/4HE DISK STORAGE SYSTEM OF THE
HIGH LEVEL SOFTWARE ENGINEERING WORKSTATION
(HLSEH}/

by

Russell J. Holt
a9

B. S., Washburn University of Topeka, 1980
A Master's Report
submitted in partial fulfillment of the
requirements for the degree
Master of Science
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Ks

1985

Approved by:

Major Professor

LD
2668 7
;g;’; A11202 99k541

HGY TABLE OF CONTENTS

Chapter Cod

II INTRODUCTION L BN BN BN TR BN BB RN BN BN BN BE BE BN B BN BN BN BE B BN N BB B BN BN B BE B B N

:

strUCture ® 8 8 0 ¢ 8 0 8 S S O e E S SO O PSS E T O EE ST ETE SRRSO
Data Storage SyStemM .cccecececsvvescsrscccrcsnns
Requirements .cesvesccvecnsvscccssvovscocscacses
Unique Data StructlUre sscesssssssosssscsssssssvs
CONBELAINES o oo oié o5 6 0o w6 46 56 66 570 o8 a0 6 &8 0 o564
Memory Usage L B B B B B B B RN BN BN BE BE T EE BN BN B BN RN B BN R RE B BN BN BN B BE BN BN AN
DiSk Usage e 8 0 9 % 0 B S S OSSO P SRS A SRS SRR
Response TimMe cccescccesccscscsossacsssassscnses
RESOUICe Usage e ® & & 8 0 O OO0 O ® 0 0 S e OSSO E eSS e e
Portability LB B BN BN BN B BN BN R RN BN BN BN RE BN B BN B BN R R R N R BN L B BN BN BN BN B

Sumary LI B R O N B BN BN B B DR B B BN B BN BN BN BB DR B B BN BRI N A R R BN B N BN AN

WO~ b&ebWWN |

II. DESIGN LN 20 B BN BN BN R N BN BN BN BN BN BE BN BN BN BN BN BN BE BN BN N BN B DR BN BN BN R BN R BN BB BN BRI BN) 12

Editor ® @9 00 0 PO 00 OO PO RO TR TR PSS T e e e e 12

Analyzer LB BN BN B BN R BN BN B BN B BN L B B B B BN BN BN BE B R B B B N BN BN BN D RN N BN BN B B 13
Tran8lator . e e e ot o5 o0 e6 oo 56 e e 806 o0 828 856 40 14
Design Issues L B BN BN BN BN BN K BN BE BN BN BN BN BN BN ORE BN BN B BN BN NN BN BN BN RN B BN BN BN N AN) 14
Design specifications ® 8 8 8 9 % 9 PP PO S O OO0 S RO R R RN 16
Pile StructlUre scsssvesssssssinnssssssavensnnes 1D
Logical Representation scceccccssccsccscsssncss 17
Memory Conservation ..cceccescecscesnsssssssess 18
Interfacing ® 0 0 0 0 0 0@ O P ST D T O SO S PO eSS PSS SR 19
Integrity LR BN B B B B B B B B BN BN N B R BN BN RN BN OBE CEE B BN BN B BN B IR B BN O B B B 20
Portability ® 2 & 08 0 P B P e SRS DS RER R E R EE RS 20
Storage System DeSign seeesevcesovseccscsssccecase 21
Functional Overview ..cccccsvcccccccscscncessses 21
Internal Data StIUCLULE ccessseccosssasssonsess 23
Data Manipulation ConsiderationNs .ccssccccesces 24
Sumary ® 9 0 2 0 8 0 9 ® OO0 S 09 OO PO R B PO O OO TES PSRN 28

III. IMPLEHENTATION S8 @9 0 B SO 08 SO0 00 S BT O RO S OB PN PPEREE SR PETNE 35

Reading Files LB B B O B BN BN BE B BN BNCBN BN DN BK BE BE BN BN BN BN BN BE BE BN BN BN BE B AR BN 36
Retrieval of Text 8 9 9 9 0 8D B OO0 PSP E PR S E YR 38
Inserting Text LR AN B IR BK BN BN BN BN B BN BN BE R BN BN BN BE B B N O N BN BN BN BN BN AN N 39
Deleting Text ® 99 900 8 0 O S SO P PSS E O e eSO RS E S ESeES 40
Changing TeXt ccvsvvnvsscsonstsncscssssssssesos 41
Writing FlleS seceorevssssssvsnnsssssssssanssnsne 41
Analyzer Data Transfer L B B B D B DR BN BN R BN BN BN BN BN BN BN BN BN BN BN N] 42
Translator Data TransSfer scceeccccccsccsscsscsss 43
nemory Management L B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BE BN BN BN BN BN BN BE BN BN BN BN 43
System Enhancements sceesesccacsccssccscncssssns 44

Iv' TESTING & 2 @ 9 009 % S e 0 S RAREAdEeE LT e EE e eSS eSS S SNV 51

V. EXTENSIONS AND FUTURE CONSIDERATIONS csececesesese 53
REFERENCES 29 ® 9 & 0 0 &8 008 ® 0 9O R PP PR RO R P S A eSO 55

APPENDIX I. Procedure Specifications cecseescsscceccnes 37
APPENDIX II. Parameter Specifications ...csvscvccceacse 66
APPENDIX III. HLSEW Declaration Source Code .ccvesssaess 75
APPENDIX IV. Storage System Source Code .c.vscccecccsss 78
APPENDIX V. Editing System Source Code .ccesvscssscess 98

APPENDIX VI. Installation Source Code .csecesccsessces 128

Diagrams
l. PFigure 1.1 HLSEW StructuUre ..cccesccecssccscsassce 10
2. Figure 1.2 HLSEW System Communication .ceeeesssees 1l
3. PFigure 2.1 Linking of the HLSEW SySteém e.csceseses 29
4. Figure 2.2 Generlized Linked Structure sceesceeses 30
5. PFigure 2.3 User View of Text File ...cvcvcecsceaes 31
6. Figure 2.4 Storage System View of Data «eecceeesss 31
7. Figure 2.5 Storage System View of Problemee.. 32
8. Figure 2.6 Storage System View of Problem ...cee.s 33
9. Figure 2.7(a) User View Of TeXt cccescssensvscscsss 34
10, Fiqure 2.7 (b) System View Of TeXt ccovececcsccccces 34
11, Fiqure 3.1 Hierarchy Diagram e.ceescececscsscsccea 48
12, Figure 3.2 Read File FlOW .ccccocccccccscssnnscees 49

13. Pigure 3.3 System Modular FOIM .ccceeecsscnsoscnaes 20

ii

CHAPTER 1

BACKGROUND

Introduction

The author has developed the Data Storage System of an
interactive workstation referred to as the High Level
Software Engineering Workstation (HLSEW). This interactive
workstation which functions as an "intelligent terminal", is
designed to aid programmers who use a pseudo-English
programming language <called a Program Design Language
(PDL). "An intelligent terminal can do some local
processing without communicating with a host computer, it
offer users flexibility while freeing the host for other
tasks" [CO082]. The HLSEW functions as an intelligent
terminal which allows: 1) the creating and editing of a PDL
file, 2) the calculation of program metrics, and 3) the
translating of a PDL file into a compilable source code
file. The eventual purpose of the HLSEW project is to
develop an intelligent workstation that helps to identify
problems as the user enters the PDL code.

PDL is a psuedo-code, ambiguous structured-programming
tool with a syntax that contains statements such as REPEAT
UNTIL, CASE, and DO WHILE [CA75]. The expressions and the
statements of the PDL are of one language (i.e., English)

and the control structure is in another (i.e., a structured

programming language). There are many variations of PDL
syntax which are in the style of APL, Fortran, Pascal, and
COBOL. In the case of this project, the PDL being targeted
will use a COBOL PDL. With the use of the HLSEW, a complete,
executable ANSI COBOL program can be translated from a PDL
program file.

The HLSEW project was originally designed for a PDQ-3,
which consists of a LSI-11 CPU, 128K RAM memory, dual 8 inch
floppy disk drives, and runs the University of California at
San Diego (UCSD) p-system. PFurther development of the
project resulted in the system being transferred to an IBM

or IBM-compatible micro computer.

Structure

The structure of the current HLSEW is divided into four
sections: (1) The Editor, {(2) The Data Storage System, {3)
The Software Engineering Analyzer, and (4) The Translator.

The Editor serves as the input medium to the
workstation system and functions as a common link by which
each of the four modules can communicate. The Editor
functions as a "Screen Editor"™ on screen oriented devices or
as a "Line Editor" on line oriented devices.

The Software Engineering Analyzer supplies
Halstead's and McCabe's complexity measures. Information
such as complexity, implementation level, and volume levels
within a program or within a block of code are calculated by

the Analyzer and displayed to the user.

The Translator functions to automatically translate a
PDL file into a compilable COBOL source code file. The
COBOL file may then be compiled on the physical CPU at hand
or on a mainframe located in another geographical area.

The Data Storage System acts as a interface medium
through which the Editor, Analyzer, and the Translator make
requests for: 1) data that has been stored in memory or in a
disk file, and 2) data to be stored in memory or into a disk

file.

DATA STORAGE SYSTEM

Requirements

The HLSEW data structure was built because the
necessary data structure was not present in the UCSD p-
system. This data structure must be present to preserve the
logical division of the PDL, The design of the HLSEW and
its data structure resulted in the design of a new system
rather than using the existing UCSD p-system. Also
included is the need to simultaneously handle three files
within the internal memory of the machine, and the need to
create a file structure which is compatible with the
operating system. The three files necessary within the
operation of the HLSEW are: 1) the physical code file
located on the disk, 2) the software metric file, and 3)

the translated PDL file.

Data Structure

The interfacing problems encountered in implementing a
data structure with the present UCSD p-system could be
solved by modifying the editor or by accessing the system
routines of the UCSD p-system. Because neither could be
done, a custom editor and storage system was built. The
references supplied with the PDQ-3 and the UCSD p-system
indicated that interfacing with the operating system was
possible, but the necessary documentation needed was not

available.

CONSTRAINTS

The initial constraints on the storage system
included: 1) the amount of internal memory available in
which data could be stored, and 2) the amount of free disk
space needed to store an edited file. Secondary to these
constraints was the need for: 3) speed of data retrieval,
4) the efficient use of the memory for the programs, and 5)

portability to different machines.

Memory Usage

Reducing the amount of internal memory used by the
HLSEW system was the main concern throughout the entire
development period. It was evident that even though an
new editing system could be constructed, the code which

makes up the major body of the HLSEW added onto the UCSD

p-system could easily tax the memory of a small host
machine., Although the available memory of a machine may in
many cases be scarce, a file of moderate size must be
maintained and edited. This memory constraint would be most
evident in the majority of micros present on the market
today. Even though an increasing number of companies are
making larger memories standard, there will probably always
exist those machines that will be classified as basic units
and will contain limited resources.

In summary, an efficient method of using the available
internal memory is a necessary system feature so that a
moderate sized edit file could be maintained and so machines
with smaller memory sizes could run the HLSEW system.

To design a system that could be used on both small and
large machines, it may become necessary to design two
different storage systems that would each be suited for the
type of configuration that each system was being run on.
This type of design would defeat the purpose of the HLSEW
development project. Designing multiple systems would
defeat a design goal that will be discussed further in this
chapter under the topic heading of Portability. The most
desirable system would be one which could run on any machine
of any type of configuration, whether that configuration was
large or small. Of course, concessions would no doubt have
to be made so that any type of configuration could be used.
One of the concessions made would be an increase in response

time versus an increase in the size of an edit file.

The machines which contain sufficient memory to allow
liberal use of the available resources could use a storage
system that utilizes the internal memory and would display a
high response time, and through careful planning, a large
edit file could be maintained. Those machines that where
not supplied with a large amount of memory could use a
system which makes use of the available storage capacity of
the floppy disks and would display a slow response time but

would also be capable of maintaining a large edit file.

Disk Usage

The second constraint is the need to have a storage
system that can structure data on a disk so that the amount
of wasted space is limited (an efficient usage of storage).
Various methods could be devised but not every method can
efficiently store the data into a disk file. The USCD p-
system uses a method of reducing or compacting its files by
eliminating unnecessary blanks. This compacting method
increases the ratio of data stored to disk space used. By
compacting the amount of space needed to store a file, an
increase in the amount of overhead needed to store and
retrieved that data is created. Designing an efficient
method that would have a balance between the space needed to
store the data versus the time tradeoff needed to access the
data, and would be compatable with the p-system would add to

the positive aspects of the HLSEW system.

Response Time

From a user's viewpoint, the time needed to enter data
should be greater then the time needed waiting for the
processing of the desired data. The reading and writing
speeds of floppy disk drives found on today's micro are
considerably slower compared to the speeds found using a
hard drive or internal memory. The amount of time needed to
move any data to or from the disk increases as the number of
disk accesses increases. To help eliminate the amount of
time consumed by the retrieval of data, a method should be
devised that could retrieve a data file with a limited
number of disk accesses. By limiting the number of disk
accesses, an improvement in the system response time would

be observed.

Regource Usage

To this point, the concerns of major importance have
involved the efficient use of the resources in respect to
the file being edited by the HLSEW system. An issue that
must not be overlooked is the constraints placed on the code
of the HLSEW by the UCSD p-system. The mere physical size
of the code can go beyond the operating capability of a
machine. These size constraints become most evident when
the monitoring of an executing system takes place. The UCSD
p-system provides a method called segmenting by which

efficiency of the program execution can be incorporated. By

carefully designing the HLSEW system code, an efficient use
of the UCSD p-system and an efficient execution of the
software system code can take place. A more detailed
description of the use of code segmentation can be be found

in Chapter 4.

Portability

Portability is also desirable when considering a design
which will not be limited to just one machine type. Too
many software packages on the market today are structured
for a particular computer. If a software package is
targeted for a specific machine, the proper functioning of
that software on any other machine may be impossible. Some
companies have given forethought to this problem and have
supplied the user with routines which tell the software what
type of computer, terminal, printer (Wordstar, dBase II),
and in some cases, the version of operating system that is
present (Lotus 1-2-3) [MI83] [AT83] [LO83]. As a marketing
issue, the less machine specific a software package is, the
greater the distribution will be. The usage of features
which are unique to a given machine or terminal must be
avoided so that problems which do occur can be kept at a
minimum and the solutions to those problems can be easily
rectified. Complete portability cannot always be guaranteed
from machine to machine. There is always a set of bottom
line requirements that is needed to run any software package

such as a minimum amount of internal memory, the particular

number of disk drives, or a specific implementation version
of the operating system. The portability of a software
package can be increased to a greater extent by refraining

from the use of machine specific features.

Summary
The High Level Software Engineering Workstation (HLSEW)

is an interactive workstation which aids the programmer who
uses a PDL code. The HLSEW system is a tool that a
programmer can use to edit a PDL file, to calculate program
metrics, and to translate a PDL file intoc a compilable
source code file. The Data Storage System of the HLSEW
controls a unique internal data structure that maintains the

attributes of the physical text file.

Sof tware
Analyzer

§torage
Systen

Translator

Editor

Fiqure 1.1
HLSEM Structure

10

Sof tuare fAnalyzer

-iiu5hh5hhh:E::;;;;_g;;;::jﬂ__‘__.-;i'

—

Translator

Line Editor

~a———— Sojaen Edifor

T~

Command Interpreter

HLSEM System Communication

Figure {.2

11

Chapter 11

Design

SYSTEM OVERVIEW

The HLSEW system is divided into four modules 1)
Editor, 2) Software Analyzer, 3) Translator, and 4) Storage
System. The structure of these modules is illustrated in

Figure 2.1.

Editor

The majority of all data for which the storage system
is responsible is either sent to or received from the
editing system. Specifically, the editor will request to
store, delete, transfer, or change specified lines of text.
The editing system is divided into three operating modules:
(1) the Command Interpreter, (2) the Line Editor, and (3)
the Screen Editor. All the calls which come from the
editing system originate either in the Command Interpreter
or the Line Editor.

The Command Interpreter is responsible for issuing
requests for files to be opened and closed by name. When
these requests are issued, it is the necessary for the
storage system to open a named file and, if no file exists,
to create a new workfile to be named later. Upon completion

of an editing session, a request is issued to save and close

12

the file which has been edited. The storage system has the
task of informing the Command Interpreter if any errors have
occurred so that the proper actions can be taken to recover
from the errors and to inform the user of such problems.
Within the Storage System are various sections of code
which detect problems or errors that may occur when a
request is made to delete, add, or change a line of text.
Depending on the type of error that occurs, the storage
system or the editing system will take actions to recover,
and in some cases, both systems do error recovery on
occurrence of the same error. Figure 2.2 represents the
communication which takes place between the Command
Interpreter, Line Editor, Screen Editor, and Storage

System.

Analyzer

The initial command to execute the Software Analyzer
originates from the Command Interpreter. Once the execution
begins, the Analyzer functions independently from the
editing system and communicates with the Storage System
directly. The Analyzer requests a named file to be brought
into memory. The Analyzer then issues calls to the Storage
System requesting the software metrics and the text from a
given section of the file which corresponds with the
Metrics. This section of text retrieved represents either a
predetermined block of text which is identified by name, or

it can represent an entire file. The text is transferred to

13

the Analyzer one line at a time, When the processing of
the Analyzer has completed, a set of software metrics is
transferred back to the Storage System which then stores
this set of metrics into the disk file and records the

address of the metrics.

Translator

The communication between the Translator and the
Storage System is similar to that with the Analyzer.
Execution of the Translator originates in the Command
Interpreter. The Translator is also independent of the
Editing System and communicates with the Storage System
directly. Requests for data is on a line by line basis.
The text which is transferred to the Translator is generally
a complete file, starting at the beginning of the file and
continuing until the end of the file has been encountered.
There exists no restrictions against requesting data on a
named block basis. A request is issued to locate the name
(label) of a block, the data is then transferred to the
Translator until the end of the block of data is

encountered.

DESIGN ISSUES
The Data Storage System was designed for the purpose of
storing and retrieving data for the HLSEW system. Although

the storage of data onto a floppy disk unit is itself a

14

relatively simple task, the continual wupdating which occurs
in an editing session changes the physical structure of the
file drastically. Various methods by which data could be
stored were examined. Each method of data storage was
judged by the advantages and disadvantages that it
exhibited.

A linked structure representing the user supplied text
proved to be the most logical and effective method of
maintaining a text file. The major issue concerning the
linked structure involved the structure of the information
stored at each node. The Cornell Program Synthesizer
implemented a tree structure which uses goto labels
to indicate op-code entry and continuation points [TES81l].
The tree built by this method is transversed in a preorder
fashion in which no backward pointers are used resulting in
the need to go all the way around the tree to achieve a
backward movement.

Also considered was a method of storing at each node an
entire block of data (512 bytes). This proved to be an
effective way of conserving the amount of memory needed to
store the text internally and decreased the number of disk
accesses, but the overhead needed to maintain that type of
structure was quite large.

To reduce the overhead required to parse and maintain a
tree structure, a doubly linked structure which is traversed

in a sequential fashion was chosen.

15

Desi 5 i ficati

The original design specifications stated that: 1) a
data file must display a generalized physical structure so
that the accessing of that file by other software packages
may be achieved, 2) a data structure must be developed that
will maintain a logical representation of the physical data,
3) the internal data structure specified must efficiently
use the available memory resources and allow the prompt
retrieval of data.

An underlying detail to the design issue was a concern
that: 1) there may possibly be the need to interface the
storage system with other systems or modules, 2) data
integrity had to be addressed because no interaction occurs
between the user and the storage system, and 3) an emphasis
on the system design should be made so that there would be a
high degree of portability. The present design supports all

the original specifications.

Eile Structure

The file structure by which physical data is stored,
was designed so that other software packages can easily
access the stored data. The design of the storage system
successfully avoids the file structuring problems the UCSD
p-system has, thus allowing data to easily be accessed by
other software packages.

The UCSD p-system contains one major constraint that

unfortunately is inherent to this well designed operating

16

system. The designers of the UCSD p-system addressed the
issue of managing resources and devised several methods of
conserving internal and external memory. The main method
the UCSD p-system uses to conserve memory resources is to
replace the 1leading blanks with numeric codes. This method
is carried from the internal storage of data to the external
storage of data into a disk file. By representing blanks
with numeric codes in the disk file, the access of the text
by other operating systems and devices is difficult. It
became necessary for the user or the programmer to know the
fine details of the data structure and to construct special
routines which can use the stored numeric codes to return

the text to its proper structure.

Logical Represention

Designing a structure which could maintain the logical
attributes of a file resulted in the ability to move quickly
through the data stored within the internal memory buffer.
The logical representation not only decreases the time
needed to retrieve data, but it also has the ability to
retrieve information about different sections of code which

are needed by the software analyzer.

