23E-06	1.36E-06
Skin	5.54E-07	4.90E-07	$4.49 \mathrm{E}-07$	4.84E.07	5.08E-07	5.72E-07	5.18E-07	5.80E-07	7.97E-07
Spleen	1.75E-07	8.74E-06	1.40E-06	1.15E-06	7.81E-07	7.78E-06	8.68E-07	1.98E-06	1.34E-06
Testes	$4.35 \mathrm{E}-06$	3.52E-08	3.19E-07	3.95E-07	1.86E-06	1.23E-07	9.14E-08	1.79E-08	1.10E-06
Thyroid	6.53E-09	1.25E-07	3.00E-08	3.24E-08	1.31E-08	$7.53 \mathrm{E}-08$	1.78E-07	9.49E-07	1.27E-06
Uterus	1.38E-05	7.72E-07	8.12E-06	4.07E-06	5.49E-06	8.27E-07	3.76E-07	8.58E-08	1.91E-06
Tot. Body	1.94E-06	2.20E-06	3.32E-06	2.67E-06	2.87E-06	3.44E-06	3.45E-06	$3.23 \mathrm{E}-06$	3.19E-06

source orgal

target									
ORGAN	Overies	Pencreas	Irab Bone	Cort Bone	Skin	Spleen	Testes	Thyroid	Tot. Body
8 ladder	6.03E-06	1.62E-07	5.26E-07	5.26E-07	5.33E-07	1.3才E-07	4.46E-06	6.61E-09	3.54E-06
Stomach	7.31E-07	1.63E-05	5.22E-07	5.22E-07	5.52E-07	8.78E-06	8.18E-08	$8.54 \mathrm{E}-08$	3.57E-06
St	1.09 E -05	1.60E-06	7.07E-07	7.07E-07	4.71E-07	1.25E-06	$4.38 \mathrm{E}-07$	$9.34 \mathrm{E}-09$	3.70E-06
UL!	1.05E-05	1.94E-06	6.41E-07	6.41E-07	4.8jE-07	1.19E-06	3.01E-07	9.60E-09	3.63E-06
LL!	$1.34 \mathrm{E}-05$	4.89E-07	8.92E-07	8.92E-07	5.04E-07	6.01E-07	2.53E-06	1.09E-08	3.605-06
Kidneys	9.55E-07	$5.63 \mathrm{E}-06$	8.16E-07	8.16E-07	$6.43 \mathrm{E}-07$	7.94E-06	7.91E-08	$4.03 \mathrm{E}-08$	3.48E-06
Liver	5.37E-07	3.78E-06	6.22E-07	6.22E-07	5.73E-07	9.38E-07	$4.23 \mathrm{E}-08$	1.29E-07	3.45E-06
lungs	$8.665-08$	2.18E-06	8.83E-07	8.83E-07	5.98E-07	2.00E-06	1.21E-08	9.11E-07	3.28E-06
Muscle	1.83E-06	$1.65 \mathrm{E}-06$	$9.76 \mathrm{E}-07$	9.76E-07	7.95E-07	1.34E-06	1.10E-06	1.27E-06	3.19E-06
Overies	1.66E-02	3.13E-07	6.48E-07	8.48E-07	3.30E-07	7.90E-07	0.00E-01	1.28E-08	3.50E-06
Pancreas	4.73E-07	$2.38 \mathrm{E}-03$	8.70E-07	8.70E-07	5.22E-07	1.78E-05	4.61E-08	7.47E-08	3.63E-06
Bone Surf	9.27E-07	8.99E-07	3.40E-05	2.32E-05	7.96E-07	7.50E-07	6.24E-07	7.07E-07	3.35E-06
Red Marr.	3.15E-06	1.71E-06	4.69E-05	3.27E-06	7.45E-07	1.12E-06	5.01E-07	7.7TE-07	3.525-06
Skin	$4.45 \mathrm{E}-07$	4.28E-07	7.41E-07	7.41E-07	4.82E-05	5.25E-07	1.45E-06	7.71E-07	2.67E-06
Spleen	5.73E-07	1.78E-05	6.94E-07	6.94E-07	5.63E-07	8.81E-04	8.07E-08	1.12E-07	3.52E-06
Iestes	0.00E-01	6.02E-08	5.29E-07	5.29E-07	8.69E-07	7.59E-08	3.89E.03	2.22E-09	3.33E-06
Thyrold	1.29E-08	1.56E-07	9.38E-07	9.38E-07	7.42E-07	1.21E-07	2.22E.09	7.17E-03	3.15E-06
Uterus	1.75E-05	5.66E-07	5.29E-07	5.29E-07	4.48E.07	3.91E-07	0.00E-01	1.21E-08	3.61E-06
Tot. Body	3.73E-06	3.69E-06	$3.21 \mathrm{E}-06$	3.21E-06	2.68E-06	$3.44 \mathrm{E}-08$	3.18E-06	3.08E-06	3-21E-06

TABLE 3.4. TE-121 5-fACTORS FDR THE ADULI - MeV/g

SOURCE DRGAN

target									
ORGAN	Bladder	Stomach	\$1	ULI	LLI	Kidneys	Liver	Lungs	Muscle
81 adder	1.83E-04	8.85E-07	6.30E-06	3.73E-06	1.10E-05	7.53E-07	6.30E-07	1.46E-07	06
stomach	6.65E-07	1.30E.04	6.70E-06	7.23E-06	3.46E-06	6.51E-06	3.68E-06	3.66E-06	$3.25 E-06$ $2.81 E-06$
\$1	5.06E-06	5.09E-06	7.77E-05	3.375-05	1.84E-05	5.32E+06	3.06E-06	5.41E-07	
ULI	4.46E. 06	6.44E-06	4.96E-05	1.13E-04	8.56E-06	5.56E-06	4.98E-06	7.40E-07	$3.25 E \cdot 06$
LL!	1.39E-05	2.46E-06	1.41E-05	6.10E-06	1.45E-04	1.68E-06	6.07E-07	1.53E-07	
K idney*	7.30E-07	6.36E-06	6.14E-06	5.28E-06	1.61E-06	1.95E-04	7.35E-06	2.01E-06	2.90E-06
Liver	$5.47 \mathrm{E}-07$	3.92E-06	3.51E-06	4.80E-06	6.68E-07	7.83E-06	6.01E.05	4.76E-06	2.23E-06
Lungs	$1.00 \mathrm{E}-07$	3.64E-06	6.48E-07	6.675-07	2.08E-07	1.85E-06	4.64E-06	4.20E-05	2.75E-06
Muscle	3.55E-06	2.81E-06	3.08E-06	2.94E-06	3.36E-06	2.90E-06	2.24E-06	$2.75 \mathrm{E}-06$	3.32E-06
Overies	$1.19 \mathrm{E}-05$	1.19E-06	1.81E-05	2.44E-05	3.37E-05	2.31E-06	4.93E-07	2.	4.03E-06
Pancreas	5.04E-07	3.54E-05	3.98E-06	3.49E-06	1.44E-06	1.29E-05	9.28E-06	5.32E-06	3.03E-06 3.65 E
8one Surf	1.13E-06	1.20E-06	1.57E-06	1.44E-06	2.20E-06	1.99E-06	1.49E-06	.07E-06	2.17E-06
Red Marr.	2.42E-06	2.04E-06	5.08E-06	$4.40 \mathrm{E} \cdot 06$	6.76E-06	5.06E-06	2.13E-06	2.59E-06	2.89E-06
Skin	1.28E.06	1.16E-06	1.04E-06	1.085-06	1.15E-06	1.31E-06	1.18E-06	1.33E-06	1.87E-06
Spleen	$4.40 \mathrm{E}-07$	1.88E-05	3.02E-06	2.395-06	1.83E-06	1.69E-05	1.95E-06	4.27E-06	2.98E-06
restes	9.84E-06	7.87E-08	7.29E-07	1.00E-06	3.88E-06	2.92E-07	2.51E-07	4.95E-08	
Thyroid	1.98E-08	2.96E-07	7.99E-08	8.55E-08	3.70E-08	1.86E-07	3.55E-07	2.35E-06	2.87E-06
Uterus	$3.00 \mathrm{E}-05$	1.72E-06	1.74E-05	8.72E-06	1.09E-05	1.60E-06	8.31E-07	1.88E-07	4.08E-06
Tot. Body	3.84E-06	3.6BE-06	4.10E.06	3.96E-08	3.96E-06	3.60E-06	3.63E-06	3.14E-06	$3.08 \mathrm{E} \cdot 06$

target									
ORGAN	Ovaries	Pencreas	Treb Bone	Cort Bone	Skin	Spleen	Testes	Thyroid	Tot. Body
Bledder	1.31E-05	3.61E-07	1.21E-06	1.21E-06	1.27E-06	3.07E-07	9.99E-06		
Stomach	1.59E-06	3.51E-05	1.12E-06	1.12E-06	1.28E-06	1.94E-05	2.17E-07	2.00E-08	$3.89 E-06$ $3.76 E-06$
SI	2.40E-05	3.39E-06	1.57E-06	1.57E-06	1.08E-06	2.66E-06	1.02E-06		3.76-06
ULI	$2.31 \mathrm{E}-05$	4.15E-06	1.37E-06	1.37E-06	1.15E-06	2.70E-06	6.34E-07	2.81E-08	10E-06
LLI	2.97E-05	1.03E-06	1.89E-06	1.89E-06	1.18E-06	1.33E-06	5.39E-06	10E-08	
Kidneys	2.16E-06	1.21E-05	1.83E-06	1.83E-06	1.49E-06	1.72E-05	2.06E-07	1.11E-07	3.71E-06
Liver	1.18E-06	8.02E-06	1.38E-06	1.38E-06	1.33E-06	2.05E-06	1.11E-07	$3.13 \mathrm{E}-07$	
tungs	2.26E-07	4.65E-06	1.93E-06	1.93E-06	1.3SE-06	4.37E-06	3.11E-08	2.07E-06	3.31E-06
Muscle	4.03E-06	3.65E-06	2.17E-06	2.17E-06	1.86E-06	2.97E-06	2.46E-06	2.86E-06	
Overies	2.81E-03	8.67E-07	2.11E-06	2.11E-06	6.54E-07	1.92E-06	0.00E-01	3.69E-08	3.52E-06
Pencress	1.15 E -06	6.28E-04	1.77E-06	1.77E-06	1.11E-06	4.01E-05	8.74E-08	1.28E-07	
Bone Surf	1.87E-06	1.82E-06	1.99E-05	1.97E-05	1.79E-06	1.56E-06	1.28E-06	1.68E-06	3.36E-06
Red Marr.	6.32E-06	3.42E-06	1.02E-05	7.49E-06	1.66E-06	2.25E-06	1.01E-06	.63E-06	
Skin	1.02E-06	9.87E-07	1.70E-06	1.70E-06	7.44E-06	1.24E-06	3.32E-06	$1.76 \mathrm{E}-06$	1.96E-06
Spleen	1.31E-06	3.96E-05	1.65E-06	1.65E-06	1.32E-06	3.43E-04	2.36E-07	2.64E-07	1.77E.06
Testes	0.00E-01	$1.34 \mathrm{E} \cdot 07$	1.13E-06	$1.13 \mathrm{E}-06$	1.79E-06	1.87E-07	1.05E-03	7.39E-09	
Thyroid	3.69E-08	$3.22 \mathrm{E} \cdot 07$	2.02E-06	2.02E-06	1.66E-06	2.88E-07	7.38E-09	1.55E-03	3.11E-06
Utarus	$3.62 \mathrm{E} \cdot 05$	1.20E-06	1.20E-06	1.20E-06	1.14E-06	9.29E-07	0.00E-01	3.50E-08	$3.11 \mathrm{E}-06$ 3.84 E .06
Tot. Body	4.20E-06	4.12E-06	3.12E-06	3.12E-06	2.01E-06	3.61E-06	3.05E-06	$2.85 \mathrm{E}-06$	3.11E-06

TABLE 3.5 Specific committed dose equivalente ($\$ \mathrm{v} / 8 \mathrm{~g}$) for aelected ingested redionuclides and their daughtera. Annual limita of intake are the lesser of the welued for atochatic and non-atochastic risks.

Nuclide	$\mathrm{Na} \cdot 24$	P-32	K-40	Cr-51	Cr. 51	Mn-54	Mn-56				
$f 9$	1.0	0.8	1.0	0.1	0.01	0.1			P8. 59	60-58	Co-60
AL! (8q)	$1.35+08$	$2.4 \mathrm{E}+07$	$1.1 E+07$	1.4E+09	$1.3 \mathrm{E}+09$	$6.86+07$	2.0E +08	3.2E+08		0.05	0.05
bungs	2.65. 10	6.6E-10	4.3E-09								
Thyroid	2.6E•10	6.6E-10	4.3E-09	3. 5 E-12				0	0	8.5E-11	8.8E-10
Testes	0.0E-01	0.0E-01	0.0E-01	0.0E-01				1.0E• 10	6.1E-10	6.3E-11	7.9E-10
Overies	3.45-10	6.6E-10	4.5E-09	4.0E-11			0.0E-01	1	0.05-01	0.0E-09	0.0E-01
Red Marrow	3.7E-10	7.8E-09	$4.3 \mathrm{E} \cdot 09$	1.3			8.5E-11	10	1.7E-09	1.0E-09	3.2E-09
Stomach wall	1.2E-09	1.5E-09	4.8E.09	1.98			2.	10	3.5E-10	2.6E-10	1.3E-09
Si * contents	3.2E-10	1.15-09	6.4E-09	4.8E		1E-70		10	1.1E-09	3.9E-10	1.6E-09
UtI wall	$3.15 \cdot 10$	3.0E-09	4.4E-09	1.2E-10	4.EE-10		1.1E.09	1.1E-10	2.1E-09	1.tE-09	3.6E.09
LlI wall	3.4E.10	7.2E-09	4.4E.09	2.8E-10	3E		1.4E-09	1.9E-10	4.05-09	2.0E-09	5.88-09
biver	2.9E.10	6.6E.10	4.4E-09	7.0E-12	3.1E-10		5.3E. 10	3.6E-10	8.4E-09	4.0E-09	1.1E.08
Kidneys	3.0E-10	6.6E-10	4.4E-09	8.5E.12		1.0E-09	2.6E-11	3.3E-10	1.5E-09	2.5E•10	2.3E-09
sladder wall	3.0E-10	6.6E-10	4.4E-09	1.5E-11	1.2E.11	3.8	3.2E-11	1.0E-10	$9.15 \cdot 10$	2.1E-10	1.4E-09
Muscle	2.7E-10	6.6E-10	4.3E-09	7.5E-12	1.2E. 41	3.	2.6E-	1.0E•10	1.1E-09	3.7E-10	1.8E.09
Bone Surface	4.7E-10	7.8E-09	4.3E-09	7.9E-12	3.3E-			$1.0 \mathrm{E} \cdot 10$	7.4E-10	4.88•10	1.1E-09
Sikin	2.1E-10	6.6E-10	4.2E-09	3.9E-12	$1.6 E$			1.0E• 10	6.6E•10	$1.3 \mathrm{E} \cdot 10$	9.4E-10
Spleen	3.1E. 10	6.6E-10	4.3E-09	$7.4 \mathrm{E} \cdot 12$	3.			1.0E•10	5.08-10	8.5E-11	6.9E-10
Uterus	$3.3 \mathrm{E} \cdot 10$	6.6E-10	4.4E-09	1.9E-11	1.6E-11			5.5E-10	1.8E-09	1.7E-10	1.2E-09
Pancreas	4.4E. 10	6.6E-10	4.4E-09	8.9E.12			5.9E-11	1.0E. 10	1.35.09	4.8E-10	2.1E-09
Total Body	3.0E-10	1.3E-09	4.3E-09	9.2E-12	6.		5.6E•11	1.0E•10	9.1E-10	2.0E-10	1.3E-09
Rema inder	4.4E-10		6.4E-09		6.2E-12		-11	1.1E. 10	8.0E-10	2.1E-10	1.2E-00
						5.0 E .				4.8E-10	2.1E.09

Nuclide $f 1$	Wi-63 0.05	Ni-65 0.05	$\begin{aligned} & \mathrm{Cu}-64 \\ & 0.5 \end{aligned}$	$\begin{aligned} & Z n-65 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 n-69 \\ & 0.5 \end{aligned}$	$8 r-83$	$8 \mathrm{r}-34$	Rb-88	Rb-89	Sr-89	\$r-90
ALI (Bq)	3.4E+08	$3.05+08$	$4.3 \mathrm{E}+08$	$1.3 \mathrm{E}+07$	2.2E+09			1.	1.0	0.3	0.3
										$2.4 \mathrm{E}+07$	$1.3 \mathrm{E} \cdot 06$
Lungs	8.5E-11	2.8E-12	1.3E-11	3.15-09							
Thyroid	8.5E-19	6.8E-¢3	1.1E-11	3.2E-09	4.0E		7.1E•12	2.9E.12	3.8E-12	2.3E•10	0.0E-01
Testes	0.0E-01	0.0E-01	0.0E-01	0.0E-01			5.3E-12	2.4E•12	2.3E-12	2.3E-10	0.0E-01
Ovaries	$8.5 E \cdot 11$	2.4E•11	4.8E.11	.5E-09			0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-0t
Red Marrow	8.5E-11	7.3E-12	1.9E- 11	9E-						2.3E•10	0.0E-01
Stomach wall	1.0E.10	6.2E-10	1.TE-10	$3.4 \mathrm{E} \cdot 09$						1.6E-09	$1.3 \mathrm{E} \cdot 07$
51 + contents	$1.3 \mathrm{E} \cdot 10$	7.3E-10	2.1E-10	$4.3 \mathrm{E} \cdot 09$.7E-10	2.3E-10	0.0E-01
ULI wall	3. 7 E - 10	9.4E-10	6.2E-10	4.3E-09					7E•12	2.3E-10	0.0E-09
Lli wall	9.2E-10	3.6E-10	7.5E-10	5.0E-09				3.5E-12	5.3E-12	7.2E-09	4.2E-09
Liver	8.5E-11	7.3E-12	3.7E-11	3.7E-09				9E•12	3.6E-12	2.1E-08	1.8E-08
Kidineys	8.5E-19	1.0E.11	2.0E•11	3.98.09				$3.15 \cdot 12$	4.1E-12	2.3E.10	0.05-01
Bladder wall	8.5E-11	8.5E-92	2.25.11	4.1E-09				3.4E-12	5.3E-12	2.3E-10	0.0E. 01
muscle	8.5E-11	5.6E.12	1.6E-11	3.3E-09			5.9E-12	2.6E-12	2.7E-12	2.3E-10	0.0E-01
Bone Surface	8.5E-11	2.9E.12	1.4E*11	4.5E-09			6.7E-12	2.8E-12	3.4E-12	2.3E-90	0.08-01
Skin	$8.5 E \cdot 11$	2.5E-12	1.1E-11	2.3E.09			5.6E•12	2.8E-12	4.6E.12	4.3E-09	4.0E-07
Spleen	8.5E-11	1.2E-11	4.9E-11	3.6E-09				2.5E.12	2.5E-12	2.3E-10	0.0E-01
Uterus	$8.5 \mathrm{E} \cdot 11$	1.9E.11	2.8E-11	4.7E-09		7.2e-12	. 6 E	5.3E.12	1.1E.11	2.3E-10	0.08-01
Dancreas	8.5E. 11	1.88-11	5.4E-11	3.6E-09	4.0E-13	7.1E-12	7.0E-12	2.8E-12	$3.3 \mathrm{E}-12$	2.3E-10	0.08-01
Total Bocly	8.8E-14	$1.8 \mathrm{E} \cdot 11$	2.2E-11	3.4E.09	2.0E-12	7.3E-12	2.5E-11	7.6E-12	1.8E-11	2.3E-10	0.0E-01
lempainder											4.0E-08
											$4.0 \mathrm{E}-08$

TABLE 3.6 Specifie committed dosa equivalenta $\langle 5 v / 8 q$) for salected ingested redionuclides and their daughters. Annual limits of intaka are the leasar of the valuea for stochastic and non-stochastic risks.

Nucl ide	Y-90	Y-91凩	Y.91	Y-92	$\uparrow \cdot 93$	2 F					
41	0.0001	0.0001	0.0009	0.0001	0.0001	2					
Ab! (Ba)	1.6E+07	4.8E+09	1.7E+07	$9.98+07$	4.1E•07	5.4E+07	2.3E+07	8.2E+07	6.0E+07	3.5E409	
Lungs	9.2E-14	1.3E-12	1.6E-13	1.4E-12							
Thyroid	1.2E. 14	1.2E•13	8.9E-14	1.8E-13	1.3E-13	8.2E-12					
Testes	0.0E-01	0.0E-01	0.0E.01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	DE-09	0.0E.01		
ovaries	1.2E-14	6.9E-12	3.5E-12	2.0E-19	2.25-11	8.2E.10	6.3E.10	-	0		
Red marrow	3.6E-13	2.2E-12	4.4E-12	4.9E-12	4.9E•12	2.1E.10	1.3E-10	2.0E-10			
Stomach wall	1.1E-09	4.9E-11	6.9E-10	1.4E-09	1.3E-09	3.6E-10	1.25-09				
\$1 + contenta	2.6E-09	3.1E-11	1.7E-09	2.05.09	2.5E-09	1.1E-09	3.4E-09				
UtI wall	1.4E-08	3.1E-11	1.0E-08	3.3E-09	7.9E.09	-09	1.2E-08	E-09			
L6t wall	3.1E-08	2.4E-17	3.0E.08	1.7E-09	8.7E-09	7.8E-09	1.8E-08	4.0E.09	2E-09	2.4E-11	
tiver	3.5E-13	2.5E-12	4.1E•12	4.6E-12	3.6E-12	7.9E-11	8.1E-11	8.4E+11	T		
Kioneys	1.2E-14	3.9E-12	5.8E•13	6.5E-12	$4.8 \mathrm{E} \cdot 12$	1.1E-10	1.1E•10	1.4E•10	2.7E-09		
Blacder mall	1.2E-14	2.3E-12	1.2E-12	5.6E.12	6.5E-12	2.4E-10	1.8E-10	2.4E-10	1.9E. 10		
musele	1.2E-14	1.8E-12	5.2E-13	3.5E. 12	3.1E-12	9.1E-10	8.2E-11	1.1E. 10			.9E-13
Bone Surface	3.6E-13	8. $7 \mathrm{E}-93$	4.0E-12	1.8E-12	1.8E-12	4.8E-10	4.6E-11	2.9E. 10			3.2E-13
Skin	1.2E-14	7.1E-13	2.5E-13	1.4E. 12	1.2E-12	4.2E-11	3.1E.11	4.4E.11	发-	2	4.2E-13
Spleen	1.2E-14	6.4E-12	4.7E-13	6.5E. 12	3.9E-12	8.9E-11	8.1E-11	1.1E. 10	1.6E-10 $2.0 \mathrm{E} \cdot 10$	8E-12	1.2E.13
Uterus	1.2E-14	5.8E-12	1.6E-12	1.3E-11	1.1E-11	3.3E-10	2.9E.10	3.4E.90	2.1E-10		
Pancreas	1.2E-14	1.1E-11	5.3E.13	1.0E-19	5.7E-12	1.1E•10	1.1E.90	1E			3.5E-13
Total Body	1.4E-10	2.5E-12	1.2E-10	3.9E-11	7.3E-11	1.5E.10	2.0E•10	1.4E-10	3.0E-10		
Rema inder		1.1E-11							3.01	.3E-12	.

Nuclide	Ru• 103	RU- 105	2u- 108	Ag. 110 m	Te. 125 m	Ta. 127	Te-129m	Te-129	ie.131m	Te•131	Te-932
$f 1$	0.05	0.05	0.05	0.05	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Ll ($\mathrm{cq}_{\text {a }}$)	6.9E+07	$1.9 \mathrm{E}+08$	7.1E+06	1.7E+07	3.5E+07	2.7E+08	1.9E+07	9.7 \% 08	$1.25+07$	1.2F+08	
Lungs	7.4E-11	6.1E•12	1.4E-09	8.3E-10	4.8E•11	2.9E-12	1.6E-10	4.9E-13	4.4E-11	3.3E-12	3.1E-10
Thyroid	$6.2 \mathrm{E} \cdot 11$	1.7E-12	1.4E-09	1.8E-10	4.3E-11	2.9E-12	1.6E-10	3.4E-13	4.3E.08	4.3E-09	
Testes	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	O.DE-01	O.OE-01	0.0E-01	0.0E-01	0.0E-01	
Ovaries	5.9E.10	9.5E-11	1.6E-09	3.0E.09	1.3E•10	4.OE-12	2.4E-10	1.6E-12	6.7E-10	1.5E-11	4.5E-10
Red Marrow	1.7E-10	2.3E-11	1.5E-09	9.4E-10	1.4E•09	6.4E-12	3.4E-09	7.5E-13	1.7E-10	6.1E-12	3.5E-10
Stomach wall	3,1E•10	5.0E-10	3.1E-09	1.5E-09	2.1E-10	2.4E-10	$6.3 \mathrm{E} \cdot 10$	4.OE-10	1.6E-10	6.3E-10	3.3E-10
\$1 + contents	8.6E-10	7.9E-10	5.5E.09	3.5E.09	4.2E-10	3.9E-10	1.5E.09	2.7E•10	1.2E-09	5.6E-10	4.tE-10
UL! wall	$2.5 \mathrm{E} \cdot 09$	1.6E-09	2.5E.08	5.9E.09	1.9E-09	1.2E-09	8.6E-09	1.9E-10	2.9E-09	5.4E-10	3.7E-10
LL! wall	6.3E-09	1.2E-09	7.1E.08	1.1E-08	5.4E-09	1.2E-09	$2.55 \cdot 08$	3.6E.11	4.8E-09	9.3E-12	3.6E-09
Liver	1.1E-10	1.9E-11	1.4E-09	8.5E-09	4.6E-11	3.0E-12	1.6E•10	6.7E-13	1.0E $\cdot 10$	5.2E-12	3.3E-10
Kidneys	1.3E-10	2.7E-11	1.5E-09	1.5E-09	4.6E-11	3.1E-12	1.7E-10	8.7E-13	1.3E-10	7.2E-12	3.3E-70
Bladder wall	2.3E-10	2.7E-11	1.5E-09	1.0E-09	5.2E-11	3.25-92	1.7E•10	6.6E. 13	2.2E-10	4.8E-12	.9E-10
muscle	1.2E.10	1.6E-11	1.4E-09	7.5E-10	5.0E-11	3.05.12	1.7E-10	6.0E•13	1.1E-10	4.8E-12	.2F-10
Bone Surface	$9.8 \mathrm{E} \cdot 11$	9.0E-12	1.4E-09	4.9E-10	1.4 E -08	6.4E-12	7.7E-09	5.6E-13	7.4E-11	3.5E-92	3.1E-10
Skin	6.9E-11	6.4E-12	1.4E-09	3.7E-10	4.2E-11	2.9E-12	1.6E-10	4.1E-13	5.3E-11	2.6E•12	2.4E-10
Spleen	1.2E-10	2.5E-11	1.5E-09	7.1E-10	4.7E-11	3.1E-12	1.6E-10	1.2E-12	9.0E-11	9.1E-12	3.3E-10
Uterus	2.7E-10	5.5E-11	1.5E-09	1.4E-09	5.7E-11	3.4E-12	1.8E-10	1.2E-12	3.2E-10	1.1E-11	4.0E-10
Pancreas	$1.3 \mathrm{E} \cdot 10$	3.8E-11	1.5E-09	1.6E-09	4.8E-11	3.2E.12	1.6E-10	1.9E-12	1.0E-90	1.4E-11	3.2E-10
Total Body	$1.5 \mathrm{E}-10$	3.2E-19	1.7E-09	1.0E-09	1.9E-10	1.4E-11	5.4E-10	$4.6 \mathrm{E} \cdot 12$	1.6E-10	1.4E-11	$3.4 \mathrm{E}-10$
Remainder				1.6E.09							

TABLE 3.7 Specific commitred dose equivalente (Sv/eq) for selected ingested radionuclides and their daughters. Annual limita of intake are the lesser of the values for stochastic and non*atochatic pisks.

TABLE 3.8 Specific eamitted dose equivelente $(\$ v / \mathrm{Aq}$) for selected imaled redionuclides and their daughters. Annual timite of intake are the leaser of the values for atochaetic and non-etochastic riske.

TABLE 3.9 Specific conmitied dose equivalente (Sv/8q) for alected inhaied redionuclidea and thair daughtars. Annual limits of intake ara ths lessar of tha veluen for atochastic and non-stochastic riaks.

Nuelida	Hi.65	$\mathrm{Cu}-64$	$\mathrm{Cu}-64$	Cu.64	2n-65	2n-69	8 Cr 8	Br-83	$\mathrm{Br}-84$	Br-84	Rb- 88
$f 1$	0.05	0.5	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0
Clas	0	0	W	Y	Y	Y	0	ω	0	W	0
ALI (Bq)	8.7E+08	$1.1 \mathrm{E}+09$	8.7E+08	8.0E+08	1.2E+07	5.3E+09	2.5E+09	$2.3 \mathrm{E}+09$	2.1E+09	$2.6 \mathrm{E}+09$	$2.3 \mathrm{E}+09$
DAC ($B \mathrm{q} / \mathrm{m}^{*} 3$)	3.6E+05	4.4E+05	$3.6 E+05$	$3.3 E+05$	4.9E+03	2.2E+06	1.0E+06	9.8E+09	8.85405	1.0E+06	9.7E+05
tungs	3. 1E-10	2.0E-10	3.4E•10	3.5E-10	2.1E-08	7.8E•11	1.5E•10	1.8E-10	1.6E-10	1.7E-t0	1.5E•10
thyroid	5.5E-12	1.1E.11	6.0E.12	4.9E-12	3.0E-09	2.6E•16	3.2E.12	1.1E-12	3. TE.12	1.4E-12	1.4E-12
Tsates	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.08-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01
overios	8.5E-12	1.6E-11	1.2E-11	1.2E-11	2.0E-09	$2.6 \mathrm{E} \cdot 14$	3.2E-12	1.1E-12	2.9E-12	8.65- 73	1.3E-12
Red Marrow	$6.7 \mathrm{E} \cdot 12$	1.3E-11	7.9E-12	7.0E-12	3.9E-09	3.2E•14	3.2E-12	1.1E-12	3.3E-12	1.5E-12	1.5E-12
Stomach wall	$9.2 \mathrm{E} \cdot 19$	3.7E.11	4.1E-11	4.7E-11	3.8E-09	8.4E•12	4.3E-11	2.1E-11	7.5E-11	1.5E-11	6.2E-11
S! * contanta	1.1E-10	4.2E-11	4.7E-11	5.4E-11	2.6E-09	4.2E-12	3.2E-12	1.1E-12	3.1E-12	1.0E-12	1.4E-12
Ul. l wa! 1	1.4E-10	1.0E. 10	$1.3 \mathrm{E} \cdot 10$	1.6E•10	2.7E-09	$2.3 \mathrm{E} \cdot 12$	3.2E-12	9.1E-12	3.2E-12	1.1E-12	1.4E-12
Ll] wall	5.5E-11	1.2E-10	$1.6 \mathrm{E} \cdot 10$	1.9E•10	2.7E-09	3.8E-13	3.2E-12	1.1E-12	2.9E-12	8.0E-13	1.3E-12
Livar	7.7E.12	3.3E-11	1.7E-11	1.45-11	$4.3 \mathrm{E} \cdot 09$	2.6E-14	3.2E-12	1.1E-12	4.2E-12	2.3E-12	1.6E-12
Kidineys	7.1E-12	1.4E-11	7.7E-12	6.8E•12	3.1E-09	2.6E-14	3.2E-12	1.1E-12	3.5E-12	1.4E-12	1.5E-12
Bleddar wall	$6.2 \mathrm{E} \cdot 12$	1.3E-11	6.6E-12	5.7E.12	2.3E-09	2.6E-14	3.2E-12	1.1E.12	2.7E. 12	7.8E-13	1.3E-12
Muscla	6.5E-12	1. $2 \mathrm{E} \cdot 11$	7.2E-12	6.4E-12	3.1E-09	2.6E-14	3.2E-12	1.1E.12	3.3E-12	1.6E-12	1.4E-12
Bone Surfacs	5.8E-12	1.2E-11	6.2E-12	5.2E-12	3.4E-09	3.2E-14	3.2E-12	$1.1 \mathrm{E} \cdot 12$	$3.0 E \cdot 12$	1.3E-12	1.5E-12
skin	5.3E-12	9.8E-12	5.0E.12	4.1E-12	1.9E-09	2.6E-14	3.2E-12	1.1E-12	2.6E.12	1.1E-12	$1.3 E \cdot 12$
Spleen	7.9E. 12	1.4E-11	9.2E-12	8.4E-12	4.0E-09	2.6E-14	3.2E-12	1.1E-12	4.9E-12	2.3E-12	1.7E-12
Ufarua	7.8E-92	1.4E-11	7.9E.12	7.4E-12	2.7E-09	2.6E-14	3.2E-12	1.1E-12	3.0E-12	9.0E-13	1.3E-12
Pancras	$9.2 \mathrm{E}-12$	4.6E-11	2.3E-11	1.9E-11	4.2E-09	2.6E-14	3.2E-12	1.1E-12	6.1E-12	2.6E-12	2.0E-12
Total Body	1.2E-19	9.6E-11	$1.3 \mathrm{E} \cdot 11$	1.3E-11	$3.3 \mathrm{E} \cdot 09$	$1.2 \mathrm{E} \cdot 12$	5.3E-12	3.7E-12	5.7E.12	4.OE-12	3.7E-12
Remaindar					4.3E-09						

Nuel lide	Rb-89	5r-89	\$r-89	Sr.90	SP-90	Y-90	Y.90	Y.91m	Y.91m	Y-91	91
41	1.0	0.3	0.01	0.3	0.01	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Cless	0	0	Y	0	Y	W	Y	4	Y	W	Y
AL: (Bq)	4.9E409	$3.7 \mathrm{E}+07$	5.2E+06	7.3E+05	1.4E*05	2.5E+07	2.3E+07	9.0E+09	6.0E+09	7.0E +06	$4.2 \mathrm{E}+06$
DAC (Bq/me m^{2})	2.1E+06	$1.5 \mathrm{E}+04$	$2.2 \mathrm{E}+03$	3.0E+02	5.8E+01	$1.0 \mathrm{E}+04$	$9.5 \mathrm{E}+03$	3.8E+06	2.5E+06	2.9E+03	$1.8 \mathrm{E}+03$
Lungs	6.9E-19	2.26-09	8.1E.08	1.1E-09	3.0E-06	8.9E-09	9.3E-09	4.2E-11	7.0E-11	5.3E-08	9.9E-08
Thyroid	1.6E-12	3.9E-10	7.5E•12	0.0E-01	0.0E-01	9.4E-12	5.1E-13	6.0E-13	5.0E-13	7.3E-11	6.4E-12
Testas	O.OE-01	0.0E-01	0.0E-01	0.0E-09	0.0E. 01	0.0E-01	0.0E-01	O.0E-01	0.0E-01	0.0E-01	0.08-01
Ovarias	1.3E-12	3.9E-10	7.5E-12	0.0E-01	0.0E-01	$9.4 \mathrm{E} \cdot 12$	5.1E-13	4.1E.13	3.2E-13	7.3E-11	6.1E-12
Red Ms rrow	2.3E-12	2.8E-09	5.3E-11	2.3E-07	2.2E-08	2.7E•10	1.5E. 11	2.7E-12	7.1E-13	3.5E-09	2.0E-10
stomach walt	$3.0 \mathrm{E} \cdot 11$	3.9E-10	7.5E-12	0.0E-01	0.08-01	3.8E-10	6.3E-10	2.4E-12	2.7E-12	3.9E-10	3.4E-10
\$1-contents	1.5E-12	3.9E-10	7.5E-12	0.0E-01	0.0E-01	8.9E-10	1.0E-09	1.6E•12	1.7E-12	8.7E-10	8.4E-90
Ll! wall	1.5E-12	1.5E-09	5.0E-09	6.6E-10	5.7E-09	4.7E-09	5.4E.09	3.8E. 12	4.0E-12	4.9E-09	5.0E-09
bll wall	$1.3 \mathrm{E}+12$	3.7E.09	$1.4 \mathrm{E} \cdot 08$	2.8E-09	2.05-08	$1.1 \mathrm{E} \cdot 08$	1.3E-08	8.5E-12	8.8E-12	1.4E.08	1.55-08
Livar	2.2E-92	3.9E•10	7.5E-12	0.0E-01	0.0E-01	2.7E-10	1.5E-11	3.2E-12	1.2E-12	3.5E-09	2.0E-10
Kidnays	1.7E+12	3.9E-10	7.4E-12	0.0c-01	0.0E-01	9.4E-12	5.1E-13	6.6E-13	5.7E-13	7.3E-11	$6.3 \mathrm{E} \cdot 12$
Bladdar wall	1.2E-12	3.9E-10	7.4E-12	0.0E-01	0.0E-01	$9.4 \mathrm{E}-12$	5.1E-13	2.6E•13	1.2E-13	7.2E-11	4.8E-12
Muscle	1.7E-12	3.9E-10	7.5E-12	0.0E-01	0.0E-01	9.4E-12	5.1E-13	6.9E-13	6.1E.13	7.3E-11	6.8E-12
Bone Surfacs	$2.45 \cdot 12$	7.6E-09	1.4E-10	6.9E-07	6.6E-08	2.7E.10	$1.5 \mathrm{E} \cdot 11$	2.6E.12	5.5E-13	3.6E-09	2.0E-10
Skin	1.3E-12	3.9E-10	7.4E-12	0.06-01	0.0E-01	9.4E-12	5.1E-13	3.8E-13	3.0E-13	7.2E-11	5.5E.12
Splsen	2.6E-12	3.9E-10	$7.5 \mathrm{E} \cdot 12$	0.0E-01	0.0E-01	9.4E-12	5.1E-13	1.1E-12	1.1E-12	7.4E-11	8.1E-12
utarus	1.3E-12	3.9E-10	7.4E-12	0.0E-01	0.0E-01	9.4E-12	5.1E-13	3.6E-13	2.5E-13	7.2E-11	5.2F-12
Pancraas	3.2E-12	$3.9 \mathrm{E} \cdot 10$	$7.5 \mathrm{E} \cdot 12$	0.0E-01	0.0E-01	9.4E-12	$5.15 \cdot 13$	1.5E•12	$1.5 \mathrm{E}-12$	7.4E-11	8.6E-12
Totel Body	2.8E-12	1.2E-09	1.25 .09	$6.9 \mathrm{E} \cdot 08$	4.9E-08	2.1E.10	1.9E-10	1.5E-12	1.6E-12	1.3E-09	1.5E-09
Rema indar		1.2E-09		$6.9 \mathrm{E} \cdot 08$							

TABLE 3.10 Specific comitted done equivalents (SV/Ba) for salected inhaled redionuclides and their daughters. Anmual limits of intake are the lasser of the values for stochastic and non-atochastic risks.

Nuclide	Y-92	r.92	Y. 83	Y-93	2r-95	2r-95	2r.95	$2 r .97$	2r-97	21.97	b. 95
11	0.000%	0.0001	0.0001	0.0001	0.002	0.002	0.002	0.002	0.002	0.001	0.01
Class	W	7	4	Y	W	γ	0	W	Y	0	W
ALi (8q)	3.2E+08	2.9E+08	$1.1 \mathrm{E}+08$	8.9E407	1.4E+07	1.0E+07	4.9E+06	5.2E+07	4.7E+07	7.4E+07	4.8E+07
OAC ($\mathrm{Bq} / \mathrm{m}^{\wedge}$ 3)	1.3E +05	1.2E+05	4.4E+04	3. $7 E+04$	6.0E +03	$4.3 E+03$	2. 0E+03	2.2E+04	2.0E +06	3.1E+04	2.0E+04
Lungs	1.2E-09	1.2E-09	2.4E-09	2.5E-09	1,8E-08	4.0E-08	2.2E-09	3.9E-09	4.0E-09	2.15-09	9
Thyroid	3.7E-12	1.1E-12	5.1E-12	9.2E-13	7.85-10	1.2E-09	1.4E.09	3.7E-11	2.3E-11	9.6E-11	3.1E-10
Testes	0.0E.01	0.0E-01	0.0E-01	O.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.05-01
Ovaries	4.9E.12	2.6E-12	8.7E-12	5.3E-12	8.4E-10	5.7E•10	1.9E-09	1.7E-10	1.8E-10	1.8E-10	4.8E-10
Red Marron	1.3E-11	2.1E.12	4.1E-11	4.0E-12	3.2E-09	1.3E-09	1.3 E -08	1.4E-10	6.3E-11	4.8E-10	6.7E-10
Stomach wall	1.4E-10	1.7E•10	2.4E-10	2.9E-10	1.1E-09	1.8E-09	1.1E-09	4.1E-10	4.7E-10	3.0E-10	5.3E•10
51 + contents	1.9E-10	2.4E. 10	4.7E-10	5.7E-10	9.8E-10	8.6E-10	1. TE -09	$8.85 \cdot 10$	1.0E.09	6.2E-10	5.6E-10
ULI. wall	3.2E-10	6. OE. 10	1.5E-09	1.8E-09	1.9E-09	1.9E-09	1.8E-09	3.0E-09	3.5E-09	2.0E•09	9.9E-10
LLi wall	1. TE-10	2.0E. 10	1.65-09	2.0E-09	4.1E.09	3.9E-09	3.0E-09	4.2E-09	5.1E-09	2.8E-09	1.9E-09
Liver	1.3E-11	2.8E. 12	4.1E-11	4.3E.12	1.2E-09	2.15-09	1.3E-09	7.4E-11	6.4E-11	1.2E-10	5.3E•10
Kiuneys	4.2E-12	1.7E-12	5.9E-12	1.9E-12	8.1E-10	9.6E-10	1.9E-09	6.1E.11	5.15.11	1.2E-10	5.2E•10
Bladder wall	3.5E-12	8.9E-13	5.7E-12	1.8E. 12	3.85-10	2.1E-10	$1.1 \mathrm{E}-09$	6.1E-11	5.3E•11	1.2E-10	2.0E-10
Muscle	$4.15 \cdot 12$	1.5E-12	5.8E-12	1.7E-12	9.3E-10	1.2E-09	1.9E-09	5.8E-11	4.7E-11	1.1E-10	3.8E-10
Bone Surface	1.2E-11	1.5E-12	4.0E.11	3.15-12	2.2E-08	2.3E-09	1.0E-07	1.2E-10	3.5E-11	5.1E-10	2.4E-09
Skin	3.4E-12	8.15-13	5.0E-12	9.4E-13	5.8E-10	6.3E-10	1.5E-09	3.3E-11	2.1E-11	8.6E-11	2.1E.10
Spleen	6.9E-12	2.4E-12	6.4E-12	2.45-12	1.1E-09	1.9E-09	1.6E-09	7.2E-11	6.1E.11	1.2E-10	6.9E-10
Uterus	4.3E-12	1.8E-12	6.7E. 12	2.9E-12	5.1E-10	2.8E-10	1.5E-09	8.9E-11	8.6E-11	1.4E-10	2.7E-10
Pancreas	5.4E-12	3.0E•12	6.95-12	2.9E-12	1.3E-09	2.2E-09	1.7E-09	8.6E-11	7.7E-11	1.3E-10	5.9E-10
Total Bocy	2.5E-11	2.3E-11	5.7E-11	5.4E-11	1.4E-09	1.8E-09	3.1E.09	1.5E-10	1.4E-10	1.9E•10	4.8E•10
Remainder											

Nuelide	Nb .95	Ho-99	Mo-99	Tc.99m	Te.99m	Te. 101	Pe-101	Ru-103	Ru•103	Ru-103	Ru-105
$f 1$	0.01	0.05	0.8	0.8	0.8	0.8	0.8	0.05	0.05	0.05	0.05
Claak	γ	Y	0	U	0	W	0	W	0	γ	W
ALI (Bq)	4. 1E+07	5. OE+07	9.4E +07	$9.6 E+09$	6.4E+09	1.4E+10	$1.2 \mathrm{E}+10$	$3.82+07$	6.3E+07	2.5E+07	5.7E+08
OAC ($89 / \mathrm{m}^{*} 3$)	1. $\mathrm{TE}+04$	2. 1E+04	3.9E+04	4.0E +06	$2.7 E+06$	5.8E+06	5.1E+06	1.6E+04	$2.68+04$	1.0E+06	2.
Lungs	8.3E-09	4.3E-09	1.2E-09	3.0E•11	2.2E-11	3.0E-11	2.8E-11	9.5E-09	1.0E.09	1.5E-08	5.2E-10
Thyroid	3.6E. 10	1.5E-11	1.2E-10	2.1E.11	5.0E•11	7.4E-14	7.1E-14	2.8E-10	6.0E.10	2.65-10	6.2E-12
Testes	O.0E.01	0.0E-01	0.0E-01	0.0E. 01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	.
Ovaries	$4.3 \mathrm{E} \cdot 10$	9. $7 \mathrm{E}-11$	1.3E-10	1.7E-12	2.8E-12	1.6E-14	4.6E-14	4.0E•10	7.4E. 10	3.2E-10	1.5E-11
Red Marrow	4.4E-10	5.1E-11	3.4E•10	2.4E-12	3.4E-12	1.0E-13	1.2E-13	3.5E-10	6.7E-10	3.3E-10	9.1E.12
stomach wall	6.3E-10	2.3E-10	2.2E.10	9.5E.12	1.6E-11	1.7E-12	1.2E-11	4.9E. 10	7.2E-10	5.1E-10	6.8E-11
SI + contents	5.2E-10	5.2E-10	1.8E-10	3.5E-12	4.9E-12	2.0E-13	1.6E-12	5.5E.10	8.5E-10	4. TE-10	1.0E•10
UL! wall	9.9E-10	2.4E-09	3.4E-10	5.5E-12	6.9E-12	3.7E-14	1.4E-13	1.3E.09	1.1E.09	1.3E-09	2.2E-10
LL! wall	1.9E-09	5.5E-09	5.8E-10	3.7E-12	5.0E-12	1.2E-14	4.6E-16	3.0E-09	1.TE-09	3.0E-09	2.1E-10
Liver	6.7E-10	1.1E.10	1.9E-09	$2.8 \mathrm{E}-12$	4.0E-12	1.8E-13	2.0E-13	4.6E-10	6.3E-10	5.1E-10	1.2E-11
Kidneys	3.5E-10	1.0E•10	1.9E-09	1.6E•12	2.6E-12	7.7E-14	1.2E-13	3.1E-10	6.9E-10	2.7E-10	8.85-12
Bladder wall	1.4E-10	3.3E-11	1.3E-10	9.0E-13	1.9E-12	6.2E-15	1.8E-14	2.4E-10	7.1E-10	1.3E-10	3.4E-12
Muscla	4.1E-10	2.8E-11	$1.35 \cdot 10$	1.5E-12	2.2E-12	9.9E-14	1.1E.13	3.2E-10	6.1E-10	3.2E-10	8.1E-12
Bone Surface	5.1E-10	4.1E.11	5.3E-10	1.8E-12	2.8E-12	8.3E-14	1.1E-13	2.8E-10	6.2E-10	2.4E-10	6.5E-12
Skin	2.1E-10	1.4E-11	1. 1E. 10	7.4E-13	$1.2 \mathrm{E} \cdot 12$	4.7E.14	$5.2 \mathrm{E} \cdot 14$	2.0E-10	4.6E•10	1.7E-10	4.9E-12
Splaen	$6.3 \mathrm{E} \cdot 10$	3.6E.11	1.4E•10	2.8E-12	3.8E-12	1.8E-13	2.9E-13	4.3E-10	7.0E-10	4. F -10	1.2E•11
Urerus	1.9E-10	4.5E.11	1.3E-10	1.3E-12	$2.5 \mathrm{E} \cdot 12$	1.2E-14	4.6E-14	2.6E-10	7.0E-10	1.6E-10	9.9E-12
Pancreas	7.1E-10	4.3E-11	1.7E-10	3.6E-12	5.1E.12	2.2E-13	4.3E-13	5.1E-10	6.9E•10	3.0E•10	1.4E-11
Total Body	5.1E-10	1.2E-10	2.2E-10	$2.1 \mathrm{E} \cdot 12$	2.7E.12	5.3E-13	5.5E-13	4.6E-10	6.2E-10	5.3E-10	1.7E-11
Remainder					5.1E-12				7.1E-10		

TABLE 3.19 Specific committed dose equivalenta (Sv/Bq) for aelected inhaled redionuctides and their daughtera. Annual limita of intaks are the lesser of the values for stochastic snd non-stochastic risks.

Nuclide	Ru-105	Ru- 105	Ru. 106	RU- 106	Ru-106	Ag.110m	Ag.110m	Ag. 110 m	Te-125m	Te-125m	Te.127m
$f 1$	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.2	0.2
class	\uparrow	0	\checkmark	Y	0	-	Y	0	0	\checkmark	0
AL! (Bq)	$4.8 \mathrm{E}+08$	$5.6 E+08$	2.0E+06	4.0E+05	3.3E +06	7.5E+0S	3.5E+06	5.2E+06	1.4E+07	$2.4 \mathrm{E}+07$	$9.6 \mathrm{E}+06$
OAC (Bq/m^3)	2.0E+05	$2.4 \mathrm{E}+05$	$8.3 \mathrm{E}+02$	1.7E+02	1.48×03	3.1E+03	1.5E+03	$2.2 E+03$	5.TE+03	9.9E+03	4.0E+03
Lungs	5.5E-10	3.6E-10	2.1E.07	1.0E-06	1.8E-08	3.1E.08	1.2E-07	8.0E-09	5.2E-10	1.2E•08	8.9E. 10
Thyroid	4.OE-12	$1.4 \mathrm{E} \cdot 11$	4.0E-09	1.TE-09	1.4E-OB	2.0E-09	6.3E.09	1.7E-09	1.1E-10	4.2E-11	$2.45 \cdot 10$
Testes	0.0E-01	0.0E.01	0.0E-01								
Ovsries	1.5E-11	2.6E-11	4.0E.09	1.3E-09	1.4E-08	2.3E-09	2.4E.09	3.2E-09	1.3E-10	8.2E-11	2.5E-10
Red Marrow	7.4E-12	1.8E-11	4.1E.09	1.8E-09	1.4E-08	2.9E-09	6.7E.09	4.0E-09	3.4E-09	1.3E-09	1.4E-08
Stomach wall	8.0E-11	8.8E-11	5.0E.09	2.9E-09	$1.4 \mathrm{E}-08$	4.5E-09	1.0E.08	6.5E-09	1.4E-10	1.4E-10	2.6E-10
st + contents	1.2E-10	1.3E. 10	6.0E.09	3.4E-09	1.5E-08	3.4E.09	3.4E.09	6.0E-09	1.7E-10	2.1E-10	2.9E•10
ULI wall	2.6E-10	2.4E-10	1.6E-08	1.4E-08	$1.85 \cdot 08$	5.1E.09	5.2E-09	8.4E-09	4.0E-10	9.1E-10	7.2E•10
LLl wall	$2.5 \mathrm{E} \cdot 10$	1.9E•10	3.9E-08	3.TE-08	2.5E-08	5.8E-09	5.8E-09	$3.9 \mathrm{E}-09$	$9.4 E \cdot 10$	2.5E-09	$1.9 \mathrm{E}-09$
Liver	$9.9 \mathrm{E} \cdot 12$	2.0E-11	4.2E-09	2.3E-09	1.4 E -08	2.5E-08	1.8E-08	8.0E-08	1.1E-10	8.0E-11	$2.4 \mathrm{E} \cdot 10$
Kidneys	$7.0 \mathrm{E} \cdot 12$	1.8E-11	4.1E-09	1.7E-09	1.4E-08	4.5E-09	6.2E-09	1.1E-08	1.1E-10	4.5E-11	2.4E-10
3 ladder wall	4.4E-12	1. E -11	4.0E-09	1.26-09	1.4E-08	1.1E.09	1.0E-09	2.2E-09	1.1E-10	4.4E-11	2.4E•10
Muscla	6.4E-12	1.6E•11	4.0E-09	1.8E-09	1.4E-08	2.9E-09	7.1E.09	4.1E-09	1.2E-10	7.4E•11	2.4E.10
Bone Surface	$4.4 E \cdot 12$	1.5E-11	4.0E-09	1.6E-09	$1.4 \mathrm{E} \cdot 08$	2.1E.09	5.2E-09	3.0E-09	3.7E.08	1.3E-08	5.2E-08
Skin	$3.0 \mathrm{E} \cdot 12$	$1.2 \mathrm{E} \cdot 11$	3.9E-09	1.4E-09	1.3E-08	1.6E-09	3.7E-09	2.4E-09	1.1E-10	4.4E-11	2.4E-10
Splsen	1. $\mathrm{DE} \cdot 11$	2.0E-11	4.2E-09	2.2E-09	1.4E-08	3.8E-09	1.1E-08	4.2E-09	$1.2 E \cdot 10$	7.6E-11	2.4E-10
Uterus	$8.6 E \cdot 12$	2.1E-11	4.0E-09	1.2E-09	1.4E-08	1.5E-09	1.5E-09	2.9E-09	$1.15 \cdot 10$	4.TE-11	2.4E•10
Pancreas	1.3E•11	2.3E-11	4.2E-09	2.5E-09	$1.4 \mathrm{E} \cdot 08$	6.7E-09	1.3E-08	1.3E.08	1.1E•10	6.6E-11	2.4E-10
Total lody	1.TE-11	2.4E-11	7.1E-09	1.TE-08	1.4E-08	3.7E.09	8.4E-09	5.9E-09	$4.3 E \cdot 10$	$3.6 E \cdot 10$	1.4E-09
Remainds					$1.4 E \cdot 08$	6.7E-09		1.3E-08			

Nucl ide	1a-127m	Te-127	Te-127	Is. 129 m	T8.129m	T8-129	Is-129	Te.131m	Te-131	Te-132	1-125
\$1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
Class	\checkmark	0	\pm	0	W	0	\pm	0	0		
AL1 (BG)	9.5E+06	8.4E+08	6.4E+08	$2.4 E+07$	9.1E+06	$2.4 E+09$	2.7E+09	$1.5 \mathrm{E}+07$	1.8E+08	8.4E+06	2.4E+06
DAC ($\left.8 \mathrm{~Bq} / \mathrm{m}^{*} 3\right)$	4.0E+03	$3.5 \mathrm{E}+05$	2. $\mathrm{T}+05$	9.8E+03	3.86+03	$9.8 E+05$	1.1E+08	6.3E+03	7.7E+04	3.5E+03	$1.05+03$
Lungs	3.3E-08	2.85-10	4.3E-10	2.2E-09	4.0E-08	1.3E-10	1.5E-10	5.9E•10	2.5E-10	6.2E-10	1.1E-10
Thyroid	$9.6 \mathrm{E} \cdot 11$	6.5E-12	1.8E-12	3.9E-10	1.5E-10	1.6E•12	5.1E-13	3.3E-08	2.TE-09	6.0E-08	2.1E.07
Testes	0.0E-01	0.0E-01	0.0E. 01	0.08-01	0.OE-01	0.0E-01	0.0e.01	0.0E-01	0.0E-01	0.0E-01	.0E-01
Ovariss	1.1E-10	6.6E-12	2.0E. 12	4.1E.10	1.8E-10	1.8E-12	5.0E.13	1.6E-10	5.TE-12	$3.4 \mathrm{E} \cdot 10$	11
Red Marrow	5.3E-09	1.4E-11	4.0E-12	8.6E-09	3.0E-09	2.0E-12	6.1E-13	9.4E-11	5.5E-12	3.5E-10	3.6E-11
Stomach wall	2.2E-10	4.2E-11	4.5E-11	4.7E-10	4.5E-10	5.2E-11	1.6E-11	9.9E-11	8.7E-11	3.4E•10	.9E-11
S1 + contents	$3.5 \mathrm{E} \cdot 10$	6.4E-11	7.1E-11	6.0E-10	7.8E-10	3.6E.11	1.1E-11	2.5E-10	7.6E-11	$3.8 \mathrm{E} \cdot 10$	1.4E-11
UnI wslt	1.8E-09	$1.8 \mathrm{E} \cdot 10$	2.1E-10	1.7E.09	$3.9 \mathrm{E} \cdot 09$	2.5E-11	7.5E-12	5.1E-10	7.5E-11	3.6E-10	1.4E-11
Lli wall	5.6E-09	1.9E-10	2.2E-10	4.2E.09	1.1E.08	6.1E.12	1.8E-12	7.9E-10	5.1E-12	8.7E-10	1.3E-11
Liver	1.1E-10	6.5E-12	1.9E•12	3.9E-10	1.8E-10	1.tE-12	6.0E-13	9.5E-11	5.6E-12	3.5E-10	1.5E-11
Kidneya	$9.7 \mathrm{E} \cdot 11$	6.5E-12	1.9E-12	4.0E. 10	1.6E•10	1. T -12	5.2E-13	$8.6 E \cdot 11$	5.2E-12	3.5E-10	1.2E-11
Blader wall	9.3E-11	6.5E-12	1.9E.12	3.9E-10	$1.5 \mathrm{E} \cdot 10$	1.6E-12	4. TE-13	9.4E-11	4.5E.12	3.7E-10	1.3E-11
Muscla	1.1E-10	6.5E-12	1.9E-12	4.0E-10	1.7E-10	1.7E-12	$5.4 \mathrm{E} \cdot 13$	8.3E-11	5.2E-12	3.3E-10	8.9E•11
Bone Surfac:	2.0E-OB	$1.4 \mathrm{E} \cdot 11$	4.1E-12	1.9E-08	6.8E-09	2.0E-12	6.2E-13	7.4E-11	4.9E-12	$3.3 \mathrm{E} \cdot 10$	$3.6 \mathrm{E} \cdot 11$
Skin	$9.5 \mathrm{E}-11$	6.4E-12	1.8E-12	3.9E. 10	1.5E-10	1.6E-12	4.8E-13	5.4E-11	4.2E-12	2.5E-10	4.1E-11
Spleen	1.1E•10	$6.5 \mathrm{E} \cdot 12$	1.9E-12	4.0E-10	1.8E-10	1.8E.12	6.1E.13	9.1E-11	6.0E-12	3.5E•10	1.5E-11
Utsrus	$9.5 \mathrm{E}-11$	6.5E-92	1.9E-12	4.0E. 10	$1.5 \mathrm{E} \cdot 10$	1.7E-12	4.9E. 13	1.2E-10	5.4E-12	3.9E-10	1.3E-11
Pancras	$1.1 \mathrm{E} \cdot 10$	6.6E. 12	2.0E-12	4.0E. 10	1.8E-10	1.9E-12	6.5E•13	9.5E-11	6.9E-12	3.5E-10	1.5E-11
Totat lody	1.1E-09	1.3E-11	1.0E-11	1.1E.09	$1.0 \mathrm{E} \cdot 09$	$4.1 E \cdot 12$	2.9E-12	1.0E-10	1.0E-11	$3.5 \mathrm{E} \cdot 10$	1.3E-10
Remainder											

TABLE 3.12 Specific committed doas equivalenta ($5 v / 8 q$) for sslected inhaled radionuchidea snd thair daughtars. Amual lianits of intaka ara the lesaar of the velues for atochastic and non-atochastic risks.

Nuctide	1-130	1-931	1-133	1.934	1.135	Ca-134	Cs. 136	Ca. 137	Cs-138	Ba-139	98.140
41	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	0.1
Class	0	0	0	0	0	0	0	0	0	0	0
ALI (Bq)	2.6E+07	1.6E-06	1.1E+07	1.7E+09	6.4E+07	4.1E+06	$2.6 E+07$	6.1E+06	2. 1E+09	1.1E+09	$5.2 \mathrm{E}+07$
OAC ($\mathrm{Bq} / \mathrm{m}^{\wedge} 3$)	$1.25+04$	7.5E+02	$4.6 \mathrm{e}+03$	7.3E+05	2.7E+04	1.7E+03	$1.1 E+04$	2.6E+03	8.7E+05	4.8E+05	2.2E+04
Lungs	5.9E-10	6.5E-10	8.2E-10	1.4E•10	4.4E-10	1.2E-08	2.3E.09	8.5E-09	1.6E-10	2.5E-10	1.6E•09
Thyroid	1.8E-08	2.8E-07	4.5E-08	2.6E-10	7.8E-09	1.1E.08	1.7E.09	7.6E-09	3.6E-12	2.4E-12	2.4E-10
Testas	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.08-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01
Ovarisa	2.7E-11	2.2E-11	1.9E-11	4.2E-12	1.7E.11	1.1E-08	1.7E-09	7.8E-09	3.3E-12	2.5E-12	4.2E-10
Red Marrow	4.5E-11	5.7E11	2.7E-11	6.0E-12	2.2E-11	1.2E-08	1.9E-09	8.0E-09	4.0E-12	2.5E-12	1.4E-09
Stomech wall	1.2E-10	7.1E-11	1.0E-10	7.0E-11	1.0E-10	1.2E-08	2.0E-09	8.3E-09	7.8E-11	9.3E-11	2.6E-90
SI + cantents	3.4E-11	2.3E-11	2.2E-91	5.5E-12	1.9E-11	1.4E-08	2.1E-09	8.6E.09	3.7E-12	7.3E-11	5.1E-10
ULJ wall	$3.5 E \cdot 11$	2.3E-11	2.2E-11	5.7E-12	1.9E-11	1.3E.08	2.0E-09	8.7E-09	3.9E.12	5.9E-11	1.4E-09
Ll1 wall	3.1E.19	2.2E.11	2.15-11	4.6E-12	1.6E-11	1.4E-08	2.1E-09	8.8E-09	3.4E•12	1.5E-11	4.3E-09
Livar	5.4E-11	3.5E-11	2.9E-11	8.4E.12	2.6E-11	1.3E-08	2.0E-09	8.3E-09	5.2E-12	2.5E-12	2.7E-10
Kidneys	4.0E.11	2.6E-11	2.4E-11	6.6E-12	2.2E-11	1.3E-08	2.0E-09	8.3E-09	4.3E-12	2.4E-12	$2.8 \mathrm{E} \cdot 10$
Bladdar mal.	$3.0 \mathrm{E} \cdot 11$	2.1E-11	2.0E-11	4.5E.12	1.7E-11	1.3E-08	2.1E-09	8.6 E-09	3.1E-12	2.4E-12	3.0E-10
Musclo	4.8E-11	7.2E-11	2.9E-11	6.1E-12	2.3E-11	1. 1 E-08	1.7E-09	7.5E.09	4.OE-12	2.4E-12	2.85-10
Bone Surfaca	6.OE-11	5.2E-11	2.5E-11	5.3E.12	2.0E.11	1. IE-08	1.7E-09	7.6E-09	3.6E-12	2.4E-12	2.6E-09
Skin	3.1E-11	4.AE-11	2.2E-11	4.1E-12	1.7E-11	7.6E-09	1.2E.09	6.3E-09	3.1E.12	2.4E-12	2.2E-10
Splaen	5.6E-11	3.5E-11	2.9E-11	1.0E-11	2.6E-11	$1.3 \mathrm{E}-08$	2.0E-09	8.3E-09	6.2E•12	2.5E-12	2.6E-10
Utarus	3.1E-11	2.2E-11	2.0E-11	5.0E-12	1.9E-11	1.4E-08	$2.4 \mathrm{E} \cdot 09$	8.7E.09	$3.4 \mathrm{E} \cdot 12$	2.5E.12	3.0E-10
Pancreas	$6.4 \mathrm{E}-11$	3.6E-11	3.2E-11	1.3E-11	3.4E-11	1.2E-08	1.9E-09	8.1E-09	8.OE. 12	2.6E. 12	3.0E•10
Total Body	5.9E-11	1.5E-10	5.2E-11	8.2E.12	3.1E-11	1.1E-08	1.7E-09	7.5E-09	$6.4 \mathrm{E} \cdot 12$	7.0E-12	4.1E-10
Rema inder						$1.4 \mathrm{E}-08$	2.4E-09	8.7E-09			

Nuelide	Ba-141	1a-140	La- 140	Le. 142	Le. 142	Ca. 141	Ca-141	Ca-163	Ca.143	Co. 144	4
41	0.1	0.001	0.001	0.001	0.001	0.0003	0.0003	0.0003	0.0003	0.0003	3
Class	0	0	W	0	U	ω	1	W 6	γ		
ALI (Bq)	2.6E+09	5.5E+07	4.3E+07	8.0E+08	1.2E+09	$2.6 E+07$	2.2E+07	6.6E+07	5.9E+07	9.5E+05	5.3E+05
DAC (ac/m ${ }^{*}$)	1.1E406	2.3E+06	1.6E+04	3.4E+05	4.6E-05	$1.1 \mathrm{E}+04$	$9.3 \mathrm{E}+03$	$2.7 \mathrm{E}+06$	2.4E+04	4.0E+02	$2.25+02$
Lungs	1.1E-10	1.7E.09	4.2E.09	3.1E. 10	3.6E-10	08	1.7E-08	3.6E-09			
Thyroid	$1.3 \mathrm{E} \cdot 12$	1.2E-10	6.9E-11	9.0E-12	5.0E-12	4.6E-11	2.6E•11	1.2E-11	6.0E-12	.9E.09	10
Testea	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E-01	0.0E.01	0.0E-01	0.0E-01	0.0E-01	01
Ovaries	1.4E-12	3.6E-10	6.5E-10	1.7E-11	6.2E-12	8.5E-11	5.6E-11	6.9E-11	7.4E-11	.9E-09	10
Red Marrow	9.5E-12	4.4E. 10	2.1E.10	1.4E-11	7.0E-12	4.1E.90	9.OE. 11	7.6E.11	11	2.5E-08	7E-09
Stomach wall	3.9E-11	3.9E•10	4.7E.10	1.2E-10	5.1E-11	1.9E•10	1.6E•10	1.9E-10	IE-10	2.7E-09	-09
Si + contents	2.3E-11	6.5E-10	9.7E-10	1.1E-10	4.3E-11	3.1E-10	2.9E•10	4.3E-10	4.9E-10	3.8E-09	2.1E-09
ULI well	$3.1 \mathrm{E}-11$	1.6E-09	2.9E-09	1.1E-10	4.1E-11	1.4E-09	$1.5 \mathrm{E} \cdot 09$	1.8E-09	2.1E-09	1.3E-08	1.2E-08
LLI wall	1.7E-11	2.6E-09	5.4E-09	3.4E-19	1.2E-11	3.6E-09	4.1E-09	3.7E-09	4.3E-09	3.4E-08	3.4E-08
Livar	1.7 F -12	3.5E-09	7.6E•10	3.9E-11	1.6E-11	3.4E-09	2.6E-10	5. TE-10	4.8E-11	2.5E-07	2.5E-08
Kidneys	1.5E-12	3.4E•10	1.7E-10	1.4E-11	6.3E-12	9.6E-11	3.2E-11	2.4E-11	1.5E-11	2.1E-09	3.1E-10
Bladdar mall	1.2E-12	1.9E-10	1.7E-10	9.7E-12	3.2E-12	4.7E-11	1.8E-11	2.3E-11	2.05-11	1.96-09	2.0E-10
Muscle	$1.4 \mathrm{E} \cdot 12$	2.0E-10	1.5E-10	1.2E-11	6.4E•12	7.1E-11	4.5E-11	2.2E-11	1.6E-11	1.9E-09	3.4E-10
Bone Surfaca	1.3E-12	4.0E-10	1.6E-10	1.1E-11	5.5E. 12	3.8E-09	2.5E-10	7.8E-11	1.6E-11	$4.5 \mathrm{E} \cdot 08$.7E-09
Skin	$1.2 \mathrm{E} \cdot 12$	$1.4 \mathrm{E} \cdot 10$	7.6E-11	7.8E-12	3.9E-12	4.4E-11	1.8E-11	1.2E-11	$6.4 \mathrm{E} \cdot 12$	1.9E-09	2.5E-10
Splaan	2.0E-12	2.1E-10	1.7E-10	1.7E-11	1.0E-11	2.9E-09	2.2E-10	4.4E-10	$4.3 \mathrm{E} \cdot 11$	2.2E-07	2.2E-08
Utarus	1.3E-12	2.3E-10	2.3E-10	1.5E-11	5.3E-12	5.6E•11	$2.6 \mathrm{E} \cdot 11$	3.2E-11	3.DE•11	1.9E-09	2.1E-10
Pancress	2.4E-12	3.9E.10	2.4E•10	2.3E-11	1.2E-91	1.4E-10	8.2E-11	3.5E•11	2.5E-11	2.2E-09	4.7E-10
Total Body	3.4E-12	3.4E-10	2.5E-10	1.6E-11	1.2E-11	3.7E-10	3.1E-10	1.1E•10	9.4E-11	1.4E-08	08
Remainder											1.3.0a

PABLE 3.13 Specific committed dose equivalents (Sv/Bq) for selected inthaled redionuclides and their daughtera. Annual limits of intake are the lesser of the values for atochaatic and non-stochastic riske.