17

Memory Conservation

The amount of memory allocated to run the HLSEW on any
particular machine is conserved by allowing no more than two
modules (Editor, Storage System, Translator, Software
Analyzer) to function at any given point in time. When the
HLSEW is fully operational, only two of the system modules
are executing at one time. The storage system must always
be kept in memory to supply text to the other module which
is resident in memory. The passing of information takes
place between the storage system and 1) the editor, 2) the
translator, and 3) the software analyzer. The translator
and the software analyzer never interact which each other,
and the editor only initiates the execution of translilator
and the software analyzer. Once the execution of either the
translator or the software analyzer is started, the editor
code is no longer needed in memory until a return to the
calling procedure is indicated.

There is no particular size limit on the text file
being edited. The storage system uses a dynamic memory
buffer which allows the size of a file to be totally
dependent upon the amount of internal memory available,
This is accomplished by means of constantly monitoring the
amount of memory being consumed during an editing session.
A procedure is used which receives from the operating
system the amount of memory remaining in the host machine.

Because of the complexity of the data structure

involved, a systematic approach to designing the system was

18

used. A method that efficiently uses the internal memory
was the first implemented. This method proved to work
effectively on machines with limited internal memory. After
the structure of the storage system was tested and verified
to function properly, the question of improving the speed of
data retrieval was addressed. To improve the performance of
the system, features found in the operating system were used

that can make effective use of a larger memory.

Interfacing

The need for a storage system that other modules could
easily interfaced with was a desirable factor. Other
systems or modules which need to interface with the storage
system may have been constructed outside the realm of this
project by others who wish to use and incorporate the code
which is contained within the storage system., To help
eliminate the problems which may occur wﬁen attempting to
interface with the system, a general description of the
functions is given in this chapter and a detailed
description of the code including actions, parameters used
and the expected side effects have been supplied in

Appendix I.

19

Integrity

A concern of major importance with this project was the
guarantee that the data retrieved by the Storage System
corresponded with the data requested by the editor. In
addition to the correct retrieval of data was the need for a
system that would contain facilities which would prevent any
system failures caused by operator or data error thus
ensuring the continual operation of the total software

package.

Portabilif

The question of portability of the final BLSEW
software package was also of great concern. The portability
of a software package can be improved by eliminating
hardware dependent functions and by designing a code
structure that can be run on a large range of internal
memory Sizes.

Fortunately, the UCSD p-system is very well equipped
with functions which allow the programmer to call upon the
operating system to perform tasks or supply information.
At the present time, when the HLSEW is in operation,
approximately 70K of memory is available for use; this does
not include the memory needed by the Translator or the
Software Analyzer. The information concerning these two
modules is not yet known, so the actual amount memory needed
for the final HLSEW system can only be estimated.

Terminal dependent features were avoided by designing

20

functions which do not rely on the hardware that is attached
to the host machine. Not all of the terminal dependencies
could be avoided. Variations in a small number of vital
BLSEW functions could not be overcome. The solution to this
was to design a installation routine that supplies the HLSEW
system with information about the host machine. The
information supplies value codes for cursor and screen
control. By avoiding machine dependent function and with
the use of the installation routine, the portability of the

HLSEW system is increased.

STORAGE SYSTEM DESIGN

Functional Overview

Initially, the obvious task that the Storage System has
is the responsibility of handling any data which has been
entered by the editing system. The Storage System is also
responsible for the opening and closing of files, the
reading and writing of data which has been or will be stored
on a disk unit, and the monitoring of available memory.
These tasks represent linking points at which the Editor,
the Translator, and the Software Analyzer will send data to
and receive data from the Storage System. The critical
point of interest within each of these linking points is
that each unit of the HLSEW system is highly dependent upon
the proper parameter values to be passed so that the correct

data and the correct information can be guaranteed. Figure

21

2.1 1illustrates the linking of the storage system with the
editor, translator, and the analyzer.

Along with the communication which takes place between
the editor and the storage system, a sequence of steps
exists which mimics or duplicates the steps that each unit
takes. In reality, the editor functions not as a screen
editor, but as a line editor and maintains only one line of
text at a time in its own memory buffer. If the editor
makes a logical movement "up" or "down" in the text file,
the storage system must also repeat the same movement. The
duplication of steps which takes place must occur so that
editor and the storage system can maintain the same logical
position in the text file. The difficﬁlty in implementing
the duplication tasks resulted because information passed
between the units in the form of parameters many times
represented logical values rather than physical values.
Under <certain conditions, the logical and physical
representation of the data can become disjoint resulting in
meaningless information. To avoid the editor and the
storage system becoming disjoint during processing, this

duplication of tasks takes place.

22

Internal Data Structure

The internal data structure that is built and
maintained by the storage system is a linking of information
found in the physical text file and the logical
representation of that text file. The physical file is
simply a sequential storage of the text file.

When the physical file is read into memory, the data
from the file is stored into the structure detailed in
Figure 2.2. This structure is comprised of two double
linked lists which are in turn double linked to each other.
Two types of linkings exists in the data structure. The
first type of linking builds a structure which attaches each
consecutive physical or logical record to the next record,
i.e. record 1l is linked to record 2, record 2 is linked to 3
and so forth. The second linking connects the logical
structure to the physical structure. This logical structure
includes the location of a block of text, the number of
lines in that block, and the relative address of the
software metrics associated with that block. The need to
obtain specified sections of code and information pertaining
to that code quickly and to maintain a logically sequential
text file without the disruption of superfluous data is the

reason for this type of structure.

23

Data Manipulati c ig :
Throughout the development of the storage system, the
expanding and the contracting of the data structure and the
manipulation of the data contained in that structure,
resulted in the presence of various data manipulation
problems. To help understand the problems that can occur,
the most difficult situations encountered are described.

In Figure 2.3 an arbitrary text file is displayed and
the structure of that file is shown as it appears to the
user. The lines of text shown represent three blocks of
code with the labels A, B, and C. Within each of these
block labels is the associated code which corresponds with
each block. Each line of code is given a relative name to
indicate of which block it is a member. Figure 2.4 is the
internal representation of the data as it appears to the
storage system. On the left side of the linked list appears
the logical mapping which informs the storage system about
the information pertaining to each block, and the physical
representation of the text file appears on the right side.
Looking at the logical side of the linking, one can
determine that block "A"™ has four lines of text associated
with it. Block "B"™ has three lines associated with it, and

block "C"™ has two lines of text.

24

Using this description of the text file, some

situations that can occur are as follows:

Case 1. When "B" is deleted, two events must take place;
the text which was originally linked to block "B" must
now become linked to block "A®", and the number of lines
of text which once belonged to block "B" must be added
to the total lines belonging to block "A", The

resulting structure is illustrated in Figure 2.5.

Case 2. Assume, as illustrated in Figure 2.2, that during
an editing session, block label "A" should either be
deleted, or it was inadvertently omitted. The storage
system would not be able to associate the following text
with any label nor could the Software Analyzer. To help
satisfy the structural problems within the internal
representation, a dummy block label is created and
linked to the indicated text. This dummy label will
exists only as long as there is no actual label present,
and once a replacement label has been entered, the dummy
label is removed. Even though a dummy label would be
present in the logical linking, the unlabeled lines
remain just that, unlabeled. To illustrate that the
block values are unlabeled, the "?" has been placed in
the representation to show that there exists an unknown

value and location, as illustrated in Figure 2.6. This

25

will stay true until a label is inserted to replace the
nonexistent label which is represented by the dummy

label.

Case 3. Reverse the situation that is described in Case 1.
A label is inserted into the physical linking. Using
Figure 2.5 again, assume that the label "B" is inserted
where it was originally located. The linking which is
present between the logical and physical lists must now
be rebuilt and the line numbering for labels "A" and "B"
are updated. The resulting structure is illustrated in

Figure 2.4.

Case 4. Cobol is a language which is structured so that the
compiler can determine the function of the code by the
location where the code physically appears on a line.
This can be referred to as a column oriented language.

Before a line of text can be properly processed by
the storage system, it must be determined whether the
indicated text is a block label or some other standard
type of text. This is accomplished by checking each
incoming line for the presence of text in columns 8
through 11, This determining factor governs the type of
processing which will take place within the storage
system. If any part of the text being accessed is
located within columns 8 to 11, a block label is formed.

Any existing text can be changed and modified during an

26

editing session. If a block label becomes repositioned
so that its beginning characters are no longer located
between column 7 and column 12, the internal linking is
rebuilt to reflect the change which has taken place. If
a standard line of text which was originally located in
column 12 or beyond is repositioned so that its
beginning characters fall between column 7 and column
12, the linking is also rebuilt to reflect the change.
A more detailed description of this action can be found

in chapter 3 under Changing Text.

Case 5. Using Figure 2.7(a), assume the following sequence
of events. On the left is a small text file as it
appears at some point of time during an editing session.
With the use of a <change command, the label "B" is
altered giving the structure shown in 2.7(b). Even
though "B" has not been deleted, the linking is changed
and the appearance of a label being deleted takes place.
The only difference though is that the total number of
lines does not change.

The previous sequence can now be reversed.
Starting with the structure found in 2.7(b), changing
the line where "B" is found can result in the structure

found in 2.7(a).

27

Summary

The Data Storage System was designed to maintain a
physical text file and the logical information associated
with that file. The specifications which contreolled the
design of the storage system were 1) the need for a
generalized data file structure, 2) a logical representation
of the physical text file, and 3) an internal data structure

which will use theravailable memory efficiently.

28

FETCHER INE
DELET INE
STORE A_LINE
REF

Editing System —>

WRITE_FILE
WRITE_CLOSE

[
TRANSLATOR ——> 2R oer
TRANS FETCH

[METRIC_LOCATE
ANALYZER ——— METRICSTORE

METRIC_FETCH

Fiqure 2.1
Linking of the HLSEN System

29

Physical

Logical

]

)

]

. I |

F 3

>l +

|

L 111

N 1]

3

'l

sl

o
“1

l,* L

“L

Fiqure 2.2
Generalized Structure

30

Al
Al

Figure 2.3
lUser Uiew Of Text File

logical Physical
A I\ ‘L —Dﬁlnf’rlol
:FFF'TH
i 13 ["f2]

¥ 1
> [[T13]

A 4 *'T\
[3] I\ — —AJLIJLT‘H]
—__ [1115]
— T’Ifl [6]
t21 | 3 —-'HTfi |7|
E » [T TT8]

Figure 2.4
Storage Sustem Uiew of Data

31

logical Physical

te 11 | — —> | | o |
K e 1
> Ii_l 11]
[, TTT.1
IR TR LR EN
3 [P 1a]
» [MI5]
» |1 "ie]
¥ 7
T 1T T3 T T 7]
» | [']8]
Fiqure 2.5

Storage System Uiew of Problem

32

logical Physical

I T S 1 _T0]
E. — 1 X

> T, T 111

T

ST

CL TS zf_}lj'l'il‘lﬂ

ST T 15]

=34 IJ!'IT [6]

L 1T T3 %JH_‘SHTM

[T TT15]

Figure 2.6
Storage System Uiew of Prablem

33

Al Al

A2 A2

Al A3

A4 A4

A3 A3

A6 A6
B B

Bl Bl

R B
Fiqure 2.7 (a) Figure 2.7 (b)

User View of Text System Uiew of Text

34

Chapter III

Implementation

The storage system consists of approximately 1400 lines
of source code and documentation and is comprised of twenty-
six procedures which perform the data manipulations. The
storage system is divided into two major divisions of code.
The major divisions are comprised of procedures and
declarations that can be accessed by the editor, the
translator, and the analyzer (global), and those that are
resident to the storage system (local) and can only be
accessed by the storage system code.

The global procedures consist of routines which are the
points at which data is transferred. These procedures are:
STORE_A_LINE, FETCH_A_LINE, DELETE_A_LINE, WRITE_FILE,
WRITE_CLOSE, TRANS_OPEN, TRANS_CLOSE, TRANS_STORE,
TRANS_FETCH, METRIC_FETCH, METRIC_LOCATE, METRIC_FETCH,
READ_TERM, REFORM, and READ_FILE. These procedures function
as communication points at which data is received from, or
sent to the command interpreter, editor, translator, and the
analyzer. From the procedures which are global to the
HLSEW system, the procedures which are local or resident to
the storage system are called.

In the next sections which describe the inserting,

deleting, changing, and retrieval of text, the logic flow of

35

each procedure is discussed. The flow paths which take
place overlap from procedure to procedure, and the series of
procedure calls that are taken may differ only from that of
the originating calling statement. Even though physical
differences exist between inserting, changing, and deleting
of text, the logical differences are quite small.

The main procedures responsible for the inserting,
deleting, and changing of text are BLOCK_MOD and STAND_MOD.
These procedures contain sections which modify the linked
lists. BLOCK_MOD modifies the logical lists where labels
are found and STAND_MOD modifies the text found in the
Physical list., Each of these procedures is comprised of
three sections which are responsible for the majority of all
the data manipulation which takes place in a file being

edited.

Reading Files

At the beginning of an editing session, the Command
Interpreter requests the access or the creation of a file by
issuing the command to execute READ_FILE,

The initial step that READ_FILE takes is to call
FILE_OPEN. FILE_OPEN appends the suffix (filetype) ".C$S"
onto the file name which has been entered so that the name
will conform to the operating system's standards. To quard
against the chance that the user has entered the file name
with the suffix ".TEXT", the last five characters are

checked, and if these are present, the supplied suffix is

36

removed and the "C$$" suffix is appended onto the name.
This eliminates the chance of a file name having a suffix or
file type ".TEXT.C$S".

If the file name that has been entered is found, the
physical, and metric files associated with the file name are
opened and read. The process of reading the files is
monitored by the operating system so that if any errors or
system failures should occur, the files are closed and
control is given back to the Command Interpreter.

READ_FILE then calls INIT_POINTERS which creates the
starting of two linked lists and initializes the pointer
values contained in the lists. This initialization includes
creating the first and last instance nodes of each list.
These nodes act as dummy nodes and any further data
manipulation that may take place with a file will be within
the bounds of these dummy nodes.

After the execution of OPEN_FILE and INIT_POINTERS,
control returns to READ_FILE. The physical file read by
OPEN_FILE is used to build the linking that exists
internally to the supporting machine. When the building of
the internal linking is complete, the control of execution
returns to the Command Interpreter., The Command Interpreter
is passed information pertaining to whether the file was
found, if the named file is new, and the total number of
lines contained in the file and, the occurance of any
Input/Output errors. Figure 3.2 diagrams the flow of

program control for opening a file.

37

Retrieval of Text

The retrieval of text is a process which has its
calling origins located throughout the editing system.
Whether text has been inserted, deleted, or changed, the
procedure FETCH_A_LINE is responsible for the retrieval of
text and is used more extensively than any other procedure
within the storage system.

Text retrieval is performed by the procedure
FETCH_A_LINE., The editing system may process several lines
of text before calling the storage system. This leads to
the two systems becoming disjoint in relation to where each
is logically located within the text file. LINE_MOVE is
called from FETCH_A_LINE and is used to either move up or
move down within the file to stay synchronized with the
editing system. Syncronizing the storage and editing
systems is accomplished by comparing the relational location
of the editor's line index against the relational location
of the storage system's line index. If the requested line
cannot be found, the presence of no text is indicated. When
the line of text is found, the contents of the line is

retrieved and control returns to the editing system.

38

Inserting Text

The call to insert a line of text into a file
originates in the procedure STORE_CURRENT_LINE which is
located in the Line Editor. STORE_A_LINE serves three
different functions; inserting, deleting, and changing text.

STORE_A_LINE calls LINE_MOVE to move the indexes, which
point to the linked lists, to the proper locations. If no
errors occur, a check is made to determine if the line of
text is a label for a block. If the Storage System
determines that a line is a label, the label is tagged,
otherwise the line is tagged as a standard line of text.
The result of this test will determine the proper insertion
seguence. If a label is indicated the label must be
inserted into the logical linking first before the text can
be inserted into the physical list, this is done by calling
BLOCK_MOD., If a standard line of text is indicated, then
the iﬁsertion of the text goes directly to the physical list
by calling STAND_MOD,

Following the inserting of the text by STAND_MOD, the
procedure INSERT_RENUM is called. If a standard line has
been added, the associated block label has its line count
incremented. If a label has been inserted, the situation
described in Chapter 2, Case 1 of Data Manipulation, occurs.
The code must be checked for the existence of a sequence

change that may be present after the insertion took place.

39

Deleting Text

The procedure DELETE_TEXT which is found in the line
editor, initiates the deleting of text by a call to
DELETE_A_LINE., When examining the procedural flow to delete
text, it will be found that the series of procedure
executions are virtually identical to that of inserting
text. In DELETE_A_LINE, LINE_MOVE is called to find the
line of text., If this line is found, STORE_A_LINE is called
and the procedural flow used duplicates the sequence used to
insert text.

As discussed previously, the various manipulations of
text which take place are handled by procedural calls that
are in many cases identical. The differences that exist are
internal to the procedures themselves.

Once the line of text has been deleted from the linked
list, DELETE_RENUM is called. The type of line which was
deleted is checked, and if its type indicates a standard
line, the associated label has its line count decremented.
If a label is indicated, the presence of a seguence
interruption is checked for, and then the labels involved

are renumbered.

40

Changing Text

As with inserting text, the «calling origin to change a
line of text is located in the procedure STORE_CURRENT_LINE
located in the line editor. The procedural flow is the same
as that used to insert a line of text. One important detail
to be aware of when changing text is that when given the
proper set of conditions, the changing of a line of text may
result in almost the same logical conditions as when a line
is inserted, or when a line is deleted. This situation is

described in Case 4 of Chapter 2.

Writing Files

Once the user decides to end an editing session,
control returns to the Command Interpreter in the editing
system where the procedure WRITE_FILE is called.

The function of WRITE_FILE is to store the information
of the physical linked list and store that information into
a disk file. If at any time an error is received from the
operating system, the writing of the files is aborted, the
data in memory is lost, and the temporary files are deleted.
This action may be objectional to the user that has done a
considerable amount of editing, but it guarantees that the

original file will be preserved.

41

Analyzer Data Transfer

From the Command Interpreter, the Software Analyzer is
called. Within the Analyzer, requests to the storage system
are made for data by means of the procedure METRIC_STORE,
METRIC_FETCH, and METRIC_LOCATE, The procedure
METRIC_FETCH supplies the Software Analyzer with the text
of a specified block of code. The initial call to retrieve
the text from a specified block of code begins with the
procedure METRIC_LOCATE, METRIC_LOCATE performs a search
for the name of a block with the use of the logical linking.
If the name is found, the procedure will return to the
Software Analyzer a value indicating that the block was
found, the total number of lines contained within the block,
and the previously calculated, if any, set of metrics. The
name of the block will always be the first line of text
within that block. If the name is not found, the result is
passed to the analyzer. Once a block has been located,
calls to METRIC_FETCH will retrieve the associated text.
This process will continue until all the text within a
block has been transferred. When the analyzer has completed
its processing, the metric wvalues are returned to the
storage system by calling METRIC_STORE, to store the new set

of metrics.

42

Translator Data Iransfer

Execution of the Translator also originates in the
Command Interpreter., Because the Translator will process
the entire physical text file, a simple sequential file
retrieval will take place.

In the Translator, a call to the procedure
TRANS_OPEN, TRANS_CLOSE, TRANS_FETCH, TRANS_STORE which are
located in the storage system. Unlike editing a file or
calculating the metrics of a file, the internal linking of
the text file is not formed. The named file is opened and
the text is sequentially passed to the translator.
TRANS_OPEN functions to open a file which contains text and
the results of translated text, TRANS_CLOSE closes the PDL
and COBOL files, TRANS_FETCH sends text to the translator,

and TRANS_STORE stores the supplied COBOL text.

Memory Management

Checking the amount of memory which has been used is
accomplished by calling the procedure MEM_CHECK. MEM_CHECK
uses the UCSD Pascal operating system to monitor the host
machines' internal memory. This procedure is called from
STORE_A_LINE after the completion of any insertion of text.

The value returned by the memory check is compared
against an optimal memory value contained within the storage
system's constant declarations. If the available free

memory is greater than the optimal memory value (1l.5K or

43

15000), then no further actions will occur. When the amount
of available memory is in the range of 15K to 16K (15000
to 16000 bytes), a low memory message is displayed by the
storage system to the user. But if the available free
memory falls below the optimal memory value, the procedure
FILE_RELOAD is called and the file being edited is dumped
onto the disk, the memory used is deallocated, and the file
is reloaded automatically. This method helps flush the
system of any unused and discarded data.

In the UCSD Pascal system, once memory is allocated,
the deallocation of the memory is difficult. In most cases,
but not all, deallocation of memory is an all or nothing
situation because arbitrary sections of memory cannot be
reclaimed. The internal memory can become consumed by the
inserting and deleting of text. A memory deallocation
routine is taken by the Storage System to free the memory so

that further editing may take place.

System Enhancements

In addition to the storage system and its functions,
various features were added to the total HLSEW package.
Omitted from the original editing system were facilities to
handle operating system errors, file naming procedures,
terminal independent coding, and screen display constraints.
Additional items added to the system included the design of
a formatting front end, and specialized coding to decrease

the consumption of internal memory by the system code.