Nuelide	Pr-143	Pr-145	Pr.146	Pr. 144	Hd• 147	Nd- 147	-1. 187	Mp-239
11	0.0003	0.0005	0.0005	0.0003	0.0003	0.0005	0.5	0.01
Clatas	W	Y	W	Y	\downarrow	Y	0	W
ALI (Bq)	S.0E+07	2.5E+07	4.7E+09	6.4E+09	5.5E+07	$2.9 \mathrm{E}+07$	5.5E+08	9.2E+07
DAC ($\mathrm{Bq} / \mathrm{m}^{\wedge} 5$)	$1.2 \mathrm{E}+04$	1.0E+04	2.0E+06	$1.85+06$	$1.5 \mathrm{E}+04$	$1.2 \mathrm{E}+04$	1.5E+05	5.8E+04
Lungs	1.1E.08	1.5E-08	8.9E-11	9.4E-11	8.4E-09	1.1E-08	6.05-10	2.2E.09
Thyroid	$1.6 \mathrm{E} \cdot 18$	1.7E-18	8.0E-15	8.5E•15	1.9E-11	1.8E-11	4.5E-12	$5.8 \mathrm{E} \cdot 12$
Teates	0.0E-01							
Ovaries	$4.3 \mathrm{E}-18$	4.4E-18	2.2E-15	2.4E.15	8.0E-11	8.5E-11	3.0E-11	7.5E-11
Red Marrow	2.7E-10	1.5E-11	1.6E-15	1.8E-16	5.0E-10	9.2E-11	2.7E•11	$1.4 \mathrm{E} \cdot 10$
Stonsch wall	1.5E-10	1.7E-10	4.2E. 12	5.4E-12	1.3E-10	2.0E-10	7.0E-11	$1.25 \cdot 10$
st + contents	3.7E-10	4.1E-10	9.8E-15	$1.3 \mathrm{E} \cdot 12$	4.0E-10	4.5E-10	$1.2 \mathrm{E} \cdot 10$	2.8E•10
Ul! wall	2.2E-09	2.4E-09	1.8E-15	2.4E-15	1.9E-09	2.25-09	4.OE•10	1.2E-09
Lti wall	$6.15 \cdot 09$	6.8E-09	1.0E-16	1.3E-16	5.2E-09	5.88-09	$6.65 \cdot 10$	2.7E-09
biver	2.2E-09	1.2E-10	5.4E-15	3.5E-14	1.6E-09	1.98-10	5.2E-11	5.8E-10
xidneys	4.9E-10	2.7E-11	2.6E. 13	2.2E-14	4.0E-11	2.65-11	8.5E-11	1.6E-11
Bladder wall	1.4E.18	1.5E.18	1.1E. 15	1.1E-15	2.4E-11	2.4E-11	8.7E-12	1.7E-11
Muscle	2.5E.18	2.2E-18	9.9E-15	1.0E-14	5.85.11	3.5E-11	8.85-12	1.5E-11
Bone Surface	2.7E. 10	1.5E•11	1.5E-13	1.6E-14	2.5E-09	5.2E-10	9.7E-11	1.5E-09
\$kin	1.5E-18	1.1E-18	5.4E-15	5.7E-15	1.7E-11	1.4E•11	4.0E-12	5.6E-12
Spleen	5.3E-18	S. $2 \mathrm{E}-18$	1.7E-14	$1.8 \mathrm{E} \cdot 14$	6.7E-11	4.8E-11	7.5E-11	1.8E-11
Uterus	1.9E.18	$1.9 \mathrm{E} \cdot 18$	2.1E.15	2.5E-15	5.5E-11	3.5E-11	1.5E-11	2.4E-19
Pancreas	5.0E-18	3.8E•18	1.9E-14	2.1E-16	7.0E-11	5.BE-11	1.7E.11	2.5E-11
Toral Body	2.6E-10	2.2E-10	1.5E-12	$1.4 \mathrm{E} \cdot 12$	2.6E.10	2.2E-10	2.5E-11	7.9E-11
Remainder								

PABLE 3.14 Comparison of specific comitted doee equivelents ($5 v / B q$) to the results in ICRP Publicetion 30 for selected ingested radionuclides and their daughters. Velue reported ere greeter then or equel to 10% of the maximun.

$\begin{aligned} & \text { Nuclide } \\ & \text { \&1 } \end{aligned}$	P-320.8		Mn-54		Co-60		Ni-63		2n-65	
Program	ICRP	OOSE	1 ICRP	OOSE	\| ICRP	OOSE	ICRP	OOSE	ICRP	OOSE
tungs	I		\| 2.3E-10	2.3E•10	8.7E-10	8.8E- 10	8.5E-11	$8.58 \cdot 11$	3.15 .09	3.1E.09
Thyroid	I		1						\| 3.2E-09	3.2E-09
Testes	,		I		1					
Overies	\| $6.5 \mathrm{E}-90$	6.6E-10	\| 9.5E-10	9.5E-10	3.2E-09	3.2E-09	8.5E-11	8.5E-11	3.5E-09	3.5E.09
Red Merrow	\| 8.1E-09	7.8E-09	\| $4.9 \mathrm{E} \cdot 10$	$5.1 \mathrm{E} \cdot 10$	1.3E-09	$1.3 \mathrm{E} \cdot 09$	8.5E-11	8.5E-11	$4.5 \mathrm{E}-09$	4.9E-09
Stomact well	1		I		\|		\| 1.0E-10	1.0E-10		
S! * content	1		\| $9.8 .8 \mathrm{E} \cdot 10$	$9.9 \mathrm{E}-10$	3.6E-09	3.6E-09	1.3E-10	$1.3 \mathrm{E} \cdot 10$	$4.3 E \cdot 09$	4.3E-09
ULI well	\| 3.0E-09	3.0E-09	\| 1.4E-09	1.4E-09	5.7E-09	5.BE-09	\| 3.6E-10	3.7E•10	4.2E-09	4.3E-09
Ll] well	\| 7.2E-09	7.2E-09	\| 2.2E-09	2.2E-09	1.1E.08	1.1E-08	9.2E-10	9.2E-10	5.0E-09	5.08.09
Liver	\|		\| 1.0E-09	1.0E-09	2.3E-09	2.3E.09				
Kidneys	I		,							
Bladder well	1		1							
Muscle	16.5E-10	6.6E-10	\| 2.8E-10	2.8E-10	1.1E.09	1.1E-09	8.5E-11	$8.5 \mathrm{E} \cdot 11$	3.3E-09	3.3E-09
Bone Surfece	\| 7.98.09	7.8E-09							\| 4.5E-09	6.5E-09
Skin	1		I						\|	
Spleen	I		1						1	
Uterus	I		I						1	
Pencrees	1		1						1.	
forel sody	1								,	
Remainder	1		\| 5.0E•10	5.0E-10	2. 1E-09	$2.15 \cdot 08$			4.8E-09	4.7E.09
Nuetide	Sr-89		Y-91m		No-99		Te.99m		Ru-105	
+1	0.3		0.0001		0.8		0.8		0.05	
Program	ICRP	OOSE	ICRP	DOSE	tCRP	Cose	ICRP	DOSE	1CRP	DOSE
Lung*					1.9E-10	2.0E-10				
Thyroid							8.5E-11	8.4E-11		
Testes										
Overies			6.9E-12	6.9E-12	2.2E•10	$2.3 \mathrm{E}-10$	9.7E-12	9.5E-12	9.7E-11	9.5E-11
lied Merrow	3.2E-09	1.6E-09			5.3E-10	4.8E-10	6.3E-12	6.0E-12		
Stomach wall			\| $4.9 \mathrm{E} \cdot 11$	4.9E-11	6.7E-10	6.7E-10	7.2E.11	3.9E•11	5.0E-10	5.0E-10
S1 + contents			3.1E-11	3.1E-19			2.2E-11	2.2E-11	7.9E-10	7.9E.10
ULI welt	17.3E-09	7.2E-09	3.1E-11	3.1E-11	1.4E-09	1.5E-09	3.7E-11	3.6E-11	1.6E-09	$1.68 \cdot 09$
LII well	\| 2.1E-08	$2.1 \mathrm{E} \cdot 08$	2.4E-11	2.4E-11	3.1E-09	3.2E-09	2.5E-11	2.4E-11	1.3E-09	1.2E-09
Liver					2.7E-09	2.7E-09				
Kidneye					2.5E-09	2.7E-09				
Bladder well										
muscle					1.8E-10	1.9E-10	$3.6 E \cdot 12$	3.3E-12		
Bone Surfece	4.8E-09	4.3E-09 1			7.7E-10	7.6E-10 \|				
Skin	1 .									
Spleen	-									
Uterus	:									
Pencrees		I								
Total Body	-									
Remainder			1.1E-11	1.1E.11 \|			1.1E-11	9.3E-12		

TABLE 3.15 Comparison of specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) to the results in $\mathbf{t C R P}$ Publication 30 for selected ingeeted radionuclidiss end their dimughers. Velves reported are greeter then or eqush to 10 \% of the maximu.

TABLE 3.16 Compariaon of apecific committed doae equivalents ($5 v / 6 q$) to tha reaults in JCRP Publication 3D for selected inhaled redionuclides and their doughters. Values reported ere greeter than or equal to 10% of the maximm.

Lungs	2.5E-09	2.5E.09	3.8E-11	3.7E-11	6.TE-09	6.6E.09	3.5E-09	3.5E-09	3.6E-08	3.6E-08
Thyroid							2.9E-09	3.0E-09	3.6E-08	3.65-08
Testes					-			3.00-09		

Dvaries	$4.85 \cdot 10$	$4.88 \cdot 10$								
Red Marrow						7.1E•10	3.3E-09	3.3E-09	4.0 E	4.0E-09
Red Marrow	6.0E.09	5.8E	2.7E-11	3.1 E	1.1E-09	1.1E.09	3.2E-09	3.2E-09	4.2E.09	.2E-09

Stomean mall	6.0E 09	5.08	2.7E-11	$3.1 \mathrm{E}-1$	$1.15 \cdot 09$	1.1E.09	3.2E-09	3.2E-09	\| 4.2E-09	4.2E-09
Stomach wall			\|		\|		1		.	4.2E-09
S! + contents			\| 3.0E-11	3.0E-11	,		,			
UL! wall			\| 3.8E•11	4.1E-11	\|		4.1E-09	4.1E-09		
LLI wall	1.5E-09	1.5E-09	\| $5.9 \mathrm{E} \cdot 11$	6.8E-11			4.8E-09	4.8E-09	8.2E.09	
Liver			\|		\| 2.5E-09	2.5E.09	7.15-09	$7.1 \mathrm{E}-09$	9.2E-09	9.2E-09
Kidneys			\|		12.5E	2.5E0)	7.15-09	7.1E.09	9.2E•09	9.2E-09
Bladder wall			1							
Muscle	4.8E-10	4.8E-10	1.9E-11	1.9E.11	8.6E-10	8.6E-10	3.0E-09		9	- $2 \mathrm{E}-09$
Bone Surface	5.8E-09	5.8E-09	2.7E-11	2.6E-11			\| 2.9E-09	2.95-09		
Skin							12.\%	2.s. 0		
Spleen			I				\| 8.3E-D9	8.5E-09		
Uterus			I							
Pancreas			,							
Total Body			,							
Remainder			\| 2.5E-11	2.4E-11	1.88-09	1.4E-09	4.7E-09	4.0E-09		

4.0 REFERENCES

IC66 ICRP Task Group on Lung Dynamics, "Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract," Health Physics 12, 173-207 (1966).

IC75 ICRP Publication 23, "Report of the Task Group on Reference Man. A Report Prepared by a Task Group of Committee 2 of ICRP," Pergamon Press, Oxford, 1975.

IC77 ICRP Publication 26. "Recommendations of the International Commission on Radiological Protection," Annals of the ICRP, 1(3), 1977.

IC79 ICRP Publication 30, Parts 1-3, including addenda and supplements, "Limits for Intakes of Radionucldes by Workers." Annals of the ICRP, 2 (3-4), 1979, 3 (1-4). 1979, 4 (3-4), 1980, 6 (2-3), 1981, 7 (1-3), 1982, and $8(1-4), 1982$.

K081 Kocher, D.C. "Radioactive Decay Data Tables," Report DOE/TIC-11026, Technical Information Center, U.S. Department of Energy, Springfield, Virginia, 1981.

SN78 Snyder, Walter S., Mary R. Ford, and Gordon G. Warner. "Estimates of Specific Absorbed Fractions for Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom." NM/MIRD Pamplet No. 5, Revised, Society of Nuclear Medicine, New York, 1978.

SN75 Snyder, Walter, S., Mary R. Ford. Grodon G. Warner, and S. B. Watson, "'S' Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs," NM/MIRD Pamphlet No. 11, Society of Nuclear Medicine, New York, 1975.

IC83 ICRP Publication 38, "Radionuclide Transformations: Energy and Intensity of Emissions," Annals of the ICRP, 11-13, 1983.

ACKNOWLEDCEMENTS

The author is deeply indebted to Professor R. E. Faw for his patience, encouragement, and excellent suggestions throughout the writing of the computer program and the preparation of this thesis. A very special thanks is given to Ms. Connie Schmidt for typing this thesis.

The funding provided by the Department of Nuclear Engineering for this work is high appreciated.

Appendix A
 Listing of Computer Programs

DECAY. FOR


```
* *
* suardutime maNe : decay fortran *
* PURPOSE: Provide the decay scheme of e radiomuclide *
* data files required: o) isotips file *
* b) ISOTOPE FILE
    *OTOPE FILE *
    c) ALPHA FILE *
    d) BETA FILE *
    a) POSITRN FILE *
    f) ELECTRN FILE *
    g) PMOTON FILE *
*
```



```
    SUBROUTINE DECAY (WORD,ICONT)
    COMMON EALPHA(1:20), YALPHA(1:20),EgETA(1:50), YBETA(1:50),EPOST(1:
    815),YPOST(1:15),EELEC(1:115), YELEC(1:115),EGAm&A(1:190),YGMMM(1:
    &190),N,11,13,15,17,NLIFE
    CHARACTER*1 C
    C#ARACTER*8 ERT,WORD
    CHARACTER*10 E
    INTEGER DECERR(7)
    OPEN (UNIT=1,FILE='ISOTIPS',ACCESS='0IRECT',RECL=B,FORM='FORMATTED
    E',STATUS= 'OLD')
        OPEN (UNIT=2,FILE='ISOTOPE',ACCESS=`0IRECT',RECL=59,FORN =' FORNATTE
        CD',STATUS='DLO')
        OPEN (UNIT =3,FILE='ALPHA*,ACCESS='DIRECT',RECL=20, FORN='FORHATTED'
        2,STATUS=AOLD')
        OPEN (UNIT=4,FILE='gETA',ACCESS='DIRECT',RECL=39,FORN='FORMATTED',
        &STATUS='OLD')
        OPEN (UNIT*&,FILE='POSITRN',ACCESS='OIRECT',RECL=31,FORM#'FORNATTE
        &D',STATUS*'DLD')
        OPEN (LNIT=1D,FILE='ELECTRN',ACCESS='OIRECT',RECL=26,FORHE'FORHATT
        &ED',STATUS='OLD')
        OPEN (UNIT=19, FILE='PNDTON',ACGESS='0IREET',RECL=26, FORN=' FORNATTE
        CD',STATUS='OLO')
```



```
* *
* ISOTIPS *
* Compering the given nuclide nome with the alphebetically *
* ordered namee (ERT) in the filt
*
    ITR=0
    IF (MORD(1:1) .GE. 'R')TMEN
    N1=321
    ELSE IF (WORD(1:1) .GE. 'm')TMEN
    N1=225
    ELSE IF (HORD(1:1) .GE. 'C')TMEN
    N1=65
    ELSE
    N1=1
    END IF
    DD 10 I=N1,496
    READ(1,15,REC=1)ERT
```


DECAY. FOR

```
    15 FORMAT(AB)
    IF (ERT .EQ. YORO)THEN
```



```
*
* ITR.....-> Record number of the radionuclide *
*
```



```
            ITR=1
            60 TO 20
            END IF
    10 CONTINUE
            IF (ITR .EQ. 0)INEN
            DECERR(1)=1
            GOTO 80
        ENO IF
```



```
*
* 1SOTOPE *
* OESCRIPTION OF VARIABLES
* -.-....................-----* *
* ERT.....> Name of the isotope *
* JO--.--> Atomic weight *
* J------>> Atomic number *
* B-\cdots---> Hslf-life - *
* C-......> Half-life mits(S,M,N,O,Y). *
* K-*-**O> Number of daughtera *
* L-*****) Pointer to firat daughter *
* H-.....-> Nunber of alphss *
* N-------> Pointer to firat alpha *
* 11-.-.--> Number of betes *
* 12--....> Pointer to first beta *
* 13--\cdots--> Nunber of positrons *
* 14*\cdots--->> Pointer to first positron . *
* 15-----> Number of electrons *
* 16**...> Pointer to first electron *
* 17-0.0.-> Nunber of photons *
* 18-\cdots--->> Pointer to first photon *
* *
**********###***************************************************************
    20 READ (2, 25,REC=ITR,IOSTATmPECERR(2),ERR=B0)ERT, JO, J, NLIFE,C,K,L,M,
        2N,11,12,13,14,15,16,17,18
    25 FORMAT<A8,13,13,610.0,11,11,13,12,13,12,14,12,13,13,14,13,14)
```



```
*
* ALPHA *
        K1=0
        IF (M .EQ. O)GOTO 39
        00 30 J08=N,N+N-1
        READ(3,35, REC=JOR , IOSTAT=DECERR(3),ERR=80)AL 1,AL2
    35 FORMAT(F7.4,1PE13.6)
```


DECAY, FOR

$\mathrm{K} 1=\mathrm{K} 1+1$ $\text { EALPHA }\left(K_{1}\right)=A L 1$ YALPHA(K1)=AL2 30 CONTINUE			

*
-

* BE1-.......- Endpoint energy in MeV .
* BE2-....--> Averege energy in MeV *
* BE3--....--> Intensity
*

39 K1=0
IF (11 .EO. 0) GOTO 49
D0 $40 \mathrm{~J} 1=12,12+11-1$
READ (4, 45, REC $=\sqrt{ } 1$, IOSTAT=DECERR(4), ERR=80)BE1, BE2, BE3
45 FORMAT(1PE 13.6,1PE 13.6, 1PE 13.6)
$\mathrm{K} 1=\mathrm{K} 1+1$
EBETA(K1)=BE2
YBETA(K1)=BE3
40 CONTINUE

*

* POSITRON *
* POS1-n......- Endpoint energy in MeV *
* POS2-*-....> Average energy in MeV *
* POS3-.......- Intensity * * * * *
*

$49 \mathrm{~K} 1=0$
1F (13 .EO. 0)co TO 59
0050 d3 $=14,14+13-1$
READ (8,55, REC=J3, $\operatorname{TOSTAT\Rightarrow DECERR(5),ERR\approx 80)POS1,~POS2,~POS3~}$
55 FCRMAT(F8.5,F10.7,1PE13.6)
$\mathrm{K} 1=\mathrm{K} 1+1$
EPOST(K1)=POS2
$Y \operatorname{POST}(K 1)=\operatorname{POS3}$
50 CONTINLE

$59 \mathrm{~K} 1=0$
IF (15 .EO. 0)60TO 69
$0060 \mathrm{J4}=16,16+15-1$
READ (10,65 , REC $=14$, IOSTAT $\Rightarrow \operatorname{DECERR}$ (6) , ERR=BO) ELE 1 , ELE2
65 FORMAT(1PE 13.6,1PE13.6)
$K 1=K 1+1$
EELEC(K1)=ELE1
YELEC(K1)=ELE2
60 CONTINUE

DECAX. FOR

```
|
* * *
* PHOTON *
* PHO1-*.*-> Energy in Mev *
* PHO2----*-> Intensity
* *
```



```
    69 K1=0
        IF (I7 .EQ, 0)coto 79
        DO 70 N5=18,18+17-1
        READ(11,75,REC=\5,IOSTAT=DECERR(7),ERR=80)PHO1,PHO2
    75 FORMAT(1PE13.6,1PE13.6)
        K1=K1+1
        EЄAMMA(K1)=PMO1
        YCN##A(K1)=PHO2
    70 CONT IMuE
```



```
*
* Comvert half lives into days
*
79 IF(C .EQ. 'S')THEM
HLIFE=HLIFE/86400.
    ELSE IF (C ,EQ. 'm')THEN
            HLIFE=HLIFE/(60.*24.)
        ELSE IF (C .EQ. 'H')TMEH
            HLIFE=HLIFE/24.
        ELSE IF (C .EQ. 'Y')THEH
            HLIFE=HLIFE* 365.25
        EMD IF
        RETURH
    80 call clear
    "call verror (decerr)
        ICOUHT=1
        RETURH
        EMD
```


SUBRCUTINE DECAYI (WORD,RHALF, ULIFE, BRA, WADIO,NO,*)
DJMENSION RHALF(1:50),BRA(1:50)
CHARACTER*1 ULIFE(50), U
CHARACTER*8 ERT, RAD ID(50), MORD
 -
 2)

OPEN(LN IT $=12$, FiLE ='DAUTER', ACCESS='DIRECT', RECL=16, FORM = 'FORHATTED E4)
RADID(1)=AORD

*

* Dstefise isotips *

ITR $=0$
IF (MORD(1:1) .GE. 'R')THEN M1 $=321$
ELSE IF(MORD(1:1) .GE. 'N')TKEN $M 1=225$
ELSE IF(HORD(1:1) .CE. 'C')THEN $M 1=65$
ELSE
$M 1=1$
END IF
DO 10 I $=\mathrm{F}\{, 4 \%$
READ (1,15,REC=I)ERT
15 FORMAT(A8)

DECAYI.FOR


```
* then save the pointer and yield of only the higher
- branching ratio
*
```



```
    DO 35 J2mL,L+K-1
    READ (12,40, REC=J2,ERR=70)19, YIELD
    40 FORMT(13,1PE 13.6)
        IF (YIELD .GT. YSAVE)THEN
            YSAVEwYIELD
            ISAvEm19
        END IF
    35 contimue
        1m I+1
        bra(1)wYSAvE
        READ(2,25,RECwISAVE,ERR=80)ERT,JO,J,B,U,K,L,M,N,11,12,13,14,15,16,
        817,18
        RADID(1)mERT
        ULIFE(I)=0
        RHALF(I)mB
        GOTD 30
    45 no=1
        RETURN
```



```
*
```



```
ERROR MAMDLER
*******
    50 CALL CLEAR
    MRITE (*,55)
    55 FORMAT(//,' ERROR: No metch found in file "tSOTIPS" for the given
        &radionuclidel!'rl'' source: DECAYY FORTRAN',/,' CORRECTIVE ACTION:
        & Try another muclidel(',////)
            Pause & TO RESMME PRESS <RETURM>I!'
            RETURN 1
    60 call clear
        WRITE (*,65)
    65 FORMAT(//,' ERROR: Unable to read the decay schmme from file "ISOT
        LOPE" for the given radio muclidelI',I'' scurce: oECAY' FORTRAN',/
        4,' CORRECTIVE ACTION: Try another muclidelI',/////)
            PAuSE ( TO RESUME Press <returN>II'
        RETURN 1
    70 call clear
        URITE (*,75)
    75 FORMAT(//,' ERROR: Unable to read the branching recio and pointer
        sof deughter muclide in file mDAUTER'!I',I,' SOURCE: DECAY1 FORT
        sran',/'' CORRECTIVE ACTIOW: Try mnother muclidel!',////')
        PMUSE , TO RESMME PRESS <RETURN>!!'
        RETURN 1
bo call clear
    WRITE (*,85)
85 FORMAT(//.' ERROR: Unable to read the decay scheme of the doughter
    & from file "ISOTOPENI',l.' sOURCE: DECAY! FORTRAN',I'' CORRECTIVE
    &ACTION: Try another muclide!!',/1//)
    PaUSE , TO RESUME PRESS <RETURN>1I*
```


RETURN 1

END

FMR SPEFF TEXT fMR DEcay text	
FMR	R Intrpt texi
fmr energy	
FMR FIN	
FMR	
FMR	
FMR	
far sis	
Fur	
fmr it text	
FMR T	
FMR	
FMR	
FMR	
FMR PC	
FMR Re	
FMR	
FMR	
FMR Yerror	
fmr dose text	
FMr ato	
FMR	
FMR	
FMR	
FMR UXP TEXT	
Expand	
Expand	
EXPAMD S	
EXPAMD	
EXPand	
EXPAMD	
EXPAMD F	
EXPAMD	
EXPAMD TMALF	
EXPamD tfrac	
Expand	
Expand il text	
EXPand trusfu	
Expand timen	
Expand re	
EXPAND PCLASS	
EXPAND RESPIR	
EXPAND	
EXPAND FACTOR	
expand imgest text	
expand yerror text	
EXPand dose text	
EXPand ICRP TEXT	
expand fivalu text	
Expand uxp text	
Expand iclass text	
FMR	ISOTIPS FILE
	ISOTOPE FILE

```
fMr alpha file
fMr beTA file
FMR POSITRN FILE
fMR ELECTRN FILE
fmr photow file
fmr absfrac file
fMR sFFRAC FILE
FHR RETENz FILE
fmR dauter file
fmr imoexi file
FMR IMDEXD FILE
FMR EXCEPT FILE
FMR LIST FILE
fmr moble file
fmr clear text
EXPaND ClEAR TEXT
EXPAND ISOTIPS FILE
EXPAND ISOTOPE FILE
EXPAND alpha file
EXPAND BETA FILE
EXPAND ELECTRN FILE
EXPamp positrn FILE
EXPaND PhDTON FILE
EXPAMD bFFRAC FILE
EXPAMD RETENT fILE
EXPAND DAUTER FILE
EXPaMD abSFrac file
EXPaND INDEXD FILE
expamD INDEXI FILE
EXPamD EXCEPI FILE
Expamd woble file
EXPAND LIST FILE
FILEDEF ISOTIPS DISX ISOTIPS FILE A1 (PERM XTENT 4%6
FILEDEF ISOTOPE DISX ISOTOPE FILE A1 (PERM XTENT 496
FILEDEF ALPMA DISX Alpha file a1 (PERH xtent 360
FILEDEF BETA DISX beTA FILE A1 (PERM XTENT 1700
FILEDEF POSitrN disk positrn file a1 (PERH xtent 138
FILEDEF ELECTRN dISX ELECTRN FILE A1 (PERM XTENT 3882
FILEDEF PHOTON DISX PHDTON FILE AI (PERM XTENT 7480
filedef absfrac disx absfrac file al (perh xtent 4560
Filedef bffrac disX bfrrac file a1 (perm xtent 501
filedef dauter disX dauter file a1 (perm Xtent 299
FILEDEF RETENT DISX RETENT FILE A1 (PERM XTENT 460
filedef Indexi disX indexi file al (PERM Xtent 46
filedef imdexd dISX Imdexd file al (PERm xtent 46
filedef except disX except file al (perm xtent bos
FILEDEF LIST DISK LIST fILE A1 (PERM XTEMt 26
filedef moble disk moble file al (Perm xtent 2G
LOND DOSE
START
ERASE ISOTIPS FILE
ERASE ISOTOPE FILE
ERASE AlPMA FILE
ERASE bETA file
```

erase positrm file ERASE ELECTRN FILE ERASE PHDTOH FILE ERASE DAUTER file ERASE RETENT FILE ERASE ABSFRAC FILE ERASE bffrac file ERASE SPEFF TEXT ERASE DECAY TEXT ERASE INTRPT TEXT ERASE ENERGY TEXT ERASE FRAC tEXT ERASE DECAY1 TEXT
erase thalf text
erase tfrac text
ERASE SOURCE TEXT
ERASE 11 TEXT
ERASE TRNSFM TEXT
ERASE REFMAN TEXT
ERASE INHALE TEXT
ERASE RESPIR TEXT ERASE PCLASS TEXT ERASE RESULT TEXT ERASE FACTOR TEXT erase clear text ERASE INGEST TEXT ERASE YERROR TEXT ERASE DOSE TEXT erase atomnd text erase iclass text ERASE FIVALU TEXT ERASE ICRP TEXT ERASE UXP TEXT ERASE EXCEPT FILE ERASE INDEXI FILE ERASE INDEXD FILE ERASE LIST FILE erase noble file erase submer text

DOSE, FOR

```
*
*
DESCRIPTION DF variagles: *
*
* 
*
*
* HFIFTY ....) Specific committed dose equivalent to tergst
    organ or tissues
*
```



```
            DIMEMSION MFIFTY(1:24),HDOSE(1:24),SFACT(19,18),KS(18), KT(19),US(1
            8:20,1:50),RHALF(1:50), BRA(1:50),DOSE(1:2D)
            INTEGER DOSERR(1:5),OPT,OU1,OREAN
            CHARACTER* Y SEX,ULIFE(50),CLASS
            CHARACTER*S WORD,RADID(5D),NUCLID,ISOTOP
            CHARACTER*15 UNITS(3)
            CMARACTER#9 SMAME(18)
            CHARACTER* 15 TMAME(24)
            CHARACTER*32 UCASE
            CHARACTER#7 FFILE(4)
    5 FORMAT(A)
    10 FORMAT(A8,A2,812,13,A2, 2E10.3,3(A7))
            DATA AMAD, CLASS,F1, KZ,OPT, MAIS, ISAY, MORE, MON,MU, INRE/1. , 'D',O., 0,1
            *,2*2,0,2,1,2/
            DATA SEX,CUI/'F',Z/
            DATA FFILE /4*'DMHMY '/
            DATA KS/1, 2,3,4,5,6,7,8,9,10,11,12,18, 13,14,15,16,17/
            DATA KT/12,6,7,8,9,11,10,1,13,4,18,14,5,15,16,3,2,17,19/
            DATA TMAME/'Lunge','Thyroid','Testes', 'Overies','Red Morrow' 'Stom
                    &sch well','St + contents'.'ULI wall','LLI wall','Liver','Kidneys',
                    g'Bladder well','musels','Bone Surfacs','Skin','Spleen','Utsrus','P
                    Sancrass', 'lotsl sady','Gonsds', 'Adrenels','Lens', 'Thymus','Brain'/
            DATA SMAME/'Eladder','Stomach','SI', 'UL1','LLI','Kidheys','Liver',
                    8'Lungs', 'musels', 'Ovaries','Pencress','Trab Bone', 'Skin'.'Spleen',
                    !'Testes', 'Thyroid' 'Tot. sody', 'Cort Bone'/
                            DATA UNITS/'MeV/s', 'rad/micro Ci.h','mSv/GBq. h'/
```



```
*
* Display initial screens *
```



```
    CALL CLEAR
    URITE(*,11)
19 FORHAT(5(/))
```



```
    8********************
    LRITE (*,15)
15 FORMAT(2(/),29x,' D D S E VERSION 1.0, 1987',/)
    URITE (*,20)
2D format(19x,'Uritten by: Amiruddin Huda')
    URITE (*,22)
22 FORMAT(19X,'Address: c/O Dr. R. E. Few')
    WRITE (*,25)
25 format(19x,' Depertment of Nuclaar Engineering')
```

```
        WRITE (*,30)
        30 FORMAT(19X, Kansas Stete Univeraity')
        WRITE ( \({ }^{*}, 35\) )
        35 Format (19x,' Merhattan, Kenses 66502',//)
```



```
        8**********n*******
        PRUSE - TO RESUME PRESS <RETURN>1'
        call clear
```



```
        8*******************
        WRITE ( \(*\), 40)
        40 FORMAT(//,5X,' PRDGRAM WAME: dOSE FORTRAN')
        URITE (*.45)
        45 FDRMAT(5X,' BASIS: TCRP Methodology')
        URITE ( \(*\), 50 )
    50 Format ( 5 X , ' PURPOSE: to Calculate')
        WRITE (*,55)
        55 FORMAT(/, Bx,'e) Specific committed dose equivalent, MFIFTY (Sv/Bq)
        2 in terget orgens')
        WRITE ( \(*, \infty\) )
        60 Format ( \(/ 8 \mathrm{sx}, \mathrm{b}\) ) Weighted committed dose equivelent, woose (Sv/Bq)
        sin terget orgens')
        WRITE (*,65)
        65 FORMat (/,8x,'c) Arruml Limits on Inteke, ALI (Sq) of the nuclide')
        WRITE (*,70)
        70 FORMAT( \(/ 88 \mathrm{Bx}, \mathrm{d}\) ) Darived Air Concentration, DAC (Bq/eu.m) of the nu
        \&clide')
        WRITE (*, 75 )
        T FORMAT(/,8x,'a) Specific Effective Energy Table for 17 sourcos \& 1
        49 targats')
        WRITE ( \(*, 80\) )
    80 Format( \(/, 8 \mathrm{x}, \mathrm{f}\) ) Sourca-orgen transformations per unit ectivity of
        \& intake',/)
```



```
        (******************
    85 PAUSE - TO RESUME PRESS <RETURU>I'
        CALL CLEAR
```



```
-
* Additionsl praliminaries
-
- PRINT *
* PRINT *
* PRINT *, 0 - IBM-PC/XT/AT or eompatible mi croconputari
PRINT *,' 1- IBM-Meinframe computer, CNS or equivalent system'
PRINT *
* PRINT *', salect integer 0 or 1 '
* PRINT *
* read *, micro
```



```
    110 call clear
        PRINT *
        PRINT *, 0 - Date input from the keyboards
```


DOSE.FOR

PRINT *," 1 - Oata inpurt from a file'
PRINT *' 2 - Preparetion of a date input file'
PRINT *
PRINT ** select intagar 0, 1 or 2^{\prime}
PRINT *
READ (*, 115, ERR=110, EMD $=111$ JMDATA
115 FORMAT(I1)
IF (NOATA .NE . O .ANO. (NDATA .NE. 1) .AND. (XDATA .NE. 2))THEN
111 RENINO 5
coto 110
ENO IF
1F(MDATA. NE. D)THEN
120 CALL CLEAR
PRINT *,' Enter name of date input file (lese than or equal to 7
\& charactars) :
PRINT *
REAO (*, 121,ERR=120, EMD=122)FFILE(3)
121 FORMAT(A7)
IF (FFILE(3) .EQ. ')THEN
122 REWINO 5
goto 120
END IF
OPEN (75, FILEFFFILE (3), STATUS='UNKNON')
REWIND (75)
END IF

* \quad.
* Input date collection *
* *

If (NDATA .EQ. 1)cOTO 255

* Identiffcetion of nuclide *
* *

125 CALL CLEAR
PRINT *
PRINT *,'MOTE: TO INITIATE TERMINATION PRESS «RETURN>II*
PRINT *
URITE (*, 130)
130 FORMAT(10(/), Enter radionuclida identification, e.g., ©S-137,./) READ (*, 5,ERR=125,END=9000) 10 ORO
NUCL 10 4 NORD

- WCRDMUCASE (LICRD, 1,2)

*
* Call subrout ine oecay for daughters
* *

CALL DECAYI (HDRO, RHALF, ULIFE, BRA, RADIO, NO ${ }_{\mathbf{F}}{ }^{(125)}$
00142 I=1.NO
ISOTOP=RAD IO(1)

DOSE.FOR

DOSE. FOR

```
    & ' Yeer,/,' 2 Mor,/I/I,' Select option by integer-...>')
    READ (*,115,ERR=145,END=151)OUI
    IF (OUI .NE. 1 .and. cOUI .NE. 2),ythen
    151 REWIND 5
        GOTD 145
    END IF
    IF (OUI .EO. 1) TNEN
155 call clear
        PRINT *,' Enter file epecification for table (lesa then or equal
    & to 7 charactere):'
        READ (*,121,ERR=155,END=156)FF1LE(1)
        IF (FFILE(1) .EQ. , ')TMEN
            REWINO 5
            GOTD }15
        ENO IF
    160 Call clear
        URITE (*,165)UNITS(1),UNITS(2),UNITS(3)
    165 FORMAT(1D(/),' Enter integer for unite eelection',//,' 1 ',A,//,
    8' 2',A,/l,' 3',A,/)
        READ (*, 115,ERR=160,END=161 JMU
        IF (NU .NE. 1 .AND. (NU .NE. 2) .AND. (NU .NE. 3)\tMEN
            REWIND 5
            cotD }16
        END IF
        IF (ND .GT. 1)TNEM
    170 CalL clear
        print *,' tNe daugnters df the given nuclide are:'
        DO 175 1=2,ND
        PRINT *, RNDID(I)
        PRINT *
        PRINT *
        PRINT *,' Hould you like to eee their s-tables too?"
        PRINT *
        PRINT *;' 1 Yam'
            PRIMT *:' }2\mathrm{ Ho'
            PRINT *
            PRINT *,' Select option by integer--.>1
            REAO (*,115,ERR=170, END=171)MON
            IF (MON .NE. ¢ .AND. (MON .NE. 2))TMEN
                REWIND 5
                GOTD 170
            END IF
        END IF
```

```
*)
```

*)

* Query celculetion of dose committments
* Query celculetion of dose committments
176 call clear
176 call clear
PRINT *.' Choose one of the following:'
PRINT *.' Choose one of the following:'
PRINT *
PRINT *
PRIMT *,', 1 Continue date entry for calculation of dose comm
PRIMT *,', 1 Continue date entry for calculation of dose comm
\&ittmenta'
\&ittmenta'
PRINT *,' 2 Conclude date entry and STOP,

```
    PRINT *,' 2 Conclude date entry and STOP,
```

```
            PRINT *:' 3 Proceed with calculations of s-matrix only'
            If (moata .eg. 2)tmen
                    PRINT *,' 4 Continue data entry for calculation of S-matr
    8ix only'
        END If
        PRIHT *
        REND (*,115,ERR=176,ENO=178)IMRE
        IF (INRE .HE. 1 .AND. (INRE .NE. 2) .AND. (INRE .NE. 3) .AND. (I
        GNRE .NE. 4))THEN
    178 REuIND 5
            COTO }17
        END If
        IF (INRE .EQ. 2)coto 9009
        IF (ImRE .EQ. 3 .and. (NDATA .EQ. 0))goto 260
        IF (IMRE .me. I .and. (nDATA .EQ. 2))TNEN
            URITE (75 , 1D) WORD,SEX,OUI, HU,MOW, INRE ,OPT, MAIS, ISAY, MORE ,KZ, CL
    &ASS,AMAD,F1,FFILE(1),FFILE(2),FFILE(4)
            IF (INRE .EQ. 3)TMEN
                NDATA=1
                REWIND(TS)
            ELSE IF (INRE .EO. 6)TMEN
                COTO }12
            EmD tF
        END tF
    177 If (mdata .eq. 1)Them
            RENO (TS, 10, ERR=9009, ENO=9009)UORO, SEX,OU1 , NU, NON, INRE ,OPT, MAI
        2S, ISAY, NORE,KZ,CLASS,AMAD,F1, FFILE(1), FFILE(2),FFILE(4)
            MUCL ID=IORD
            CALL DECAY1 (HORD,RNALF,ULIFE,BRA,RADIO,NO,"9009)
            Do 179 I=1,No
            ISOTOP=RADIO(1)
```



```
* Convert holf-lives into days
                        *
    If (ULIFE(I) .EQ. 'S')THEN
            RHALF(1)=RNALF(1)/85400.
        eLSE IF rulife(1) .EQ. 'm')then
            RHALF(I)=RMALF(1)/(60.*24.)
        else if fulife(1) .eq. 'n')twen
            RMaLF(I)=RMaLF(t)/24.
        else IF fulife(I) .eq. 'Y')tmen
            RMALF(I)=RHALF(I)*365.25
        END IF
            IF {I .HE, 1)TMEN
        IF (1SOTOP(1:2) .EQ. 'AR' .OR, (ISOTOP(1:2) .EO. 'KR') .OR. (ISO
    &TOP(1:2) .EQ. 'XE') .OR. (1SOTOP(1:2) .EO. 'NE'))TNEN
                NO=1-1
                    coto 260
            END IF
            END IF
179 CONTINUE
            coto 260
        END IF
    END JF
```


DOSE. FOR


```
* *
* Identification of mode of intake
*
```



```
    180 CALL CLEAR
        WRITE(*,185)
    185 format(10(/),' mCoe of intake of the radionucliOE:',')
        URITE (*, 190)
    190 FORMAT(/,8x,'1. .....Ingestion')
        MRITE (*,195)
    195 FORMAT(8X,'2. .....Inhalation')
        WRITE (".205)
    205 FORMAT(///,' Select Option by Integer .....>e./)
        REAS (*,115, ERR=180,EMD=181)OPT
        IF (OPT .LT. 1 .OR. (OPT .GT. 2))TMEN
    181 REUTMO 5
            COTO }18
        END IF
            IF (HORO(1:2) .EQ. 'AR' .OR. (MORD(1:2) .EQ. 'KR') .OR. (WORD(1:
        82) .EQ. 'XE') .OR. (WORD(1:2) .EQ. 'N-'))TMEM
            DOSERR(2)=1
                GOTO 1000
            EmD If
    210 call clear
        WRITE (*,215)
    215 FORMAT(5(/),' Would you like to eee the number of transformation
        8s of the nuclide in ecurce organs'',//,' 1 Yes',/.' 2 *
        20',/1//,' Select option by integer --.>1,//)
            REND (*,115,ERR=210,ENO=211)MAIS
            If (MAIS .ME. 1 .AND. (MAIS .NE. 2))THEN
    211 REUIND 5
            coto 210
        ENO IF
        IF (MaIS .EO. 1)THEN
            call clear
            PRINT *', Entar fila apecificetion for transformetions:'
            PRIMT *'' (lese thm or equal to 7 charactare 1)'
            READ (*, 121,ERR=216,EMD=217)FFILE(4)
            IF (FFILE(6).EQ.' 'JTMEN
    217 REWIND 5
            007O 216
            END IF
            1F (NO .GT. 1PTNEN
    220 CALL CLEAR
            WRITE (*,225)
                    FORMAT(5(/)." Would you like to eee tha number of trensfor
        Emations of the daughtare to07',1/,' 1 Yes',1,' 2 No',1/1/,
        &' SELECT OPTION BY 1NTEGER--->',/)
            READ (*,115,ERR=220,EMO=221)!SAY
            IF (1SAY .ME. 1 .AMD. (1SAY .NE. 2))THEN
                    REUIND 5
                        goro 220
                    END IF
```


DOSE.FOR

250 call clear
PRINT *,' Enter file apecification for dose commlttment resulta:' PRINT *,' (less then or equal to 7 charactare 1)' READ (*, 121,ERR=250, END=252)FFILE(2)
IF (FFILE(2) .EQ. , ')THEN
252 REWIND 5
coto 250
ENO IF
if endata .he. 2)then
IF (WORD(1:2) .EQ. 'AR' . DR. (WORD(1:2) .EQ. 'KR') .OR. (WORD (1:
82) .EQ. 'XE') .OR. (WORD(1:2) .EQ. 'H-') STHEH $^{\text {PI }}$
coto 268
END If

ELSE
251 CALL CLEAR
PRINT *
PRINT *, ; 0-conclude date entry and STOP'
PRINT *, , 1 - contincue date entry'
PRINT *, ' 2. Proceed with calculations,
Prift *
PRIMT *, ' Select integar 0, 1 , or $\mathbf{2 '}^{\prime}$
PRIHT *
READ (*, 115, ERR=251,ENO=253)MORE
IF (MORE .ME. O .AND. (MORE .ME. 1) .AND. (MORE .NE. 2)) TMEN
253 REMIND 5
cото 251
ENO IF
HRITE (TS, 10) WORD, SEX, OUI, MU, MON, IHRE, OPT, MAIS, ISAY, HORE, KZ, CLASS
\&, AMAD, F1,FFILE(1),FFILE(2),FFILE(4)
If (MORE .EQ. 1)then
coto 125
ELSE IF (MORE .EQ. 2)THEH
noata $=1$
REMIND(75)
Else
call clear
GOTO 9009
EMD IF
EMD IF
255 If (NDATA .EO. 1)then

GSAT, MORE,KZ,CLASS, AMAD, F1, FFILE(1), FFILE(2), FFILE(G)

NUCL ID=IORD

IF (OPT .EO. 3)THEM
IF (MORD (1:2) .ME. 'AR' .ANO. (WORD(1:2) .HE. 'KR') .AND. (WORDC
81:2) .ME. 'XE') .AND. (WORD(1:2) .WE. 'H-'))THEK
$\operatorname{DOSERR(2)=1}$
GOTO 1000

DOSE, FOR

```
            ELSE
                6010 268
            EMO IF
        ELSE IF COPT .RE. 3)TMEN
            IF (HORO(1:2) .EQ. 'AR' .OR. (MORD(1:2) ,EO. 'KR') .OR. (WOROS1:
        42) .EQ. 'XE') .OR. (HORO(1:2) .EQ. 'H-'))TWEH
            DOSERR(2)=1
            coto 1000
            EMD IF
            CALL OECAY1 (MDRO,RHALF,ULIFE, BRA,RADIO,MO,*9009)
            00 258 1=1,40
            ISOTOP=RADIO(1)
* Corvert hilf-lives into days .
```



```
    IF (ULIFE(1) EO. 'S')TNEN
            RHALF(1)=RMALF(1)/86400.
            ELSE IF (UlIFE(I) .EQ. 'R')THEN
            RHALF(1)*RHALF(1)/(60.*24.)
            ELSE IF (ULIFE(1) .EQ. 'M')TMEM
                RHALF(1)=RHALF(1)/26.
            else if (Ulife(1) .eq. 'Y')TMEM
            RhalF(1)=RHALF(I)*365.25
            EMD IF
                IF (I .HE. 1)TMEN
                1F (ISOTOP(1:2) .EQ. 'AR' .OR. (1SOTOP(1:2) .EQ. 'KR') .OR. (ISO
        &TOP(1:2) .EO. 'XE') .OR. (ISOTOP(1:2) .EO. 'HE'))TMEN
            wO=1-1
            G0TO 260
            END IF
            ENO IF
    256 COWTINUE
        END IF
    ENO IF
```



```
*
* Calculation and printing resulta of S-matrix
```



```
********************************************&|**************************
    260 call clear
        IF (OUI .EQ. 1)THEH
            IF (MON .EQ. 2)THEN
                MES=1
            ELSE
                MES=NO
            EMO IF
            OPEN(55, FILE-FFFILE(1),STATUS='UMKMOM')
            00265 1=1,MES
            PRINT *, ' Calculating s-matrix for ',RNDIO(I)
            URITE (*,270)FFILE(1)
270 FORMAT//,' Resulita are In file ',A)
        CALL FACTOR (RADIO(1),NU,SFACT,MOATA, MORD,RHALF(1).*125,*9009)
        Call Clear
        URITE (55,275)
```


DOSE. FOR

```
                IF (MOATA .EQ. O)TMEN
                WRITE (*,275)
                END IF
275
FORMAT(/.'
8******************',/,6x,'*',64K,'*!,/,6K,'* S-FACTORS FOR TNE AD
&ULT EY METNOOS OF ICRP-30, V. 1.0, 1987 "',/.6K,'*',64K,'*',/.6X
2,'* Bated on: "rudioactive Oecay Oata Tables'',18x,'*',I,6x,'*
&',16X,'0.C. Kocher, DOE/TIC-11026 (1981)',15K,'*',/,6X,'* Uritten
& by : Amiruddín Nude',34k,'*',1,6x,'* Addrest : c/0 Or. R.E.
4 Faw',32x,'*',/,6x,'*',16X,'Oepartment of Nuclear Engineering',15K
8,'*',/,6X,'*',16x,'Kmmsas State Univeraity',25K,'*',/, 6x,'0",16x,'
3Marhattan, Kanses 66506',25K,'*',/,6X,'*',64K,'*',/,' *******
```



```
        URITE (55,280)RADIO(I),UNITS(NU)
        tF (NOATA .EQ. OHTMEM
        WRITE (*,280) RADIO(1),UMITS(MU)
    END IF
    format(//,21K,A,' s-factors (',A,'(')
    URITE (55,285)
    IF (MOATA .EQ. OSTMEN
    URITE (*,285)
    ENO IF
    FORMAT(/,9X,'TARGET',28X,'SOURCE DRGANS')
        WRITE (55,290)(SHAME(KS(J)), J=1,4)
        if goata.eg. ojtmen
        WRITE (*,290)(SHANE(KS(J)),Jm1,4)
        END IF
        FORMAT(9X,'ORGAN',11K,4(3K,A),//)
        DO 295 k=1,19
        WRITE (55,300) TNAME(KT(K)),(SFACT(KT(K),KS(J)),J=1,4)
        IF (NOATA .EQ. OSTNEM
        WRITE (%,300)TMAME(KT(K)),(SFACT(KT(K),KS(J)),J=1,4)
        END IF
        contimue
300 FORMAT(9x,A,4(3K,1PE9.2),
        URITE (55,305)
        IF (MDATA .eq. omtNEN
        WRITE (*,305)
        ENO IF
        FORmat(1m1)
        WRITE (55,280)RADIO(1),UNITS(HU)
        MRITE (55,285)
        LRITE (55,290)(SMAME(KS(J)),J=5,8)
        IF (moata .eq. 0)tMEM
        WRITE (*,280) RADIO(I),UNITS(NU)
        WRITE (*,285)
        WRITE (*,290)(SNAME(KS(J)),J=5,8)
    END IF
    DO 310 K=1,19
    WRITE (55,300) TMAME (KT(K)),(SFACT(KT(K),KS(J)), J=5,8)
    IF gmata .EQ. OGTNEM
    URITE (*,300) TWAME(KT(K)),(SFACT(KT(K),KS(J)),J=5,8)
    ENO IF
    continue
```

WRITE $(55,305)$
URITE (55,280)RADID(1), UWITS(MU)
WRITE (55,285)
WRITE (55,290)(SNAME (KS(\downarrow)) , $\downarrow=9,12$)
IF (NDATA .EQ. O)TNEN
WRITE (*,305)
URITE (*, 280) RADIO (I), UNITS(MU)
URITE (*,205)
WRITE (*,290) (SHANE(KS($)$), $1=9,12)$
END IF
D0 $315 \mathrm{k}=1,19$
URITE (55,300) TMAME (KT(K)), (SFACT $(K T(K), K S(d)), 1=9,12)$
IF (NDAIA .EQ. O)TNEM
URITE (*, 300) TMAME (KT (K)), (SFACT(KT (K),KS(J)), J=9, 12)
END IF
CONTINUE
URITE $(55,305)$
URITE (55,280)RADIO(1), UNITS(NU)
URITE $(55,285)$
HRITE (55,290)(SNAME (KS (d)), $J=13,16$)
IF (NDATA .EQ. OJTNEN
WRITE (*, 305)
WRITE (*, 280) RADID(1), UWITS(MU)
WRITE (*, 285)
WRITE (*, 290)(SNAME (KS (J)) , $J=13,16$)
END IF
DO $320 \mathrm{~K}=1,19$
WRITE (55,300) TWAME(KT (K)), (SFACT (KT (K),KS(J)), J=13,16)
IF (MDATA .EQ. O)TNEM
URITE (*,300) TMAME (KT (K)), (SFACT (KT (K),KS(J)), J=13,16)
ENDIF
CONT IMUE
URITE (55,305)
WRITE (55,280)RADID(1), UNITS (MU)
WRITE (55,321)
WRITE (55,322)(SNAME(KS(d)), $J=17,18)$
IF (NDATA .EQ. OSTMEN
WRITE (*, 305)
WRITE (*,280) RADIO(1), UMITS(MU)
WRITE (*,321)
WRITE (*,322)(SMAME(KS($ل$)), $d=17,18$)
END IF
FORMAT(/,9X,'TARGET', 14X, 'SOURCE DRGANS')
322 FORMAT (9 X, 'ORGAN' $, 11 \mathrm{X}, 2(3 \mathrm{X}, \mathrm{A}), / /)$
DO $323 \mathrm{~K}=1,19$
WRITE (55,300) TMAME(KT(K)), (SFACT(KT(K),KS(\downarrow)), $\mathrm{J}=17,18$)
IF (MDATA .EO. O)TMEN
URITE (*, 300) TMAME(KT (K)),(SFACT (KT (K),KS(J)), J=17,18)
EMD IF
323 CONTINUE
UR1TE (55,305)
IF (NDATA .EO. O)TMEN
WR1TE (*, 305)
END IF

```
    265 CONTINUE
        ENO IF
        IF (INRE .EQ. 4)COTO 177
        IF (INRE .EQ. 3 .AND. (NDATA .EQ. O))EOTO 125
    IF (INRE .EQ. 3 .AND. (NOATA .NE. DJ)GOTO }900
****************m**********************************************************
*
Calculation of Oose Conmitrlon
Calculation of 0ose Committmenta
```



```
    IF (OPT .EQ. 3)TNEN
            IF (WCRD(1:2) .NE. 'AR' .OR. (WORD(1:2) .NE. 'KR') .OR. (WORD(1:
    82) .WE. 'WE') .OR. (WORO(1:2) .NE. 'W-')) TWEN
            DOSERR(2)=1
            00TO 1000
        EMD IF
    ELSE
            IF (WORD(1:2) .EQ. 'AR' .OR. (WORD(1:2) .EQ. 'KR') .OR. (HORD(1:
    42) .EQ. 'NE') .OR. (WORD(1:2) .EQ. 'N-')YTMEN
            DOSERR (2)=1
            COTO 1000
            EMO IF
    END IF
268 CALL CLEAR
    IF (OPT .EQ. 1)TMEN
        PRINT *.' Calculating ingeation dose for ',MUCLID
        PRINT *.' F1 (GI to body fluids) = ',F1
        PRINT *', Subject = ', SEX
    ELSE IF (OPT .EQ. 2)TMEN
        PRINT *', Calculating inhalation dosa for ',NUCLID
        PRINT *', Imhalation clese = ',CLASS
        PRINT *.' Fq (GI to body fluids) = ',F1
        PRINT *' subject = ',SEX
    ELSE IF (OPT .EO. 3)TNEM
    PRINT *,' Calculating sutmeraion dose for ',MUCLID
    END IF
    DER=0.
    RISK=0.
    ORCAN=O
    CALL ICRP (OPT, HORD,SEX, F1,CLASS,MMAD,KZ, WFIFTY,US, ROQ, NDATA,DER,RL
    8SK,ORGAN,* 125.*9009)
        IF (WORD(1:2) .EQ. 'AR' .OR. (HORD(1:2) .EQ. 'KR') .OR. (HORO(1:
    &2) .EQ. 'XE'` .OR. (WORD(1:2) .EO. 'N.'))TMEN
            GOTD 366
        END IF
    IF (NUCLID(1:2) .EQ. 'BA',OR. (NUCLIO(1:2) .EQ. 'RA'' .OR. (NUCLI
    8O(1:2) .EQ. 'SR') .OR + (NUCLID(1:2) .EQ. 'CA'))TMEN
        R08=65000.
    ELSE IF (NUCLID(1:2) .EQ. 'RE' .OR. (NUCLIO<1:2) .EQ. 'TC'))THEN
        ROS=68030.
    ELSE IF (NUCLID(1:2) .EO. '0.')TNEN
        ROB=70000.
    ELSE IF (NUCLIO .EO. 'TE.131M '.OR. (NUCLIO .EQ. 'TE.131 ') .OR.
    % (MUCLID .EQ. 'TE-132 ') .OR. (NUCLIO .EQ. 'TE-133 ') .OR. (NUCL
```

\&ID .EQ. 'TE-133 ') .OR. (HUCLIO .EQ. 'TE.133M') .OR. (HUCLID .EQ
8. 'TE-134 '))TMEH

ROP $=64980$.
EWD IF
-

* Print results of tourctorsan trantormetion
- Print results of tource-organ transformations
-

-0e**
325 CALL CLEAR
IF (MAIS .EQ. 1)TXEH
IF (ISAY .EQ. 2)TXEH
MES=1
EL.SE
WES=NO
EHD IF
OPEX(85,FILEFFFILE(4), STATUS='UNKNOMN")
WRITE (${ }^{*}, 335$)FFILE(4)
335 FORMAT(//,' Results of source transformations ars in fite *,A) DO $330 \mathrm{I}=1$, MES
1SOTOP=RANID(I)
IF (ULIFE(I) .EQ. 'S')TXEX RHALF (I) =RHALF (I)/86600.
ELSE IF (ULIFE(I) .EO. 'H')THEH RHALF (I) mRHALF (I)/(60.*26.)
ELSE TF (ULIFE(I) .EQ. 'X')TXEH RHALF(I)=RHALF(I)/26.
ELSE If (ULIFE(I) .EO. 'Y')TXEH RHALF(I)=RXALF(I) 365.25
EMD If
MRITE (85,340)RAOIOCI)
IF (XDATA .EQ. O)TXEH
MRITE (*.340)RADID(I)
EXD IF
340 FORMAT (/.' \&SFORMATIONS DF, , $, 6 x, \cdots, 64 x,{ }^{\prime * 1}, 1,6 x, 0$
 86x, 'D.C. Kocher, 80, 'O.C. Kocher, DOE/TIC-11026 (1981)', $15 x,{ }^{\prime \prime \prime}, f, 6 x, 1 *$ Written by

IF (XDATA .EQ. O)TXEM
MRITE (*,375)RADIO(I)
EHD IF
WRITE (85,375)RAOIO (I)
IF (SEX .EQ. 'N')TMEX
IF (MDATA .EQ. O)THEX
WRITE (* ${ }^{(}$380)
END IF
WRITE (85,380)
ELSE

```
            MRITE (85,385)
            lf (ndata .Eq. 0,tmen
            urlTE (*,385)
            END IF
        END IF
        IF (DPT .EQ. 2)TNEN
            WRITE(85,388)
            MRITE(85,390)CLASS
            MRITE(85,395)AMAD
            MRITE{85,400) F1
            if (mDATA .eq. 0)tmen
            MRITE(*,388)
            MRITE(*,390)CLASS
            MRITE(*,395)AMN
            MRITE(*,400)F1
            EMO IF
                    ELSE IF (OPT .ED. 1)TMEN
        URITE(85,420)
        MRITE(85,425)F1
        if gmdata .ed. O)tMEN
        WRITE(*,420)
        URITE(*,425)FI
        END If
    END IF
        WRITE (85,345)
        IF (MDATA .EQ. O)TNEN
        URITE (*,345)
        END IF
    345 FORMAT(////,20X,' SOURCE ORGAN',10X,'TRANSFORMATIONS (/Bq)',N
        IF (US(12,1) .ED. O.)GOTD 350
* Nuclides uniformly distributed in volume of minersl bore *
```



```
        If (NUCLID(1:4).ED. 'P-33' .OR. (MUCLID(1:6) .ED. 'N8-93H') .OR
        &. (NUCLID(1:5) .ED. 'MB-94') .OR. (NUCLID(1:5) .EO. 'U-232') .OR .
        I(NUCLID(1:5) .EO. 'U-233') .OR. (MUCLIO(1:5) .ED. 'U-234') .OR. (M
        SUCLIO(1:5) .EQ. 'U-235') .OR. (MUCLID(1:5) .EQ. 'U-236') .OR. (NUC
        &LIO(1:5) .ED. 'U-238') .OR. (NUCLID(1:2) .ED. 'NA') .OR. (NUCLID(1
        2:2) .ED. 'CR') .OR. (MUCLID(1:2) .EQ. 'R8') .OR. (NUCLID(1:5) .EO.
        & '2N+65') .OR. (NUCLID(1:6) .EQ. 'PE-2O5') .OR. (MUCLID(1:6) .EQ.
        8'PB-210').OR. (NUCLID(1:4) .EO. 'BE-7') .OR. (NUCLID(1:5) .ER. 'S
        &E-10') .OR. (NUCLID(1:4) .ED. (V-49') .OR. (MUCLID(1:6) .EQ. 'PD-1
        803') .OR. (NUCLID(1:6) .EQ. 'PD-107') .OR. (NUCLID(1:6) .ED. 'SN-1
        813') .OR. (NUCLIO(1:7) .ED. 'SN-119m') .OR. (NUCLIO(1:6) .ED. 'SN-
        8123') .OR. (WUCLIO(1:6) .EQ. 'SN-126') .OR. (NUCLIO(1:6) .EO. 'TA-
        (182') .OR. (NUCLIO(1:5) .EQ. 'U-181') .OR. (MuCLIO(1:5) .ED. 'W-18
        25').OR. (NUCLID(1:5) .EO. 'W+188'))TNEN
        US (12,i)= US (12,1)*0.2
        us(18, i)=(US(12,1)/0.2)*0.8
*************************************************************************
* Alkaline earths
```



```
    ELSE IF (NUCLID(1:2) .EQ. 'SR' .OR. (NUCLID(1:2) .EQ. 'BA') .OR. (
    &MUCLID(1:2) .EQ. 'CA') .OR. (MUCLID(1:2) .EQ. 'RA'))TMEN
```


DOSE.FOR

```
        IF (RHALF(1) .GI. 15)THEM
        US(12,1)=US(12,1)*0.2
            US(18,1)=(US(12,1)/0.2)*0.8
        ELSE
            US(12,1)=US(12,1)*0.5
            US(15,1)=US(12,1)
        EMD 1F
        ELSE
        US(12,1)=US(12,1)*0.5
        US(18,I)=US(12,1)
    END IF
350 00 355 K=1,18
        IF (US(K,1) .EQ. O.)coto 355
        IF (K ,EQ. 17)TNEN
            IF (ROB .LT. 70000.) THEH
                URITE(85,351)US(K,I)*86400.
                IF (nDATA .EQ. O)TMEN
                URITE(*,35i)US(K,I)*86400.
                ENO IF
                FORMAT(23x, '0ther tissue',11x,1PE9.2)
                GOTO }35
            ENO IF
        ENO IF
        URITE(85,360)SNAME(K),US(K,1)*86400.
        IF (MDATA .EQ. OJTHEN
        WRITE(*, 360)SNAME(K),US(K,I)*86400.
        END IF
    360 FORMAT (23X,A,14X,1PE9.2)
    355 CONT INUE
    362 FORmat(//,16x." Mass of other tissue = ',F9.2,' grams')
        IF (ROS .LT. 70000.)TMEN
            IF (NOATA .EO. OJTMEN
            LRITE(*,362)ROB
            EMO IF
            URITE (85,362)ROA
        ENO IF
        WRITE (85,305)
        IF (NDATA .EQ. O)THEN
        WRITE (*,305)
        ENO IF
    330 CONTINUE
    ENO IF
```



```
* Print results of dose committments
```

 IF (HOATA .EQ. O)TMEH
 PAUSE 'TO RESUME PRESS बRETURN>1"
 ENO IF
 366 call clear
DPEN (65 , FILEPFFILE(2), STATUS='UNKNOWN')
URITE (*, 365)FFILE(2)
365 FORMAI (//.' Results of Dose Committrments are in file ', A)

DOSE. FOR

```
    URITE(65,370)
    If (MDATA .EO. D)TNEN
    vRITE(*,370)
    END :F
```



```
    8***+*************',}1,6x,'*\prime,66x,'*',/,6x,'*',8x,'ICRP-30 INTERMAL
    % DOSE CALCHLATLOWS, v. 1.0, 1987',8x,'*',/,6x,'* Beaed on: "Ra
    &dioactive Decay Date Tables"',18x,'*',/,6x,'"',16x,'D.C. Kocher, D
    L0E/T1C-11026 (1981)',15x,'*',1,6x,'* Written by: Amiruddin Nuda
    &',34x,'*',/,6x,'= Addrese : c/O Or. R.E. Few',32x,'*',/,6x,'*
    8',16x,'0epartment of Nuclear Engineering',15x,'*',1,6x,'*',16x,'Ke
    insaa State Univeraity',25x,'*',/,6x,'*',16x,'Manhatton, Kansas }66
    806',25x,'*',1,6x,'"', 86x,'"',/,' ****************************
    8**************************************',方
        IF (NDATA .EG. O)TMEN
        urite (*,375)MuClio
        ENO If
        LRITE (85,373)NUCLID
375 format(10x,'Radionuclide : ',17x,A)
    If (NUCLID(1:2) .EQ. 'AR' .OR. (NUCLID(1:2) .EQ. 'KR') .OR. (NUCLI
    &D(1:2) .EO. 'XE') .OR. (NUCLID(1:2) .EO. 'N-'))TNEM
        WITE (65,331)
        IF(NDATA .EO. O)TNEN
            WRITE(*,331)
        ENo If
331 FORMAT(10X,'Hode of intake : ',15x,'Summeraion')
        IF(HO .GT. 1 )TNEN
            URITE(65,332)(RNOIO(1),1=2,ND)
            URITE(65,333)(GRA(1),I=2,MD)
            ff (ndata .EO. O)TMEN
                    WR1TE(*,332)(RNOTO(1),1=2,*0)
                    MRITE(*,333)(BRA(I),I=2,ND)
            ENO IF
            FORMAT(10x,'Daughtar Producte : ',12x,3A)
            FORHAT(10x,'Branching Ratios: ',12x,3(F6.3,2x))
        ENO IF
        IF (mDATA .EO. O)TMEN
            URITE(*,441)
        END IF
        LRITE(65,441)
441 FORMAT//,
```



```
    & ',' "',' Weighted Dose Equivalent ','*',/,6x,'m',2x,'Orgen ',6x,
    &'per unit concentration','*',' Rate per unit concentrn. ','*',/,6
    &x,'*',14x,'in a aemi-infinite ','*',' in a semi-infinite
    & ','=',/,6x,'*',14X,'eloud (Sv/Mr)/(Bq/w'3)',' "',' eloun (Sv/Nr)/.
    &(8q/m^3) ','8', /, 6x,********************************************
    &********W##************',
    DO 442 I=1,24
    If (NFIFTY(1) .EO. O)GOTO 44
    IF (I .EQ. 1)THEN
        MT=0.12
    ELSE if (1 .EG. 2)TMEN
        LT=0.03
```


DOSE.FOR

```
    ELSE If (1 .EQ, 20)THEN
        WT=0.25
    ELSE IF (1 .EO. 5)TNEN
        WT=0.12
    ELSE IF (1 .EQ. 13)THEN
        WT*0.15
    ELSE If (I .EQ. 16)TNEN
        WT=0.03
    ELSE
        WT=0.06
    END IF
    1F (I .EQ. 15 .OR. (1 .EQ. 22))TMEN
        IF(NDATA .EQ. ODTHEN
            WITE(*,443)TMAME(I),MFIFTY(I)
        END IF
        WRITE(65,443)TWANE(1),NFIFTY(I)
443 FORMAT(6X,'*',2X,A14,6X, tPE8.1,7X,'*',26X,'*')
    ELSE
        IF (NDATA .EO. O)TMEN
            UR!TE(*,444)TMAME(1), HFIFTY(I),WT*MFIFTY(I)
        END IF
        URITE(65,444)TMAME (I),NFIFTY(I),WT*HFIFTY(I)
444 FORMAT(6X,'*',2X,A14,6X,9PE8.1,7X,'*',9X,1PE8.9,9X,'*')
    END IF
4 4 2 ~ C O N T I N U E ~
    If (RISK .EQ. O)TNEN
        IF (MDATA .EQ. O)THEN
            WRITE(*,466)DER
        END IF
        URITE (85,446)DER
```



```
    &,5x,'Derived Air Concentration = ',1PE8.1,' Bq/m^'3',16x,'*"', l,6x,"
```



```
    g%****************!)
    ELSE
        IF (MDATA .EQ. O)THEN
                WRITE(*,467)OER,RISK,TMAME (ORGAN)
            END tF
            URITE(65,447)DER,RISK,TNAME (ORGAN)
```



```
    8',5x,'Stochastic Risk',8x,'Non-Stochastic Risk (Drgan)',9x,',', ,/,6
    8x,'t',4x,1PE8.1,' Bq/m^3 ',10x,1PE8.1,' Bq/m^'3 ',1x,'(',A14,')',1x
```



```
    c*****************************!)
    END IF
    GOTD 480
    END IF
    IF (SEX .EO. 'M')THEN
        IF (NDATA .EQ. O)TNEN
        WR1TE(*,380)
        EWD IF
        MRITE (65,380)
```

```
380 FORMAT(10x,'subject : ',22x,'Mels')
    ELSE
        WRITE (65,385)
        IF (NDATA .EQ. D)TMEN
        WRITE (*,385)
        END 1F
385 FORMAT(10x.'Subject : ',22x,'Femele')
    END IF
    IF (OPT .EQ. 2)THEN
        WRITE(65,388)
        IF (NDATK .EQ. O)THEN
        WR! TE(*,388)
        END IF
        FORMAT(10x,'Mode of inteke : ',15x,'Im, 'Inaletion')
        WRITE(65,390)CLASS
        IF (NDATA .EQ. O)TMEN
        URITE(*,390)CLASS
        END If
        FORMAT(10x,'trhalation Clase : ',13x,A)
        WRITE (65,395)AMAD
        IF (NDATA ,EQ. D)TMEN
        WRITE(*,395)AMAD
        END IF
        FORMAT(1DX,'Particle NMAD (um): ',10X,F5,2)
        WRITE(65,400)F1
        IF (NOATA .EQ. D)TNEN
        WRITE(*,400)F1
        END If
        FORMAT(10x,'Body fluid transfar fraction: ',F8.5)
        IF (ND .GT. 1 .AND. (ND .LT. 4))TNEN
            URITE(65,405)(RAOID(1),1=2,m0)
            HRITE(65,415)(BRA(I),I=2,MO)
            IF (NDATA .EQ. O)THEN
            HRITE(*,405)(RADID(I),1=2,M0)
            WRITE(*,415)(BRA(1),I=2,NO)
            END IF
            FORmaT(10X,'0sughter Producte : ',12X,3A)
            FORMAT(10X,'Branching Ratios : ',12X,3(F6.3,2X))
        ELSE IF (WO .CE. 4)THEN
            URITE (65,406)
            If (NDATA .EQ. O)THEN
            URITE (*,406)
            END if
            DO 407 I=2,NO
            URITE (65,408)RADIO(1),BRA(1)
            IF (NDATA ,Eg. D)TMEN
            UNITE (*,408)RADID(I),BRA(I)
            END IF
            CONTINUE
            URITE (65,305)
            IF (NDATA .EQ. D\THEN
            URITE (*,305)
            END IF
            FORMAT(10X,'Daughtar Products',12X,'票ranching Ratios')
```

```
408 FORMAT(14X,A,21X,F6.3)
        ENO IF
    ELSE IF (OPT -EQ. 1)TMEN
        WRITE(65,420)
        WRITE(65,425)F1
        IF (MDATA .EQ. D)TNEN
        WRITE(*,420)
        WRITE(*,425)F1
        FORMAT (10x,'Mode of intake : ',15x,'Ingestion')
425 FORMAT(10x,'Body fluid transfer fraction: ',F8.5)
        ENO IF
        IF (NO ,GT. 1 ,ANO. (NO -LT. 4))TNEM
            URITE(65,426)(RADIO(1),1=2,MO)
            WRITE(65,428)(BRA(1),1=2,NO)
            IF (MDATA .EQ. O)TNEN
            WRITE(*,426)(RADIO(1), 1=2,NO)
            URITE(*,428)(BRA(1), I=2,NO)
            ENO IF
426 FORMAT(10x,'Oaughter Products: ',12X,3A)
428 FORMAT(10x,'Branching Ratios: ',12X,3(F6.3,2X))
        ELSE IF (NO .GE. 4)TNEN
            WRITE (65,406)
            IF (NDATA .EQ. OSTNEN
            URITE (*,406)
            ENO IF
            DO 429 1=2,NO
            URITE (65,408)RADIO(1), BRA(I)
            IF (NDATA .EQ. O)THEN
            URITE (*,408)RADIO(I),BRA(I)
            END IF
429 CONTINUE
            WRITE (65,305)
            IF (NDATA .EO. DJTNEN
            WRITE (*,305)
            ENO IF
        ENO IF
    END IF
    00430 !=1,20
    DOSE(1)=HFIFTY(1)
430 COMTINUE
    CALL RESULT(NF IFTY,WDOSE,ALI,POST, IRGANT,OAC,KZ,REMDR,WREMDR,WT
    *F,SNM)
    IF (NOATA .EQ. DJTMEN
    WRITE(*,440)
    ENO IF
    WRITE(85,440)
440 FORMAT(/.'
    &***************', , 6x,'*', 2x,'Targat',6x,'Specific Committed',' *
    *',' Ootes greater than or equal *',f,6x,'*',2x,'Organ ',6x,'Oose
    EEquivelent',4x,'*',' to }10\mathrm{ percent of the maximmm',f, 6x,'*', 16x,
    ['(5v/8q)',12x,'*',' dose',25x,'*1,/,'
```



```
    &ts Weighted Oosa',7x,'"',/,6x,'*',33x,'*','10x,'Equivalent (Sv/8q)
    !',2x,'*',/''
```