44

As much overall control of error recovery as possible
was taken away from the UCSD Pascal system. This was
necessary to insure that the software package would continue
the proper operation for which it was designed. The
responsibility to control error recovery was shifted from
the operating system to the HLSEW system. Soft error
reporting is performed rather than allowing the package to
be aborted by the controlling operating system.

As stated in this document and also in the Editing
System Users Manual, at the beginning of an editing session,
a file name is requested. If the file name was not entered,
a new file is assumed. At this point, facilities were
needed to recover from creating a file as apposed to using
an existing one. The facilities added included the
procedures needed to name a new file at the end of an
editing session.

As documented in the Editing System Users Manual,
problems existed with terminal dependent routines which
controlled the screen display. To help reduce any terminal
dependencies which may occur, a program INSTALL has been
supplied. The independent INSTALL program creates a
terminal code file which is read by the Command Interpreter.
This allows the user to define the characteristics of the
terminal that is being used.

When editing a file, text is scrolled forward and
backward across the screen. The maximum number of 22 text

lines can be displayed on a screen at one time. The initial

45

design of the editor would allow scrolling either forward or
backward to non existing text. This scrolling would cause
logic errors from that could not be recovered. To help
prevent any logical errors from occurring, code was added to
the system so that the exact number of lines in a file is
always known. An attempt to access any text beyond the
bounds of the file was made impossible.

Information indicates that various machines require a
particular format of the file that each will use. These
differences are generally related to the characters set
found at the end of each line. Some facilities may require
each line of text to end with a carriage return, and others
may require that the lines of text end with a carriage
return/line feed sequence. The Reform selection in the
Command Interpreter allows the user to reformat a file into
a selected structure. The Reform selection executes the
procedure REFORM and reads in a named file and then creates
a new file with the specified format.

As stated in the requirements of this project, the most
efficient means of using the furnished rescurces were
explored. Figure 3.3 diagrams the system as it appears in
module form. Four files exist in the HLSEW system: 1) the
Command Interpreter and Screen Editor file, 2) the Editor
file, 3) the Storage System file, and 4) the Editing system
Declaration file. When the total system is completed, the
files which contain the Software Analyzer and the Translator

will be included.

46

In the UCSD Pascal environment, large sections of code
can be compiled into groups referred to as "units". These
units allow large programs which normally cannot fit into
the Pascal editing buffer to be compiled separately and then
to be linked together intc a complete executable system. An
enhanced feature of the UCSD Pascal system called segmenting
allows coding of a program in such & way that a segment of
code will be resident in memory only during execution.
Although this is an expensive process in terms of time used
to load the indicated code into memory, it is quite useful
for conserving memory by allowing only the necessary code to
be present at execution time., This is most often used with
initialization routines which may be used only once during
the running of the HLSEW system.

As illustrated in Figure 3.3, the Command Interpreter
functions as an interface between the user and the Editing
System. From the Command Interpretér, the Screen Editor or
the Line Editor may be entered. The proper execution of the
Screen Editor is dependent upon the presence of the Line
Editor, the reverse is not so. The use of segmentation
was incorporated into the code of the Screen Editor. With
the use of segmentation, the code needed to execute the
Screen Editor is not resident to the operating system until
the actual execution in to take place. By segmenting the
Screen Editor code, the amount of memory that is available

to the system is increased.

47

>TEICH_A_LINE

J’ STORE_A_LINE
>DELETE_A_LINE

> REFORM
Editing System»>

> READ_TERN

READ_OPEN
INIT_POINTERS

MRITE_OPEN
NRITE_CLOSE

»nm_mz{

»lmm_nu-:{

TRANS_CLOSE
TRANS._OPEN
TRANS _STORE
TRANS_FETCH

TRANSLATOR

i

METRIC_LOCATE
METRIC_STORE
METRIC_FEICH

Figure 3.1
Hierarchy Diagram

48

PLINE MV

INSERT_RENUM
PSIRNDIOD> e orE RENUN
o MEM_CHECK

>FILE_RELOAD

> CHECK_TYPL
»m.ocx_Honj:

~Reconstruct File Name

~Open Files

~Check 1/0 Errors

L If Any 170 Errors, Close Files

" KEAD_OPIN >

Command Interpreter — READ_FILE >

INIT_POINTERS
~[f No [/0 Emrs{hild Linked Lists
Close Original Text File

Figure 3.2
Read File Flow

49

System Declarations |
[DECS Unit]

Translator

$torage System
[STORE Unit]

Line Editor
[EDITOR Unit]

Screen Editor

Comsand [nterpreter

[SCREEN Unit]

50

Figure 3.3
Systen Code Files

Chapter 1V

Testing

The HLSEW Storage System received rigorous and
extensive testing. The testing of the storage included (1)
the testing of the system as a singular unit, and (2) the
testing of the HLSEW as it presently exists. Various
aspects of the system were checked for structural and
logical correctness. Both static and dynamic testing
methods were used.

The system was statically checked by the UCSD compiler
for proper system configuration, proper type compatibility,
and correct procedural parameter passing. Throughout the
development of the system, the code that was written was
checked against the original specifications and design to
ensure that if any deviation existed, it would be minimal.

Dynamic testing was the most conclusive method of
checking for the correctness of the code. The editing
system served as the most convenient and logical interface
to the testing procedure. Because of the presence of the
editing system, the total requirements of the HLSEW could
also be inspected.

Before the completion of the storage system, the
editing system could only be tested by simulation. Without

the use of the storage system, unforeseen coding errors,

51

logic incompatibles, and data communication errors appeared.
Likewise, without the use of the editing system, unforeseen
problems appeared in the storage system that otherwise would
have gone unnoticed by the designer when testing the code by
simulation.

The most effective method of testing the system was to
place it under normal operational usage. This included
putting into use all the functions available within the
editing system. The visual inspection of the results
allowed quick and efficient verification of the editing
routines. Included in this testing was the attempt to
purposely create a system failure at every possible point of
processing. Attempting to create a system failure
was accomplished by a number of methods such as: trying to
edit an old file that does not exist, entering incorrect
responses to screen prompts, and attempting to edit non
existent sections of a file. These attempts to cause a
system failure verified that error recovery facilities were

properly addressed.

B2

Chapter V

Extensions and Future Considerations

Presently there are two major concerns to address in
the future for the HLSEW system. To help in the development
of a more complete and comprehensive system, additional
improvements should be made.

Even though the storage system has been designed to
create the files and to store information pertaining to
software metrics, the HLSEW is missing the ability to
display that information to the user through the editor.
The design allows the user to obtain the information about
the metrics starting at the Command Interpreter level. The
information is then displayed by the Software Analyzer. 1In
the future, there may exist the need to calculate the
metrics while still in the editor and then to display the
information without disrupting the editing process. If
necessary, those metrics are stored and can be recalled
without the need for each set to be recalculated.

Minor changes to the storage system could be made so
that other languages may be used on the HLSEW. In the
storage system the procedure CHECK_TYPE determines the type
of line by the starting location of the text. This can be
modified to handle free form languages such as Pascal. The

modification that must be made should be in the method a

53

block label is determined. Pascal for instance uses the
reserved words BEGIN and END to indicated the bounds of a
block. A table of possible labels could be built and a

lookup would be performed.

54

References

[BY83] M.L.Coffey, 'Local Intelligence For The User', Data
Processing Vol.25, No.4, pp. 31-32 May 1983

[CO82] M.L.Coffey, 'Intelligent Terminals: the best of both
worlds'. Datamation Vol.28, No.4, pp 104=106 April 1982

[DJ82] D. Julian and M. Davies, 'String Searching in Text
Editors', Software-Practice and Experience, Vol.12, pp. T709-
717, 1982

[MD82] D. Julian and M. Davies, 'A Note on Sparsely Filled
Dynamically Allocated Memory', The Computer Journal, Vol.25,
No.1, p. 159, January 1982

[MLB2] M. Levison, 'A Programmable Text-editing System',
Software-Practice and Experience, Vol.12, pp. 611-621, 1982

[TEB2] T. Teitelbaum, 'On the Value of Syntax-Directed
Editors', Communication of the ACM, Vol.25, No.5, pp. 351-
352, May 1982

[MAB1] A.V.Magors and L.Westerfeld, 'Student Intelligent
Terminal System', AEDS-81 Convention Proceedings, Assoc.
Educ. Data Syst., pp 190-194, 1981

[RS81] R.S3. Scowen, 'A Survey of Some Text Editors?,
Software-Practice and Experience, Vol.2, pp. B883-906, 1981

{(Tc81] T.A. Cargill, 'Full-Screen Editing in a Hostile
Environment', Software-Practice and Experience, Vol.2, pp.
975-981, 1981

(TE81] T. Teitelbaum and T. Reps, *The Cornell Progranm
Synthesizer: A Syntax-Directed Programming Environment',
Comnunications of the ACM, Vol.24, No.9, pp. 563-573
September 1981

[RHBO] R.N. Horspool, 'Practical Fast Searching In Strings’,
Software-Practice and Experience, Vol.10, pp. 501-506, 1980

[RE79] C.M. Reeves, 'Free Store Distribution Under Randon
Fit Allocation, Part 1', The Computer Journal, Vol.22, pp.
346-351, 1979

[RET8] C.M. Reeves, 'Free Store Distribution Under Randon

Fit Allocation, Part 2', The Computer Journal, Vol.23, pp.
298~ 306, 1980

55

[VL76] P.Van Leer, 'Top-Down development using « _.-ogram
design language', IBM Systems Journal, Vol.15, No.2, pp.
155=-172, 1976

[WI76] T.R. Wilcox, A.M, Davis, M.H. Tindall, 'The Design
and Implementation of a Table Driven, Interactive Diagnostic
Programming System', Communications of the ACM, Vol.19,

Mo.11, pp.609-619, 1376

[CA75] E.K.Gordon and S.H.Caine, 'PDL- A Tool For Software
Design', Proec. AFPIPS 1975 NCC, pp 271-276

[GO75] E.K. Gordon, 'Experience and Accomplishments with
Structured Programming', Computer, pp.50-53, June 1975

[(BA79] R.M. Balzer, 'EXDAMS-EXtendable Debugging and
Mo:itoring System, AFIPS Proe., Vol.34, No.24, pp. 567-580,
1969

56

Appendix I

Procedure Specifications

Procedure: / MEM_CHECK /
Input Data Item: None
Qutput Data Item: MEM_OK Boolean
Description: procedure responsible for checking the

status of the memory which is available to
the HLSEW systemn.

accesses the operating system to compare the
remaining free memory against the optimal
amount of free menmory.

Procedure: / READ_TERM /
Input Data Item: None
Qutput Data Item: LEFT, DOWN, UP, RIGHT Integer

CLRL, CLRS, CLRP Key_Code
CURSOR_LEAD Integer
LEAD_IN, IO_OK Boolean

Description: reads into the HLSEW system, the terminal

Compents:

codes stored in the file 'TERMCODE.TXT'.

enters terminal codes which were first stored
by the terminal installation routine.

Procedure: / TRANS_OPEN/
Input Data Item: FILE_NAME Name_type

Output Data Item: IO_OK Boolean
Descriptiopn: procedure responsible for opening the

translated PDL file which contains COBOL
code.

I/0 result is checked for any error in
opening a file and a file pointer is placed
at the beginning of linked list.

57

Procedure: / TRANS_CLOSE /

Input Data Item: None

Qutput Data Item: CLOSE_OK Boolean

Description: procedure to close the COBOL code file.

Comments: the value of the boolean CLOSE_OK will
determine whether the COBOL code file will be
close and saved or to be closed and deleted.
If CLOSE_OK is true the code file is closed

and saved, if CLOSE_0OK is false the code file
is close and deleted.

Procedure: / TRANS_STORE /

Input Data Item: TEXT_LINE Line
I0_OK Boolean

Output Data Item: None

Description: procedure to write the translated code to
the respective COBOL code file.

Conments: I/0 checks are passed back to the translator
by way of IO_OK.

Procedure: / TRANS_FETCH /
Input Data Item: TEXT_LINE Line
OQutput Data Itep: I0_OK, TRANS_DONE Boolean

Descgription: sequentially retrieves text from the PDL
work file and sends each line to the
translator.

Comments: TRANS_DONE is given the value of true when
the end of the PDL file has been located.
I0O_0OK indicates whether any I/0 errors are
detected.

58

Procedure: / METRIC_STORE /
Ipput Data Item: METRICS_IN Metrics

Output Data Item: IO_OK Boolean

Description: procedure stores the set of metrics
calculated by the metric interpreter.

Copments: the address of the set of metrics is located
in the physical linked list.

Procedure: / METRIC_FETCEH /
Input Data Item: None

Qutput Data Item: M_LINE_OUT Copy_Rec
METRICS_FOUND, IO_OK Boolean

Description: sequentially retrieves lines of text from
the temporary file for the metric analyzer.

Comments: M_LINE_OUT is assigned the value of each line
of PDL text and passed back to the metric
analyzer. If the line of PDL text is not
found the value of METRICS_FOUND is set to
false. If any io error should occur, the
value of I0O_OK is set to false.

Procedure: / METRIC_LOCATE /
Ipput Data Item: ID_NAME Copy_Rec

Output Data Item: METRICS_OQUT Metrics
ID_FOUND, METRICS_FOUND Boolean
LINE_TOTAL Integer

Description: locates the position in the linked list of
the block label that corresponds with the
value of ID_NAME. The address of the metric
values are read from the metric file and sent
to the Metric Analyzer.

Comments: the total number of lines found in a block
of text is also sent back to the Metric
Analyzer to indicate the number of calls to
the procedure METRIC_FETCH.

59

Procedure:

/ READ_OPER /

Input Data Item: FILE_NAME Name_Type
Output Data Item: FILE_FOUND Boolean

NEW_FILE Boolean

Degscription: procedure is responsible for the proper

opening and closing of the temporary text and
metric files.

fomments: if there is any indication that an error has

Procedure:

occurred when opening the temporary or metric
files, the files are closed and an error
message is returned to the calling procedure.

/ INIT_POINTERS /

Input Data Item: None
Qutput Data Item: None

Description: the purpose of this procedure is to form

the the basic heading and trailing nodes of
the linked list.

Lomments: the values in the nodes are initialized so

Procedure:

that no erroneous values will be detected.

/ READ_FILE /

Input Data Itepm: FILE_NAME Name_Type
Output Data Item: FILE_FOUND, NEW_FILE Boolean

TOTAL_LINES Integer

Description: the basic function of this procedure is to

call the procedures READ_OPEN and
INIT_POINTERS. The text found in the
requested text file i3 read into the linked
lists and the logical and physiecal structures
of those linked lists are constructed.

Copments: the text found in a text file is stored in

blocks of 512 bytes where each line has been
stripped of all trailing blanks. When the
text is read, each line of text is broken
into physical lines of text which contain 80
characters each.

60

Procedure: / WRITE_OPEN /
Input Data Item: FILE_NAME Name_Type
Output Data Item: IO_OK Boolean
Description: procedure responsible for opening the
original text file in preparation to save an
edited file.

Coppments: if any errors should oeccur, and error is
returned to the calling procedure.

Procedure: / WRITE_CLOSE /
Input Data Item: I0_OK Boolean
Qutput Data Item: None

Desceription: procedure responsible for the closing of
the saved edit file.

Copments: if the value of I0_OK that has been sent to
this procedure is TRUE the edited files are
saved. If the value of IO_0K is FALSE the
files are close and deleted.

Procedure: / WRITE_FILE /
Ipput Data Item: FILE_NAME Name_Type
Output Data Item: IO_OK
Description: procedure retrieves the text found in the
linked list and writes out the text in 512
bytes. Any detected I/0 errors are sent back

to the calling procedure by way of IO_OK.

Comments: each line of text is stripped of trailing
blanks before being written to disk.

61

Procedure: / INSERT_RENUM /
Ipput Data Item: LN _TYPE Line_Type
Output Pata Item: None

Description: procedure updates the total number of
lines located in each logical block.

Comments: called after each line insertion has been
made.

Procedure: / DELETE_RENUM /
Input Data Item: LN_TYPE Line_Type
Qutput Data Item: None

Description: procedure updates the total number of
lines located in each logical block.

Copments: called after each line deletion has been
made.

Procedure: / CHECK_TYPE /
Input Data Item: LINE_IN Copy_Rec
Oytput Data Item: LN_TYPE Line_Type

Description: procedure checks physical location of text
found in LINE_IN. The location of the text
determines whether the input text line is a
standard line of text or the label of a block
of text.

Comments: BLOCK_LINE indicates that a label is present,

STAND_LINE indicates that a standard line of
text is present,.

62

Progedure: / STAND_MOD /
Input Data Item: LINE_IN Copy_Rec

MODE_IN Mode_Type
LN_TYPE Line_Type
DISK_OK Boolean

Qutput Data Item: MNone

Description: procedure is responsible for the actual

inserting, changing, and deleting of the text
in the physical linked 1list. Procedure also
functions to monitor errors which may occur
when writing to disk,

changes the contants of the physical linking
either by adding a new text node, changing
the contents of a text node, or by deleting a
text node. Disk I/0 result are assigned to
DISK_OK for use by calling procedure.

Procedure: / BLOCEK_MOD /
Ipput Data Item: LINE_IN Copy_Rec

MODE_IN Mode_Type
LN_TYPE Line_Type

Output Data Item: None

Description: procedure is responsible for the actual

inserting, changing, and deleting of text 1in
the logical 1linked 1list. Procedure also
functions to monitor errors which may occcur
when writing to disk.

changes the contents of the loglical linking
either by adding a new text node, changing
the contents of a text node, or by deleting a
text node. Disk I/0 results are assigned to
DISK_OK for use by c¢alling procedure.

63

Procedure: / LINE_MOVE /
Input Data Item: INPUT_LINE_NO Integer
Qutput Data Item: None
Description: procedure uses the supplied line number,

Comments:

Procedure: /

INPUT_LINE_NUMBER, to place the storage
Systenm line pointer in sequence with the line
the editor i= pointing to.

if the input line number is not found, an

error indication is sent back to the calling
procedure.

FILE_RELOAD /

Input Data Item: NONE
Output Data Item: None

Description: procedure responsible for saving temporary

Commepnts:

files and reclaiming memory used by editing a
text file.

if no file name exists, the file is writen on
disk with the name of 'HLSEW.WRK.TXT'.

Procedure: / STORE_A_LINE /
input Data Item: LINE_IN Line

LINE_NO Integer
MODE_IN Mode_Type

Output Data Item: None

Description: procedure controls the sequence of

procedural calls that is responsible for the
insertion and changing of text in each of the
linked 1lists.

this procedure is called from the editing
system.

64

Procedure: / FETCH_A_LINE /
Input Data Item: INPUT_LINE_NO Integer
Output Data Item: LINE_OUT Line
LINE_FOUND Boolean
NEW_FILE Boolean

Description: procedure retrieves the text indicated by
INPUT_LINE_NO from the physical linking.

Comments: 1if the requested line number is not found,

FOUND_IT is assigned FALSE. If NEW_FILE 1is
TRUE, no execution takes place.

Procedure: / DELETE_A_LINE /
Input Data Item: INPUT_LINE_NO Integer
Qutput Data Item: LINE_FOUND
Description: procedure controls the sequence of calls
that is responsible for the deletion of text
within the linked lists.

Comments: if the requested line number is not found,
LINE_FOUND 1is assigned a FALSE value and
returned to the calling procedure in the
editing system.

65

Appendix II

Parameter Specifications

Data Type Summary

Data Type Description
KEY_CODE Array of 1 to 6 Characters
COPY_REC Array of 1 to 64 Characters
NAME_TYPE String (Array) of 1 to 15 Characters
LINE Adrray of 1 to 80 Characters
LINE_TYPE BLOCK_LINE/STAND_LIHNE enumeration
METRICS Record of integer values

(tobe designed at a later date)
MODE_TYPE DELETE_MODE/CHANGE_MODE/INSERT_MODE

enumeration

Procedure Parameter Description and Summary

CURSOR_LEAD
Description: KEY_CODE type, a numeric c¢ode sequence

used as the lead-in to all the cursor
contrel codes.

Produced By:READ_TERM

Used By: Editing Systenm

CLRL

Description: REY_CODE type, a numeric code sequence
used to clear a line of text on the

screen,
Produced By: RE.)_TERM
Used By: Editing Systen

66

CLRS

Produced By:
Used By:

CLR?

Produced By:
lsed By:

CLOSE_0OK
Description:

DISK_OK

Description:

Produced By:
Used By:

KEY_CODE type, a numeric code sequence
used to erase any text on the screen.

READ_TERM
Editing System

KEY_CODE type, a nunmeric code sequence

used to erase any text on the screen from
the cursor position to the end of ¢the

screen.
READ_TERM

Editing System

BOOLEAN type, a TRUE/FALSE indicator used
to determine the type of action
TRANS_CLOSE will take. A TRUE value
signals the saving of the edited file and
a FALSE value signals the files to be
deleted.

TRANSLATOR

TRANS_CLOSE

BOOLEAN type, a TRUE/FALSE indicator used
to signal the storage that an error
occurred when a write to the disk was
made.

STAND_MOD, BLOCK_MOD

STORE_A_LINE

67

DOWN

FILE_NAME

Desecpription:

Produced By:
Used By:

FILE_FOUND

Description:

Produced By:
Used By:

I0_OK

KEY_CODE type, a numeric code sequence
used to move the cursor one position down
on the screen.

READ_TERM

Editing System

NAME_TYPE type, a character string which
contains the name of the file to be
opened.

Editing Systenm

TRANSLATOR, READ_OPEN, TRANS_OPEN,
WRITE_OPEN READ_FILE, WRITE_FILE.

BOOLEAN type, a TRUE/FALSE indicator used
to signal whether the requested file name
was found on a disk directory. If a TRUE
value i3 present, the requested file was
found.

READ_OPEN

Editing System, READ_OPEN

BOOLEAN type, a TRUE/FALSE value indicator
used throughout the HLSEW System that is
assigned the value of any I/0 result. A
TRUE value indicates that I1/0 error was
detected.

READ_TERM, TRANS_OPEN, TRANS_STORE,
TRANS_FETCH, METRIC_STORE, METRIC_FETCH,
WRITE_OPEN.

TRANSLATOR, ANALYZER, WRITE_FILE,
WRITE_CLOSE, Editing System.

68

ID_FOUND

Description:

Produced By:
Used By:

ID_NAME

Description:

Produced By:
Used By:

INPUT_LINE_NO

LEFT

Description:

Prodyced By:
Used By:

Produced By:

Used By:

BOOLEAN type, a TRUE/FALSE indicator
signaling whether an input ID Name was
found in the linked list. TRUE represents
that the ID was found.

METRIC_LOCATE

ANALYZER

LINE type, a character string which
contains the ID Name of the block of text
to be searched for by the procedure
METRIC_LOCATE.

ANALYZER

METRIC_LOCATE

INTEGER type, a numeric value representing
the logical line number to which the
procedure LINE_MOVE is to pesition the
read pointer.

Editing System

LINE_MOVE

INTEGER type, 2a numeric code used to move
the cursor one position to the left on the
screen.

READ_TERM

Editing System

69

LEAD_IN

Descriptijonp:

Produced By:
Used By:

LINE_OUT

Description:

Produced By:
Used By:

LINE_TOTAL

Description:

Produced By:
Used By:

BOOLEAN type, a TRUE/FALSE indicator used
by the Editing System to signal whether a
lead-in character is to be expected when
sending cursor control commands. A TRUE
value indicates that a lead-in code will
be used.

READ_TERM

Editing System

COPY_REC type, a character string that
contains the text retrieved from the
temporary edit file.

FETCH_A_LINE

Editing Systenm

INTEGER type, a numerie value which
represents the number of lines that can be
found in an indicated block of text. This
value 1s stored in the logical linking of
the Storage System and is used by the
Analyzer to determine the number of text
retrieval calls that should be made to the
procedure METRIC_FETCH.

METRIC_LOCATE

ANALYZER

70

LN_TYPE

Produced By:

Used By:

LINE_IN

Description

Produced By:

Used By:

LINE_FOUND

Description:

Produced By
Used By:

LINE_NO

Description:

Produced By:

Used By:

LINE_TYPE type, an indicator used to
determine the type of processing which is
to take place. The value of LINE_TYPE can
be either BLOCK_LINE or STAND_LINE.
BLOCK_LINE represents that a Block label
is to be processed, and STAND_LINE
represents that a standard line of text is
to be processed.

CHECK_TYPE

INSERT_RENUM, DELETE_RENUM, STAND_MOD,
BLOCK_MOD.

COPY_REC type, contains the character
string value to be stored or changed.

Editing Systenm

CHECK_TYPE, STAND_MOD, BLOCK_MOD,
STORE_A_LINE.

BOOLEAN type, a TRUE/FALSE indicator used
to signal whether an indicated line number
was found in the linked 1list. A TRUE
value indicates that the line number was
found.

LINE_MOVE

Editing System, FETC!_A_LINE,

INTEGER type, a numeric value containing
the logical number of the line to stored
or changed

Editing Systemn

LINE_MOVE, STORE_A_LINE.

71

LIRE_REC

Description:

Produced By:
Used By:

METRICS_IN
Description:

Produced By:
Used By:

M_LINE_OUT

Description:

Produced By:
Used By:

METRICS_FOUND

Description:

Produced By:
Used By:

COPY_REC type, a character string that
contains the text retrieved from the
temporary edit file.

FETCH_A_LINE

Editing System

METRICS type, a data record which contains
the numeric and/or character values
calculated by the ANALYZER,

METRIC_STORE

ANALYZER

LINE type, a character string which
contains the text that has been retrieved
from the temporary text file.

METRIC_FETCH

ANALYZER

BOOLEAN type, a TRUE/FALSE value indicator
used to signal that the requested line of
text was located.

METRIC_FETCH

ANALYZER

72

METRICS_OUT

Description:

NEW_FILE

Description:

Produced By:

Produced By:

Osed By:

METRICS type, a record which contains the
numeric and/or character information
calculated by the ANALYZER.

METRIC_LOCATE

ANALYZER

MODE_TYPE type, a DELETE_MODE/CHANGE_MODE/
INSERT_MODE value indicating the type of
line that is to be processed by ¢the
Storage Systenmn,

Editing System

STAND_MOD, BLOCK_MOD, STORE_A_LINE,
DELETE_A_LINE.

BOOLEAN type, a TRUE/FALSE wvalue
indicating the creation of a new file.
TRUE indicates that a new edit file is
being processed,

READ_OPEN

FETCH_A_LINE, Editing System, READ_FILE

INTEGER type, a numeric code used for
moving the cursor one position to the
right on the screen.

READ_TERM

Editing Systenm

73

TEXT_LINE

Description:

Produced By:
Used By:

TRANS_DONE

Description:

Produced By:
lsed By:

TOTAL_LINES

upP

Description:

Produced By:
Used By:

Produced By:
Used By:

LINE type, a character string which
contains the text that has been retrieved
from the PDL text file.

TRANS_STORE, TRANS_FETCH

TRANSLATOR

BOOLEAN type, a TRUE/FALSE value indicatar
used to signal that the end of the linked
list has been located and that processing
can halt.

TRANS_FETCH

TRANSLATOR

INTEGER type, 2 numeric value containing
the total number of text lines read into
the temporary file to be edited.

READ_FILE

Editing System

INTEGER type, numeric code sequence used
for moving the cursor one position up on
the screen.

READ_TERM

Editing Systenm

T4

Appendix III

HLSEW Declaration Source Code

75

[R R R R PR P R R R R R R R R S e RS R R R R R R P R R E SRR R R RO R R R RS R

x

4
x
X
E
x
x
]
X
X
1
¢
L
X
X
]
x
|

4

. DDDDDDDD EEEEEEEEE ECCEECEEE 55555555 L 4
ooDDDDDDD EEEEEEEEE EEECCECEER 5555588588 |
DDD DDD EEE EEE 555
DDD pDD EEE ECC 555 t
DDD ODD EEEEEEEEE e o S55S
DDD DDD EEEEEEEEE e 0 855 X
DDD DDD EEE CEG 58S | 4
DDD DDD EEE ccc SS8S z
DpDDDDDDDD EEEEEEEEE CCCcccccco SS55555SS b
DDDDDDDD EEEEEEEEE CCcccececcce 558555555 X
x

4

DECLARATION UNIT DESIGNED BY RUSSELL J. HOLT %
4

|

 {

TR R SR N R R AR R AN E RN N R AT RN RN AN E %]

UNIT DECS:

{EEXEXEERX]
INTERFACE
{EEXLXXXNK

CONST LINE_LENGTH = 803

TYPE

LOG_ON_MSG = > HLSEW EDITOR’;
HELP_MSG = 'Type Help (HE) For A Summary Of Commands®;

NAME_MAX = 15;

SOH = 2 ETX = 3 BEL = 7;
HT = 93 CR = 13; ESC = 27;
SPACE = 323 DEL = 1273 LF = 10;

LINE = ARRAY [1.,LINELENGTH 1 OF CHAR;
KEY_CODE = PACKED ARRAY [1..& 1 OF INTEGER;
TAESETTING = SET OF 1..80;
REFORM_TYPE = (CR_ONLY, LF_CR)3
COMMAND_TYFE = (INSERT, DELETE_IT. CHANGE, SETTABS, TABCHAR.
VERIFY, LIST, FETCH_IT, STORE_IT, REPEAT_IT.
HELP, ENDEDIT, APPEND, BADCOMMAND, EDIT_IT);
ERROR_TYFE = (COMMAND_ERROR, NOT_FOUND, STRING_NOT_FOUND,
WRITING, LONGLINE, OTHER_ERROR, CHAR_ERROR,
TRANS_ERROR, UPDATING, ARGUMENT_ERROR,
REFORM_ERROR) 3
TOKEN_TYFE = (NILTOK, LINENOTOK, OTHERTOK);:
TOLEN = RECORD
TOKEN_KIND : TOKEN_TYPE;:

VALUE : INTEGER:
END:

76

MODE_TYFE = ¢ DELETE_MODE, CHANGE_MODE, INSERT_MODE) :

NAME_TYFE = STRING [NAME_MAX I;
SET_OF_VALID = SET OF CHAR;

VAR COMMAND : COMMAND_TYFE:
FILE_NAME : NAME_TYPE;
TAES : TABSETTING:
INPUT_LINE, TEMP_LINE : LINE;:
LINE_INDEX, TEMP_LENGTH, LINE_NUMBER : INTEGER;
TOTAL_LINES, ROW_MARK : INTEGER;
ROW, COLUMN, SAVE_ROW, SAVE_COLUMN : INTEGER;
LEFT, DOWN, UFP, RIGHT, CURSOR_LEAD : INTEGER;
CLRL., CLRS, CLRP : KEY_CODE;
VERIFY_CHANGES, FINISHED, EDITING_FROM_SCREEN : BOOLEAN:
FILE_CHANGED, NEW_FILE, LEAD_IN : BOOLEAN;
TAE_CHARACTER, NL, SPACE_BAR : CHAR;

(XXX XXXXINRERR
IMPLEMENTATION
(XXEXXXXARNRLA)

END. € unit decs ¥

77

Appendix IV

Sterage System Source Code

78

R R R R P R R R R R S S R S S R R R R R R R R E R S PR R PR

DISKk STORAGE SYSTEM DESIGNED BY RUSSELL J.

X

¢ S555555S TTTTTTTTT
« 585855555 TTTTTTTTT
SSS TTT

X 5555 TTT

X 5558 TTT

X S88S TTT

1 S3SS TTT

x 5858S5 TTT

X 55555555 TTT
SSS8S5S8S TTT

X

]

b |

Qnaaooo
Q00ooo000
0aoa 000
0ao 0oo
(a]a]a] 000
aaoo 000
Qao ooo
Qoo ooo

[a]u]s]a]a]s]s

00000

RRRRRRR
RRRRRERRR
RRR RRR
RRR RRRFR
RRRRRRER
RRRREF
RRRRRRFR
RRR RRR
RRR RRR
RRR FRRF

EEEEEEEEE
EEEEEEEEE
EEE
EEE
EEEEEEEEE
EEEEEEEEE
EEE
EEE
EEE
EEEEEEEEE

HOLT

o M M M M M o M M M M M

P e e R R P R e R PR R R P R R e R e R RS PR SRR D

UNIT STORE;

{sU #9:DECS.CODE:
{(XXZTARXXXK]
INTERFACE
SERREERRE D

USES DECS:

(AR R RN XA R KRR AN AR X E XN AR R XA R

INTERFACE FPROCEDURES

EXAEXER XA AR AR AN AR XX AN I T XXX SR A AN E AR A XXX RSN AN EAANEERXRAEX]

CONST ID_MAX = Z0j
STORE_LENGTH =
LABEL_END = 1
LABEL_START =
BLOCK_SIZE = S

TYPE METRICS = RECO

END;

FHYS_REC

-2 ¥
g:
123
RD

F

FILE;
ARRAY

C

VAR

FROCEDURE REFORM

COPY_REC
TRANS _RE
COPY_TYF

METRIC_FILE

TERM_FIL

F_FILE., R_FILE :

cCoPY_F
TR_FILE
M _FILE
M_FILE

C
E

E

s as es #r

ARRAY [
FILE OF
FILE QF

1..STORE_LENGTH 1 OF CHAR:
1..LINE_LENGTH] OF CHAR;
COPY_RECj;

METRICS;:

LI T]

COFY_TYPE;:
TRANS_REC;
TERM_FILE;

FILE QF

KEY_CODEj;

FHYS_REC;

(

PROCEDURE READ_TERM (

METRIC_FILE;

VAR FILE_FOUND,

IN_FILE.
REF _TYPE

VAR LEFT,

OUT_FILE :

10_0k

NAME_TYFE:

: REFORM_TYPE)3

DOWN, UF,

19

RIGHT

BOOLEAN;

INTEGER;

VAR CLRL. CLRS, CLRF : KEY_COCE:
VAR CURSOR_LEAD : INTEGEF;:
VAR LEAD_IN, ID_0Or : BOOLEAN »;

FROCEDURE TRANS_DOFEN t FILE_NAME : NAME_TYFE;

VAR 10_0F : BOOLEAN)3
FROCEDURE TRANS_CLOSE (VAR CLOSE_OK : BOOLEAN);
FROCEDURE TRANS_STORE ¢ VAR TEXT_IN : LINE:

VAR I0_OK : BOOLEAN)3

FROCEDURE TRANS_FETCH (VAR TEXT_OUT : LINE;
VAR I0_0OK : BOOLEAN;
VAR TRANS_DONE : BOOLEAN)

FROCEDURE METRIC_STORE (VAR 10_0Ok : BOOLEAN;
METRICS_IN : METRICS)3

FPROCEDURE METRIC_FETCH (¢ VAR M_LINE_OUT : COPY_REC;
VAR METRICS_FOUND,
I0_OK : BOOLEAN)3

PROCEDURE METRIC_LOCATE < VAR METRICS_OUT : METRICS;
VAR 1D_FOUND : BDOLEAN;
VAR LINE_TOTAL : INTEGER;
VAR METRICS_FOUND : BOOLEAN;
ID_NAME : COPY_REC)3

PROCEDURE READ_FILE (VAR FILE_FOUND : BOOLEAN;
FILE_NAME : NAME_TYPE;
VAR TOTAL_LINES : INTEGER;
VAR NEW_FILE : BOOLEAN)3

FROCEDURE WRITE_FILE (VAR I0_0OK : BOOLEAN;
FILE_NAME : NAME_TYPE):

PROCEDURE WRITE_CLOSE { VAR I0_OK : BOOLEAN)j;

PROCEDURE STORE_A_LINE (¢ LINE_REC : LINE:
LINE_NO : INTEGER:
MODE_IN : MODE_TYPE)3

PROCEDURE FETCH_A_LINE (INPUT_LINE_NO : INTEGER;
varR LINE_REC : LINE:
LINE_FOUND : BOOLEAN:
NEW_FILE : BDOLEAN)i

PROCEDURE DELETE_A_LINE (INPUT_LINE_ND : INTEGER;:
VAR LINE_FOUND : BOOLEAN)i
CRKARARRKKERAERD
IMFLEMENTATION
CEERXXARARERXXND

CAONST BLANK = ° "y
PERIOD = "."3

BUF_SIZE = S12:
OPTIMAL = 1S000;
LOW_OFT = 10003

g0

TYFE LINE_TYFE = (BLOCK_LINE, STAND_LINE):

RENUM_T¥FE = ¢ ADDELOCK, DELBLOCE)

L_FOINTER = 'LOGICAL;

P_FOINTER = ‘FHYSICAL:

LOGICAL = RECORD
BLK._LNS : INTEGER;
METRIC_ADRS : INTEGEFR;
NEXT_L : L_POINTER:
FREV_L : L_POINTER:
PHYS_FTR : P_POINTER

END:

FHYSICAL = RECORD
PHYS_ADRS : INTEGER:

NEXT_P : F_FPOINTER;

FREV_F : P_POINTER}

LOG_PTR : L_POINTER
END:

VAR LOG_FIRST, L_PTR, LAST_L, METR_PTR : L_POINTER;
PHYS_FIRST, F_PTR, LAST_P, TR_PTR : P_FOINTER;
P_INDEX, M_INDEX, LINE_COUNT : INTEGER;
METRIC_REC : METRICS;

RAM_SYS : BOOLEAN;
BACKUF_NAME 1 NAME_TYPE;

R RN R R R R R A RN K A AR NN AR R AR RN KR
PROCEDURE REFORM; { VAR FILE_FOUND, ID_OK : BOOLEAN:

IN_FILE, OUTFILE : NAME_TYPE;
REF_TYPE : REFDRM_TYPE

[

VAR RESULT_IN, RESULT_OUT, OK, LINE_DONE : BOOLEAN;
BUFF : COPY_REC;
BUFF_INDEX, TEMFP_CHAR : CHAR;
I, BUFF_COUNT : INTEGER;:

BEGIN

BUFF_INDEX := O3
LINE_DONE := FALSE;:
BUFF_COUNT := 03
RESET (P_FILE, IN_FILE);
RESULT_IN := IO_RESULT = 03
REWRITE (R_FILE, OUT_FILE)
RESULT_OUT := IDO_RESULT = 03
I0_0K := RESULT_IN AND RESULT_OUT;
IF I0_OK
THEN BEGIN
FILE_FOUND := TRUE;:
TEMFP_CHAR := F_FILE "}

WHILE (ID_RESULT = 0) AND ¢ NOT EOF ¢ P_FILE)) DO
BEGIN
WHILE (TEMP_CHAR <: EOF (P_FILE)) AND
¢ I0_RESULT = 0) DO
BEGIN
WHILE (TEMP_CHAR <: EOF (P_FILE)) AND

(NOT LINE_DONE) AND
¢ I0_RESULT = 0) DO
BEGIN

81

[F ¢ TEMF_CHAR = CHR (NL 1) COR

(TEMP_CHAR = CHR (LF) OF
(TEMF_CHAR = CHR (O)
THEN LINE_DONE := TRUE
ELSE BEGIN
BUFF [BUFF_INDEX 1 := TEMF_CHAR:

BUFF_INDEX := SUCC (¢ BUFF_INDEX)3
GET (P_FILE)3
TEMF_CHAR := FILE"
END:
IF REF_TYPE = LF_CR
THEN BEGIN
BUFF_INDEX := SUCC (BUFF_INDEX)
BUFF [BUFF_INDEX 1 := CHR (CR)3;

END;
IF (TOTAL_CHAR + BUFF_COUNT) := BLOCKF_SIZE
THEN BEGIN
FOR I := (BUFF_COUNT + 1) TO BLOCEKE _SIZE DO
BEGIN
R_FILE" := CHR (O)3
PUT ¢ R_FILE »
END;
BUFF_COUNT := ©
END:
FOR I := 1 TO TAOTAL_CHAR DO
BEGIN

R_FILE™ := BUFF [I 1;
PUT (R_FILE)
END;
BUFF_COUNT := BUFF_COUNT + TOTAL_CHAR;:;
TOTAL_CHAR := O3
BUFF _INDEX := O3
LINE_DONE := FALSE
END
END
END
END
END:
IS PR PSSR PR SRR PSSR RS eR

FROCEDURE MEM_CHECK (VAR MEM_OK : BOOLEAN)

VAR AVAIL : REAL;
I : INTEGER:

BEGIN -

IF MEMAVAIL =~ ©
THEN AVAIL := &5536.0 + MEMAVAIL
ELSE AVAIL := MEMAVAIL;

IF AVAIL - QFTIMAL
THEN BEGIN

MEM_QF := TRUE}:
IF AVAIL - (LOW_OFT + MEMAVAIL)
THEN BEGIN

GOTOXY (0, 24)3
FOR I := 1 TO & DO
WRITE (CLRL C I 1)
GOTOXY (O, 28)j
WRITE (CHR ¢ BEL), "Memory Low, Flease Save File')

§2

EMD
END
SLSE MEM_ T := FALSE

END;:

AN RN N XN R R A K X A X KX A A XXX XTIy

FROCEDURE FEAD_TERM: { VAR LEFT. DOWN. UF., RIGHT : INTEGEFR:
VAR CLRL, CLRS. CLRP : KEY_CODE:
VAR CURSOR_LEAD : INTEGER;
VAR LEAD_IN, I0_0F : EOOLEAN 1

VAR LEFT_CODE, DOWN_CODE, UF_CODE, RIGHT_CODE, RAM_CODE : +EY_CODE;