DOSE,FOR

```
    8-................*',/,6x,'*',33x,**',30x,'*')
    00445 l=1,19
    If (hFIFTY(I).EQ. D.)TMEX
        IF (NUCLID(1:2) .EO. 'TC' .OR. (MUCLID(1:2) .EO. 'RE'))TMEN
            IF (I .EO, 6)THEN
                        If(MDATA .EO. 0)TNEN
                        WRITE(*.448)TMAME(1),DOSE(1)
                    ExO IF
                    WRITE(65,448)TMAME(1),DOSE(1)
                    FORMAT(6X,'*',2X,A14,4X,1PE8.1,'+',6X,'*',30X,'*'')
            ELSE
                    if(Moata .eg. Djthen
                    URITE(*,450) TXNME (1),DOSE (1)
                    END IF
                    URITE(65,450)TNAME(1),DDSE(1)
                    FORMат(6X,'*',2X,A14,4X,9PE8.1,5x,**',30x,'*')
            ExO IF
        ELSE
            IF\MOATA .EQ. DJTMEN
                    URITE(*,450)TMAME (1),DOSE(1)
            END IF
            HRITE(65,45D)TXAME(1),DOSE(I)
        END 1F
    ELSE
        IF (XUCLID(1:2) .EQ. 'TC' .OR. (MUCLID(1:2) .EO. 'RE'))TMEN
            IF (1 .EO. 6)THEX
                IF(NDATA .EO. DSthEN
                    WRITE(*,469)TNAME(1),DOSE(1),WOOSE (1)/HFIFIY(1), WOOSE(1)
                    EXO If
                    LRITE(65,469)TNANE(1),DOSE(1), WDOSE (1)/HFIFTY(1),WOOSE (1)
                    FORMAT(8X,'*',2X,A14,4X,1PES.1,'+',4X,'**,3X,0PF4,2,7X,1P
        &E8.1,8x,'*')
            ELSE
                    WRITE(65,455)TXNME(1),DOSE (1), HOOSE (1)/HFIFTY(1),HODSE (1)
                        IF (MOATA .EQ. DTTNEM
                    WRITE(*,455)TMAME(I),DOSE(1), WOOSE (1)/NFIFTY(I),WDOSE(I)
                    END IF
455 FORMAT(6x,**',2x,416,4x,1PE8.1,5x,**,3x,0PF4,2,7x,1PES,1,8x
    8,'*')
            ENO IF
        ELSE
            WRITE (65,455)TMAME (1),DOSE (1),HOOSE (1)/NFIFTY(1),LODSE (1)
            If (nDATA .EO. O)THEN
            WRITE (*,455)TWAME (1),DOSE(1),WOOSE (1)/NF IFTY(1),HOOSE(1)
            END IF
        ExD IF
    END IF
4 4 5 \text { cowtimue}
    |F (REMOR .NE. O)TMEX
        WRITE(65,460)REMOR, HTF, MREMOR
        IF (MOATA .EO. DJTHEN
        WRITE(*.460)REMOR,NTF, WREMOR
        END 1F
460 FORMAT'6X,'*',2X,'REmA inder',5X,1PE8.1,5X,'*',3X,0PF4,2,7X,1PE8.
```

```
        81,8x,'*')
        END IF
        IF (NUCLID(1:2) .EQ. 'TC' .OR. (NUCLID(1:2) .EO. 'RE')JTNEN
            IF (NDATA .Ee. DITMEN
                WRITE(*,462)SUM
            END IF
            HRITE (65,462)SUM
```



```
        &/*',}/,6\mp@subsup{X}{,}{\prime**}+\mathrm{ CNUTIOW: Stomech wall is not *',8X,'SUM = ',1PE8.1,
        8Bx,'*',f,8x,'* incluced as a source orgmn m',14x,'\ldots......',8
        8x,'*',/,6X,'*******************************************************
        8************',/,6x,'*',64X,'(*')
        Else
            if (noata .eq. ostmen
                URITE(*.461)SUM
            End IF
            URITE(65,461)SUM
    461 FORMATC6x,'*',33x,'*', 14x,'\cdots\cdots\cdots\cdots.',8x,'*',/,6x,'*',33x,'*',8x,'s
    sUM = ',1PE8.1,8x,'*',',6x,'*',33x,'m',14x,'....--..',8x,'*',l,6x,'
    &',/,6x,(*',64X,'*')
    END IF
    if (POST .ME. ALI)TNEN
        WRITE(65,465)POST,ALI, TMAME(IRGANT)
            IF (NDATA .EO. O)THEN
            WRITE(*,465)POST,ALI, TMAME(IRGANT)
            END IF
    465 FORMAT(6x,'m',5x,'Stochastic Riax',8x,'Mon-Stochastic Risk cOrga
        8n)',9x,'*',1,6x,'*',4x,1PE8.1,' Bq ',14x,1PE8.1,' Bq ',2x,'(',A14,
        8')(4x,'*')
            ELSE
        MRITE(65,470)AL!
        if (modta .es. 0)tNEm
        WRITE(*,470)AL!
        END IF
470 FORmat(6x,'*',5x,'Arnual Limit on Intake =',9PE8.1,' 8q',20x
    &,'*')
        EMD IF
        IF (OPT _EQ. 2)TMEN
            WRITE(65,475)DAC
            IF (moata .eg. o\then
            URI TE(*,475)OAC
            ENO IF
475 FORMat(6x,'*',5x,'Derived air concentration = ',1PE8.1,' Bq/m^3'
    2,16x,(*')
        END IF
        If (NDATA .EQ. OItmEN
        WRITE (",477)
        END IF
        HRITE (65,477)
477 format(6x,'*',64x,**',1.'
                            ***********************************
    8*******************************)
480 IF (NDATA.EO. 1)GOTO 255
    GOTO 12S
```

```
1000 IF (DOSERR(2) .GT. O)THEN
            MrITE (*,485)
    485 FORMTT//,' ERROR: The mode "Submeraion" can only be chosen for
        2 noble gaces, and slemental eritiuml'./.' SOURCE: DOSE FORTRAN',I
        8.' CORRECTIVE ACTIOW: Check the symbol and try agein 11'////)
            DOSERR(2)=0
            If (moata .me. ojcoto g009
            pmuse , tO reSUME pRESS <RETURN>II'
            COTO }12
        else if (DOSERR(3) .GT. O)twen
            URITE (*.400)
    490 FORMAT///,' ERROR: The entered eymbol could not be found in the
    z chart of nuclides for atomic numberl',l,' SOURCE: DOSE FORTRAN',I
    8,' CORRECTIVE ACTIOM: Try again 11*,/////)
            DOSERR(3)=0
            IF (MDATA .ME. O)GOTO 9009
            PAUSE , TO RESUNE PRESS <RETURN>!1'
            COTO }12
        EMO IF
9000 REMINO 5
9 0 0 1 ~ c a l l ~ c l e a r ~
        PRIMT *.'Do you really with to tarminate the program?'
        PRIMT *
        PRINT "!' 1 Yea'
        PRINT *:' }2\mathrm{ Mo'
        REAO(*, 115, ERR=9O01,EMO=YOOO)IDO
        IF (IDO .NE. I .AND. (IDO .ME. 2)}GOTO 9000
        IF (1DO .ED. 1)THEN
9009 STOP ' Program is termimatedit!'
        ELSE
            coto 125
        EmD IF
        Emo
* character*32 function ucase(a,M,W)
* exhmines string a, converting n characters, starting mith cmaracter m
* to upper case
* Character*32 a
* Character*26 lc,uc
* DATA LC/'abcdefghijklmmopqratumuxy'/
* dATA uc/'mbcDefgni jklmmoporstuMuxyz'/
* DO 9010 t=0,N-1
* DO 9010 J=1,26
* If (A(M+1:M+I) .ED. LC(J:J)) THEN
* A(M+1:M+1)=UC(J:J)
* ucasena
* returm
* eND IF
*goio cowtinue
* EMD
```


ENERGY. FOR

URPOSE: Gives an upper and lower bound on evergy of garma *

```
                to help interpolete the absorbed fraction in tissue *
*
    SUBROUTINE EMERGY(E,ELO,ENI,ILO)
    If (E .lE. O.010)TMEN
        1LO=1
        ELO=0.010
        ENI=0.015
    ELSE IF (E .GT. 0.010 .AND. E .LE. O.015)TMEN
        ItO=1
        ELO=0.010
        ENT=0.015
    ELSE If (E .GT. 0.015 .AND. E .LE. O.020)TMEN
        ILO=2
        ELO=0.015
        EMI=0.020
    ELSE IF (E .GT. 0.020 .AMD. E .LE, O.030)TMEN
        ILO=3
        ELO=0.020
        ENI=0.030
    ELSE IF (E .GT. 0.030 .AMO. E .LE. O.OSOJTMEN
        tLO=4
        ELO=0.030
        ENI=0.050
    ELSE If (E .GT. 0.050 .AMD. E .LE. O.100)TMEN
        ILO=5
        ELO=0.050
        ENT=0.100
    ELSE IF (E .GT. 0.100 .AMD. E .LE. 0.200)TMEN
        1LO=6
        ELO=0.100
        ENI=0.200
    ELSE IF (E .GT. 0.200 .AMD. E .LE. O.500)TMEN
        1LO=7
        ELO=0.200
        EMI=0.500
    ELSE If (E .GT. 0.500 .ANO. E .LE. 1.000)TMEN
        ILO=8
        ELO=0.500
        ENI=1.000
    ELSE If (E .GT. 1.000 .AMD. E .LE. 1.500)TMEM
        1L0%9
        ELO=1.000
        EMI=1.500
    ELSE IF (E .GT. 1.500 .AND. E .LE. 2.000)TMEM
        ILO=10
        ELO=1.500
        EMI=2.000
    ELSE If (E .GT. 2.000 .ANO. E .LE. 4.000)THEM
        ILO=11
```

ELO=2.000
EHIS4.000
ELSE
ILO=11
ELO=2.000
EHI $=6.000$
END IF
RETURM
ENO

SUBROUTIHE FIVALU(XZ,FI,*)
F1=0.
F1= FRAC(KZ, Itrack)
IF (itrack .eq. 1) Then
pause ' to resume press <returnil' RETURM 1
ENO If
RETURM
EMO

FACTOR FOR


```
* SUGROUTINE NAME : FACTDR fortray *
SuGRCUTINE NNME : FACTOR FORTRAM*
    PURPOSE: Generate matrix of specific effective *
        energy for prescribed radionuclide *
    AuXILIARY PROGRAMS REQuIRED: a) SPEFF FORTRAN
    b) DECAY FORTRAN
    c) INTRPT FORTRAN *
    d) ENERGY FORTRAN *
*
************#***************+*******************************************
        SUBROUTIME FACTOR (HORD,NU,SFACT,NDATA,MUCLID,PLIFE,***)
        DIMENSIOM SFACT(19,18),TMASS(19),UF(3)
        CHARACTER*日 WORD,NUCLID
        DATA UF/1., 2. 131,0.5759/
        DATA TMASS/999.,19.6,37.1,8.27,1500., 150.,1040., 209.,160., 1810,.28
    44.,45.1,48200., 10500.,2830.,174.,65.4,50.3,69900./
    DO 15 1=1,19
    DO 15 J=1,17
    SFAGT(1,d)=UF (NU)=SPEFF(MORD, J, 1, TMASS(1),0,NUCL1D,PL1 FE)
    IF (WORD(1:5) .EQ. 'SORRY')THEN
        If gDATA .EQ. O)THEN
            pmuse - to resume press <returu>1*
            RETURN 1
        ELSE
            RETURN 2
        END IF
    END IF
15 contimue
    \infty0 20 I=1,19
20 SFACT(1,18)=SFACT(I,12)
    TEMP1=SFACT (5,12)
    TEMP2=SFACI(14,12)
    SFACT(5,12)=TEMP 1+UF (NU)*SPEFF (WORD, 12,5,TMASS(5),1,NUCLID, PLIFE)
    SFACT (5,18)=TEMP 1+UF (NU)*SPEFF(WORD,12,5, TMASS(5),2,NUCLID,PLI FE)
    SFACT(14, 12)=TEMP2+UF (NU)*SPEFF (LORD, 12,14,TMASS(14),1,MUCLID,PLI F
&5
    SFACT(14,18)=TEMP2+UF(NU)*SPEFF(NORD, 12,14, TMASS(14),2,NUCLID, PLIF
SE)
RETURN
END
```

```
*-4,
MAME FRAC FORTRAM-*
* FUNCTION SUBPROGRAM NAME: FRAC FORTRAN *
* PURPOSE: Retrieve fractional transfar of isotope to the *
* body fluid compertment, F1 *
* DATA FILE REQUIRED: a) BFFRAC FILE *
*
        FUMCTION FRAC (KZ,ITRACK)
        CHARACTER*31 C1
        OPEN(UMIT=14,FILE='BF FRAC', ACCESS='DIRECT', FORH='FORMATTEO', RECL=3
        $9)
        {SAVE=(5*(K2-1))
*)
*
* Tha user chooses tha proper Fi according to tha ingastion *
* form or irhalation clasa
*
```



```
    1 CALL CLEAR
        WRITE (*,5)
        URITE (*,6)
        5 FORMAT(///,' Entar the appropriate value of F1 from the given choi
        2ces:',/)
    6 FORMATS' F1 IMESSTION FORN INHALATION CLASS',/)
        F=0.
        DO 2 I=1,5
        KEY=ISAVE+I
        READ(UNIT=14,FMMT='(E8.1,A31)',ERR=10, REC=KEY)S,C1
        IF (I .EQ. 1 .AND. (S .EQ. O)\GOTO 10
        IF (B .EQ. O\GOTO 2
        WRITE (UNIT=*,FNT='{FB.5,3X,A31,3X)'}8,C1
    2 Continue
    4 READ(***,ERR=1,END=1)F
        FRAC=F
        RETURN
```



```
*
E ERROR HANDLER *
* 
```



```
    10 call clear
        WRITE (*,15)
    15 FORMAT (//'' ERROR: Vatue of F1 not found in the catalogue of nucti
        Ides in ICRP Publication 30', /', SCORGE: FRAC FORTRAN',/,' cORRECTI
        sVE ACTION: Try again II',//////
        ITRACK=1
        RETURN
        END
```


II. FOR

```
* PUMCTION (
* FUHCTION SUBPROGRAH HAME: I1 FORTRAH *
* PURPOSE: Convert tha source organ neme in alphameric *
* characters to an integer from source list *
*
    FUNCTION [1(C2)
    CMARACTER*ZO C2
    IF (CZ .EQ.' KIONEYS
        I1=6
    else tf(C2 .eq. ' liver
        11=7
    else if(C2 .eq. ' ovaries 'ytmen
        I=10
    ELSE If(C2 .EQ. ' pamcreas ')them
        11=11
    ELSE 1F(C2 .EO.' MIMERAL bOHE ')TMEN
        11=12
    ELSE IFIC2 .EO. ' SPLEEN 'JTMEN
        11=14
    else tfic2 .eq., testes ',tmeh
        tl=15
    ELSE Ific2 .EQ. ' TMYROIO 'JTMEN
        11=16
    ELSE IFCC2 .eq. ' TOTAL BCOY ')THEM
        11=17
    ELSE IF(C2 .EO. ' ALL OTHER 'JTHEN
        I9=18
    else tflC2 .Eo.' braim ',tmen
        11=19
else tfic2 .eq. ' morehals ')then
    11=20
ELSE IF(C2 .EQ. ' RED MARROU 'JTMEN
        !1=21
END IF
return
END
```


DO 5 1=1,19
NFIFTY(I) $=0$.
5 CONTINLE
DER=0.
RISK 0 .
ORGAN=0

ELSE IF (INTAKE .EQ. 2)TNEN
CALL INHALE (WORD, KZ, SEX, CLASS, F1, MF IFTY, FNP, FTG,FP, ROB, US, *15)

```
ICRP,FOR
```

* *

```
* *
* Submersion *
* Submersion *
* *
* *
        ELSE IF (INTAKE .EQ. 3)THEN
        ELSE IF (INTAKE .EQ. 3)THEN
            CALL SUBMER(WORD,HFIFTY,DER,RISK,ORGAN,*15)
            CALL SUBMER(WORD,HFIFTY,DER,RISK,ORGAN,*15)
    END IF
    END IF
**************************************************************************
**************************************************************************
*
*
* Particle Size Correction *
* Particle Size Correction *
*
*
        IF (AMAD .ME. 1.)THEN
        IF (AMAD .ME. 1.)THEN
            IF (AMAD .LT. O.2)TMEN
            IF (AMAD .LT. O.2)TMEN
            DTB=-0.163-(0.151*LOG(AMAD))
            DTB=-0.163-(0.151*LOG(AMAD))
            DNP=-D.059-(0.068*LOG(AMAD))
            DNP=-D.059-(0.068*LOG(AMAD))
            DP=0.289-(0.126*LOC(AMAD))
            DP=0.289-(0.126*LOC(AMAD))
            ELSE IF (AMAD .GE. O.2 .AND. (AMAD .LT. 10))THEN
            ELSE IF (AMAD .GE. O.2 .AND. (AMAD .LT. 10))THEN
            DTE=0.08
            DTE=0.08
            ONP=0.351+{0.219*LOG(NHAD))
            ONP=0.351+{0.219*LOG(NHAD))
            DP=0.289-(0.126*LOG(AMAD))
            DP=0.289-(0.126*LOG(AMAD))
            ELSE
            ELSE
                    DTB=0.229-(0.065*LOG(AMAD))
                    DTB=0.229-(0.065*LOG(AMAD))
                    DNP=0.621*(0.110*LOG(NHAD))
                    DNP=0.621*(0.110*LOG(NHAD))
                    DP=0.141-(0.040"LOG(AMAD))
                    DP=0.141-(0.040"LOG(AMAD))
            END IF
            END IF
            DD 10 I=1,19
            DD 10 I=1,19
        10 HFIFTY(I)=HFIFTY(I)*((FNP(I)*DNP/O.3)+(FTB(I)*DTB/0.08)+(FP(1)*D
        10 HFIFTY(I)=HFIFTY(I)*((FNP(I)*DNP/O.3)+(FTB(I)*DTB/0.08)+(FP(1)*D
        8P/0.25)3
        8P/0.25)3
            END IF
            END IF
            RETURN
            RETURN
                15 IF (MDATA .NE, O)THEN
                15 IF (MDATA .NE, O)THEN
            RETURN 2
            RETURN 2
            ELSE
            ELSE
            RETURN }
            RETURN }
            END If
            END If
            END
```

 END
    ```


SURROUTINE INGEST (MORD, KZ, SEX,F1, NFIFTY,ROR,US, *)
DIMENSION RHALF \((1: 50)\), 日RA \((1: 50), F 2(1: 3)\), BNALF(1:3), HFIFTY(1:24),FT
 8GI(1:50)
CHARACTER*1 ULIFE(50). SEX
CHARACTER* 8 RADID(50), HORD, ISOTOP, ERT, MOTS
REAL MROB
\(\mathrm{NO}=0\)

* 毛
- Subroutine for half-lives and nanes of the given parent
- isotope and it doughters

*

CALL DECAY1(MORD,RHALF, ULIFE, RRA, RADIO, NO, *12)
MOTS \(=10 R D\)
DD 5 I \(=1\), ND
ISOTOPFRADID(1)
```

 IF (I .NE. 1)THEH
 IF (ISOTOP(1:2) .EQ. 'AR' .OR. (ISOTOP(1:2) .ER. 'KR') .OR. (IS
 &OTOP(1:2) .EQ. 'XE') .DR. (ISOTOP(1:2) .EQ. 'NE')YTHEN
 HO=1-1
 coto }
 EMD IF
 EHD IF
 5 CONTINUE
    ```

```

 * Convert units of half-lives into days end celculate *
 * the radiological constants *
* 7 DO 10 1=1,NO
IF (ULIFE(I) .EQ. 'S')THEH
RHALF(I)=RHALF(I)/86400.
ELSE IF (ULIFE(I) .EQ. 'M' 3TMEH
RHALF(1)=RHALF(1)/(60.*24.)
ELSE IF (ULIFE(I) .EQ. 'H')THEH
RHALF(1)=RHALF(1)/24.
ELSE IF (ULIFE(I) .EQ. 'Y')THEN
RHALF(I)=RHALF(1)*365.25
ENO IF
RCONST(1)=(LOG(2.))/RHALF(1)
10 continue

```

```

* For alkaline earths (Ba, Ce, Ra, Sr), Tc, Re, Te-131, Te-132,*
* Te-131m, Te-133, Te-133m, Te-134, and C, source-organ *
* transformations are not evaluoted but retrieved directly *
* from dote file "ExCEPT"
*

```

```

 IF (MOTS(1:2) .EO. 'BA' .OR. (MOTS(1:2) .EQ. 'CA') .OR. (MOTS(1:2)
 & .EG. 'RA') .OR. (MOTS(1:2) .EQ. 'SR') .DR. (MOTS(1:2) .EQ. 'C-')
 & .OR. (MOTS(1:2) .EQ. 'TC') .OR. (MOTS(1:2) .EQ. 'RE') .OR. (MOTS
 2.ER. 'TE-131 '') .OR. (MOTS .EQ. 'TE-132 ') .OR. (MOTS .EQ. 'TE-1
 331M ').OR. (HOTS .EQ. 'TE-133 ') .OR. (MOTS .EQ. 'TE-133M') .OR
 &. (MOTS .EQ. 'TE-134 ')JTHEN
 GOTO }1
 END IF
    ```

```

* Initial activity, FT of the given radionuclide and its
* daughtere in transfer compartment

```

```

 DO 14 I= 1,HO
    ```

```

*
* FT of the parent (given) radionuclide *
*

```

\section*{INGEST．FOR}
```

 IF (1 .EQ. 1)THEN
 AST(1)=1./(26.+RCONST(1))
 IF (F1 .EQ. 1.)THEN
 FT(1)=26.*AST(1)*⿴囗⿱一一⿱⿴囗⿱一一大么A(1)
 ELSE
 BFCMST=6.*F1/(1.-F1)
 AS1(1)=24./6(24.*RCONST(1))*(6.*BFCNST*RCDNST(1)))
 FT(1)=BFCNST*ASI(1)*BRA(1)
 END IF
 ELSE
    ```

        AST(1)=AST(1-1)*RCOWST(1)/(24.+RCONST(1))
        1F (F1 .EQ. 1.)THEN
            \(\mathrm{FT}(1)=24\). *AST(1)*BRA(I)
            ELSE
            \(A S I(1)=((A S T(1-1) * 24 . * R C O N S T(1) /((24 . * R C O N S T(1)) *(6 .+B F C N S T+R\)
        \(8 \operatorname{CONST}(1)))\) ) \(+(A S I(1-1) * R C O N S T(1) /(6 .+8 F C N S T+R C O N S T(I))))\)
            FT(1) =BFCNST*ASI (1)*gRA(1)
            END If
            END IF
    14 COWTINUE

*
* Half tifa of elearence from transfar compartment *

    TSAVE=THALF(KZ)

*
* TCONST---->The rata of lose of the etable element from the
- body fluid compartment
* When transfer is instantaneous, to evoid en infinite
* quantity in the calculetion of iconst, it ie aeeumed as
- zaro *

    If (TSAVE .EQ. O.)THEN
        TCONST=0.
    ELSE
        TCONST=(LOG(2.))/TSAVE
    END \(1 F\)

*
* Calculation of hFIFTY *
- Outar loop to celculate h50 in aech *
* where the target liat ia es follows:
*
    TARGET ORGAN *
    ---------- KTARG MO. *
        -.-.-.... *

INGEST.FOR


150021 t=1,20
DO \(21 \mathrm{~J}=1\), NO
us(I, d) \(=0\).
21 CONTINUE
DO \(22 \mathrm{I}=1\), NO
UROB (I) \(=0\).
22 CONTINUE
MROB=0.
ICONT \(=0\)
\(\qquad\)
    DO 25 KTARG \(=1,19\)

*
* Skipping ovaries and testes ee terget orgens when the eex
* of the eubject is mate and femole respectively
*

    IF (SEX .EO. 'm')THEN
        IF (KTARG .EQ. 4) GOTO 25
    ELSE IF(SEX .EQ. 'FP)THEN
        IF (KTARG .EO. 3)COTO 25
    END IF


\section*{INGEST.FOR}


\section*{INGEST.FOR}
```

 IF (xtarg .gi. 1)goto 45
 if (ICONT .EQ. D)TNEN
 OPEN CUMIT=50,FILE='IMDEXD', FORM=' FORMATTEO',ACCESS='OIRECT', R
 &ECL=32)
 OPEN <UNIT=8O,FILE='EXCEPT',FORM='FORMATTED',ACCESS='DIRECT',REC
 8L=92)
 IF (MOTS(1:1) .EO. 'T')THEN
 M1=33
 ELSE IF (MOTS(1:1) .EO. 'S')THEN
 M1=26
 ELSE IF (MOTS(1:1).EQ. 'R')THEN
 M1=14
 ELSE If (MOTS(1:1) .eq. 'C')TMEN
 M1=9
 ELSE
 M1=1
 END IF
 DO 31 IND=AM,46
 READ(50,34, REC= IWD, ERR=70)ERT,T, IRECOD,U, IREKDO
 34 FDRMAT(AB,F8.5,14,F8.5,14)
 If (MDTS .EQ. ERT)THEN
 IF (t .EQ. Fi)THEN
 1CONT=1RECOO
 GOTO 36
 ELSE IF (U .EQ. F1)THEN
 ICONT=1REKOO
 \mathrm{ пото }36
 END IF
 END IF
 CONTINUE
 Close (50)
 If (ICONT .EQ. D)gOto 70
 ENO If
 READ (80,32,REC=1COWT,ERR=75)J,(US(JSORCE,1),1=1,MO)
 32 fdrmat(12,10E9.2)
 IF (J .NE. JSORCE)THEN
 DO 33: =1,NO
 US(JSORCE, 1)=0.
 33 continue
 GOTD 30
 Else
 ICONT=ICONT+1
 END If
 goto 45
 ENDIF

00 35 1=1,3
F2(1)=0.

```

\section*{INGEST.FOR}


\section*{INGEST. FOR}
```

* Loop to calculate product of (SEE*US) from contribution
$*$
* of all the redionuclides (parent + deughters) *
* $450050 \mathrm{I}=1, \mathrm{MO}$
URRD = RADIO(1)
SEE $=0$.
LOOP $=0$.
IF (JSORCE .EQ. 12)TMEN
IF (KTARG .EO. 5 .DR. (KIARG .EQ. 14) TMEN

```

```

*
* Function subprogram SPEFF calculates the specific effective
* energy, SEE deposited in target organ, KTARG due to source *
* orgen, JSORCE *
* *
* Loop=0 implies photon deegy from radionuclides *
* *

```

    SEE=SPEFF (WORO, JSORCE , KTARG, TMASS, LOOP, MOTS, RMALF (1))
    IF (HORQ(1:5) .EQ. 'SORRY'JTNEN
            PAUSE 'TO RESUME PRESS <RETURN>1'
            RETURH 1
        ENG \(1 F\)
        GRUSUH \(x\) GRNSUM + (US (JSORCE, 1 )*SEE*86600 )
        0055 LOOP \(=1,2\)

*
* Radionuclides assumed to be uniformly diatributed in volume *
*

    IF (MOTS(1:4) .EQ. 'P. 33' .OR. (MOTS(1:6) .EQ. 'NB-93M') .OR. (MOT
    ES(1:5).ER. 'WB-94') .OR. (MOTS(9:5) .EQ. 'U-232') .OR. (MOTS(1:5)
    8 .EO. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5).EO.
    s'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .DR. (MOTS(1:5) .EO. 'U-238
    8') , OR. (MOTS(1:2) .EQ. 'NA') .OR. (MOTS(1:2) .EQ. 'CR') .OR. (WOR
    \(80(1: 2)\).EA. 'RB') . OR. (MOTS(1:5).EQ. ' \(2 N-65 ')\).OR. (MOTS(1:6) .E
    8Q. 'PB-205') .OR. (MOTS(1:6) .EQ. 'PR-210') .OR. (MOTS(1:4) .EO. '
    \&BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4).EQ. 'V-49')
    \&.OR. (MOTS(1:6) .EQ. 'PD-103') .OR. (MOTS(1:6) .EQ. (PD-107') .OR.
    ( (MOTS (1:6) .EQ. 'SN-113') . DR. (MOTS(1:6) ,EO. 'SN-123') .OR. (MO
    \&TS(1:7).EQ. 'SN- \(119 \mathrm{M}^{\prime}\) ) .OR. (MOTS (1:6).EO. 'SN-126') .DR. (MOTS
    81:6) .EQ. 'TA-182') .OR. (MOTS(1:5) .EQ. 'U-181') .OR. (MOTS(1:5)
    \&.EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188')) THEN
            UTRAB \(=0.2^{\text {® }}\) US (JSORCE, \(I\) ) \({ }^{\text {\# }} 6400\).
            \(U C O R T=0.8 * U S(J S O R C E, I) * B 6400\).
    ELSE IF (MOTS(1:2) .EQ. 'BA' .OR. (MOTS(1:2) .EQ. 'EA') .OR. (MOTS
    \&(1:2) .EQ. 'TRA') .OR. (MOTS(1:2) .EO. 'SR') THEN
            IF (RHALF(1).GT. 15)TMEN
            UTRAB=0.2*US (JSORCE, I)*86400.
            UCORT=0.8*US (JSORCE , I)*B6400.
            ELSE
            UTRAB \(=0.5\) *US(JSORCE , 1\()=86400\).
            UCDRT \(=0.5\) *US (JSORCE, I)*B6400.
```

 EmD IF
 ELSE
    ```

```

* *
* Redionuclidee eesumed to be on bone eurfaces *
* *

```

```

 UTRAB=D.5*US (JSORCE, 1)*864DD.
 UCORT=0.5*US (JSORCE,I)*a6400.
 END IF
    ```

```

* *
* Loop=1 impliee charged particle doge in trebecular bone *
* *

```

```

 52 1F(LOOP .EG. 1)THEN
 SEE = SPEF F (LORD, JSORCE ,KTARG, TMASS, LOOP , MOTS ,RHALF (1))
 IF (HORD(1:5) .EQ. 'SORRY')THEN
 PAUSE 'TD RESLmE PRESS <RETURN>1'
 RETURN 1
 END IF
 GRNSUM*GRNSUM+(UTRAB*SEE)
 ELSE
    ```

```

* *
* Loopa2 implies charged particte dose in corticel bone *
* *

\#\#\#\#\#\#\#\#\#***********************
SEE=SPEFF(LORD, JSORCE,KTARG,TMASS, LOOP,MOTS,RHALF(1))
IF (WORD(1:5) .EQ. 'SORRY')THEN
Pause 'TO RESUME PRESS <RETURN>!'
RETURN 1
END IF
GRNSUM=GRNSUN+(UCORT*SEE)
END IF
55 CONTINHE
ELSE
GOTD 60
END IF
GOTO 50
END IF
60 SEE =SPEFF (MORD, JSORCE,KTARG,TMASS, LOOP,MOTS,RHALF(1))
IF (WORD(1:5) .EO. 'SORRY')THEN
PAUSE 'TO RESUME PRESS <RETURN>I'
RETURN 1
END IF
GRNSUM=GRNSUM+(US(JSORCE,I)*SEE*86400.)
5 0 ~ C O N T I N U E ~
30 CONTINUE
HFIFTY(KTARG)=(1.6E-10)*GRNSUM
25 CONTINUE
RETURN
2 RETURN }
70 WRITE(*,71)

```

\section*{INGEST.FOR}

71 FORMAT///,' ERROR: wuclide not found in cetalogue of ICRP Publicat sion \(30^{\prime}, I^{\prime}\) ' SCORCE: INGEST FORTRAM', \(/\) ', CORRECTIVE ACTIOW: Try ano ther nuclidel', \(/ / 1 / / /\) )

\section*{сото 12}

73 WRITE(*) 76)
76 format \(/ /\), ' \(^{\prime}\) ERROR: Unsbla to read us velues fron file mexceptil', 1.' SOURCE: INEEST FORTRAN',I' CORRECTIVE ACTIOW: Check the identi sfication and try egaint')
END

\section*{INHALE.FOR}


\section*{INHALE.FOR}
```

 CALL DECAY1(HORD,RNALF,ULIFE,BRA,RADID,NO,*12)
 MDTS=MORD
 DO 5 I=1,ND
 ISOTOP=RADIO(I)
 IF (I .NE. 1)THEN
 IF (ISOTOP(1:2) .EQ. 'AR' .OR. (ISOTOP(1:2) .EQ. 'KR') .OR. (IS
 ZOTDP(1:2) .EQ. 'XE') .OR. (ISOTOP(1:2) .EO. 'NE'))THEN
 NO=I-1
 GOTD }
 END IF
 END IF
 5 CONTINuE
    ```

```

*
* Convert units of helf*lives into days and calculata tha *
* radiologicel constents *
* *

```

```

 7 DO 1D I=1,NO
 IF (ULIFE(I) .EQ. 'S')TMEN
 RNALF(I)=RMALF(I)/86400.
 ELSE IF (ULIFE(I) .EQ. 'M')TMEN
 RHALF (I)=RHALF(1)/(60.*24.)
 ELSE IF (ULIFE(I) .EQ. 'N')TMEN
 RMALF(I)=RNALF(I)/24.
 ELSE IF (ULIFE(I) .EQ. 'Y')TNEN
 RHALF(I)=RNALF(I)*365.25
 END IF
 RCOMST(I)=(LOG(2.))/FLOH(RHALF (I))
 1D CONTINUE
    ```

```

* *
* Frection of inhaled atable element transfarred to the *
* boody fluids via tha GI trect, FBF *
* *

```

```

 DD 15 I=1,ND
    ```

```

* *
* FBF of the parent (given) radionuclide *
* *

**
IF (I .EQ. 1)THEN
AST(1)=1./FLOH(24.+RCONST(1))
IF (F1 .E0. 1.>TNEN
FBF(1)=FLOH(24.*AST(1)*BRA(1))
ELSE
BFCNST=6.*F1/(<1.-F1)
ASI(1)=24./FLOM((24.+RCOW\$T(1))*(6.-BFENST+RCONST(1)))
FBF(1)=FLOH(BFCNST*ASI(1)*BRA(1))
END IF
ELSE
**
*

INHALE.FOR