BEGIN
I
RESET (TM_FILE, CONCAT ("#9:°, °TERMCODE.DATA"));
10_OKF := IORESULT = 03
IF 10_Ok
THEN BEGIN
LEFT_CODE := TM_FILE :
GET (TM_FILE >: DOWN_CODE := TM_FILE":
GET (TM_FILE)3 UF_CODE 1= TM_FILE™:
GET ¢ TM_FILE); RIGHT_CODE := TM_FILE :
GET (TM_FILE)i CLRL := TM_FILE";
GET (TM_FILE); CLRS := TM_FILE":
GET (TM_FILE):; CLRP := TM_FILE ;
GET (TM_FILE); RAM_CODE := TM_FILE":
CLOSE ¢ TM_FILE);
IF RAM_CODE € 1 1 = 1 THEN RAM_SYS := TRUE:
IF UP_CODE € 2 1 <> O
THEN BEGIN
LEAD_IN := TRUE:
CURSOR_LEAD := UP_CODE [1 1:
UP := UP_CODE [2 13
DOWN := DOWN_CODE [2 13
RIGHT := RIGHT_CODE [2 13
LEFT := LEFT_CODE [2 1
END
ELSE EEGIN

LEAD_IN := FALSE};
CURSOR_LEAD := 03
UF := UP_CODE [1 1%
DOWN := DOWN_CODE [1 1
RIGHT := RIGHT_CODE [1 1:
LEFT := LEFT_CODE € 1 1
END
END
S+

END3
RS PSR R R R R R R PR P RS R R RRSC RS RRe R SSRRe e

FROCEDURE TRANS_UMEN: { FILE_NAME : NAME_TYFE:
VAR 10_OK : BOOLEAN 3

g3

EEGIN

($[-.)
DELETE (FILE_NAME, {(LENGTH (FILE NAME) - &), 7)3
REWRITE ¢ TR_FILE, CONCAT ("#5:°", FILE_NAME, ".CBEL")):
ID_OK := TIORESULT = O3
TR_FTR := LOG_FIRST".FHYS_FTR",NEXT_F
($I+5

END;

R R R RN AR R AR RN AR RN
PROCEDURE TRANS_CLOSE; { CLOSE_OK : BOOLEAN 3
BEGIN

‘IF CLOSE_OK
THEN CLOSE ¢ TR_FILE, LOCK)
ELSE CLOSE (TR_FILE

END:
TR R R R A KN KR AR AR AR XN R

FROCEDURE TRANS_STORE; { VAR TEXT_IN : LINE:
VAR I0O_OK : BOOLEAN

BEGIN

($1-3
TR_FILE™ := TEXT_IN;
PUT ¢ TR_FILE):
10_0K := IORESULT = o

{SI+2
END;
{!llttI!t!l!ltt!!tttltltt!tl!tl!lttlttll!!llttl!ttltl!tttlt!ltlll!!t!t}

PROCEDURE TRANS_FETCH; (VAR TEXT_OUT : LINE;
VAR 10_0K : BOOLEAN;
VAR TRANS_DONE : BOOLEAN }

VAR TEXT_LINE : COPY_REC;
I, O : INTEGER;

EEGIN

$I-3

TRANS_DONE := FALSE:

I0_OK := TRUE:

IF TR_FTR ¢ . NIL

THEN BEGIN

SEEK (COFY_P. TR_PTR".PHYS_ADRS)}
GET (COPY_F)3
TEXT_LINE := COPY_P~";
TR_PTR := TR_PTR™.NEXT_P}
10_0k := IORESULT = 0

84

END

ELSE
TRANS_DONE := TRUE
FOR 0 := 1 TO 7 DO
TEXT_OUT [O 1 := BLANEK3:
Qg := 8;
FOR I := 1 TO &4 DO
BEGIN

TEXT_OUT L 0 1 := TEXT_LINE C I 1;
0 := SUCC ¢« 0
END;
(SI+2

END3;
R R R R R R Rt R e R R RS EsEsRtIRTLL T O

PROCEDURE METRIC_STORE: { VAR I0_OK : BOOLEAN:
METRICS_IN : METRICS

2

BEGIN

{($I-7

M_FILE™ := METRICS_IN;

PUT ¢ M_FILE)i
METR_PTR".METRIC_ADRS :1= M_INDEX;
M_INDEX := SUCC (M_INDEX)
10_0K 3= IORESULT = 03

{$I+3

ENDs
R XN A XA R R R A AR R R AN AN XN L]

FROCEDURE METRIC_FETCH; { VAR M_LINE_OUT : COPY_REC;
VAR METRICS_FOUND.
I0_OK : BOOLEAN %

BEGIN

{$1-3
10_0K := TRUE;
IF METR_PTR <> NIL
THEN BEGIN
SEEK (COPY_P, METR_PTR*.PHYS_FTR".PHYS_ADRS)
GET (COPY_P)j -
M_LINE_OUT t= COPY_P";
METR_PTR := METR_PTR~.NEXT_L;
METRICS_FOUND := TRUE;
10_0OK := I[ORESULT = 0
END
ELSE
METRICS_FOUND := FALSE
{$1+3

ENDj
{!tt!l!tt!tlltttttllll!ll‘ltttttlltlltlllllll!tttt!!tltlllitl!!tt!tt!t}

FROCEDURE METRIC_LOCATE; { VAR METRICS_OUT : METRICS:

85

VAR [D_FOUND : BOOLEAN,

VAR METRICS_FOUND : EOQOLEAM:
VAR LINE_TOTAL : INTEGER:
ID_NAME : COFY_REC 3

BEGIN

($1-3
ID_FOUND := FALSE:
METRICS_FOUND := FALSE;
METR_FTR := LOG_FIRST.NEXT_L;
WHILE (NOT ID_FOUND) AND (METR_FTR <+ NIL) DO
BEGIN
SEEK (COPY_P, METR_PTR.PHYS_PTR™.PHYS_ADRS);
GET (COPY_F)3

ID_FOUND := (ID_NAME = COPY_F~) AND (IORESULT = 0)g
METR_FTR := METR_PTR“.NEXT_L
END;
IF ID_FOUND
THEN BEGIN

METRICS_FOUND := METR_FTR~.METRIC_ADRS = 0Oj
IF METRICS_FOUND
THEN BEGIN
SEEK (M_FILE, METR_PTR".METRIC_ADRS)i
GET (M_FILE)3
METRICS_OUT := M_FILE~j

END;
LINE_TAOTAL := METR_PTR~.BLK_LNS;
END3
METR_FTR := METR_FTR™.FPREV_L:
{$I+3

END3:

LT R R Rt Rt et Tt et Rt It It I I oI I I IIIIIY
PROCEDURE READ_OFEN (VAR FILE_FOUND : BOOLEAN;

FILE_NAME : NAME_TYPE;

VAR NEW_FILE : BOOLEAN)

VAR RESULT_C, RESULT_M, I : INTEGER;

BEGIN
DELETE (FILE_NAME, (LENGTH ¢ FILE_NAME) - &), 7)y
BACKUP_NAME := FILE_NAME:
IF RAM_SYS
THEN BEGIN
REWRITE (COPY_FP, “#9:HLSEW.WREK.C$$")3
RESULT_C := -IORESULT:
REWRITE (M_FILE, *#9:HLSEW.WRK,M$$™)
RESULT_M := [ORESULT;
END
ELSE
BEGIN
REWRITE (COFY_P, "HS:HLSEW.WRK.CS$$®)3
RESULT_C := IORESULT;
REWRITE (M_FILE, "#S:HLSEW.WRK.M$$"):
RESULT_M := I[ORESULT;
END;

86

FILE_FOUND := TRUE:

NEW_FILE := TRUE:
IF LENGTH (FILE_NAME) - ©
THEN EEGIN
RESET ¢ P_FILE, CONCAT ¢ "#S:°, FILE_NAME, '.TXT®) g
IF ¢ RESULT_C - ¢ 5 OR (RESULT_M : o) OR (IORESULT -~ O)
THEN BEGIN

CLOSE (P_FILE);
CLOSE (M_FILE »:
CLOSE ¢ COPY_P);
FILE_FOUND := FALSE

END

ELSE
NEW_FILE := FALSE:
END

END;
R A K R R RN AR XA AN RN RR KRN ARSL]
PROCEDURE INIT_FOINTERS:
BEGIN

MARK (LOG_FIRST)3
LAST_L := LOG_FIRST;
NEW (L_PTR)3
WITH LAST_L~ DO
BEGIN
BLK_LNS 1= -1;
METRIC_ADRS :1= -1}
NEXT_L := L_PTR;
FREV_L := NIL;
PHYS_PTR := NIL
ENDj;
WITH L_PTR™ DO
BEGIN
BLK_LNS := -1
METRIC_ADRS := —1;
NEXT_L := L_FTR:
PREV_L 1= NILj
PHYS_PTR := NIL
END3
MARK (PHYS_FIRST)3
LAST_P := FHYS_FIRST;
NEW (F_PTR 13 =
WITH LAST_P~ DO
BEGIN
FHYS_ADRS := -1:
NEXT_P := F_FTR;:
PREV_P := NIL;:
LOG_FPTR := NIL
END3
WITH P_FPTR™ DO
BEGIN
FHYS_ADRS := —-1;
NEXT_P := P_FTR:
FREV_P 2= NILj
LOG_PTR := NIL
END;

87

L_FTR := LAST_Lj
F_FTR := LAST_F:
END: ;

RN AR AR KRR KRR A KA ARk I ANk

PROCEDURE READ_FILE:; { VAR FILE_FOUND : BOOLEAN:
FILE_NAME : NAME_TYFE;
VAR TOTAL_LINES : INTEGER:
VAR NEW_FILE : BOOLEAN }

VAR TEMP_INDEX, BUF_INDEX : INTEGER:
Ok : BOODOLEANGZ
TEMP_LINE : COFPY_REC;
BUFF : PACKED ARRAY [1..BLOCK_SIZE 1 OF CHAR:
LINE_MODE : LIME_TYPE;

BEGIN

($I-3
P_INDEX == O3 -
M_INDEX := O3
LINE_COUNT := 03
TOTAL_LINES := 03
READ_OPEN (FILE_FOUND, FILE_NAME, NEW_FILE)j
IF FILE_FDUND
THEN BEGIN
INIT_POINTERS;:
Ok := BLOCKREAD (P_FILE, BUFF, 1)} = 13
WHILE Ok DO
BEGIN
BUF _INDEX := 1
WHILE ¢ BUFF [BUF_INDEX 1 <> CHR (©))
AND (BUF_INDEX <= BLOCK_SIZE) DO

BEGIN
FOR TEMP_INDEX := 1 TO STORE_LENGTH DO
TEMP_LINE [TEMFP_INDEX 1 := BLANK;
TEMP_INDEX:= 1;
WHILE (BUFF [BUF_INDEX 1 <> NL) AND

{ BUFF [BUF_INDEX 1 <> LF) AND
(TEMP_INDEX <= STORE_LENGTH) AND
(BUF_INDEX <= BLOCK_SIZE) DO
BEGIN
TEMP_LINE [TEMP_INDEX 1 := BUFF [BUF_INDEX 1:
LINE_MODE := STAND_LINE;: '
IF ¢ TEMP_LINE G TEMP_INDEX 1 <> BLANK) AND
(TEMP_INDEX <= LABEL_END)
THEN LINE_MODE := BLOCK_LINE;:
TEMP_INDEX := SUCC (TEMP_INDEX);
BUF_INDEX := SUCC (BUF_INDEX)
END; ¢ while 3
COPY_P~ 1= TEMP_LINE;
FUT (COPY_F)3
NEW (P_PTR)3
IF LINE_MODE = BLOCK_LINE
THEN BEGIN
NEW (L_PTR)3
L_PTR".BLK_LNS := 03
L_PTR".METRIC_ADRS := -1;

88

L_PTR .NEXT_L := LAST_L .NEXT_L;
L_FTR™.FREV_L := LAST_L:
L_FTR™.NEXT_L".PREV_L := L_FTR;
L_PTR".PHYS_FTR := F_FTR:

LAST_L := L_FTR

END: ¢ 1f 3
P_FTR".LOG_PTR 1= L_PTR;
F_FTR™.NEXT_F 1= LAST_P".NEXT_Fi
F_FTR".FREV_P 1= LAST_P:
F_PTR™.FPHYS_ADRS := P_INDEX:
P_PTR™.NEXT_P~,PREV_P 1= P_PTR:
LAST_P~.NEXT_F := P_PTR;:
LAST_P := P_FTR:
L_PTR~.BLK_LNS := SUCC (L_PTR".BLK_LNS):
P_INDEX := SUCC (P_INDEX)

END; { while 3

Qk := BLOCKREAD (P_FILE, BUFF, 1) =1
END: { ok
L_PTR := LOG_FIRST:
LAST_L := L_PTR:

P_PTR := PHYS_FIRST;
LAST_F := FP_PTR;
CLOSE (P_FILE)
END { ok I
{$I+2
END;

{RXEEEE RN AR R IR RN AR AT AR KRR AN AR AR R

PROCEDURE WRITE_OFEN (FILE_NAME : NAME_TYPE;:
VAR I0_OK : BOOLEAN)

BEGIN
DELETE (FILE_NAME, (LENGTH (FILE_NAME) - &), 7)3
IF RAM_SYS
THEN REWRITE ¢ F_FILE., CONCAT (*#9:1%, FILE_NAME, ".TXT"))i
ELSE REWRITE (P_FILE, CONCAT ("#S:’, FILE_NAME, *.TXT"))j
10_0K := IQRESULT = O
END;
{l!!llltil‘ttt!!ill!tl!!l!!!**llttl!!ttil!lt‘l!t!!**lttl‘l‘!'ltltll**ll
PROCEDURE WRITE_CLOSE; ¢ I0_OK : BOOLEAN
BEGIN
IF 10_OK
THEN CLOSE ¢ P_FILE, LOCK)
ELSE CLOSE (P_FILE);
CLOSE ¢ M_FILE. PURGE)i
CLOSE (COFY_P, FURGE)3
END;
S Lt R R R et e e e ettt I Tttt T IITIIIIITIIIIIY

PROCEDURE WRITE_FILE: <{ VAR IO__OK : BOOLEAN:
FILE_NAME : NAME_TYPE 3

89

VAR CHAR_INDEX, BUF_INDEX, CHAR_COUNT :; INTEGEK:
BUFF : PACKED ARRAY [1..BLOCK_SIZE 1 OF CHAR;
WRITE_OK : BOOLEAN:

BEGIN

{$l-1
WRITE_OK := TRUE:;
I0_OK := TRUE:
BUF _INDEX := 03
WRITE_OPEN (FILE_NAME, I0_0OK)3
P_FTR 3= PHYS_FIRST .NEXT_F:
WRITE ("WRITING: PHYSICAL FILE”)3
WHILE (P_PTR™.NEXT_F <> NIL) AND (IO_DOK) AND (WRITE_Ok) DO
BEGIN
SEEK. (COFPY_P, P_PTR™.PHYS_ADRS)i
GET (COPY_F)3
CHAR_INDEX := 1}
WHILE COPY_P~[L CHAR_INDEX 1 <> NL DO
CHAR_INDEX := SUCC (CHAR_INDEX);
CHAR_COUNT := CHAR_INDEX;
WRITE (PERIOD):
IF CHAR_COUNT »>= (BLOCK_SIZE - BUF_INDEX
THEN BEGIN
FOR CHAR_INDEX := (BUF_INDEX + 1) TO BLOCK_SIZE DO
BUFF [CHAR_INDEX 1 := CHR (©)g
WRITE_Ok := BLOCKWRITE (P_FILE, BUFF, 1) = 13
I0_OK := IORESULT = O3
FOR BUF_INDEX := 1 TD BLOCK_SIZE DO
BUFF [BUF_INDEX] := BLANK;
BUF _INDEX := O
ENDs { if
FOR CHAR_INDEX := 1 TO CHAR_COUNT DO
BEGIN :
BUF _INDEX := SUCC (BUF_INDEX):
BUFF [BUF_INDEX] := COPY_P~[CHAR_INDEX 1
ENDy { for
P_PTR := P_PTR™.NEXT_FP
END; ¢ while }
P_PTR := P_PTR™.NEXT_P3;
IF WRITE_OK
THEN BEGIN
WRITE_OK := BLOCKWRITE (P_FILE, BUFF, 1) = 13
1I0_COK 3= IDREBULT = 0
END: { ok 1}
WRITE_CLDSE (WRITE_OK) .
{$I+2

END; -

-

R R R R R RN R KR R XA RN R KX RO NE]
PROCEDURE INSERT_RENUM (LN_TYFE : LINE_TYPE !

VAR SAVE_P : “PHYSICAL;
COUNT : INTEGER:

BEGIN

90

CASE LN_TYFE OF

STAND_LINE : L_PTR.BLK_LNS

t= SUCC (L_FPTR .ELK_LNS 1;
BLOCK _LINE : BEGIN
IF P_PTR“.NEXT_F".LOG_FTR = F_FTR'.FREV_F ,LOG_FTK
THEN BEGIN
COUNT = O3
SAVE_F 1= P_PTR:
REFEAT
SAVE_F-.LOG_FTR := L_FTR:
SAVE_P 1= SAVE_F-.NEXT_PF;:
COUNT := SUCC (COUNT)
UNTIL (SAVE_P-.LOG_FTR <> F_PTR™“.FREV_F",LOG_FTR)
OR (SAVE_P~.LOG_PTR = NIL);
L_PTR™.BLK_LNS := COUNT:
IF L_PTR™.PREV_L".PHYS_PTR <> NIL
THEN
L_PTR".PREV_L".BLK_LNS :=
L_PTR™.PREV_L~.BLK_LNS - PRED (COUNT)}
END
ELSE
L_FTR™.BLK_LNS := SUCC (L_PTR™,BLK_LNS)
END
END
ENDj

P S R R Rt st R et Ry st e It TSt T I IIIY
PROCEDURE DELETE_RENUM (LN_TYPE

t LINE_TYPE)3
VAR SAVE_P : “PHYSICAL}

COUNT : INTEGER;
BEGIN

CASE LN_TYPE OF
STAND_LINE :

L_PTR*.BLK_LNS := PRED
BLOCK_LINE :

(L_PTR*,BLK_LNS)3}
BEGIN

IF P_PTR~.LOG_PTR <> L_PTR
THEN BEGIN

COUNT := 03
SAVE_P := P_PTR;
REPEAT

SAVE_P~.LOG_PTR 1= L_PTR".PREV_L:

SAVE_P := SAVE_P“.NEXT_P;
COUNT := SUCC (COUNT)3

UNTIL (SAVE_P~.NEXT_P = NIL)

OR
(SAVE_P~.LOG_FTR = L_FTR)
L_PTR*.PREV_L".BLK_LNS :=
L_PTR".PREV_L™.BLK_LNS + COUNT;
END _

ELSE

L_FPTR™.BLK_LNS := PRED

(
END;:

L_PTR™.BLK_LNS)3
END3

END3

R R KA R AN AR AR R R RN E N

91

FROCEDURE CHECK_TYFE (LINE_IN : COFY_RELC;
VAR LN_TYFE : LINE_TYFPE)3

CONST LABEL_END = 43
LABEL_START = 1;
var 1 : INTEGER;:
BEGIN

LN_TYFE := STAND_LINE;
I := LABEL_START:
REPEAT

IF LINE_IN € I 1 < BLANK

THEN
LN_TYPE := BLOCK_LINE;

I := SUCC ¢ I 1}

UNTIL ¢ I > LABEL_END) OR
(LN_TYPE = BLDCK_LINE) OR
(LINE_INC I 1 = pNL
END;

DR R R RN AN RN RN R AR NN RN KRR X AN X R]

PROCEDURE STAND_MOD (LINE_IN : COPY_REC;

MODE_IN : MODE_TYPE;
LN_TYPE : LINE_TYPE;
DISK_OK : BOOLEAN)g

VAR [: INTEGER:
TYPE_CHANGE : BOOLEAN;
TEMP_TYPE : LINE_TYPE:

BEGIN
CASE MODE_IN OF
INSERT_MODE : EBEGIN
NEW (P_PTR)3}
P_PTR™.NEXT_P 1= LAST_P~.NEXT_P;
P_PTR*.PREV_P 1= LAST_P;
P_PTR™.NEXT_P~.PREV_P := P_PTR;
LAST_P~.NEXT_P := P_PTR;
P_PTR~.PHYS_ADRS := P_INDEX;
P_PTR".LOG_PTR := L_PTR;
SEEK (COPY_P, P_PTR~.PHYS_ADRS);
COPY_P~ 1= LINE_IN;
FUT { COPY_P);
LAST_P := F_PTR:
IF LN_TYPE = BLOCK_LINE
THEN L_PTR~.PHYS_PTR := P_PTR;
-INSERT_RENUM (LN_TYPE)i
P_INDEX := SUCC (P_INDEX)
LINE_COUNT := SUCC (LINE_COUNT)j;
DISK_OK 1= IORESULT = 0O
END:
CHANGE_MODE : BEGIN
SEEK (COPY_F, P_FTR“.NEXT_P~.PHYS_ADRS)i
COPY_P~ := LINE_IN;
CHECK_TYPE (COPY_P~, TEMP_TYPE)i
TYPE_CHANGE := TEMP_TYPE <> LNTYPE;
IF TYPE_CHANGE