```
* FBF of the daughters *
```



```
            AST(I)=AST(I-I)*RCONST(I)/FLON(24.*RCONST(I))
            IF (F1 .EQ. 1.)THEN
                    FBF(I)=FLOM(26.*AST(1)*BRA(I))
            ELSE
                    ASI(I)=((AST(I-1)*24.*RCONST(I)/FLOW((24.+RCOWST(I))*(6.*BFCN
        8ST+RCONST (1)))})+(ASI(I-1)*RCONST(1)/FLON(6.+BFCNST+RCONST (1))))
            FBF(I)=FLOW(BFCNST*ASI(1)#BRA(1))
            END IF
        END IF
    15 CONTINUE
```



```
*
* Frections of inheled materiel deposited in three respiretory*
* regions, the naeel paeeege (N-P), the trachee and bronchiel *
* tree (T-B), end the pulmonary region (P), the bolance being *
* the frection exheled. It le eseumed thet the mctivity medien*
* eerodymamic dismeter, Amad ie 1 micrometer *
* *
```



```
    DNP=0.30
    DTB=0.08
    DP=0.25
```



```
*
* Subroutine for frection and clearance retes for transfer of *
* the materiel between compartments *
* Initielizing ell cleerence retes and frections ee zero *
*
```



```
    DATA FA,FB, FC,FD,FE,FF,FG,FH,FL,FJ/10*O./f
    DATA CLA,CLB,CLC,CLD,CLE,CLF,CLG,CLN,CLI,CLJ /10*O./
    CALL RESPIR (CLASS,FA,FB,FC,FD,FE,FF,FG,FH,FI,FJ,CLA,CLB,CLC,CLD,C
    &LE,CLF,CLG,CLH,CLI,CLJ)
```



```
*
* Trensformations in verious compartmente of the lung *
*
```



```
    DO 25 I=1,NO
```



```
*
* Trensformations of the parent redionuclide
    *
* *
```



```
    IF (I .EG. 1)THEN
        MA(1)=0NP*FA/FLOU(CLA+RCONST(1))
        AB(1)=DNP*FE/FLOW(CLB+RCONST(1))
        AC(1)=DTB*FC/FLOU(CLC+RCONST(1))
        AD(1)=0TB*FD/FLCN(CLD+RCONST(1))
        AE(1)=DP*FE/FLOU(CLE+RCDNST(1))
        AH(1)=9P*FH/FLOU(CLH+RCONST(1))
```


INHALE.FOR

```
            Al(1)=AM(1)*CLN*F1/FLOU(CLI+RCONST(I))
            AJ(1)=0.
            If (class .ee. 'D')THEM
                    AD( (1) =0.
            AF(1)=0.
                    AG(1)=0.
            ELSE
                    AF(1)=DP*FF/FLOU(CLF+QCOWST(1))
                    AG(1)=0P*FG/FLOU(CLG+RCOWST(1))
                    AD1(1)=((AF(1)*CLF)+(AG(1)*CLG))/FLOW(CLD*RCOWST(1))
            EMD IF
            IF (CLASS .Eg. 'Y')tMEH
                    AJ(1)=0P*FH*CLH*FJ*(1. -UXP(-365_25*50.*RCONST(1)))/FLOW(RCOW
        &ST(1)*(CLH+RCONST(1)))
            EMD IF
        ELSE
***********************************|*******************************
* *
* Transformations of the daughters *
* *
```



```
\(M(1)=M(1-1) * R C O W S T(1) / F L O U(C L A+R C O W S T(1))\)
            AB(1)=AB(I-1)*RCOWST(1)/FLOW(CLB+RCOWST(1))
            AC(1)=AC(1-1)*&CONST(I)/FLOW(CLC+RCONST(1))
            AD(1)=ND(1-1)*RCONST(1)/FLOW(CLD+RCOWST(1))
            AE(1)=AE (I-1)*RCONST(I)/FLOW(CLE+RCONST(1))
            AH(1)=AH(1-1)=RCOWST(1)/FLOU(CLH+RCOWST(1))
            AI(I)=(AH(T)*CLN*FI/FLOU(CLI+RCOWST(I)))+(AI(I-1)*RCOWST(I)/FLO
        *u(CLI+RCOWST(!)))
            AJ(I)=0.
            IF (CLASS .Eq. 'D')TMEM
                    NDI(1)=0.
                    AF(1)=0.
                    AG(1)=0.
            ELSE
                    AF(I)=AF(I-1)*RCOMST(I)/FLOU(CLF+RCOWST(I))
                    AG(I)=AG(I-i)*RCOWST(I)/FLOU(CLG+RCOWST(I))
                    ADI(I)=((AF(I)*CLF)+(AG(I)*CLG))/FLOW(CLD+RCONST(!))
            END IF
            If (CLASS .eq. 'Y'tthen
                    AJ(1)=(AJ(I-1)+(AH(1-1)*CLH*FJ/FLOW(CLH+8COwST(I)))}\mp@subsup{)}{}{*}(1.-UX
        &(-365.25*50.*RCDNST(I)))
            EMD :F
        END JF
    25 comtinue
*
* Fraction of the inhaled radionulide trastersd directy **
* Fraction of the inhaled radionuclide transferred directly to *
* the body fluid compartment. FBFDIR
**************************)
    DO 27 {=1,MO
    FBFDIR(I)=BRA(I)*FLOU(CCLA*AA(I))+(CLC*AC(I))+(CLE*AE(I))+(CLI*ALS
    41)>)
```


INHALE.FOR

27 cont inue

DO 30 1=1,N0
FGI (I) $38 R A(I) * F L C N((C L B * A B(I))+(C L D * A D(I))+(C L O * A D 1(I)))$
30 continue

DO 35 [=1, NO
FT(1)=FAFDIR(1)+(FGI(1)*FBF(1))
35 CONTINUE

For elkaline earthe (8e, Ca, Ra, Sr), Tc, Ra, Te-131, Te-132, *

- Te-131m, Te-133, Te-133m, Te-134, and C, eourca-organ
* transformations are not evaluated but retrieved directly *
- from date file nexceptw
-

If (MOTS(1:2) .EQ. 'BA' .OR. (MOTS(1:2) .EQ. 'CA') .OR. (MOTS(1:2)
8 .EO. 'RA') .OR. (MOTS(1:2) .EO. 'SR's) .OR. (MOTS(1:2) .EQ. ' $\mathrm{C}-1$ ')
\& .OR. (MOTS(1:2) .EO. 'TC'S .OR. (MOTS(1:2) .EQ. 'RE') .OR. (MOTS(
(1:6) .EO. 'TE-131') .OR. (MOTS(1:6) .EQ. 'TE-132') .OR. (MOTS(1:7)
\& .EQ. 'TE-131M') .OR. (MOTS(1:6) .EQ. 'TE-133') .OR. (MOTS(1:7) .E
80. 'TE+133M') , OR. (MOTS(1:6) .EQ. 'TE-134') JTNEN
coro 37
END If

*

* Half-life of cleerance from the TRANSFER compmrtment *
* When transfer ie instentaneous, to avoid an infinite quantity* * in the celculation of TCOWST, it is eeeuned as rero
ELSE
TCOwST=(LOG(2.)3)TSAVE
END If

INHAIE.FOR

INHALE, FOR

```
** *xipping aries ar
* Skipping ovaries and testes es sourca organs when the esx of *
* the subject is male and female raspectively
*
    IF (SEX .EO. 'N')THEN
        IF (JSORCE .EO. 10)GOTD 55
    ELSE IF (SEX .EQ. 'f')THEN
        IF (JSORCE .EO. 15)COTD 55
    END IF
```



```
*
* For elkeline earths (Be, Ca, Re, Sr), Tc, Re, Ta=131, Te-132,
* Te-131m, Te=133, Te-133m, Te-134, and C, source-grgan *
* &Parsformation捭 not eveluated but retrieved directly
* from date file "EXCEPT* *
'*
```



```
    IF (MOTS(1:2) .EO. 'BA' .OR. (MOTS(1:2) .EQ. 'CA') .OR. (MOTS(1:2)
    & .EO. 'RA') .OR. (MOTS(1:2) .EQ. 'SR') .OR. (mOTS(1:2) .EQ. 'C-')
    & .OR. (MOTS(1:2) .EQ. 'TC') .CR. (MOTS(1:2) .EQ. 'RE') .OR. (MOTS(
    81:6) .EQ. 'TE-131') .OR. (MOTS(1:6) .EQ. 'TE-132') .OR. (MOTS(1:7)
    & .EQ. 'TE'131M') .OR. (MOTS(1:6) .EO. 'TE-133') .OR. (MOTS(1:7) .E
    80. 'TE-133M') .OR. (NOTS(1:6) .EO. 'TE-134'))TMEN
        If (KTARG .GT. 1)gota %O
        IF (ICONT .EO. O)THEN
            DPENCUWIT=50, FILE='JMDEXI', FORH=' FORMATTED',ACCESS='DIRECT',
    CRECL=34)
            OPENCUNIT=80,FILE ='EXCEPT', FORH='FORMATTED', ACCESS='DIRECT',
    CRECL=92)
            IF (MOTS(1:1) .EO. 'T')TMEN
                M1=33
            ELSE IF (MOTS(1:1) .EO. 'S')TMEN
                M1=26
            ELSE IF (MOTS(1:1) .EQ. 'R')TMEN
                M1=14
            else if (mots(1:1) .eq. 'C')TMEN
                M1*9
            ELSE
                M1=1
            END IF
            DO 56 IND=11,46
            READ(50,57,REC= JND, ERR=1DD)ERT,T,TYPE,IRECC00,U,SORT, IREKOD
57 FORMAT(AB, F8.5,A1, 14,F8.5,A1, 14)
            JF (MOTS .EQ. ERT)THEN
                    IF (T .EQ. F1 .AND. (TYPE .EQ. CLASS))TMEN
                    JCONT=1RECCO
                    GOTD 58
                    ELSE IF (U .EQ. F1 .AND. (SORT .EQ. CLASS)STNEN
                    JCOWT=IREKDD
                    GOTD 58
                    Ewo IF
            END IF
            CONTIMUE
```


INHALE. FOR

 CLOSE (50)
 IF (ICONT .EQ. O)COTO 100
 ENg IF
 IF (ICONT .EQ. 6%%)COTO 70
 READ(80,59, REC= !COWT ,ERR=105>J, (US(JSORCE, 1), 1 = 1 , NO)
 FDRMAT(12,10E9.2)
 IF (J .NE. JSORCE)TNEN
 0061 t=1,NO
 US(JSORCE,1)=0.
 CONTINUE
 GOTO 55
 ELSE
 ICOWT={CONT+1
 END IF
 coro 70
 END IF

```

```

*

```

```

*
* Initializing the fraction ratained in source organ from the *
* body fluid compartment, and the biologicel half-lifa of the *
* radionuclide in eource orgen ee zaro *
* *

```

```

 D0 60 I=1,3
 F2(1)=0.
 ghalF(1)=0.
 6 0 \text { cont INUE}
 SMA5S=0.
    ```

```

*
* Skipping retention fractions for source organs etomach, *
* Sl, bll, ULl, and lung *
*

```

```

 JF(JSORCE .EQ. 2 .OR. (JSORCE .EQ. 3) .OR. (JSORCE .EQ. 4) .OR. (J
 &SORCE .EQ. 5) .OR. (JSORCE .EQ. B)SCOTO 65
    ```

```

*
* With given KZ, the following eubroutine, TFRAC will give
* ratention fraction, F2 and biologicat half-lifa, BNALF in
* eource organs. If eeveral organs, I of mase (SmAss) Mi ere *
* associeted with different retention fractions for e given kZ,*
* then for 'TOTAL BCOY' se source organ, tha eource mase ie *
* taken to be 70000-(SUM Mf) and the retention fractions to be *
* the ones eeeociated with eource organ 'ALL OTHER' *
* *

```

```

 CALL TFRAC(KZ,F2,BNALF,JSORCE, SMASS,*12)
    ```

* If e source organ does not have a unique ratention frection, *
* it ie akipped becausa often it ie ineluded in the eourca *
```



```
        IF (MORD(1:5) .EQ. 'SORRY')THEN
            PRUSE ( TD RESUME PRESS <RETURN>I!'
            RETURN I
            END :F
            GRNSUM=GRNSUM-(US(JSORCE,1)*SEE*$6400.)
            DEPOT=US(JSORCE, 1)*SEE*SSHOD./FLON(FT(1))
            TNP(JSORCE,I)=FLOU((CLA*M(1))*(CLB*AB(1)*FGF(1)))*DEPOT
            TTB(JSORCE,!)=FLOU((CLC*AC(1))+(CLD*AD(1)*FBF(1) )
            TP(JSORCE,I)=FLOU((CLE*AE(I))+(CLI*AI(1))+(CLD*AD1(I)*FBF(I)
        8))*DEPOT
            DO 80 LOOP=1,2
```



```
*
* Radionuclides assumed to be uniformly diatributed in volume *
*
        IF (MOTS(1:6) .EQ. 'P-33' .OR. (MOTS(1:6) .EQ. 'NE-93M') .OR. (MOT
        8S(1:5) .EQ. 'NG-94') .OR. (MOTS(1:5) .EQ. 'U- 232') .OR. (MOTS(1:5)
        * .EQ. 'U-23') .OR. (MOTS(1:5) .EO. 'U-23'') .DR. (MOTS(1:5) .E0.
        8'U-235') .OR. (MOTS(1:5) .EO. 'U-236') .OR. (MOTS(1:5) .EO. 'U-238
        2') .OR. (MOTS(1:2) .EQ. 'NA') .OR. (MOTS(1:2) .EQ. 'CR') .OR. (HOR
        2D(1:2) .EO. 'RG') .OR. (MOTS(1:5) .EQ. '2N-65') .OR. (MOTS(1:6) .E
        80. 'P6-205') .OR. (MOTS(1:6) .EO. 'PB-210') .OR. (MOTS(1:6) .EO. '
        2BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EO. 'V-49')
        &.OR. (MOTS(1:6) .EO. 'PO-103') .OR. (MOTS(1:6) .EO. 'PO-107') .DR.
        &(MOTS(1:6) .EQ. 'SN-113') .OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (MO
        8TS(1:7) .EO. 'SN-119m') .DR. (MOTS(1:6) .EQ. 'SN-126') .OR. (MOTS(
        81:6) .EO. 'TA-182') .OR. (MOTS(1:5) .EO. 'M-181') .OR. (MOTS(1:5)
        &.EQ.'W-185').OR. (MOTS(1:5) .EO. '(W-188'))THEN
            UTRAB=0.2*US(JSORCE, 1)*86400.
            UCORT=0.2*US (JSORCE,1)*8S400.
        ELSE IF (MOTS(1:2) .EQ. 'BA' .OR. (MOTS(1:2) .EQ. 'CR') .OR. (MOTS
        &(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'SR'))THEN
            If (RMALF(1) .GT. 15)THEN
            UTRAB=0.2*US (JSORCE,1)*8S400.
            UCDRT=0.8*US (JSORCE, I)*86400.
            ELSE
                    UTRAB=0.5*US(JSORCE, 1)*86400.
                UCORT=0.5*US(JSORCE,1)*86400.
            END IF
        ELSE
```



```
*
* Radionuclides assumed to be on bone surfaces *
*
```



```
            UTRAB=0.5*US(JSORCE, I)*86400.
            UCORT*0.5#US(JSCRCE,1)*86400.
        EMD If
```



```
*
Loope1 implies charged particla dosa in trabecular bone
```



```
        IF(LOOP .EQ. 1)TMEN
            SEE=SPEFF (MORD, JSORCE ,KTARG,TMASS, LOOP ,NOTS ,RKALF(1))
            IF (MORD(1:5) .EQ. 'SORRY')THEM
                PAUSE ' TD RESUME PRESS <RETURH>1!"
                RETURN }
            END IF
            GRNSUM=ERNSUH+(UTRAB*SEE)
            DEPOT=UTRAB*SEE/FLOW(FT(1))
            TMP(JSORCE,1) =FLOU(((CLA*AA(1))+(CLB*AB(I)*FBF(I)))*DEPOT
    *)*TNP(JSORCE, I)
            TTB(JSORCE, 1)=FLOU(((CLC*AC(1))+(CLD*AD(1)*FBF(I)))*DEPOT
    &)*TTB(JSORCE,I)
            TP(JSORCE, I)=FLOW(()(CLE*AE(I))*(CLI*AI(I))+(CLO*AD1(I)*FB
    #F(I)))*DEPOT)+TP( ISCRCE, I)
            ELSE
* Loop=2 implies charged particle dose in corticel bone (
                    SEE=SPEFF (LIORD, JSORCE, KTARG, TMASS , LOOP, MOTS, RHALF(1))
                    IF (MORD(1:5) .EO. 'SORRY')TMEN
                        PAUSE (TO RESUME PRESS <RETURN>1!'
                        RETURN }
                    ENO IF
                    GRMSUN=GRMSUH*(UCORT*SEE)
                    DEPOT&UCORT*SEE/FLOU(FT(I))
                    TNP( HSORCE,1)=FLOU(((CLA#M(I))+(CLB*AB(I)*FBF(I)))*DEPOT
    8)+TNP(JSORCE,I)
            TT8( ISORCE, 1)=FLOU(((CLC*AC(I))+(CLD*AD(I)*FBF(I)))*DEPOT
    g)*TTB(JSORCE,I)
            TP(#SORCE,I)=FLOU(((CLE*AE(I))+(CLI*AI(I))+(CLD*AD1(I)*FB
    &F(1)))=DEPOT)+TP(ISORCE, 1)
                ENO IF
    8 0
                CONTIMUE
            ELSE
                covo 85
            END IF
            GOTD 75
        END IF
    85 SEE=SPEFF (WORD, JSORCE,KTARG,TMASS, LOOP,MOTS, RNALF(1))
        IF (WORD(1:S) .EO. 'SORRY')TMEN
            PAUSE , TO RESUME PRESS <RETURH>1!'
            RETURM 1
    ENO IF
    CRNSLOM=GRNSUM+(US(JSORCE, I)*SEE*86400.)
```



```
* Fraction of committed dosa equivalent in tha target tissuve*
* resulting from deposition in tha N-P, T-B, and P regions *
*
*
```


DEPOT=US (JSORCE, 1)*SEE*86400.
IF (JSORCE .EC. B)TMEN

INHALE. FOR

```
            TMP(JSORCE, I )=0.
            TTB(JSORCE,I)=FLOU(AC(I )+AD(I))*BRA(I)*SEE*86400.
            TP(JSORCE,I)=FLOW(ADI(I)+AE(I)+AF(I)+AG(I)+AH(I))*BRA(I)*SEE*86
        8400.
            ELSE IF(JSORCE .EQ. 2 .OR. (JSORCE .EQ. 3) .OR. (JSORCE .EQ. 4)
            & .OR. (JSORCE .EQ. 5))THEN
                    TMP(JSORCE,I)=FLOU(CL8*AB(I)*DEPOT/FGI (I))
                    TTB(JSORCE, 1)=FLOU(CLD*AD(1)*DEPOT/FGI (I ))
                    TP(JSORCE,I =FLOU(CLO*AD1(I)*DEPOT/FGI(I))
            ELSE
                    TWP(JSORCE,I)=FLOW(((CLA*AA(I))+(CLB*AB(I)*FBF(I)))*DEPOT/FT
        8(I))
            TTB(JSORCE,I)=FLON(((CLC*AC(I))*(CLD*AD(I)*FBF(I))}*DEPOT/FT
        8(I))
            TP(JSORCE,l)=FLOU(()(CLE*AE(I))+(CLI*AI(I))*(CLD*ADI(I)*FBF(I
        *))#*DEPDT/FT(I))
        END IF
    T5 CONTInuE
        00 %5 l=1,NO
        FNP(KTARG)=FNP(KTARG)+TNP(JSORCE,1)
        FTB(KTARG)=FTB (KTARG)*TTB(JSORCE,I)
        FP(KTARG)=FP(KTARG)+TP(JSORCE,I)
    95 CONTINUE
    55 CONTIMUE
        GROUP=FNP(KTARG)+FTB(KTARG) FP (KTARG)
        FNP(KTARG)=FNP(KTARG)/FLOU(GROUP)
        FTB(KTARG)=FTB(KTARG)/FLOU(GROUP)
    FP(KTARG)=FP(KTARG)/FLOW(GROUP)
******************************************************************************
*
* Specifle commltted dose, H-50 in each target organ
*
    HFIFTY(KTARG)=(1.6E-10)*GRMSUM
    50 continue
        RETURN
    12 RETURN 1
100 WRITE(*, 101)
101 FORMAT(//,' ERROR: Nuclide not found in catslogue of ICRP Publlicat
    &ion 30',/'' SOURCE: INHALE FORTRAN',/'' CORRECTIVE ACTION: Try ano
    &ther nuel {de!'.////)
        GOTO 12
105 URITE(*,106)
106 FORMAT(//.' ERROR: Unable to resd US values from fite "EXCEPTM!'.f
    &,' SOURCE: INHALE FORTRAN', /'' CORRECTIVE ACTION: Check the identi
    &fication and try apaln!')
    ENO
```


INTRPT.FOR


```
- *
* FUNETION SURPROERAM NAME : INTRPT FORTRAN
* PURPOSE: Interpolates the values of absorbed frection
* AUXILIARY PROGRAM REQUIRED: *) ENERGY FORTRAN
* DATA FILE RECUIRED: a) ABSFRAC FILE 
*
```



```
    FUNCTION INTRPT (E,JSGRCE,KTARG,ICNECK)
    REAL IMTRPT
    CPEN CUNIT=13,FILE='ABSFRAC',ACCESS='DIRECT',FORM='FORMATTED',RECL
    8=9)
        ILO=0
        ELO=0.
    ENI=0.
    CALL ENERGY{E,ELO,ENI,ILO)
    IMI=[LO+1
    KEY=[LO+((JSORCE-1)*12)*((KTARG-1)*12*20)
    READ (UN[T=13,FWT='(E9.3)',REC=KEY,ERR=5)AFLO
    KEY={NI*((JSORCE-1)*12)+((KTARG-1)*12*20)
    READ (UWIT=13,FRT='(E9.3)',REC=KEY,ERR=5)AFHI
    DIFF={(AFNI-AFLO)* (E-ELO))/(ENI-ELO)
    INTRPT=AFLO+OIFF
    RETURN
    5 CALL CLEAR
    WNITE (*,10)
10 FORMAT(//,' ERROR: Unable to read the value of ebsorbed fraction f
    Gor the given photon energy, source, and terget from file mas
    8SFRAC";'/,' SOURCE: INTRPT FORTRAN',/'' CORRECTIVE ACTION: Check &
    the muclide decay scheme and try again!!',///)
        ICMECK=1
        RETURN
```

 EMD

PCLASS.FOR

PCLASS. FOR

$$
10-15-1987
$$

```
PRINT *,' Carbonates--> sll except Claaa y
PRINT *,' Phosphates--> ell except clase W
PRINT *,' Oxides and Hydroxides--> Groups 1a, 3a(II), fa(II), 5o,
PRINT *,' (II,III), Ge(III)
PRINT *,' Halides--> Groups 1a and 7s
PRIMT *', Nitretes--> all except Cleee W
PRINT *', Hoble Gases--> Group O
PRINT *',
PGINT ".'NOte: where rafarence ie made from one chomical form to'
PRINT *', mother, it implies that an in vivo convereion
PRINT *,' occurs, e.g. hydrolysie reaction
5 \text { PRINT*}
PRINT *," Entar integer 1 to repeat or 0 to contírue."
READ (*,*,ERR=5,EMD=5)NCON
IF (NCON .NE. 1 .AMD. (NCON .NE. D))gOTO S
IF (NCOM .EQ. 1)gOTO 1
call clear
Emo
```


REFMAN, FOR

function refman(ktarg)
if gktarg .eg. itimen
REFMAN=999.
ELSE IF (KTARG .EO. 2)TMEN
RE FMAN=19.6
ELSE IF (KTARG .EQ. 3)TMEN REFMAN=37.1
ELSE IF (KTARG .EQ. 4)Then REFMAN $=8.27$
else tf ctart .eg. 5timen REFMAN $=1500$.
ELSE IF (KTARG .EO. 6)THEN REFMAN= 150 .
else if gktarg .eq. 7titmen REFMAN 1040 .
ELSE IF (KTARG .EO. B)TNEN REFMAN=209.
else if (ktarg .eg. 9)tinen REFMAN= 160.
ELSE IF (KTARG .EG. 10)TMEN REFMAN $=1810$.
else if gktarg .eg. 11)then REFMAN=284.
ElSE If (KTarg .eo. 12)tmen REFMAN=45.1
else if (KTarg .eq. 13)twen REFWAM=48200.
else if (ktarg .eo. 16)then REFMAN=10500.
else if gktarg .eg. 15)tmen REFMAN=2830.
else if ektarg .e日. 16)tinen REFMANE 174 .
else if (KTARG .eo. 17)then REFMAN $=65.4$
ELSE IF (KTARG .EO. 18)TMEN
REFMAN=60.3
ELSE IF (KTARG .EO. 19)tMEN
REFMAN=69900.
END IF
RETURN
EMO

RESPIR.FOR

SUBROUTINE RESPIR CCLASS,FA,FB,FC,FD,FE,FF,FG,FH,FI,FJ,CLA,CLB,CLC \&,CLD,CLE,CLF,CLG,CLH,CLI,CLJ) Character* 9 CLASS

IF (CLASS .EQ. 'D')THEN
FA=0.5
FB=0.5
$\mathrm{FC}=0.95$
$\mathrm{FD}=0.05$
fE=0.8

```
    FH=0.2
    FI=1.0
    CLA=LOG(2.)/0.01
    CLB=LOG(2.)/0.01
    CLC=LOC(2.)/0.01
    CLO=LOG(2.)/0.2
    CLE=LOG(2.)/0.5
    CLH=LOG(2.)/0.5
    CLI=LOG(2.)/0.5
else if (class .eq. 'w')tMEN
    FA=0.1
    FB=0.9
    FC=0.5
    FO=0.5
    FE=0.15
    FF=0.4
    FG=0.4
    FR=0.05
    F1=1.0
    CLA=LOG(2.)/0.01
    CLB=LOG(2.)/0.40
    CLC=LOG(2. )/0.01
    CLO=LOC(2.)/0.2
    CLE=LOG(2.)/50.
    CLF=LOG(2.)/1.0
    CLG=LOG(2.)/50.
    CLH=LOC(2.)/50.
    CLI=LOC(2.)/50.
ELSE IF (CLASS .EQ. 'Y')THEN
    FA=0.01
    Fe=0.99
    FC=0.01
    F0=0.99
    FE=0.05
    FF=0.4
    FG=0.4
    FH=0.15
    FI=0.9
    Fj=0.1
    CLA=LOC(2. )/0.01
    CLB=LOG(2.)/0.40
    CLC=LOG(2. )/0.01
    CLD=LOG(2.)/0.2
    CLE=LOG(2.)/500.
    CLF=LOG(2.)/1.0
    CLG=LOG(2.)/500.
    CLH=LOG(2.)/500.
    CLI=LOG(2.)/1000.
    CL.j=0.
ENO IF
EwO
```


RESULT.FOR


```
* *
* SURRCUTINE NAHE : RESULT FORTRAN
* PURPOSE: Evalunte Neighted Committed Dosa Equivelent using
* the 10% axclusion principle, the DAC, end tha ALI *
* DATA FILE RECUIRED : e) RETEWT FILE
* 
* *
    SUBROUTINE RESULT (MFIFTY,LDOSE,ALI, POST, IRGNT,OAC,IZ, REMOR,UREMD
    &R,WTF,SUM)
        DINENSION HFIFTY(1:26),WOOSE(1:26),TENP(1:12),REM(1:5),NTARG(1:5)
        CMARACTER*2D t2
        real maxdos
        CPEN (UNIT=15,FILE='RETENT',ACCESS='DIRECT',FORM='FORMATTED',RECL=
    266, STATUS='OLD')
```



```
*
* Finding the five organs or tiasues of tha remeinder receiving
* tha highest doee equivalente; the axposure of all other
* reneining tieeves ie neglected
*
```



```
    DD 1 1=1,20
    WOOSE(1)=0.
    1 continue
    DO 5 J=1,12
    IF(1 .GE. 8)TMEN
            TEMP(I)=NFIFTY(I +7)
        ELSE
            TEMP(1)=HFL ITY(1+5)
        END IF
    5 cowtinue
        DO 10 t=1,5
        REM(1)=AMAX1(TEMP(1), TEMP(2),TEMP(3),TEMP(4),TEMP (5),TEMP(6),TEMP(
        87),TEMP(8),TEMP(9),TEMP(10),TEMP(11),TEMP(12))
            DO 15 J=1,12
            IF (REM(1) .EQ. TEMP(J))THEN
            TEMP(J)=0.
            COTD 10
        END IF
    15 comtinue
    10 comtimue
```



```
*
* Weighted committed doee equivalent, MDOSE *
* *
```



```
    DD 20 1=1,19
    IF (I .EQ. 1)THEN
        WT=0.12
        HOOSE(1)=|T*MFIFTY(1)
    ELSE IF(1 .EQ. 2)TNEN
        WT=0.03
        HOOSE(1)=WT*MFIFTY(1)
```


RESULT. FOR

```
    ELSE \F(I .EQ. 3 .OR. (I .EQ. 6))THEN
        UT=0.25
        HDOSE (I)=\T**MFIFTY(1)
        ELSE IF(I .EQ. 5)TMEM
            HT=0.12
            HDOSE(I)=WT*HFIFTY(1)
        ELSE IF(I .EQ. 13)TNEN
        WT=0.15
        MDOSE(I)=WT*WFIFTY(1)
        ELSE IF (I .EQ. 14)TMEN
            WT}=0.0
            MDOSE(I)=\T*WFIFTY(I)
        ELSE
            UT=0.06
            DO 25 J=1,5
            IF (MFIFTY(I) .EQ. REM(J))TMEN
                HDOSE (I)=WT#REM(d)
                cOTO 20
            ENO IF
    25
            CONYIMUE
        ENO IF
    20 contINUE
```



```
*
* The maximm weighted conmitted dose equivalent, maxoos *
* *
```



```
    MAXOOS=AMAX1(MDOSE (1),MDOSE (2),MDOSE (3), MDOSE(4),MDOSE (5), MDOSE (6)
    &,HDOSE (7),HOOSE (8),MDOSE (9),MOOSE (10),MDOSE (11), LDOSE (12),MDOSE(13
```



```
*************************************************************************
*
* Weighted conmitted dose equivalent,W0SE which Is greeter *
* than or equal to 10X of the meximm weighted velue of N-50 *
* per unit inteke In eny tiesue,maxdos
* *
```



```
    PERC=0.1*MAXDOS
    00 30 J=1,19
    If (MDOSE(1) .LT. PERC)IMEN
        MOOSE(I)=0.
    ENO IF
    30 continue
```



```
* Check for the organ nomed in the matabolie model *
* *
```



```
    ISAVE=(5*(KZ-1))
    SUM=0.
    0035 \=1,5
    NTARG(I)=0
    35 CONTINUE
    0040 J=%.5
```


RESULT.FOR

```
    KEY=1 SAVE+1
    READ(UNIT=15,FNT='(A20)',REC=KEY)C2
    [ SORCE=! 1(C2)
    lF(15ORCE .EQ. 6)TNEN
        NTARG(1)=11
    ELSE IF(ISORCE .EQ. 7)THEN
        wTarg(2)=10
    ELSE IF (ISORCE .EQ. I1)TNEN
        WTARG(3)=18
    ELSE IF (ISORCE .EQ. 14)TMEN
        NTARG(4)=16
    ELSE IF (ISORCE .EQ. 17)TNEN
        NTARG(5)=19
    ELSE
        coro 40
    EwO IF
    O contimue
*
* Assigning a committed dose equivalent to the "REMAINOERa with
* weighting factor
*
```



```
00 45 f=1,19
IF (LDOSE(I) .EQ. O.)THEN
            HFIFTY(1)=0
        ENO IF
    45 CONTINUE
        DO 50 I=1,5
        REM(1)=0.
    50 CONTIMUE
        1 COUMT =0
        DO 55 I=10,19
        IF (I .EQ. 13 .OR. (! .EQ. 14))coto 55
        DO 60 J=1,5
        IF (1 .EQ. NTARG(J))EOTO 55
    60 CONTINUE
        IF (NFIFTY(I) .GT. O.)THEN
        ICOUNT=1COUNT+1
        REM(ICOUNT)=NFIFTY(I)
        HFIFTY(1)=0.
        LNOSE(I)=0.
    END IF
    55 contINUE
        REMDR=AMAX1 (REM(1),REM(2),REM(3),REN(4),REM(5))
        WTF=0.06*ICOUNT
    UREHOR=1TTF*REMDR
```



```
* Annual limit on intake, ALI
*
    SUM=WREMDR
    DO 65 {=1,19
```


RESULT. FOR

```
        If (MODSE(1) .EO. O.)coto 65
        SUM=SUM+WOOSE(!)
    65 continue
        POST=0.05/SUM
        AL!=POST
        SAVE=0.
        IRGant=0
        DO 70 I=1,19
        IF (HFIFTY(I) .EQ. O.jgOTO 70
        POST1=0.5/POST
        lf (hfifty(i) .gt, posti)tMEM
            If (hfifty(1) .ot. SAVE)thEN
                SAVE=HFIFTY(I)
                IRGANT=1
            ELSE
                goto 70
            END IF
        END IF
    70 contimue
        If (SAVE .mE. O.)then
        ALI=0.5/SAVE
        END If
************************************************************************
* Derived air concentration, DAC
*
由*
DAC=ALI/2.4E+03
RETURM
END
```


SOURCE.FOR

FUMCTION SCURCE(ICOMP)
IF (ICOMP .EQ. 6)THEM SOURCE 310 .