92

THEN BEGIN

F_FTR™.FREV_P .NEXT_F := P_FTR".NEXT_F:
F_PTR*.NEXT_P~.FREV_P 1= F_FTR .PREY_F3

P_FTR := P_FTR™.NEXT_F;

LAST_F 1= F_PTR;

DELETE_RENUM (TEMF_TYFE)

END3:
SEEK (COFY_P, F_FTR"“.NEXT_P~.FPHYS_ADRS ’;
COFY_F" := LINE_IN; 2
FPUT (COPY_F)3
DISK_OK r= IORESULT = 0
END;

DELETE_MODE : BEGIN
P_PTR™.PREV_P™.NEXT_P :
P_PTR™.NEXT_P~.FREV_P :
P_PTR := P_FTR".NEXT_P;
LAST_F := P_PTR}
DELETE_RENUM (LN_TYPE)

END3s

= P_PTR".NEXT_F;
= P_PTR™.PREV_Fi

P

END}
END;

X AN E R R XA NN AN N %)

PROCEDURE BLOCK_MOD (LINE_IN : COPY_REC;
: MODE_IN : MODE_TYPE;

LN_TYPE : LINE_TYPE;
DISK_OK : BOOLEAN)j

VAR I : INTEGER:
TYPE_CHANGE : BOOLEAN:
TEMP_TYPE : LINE_TYFE;

BEGIN

CASE MODE_IN OF
INSERT_MODE : BEGIN
TYPE_CHANGE := FALSE;
IF (L_PTR = LOG_FIRST) AND (LINE_COUNT > O)
THEN BEGIN

L_PTR := L_PTR™~.NEXT_Lj
SEEK (COPY_P, L_PTR™.PHYS_FTR".PHYS_ADRS)3
GET (COPY_P)3
CHECK_TYPE (COPY_P~, TEMP_TYPE)3
TYPE_CHANGE := TEMP_TYPE <> LN_TYPE;

LAST P := F_PTR™.,PREV_P;
DISK_OK := IORESULT = O
END;
IF NOT TYPE_CHANGE
THEN BEGIN

NEW (L_PTR)3
L_PTR™.NEXT_L = LAST_L".NEXT_L:
L_PTR™.PREV_L t= LAST_L:
L_PTR™.NEXT_L"~.PREV_L := L_FTR:
LAST_L™.NEXT_L == L_PTR:
L_PTR™.BLK_LNS := 03
L_FTR™“.METRIC_ADRS 3= —-1;
LAST_L = L_PTR

END

23

END;
CHANGE _MCDE : BEGIN
SEEK. (COFY_F, L_FTR™.PHYS_FTR~.FHYS_ADRS)3
GET (COFPY_P)3
CHECK_TYPE (COPY_P~, TEMF_TYFE)

TYFPE_CHANGE := TEMP_TYFE <> LN_TYFE;
IF TYFPE_CHANGE
THEN BEGIN
IF ¢ L_PTR™.PREV_L <> LOG_FIRST)
THEN BEGIN

NEW (L_PTR)3
L_FTR™.NEXT_L := LAST_L".NEXT_L:
L_PTR™.PREV_L := LAST_L;
L_PTR™.NEXT_L™~.PREV_L := L_PTR;
LAST_L"~.NEXT_L := L_PTR;
L_PTR™.PHYS_PTR := P_PTR:
P_PTR™.LOG_FTR := L_PTR;
L_PTR™,BLK_LNS := Og
L_PTR~.METRIC_ADRS := -1}
LAST_L~.METRIC_ADRS := -1}
LAST_L 2= L_PTR;
INSERT_RENUM (TEMP_TYPE)
END3:
SEEK (COPY_P, L_PTR™.PHYS_PTR™.PHYS_ADRS)
COPY_P~ 1= LINE_IN;
FUT ¢ COPY_P 13
DISK_OK := IORESULT = 0
END
END;:
DELETE_MODE : BEGIN
IF « L_PTR™.PREV_L = LOG_FIRST)} AND
 L_PTR™.BLK_LNS > 1)}
THEN
L_PTR™.PHYS_PTR := L_PTR™.PHYS_PTR™.NEXT_PF
ELSE BEGIN
L_PTR*.PREV_L™.NEXT_L := L_PTR™.NEXT_L3
L_PTR™.NEXT_L~.PREV_L := L_PTR"~.PREV_L;
L_PTR = L_PTR™.NEXT_L3}
LAST_L := L_PTR
END

END
END

END;
R XA N RN AKX AN RN R KRN RD

PROCEDURE LINE_MOVE (¢ INPUT_LINE_NO : INTEGER:
VAR LINE_FOUND : BOOLEAN)3;

BEGIN

LINE_FOQUND := TRUE;
WHILE (LINE_COUNT <> INPUT_LINE_NQ > AND ¢ LINE_FOUND) DO

BEGIN
IF LINE_COUNT < INPUT_LINE_NO
THEN BEGIN
IF P_PTR".NEXT_P~.LOG_PTR = NIL
THEN
LINE_FOUND := FALSE

94

ELSE BEGIN
F_FTR 1= F_FTR .NEXT_F:
LINE_COUNT := SUCC (LINE_COUNT)
END
END
ELSE
IF LINE_COUNT . INPUT_LINE_NO
THEN BEGIN
IF P_PTR".PREV_P = NIL
THEN
LINE_FOUND 1= FALSE
ELSE BEGIN
F_PTR := P_PTR™~.PREV_P};
LINE_COUNT := PRED (LINE_COUNT)
END
END
END;
IF P_PTR™.LOG_PTR = NIL
THEN L_PTR := LOG_FIRST
ELSE L_PTR := F_PTR".LOG_FTR;
LAST_P := P_PTR;
LAST_L := L_PTR:

END;
R R e P e bR e RSP P PRI PP RISEEN
PROCEDURE FILE_RELOAD;

VAR I0_OK, NAME_OK : BOOLEAN; -

BEGIN

IF LENGTH (FILE_NAME) = O
THEN WRITE_FILE (I10_OK, °HLSEW.WRK®)
ELSE WRITE_FILE (IO_OK, BACKUP_NAME);

RELEASE (LOG_FIRST)3

RELEASE (PHY_FIRST);

IF 10_OK
THEN READ_FILE (NAME_OK, BACKUP_NAME, TOTAL_LINES, NEW_FILE);

END;
(S S Rt R R P R R R et e e isteei i tsssstitscssssy

PROCEDURE STORE_A_LINE; (LINE_REC : LINE;
LINE_NO : INTEGER;:
MODE_IN : MODE_TYFE 3

VAR LN_TYFE : LINE_TYPE;
FOUND_IT, MEM_OK, DISK_OK : BOOLEAN;:
R, I : INTEGER;
LINE_OUT : COFY_REC:

BEGIN
£81-3
R := START_LABEL:

FOR I := 1 TO STORE_LENGTH DO
BEGIN

95

LINE_IN L I 1 :=LINE_REC L R 1:
R := SUCC ¢ R)3
END:
IF (MODE_IN < DELETE_MODE)
THEN LINE_MOVE (LINE_NO, FOUND_IT)3
CHECK _TYPE (LINE_IN, LN_TYFE)3
CASE LN_TYFE OF .
BLOCE_LINE : BEGIN
BLOCK _MOD (LIMNE_IN, MODE_IN,
BLOCK_LINE, DISK_OK)3
IF (MODE_IN <> CHANGE_MODE) AND DISK_Ok
THEN STAND_MOD (LINE_IN, MODE_IN,
BLOCK _LINE, DISK_OF)
END;
STAND_LINE : BEGIN
IF LINE_COUNT = &
THEN BLOCK_™MOD (LINE_IN, MODE_IN,
STAND_LINE, DISK_OFK)
IF DISK_OkK
THEN STAND_MOD (LINE_IN, MODE_IN,
STAND_LINE, DISK_OK
END
END3:
MEM_CHECK (MEM_QK)3
IF (NOT MEM_OK) OR (NOT DISK_Ok)
THEN FILE_RELOAD:

{$I+}
ENDj
A3 it i Rttt PPt ettt e st it i iy

PROCEDURE FETCH_A_LINE; ¢ INPUT_LINE_NO : INTEGER;
VAR LINE_REC : LINE;
VAR LINE_FOUND : BOOLEAN;
NEW_FILE : BOOLEAN 3}

VAR R, I : INTEGERj
LINE_OUT : COPY_REC;

BEGIN

{81~
IF NEW_FILE
THEN
LINE_FOUND := FALSE .
ELSE BEGIN
LINE_MOVE ¢ INPUT_LINE_ND, LINE_FOUND);
IF LINE_FOUND
THEN BEGIN
SEEK (COPY_P, F_PTR".FHYS_ADRS):
GET (COPY_F);
LINE_OUT := COPY_P~
END
END;
FOR R == 1 TO (START_LABEL - 1)} DO
LINE_REC [R 1 := BLANK;
R 1= START_LABEL:
FOR I := 1| TO STORE_LABEL DQ

96

BEGIN
LINE_REC [R 1
R 1= SUCC (R)
END:

= LINE_QUT C I 1:

PraT

END:
R R R R KRR R RN AR N R

PROCEDURE DELETE_A_LINE; <{ INPUT_LINE_NO : INTEGER:
VAR LINE_FOUND : BOOLEAN >

BEGIN
{s1-2
IF LINE_COUNT : O
THEN BEGIN
LINE_MOVE (INFUT_LINE_NO, LINE_FOUND);
IF LINE_FOUND
THEN BEGIN
SEEK (COPY_P, P_PTR~.PHYS_ADRS);
GET (COPY_P)i
STORE_A_LINE (COPY_P~, INPUT_LINE_NOD, DELETE_MODE)
END
END
ELSE
LINE_FOUND := FALSE
{81+
END;

RN R I AN AR KA AR AR AR RIS AR AR

END. { unit store

97

Appendix V

-Editing System Source Code

Software Notice

The source code listing of the Line and Screen Editing
System which are found on the following pages, represents
the combined effort of this author and a previously
publishgd work. Although the original design is not the
total work of this author, a number of changes and additions
have been made toc circumvent system incompatibilities, and

to enhance system features and performance.

98

IS eSS e PR R R R R E R R SRR R e R PR R R E TR REE

»

£

x EEEEEEEEEE DDDDDDDD
¥ EEEEEEEEEE DDDDDDDDD
¥ EEE DDD pbhD
L] EEE DpD DDD
L] EEEEEEEEEE DDD DCD
* EEEEEEEEEE DDD DDD
X EEE poD DbD
X EEE DDD DDD
X EEEEEEEEEE DDDDDDDDD
x EEEEEEEEEE DDDDDDDD
x

X

R R R R R A R R AKX AN NN E AKX LXK

UNIT EDITOR;

(EXXAXAXEX)
INTERFACE
(EXXXXXREXE)

USES {$U #9:DECS.CODEZ}
DECS,

{sU #9:STORE.CODE>

ITIII1X
ITIIIII
III
III
IIl
I1I
IlI
11
IITIIII
ITIIILI

TTITTTTTTITT
TTTTTTTTTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT

0000000
000000000
Qoo 000
ooo 00a
{u]wla] Qoo
000 aoo
000 ooo
0G0 000
000000000

0000000

RRRRARRRR
RRERRRRER
RRR RRR
RRF RRR
RRR RER

RRRRRRR

RRRRRRRR

RRR RRRR
RRR RRR
RRR RRR

STORE;

AW M M M MW W M M M M M W

5

Sttt bt b bttt bttt R e bRttt ssss.

INTERFACE PROCEDURES

R R RN N AR K AN R KRR X KRR RN R XL AT RNREN)

PROCEDURE ANALYZER (VAR OK : BOOLEAN)j
PROCEDURE TRANSLATOR (VAR OK : BOOLEAN)
PROCEDURE BUILD_A_LINE (VAR DONE, ESCAPE : BOOLEAN)3
PROCEDURE FIND_TOKEN (VAR NEXT_TOKEN 1 TOKEN)i
PROCEDURE FIND_STRING ¢ STRING : LINE; STRING_LENGTH 1 INTEGER;
VAR START : INTEGER: VAR FOUND : BOOLEAN)3
PROCEDURE FETCH_CURRENT_LINE (INPUT_LINE_NO 1 INTEGER:
VAR LINE_FOUND : BOOLEAN)3
PROCEDURE GET_CHARACTER (LEBAL_CHAR : SET_OF_VALID; VAR CH_OUT : CHARj
VAR ALL_DONE, ESCAPE : BOOLEAN)

PROCEDURE PRINT_TEMP_LINE; :
PROCEDURE STORE_CURRENT_LINE (MODE : MODE_TYPE)
PROCEDURE CHANGE _TEXT;
PROCEDURE MAKE_TAB_SETTING;
PROCEDURE SET_TAB_CHAR; .
PROCEDURE INSERT_TEXT;
PROCEDURE DELETE_L INES;
FPROCEDURE LIST_IT: -
PROCEDURE LINE_EDIT (COMMAND_IN : COMMAND_TYPE)
PROCEDURE ND_SCREEN_PUT (INPUT_STRING : STRING)
PROCEDURE CLEAR_TO_EOLN;
PROCEDURE ERROR (ERROR_KIND : ERROR_TYPE) g

[$3333338333343% 3]

IMPLEMENTATION

(EXXETARXREXXATN)

99

R R RN R XA RN ARk KKK ARNE)
FROCEDURE HELF_IT;
BEGIN

WRITELN ("The following 1s a summary of the Editor Commands®};
WRITELN: WRITELN; WRITELN;

WRITELN:; WRITELN:; WRITELN

(*"IN" praovides for the insertion of text starting at the current’):
WRITELN

(*line number. Type CNTRL "C" and a <CR* to exit the Insert mode.):
WRITELMN; WRITELN: WRITELN

(""DL" deletes lines from your file. It must be follawed by a’);
WRITELN

("line number aor a range of line numbers, e.g. DL arg, {argl}’):
WRITELN:; WRITELN: WRITELN

(""CH" changes an existing string with a new string at the current’):
WRITELN :

(*line number, e.g. CH/old text/new text/ {argl. The third argument’):
WRITELN

("has three options. It may be null (default is 1), or it may be an’);
WRITELN

("integer specifying the number of occurances to change, of it may’);
WRITELN

(’be an "¥" which will make the specified changes throughout the’);
WRITELN

("the entire file’);

WRITELN; WRITELN

("Press space bar to continue.....’)g

READ (INPUT, SPACE_BEAR):

WRITELN: WRITELN; WRITELN3; WRITELN

(?"LS" list the linenumber requested. When followed by a second”);
WRITELN

("argument, a range of lines are displaved, e.g9. LS arg, {argl”);
WRITELN; WRITELN3; WRITELN

(?"TC" allows you to set the tab character to any character other”):
WRITELN

("than a number or letter. TC followed by a <CR> will display the’);
WRITELN

("current tab character, e.g. TC {argl’);

WRITELN: WRITELN: WRITELN

(""ST" allows you to set the tabs. This command followed by a <CR:"):
WRITELN

("will display the current tab settings. Otherwise this ccmmand’B;
WRITELN

("should be followed by the tab setting arguments tou desired. separated’)
WRITELN

("by a comma or a space, e.9. ST {argl {arg’} or {argl,{argi, etc’):
WRITELN

(*This caommand followed by "C" will set the standard COBOL tabs’);
WRITELN; WRITELN:; WRITELN

(""EN" will exit the Edit mode’);

WRITELNs WRITELN; WRITELN

(*"VE" toggles verify on and off. Upon execution you will be notified’):
WRITELN

("of the current selection®);

END;

100

G e PR e R R R R e R R R R RS P PR R P RO R eREeEnts
DUMMY ROUTINES
AR RN R RN A AR RN AT RN AT AT RAN)

PROCEDURE ANALYZER:; BEGIN END:
FROCEDURE TRANSLATOR: BEGIN END:

(‘**‘ﬁ**l#‘t‘**t*ltililitt!tltl!!*i!tl!lll***ltlltllll*tltttt!lK**!t!ll)
FROCEDURE ERROR: { ERROR_KIND : ERROR_TYPE 3
BEGIN

IF EDITING_FROM_SCREEN
THEN BEGIN
CASE ERROR_KIND OF
CHAR_ERROR : ND_SCREEN_FPUT (" xx INVALID CHARACTER xx"):
ARGUMENT _ERROR : ND_SCREEN_FUT ("¥¥ INVALID ARGUMENT %37);
COMMAND _ERROR : ND_SCREEN_PUT (" %% ILLEGAL COMMAND %37)3
NOT_FOUND : ND_SCREEN_FUT (” %3 NOT FOUND X%°)j
OTHER_ERROR : ND_SCREEN_PUT (’xx ERROR #X°);
LONGLINE : ND_SCREEN_PUT (" %% LONG LINE X%°)g;
STRING_NOT_FOUND : ND_SCREEN_PUT (" xx STRING NOT FOUND %x7°);
WRITING 12 ND_SCREEN_PUT ("x3x ERROR IN WRITING xx");
TRANS_ERROR : ND_SCREEN_PUT (” %% ERROR IN TRANSLATING %%°);
UPDATING : ND_SCREEN_FUT ("¥x ERROR IN UPDATING %x%x°);
REFORM_ERROR : ND_SCREEN_PUT (" xx ERROR IN REFORMING FILE %x°);
END;
WRITE (' Press space bar to continue.....’}j;
READ (INPUT, SPACE_BAR);
END
ELSE
CASE ERROR_KIND OF
CHAR_ERROR : WRITELN (" x% INVALID CHARACTER xx%x°');
ARGUMENT_ERROR : WRITELN (" %% INVALID ARGUMENT %X’);
COMMAND_ERROR : WRITELN (%% ILLEGAL COMMAND *x°);:
NOT_FOUND : WRITELN ("xx NOT FOUND xx°);
OTHER_ERROR : WRITELN (**% ERROR xx°):
LONGLINE : WRITELN (“%%x LONG LINE *x')g
WRITING : WRITELN (" fx ERROR IN WRITING #%x°);
TRANS_ERROR : WRITELN ¢(’x¥ ERROR IN TRANSLATING xx°);
UPDATING : WRITELN (%% ERROR IN UFDATING %X%°):
STRING_NOT_FOUND : WRITELN (’¥x STRING NOT FOUND *x°);
REFORM_ERROR : WRITELN (’%% ERROR IN REFORMING FILE %x%x°)
END

ENDj
(RN AR AR R RN R XKL XN R AKX AR AL AR EN AR RN R X)
PROCEDURE ND_SCREEN_FUT; { INPUT_STRING : STRING >
BEGIN
GOTOXY (0,00
CLEAR_TO_EOLN;
GOTAXY (0,0 .
WRITELN (INPUT_STRING):

END:

101

B s e P P R R R PR R R P R 2203032820222 33333¢3¢ 3223320

FROCEDURE CLEAR_TO_EOLN;
VAR I : INTEGER:
BEGIN

FOR I := 1 TO & DO
WRITE (CHR(CLRLCI1));

END:

(R RN KRR R RN A AR EEINN)

FROCEDURE GET_CHARACTER: {LEGAL_CHAR : SET_OF_VALID;
STRING_LENGTH : INTEGER;
VAR START : INTEGER;
VAR FOUND : EOOLEANI

VAR CH : CHAR;
BEGIN

ESCAFE := FALSE:
ALL_DONE := FALSE:;
REPEAT READ (KEYBOARD,CH) UNTIL CH IN LEGAL_CHAR;j
IF CH = CHR (CURSOR_LEAD)
THEN READ (KEYBOARD, CH)3
IF CH = CHRI(LEFT)
THEN BEGIN
WRITE (CHR(CURSOR_LEAD), CHR(LEFT));
WRITE (CHR (SPACE))3
WRITE (CHR(CURSOR_LEAD), CHR(LEFT)):
ENDg
IF CH = CHR(ETX}> THEN ALL_DONE := TRUE;
IF CH = CHR(ESC)
THEN BEGIN
ESCAPE := TRUE;
ALL_DONE := TRUE:
END;
CH_OUT := CH;

END;
AR KR KR AR KR RN KX R XN KRR KA RK)
FROCEDURE BUILD_A_LINE; { VAR DONE, ESCAFPE : BOOLEAN

VAR C : CHAR;
I : INTEGER;
ALL_DONE : BOOLEAN;:
VALID_SET_CHAR : SET OF CHAR;

BEGIN

VALID _SET_OF _CHAR := [CHR(CURSOR_LEAD), CHR(SPACE)..CHR(DEL), CHR(CR),
CHR(LEFT), CHR(ESC), CHR(ETX), TAB_CHARACTER 1:
FOR I := 1 TO 7 DO BEGIN
C := CHR(SPACE);