ELSE IF (ICOMP .EQ. 7)THEM SQURCE=1800.
ELSE IF (1COMP .EQ. 10)TMEM, SOURCE=11.
ELSE IF (ICOMP .EQ. 11)TMEN SOURCE 100.
ELSE IF (ICOMP, EQ. 12)TMEN SOURCE=5000.
ELSE IF (ICONP .EQ. 16)THEN SOURCE $=180$.
ELSE IF\&ICOMP.EQ. 15JTHEH SOURCE $=35$.
ELSE IF (ICOMP .EQ. 16)THEM SOURCE 20 .
ELSE IF (ICOMP .EQ. 17)THEH SOURCE=70000.
ELSE IF (ICOHP .EQ. 19)TMEH SOURCE=1450.
ELSE IF (ICOMP .EQ. 20)THEN SOURCE=14.
ELSE IF (ICOMP .EQ. 21)THEH SOURCE=1500.
EMO IF
RETURK
EWD


```
*
* FUNCTION SUGPROGRAM NAME : SPEFF FORTRAM
* PURPOSE: Cetculetes the specific effective energy deposited
                        in terget orgen, KTARG due to source orgen, JSORCE *
    AUXILIARY PROGRAM REOUIRED: e) DECAY FORTRAN
    b) INTRPT FORTRAN
    c) ENERGY FORTRAN
*
*
*
*
*
*
```



```
FUNCTION SPEF F (HORD, JSORCE, KTARG, TMASS, LOOP , MOTS, PLI FE)
REAL INTRPT
DIMENSION EALPHA(1:20), YALPHA(1:20),EBETA(1:50),YBETA(1:50), EPOST(
    81:15), YPOST(1:15), EELEC(1:115), YELEC(1:115), EGAMUA(1:190), YGAMMA(1
    8: 190)
    CCMMON EALPHA,YALPHA, EBETA, YBETA, EPOST,YPOST,EELEC,YELEC,EGAMMA,YG
    gamNA,M,11, 13,15,17, HLIFE
    CHARACTER*8 SAVE,HORO, MOTS
```



```
* Comparing source organ, JSORCE end terg
Comparing source organ, JSORCE end terget, KTARG. When *
* source organ is not equal to the terget organ, Icon=1 *
* elee ICOMzD *
*
```



```
    IF(JSORCE .EQ. 1 .AND. KTARG .EQ. 12)THEN
        1C0M=0
    ELSE IF(JSORCE .EO. 2 .AND. KTARG .EO. 6)THEN
        ICON=0
    ELSE IF(JSDRCE .EQ. 3 .AND. KTARG .EO. 7)THEN
        ICOM=D
    ELSE IF(JSORCE .EQ. 4 .AMD. KTARG .EQ. 8)THEN
        1 COM=D
    ELSE IF(JSORCE .EO. 5 .AMD. KTARG .EQ. OTTHEN
        1COM=0
    ELSE IF(JSORCE .EQ. 6 .AND. KTARG .EQ. II)THEN
        ICOM=0
    ELSE IF(JSDREE .EQ. 7 .AND. KTARG .EQ. 1O)THEN
        ICON=0
    ELSE IF(JSORCE .EQ. 8 .AMD. KTARG .EQ. 1)THEN
        1 COM=0
    ELSE IF(JSORCE .EQ. 9 .AND. KTARG .EQ. 13)THEN
        1COM=0
    ELSE IF(JSORCE .EQ. 10 .AND. KTARG .EQ. 4)THEN
        ICOM=0
    ELSE IF(JSORCE .EO. 11 .AND. KTARG ,EQ. 18)THEN
        1COM=0
    ELSE IF(JSORCE .EQ. 12 .AND. KTARG .EO. 5)THEN
        1COM=0
    ELSE IF(JSORCE .EO. 12 .AND. KTARG .EO. 14)THEN
        ICON=0
    ELSE IF(JSORCE .EQ. 13 .AND. KTARG .EO. 15)THEN
        [COH=D
    ELSE IF(JSORCE .EQ. 16 .AMD. KTARG .EO. 16)THEW
```


SPEFE.FOR

ICOW=0
ELSE IF(JSORCE .ED. 15 .ANO. KTARG .EQ. 3)TMEN $I \mathrm{COH}=0$
ELSE IF(JSORCE .EQ. 16 .AND. KTARG .EG. 2)THEN ICONO 0
ELSE IF@JSORCE .EQ. 17 .AND. KTARG .EQ. 19)THEN 1 $\mathrm{COW}=0$
Else
t $\mathrm{CO} \mathrm{N}=1$
END IF

JF (SAVE .EO. WORD)COTO 5
ICOUNT=0
CALL DECAY (HORD, ICCONT)
IF (ICOUNT .EO. 1)THEN
NORD(1:5)='SORRY'
RETURN
EMO IF
5 SPEFF=0.
ICNECK=0

* Annihilstion photons
IF (13 .NE. O)TMEN
DO $6\{=17+1,17+13$
EGAMMA(1) $=0.511$
YGAMMA(1)=2.*YPOST(1-17)
6 CONTINUE
END IF

IF(KTARG .EO. 6 .OR. (KTARG .EO. 7) .OR. (KTARG .EO. 8) .OR. (KTAR \&G .EQ. 9) .OR. (KTARG .EQ. 12) JTHEN
cota 55
ELSE IFIKTARG .EQ. 5 . OR. KTARG .EO. 14)TMEM
coto 105
END IF

* Oroans other than bladder, GI trset and bone *
-
* ALPHA *

IF (M.ED. O)cota 15
OF $=20$
Do $10 \mathrm{I}=1$, M

```
        IF (ICOM .EO. 1)TMEN
            IF (JSORCE .EQ. 17)THEN
            AF=1./69900.
            SPEFF=SPEFF+(YALPNA(1)*EALPNA(!)*AF*OF)
            ELSE IF (KTARG .EO. 19)TMEN
            IF (JSORCE .EO. 1)THEN
                AF=45.1/(2*200.*69900.)
            ELSE TF (JSORCE .EQ. 2)THEN
                AF=150./(2*250.*69900.)
            ELSE IF (JSORCE .EQ. 3)TMEN
                AF=640./(2*600.*69900.)
            ELSE IF (JSORCE .EQ. 6)THEN
                AF=210./(2"220.*69900.)
            EISE IF (JSORCE .EQ. 5)TMEN
                AF=160./(2*135.*69900.)
            ELSE
                AF=1./69900.
            END IF
                    SPEFF=SPEFF*(YALPNA(1)*EALPHA(I)*AF*OF)
            ELSE
                AF=0.
            END IF
        ELSE
            AF=1.0
            SPEFF=SPEFF+((YALPHA(1)*EALPHA(1)*AF*OF)/TMASS)
        END IF
    10 CONTINUE
```



```
    15 IF (11 .EQ. 0)coto 25
        OF=1
        00 20 l=1,11
        IF (ICON .EQ. 1)TNEN
            IF (JSORCE .E0. 17)TNEN
            AF=1./69900.
            SPEFF=SPEFF*(YBETA(I)*EBETA(1)*OF*AF)
            ELSE IF (KTARG .EQ. 19)TMEN
                    IF (JSORCE .EO. 1)THEN
                    AF=45.1/(2*200.*69900.)
            ELSE IF (JSORCE .EQ. 2)TNEN
                AF=150./(Z*250.*69900.)
            ELSE IF (JSORCE .EO. 3)THEN
                AF=640./(2*400.*69900.)
            ELSE IF (JSORCE .EO. 4)THEN
                AF=210./(2*220.*69900.)
            ELSE IF (JSORCE .EO. 5)TNEN
                AF=160./(2*135.*69900.)
            ELS
                AF=1./69900.
            END IF
            SPEFF=SPEFF*(YBETA(1)*EBETA(1)*OF*AF)
```


SPEFF,FOR

```
            else
                AF=0.
            END IF
        ElSE
            AF=1.0
            SPEFF=SPEFF*(CYBETA(1)*EBETA(1)*GF*AF )/TMASS)
        END IF
    20 contimue
*************************************************************************
    25 IF (13 .EQ. 0)cOTD 35
        OF=1
        DD 30 1=1,13
        IF (ICON .EQ. 1)TMEN
            IF (JSORCE .EQ. 17)TKEN
                AF=1./69900.
                SPEFF=SPEFF+(YPOST(1)*EPOST(1)*QF*AF)
            ELSE IF (KTARG .EQ. 19)TMEN
            IF (JSORCE .EQ. 1)THEN
                AF=45.1/(2*200.*69900.)
            ELSE IF (JSORCE .EQ. 2)TMEN
                AF=150./(2*250.*69900.)
            ELSE IF (JSORCE .EQ. 3)THEN
                AF=640./(2*400.*69900.)
            ELSE IF (JSORCE .EQ. 4)THEN
                AF=210./(2*220.*6990D.)
            ELSE IF (JSORCE .EO. 5)THEN
                AF=160./(2*135.*69900.)
                ELSE
                    AF=1./89900.
            END IF
            SPEFF=SPEFF+(YPOST(I)*EPOST(I)*QF*AF)
            ELSE
                AF=D.
            END IF
        ELSE
            AF=1.0
            SPEFF=SPEFF+(CYPOST(1)*EPOST(1)*QF*AF )/TMASS)
        END IF
    30 CONTINUE
```



```
    35 IF (I5 .EQ. O)GOTD 45
        OF=1
        DD 4D I=1,15
    IF (ICOM .EQ. 1)THEN
        IF (JSORCE .EQ. 17)THEN
            AF=1./69900.
```


SPEFF.FOR

```
                    SPEFF=SPEFF*(YELEC(I)*EELEC(1)*OF*AF)
            ELSE IF (KTARG .EQ. 19)TMEM
                    IF (JSORCE .ED. 1)TMEH
                    AF=65.1/(2*200.*69900.)
                    ELSE IF (JSORCE .EO. 2)THEN
                        AF=150./(2*250.*69900.)
                    ELSE IF (JSORCE .EQ. 3)TKEN
                    AF=640./(2*400.*69900.)
                    ELSE IF (JSORCE .EO. 4)THEN
                        AF=210./(2*220.*69900.)
                    ELSE IF (JSORCE .EO. 5)THEN
                    AF=160./(2*135.*69900.)
                    ELSE
                    AF=1./89900.
            EMO IF
                    SPEFF=SPEFF+(YELEC(1)*EELEC(I)*OF*AF)
                ELSE
                    AF=0.
            ENO IF
        ELSE
            AF=1.0
        SPEFFmSPEFF+(CYELEC(I)*EELEC(I)*OF*AF)/TMASS)
        END IF
    40 CONTIMUE
```



```
*
- PMOTOM
    45 IF (17 .E0. 0) )60T0 195
        0F=1
        00 50 :=1,17
        AF=O.
        IF (ECAMMACI) .LT, O.01)THEN
        IF (ICOM .EQ. 1)TREM
            IF (JSORCE .EQ. 17)THEN
                AF=1.0/69900.
                    SPEFF=SPEFF+(YGAMMA(I)*EGAMMA(I)*QF*AF)
            ELSE IF (KTARG .EO. 19)THEN
                        IF (JSORCE .EQ. 1 THEN
                AF=45.1/(2*200.*69900.)
                        ELSE IF (JSORTE .EQ. 2)THEM
                AF=150./(2*250.*69900.)
                        ELSE IF (JSORCE .EQ. 3)THEN
                                AF=640./(2*400.*69900.)
                        ELSE IF (JSORCE .EO. 4)TMEN
                                AF=210./(2*220.*69900.)
                        ELSE IF (JSORCE .EQ. 5)TKEN
                                AF=160./(2*135.**9900.)
                        ELSE
                                AF=1./69900.
                        EMO IF
                        SPEFF=SPEFF+(YGGMMA(1)*ECNHHA(I)*GF*AF)
                ELSE
```

```
                AF=0.
                EHD 1F
            ElSE
                AF=1.
                SPEFF=SPEFF+(CYGNOU(I)*EGMMA(I)*OF*AF)/TMASS)
            EHO IF
        ELSE
************************************************************************
*
* The function IHTRPT interpolates the values of absorbed *
* fraction, AF for the given energy, ecumu(I) *
*
```



```
    ICHECX=0
    AF=IKTRPT(EGNMU(I),JSORCE,KTARG, ICHECK)
    IF (ICHECK .EO. 1)TMEH
            WORD(1:5)='SCRRY'
            RETURH
    EHD :F
    SPEFF=SPEFF*(CYGMMA(I)*EGOMMA(I)*aF*AF)/TMASS)
    EHD IF
    50 contimue
    GOTO }19
```



```
- Targat organs of the GI tract and bledder
*
* ALPHA
* ALPHA *
```



```
    55 IF (M .E0. 0)GOTD }6
        OF=20
        IF (ICOM .EQ. 1)TMEN
        IF (JSORCE .EQ. 17)THEM
            AF=1./69900.
        ELSE
            AF=0.
        EHD IF
    Else
        IF (KTARG .EQ. 6)THEH
                AF=(0.5*0.01)/250.
            ELSE IF (ktarg .EQ. 7)Them
                AF=(0.5*0.01)/400.
            ElSE tf (ktarg .EQ. 8)theh
                AF=(0.5*0.01)/220.
            ELSE IF (KTARG .EQ. 9)THEM
                AF=(0.5*0.01)/135.
            else if (ktarg .eo. 12)then
                AF=(0.5*0.01)/200.
            ENO IF
        EHD IF
        IF CAF .E0. 0.)60T0 65
        00 60 I=1,M
        SPEFF=SPEFF+(YALPMA(1)*EALPHA(1)*QF*AF)
```


SPEFF.FOR

```
    60 contimue
*
    65 OF=1
        IF (ICOM .EO. 1)THEN
            IF (JSORCE .EG. 17)THEN
                AF=1./69900.
            ELSE
                AF=0.
            ENO IF
        Else
            If (ktarg .eg. 6)then
                AF=(0.5*1.0)/250.
            ELSE IF (KTARG.EE. 7)THEN
                AF=(0.5*1.0)/600.
            else if (kTARG.eg. 8)then
                AF=(0.5*1.0)/220.
            ELSE IF (KTARG .EO. 9)THEN
                AF=(0.5*1.0)/135.
            else if (ktarg .eo. 12)then
                AF=(0.5*1.0)/200.
            ENO IF
        END IF
        IF (AF .EO. O.)gOTO 95
```


IF (I1 .EO. O)GOTO TS
DO $701=1,11$
SPEFF=SPEFF+(YBETA(1)*EBETA(1)*OF*AF)
70 continue
**********t**
*

* POSITROM *
* *

73 IF (13 .EQ. 0)coto 85
00 80 $I=1,13$
SPEFF=SPEFF*(YPOST(1)*EPOST(1)*aF*AF)
80 continue

85 IF (15 . EO. 0)coto 95
$0090 \quad \uparrow=1,15$
SPEFF=SPEFF+(YELEC(I)*EELEC(1)*OF*AF)
90 CONTINUE

-

* PHOTON * *

SPEFF, FOR

```
    95 IF (I7 .EQ. 0)GOTD 195
        GF=1
        00 100 J=1,17
        AF=0.
        IF (EqNma(1) .LT. 0.01)TMEN
            IF (ICON .EQ. 1)TMEN
            IF (JSORCE .EQ. IT)TMEN
                AF=1./69900.
                SPEFF=SPEFF+(YEN#MA(I)*EGNMA(I)*AF*OF )
            ELSE
                AF=0.
            ENO If
                ELSE
                    IF (Ktarg .EO. 6)imen
                AF=1.0/(2.*250.)
                    else if (ktarg .eg. 7)then
                AF=1.0/(2,*400.)
            else if (ktarg .eq. 8)then
                AF=1.0/(2.*220.)
                    else tf (kTARG.eq. g)tMEN
                AF=1.0/(2.*135.)
                    else if (ktarg .eq. 12)then
                AF=1.0/(2.*200.)
            ENO IF
                    SPEFF=SPEFF+(YGUMAA(1)*EGAMAC(1)*AF*QF)
            ENO IF
        ELSE
            ICNECK=0
            AF=INTRPT(EGMMA(1),JSORCE,KTARG, ICNECK)
            IF (ICNECK .EQ. 1)THEN
                    WORD(1:5)='SORRY'
                    RETURN
            Emo If
            SPEFF=SPEFF+(CYAMMA(I)*EGAMMA(I)*AF*GF)/TMASS)
        END IF
    100 comtinue
    GOTD 195
    105 IF (LOOP .EO, O. .ANO. (JSORCE .EQ. 12))GOTO 185
```



```
* Target organs in bone *
```



```
IF (M .EO. O)GOTO 125
    0F=20
    00 120 I=1,M
    IF (ICOM .EQ. 1)TMEN
        IF (JSORCE .EQ. 17)THEN
            AF=1./69900.
            SPEFF=SPEFF+(YALPMA(I)*EALPHA(I)*GF*AF)
        ELSE
            AF=0.
        ENO If
```


SPEFF.FOR

ELSE

IF (LOOP .EQ. 1) THEN

* Alpha emitter uniform in volune
**
IF (MOTS(1:4) .EQ. 'P-33' .OR. (MOTS(1:6) .Ea. 'NB-93m') . 0 \&R. (MOTS(1:5) .EQ. 'NB-94') .OR. (MOTS(1:5) .EQ. 'U-232') .OR. (MO \&TS(1:5) .EQ. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5 8) .EQ. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .EQ. \& (U-238') .OR. (MOTS(1:2) .EQ. 'MA') .OR. (MOTS(1:2) .EQ. 'CR') . 0 ar. (MOTS(1:2) .EQ. 'RG') .DR. (MOTS(1:5) .EQ. 'ZM-65') .OR . (MOTS(81:6) .EQ. 'PB-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4) (EC. '日E-7') . OR. (MOTS(1:5) .EQ. 'EE-10') .OR. (MOTS(1:4) .EQ. ' 2v-49') .OR. (MOTS(1:6) .EQ. 'PD-103') .OR. (MOTS(1:6) .EQ. PPD-107 \&' $^{\prime}$) OR. (MOTS(1:8) .EQ. 'SN-113') .OR. (MOTS(1:7) .EQ. 'SN-119M') 8.OR. (MOTS(1:6) .EQ. 'SN-123') .DR. (MOTS(1:6) .EO. (SN-126') .OR. \& (mots $1: 6$) .EQ. 'TA-182') .DR. (MOTS(1:5) .EQ. 'U-181') .OR. (MOT 8S(1:5) .EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188'))THEN

AF $=0.025$

* Alkaline eartha

ELSE IF (MOTS(1:2) ,EQ. 'SR' .OR. (MOTS(1:2) .EQ. (CA') .DR
8. (MOTS(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'BA') THEM

IF (PLIFE .GT. 15)THEN
AF $=0.025$
ELSE
AF $=0.25$
EMO IF
ELSE

 AF=0. 25
ENO If

SPEFF.FQR


```
        41:6) .EQ. 'PB-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4)
        & .EQ. 'BE-7'J .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EQ.'
        8v-49') .OR. (MOTS(1:6) .EQ. 'PO-103') .OR. (MOTS(1:6) .EQ. 'PO-107
        (') .OR. (MOTS(1:6) .EQ. 'SN-113') .OR. (MOTS(1:7) .EQ. 'SN-11Sm')
        8.OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (MOTS(1:6) .EQ. 'SN-126') .OR.
        4(MOTS(1:6) .EQ. 'TA-182') .CR. (MOTS(1:5) .EQ. 'U-181') .OR. (MOT
        8S(1:5) .EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188'))TNEN
                Af=0.05
    *)
    * Alkaline eartha
```



```
            ELSE IF (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EQ. 'CA') .OR
        4. (MOTS(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'BA'))TMEN
                IF (PLIFE .GT. 15)TMEN
                    Af=0.05
                ELSE
                    AF=0.5
                END [F
            ELSE
```



```
    * Alpha emitter on bone murfaces *
                AF=0.5
            ENO If
            SPEFF=SPEFF+((YALPNA(I)*EALPNA(I)*QF*AF )/1500.)
```



```
*
* Cortical bone *
* *
```



```
                    ELSE IF (LOOP .GT. 1)THEN
                        AF=0.0
            ENO If
            ENO IF
        END IF
    120 contInue
*
    125 OF=1
```



```
*
* Bets *
* *eta *
```



```
    IF (I1 .EQ. O)cOTO 165
    DO 160 {=1,11
    IF (ICOM .EQ. 1JTNEN
        IF (JSORCE .EQ. 17)TMEN:
            AF=1./69900.
            SPEFF=SPEFF+(YBETA(I)*EBETA(1)*QF*AF)
            ELSE
            AF=0.
            END IF
    ELSE
```


SPEFF, FOR

```
****
* Bone surface cells *
* *
```



```
    IF (KTARG .EQ. 14)TNEN
***************************************************************************
* Trabecular bone *
*
```



```
            IF (LOOP .EQ. 1)THEM
```



```
* Bets enitter uniform in volume
```



```
            IF (mOTS(1:6) .EQ. 'P+33' .OR. (MOTS(1:6) .EQ. 'MB-93M') .O
        &R. (MOTS(1:5) .EQ. 'NR-9*') .OR. (MOTS(1:5) .EO. 'U-232') .OR. (MO
        &TS(1:5) .EQ. 'U-233') .OR. (mOTS(9:5) .EQ. 'U-234') .OR. (MOTS(1:5
        8) .EQ. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .E0.
        & 'U-238') .OR. (MOTS(1:2) .EQ. 'NA') .OR, (MOTS(1:2) .EQ. 'CR') .O
        &R. (MOTS(1:2) .EQ. 'RB') .OR. (MOTS(1:5) .EO. 'ZN-65') .OR. (MOTS(
        81:6) .EQ. 'PA-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:6)
        G.EQ. 'BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EQ. '
        8V-49') .OR. (MOTS(1:6) .EO. 'PO-103') .OR. (MOTS(1:6) .EQ. 'PO-107
        8') .OR. (MOTS(1:8) ,EO. 'SN-113') .OR. (MOTS(1:7) .EQ. 'SH-119M')
        8.OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (MOTS(1:6) .EQ. 'SN-126') .OR.
        S (MOTS(1:6) .EQ. 'TA-182') .OR. (mOTS(1:5) .EQ. 'L-181') .OR. (MOT
        8S(1:5) .EO. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188'))TMEN
                            AF=0.025
```



```
* Alkaline eartha
```



```
            ELSE IF (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EO. 'CA') ,OR
        8. (MOTS(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'BA'))THEN
            IF (PLIFE .GT. 15)THEN
                AF=0.025
                ELSE
                    IF (EBETA(1) .LT. O.2)TMEM
                    AF=0.25
                ELSE
                    AF=0.025
                ENO IF
                END IF
            ELSE
```



```
* Bets emitter on bone surfaces
**************
        IF (EBETA(1) .LT. O.2)TNEN
            AF=0.25
            ELSE IF (ESETA(I) .GE. 0.2)TNEM
                AF=0.025
            END IF
            END IF
```


-

SPEFE, FOR

```
    * Corticel bone
```



```
            ELSE IF (LOOP .GT. 1)TMEN
```



```
    * Bete emitter uniform in volume
```



```
            IF (MOTS(1:4) .EQ. 'P-33'.OR. (MOTS(1:6) .EQ. 'MS-93M') .0
        1R. (MOTS(1:5) .EQ. 'WB-94') .OR. (MOTS(1:5) .EQ. 'U-232') .OR. (MO
        LTS(1:5) .EQ. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5
        &) .EQ. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-238') .OR. (MOTS(1:5) .EQ.
        & 'U-238') .OR. (MOTS(1:2) .EQ. 'MA') .OR. (MOTS(1:2) .EQ. 'CR') .O
        &R. (MOTS(1:2) .EQ. 'RE') .OR. (MOTS(1:5) .EQ. 'ZN-65') .OR. (MOTS(
        (1:6) .EQ. 'PB-205') .OR. (MOTS(1:6) .EQ. 'P8-210') .OR. (MOTS(1:4)
        4.EQ. 'BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EQ.'
        &V-49') .OR. (MOTS(1:6) .EQ. 'PO-103') .OR. (MOTS(1:6) .EQ. 'PD-107
        (') .OR. (MOTS(1:6) .EQ. 'SN-113') .OR. (MOTS(1:7) .EQ. 'SN-119M')
        &.OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (MOTS(1:8) EEQ. 'SN-126') .OR.
        L (MOTS(1:6) .EO. 'TA-182') .OR. (MOTS(1:5) .EQ. 'N-181') .OR. (MOT
        GS(1:5) .EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188'))TAEN
            AF=0.015
```



```
- Alkaline earghe
```



```
            ELSE IF (MOTS(1:2) .EQ. 'SR' .CR. (MOTS(1:2) .EO. 'CA') .OR
        4. (MOTS(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'gA'))THEN
                    IF (PLIFE .GT. 15)TMEM
                        AF=0.015
            ELSE
                    If (Ebeta(t) .LT. Q.2)THEN
                    AF=0.25
                    ELSE
                    AF=0.015
                    END IF
                END IF
            ELSE
*******************************************************************************)
* Beta emitear on bone surfaces
                            IF (EBETA(I) .LT - O.2)TMEN
                        AF=0.25
                    ELSE IF (EBETA(I) .GE. O.2)THEN
                    AF=0.015
            END IF
            END IF
        END IF
            SPEFF=SPEFF+((YBETA(I)*EBETA(I)*@F#AF)/120.)
```



```
* Red marren *
* *
```



```
    ELSE
```


SPEFF.FQR

```
    * Tratarn
* Trabecular bone
*
```



```
    IF (LOOP .EQ. 1 JTHEN
```



```
* Beta enftrer uniform in volume
```



```
            If (nOTS(1:4) .EO. 'P-33'.OR. (MOTS(1:6) .E0. 'NB-93M') .0
        8R. (MOTS(1:5) .EQ. 'WB-94') .OR. (MOTS(1:5) .EO. 'U-232') .OR. (MO
        gTS(1:5) .EO. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5
        8) .EO. 'U-235') .OR. (MOTS(1:5) .EO. 'U-236') .OR. (MOTS(1:5) .EO.
        & 'U-23A') .OR. (MOTS(1:2) .EQ. 'MA') .OR. (MOTS(1:2) .EQ. 'CR') .O
        th. (MOTS(1:2) .EQ. 'R(') .OR. (mOTS(1:5) .EO. 'ZN-65') .DR. (MOTS(
        81:6) .EQ. 'PB-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4)
        $.EQ. 'BE-7') .OR. (MOTS(1:5) .EQ. 'gE-10') .OR. (MOTS(1:4) .EQ.'
        &V-40').OR. (MOTS(1:6) .EQ. 'PD-103') ,OR . (MOTS(1:6) .EO. 'PD-107
        8') .OR. (MOTS(1:6) .EQ. 'SN-113') .OR. (mOTS(1:7) .EQ. (SN-119M')
        8.OR. (MOTS(1:6) .EO. 'SN-123') .OR. (MOTS(1:6) .EO. 'SN-126') .OR.
        & (HOTS(1:6) .EQ. 'TA-182').OR. (MOTS(1:5) .EQ. 'W+181') .OR. (MOT
        8S(1:5) .EO. 'W-185').OR. (HOTS(1:5) .EQ. 'W-188')JTHEN
            AF=0.35
    ************************************************************************
* Alkeline eerthe
ELSE JF (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EO. 'CA') .OR
    %. (mOTS(1:2) .EQ. 'RA') .CR. (MOTS(1:2) .EQ. 'EA'))THEN
                IF (PLIFE .GT. 15)TMEN
                    AF=0.35
            ELSE
                AF=0.5
            END IF
            El.se
```



```
* Beta eafttor on bone aurfaces
```



```
                    AF=0.5
            ENO If
            SPEFFmSPEFF*(CYBETA(I)*EBETA(I)*GF*AF //1500.)
```



```
            ELSE IF (LOOP .GT. 1JTHEN
                    AF=0.0
            END IF
        ENO IF
    END IF
    160 CONTIMUE
```



```
-
* Poaitron *
* Poaitron *
```


SPEFF.FOR

```
    165 lf (13 .EQ. O)goto 175
        \infty 170 I=1,13
        If (ICOM .EQ. ITTHEM
            IF (JSORCE .EQ. 17JTHEN
                AF=I./69900.
                SPEFF*SPEFF*(YPOST(1)*EPOST(1)*OF*AF)
            ELSE
                Af=0.
            ENO IF
        ELSE
```



```
* *
* Bone surface celle *
* *
```



```
            If (kTARG .EQ. 14)THEN
```



```
* *
* Trebeculer bone *
* *
```



```
            IF (LDOP .EQ. ITHEN
```



```
* Positron emitter uniform in volume
```



```
            IF (MOTS(1:4) .EQ. 'p.33' .OR. (MOTS(1:6) .EQ. 'NB-93M') . O
        &R. (MOTS(1:5) .EQ. 'NG-94') .OR. (MOTS(1:5) .EQ. 'U-232') .OR. (MO
        BTS(1:5) .EQ. 'U-233') .OR. (mOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5
        &) .EQ. 'U-235') .OR. (mOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .EQ.
        s'U-238') .OR. (MOTS(1:2) .EQ. 'WA') .OK. (mOTS(1:2) .EQ. 'CR') . O
        &R. (MOTS(1:2) .EQ. 'RS') .OR. (MOTS(1:5) .EQ. 'ZN-65') .OR. (MOTS(
        81:6).EQ. 'PG-205') .OR. (MOTS(1:6) .EO. 'PB-210').OR. (MOTS(I:4)
```



```
        8V-49').OR. (MOTS(1:6) .EQ. 'PD-103') .OR. (MOTS(1:6) .EQ. 'PD-107
```



```
        #.OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (mOTS(1:6) .EN. 'SN-126') .OR.
        E (MOTS(1:6) .EQ. 'TA-1E2') .OR. (MOTS(1:5) .EQ. 'W-181') .OR. (MOT
        3S(!:5) .EQ. 'W-185') .OR. (MOTS(1:5).EQ. 'W-188')JTHEN
            AF=0.025
```



```
* Alkaline earths
```



```
            ELSE IF (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EQ. 'CA') .ON
        8. (MOTS(1:2) .EQ. 'RA') .OR. (MOTS(1:2) .EQ. 'BA'g)THEN
            IF (PLIFE .GT. 15)TMEN
                AF=0.025
            ELSE
                IF (EPOST(I) .LT. O.2)THEN
                    AF=0.25
                ELSE
                    AF=0.025
            END IF
            EmD IF
```


SPEFF. FOR

AF $=0.015$			
EMD If			
Exo if			
END If			
SPEFf=SPEFF+($($ YPOST (1)*EPOST (1)*0F*AF)/120.)			
* Red marrow			
- ${ }^{\text {a }}$			
\star			
Trabecular bone			
* ${ }^{\text {comen }}$			
IF (LOCP .EQ. 1)TMEN			
tR. (MOTS(1:5) .EQ. 'MB-94') .OR. (MOTS(1:5) .EQ. 'U-232') .OR. (MO			
RTS(1:5) .EQ. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (\%OTS (1:5			
(4) .EQ. 'U-235') .OR. (MOTS(1:5) .EO. 'U-236') .DR. (MOTS(1:5) .EQ. ('U-238') .OR. (MOTS(1:2) .EO. 'MA') .OR. (MOTS(1:2) .EQ. 'CR') . 0			
LR. (MOTS(1:2) .EQ. 'RB') .OR. (MOTS(1:5) -EQ. 'ZN-65') .OR. (MOTS(41:6) .EQ. 'PB-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4)			
4.EQ. 'BE-7') . OR. (MOTS (1:5) .EQ. 'BE-10') . DR. (MOTS(1:4) .EQ.			
EV-49') .OR. (MOTS(1:6) , ED. 'PD-103') .OR. (MOTS(1:6) .EQ. 'PD-107			
8.OR. (MOTS (1:6) .EO. 'SN-123') .OR. (MOTS(1:6) .EO. 'SN-126') .OR.			
* Alkaline earths ***			
ELSE If (MOTS(1:2) .EQ. 'SR' .OR. (mots(1:2) .EQ. 'CA') .OR			
" If (PLIfE .GT. 15) TREN			
AF=0.35			
ELSE			
Afan 5			
END If			
ELSE			
****************************\#\#\#**************************************			
* Positron emitter on bone aurfaces			
Af $=0.5$			
ENO if			
SPEFF=SPEFF+(CPOST (1)*EPOST(1)*OF*AF)/1500.)			
Cortical bone			

SPEFF.FOR

```
*
```



```
                    ELSE IF (LOOP .GT. 1 TMEN
                    AF=0.0
                END IF
            END 1F
        EMD If
    170 contimue
```



```
*
            Eiectron
* *
*************#***********************************************************
    175 IF (I5 .EQ. O)GOTO 182
        DO 180 I=1,15
        If (ICOM .EO. 1)THEN
            IF (JSORCE .EQ. 17)THEN
                    AF=1./69900.
                    SPEFF=SPEFF+(YELEC(1)*EELEC(1)*aF*AF)
            ELSE
                AF*O.
            END If
        Else
```



```
*-
* Bone surface cells *
* *
```



```
            IF (KTARG .EQ. 14)THEN
```



```
#
* Trabecular bone *
* *
```



```
    IF (LDOP .EO. ITNEN
```



```
* Electron emitter unjform in volume
```



```
            IF (MOTS(1:4) .EQ. 'P-33' .OR. (MOTS(1:6) .EO. 'NE-93M') .0
        ER. (MOTS(1:5) .EO. 'Ng-94') .OR. (MOTS(1:5) .EQ. 'U-232') .OR. (MO
        ZTS(1:5) .EQ. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5
        *) .EQ. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .EQ.
        * 'U-238') .OR. (MOTS(1:2) .EQ. 'MM') .OR. (MOTS(1:2) .EQ. 'CR') .0
        &R. (MOTS(1:2) EEG. 'RE') .OR. (MOTS(1:5) .EO. '2N-65') .OR. (MOTS(
        81:6) .EQ. 'PG-205') .OR. (MOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4)
        * .EQ. 'BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EQ.'
        8V-49') .OR. (MOTS(1:6) .EQ. 'PD=103') .CR. (MOTS(1:6) .EQ. 'PD-107
        (') .OR. (MOTS(1:6) .EQ. 'SN-113') .OR. (MOTS(1:7) .EO. 'SN-119N')
        &.OR. (MOTS(1:6) .EO. 'SN-12'') .OR. (MOTS(1:6) .EQ. 'SN-126') .OR.
        & (MOTS(1:6) .EQ. 'TA-182') .OR. (MOTS(1:5) .EO. 'N-181') .OR. (MOT
        *S(1:5) .EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'N-188'))THEN
            AF=0.025
```


- Alkatine earths


```
    ELSE If (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EQ. 'CA') .OR
        8. (MOTS(1:2) .EO. 'RA') .OR. (MOTS(1:2) .EQ. 'BA'))TMEN
            If (PLIFE .GT. 15)TMEN
                AF=0.025
            Else
                If (EELEC(1) .LT. O.2)TMEN
                    AF=0.25
                    ELSE
                    AF=0.025
            ENO If
            END If
        Etse
****************************************-***************************************
* Electron enitter on bone surfaces
```



```
            lF (EELEC(!) .lT. 0.2)TMEN
                    AF=0.25
            ELSE
                    Af=0.025
            ENO If
            EMD If
```



```
*
* Cortical bone *
* *
```



```
            ELSE If (LOOP .GT. 1)TNEN
```



```
* Electron emittor uniform in volume
```



```
            If (MOTS(1:4) .EO. (p.33' .OR. (MOTS(1:6) .EO. 'NB-93M') .0
    RR. (MOTS(1:5) .EO. 'NE-94') .OR. (HOTS(1:5) .EQ. 'U. 232') .OR. (MO
    8TS(1:5) .EQ. 'U-233') .OR. (MOTS(1:5) .EQ. 'U-234') ,OR. (MOTS(1:5
    8) .EO. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .EO.
    8 'U-238') .OR. (MOTS(1:2) .EQ. (NA') .OR. (MOTS(1:2) .EO. 'CR') .0
    4R. (MOTS(1:2) .EO. 'R'R') .OR. (MOTS(1:5) .EO. 'ZN-65') .OR. (MCTS(
    $1:6) .EO. 'PG-205') .OR. (MOTS(1:6) .EO. 'Pg-210') .OR. (MOTS(1:4)
    & .EO. 'BE-7') .OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:6) .EO. '
    EV-49') .OR. (MOTS(1:6) .EO. 'PO-103') .OR. (MOTS(1:6) .EO. 'PP年107
    (') .OR. (MOTS(1:6) .EQ. 'SN-113') .OR. (MOTS(1:7) .EO. 'SN-119M')
    &.OR. (MOTS(1:6) .EQ. 'SN-123') .OR. (MOTS(1:6) .EO. 'SN-126') .OR.
    Z (MOTS(1:6) .EO. 'TA-182') .OR. (MOTS(1:5) .EO. 'W-181') .OR. (MOT
    8S(1:5) .EO. 'W-185') .OR. (MOTS(1:5) .EO. 'W-188'))TMEN
                AF=0.015
```



```
                            ELSE IF (MOTS(1:2) .EQ. 'SR' .OR. (MOTS(1:2) .EQ. 'CR') .OR
        8. (HOTS(1:2) .EQ. 'RA') .OR. (HOTS(1:2) .EQ. 'BA'))TNEN
            IF (PLIFE .GT. 15)TNEN
            AF=0.015
                ELSE
                    1F (EELEC(1) .LT. O.2)TNEN
```