102

WRITE (OUTFUT,.C) s
TEMF_LINE E£1] := C;
END:
LINE_INDEX := 8
GET_CHARACTER (VALID_SET_OF_CHAR, C, ALL_DONE, ESCAFE):
WHILE (NOT EDLN (KEYBOARD)) AND (LINE_INDEX - > LINELENGTH)
AND (NOT ALL_DONE) DO BEGIN
IF C = CHR (LEFT)
THEN BEGIN
LINE_INDEX := PRED (LINE_INDEX):
IF LINE_INDEX <= ¢ THEN LINE_INDEX := 1
END
ELSE IF C = TAB_CHARACTER
THEN REPEAT
C:= CHR (SFACE);
WRITE (OUTFUT, C);
TEMP_LINE C[LINE_INDEX) := C;
ILLINE_INDEX := SUCC (LINE_INDEX)1
UNTIL (LINE_INDEX IN TABS) OR (LINE_INDEX > 79)
ELSE BEGIN
TEMP_LINE CLINE_INDEX] := €;
LINE_INDEX := SUCC (LINE_INDEX);
WRITE (QUTPUT, C)3
END3y
GET_CHARACTER (VALID_SET_OF_CHAR, C, ALL_DONE, ESCAFE);
END;
RESET (KEYBOARD) ;
WRITELN;
FOR I 1= LINE_INDEX TO LINE_LENGTH DO
TEMP_LINE CI] := NLj
DONE := ALL_DONE:

END;
(RREEX XL AR R RN RN R KRR A R AN AXX R A XXX AR AR R XX L)

PROCEDURE FIND_TOKEN; <{ VAR NEXT_TOKEN : TOKEN I

CHAR

VAR C
I INTEGER;:

BEGIN

WITH NEXT_TOKEN DO
BEGIN REFEAT
C := INPUT_LINE CLINE_INDEXI;
LINE_INDEX 1= SUCC (LINE_INDEX);
UNTIL € <> CHR(SPACE);
VALUE 1= PRED (LINE_INDEX);
IF C = CHR(134
THEN TOKEN_KIND := NILTOK
ELSE IF (C < *0") OR (C = 9"
THEN TOKEN_KIND := OTHERTOK
ELSE BEGIN
TOKEN_KIND := LINENOTOK:
VALUE 1= O3
REPEAT
VALUE := 10 % VALUE + ORD(C) - ORD(Q%)3
C:= INPUT_LINE C[LINE_INDEXI;
LINE_INDEX := SUCC (LINE_INDEX):

103

UNTIL (C ~ "0©*) OR (C A i
END3
IF TOKEN_K.IND = OTHERTOEK
THEN LIME_INDEX := FRED (LINE_INDEX)
END;:

ENDg
(R AR RN R AR KRR AR K AN N RN RN AR KRR KRR KRR AR XA K)

FROCEDURE FIND_STRING; ¢ STRING : LINE;
STRING_LENGTH : INTEGER;
VAR START : INTEGER;
VAR FOUND : BOOLEAN }

VAR MATCH : CHAR:
SUB_STRING, I : INTEGER;:
DONE : BOOLEAN:

BEGIN

DONE := FALSE:
FOUND := FALSE;
MATCH := STRING (C11:
I t= STRING_LENGTH - 1j
IF (START + I) <= TEMP_LENGTH
THEN REPEAT
IF TEMP_LINE [START] = MATCH
THEN BEGIN
FOUND := TRUE;
SUB_STRING := 03
WHILE (SUB_STRING <= I) AND FOUND
DO BEGIN
FOUND := FOUND AND
(TEMP_LINE [START + SUEB_STRING]
= STRING L[SUB_STRING + 11);
SUB_STRING := SUCC (SUB_STRING)
END;
END;
IF NOT FODUND
THEN START := SUCC (START);
DONE := FOUND OR (START + I > TEMP_LENGTH):
UNTIL DONE; '

END;

SRR 22 R et bl e et iRt i st bttt sseesssdbbsitssisey
PROCEDURE VERIFY_IT;
BEGIN
VERIFY_CHANGES := NOT VERIFY_CHANGES;
WRITE (°VERIFY ");
IF VERIFY_CHANGES
THEN WRITELN (°ON7)
ELSE WRITELN ("OFF");

END;

104

(AN XA RN AN AN RN IR XA A TR XK XA AN RN XXX AN NI IR RAATR)

FROCEDURE FETCH_CURRENT_LINE; < INFUT_LINE_ON : INTEGER:
) VAR LINE_FOUND : EBOOLEAN
VAR I : INTEGER:
CURRENT_LINE : LINE:
FOUND : BOOLEAN:
BEGIN
INPUT_LINE_NO := SUCC (INFUT_LINE_NO):
FOUND, NEW_FILE);

FETCH_A_LINE (INFUT_LINE_NO, CURRENT_LINE.

LINE_FOUND := FOUND:
IF FOUND
THEN BEGIN
TEMP_LENGTH := LINE_LENGTH;
I 1= O
REFEAT
I := SUCC (I):
TEMP_LINE (1] := CURRENT_LINE CI11;
UNTIL (CURRENT_LINE [I] = NL) OR (I
TEMP_LENGTH == 13

END

ELSE BEGIN
TEMP_LINE := CURRENT_LINE;
»

WRITE (*LINE *, INPUT_LINE_NO,

= LINELENGTH) ;

))
WRITELN (> NOT FOUND”);
{ERROR (NOT_FOUND>

END;
END;
RN RN RN AR KR AR KRR RN XA KRRRN A L)
PROCEDURE PRINT_TEMP_LINE;
VAR 1 : INTEGER:

BEGIN

IF TEMP_LENGTH = 1 THEN WRITE
FOR I := 1 TO TEMP_LENGTH DO

WRITE (TEMP_LINE (CI1):

{*. %%y

END:
R R e e e P R R e R it 3833325333333 233¢F3¢222¢F1 8

FROCEDURE STORE_CURRENT _LINE; { MODE : MODE_TYPE I

VAR 1 : INTEGER;
MODE_OUT : MODE_TYFE;

CURRENT_LINE : LINE;

BEGIN

t= 1 TO LINE_LENGTH DO

FOR I
:= TEMP_LINE CIJ;

CURRENT _LINE (11
MODE_OQUT := MODE;

105

STORE_A_LINE (CURRENT_LINE, LINE_NUMBER, MODE_QUT?;:
IF MODE_OUT <> CHANGE_MODE
THEN BEGIN
LINE_NUMBER := SUCC (LINE_NUMEBER);

TOTAL_LINES := SUCC (TOTAL_LINES)
END;
FILE_CHANGES 1= TRUE:

NEW_FILE := FALSE:
ENDj

R R b P PR Rt bR P e bt et e ee et etsst it ssessissttestiiees
PROCEDURE CHANGE_TEXT:

VAR DELIM : CHAR;
NEXT : TOKEN:
NEW_STRING, OLD_STRING : LINE;
NEW_LENGTH, OLD_LENGTH, CHANGE_COUNT, OLD_START : INTEGER:
STRING_START, I, J, INDEX : INTEGER;
FOUND, LINE_CHANGED, SINGLE_CHANGE, LINE_FOUND : BOOLEAN;

BEGIN

LINE_CHANGED := FALSE;
STRING_START := 13
FIND_TOKEN (NEXT);:
WITH NEXT DO
IF TOKEN_KIND <> OTHERTOK
THEN ERROR (COMMAND_ERROR?
ELBE BEGIN
DELIM := INPUT_LINE [VALUE]:
OLD_LENGTH := 03
INDEX := SUCC (VALUE)3;
WHILE (INPUT_LINE CINDEX) <> DELIM) AND
(INPUT_LINE LCLINDEX]1 <> NL)
DO BEGIN
OLD_LENGTH := SUCC (OLD_LENGTH);
OLD_STRING COLD_LENGTH] := INFUT_LINE C[INDEX1j
INDEX := SUCC (INDEX);:
ENDj;
IF INPUT_LINE CINDEX] <> DELIM
THEN ERROR (COMMAND_ERROR)
ELSE BEGIN
INDEX == SUCC (INDEX):
NEW_LENGTH := 03

WHILE (INPUT_LINE CINDEX] <> DELIM) AND
(INPUT_LINE CINDEX1 <> NL)
DO BEGIN
NEW_LENGTH := SUCC (NEW_LENGTH);
NEW_STRING [NEW_LENGTH] 3= INPUT_LINE [INDEXI;
INDEX := SUCC (INDEX)
END;

IF INPUT_LINE C[INDEX]1 = NL
THEM CHANGE_CODUNT 1= 1
ELLSE BEGIN
LINE_INDEX := SUCC (INDEX);
FIND_TOKEN (NEXT)}
CASE TOKEN_KIND OF
NILTOK : CHANGE_CDUNT := 1;

106

LINENOTOK : CHANGE_COUNT := VALUE;:
OTHERTOK : IF INPUT_LINE [VALUE]l = " x°
THEN CHANGE_COUNT :=
(TOTAL_LINES - 1)
ELSE CHANGE_COUNT := O3
END;
END;
SINGLE_CHANGE := CHANGE_COUNT = 1;
FETCH_CURRENT_LINE (LINE_NUMBER, LINE_FDOUND) ;
WHILE (CHANGE_COUNT <> 0) AND (LINE_FOUND)
DO BEGIN
FIND_STRING (OLD_STRING, OLD_LENGTH,
STRING_START, FOUND);
IF NOT FOUND
THEN IF SINGLE_CHANGE
THEN BEGIN
ERROR (STRING_NOT_FOUND) ;
CHANGE _COUNT := 0
END
ELSE BEGIN
LINE_NUMBER := SUCC (LINE_NUMBER):
FETCH_CURRENT_LINE (LINE_NUMBER, LINE_FOUND)
STRING_START := 1
END
ELSE BEGIN
CHANGE_COUNT := PRED (CHANGE_COUNT)
LINE_CHANGED := TRUE;
IF TEMP_LENGTH - OLD_LENGTH + NEW_LENGTH » 1
THEN ERROR (LONGLINE)
ELSE BEGIN
IF OLD_LENGTH > NEW_LENGTH
THEN FOR I := STRING_START + OLD_LENGTH
TO TEMP_LENGTH
DO TEMP_LINE [I - OLD_LENGTH + NEW_LENGTH]
1= TEMP_LINE (11
ELSE FOR I := TEMP_LENGTH DOWNTO
STRING_START + OLD_LENGTH
DO TEMP_LINE [I + NEW_LENGTH - OLD_LENGTHI
s= TEMP_LINE (I1g
TEMP_LENGTH := TEMP_LENGTH - DOLD_LENGTH
+ NEW_LENGTH;3
FOR I := 1 TO NEW_LENGTH DO
TEMP_LINE [STRING_START + I - 11 :=
NEW_STRING LI}
STRING_START := STRING_START + NEW_LENGTH;
ENDj
END; -
IF LINE_CHANGED
THEN BEGIN
- STORE_CURRENT_LINE (CHANGE_MODE) :
IF VERIFY_CHANGES
THEN PRINT_TEMP_LINE:
LINE_CHANGED := FALSE
END;

2]
(5]

END:
END3
END:
END;

B2 RSOt RS ettt iRt e ottt et stssssssssesssiisssy

107

FROCEDURE MAKE_TAE_SETTING:

VAR I : INTEGER;:
C : CHAR:
NEXT : TOKEN:
OUT_STRING : STRING:

BEGIN

FIND_TOKEN (NEXT):
CASE NEXT.TOKEN_KIND OF
NILTOK 3 BEGIN
IF EDITING_FROM_SCREEN
THEN BEGIN
GOTAXY (0,03
CLEAR_TO_EOLN;
GOTOXY (0,0)3
END;
WRITE ("TAB SETTINGS : ")
FOR I := 1 TO 80 DO
IF I IN TABS THEN WRITE (I,")3
WRITELN;
IF EDITING_FROM_SCREEN
THEN BEGIN
WRITE (° Press space bar to continue..... °):
READ (INPUT, SPACE_BAR)3
WRITELN;
GOTOXY (0O,1)3
CLEAR_TO_EOLN;
END3;
END;
OTHERTOK : BEGIN
C := INPUT_LINE [41];
IFC="'"C
THEN TABS := [8, 12, 1&, 20, 24, 32, 36, 40, S6, 731
ELSE ERROR (COMMAND_ERROR)
END;
LINENOTOK : IF NEXT.VALUE = O
THEN TABS := [1
ELSE REPEAT
I := NEXT.VALUE;
IF (I » O0) AND (I < 7%
THEN TABS := TABS + [I1
ELSE ERROR (OTHER_ERROR)
FIND_TOKEN (NEXT):
UNTIL NEXT.TOKEM_KIND <> LINENQTOK:
END;

END;
(IR R XX XA A AN KK EAR)
PROCEDURE SET_TAB_CHAR;

VAR NEW_TAB_CHAR : TOKEN;:
MESSAGE_DUT, TAE_STRING : STRING;

BEGIN

108

FIND_TOKEN (NEW_TAP_CHAR) 3
WITH NEW_TAEB_CHAR DO
CASE TOKEN_KIND OF
NILTOk: : BEGIN
[F EDITING_FROM_SCREEN
THEN BEGIN
MESSAGE _OUT := (*The Tab Character 1s ")
ND_SCREEN_PUT (MESSAGE_OUT) ;
WRITE (TAB_CHARACTER):
WRITE (’ Fress space bar to continue.....’);
READ (INPUT, SPACE_BAR);
END
ELSE
WRITELN ("The tab charaicter is °,TAB_CHARACTER):
END3;
OTHERTOK : TAB_CHARACTER := INPUT_LINE EVALUE]:
LINENOTOK : =RROR (COMMAND_ERROR);
END;

END;
(R R AN R RN RN R AR AR AR RN AASAN)
PROCEDURE INSERT_TEXT:

VAR NEXT : TOKEN:
MODE_QUT : MODE_TYPE;
DONE, ESCAPE : BOOLEAN;

BEGIN

DONE := FALSE;
FIND_TOKEN (NEXT)}
IF NEXT.TOKEN_KIND <> NILTOK
THEN ERROR (COMMAND_ERROR)
ELSE BEGIN
MODE_OUT := INSERT_MODE;
WHILE NOT DONE DO
BEGIN
BUILD_A_LINE (DONE, ESCAPE);
IF (NOT ESCAPE) AND (NOT DONE)
THEN STORE_CURRENT_LINE (MODE_OUT);
END3
END;
NEW_FILE := FALSE;

ENDj .
S22 2 E RSttt bttt R PP R R 222220
FROCEDURE DELETE_L INES;
VAR NEXT : TOKEN:
Ok, FOUND : BOOLEAN;
FIRST_LINE, LAST_LINE, I : INTEGER;
BEGIN

Ok := TRUE:
FIND_TOKEN (NEXT):

109

WITH NEXT DO
CASE TOREN_KIND OF

NILTOE. : BEGIN
. FIRST_LINE := LINE_NUMBER:
LAST_LINE := LINE_NUMBER;
END:
OTHERTOK : O := FALSE;
LINENOTOK : BEGIN
FIRST_LINE := VALUE:

FIND_TOKEN (NEXT);
WITH NEXT DO
CASE TOKEN_KIND OF

NILTOK ¢ LAST_LINE := FIRST_LINE;:
OTHERTOK : OK := FALSEj
LINENOTOK : BEGIN

LAST_LINE := VALUE;:

FIND_TOKEN (NEXT) 3

IF NEXT.TOKEN_KIND <> NILTOK
THEN OK := FALSE;

END;
END
END

END;
IF NOT OK

THEN ERROR (COMMAND_ERROR)

ELSE BEGIN

FOR I := FIRST_LINE TO LAST_LINE DO

BEGIN
DELETE_A_LINE ((FIRST_LINE + 1), FOUND):
IF NOT FOUND
THEN BEGIN
WRITE (I, * *)3
ERROR (NOT_FOUND) 3
END
ELSE TOTAL_LINES := PRED (TOTAL_LINES});
END;
{LINE_NUMBER := LAST_LINE;?
FILE_CHANGED := TRUE:
END;

END;
R R 2t PPt et Rt bR i3 8830333233020 ¢83820]
FROCEDURE LIST_IT:

VAR FIRST_LINE, LAST_LINE, I :INTEGER;
OK, LINE_FOUND : BOOLEAN;
NEXT : TOKEN;

BEGIN

QK. := TRUE;
FIND_TOKEN (NEXT);:
WITH NEXT DO
CASE TOKEN_KIND OF
NILTOK : BEGIN
FIRST_LINE := LINE_NUMBER:
LAST_LINE := FIRST_LINE + 203
END3s

OTHERTOR. : OK 1= FALSE;
LINENOTOK = BEGIN
FIRST_LINE := YALUE - 13
FIND_TOKEN (NEXT):
WITH NEXT DO
CASE TOKEN_KIND OF
NILTOE : BEGIN
LAST_LINE := FIRST_LINE:
LINE_NUMBER := LAST_LINE;
END3
OTHERTOK : OK := FALSE:
LINENOTDOK : BEGIN
LAST_LINE := VALUE - 1:
LINE_NUMBER := LAST_LINE;
FIND_TOKEN (NEXT):
IF NEXT.TOKEN_KIND <> NILTOK
THEN QK := FALSE
ELSE;
ENDg
END;
END;
END:
IF NOT Ok
THEN ERROR (COMMAND_ERROR)
ELSE FOR I := FIRST_LINE TO LAST_LINE DO
BEGIN
FETCH_CURRENT _LINE (I,LINE_FOUND);
IF LINE_FOUND
THEN PRINT_TEMP_LINEj
END;

END;

R KRN R AR KRS RIRARRLL)
FPROCEDURE GUIT;

VAR I : INTEGER:
BEGIN

FOR I := 1 TO & DO
WRITE (CHR (CLRS L[I1));
GATOXY (1S,12);
WRITELN (* END OF HIL.SEW SESSION ")

END; - .