SPEFF,FOR

```
                    AF=0.25
            ELSE
                AF=0.015
            END tF
                END IF
ELSE
```



```
* Electron emitter on bore aurfaces
```



```
                    IF (EELEC(1) .LT, D.2)THEN
                                    AF=0.25
                    ELSE
                    AF=0.015
                    END IF
            END IF
        END IF
            SPEFF=SPEFF+((YELEC(I)*EELEC(1)*GF*AF)/120.)
```



```
*
Red marrom *
* *
```



```
    ELSE
```



```
*
* Trabecular bone *
* *
```



```
            IF (LOOP .EQ. 1)THEN
```



```
* Electron emitter uniform in volume
```



```
                            IF (MOTS(1:4) .EO. 'P-33' .OR. (MOTS(1:6) .EQ. 'NB-93M') .0
        AR. (MOTS(1:5) ,EO. 'MB-94') .OR. (MOTS(1:5) .EO. (U-23'') .OR. (MO
        8TS(1:5) .EO. 'U-23'') .OR. (MOTS(1:5) .EQ. 'U-234') .OR. (MOTS(1:5
        G) .EO. 'U-235') .OR. (MOTS(1:5) .EQ. 'U-236') .OR. (MOTS(1:5) .EQ.
        & 'U-238') .OR. (MOTS(1:2) .EQ. 'NA') .OR. (MOTS(1:2) .EQ. 'CR') .O
        tR. (MOTS(1:2) .EO. 'RB') .OR. (MOTS(1:5) .EQ. 'ZN-85') .OR. (MOTS(
        81:6) .EO. 'PB-205') .OR. (mOTS(1:6) .EQ. 'PB-210') .OR. (MOTS(1:4)
        & .EQ. 'BE-7') ,OR. (MOTS(1:5) .EQ. 'BE-10') .OR. (MOTS(1:4) .EQ. '
        Ev-49') .OR. (MOTS(1:6) .EO. 'PD-103') .OR. (MOTS(1:6) .EO. 'PD-107
        g') .OR. (MOTS(1:8) .EO. 'SN-113') .OR. (MOTS(1:7) .EQ. 'SN-119M')
        8.OR. (MOTS(1:6) .EO. 'SN-{23') .OR. (MOTS(1:6) .EQ. 'SN-126') .OR.
        ! (MOTS(T:8) .EO. 'TA-182') .OR. (MOTS(1:5) .EQ. 'W-181') .OR. (MOT
        &S(1:5) .EQ. 'W-185') .OR. (MOTS(1:5) .EQ. 'W-188') JTHEN
            AF=0.35
```



```
* Alkaline earths
*
```



```
            ELSE IF (MOTS(1:2) .EO. 'SR' .OR. (MOTS(1:2) .EO. 'CAP) ,OR
        4. (mOTS(1:2).EQ. 'RA') .OR. (MOTS(1:2) .EQ. (BA'))THEN
            IF (PLIFE .GT. 15)TNEM
                    AF=0.35
                    ELSE
```


SPEFF.FOR

```
                AF=0.5
            END IF
ELSE
```



```
* Electron emitter on bone surfaces
```



```
                        AF=0.5
                            END IF
                            SPEFP=SPEFF+(CYELEC(1)*EELEC(I)*QF*AF )/1500.)
```



```
* *
* Cortical bone *
* *
```



```
                    ELSE IF {LOOP .GT. 1STNEN
                    AF =0.0
            EMD IF
            END IF
        END IF
    180 CONTIMUE
    182 IF (LOOP .EO. O)GOTO 185
        GOTO }19
```



```
*
* Photon
*
    185 IF {I7 .EQ. 0)G0TO 195
        OF=1
        DO 190 1=1,17
        AF=0.
        IF (EGAmulA(1) .LT. 0.01)THEM
            IF (ICON .EQ. IJTHEN
                IF (JSORCE .EQ. 17)TNEN
                    AF=1.0/69900.
                    SPEFF=SPEFF+(YGAMIA(I)*EGAMMA(I)*GF*AF)
                ELSE
                    AF=0.
                END IF
            ELSE
                AF=1.0/TMASS
                SPEFF=SPEFF+(YGAMMA(I)*EGAMMIA(I)*QF*AF)
            END IF
        ELSE
        ICHECK=0
        AF=INTRPT(EGAMMA(I),JSORCE, KTARG, ICHECK)
        IF (ICHECK .EQ. 1)THEN
            WORD(1:5)=/SORRY,
            RETURN
        END IF
        SPEFF=SPEFF+(CYGAMHA(I)*EGAMMA (I )*OF*AF %/TMASS)
        END IF
190 continue
195 SAVE=WORD
```

RETURN
END

SUBMER.FOR

```
*
* subroutime name : submer fortran
* PURPOSE: Call dite files mliSTM and mNCBLE= for dose
* equivalent rete in terget organs from eubmereion
        in e eemi-infinite cloud of noble geees or
        elementel tritium
        OESCRIPTION DF VARIAOIES
        ---------********************)
        UORD ---> Name of the given ieatope *
        NRATE *-> Doee equivelent rate in target organs or timeves
        from eummersion in unit concentretion of the *
        fsotope-
        *
        DER -...) Oerived Air concentration
        *
        RISK \cdots-> DAC detamined by the non-etocheetic limit *
        ORCAM \cdots.> Tiseve or orgen of non-etochastic limit
        SUBROUTIME SUBMER (MDRD,MRATE,DER,RISX,ORGAN,*)
        OIMENSION HRATE(1:24),JSORCE(1:13),VALLUE(1:13)
        CMARAGTER*8 ERT,LORD
        OPEHCUNIT=10, FILE='LIST', FORH='FORMAITED',ACCESS='DIRECT', RECL=10)
        OPENCUMIT=11,FILE*'NOALE', FORM='FCRMATTED',ACCESS='DIRECT',RECL=16
    81)
        DD 2 1=1,26
        HRATE (I)=0.
    2 comitivue
        IF (LORD(1:3) .EO. 'H-3')TMEN
            NRATE(1)=9.9E-15
            DER=2.0E10
            RISK=0.0€+00
            ORGAN=0
            RETURN
        END tf
        ITREK=0
        DD 5 LIS=1,26
        READ(1D,6, REC=LIS, ERR=20)ERT, ICONT
    6 FORMAT(AZ, I2)
        IF (HORD .EQ. ERT)TMEN
            ITREX=1COWT
            corD }
        EmD IF
    5 CONTINUE
    IF (ITREK .EO. O)GOTD 20
    7 READ(11,9,REC=1TREK,ERR=25)DER,RISK,ORGAM, (JSORCE(1),VALUE(1), 1=1,
    813)
    9 FORMAT 1PE8.1,1PE8.1,13,12, 1PE8.1,13,1PE8.1, 13,1PE8.1,13,1PE8.1,13
    8,1PE8.1,13, 1PE8.1,13, 1PE8.1, 13,1PE8.1,13,1PE8.1,13,1PE8.1,13, 1PE8.
    81,13,1PE8.1,13,1PE8.1)
    DD 10 {=1,13
    IF (JSORCE(D) .EQ. OJGOTD 10
    NRATE(JSORGE(1))=valuE(1)
10 conttmue
```

RETURN
20 MRITE(*,21)
21 formatel/,' Error: Nuclide not found in the ICRP Publication 30 , // \mathbf{z}_{1} ' SOURCE: SUBMER FORTRAN',I,' CORRECTIVE ACTION: Iry another nucl sidel', I/I/I)
RETURK 1
25 WRITE(*,26)
26 FDRMATI//.' ERRDR: Unable to read dose equivelent rates from date
 *Check the file and try ageinl', $/ / 1 /$) RETURN 1
END

TERAC.FOR

```
| *
* SUBROUTINE NAME: ifRAG FORTRAN
* PURPOSE: Ratriave the ratention frsctions, F2 and the biological helf-livee, BMALF of the nuclide*
```

in sourea organs

- Doma

```*
```

```- aldilliary subroutines required:-
```

- a) II FORTRAN

```b) SOURCE FDRTRAN
```

 SUBROUTINE TFRAC(KZ, F2,BHALF,JSORCE,SMASS,*)
 DIMENSION F2(1:3),BNALF(1:3)
 CHARACTER*20 C2
 OPEN (UNIT=15,FILE='RETENT',ACCESS='OIRECT',FORM='FORMATTEO',RECL=
 866,STATUS= 'OLD')
 IF (KZ .GT. 92)TMEN
 KZ=89
 ENO IF
 ISAVE=(5*(KZ-1))
 SUM=0.
 00 1 I=1,5
 KEY=1SAVE+I
 READCUNIT=15,FMT='(A20,F7.4,F7.4,F7.4,F9.2,F8.1,F8.1)',ERR=10,REC=
 GKEY)C2,D,E,F,G,H,B

* *
* Function subprogrem It corverts C2, the aourca organ in *
* alphameric charactara to an integar from aource list to *
* compare with JSORCE *
* *

```

```

 IF (t .EQ. 1)THEN
 IF (D .ED. O. .AND. (G .EQ. O.))COTO 10
 END IF
 IF (D .EQ. O. .AND. (G .EC. O.))COTO 5
 ICOHP=11(C2)
 IF (ICOMP .EQ. JSORCE)THEN
 F2(1)=0
 F2(2)=E
 F2(3)=F
 BNALF(1)=G
 BNALF(2)=N
 BHALF(3)=6
    ```

```

*
* Function subprogram sOURCE gives the masa of tha source *
* organ, when !COMP is given su inqut
* SMASS=SWURCE (ICOMP)
goto 5
END IF

```

\section*{TFRAC.FOR}

```

* *
* When aource organ is 'Total booly' and sevaral organs of *
* nuss Mi ara aseociatad with diffarent retention frections, *
* then the masaes of oll thaee organs ara first summed, i.a.
* (aum of Mi) and then "Total body" is aseigned a mava of .
* 70000-(sum of Mi) and retention fractions which are
* ssaociated with 'all other'. The reconds ara enterad in *
* in auch way that for a given K2, entry of 'ell other' is *
* alweys at the and after all organs, i

```

```

 IF (JSCRCE .EQ. 17)TMEN
 IF (ICOMP .NE. 18)TNEN
 SUMESUH+SOURCE(ICOMP)
 ELSE
 SMASS=70000. - SUM
 F2(1)=0
 F2(2)=E
 F2(3)=F
 BMALF(1)=6
 BMALF(2)=N
 BMALF(3)=B
 END IF
 EMD IF
 | contIMUE
 RETURN
 10 call clear
 WRITE (*,15)
 15 FORMAT(//,' ERROR: Unable to resd ratention fractions, and biologi
 &eal half-lives in aource orgen, from file "RETENT=1./,' SOURTE: i
 &FRAC FORTRAN' "/,' CORRECTIVE ACTIDN: TrY anothar nuclidel!',/////)
 PAUSE ' TD RESUME PRESS <RETURN>11'
 RETURN 1
 EKD
    ```
```

*
* FUHCTION SUBPROGRAM HAME: THALF FORTRAH
* PURPOSE: Provide half+life of clearance from body fluid
* compartment given an atonic number of a nuclide
* FUNCTION THALF(KZ)
 IF (KZ .EQ. 9 .OR. (KZ .EO. 19) .OR. (KZ .EO. 79) .OR. (KZ .EO. B1
 &))THEN
 PHALF=0.
 ELSE IF(KZ .EQ. 15 .OR. (KZ .EO. 26) .OR. (KZ .EQ. 27) .OR. (KZ .E
 80. 903)THEH
 THALF=0.5
 ELSE IF (KZ .EQ. 43 .OR. KZ .EO. TS)THEM
 THALF=0.02
 ELSE IF (KZ .EO. 44 .OR. KZ .EO. 45)THEN
 THALF=0.3
 ELSE IF (KZ .EQ. S2)THEH
 THALF=0.8
 ELSE IF (KZ .EQ. BZ)THEH
 THALF=0.01
 ELSE
 THALF=0.25
 EHD 1F
 RETURH
 EMD

```

\section*{TRNSFM. FOR}

\(0010 \quad 1=1,3\)
IF (ghalf (1) .EQ. O. .OR. BMALF(1) .EQ. 99999.9 )TMEN 8 CowsT(1) \(=0\).
ELSE
BCOWST(1)=(LOG(2.))/8HALF(1)
END IF
10 COMTIMUE
*
- Thera sre separata mathods of calculating aqurca-organ
- transformations for stomech, SI, LLI, ULI depending on the
- mode of intake
*


IF (IPROG .EQ. 1)THEN
IF (JSORCE .EQ. 2 ) coto 140
If (JSORCE .EQ. 3) GOTO 150
IF (JSORCE .EQ. 4) EOTO 160
IF (JSORCE .EQ. 5)GOTO 170
ELSE IF (IPROG .EQ. O)TMEN
IF (JSORCE .EQ. 2)COTO 100

\section*{TRNSFM.FOR}
```

 If (aSORCE .EO. 3)COTO 110
 IF (JSORCE .EQ. 4)EOTO 120
 IF (JSORCE .EQ. 5)COTO 130
 ENO IF
    ```

```

* Special treatment for iodine

```

```

 IF (KZ .EQ. 53)GOTO 300
 ************|**

* *
* Outer most loop for calculation of US of muclide species,j *
* *

DO 15 j=1,NO

```

```

* In caea of instanteneous transfer to tieque compartment, *
* calculation of UTJ(I) in transfar compartment ia akipped *
* *

```

```

 IF (TCONST .EQ. O.)TNEN
 OO 16 1=1,NO
 UT\(1)=0.
 16 CONTIMUE
 COTO }7
 END If
    ```

```

* *
* tramsfer compartment *
* *
* Loop for outer sum term,SUM in the calculation of UTJ(d) *
*

```

```

 SUM=0.
 DO 20 I=1, J

*

* Loop for outer product tarm,PRCO of RCONST in the equation *
* for celculetion of UTJ(J) *
* *

```

```

 PROO=1.
    ```

```

* Perent cala

```

```

 IF {I+1 ..6%. J}G0TO 30
 **

* Daughtara' eaeal *

```

```

 00 25 k=1+1,d
 PRCO= FLON(RCONST(K)*PROD)
 25 continue
 30 SUM1=0.
    ```


\section*{TRNSFM.FOR}
```

* *
* Loop for irger sum term,sum1 in the eqution for *
* calculation of UTJ(J) *
* *

```

```

 DO 35 M=1, J
 PRCO1=1.
    ```

```

*
* Loop for inner procuct tarm,prcoi in the denominator in *
* equation for calculation of UTJ *
* *

ec
00 40 K=1, J
IF (K .EO. H)sOTO 40
PRCO1 aFLOW(PROO1* (RCOWST(K)-RCONST(M)))
40 COMTINUE
SUR1=SUR1+((1-UXP(- (TCONST +RCONST(M) * 365.25*50.))/FLOU((TCONST+RC
\&ONST(H))*PRCO1))
35 cONTINUE
SURmSUM+(PRCO*FT(1)*SUM1/BRA(1))
20 CONTIMUE
UTJ(d)=5UM*BRA(d)
70 UJ=0.
**

* *
* Loop for calculetion of total acurca-orgen transformations *
* frem contribution of diffarent compartmente of aach sourca *
* *

```

```

 DO }45\mathrm{ L=1,3
 IF (FZ(L).EO. O.)GOTO 65
 Sum2=0.
    ```

```

* *
* TISSUE COMPARTMENT *
* *
* Loop for ouzar sum term,SUM2 in eatculation of sourca*organ *
* transformat fons,UJ in aach compartment of tha source orgen *
* *

```

```

 DO 75 I=1,J
    ```

```

*
* Loop for outer product tarm, Pro02 in tha equation for *
* calculation of UJ *
- *

```

```

 PRCO2=1.

*
Parent case *
IF (1+1 .GT. J)GOTO 8S

```


\section*{TRNSFM.FOR}




\section*{TRNSFM．FOR}
```

 AST(J)=AST(J-1)*RCONST(J)/R1
 ASI(J)=FLOU((AST(J-\uparrow)*RCONST(J)*24./(R1*R2))+(ASI(J-1)*RCONST(J)/R
 82))
 AULL(d)=FLON((AST(J-1)*RCONST(J)*24.*6./(R1*R2*R3))+(ASI(J-1)*RCON
 8ST(J)*6./(RZでR3))+(AUL! (J-1)*RCONST(J)/(R3)J)
 US(JSORCE, J)=限A(J)*FLON((AST(J-1)*RCONST(J)*24.*6.*1.8/(R1*RZ*R3*
 (R4))+(ASI(J-1)*RCONST(J)*6.* % 8/(R2*R3*R4))*(AULI(J-1)*RCONST(d)*1
 C.8/(R3*R6))+((US(JSORCE,J-1)/BRA(J-1))**CONST(J)/R4))
 END If
 135 CONTINUE
 coto 180
    ```

```

* stomach in coee of Inhalatiom

```

```

 140 DO 142 J=1,NO
    ```

```

* Perent cete

```

```

 IF (J .EQ. 1)THEN
 US(JSORCE,1)=BRA(1)*FGI(1)/FLON(24.+RCONST(1))
 **************************************\&**********************************

* 0aughtere' case *

```

```

 ELSE
    ```

```

* Loop for outer sum term,SUM

```

```

 50M4=0.
 00 143 I=1,d
    ```

```

* Loop for outer product term,PROO4 *

```

```

 PrOO4=1.
 IF (l+1 .fT. j)coto 144
 D0 145 K=l+1, J
 PRCO4=FLOU(RCOWST(K)*PRCO4)
 145 CONTINUE
 146 SLM5=0.
    ```

```

* Loop for inner sum term, sum5
*

```

```

 D0 146 M= I, J
 PRCO5=1.
    ```

```

* Loop for inver product term,PRO05
**
DO 147 X=1,d
IF (K .EQ. M)cOTO 147
PRCO5=FLOW(PRCO5*(RCONST(K)-RCONST (M)))
147 CONTINUE
SLM5=SUM5+((1-UXXP(-{24.+RCONST(H))*365 .25*50.))/FLOU((24.+RCONST(M
E))*PR005))
166 COWTINUE
SUM6=SUM4+FLON(PRCO4*FGI (I)*SUR5/GRA(I))

```

\section*{TRNSFM.FOR}
```

 143 CONTIMUE
 US(JSORCE, \downarrow)=$\M4**BRA(d)
 ENO IF
 142 contimue
 6070 180
    ```

```

* SMALL INTESTINE in case of INHALATION *

```

```

 150 IF (F1 .EQ. 1.)COTO 180
 BFCMSTaF1*6./(1.-F1)
 OO 152 J=1,NO
    ```

```

* Parent case
IF (J .EQ. 1)TNEM
US(JSORCE,1)=\&RA(1)*FGI (1)*26./FLOUN((24.*RCONST(1))*(6.4BFCNST+RCO
gNST(1)))
INN=1
DO 2 NUC=1,NO
IF (NUC .EQ. 1 TMEN
TENP(INN,NUC)={RA(1)*FGI(1)/FLOU(24.+RCONST(1))
ELSE
* SNM44=0.
00 3 I=1,NUC

```

```

- Loop for outer product term,P0006

```

```

 PRCO4=1.
 IF (I+1 .GT. NUC)COTO 4
 DO 5 K=1+1,NUC
 PRC049FLOU(RCONST(K)*PROO4)
 5 CONTIMUE
 4 SUN5=0.
    ```

```

* Loop for inner sum tern, sums

```

```

 006 N=1, MUC
 PRCO5=1.
    ```

```

* Loop for inner procuct term,PRo05
DO 7 K=1,NUC
IF (K .Eg. N)coto 7
PR005=FLOU(PRCO5*(RCONST(K)-RCONST (N)))
7 CONTIMUE
SUM5=SUM5+((1.-UXP(-(26.0+RCONST(N))*365.25*50.))/FLOU((24.+RCONST
Z(N))*PR(055)
* 6 CONTINUE
SUM=SUM4+FLOU(PROO4*FGI (I)*SUM5/ERA(1))
3 CONTIMUE
TEMP(INN,NUC)=SUM4*BRA(NUC)
END IF

```

\section*{TRNSEM.FOR}


\section*{TRNSFM. FOR}
            IF (INN .EQ. 1 .ANO. (NUC .EQ. I))TNEN
                TEMP(INN,NUC)=BRA(1)*FGI(1)/FLOW(24.*RCONST(1))
            ELSE IF (IMN .EQ. 2 .ANO. (MUC .EQ. 1)\TNEN
            TEMP(INH,NUL)=BRA(1)*FGI(1)*24./FLON((24 *+RCONST(1))*(6.+BFCNST
        8+RCONST(1)))
            ELSE
*
    SUM4=0.
    DO 103 t=1,NUC
```



```
* LoOp for outer product term,PRCO4
            PROO4=1.
            IF (I+1 .GT. NUC)SOTO 104
            00 108 K=!+1,NUC
            PRCO4=FLON(RCOWST (K)*PROO4)
    108 CONTIMUE
    104 SLM5=0.
*)
* Loop for inner sum term, sum5
                                    *
```



```
    DO 106 M=1,MUC
    PRCO5=1.
```



```
* Loop for inner product term,PrCos
*
        DO 107 K={,NUC
        IF (K .EQ. M)GOTO 107
        PRC05=FLON(PRCO5*(RCONST(K)-RCONST(N)))
    107 continue
        IF (INN .EQ. I)TNEN
            SUM5aSUM5+(C1.-UXP(-(24.0+RCONST(M) )*365.25*50. 2)/FLOW((24.+RCO
        4NST(N))*PRCO5)\
        ELSE IF (INN .EQ. 2)THEN
            SUM5=SUM5+((1. -UXP(- (6.48FCNST+RCONST (N))*365.25*50..))/FLOU((6.
        80+GF(NST+RCONST(N))*PRC05))
        EMO IF
*
    106 contimue
        IF (INN .EQ. 1)TNEN
            SUM4=SUM4+FLOW(PRCO4*FGI(I)*SUM5/BRA(I))
        ELSE IF (INN .EQ. 2)TMEN
            SUM4=SUM44FFLON(PRCO4*TEMP(1, I)*24.*SUH5/BRA(I ))
        END IF
    103 CONTINUE
        TEMP(INN, NUC )=SUN4*BRA(MUC)
        END IF
    102 CONTINUE
```



```
* Daughters' cese *
    ELSE
```



```
* Loop for outer sum term, sumh
```


TRNSFM.FOR

```
    SUN4=0.
    DG 163 [=1,d
```



```
* Loop for outer product term,Pr004
```



```
        PR004=1.
        IF (I+1 .GT. J)COTO 164
        DO 165 K=i+1, J
        PROD4mFLCN(RCOMST (K)*PROD4)
    165 CONTIMUE
    164 SUN5=0.
```



```
* Loop for inner cum term, Stens
```



```
        DO 166 M=I, J
        PRC05=1.
```



```
* Loop for inner product term, Proos
*
```



```
    00 167 K=1,d
    1F (K .EQ. M)t0Ta 167
    PROD5=FLON(PROD5*(RCONST(K)-RCONST(H)))
    167 CONT INUE
        SUMS=SUMS+((1. -UXP(-(1.8+RCONST(H))*365.25*50.))/FLCN(\1.8+RCONSTS
        4(H))*PRCO5) )
    166 CONTINUE
        SUM4=SU#44FLON(PROD4*6."TEMP(2,I)*StM5/BRA(1))
    163 CONTINUE
        US(JSORCE,J)=SUA4*ERA(J)
        END IF
    162 continus
        GOTQ 180
```



```
* lONER LaRGE INTESTINE in case of INHalation
*
*)
    170 IF (F1 .EQ. 1.)00TO 180
        BFCNST=F1*6./(1.-F1)
        DO 172 J=1,NO
        R1=FLOU(24. +RCONST (J))
        R2=FLON(6. +BFCMST+RCONST(J))
        R3=FLON(1.8+RCONST(J))
        R4=FLOU(1.+RCONST (d))
```



```
* Parent case
```



```
    If (d.EQ. I)THEM
    US(JSORCE,1)=BRA(1)*FGI (J)*26.*6.*1.8/FLOU(R1*R2*R3*R4)
    DO 202 INN=1,3
    DO 202 NUC=1,NO
    IF (INN .EQ. 1 .AND. (NUC .EQ. 1))THEN
        TEMP(INN,NUC)=BRA(1)*FGI(1)/FLON(26.4RCONST(1))
    ELSE IF (INN .EQ. 2 .AND. (NUC .EO. 1))TNEN
        TEMP(1NN,NUC)=#RA(1)*FGI(1)*24./FLOU( (26.4RCONST(1))*(6.4BFCNST
```


TRNSFM. FOR

```
    8+RCONST(1)))
    ELSE IF (INM .EQ. 3 .AND. (NUC .EQ. 1)JTMEN
        TEMP(INM,MUC)=RRA(1)*FGL (1)*24.*6./FLOM((24.+RCONST(1))*(6.4BFC
        &NST*RCONST(1))*(1.8+RCOWST(1))
        ELSE
*
    SuM4=0.
    00 203 1=1, muc
*********************************************************************************)
* Loop for outer product term,PRC04
```



```
        PRO04=1.
        1F (1+1 .GT. WUC)coto 204
        DO 205 k=1+!,NUC
        P9C04=FLOU(RCONST(K)*PROO4)
    205 COMTIMUE
    204 5UN5=0.
***************************************************************************
- Loop for inner sum term,sum5
**********************************)
        00 206 N=I,NUC
        PRCO5=1.
******************************#####*****************************************
* Loop for immer proouce term,Proos
    *
************************************************************************
        00 207 K=1,NUC
        IF (K.EQ. N)COTO 207
        PROOS=FLON(PRCO5* (RCONST (K)-RCOMST (N)))
    207 CONTIMUE
        IF (INN .EQ. 1)TNEW
            SUN5=SUMS*((1.-UXP(-(26.0*RCONST(N))*365.25*50.))/FLOW((24.+RCO
        *NST(N))*PRCOSS)\
        ELSE IF (INN .EQ. 2)TMEN
            SUM5=SUNS+((1.-UXP(-(6.*BFCNST+RCONST(M))*365.25*50.))/FLOU((6.
        *0+9FCNST+RCONST(W))*PROOS))
        ELSE IF (INM .EQ. 3)THEN
            SUMS=SUMS+( (1.-UXP(-(1.8+RCOWST(N))*365.25*S0.))/FLOW((1.8+RCON
        4ST(M))*PRC05))
        EMD IF
*
    206 COMTIMUE
        IF (INM .EQ. 1)TMEN
        SLHM=SUM4*FLOU(PRCO4*FGI (1)*SUM5/BRA(1))
        ELSE IF (INN .EQ. 2)THEN
            SSN14=SUM4*FLOU(PROO4*TEMP(1,1)*24.*SUM5/既A(1))
        ELSE IF (INN .EQ. 3)TNEN
            SUM4=SUN4*FLON(PRCO4*TEMP(2,1)*6.*SUNS/BRA(1))
        EmO If
203 CONTIMUE
        TEWP(INN,NUC)=SUM4*BRA(NUC)
        END IF
    202 CONTINUE
*
```


TRNSFM.FOR

```
* Deughters' cese
```



```
        ELSE
```



```
* Loop for outer sum term, Su,4
        SUN4=0.
        00 173 1=1,d
```



```
* Loop for outer product term,Pron4 *
```



```
        PRC04=1.
        IF (I+1 .GT. J)coto 174
        00 175 K=l+1,d
        PROD4=FLON(RCONST(K)*PRCO6)
    17S CONTINUE
    174 S\M5a0.
*****************************************************************************
* Loop for inner sum term, SuM5
```



```
        00 176 M=1,%
        PRCO5=1.
```



```
* Loop for irner product term,PRODS
*
```



```
        00 177 K=1,\downarrow
        If (K .EQ. M)coro 177
        PR005=FLON(PRCO5*(RCONST(K)-RCONST (M)))
    177 CONTIMUE
        SLMS=SUN5+((1.-UXP(-(1.0+RCOWST(M))*365.25*50.))/FLOU((1.0+RCONST(
        84))*(PROD5))
    176 CONTIMUE
        SUN4=SUN4+FLOU(PRCO4*1.8*TEMP(3,1)*SUN5/BRA(I))
    173 CONTINUE
        US (JSORCE, J)=SUR44*BRA(J)
        END IF
    172 COWTINUE
        GOTO 180
```



```
* Three compartment model for fodine
***********市苂***********
300 DO 310 I= 1,NO
        F2I=0.3
        F4=0.9
        BOOY=LOG(2.)/120
        BSORCE=LOG(2.)/12
        PART1= (RCONST(1)+TCONST)*(RCONST (I )+BCOY)* (RCONST (I )+8SOREE)
        PART2=F2I*F4*TCOHST*gOOY*ESORCE
        DEMON=PART1-PART2
        UBF=FT(I)*(RCONST (I )+BODY)*(RCONST(I)+ESORCE )/DENOM
        IF (JSORCE .Eg. 17)TMEN
        UROB(1)=(F2I*TCONST*BCDY*FT(I)/DENCN)+(SMASS*UBF/70000.)
        MROP=5MASS
        US(JSORCE,I)=UROQ(I)*70000./SMASS
```

```
    ELSE IF (JSORCE .EQ. 16)THEN
    US(JSORCE,1)*(F2I*TCONST*FT(1)*(RCONST(1)+BSORCE)/DENDN)*(SMASS*
    &UBF/70000.)-(SMASS*UROB(I)/MRDS)
    ELSE
        US(JSORCE, l)=0.
    END If
310 contimue
180 DO 500 I=1,NO
    IF (US(JSORCE,1) .LT. O.JTMEN
        US(JSORCE,I)=0.
    END IF
500 CONTINUE
    RETURN
    ENO
    PUMCTION FLOU(ARGUM)
    IF (ABS(ARGUM).LT. 1.E-30JTHEN
    FLOW=1.E-30
    else if (abs(ARGM).gt. l.egosthen
        FLOW=1.E30
    ELSE
        FLOHFAREMM
    END IF
    RETURM
    END
```

FUNCTION UXP(ARG)
IF (ARG .GT. -803THEN
UXP $=$ EXP(ARG)
ELSE
$1 \times P=0$.
END IF
RETURN
END

YERROR. FOR

```
*
* SUBROUTTNE NAME : YERROR FORTRAN
* PURPOSE: Error handling subroutina for DECAY FORTRAN
*
```

 SUBROUTINE YERROR(DECERR)
 Intecer decerr (7)
 If (DECERR(1) .GT. D) THEN
 WRITE (\({ }^{(}, 5\))
 5 FDRMAT(//,' ERRDR: Wo match found in file "ISOTIPS" for the gi
 sven radionuclidel', /,' SOURCE: DECAY FORTRAN', \(/\) '' CORRECTIVE ACTID
 an: Iry enother muclide \(111, / / / / 1)\)
 DECERR(1)=D
 RETURM
 ELSE if (DECERR(2) .GT. D)TMEN
 URITE (*, iD)
 10 FORmat \(/ / /{ }^{\prime}\) e ERROR: Unable to read the decay echeme of the nue
 alide in file "ISOTOPE"I \(1,1,1\) source: decay fortran',l,' coprective
 sACTION: Try another nuclidell \(1,1 / / / /)\)
 DECERR(2)=0
 RETURN
 ELSE If (DECERR(3).gi. DJTMEN
 WRITE (*, 15)
 15 format (1)' ERROR: Unable to read the elphe energy and intens
 sity from file "alpha" for the muclidel', \(\%\) ' scurce: decay fdrtan
 \({ }^{\prime}\) ', 1, ' CORRECTIVE ACTION: Try another nuc(idel!',/I/I)
 DECERR(3)=0
 RETURN
 ELSE IF (DECERR(4) .GT. O)TNEN
 WRITE (*, 2D)
 20 FORMAT (///' 'ERROR: Unable to resd the beta energy and intensit
 iy fron file mgetal for tme nuclidel \(1 /\),' source: ofeay fortran

DECERR(4)=0
RETURM
ELSE IF (DECERR(5). .GT. D)TMEN
URITE (*,25)
25 FORMAT $/ / 1$, 'ERROR: Unable to read the positron energy and inten
asity frow file mpositrni for TME nuclidel',l'' source: decay fort
BRAM ', /,' CORRECTIVE ACTION: TRY AndTHER NUCLIDEI!',/////)
DECERR(5) $=0$
RETURN
else if (decerr(6) .at. ojtinen
wRITE(*, 30)
30 FORMAT(//, 'ERROR: Unable to reed the electron energy end inten
leity from file "ELECTRN" for the nuelidel $1,1,1$ SOURCE: DECAY FORT
\&RAN',/,' corrective action: Try enother nuclidell',/1//)
DECERR(6)=D
RETURN
else tf (Decerr(7) .gt. d)then
WRITE (*, 35)
35 FORMATC//, PERROR: Unable to read the photon energy end intenei
sty from file "PMOTOW" for the nuclidel' 1, ' source: DECAY FORTRAN'

6./.' CORRECTIVE ACTIOW: Try another muclide 1! ',////।) DECERR(7)=0
 RETURN

END IF
END

A COMPUTER PROGRAM FOR INTERNAL DOSIMETRY ANALYSIS USING THE METHODS OF ICRP-30

by

Amiruddin Huda
B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

Abstract

A software package written in the FORTRAN-77 language uses the methods described in Part 1 of Publication 30 of the International Commission on Radiological Protection (ICRP) to calculate committed dose equivalents from an internal radionuclide to organs and tissues of an adult "reference man". An alternate version for use on an IBM-PC or a compatible micro-computer is also available.

The program considers any of the three major modes of intake of a radionuclide, namely, ingestion, inhalation, or submersion in a cloud of inert radioactive gas or elemental tritium. Except for the source of radiological decay data, the general principles. definitions, mathematical models, and calculational procedures follow closely those described in ICRP-30. The program calculates specific committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) in 19 target organs, annual limit of intake (Bq). and derived air concentration (in the case of inhalation or submersion) of a radionuclide. Also, weighted committed dose equivalents ($\mathrm{Sv} / \mathrm{Bq}$) for selected target organs receiving greater than or equal to 10 percent of the maximum dose is shown. In addition, a table of specific effective energies in 17 sources and 19 target organs in three units (MeV/g, rad/ $\mu \mathrm{Ci} . \mathrm{h}$, and $\mathrm{mSv} / \mathrm{GBq} . \mathrm{h}$), and a table for number of transformations in source organs per unit intake of activity of the radionuclide ($/ \mathrm{Bq}$) can be generated upon request. The features of independent subroutines and alterable data files on radiological decay and biological characteristics make modifications and update of the program simple and straightforward.