RN R R AR R R KA AR RN RN TA AR LN)

PROCEDURE READ_COMMAND (VAR COMMAND : COMMAND_TYFE);

VAR C : CHAR;
I : INTEGER;
COMMAND_ID 1 ARRAY [1..2] OF CHAR;
ALL_DONE, ESCAFE : BOOLEAN;
VALID_SET_OF _CHAR : SET_OF VALID;

BEGIN

11

VALID_SET_OF _CHAR := [CHR(SOH)..CHR(HT), CHR(CR)..CHR(DEL; I:
LINE_INDEX := 13
REFEAT
GET_CHARACTER (VALID_SET_OF_CHAR, C., ALL_DONE, ESCAFE)
UNTIL C ¢ CHR(SFACE)
INPUT_LINE CLINE_INDEX] := Cj;

WRITE (C)3
WHILE (NOT EOLN (KEYBOARD)) AND (LINE_INDEX < > LINE_LENGTH) DO
BEGIN

GET_CHARACTER (VALID_SET_OF_CHARACTER. C, ALL_DONE, ESCAFE):
LINE_INDEX := SUCC (LINE_INDEX):
IF C = CHR(LEFT)
THEN BEGIN
LINE_INDEX := PRED (LINE_INDEX - 1)3
IF LINE_INDEX <= O THEN LINE_INDEX := ©
END
ELSE BEGIN
WRITE (C)g
INPUT_LINE C[LINE_INDEX] :1= C;
END3
END;
READLN (KEYBOARD):
WRITELN;
FOR I := LINE_INDEX TO LINELENGTH DO
INPUT_LINE CI] := CHR (CR);
FOR I := 1 TO 2 DO
COMMAND_ID CI] := INPUT_LINE C[I];
LINE_INDEX := 33
COMMAND := BADCOMMANDj;
IF COMMAND_ID [1] = NL THEN COMMAND := REPEAT_IT;
CASE COMMAND_ID C11 OF

*C” : IF COMMAND_ID [2] = "H®" THEN COMMAND := CHANGE;

D : IF COMMAND_ID [2] = °L" THEN COMMAND := DELETE_IT;

"E* : IF COMMAND_ID [2] = "N’* THEN COMMAND := ENDEDIT;

H' : IF COMMAND_ID (21 = "E* THEN COMMAND := HELP;

"1* : IF COMMAND_ID C2]1 = *N* THEN COMMAND := INSERT:

L" : IF COMMAND_ID [2] = *S™ THEN COMMAND := LIST;

S’ : IF COMMAND_ID C2]1 = °T* THEN COMMAND 1= SETTABS;

T 1+ IF COMMAND_ID [2] = ’C" THEN COMMAND := TABCHAR;

V' o: IF COMMAND_ID [2] = "E" THEN COMMAND := VERIFY
END;

END;
(R R LN AN XA AR R A NN R A RN X AR R RN AN RN O R R KRR XX X)
FROCEDURE EXECUTE_COMMAND (COMMAND_IN : COMMAND_TYPE) ;

VAR LINE_FOUND : BOOLEAN;

BEGIN

CASE COMMAND _IN OF
CHANGE : CHANGE_TEXT;
DELETE_IT : DELETE_LINES{
ENDEDIT : QUIT:
HELP : HELP_IT;
INSERT : INSERT_TEXT;
LIST : LIST_IT:

SETTAES : MAKE_TAB_SETTING;
TABCHAR : SET_TAB_CHAR:
VERIFY : VERIFY_IT;
FETCH_IT : FETCH_CURRENT_LINE (LINE_NUMEER, LINE_FOUND):
STORE_IT : STORE_CURRENT_LINE (CHANGE_MODE) :
BADCOMMAND : ERROR (COMMAND_ERROR) 3
REPEAT_IT : BEGIN
FETCH_CURRENT_LINE (LINE_NUMBER, LINE_FOUND}:
PRINT_TEMF_LINE:
LINE_NUMBER := SUCC (LINE_NUMBER) ;
END;:
END3:

END;

(EREIE RN E X AN RN R AR XX A AN AR XXX AR XN X)
PROCEDURE INIT_LINE;

BEGIN

WRITELN (LOG_ON_MSG) 3
WRITELN (HELP_MSG)

TABS := [8, 12, 1&, 20, 32, 36, 40, S&, 73 I3
TAB_CHARACTER 1= *~’;

VERIFY_CHANGES := TRUEj;

LINE_NUMBER 1= O3

NL 1= CHR(CR);

COMMAND := BADCOMMAND;

EDITING_FROM_SCREEN := FALSE;

END;
(RN RN RN AR KA NN NN R XXX EE)
FROCEDURE LINE_EDIT; { COMMAND_IN : COMMAND_TYPE I
BEGIN
IF COMMAND_IN = EDIT_IT
THEN BEGIN
INIT_LINE;
REFEAT
READ_COMMAND (COMMAND) 3
EXECUTE_COMMAND (COMMAND) ;
UNTIL COMMAND = ENDEDIT;
END .
ELSE EXECUTE_COMMAND (COMMAND_IN) ;3
END; -
(R e PR R P R RS RS PR PR RIS 23238 ¢8 333332382343

END. (% UNIT EDITOR x)

113

NI R R S A A N K R A A A R R KA N A R A XX NI AR AR A R AR R KL
L]
L SSS555SS cccccccc RRRRRRRR EEEEEEEEEE EEEEEEEEEE NNN NNN L3
& 5555555555 CCCCCCCCCC RRRRRRRRRR EEEEEEEEEE EEEEEEEEEE NNNN MNN X
£ S§§5 cccc RRRR RRR EEE EEE NNNNN NNN X
* SSS cccc RRRR RRRR EEE EEE NNNNNN NNN L]
¥ §S8885Sss5S CCCC RRRRRRRRR EEEEEEEEEE EEEEEEEEEE NNNNNNNNNN L]
* §88555888 CCCC RRRRRRRR EEEEEEEEEE EEEEEEEEEE NNN NNNNNM ¥
% §85 CCcc RRRRRRRRR EEE EEE NNN NNNNN 1
X S8S5 CCccc RRR RRRR EEE EEE NNN NNNNN ¥
¥ S8SSSS558S CCCCCCCCCC RRR RRRR EEEEEEEEEE EEEEEEEEEE NNN NNNN X
x SSSS858SS CCCCcccc RRR RRRR EEEEEEEEEE EEEEEEEEEE NNN NNN X
X X
1222 P RSP b o e bR e sttt et bbet o

PROGRAM -HLSEW;

USES (xsU #9:DECS.CODEx)
DECS,

(xsU #9:STORE.CODEX®)
STORE,

(¥sU #9:EDITOR.CODEX)
EDITOR;

(¥$R SCREEN_EDIT ®)
PROCEDURE COMMAND_INTERPRETER; FORWARD;
(li!!!lil‘tll!'t!ll!!tl!‘t!ltit‘!#ttII!Ilt!tt!lll!tl!l!!tlll!t!“t!l!!llJ
PROCEDURE CLEAR_SCREEN;

VAR 1 : INTEGER;
BEGIN

FOR I := 1 TO & DO
WRITE (CHR (CLRS L[I1));

END;
(XXX EEARXXAEREBERXXEREBEEERRAKAXEERRXRENABRERARERRANEX B ELXXREXINELAREN)
SEGMENT PROCEDURE SCREEN_EDIT;

PROCEDURE MOVE_RIGHT; FORWARD;:

FROCEDURE MOVE_LEFT; FORWARD:

PROCEDURE EDITOR_MENU: FORWARDj

PROCEDURE EDITOR_COMMAND_INTERPRETER; FORWARD:

AR KRR NN AR A AT E AR A AR KAL)

PROCEDURE BELL;

BEGIN
WRITE (CHR (BEL));

114

END:
(T AN R K A R R KRR KR RN XA R RN AEAX)
FROCEDURE ERASE_REST_DF_PAGE;
VAR I : INTEGER:
BEGIN

FOR I := 1 TD & DO
WRITE (CHR (CLRF [I1))3

END;
(B2 2222t 2R bR R et et e e sttt sttt ittt iitsssssssssasdssy
PROCEDURE CONVERT_INTEGER (INT_IN : INTEGER);

VAR I, INDEX, NUMBER : INTEGERj;
TEMF : ARRAY [l..51 OF CHAR:

BEGIN

NUMBER == INT_IN;
INDEX 3= 03
FOR I := 1 TO S DO
TEMF [I1] := CHR (SPACE);
REPEAT
INDEX := SUCC (INDEX)j§
TEMP CINDEX] := CHR (NUMBER MOD 10 + ORD (*0%));
NUMBER := NUMBER DIV 10j;
UNTIL NUMBER = g
FOR I := INDEX DOWNTO 1 DO
IF TEMP [I1 <> CHR (SPACE)
THEN BEGIN
INPUT_LINE CLINE_INDEX] := TEMP [I1];
LINE_INDEX 1= SUCC (LINE_INDEX);
END;

END;

(AR R AN R RN AN R RN AN K R R AN XX A AR R RN KL RN KL Y)
PROCEDURE FAGE;

BEGIN

GOTOXY (0O,1)3;
ERASE_REST _OF _FPABE;

GOTOXY (0,2);

LINE_INDEX := 33

INPUT_LINE CLINE_INDEX1 2= NLj;
LINE_EDIT (LIST);

GOTOXY (O,2);

ROW := 23

COLUMN == Oy

ROW_MARK := 2;

END3s

115

BRSPS SRR RS ESEREER D

FROCEDURE FAGE_BACKk:

VAR TEMF_NUMBER : INTEGER;

BEGIN
TEMP_NUMBER := LINE_NUMBER;
IF (LINE_NUMBER - 20) < 0
THEN LINE_NUMEBER := 0O

ELSE LINE_MUMBER := LINE_NUMBER - Z0j
GAOTOXY (0,1);
ERASE_REST_OF _FAGE;
GOTOXY (0,2);
LINE_INDEX := T3
INPUT_LINE CLINE_INDEX] := NL3
LINE_EDIT (LIST):
LINE_NUMBER := TEMF_NUMBER;
ROW := LINE_NUMBER + 2;
ROW_MARK 1= ROW;
GOTOXY (COLUMN, ROW);

END;

C b e R e Rttt Pttt it s i ss et ssssssetsssstssy
PROCEDURE READ_SCREEN_COMMAND;

VAR C : CHAR:
I.: INTEGER3:
ALL_DONE, ESCAPE : BOOLEAN:
VALID_SET_OF_CHAR : SET_OF_VALID;

BEGIN

VALID_SET_OF_CHAR 1= [CHR(SOH)..CHR(HT), CHR(CR)..CHR(DEL) 13
INPUT_LINE [3] 1= CHR(SPACE):
LINE_INDEX := 4y
GET_CHARACTER (VALID_SET_OF_CHAR, C, ALL_DONE, ESCAPE);
INPUT_LINE CLINE_INDEX] := C;
WRITE (C);
WHILE (NOT EOLN (KEYBOARD)) AND (LINE_ INDEX «> LINELENGTH) AND
(NOT ESCAFE) DO
BEGIN
GET_CHARACTER (VALTD_SET_UF*CHAR, C, ALL_DONE, ESCAFE):
LINE_INDEX := SUCC (LINE_INDEX)3
IF C = CHR (LEFT)
THEN BEGIN
LINE_INDEX := PRED (LINE_INDEX)j
IF LINE_INDEX <= 2
THEN LINE_INDEX := 23
END
ELSE BEGIN
WRITE (C):
INFUT_LINE CLINE_INDEX] 1= C
END;
END;
READLN (KEYBOARD) ;
WRITELN;

116

IF ESCAFE
THEN BEGIN
EDITOR_MENU:
EXIT (EDITOR_COMMAND_INTEFRETER) 3

END;
FOR I := LINE_INDEX TO LINE_LENGTH DO
INFUT_LINE [I] := CHR(CR);
LINE_INDEX := T:

END}
C e P e e bR R e R Rt 2300803332323 233033833337
FPROCEDURE SCREEN_INSERT;

VAR CH : CHAR;:
ALL_DONE, ESCAPE, FOUND : BOOLEAN:
VALID_SET_OF _CHAR : SET_OF_VALID;
1 : INTEGER:

BEGIN

ND_SCREEN_PUT (" INSERT: C)haracters B)lock <esc> aborts’)j
VALID_SET_OF _CHAR := [’C”, "B’, CHR (ESC) 1;
GET_CHARACTER (VALID_SET_OF_CHAR, CH, ALL_DONE, ESCAPE):
CASE CH OF
"C* 1 BEGIN
IF (TOTAL_LINES <= Q) OR (LINE_NUMBER >= TOTAL_LINES)
THEN EXIT (SCREEN_INSERT);
VALID_SET_OF _CHAR := [CHR(SOH)..CHR(HT), CHR(CR)..CHR(DEL) 13
ND_SCREEN_FUT ("CHAR INSERT: <cntrl C> accepts <esc): aborts’);
LINE_EDIT (FETCH_IT):
GOTOXY (COLUMN, ROW)3j
CLEAR_TO_EOLN;
GET_CHARACTER (VALID_SET_OF _CHAR, CH, ALL_DONE, ESCAPE);
WHILE (NOT ALL_DONE) AND (NOT ESCAPE) DD
BEGIN
IF COLUMN = 79 THEN BELL
ELSE
IF CH = CHR(LEFT)
THEN BEGIN
MOVE_LEFT;
FOR I := (COLUMN + 1) TO (LINE_LENGTH - 1) DO
TEMP_LINE (1] := TEMP_LINE [I + 113
END
ELSE BEGIN
FOR I := (LINE_LENGTH - 1) DOWNTO (COLUMN + 1) DO
TEMP_LINE [I + 1] ;= TEMP_LINE [I];
TEMP_LINE C[COLUMN + 1] := CH;

WRITE (CH):
- MOVE_RIGHT;
END;

GET_CHARACTER (VALID_SET_OF_CHAR, CH, ALL_DONE, ESCAFE;;

END:
IF (ALL_DONE) AND (NOT ESCAFE) THEN LINE_EDIT (STORE_IT):
LINE_EDIT (FETCH_IT):
GOTOXY (O,ROW);
PRINT_TEMF_LINE}:

END:

‘B’ : BEGIN
ND_SCREEN_FUT (*BLOCEKE INSERT: <cntrl C> and <CR>* accepts’):

17

GOTOXY (3,ROW) 3
ERASE_REST_QOF _PAGE;
LINE_INDEX := T3
SINFUT_LINE CLINE_INDEX]1 := NL:
LINE_EDIT (INSERT);
GOTOXY (0,2)%
ERASE_REST_OF _PAGE;
IF (LINE_NUMBER + 10) <= TOTAL_LINES
THEN LINE_NUMBER := LINE_NUMBER - 10
ELSE LINE_NUMBER := TOTAL_LINES - 203
IF LINE_NUMBER < O
THEN LINE_NUMBER := 0
PAGE ;
END;
END;:
IF ESCAPE THEN EXIT (SCREEN_INSERT) ;

END:
(REEEREA AR AR AR XX AR XA AN RN AN AR AN AR R AR E XA E AN R R X)
FROCEDURE SCREEN_DELETE;

VAR CH : CHAR;
ALL_DONE, ESCAPE, FOUND : BOOLEAN;
VALID_SET_OF_CHAR : SET_OF_VALID;
I, LAST_LINE, FIRST_LINE, TEMP_COLUMN, TEMP_TOTAL : INTEGER:

BEGIN

ND_SCREEN_PUT
(*DELETE: <down arrow> line, <right arrow> char, <cntrl C) accepts’):
WRITE (’, <“esc> aborts’)j
VALID_SET_OF_CHAR := [CHR(CURSOR_LEAD), CHR(DOWN), CHR(RIGHT),
CHR (ESC), CHR(ETX) 13
GOTOXY (COLUMN, ROW);
GET_CHARACTER (VALID_SET_OF_CHAR, CH, ALL_DONE, ESCAFE);
IF CH = CHR(RIGHT)
THEN BEGIN
IF (TOTAL_LINES <= 0) OR (LINE_NUMBER >= TOTAL_LINES)
THEN EXIT (SCREEN_DELETE);
VALID_SET_OF_CHAR = [CHR(CURSOR_LEAD), CHR(RIGHT), CHR(ESC), CHR(ETX)
LINE_EDIT (FETCH_IT);
GOTOXY (COLUMN, ROW)j
TEMF_COLUMN := COLUMNj;
WHILE (NOT ALL_DONE) AND (NOT ESCAPE) DO

BEGIN
IF TEMF_COLUMN »>= 79 THEN BELL
ELSE BEGIN
FOR I := (COLUMN + 1) TO (TEMP_LENGTH - 1) DO
TEMF_LINE CI] 1= TEMP_LINE [I + 11}
WRITE (CHR(SFACE)):
TEMP_LENGTH := PRED (TEMP_LENGTH);
TEMP_COLUMN := SUCC (TEMF_COLUMN) ;
END;
GET_CHARACTER (VALID_SET_OF_CHAR, CH, ALL_DONE, ESCAFE):
END:

IF (ALL_DONE) AND (NOT ESCAPE) THEN LINE_EDIT (STORE_IT);
LINE_EDIT (FETCH_IT)j
CLEAR_TO_EOLN;

118

GOTOXY (O,ROW)
PRINT_TEMF_LINE:

END;
IF CH = CHR{DOWN)
THEN BEGIN .
IF (TOTAL_LINES = @) OR (LINE_NUMBER .= TATAL_LINES)

THEN EXIT (SCREEN_DELETE)
TEMF_TOTAL := TOTAL_LINES;
FIRST_LINE := LINE_NUMBERj

VALID_SET_CHAR := [CHR(CURSOR_LEAD), CHR(DOWN), CHR(ETX), CHR(ESC)

WHILE (NOT ALL_DONE) AND (NOT ESCAFE) DO
BEGIN
GOTOXY (Q,ROW) ;
CLEAR_TO_EOLN:

IF ROW < (TEMP_TOTAL + 2)
THEN BEGIN
ROW := SUCC (ROW);

GOTOXY (0O,ROW):
LINE_NUMBER := SUCC (LINE_NUMBER) ;
TEMP_TOTAL := PRED (TEMP_TOTAL) 3
END;:
GET_CHARACTER (VALID_SET_OF _CHAR, CH, ALL_DONE, ESCAFE):

ENDg

LINE_NUMBER := FPRED (LINE_NUMBER) 3

IF NOT ESCAFE
THEN BEGIN

LAST_LINE := LINE_NUMBER:

FOR I := 1 TO LINE_LENGTH DO
INPUT_LINE [I] := CHR (SPACE) ;

LINE_INDEX := 3;

CONVERT_INTEGER (FIRST_LINE):

LINE_INDEX := SUCC (LINE_INDEX)};

CONVERT_INTEGER (LAST_LINE):

FOR [:= LINE_INDEX TO LINE_LENGTH DO
INFUT _LINE CI] := NLj

LINE_INDEX 1= 3;

LINE_EDIT (DELETE_IT):

END;

GOTOXY (0,2)3

LINE_NUMBER := FRED (LINE_NUMBER) ;

IF (LINE_NUMBER + 10) <= TOTAL_LINES
THEN LINE_NUMBER := LINE_NUMBER - 10
ELSE LINE_NUMBER := TOTAL_LINES - 203

IF LINE_NUMBER < ©
THEN LINE_NUMBER := O3

PAGE;

END; .
IF ESCAPE THEN EXIT (SCREEN_DELETE);

END3 -

(Itll!t*ttl**t*It*l#t#t*l*l#lt!lll!*ttt‘tt!lli!ttttt!!!ltlllt!*ttl!!‘!tl)

PROCEDURE EXCHANGE;
VAR CH : CHAR;:
ALL_DONE, ESCAPE, FOUND : BOOLEAN:
VALID_SET_OF _CHAR : SET_OF _VALIDj

BEGIN

119

ND_SCREEN_FUT ("EXCHANGE: ~esc. to abort ‘cntrl C: to escape’);
GOTOxY (COLUMN, ROW);
VALID_SET.OF_CHAR := [CHR(ETX), CHR(ESC), CHR(LEFT),
CHR(CURSOR_LEAD), CHR(SPACE)..CHR(DEL) 1;
GET_CHARACTER (VALID_SET_OF_CHarR, CH, ALL_DONE, ESCAPE):
IF ROW » TOTAL_LINES THEN
EXIT (EXCHANGE) ;
WHILE (NOT ALL_DONE) AND (NOT ESCAFE) DO
BEGIN
LINE_EDIT (FETCH_IT)3
IF COLUMN = 79 THEN BELL
ELSE
IF CH = CHR(LEFT)
THEN MOVE_LEFT
ELSE BEGIN
TEMP_LINE [COLUMN + 1] := CH:
WRITE (CH);
MOVE_RIGHT;
END3
GET_CHARACTER (VALID_SET_OF_CHAR, CH, ALL_DONE, ESCAFE);
END;
IF (ALL_DONE) AND (NOT ESCAPE)
THEN LINE_EDIT (STORE_IT);
IF ESCAPE
THEN BEGIN
LINE_EDIT (FETCH_IT)j
GOTOXY (0O,ROW)j
FRINT_TEMP_LINE;
END;

END;

(SR R e E PPttt R e ittt sttt ittt iiiny
FROCEDURE REPLACE:
BEGIN

ND_SCREEN_PUT
("REPLACE: delim <target’ delim <substitute> delim [repeat factorl’);
GOTOXY (0.1);
READ_SCREEN_COMMAND}
ERASE_REST_OF _PAGE;
LINE_EDIT (CHANGE):
ND_SCREEN_PUT (° Pres space bar to continue.....):
READ (INPUT, SPACE_BAR):
GOTOXY (D,1)3
CLEAR_TO_EOLN:
IF (LINE_NUMBER + 10) <= TOTAL_LINES
THEN LINE_NUMBER := LINE_NUMBER - 10
ELSE LINE_NUMBER := TOTAL_LINES - 20;
IF LINE_NUMBER : ©
THEN LINE_NUMBER := O
FAGE;

END;

(AR R AR KRN NN KN AA RN R AN L)

120

FFROCEDURE SET_THE_TAES;

BEGIN
ND_SCREEN;PUT ("SET TABS: < cr: display current tabs ")
READ_SCREEN_COMMAND:
LINE_EDIT (SETTABS);
END3
R N A R R AN R AN AR A KX AN MR A XXX R AR R X K)
FROCEDURE ESTABLISH_TAB_CHAR;
BEGIN
ND_SCREEN_PUT (°SET TAB CHARACTER: <cr> displays current character):
READ_SCREEN_COMMAND
LINE_EDIT (TABCHAR):
END3;
(ltt!lltl!i!!tttlil*t#l!lilllllltll!#t!tllllllt!¥llltlttt¥**ttit$¥**!ttl)
PROCEDURE OTHER;
VAR CH : CHAR;
BEGIN
ND_SCREEN_PUT ("OTHER: S)et tabs Tlab character R)eturn’):

REPEAT READ (KEYBOARD, CH) UNTIL CH IN C "S-, Ty 'R™ 13
CASE CH OF

*S' : SET_THE_TABS;
"T* : ESTABLISH_TABE_CHARS;
'R* : EXIT (OTHER);
END:
ENDj

(i*tltlttlll!l!#ttll!lt!l!!llt!tlltlt!l!ltl!!t!tttt!ll!!!t!tllltl!l!!tll)
FROCEDURE MOVE_UP;
BEGIN

IF LINE_NUMBER «< 1 THEN EXIT (MBVE_UP):
IF ROW <= ROW_MARK -
THEN BEGIN
LINE_NUMBER =:= PRED (LINE_NUMBER) 3
ROW_MARK := PRED (ROW_MARK) ;
ENDg
ROW := PRED (ROW);
GOTOXY (COLUMN, ROW);
IF ROW < 2
THEN PAGE_BACK;

END;

(li!!llll!!!3!!!!lttltlll**!ltllltt#tlltllll!l!ttttttlltill!!l!*tllltlll)

121

BEGIN

ND_SCREEN_FUT
("EDIT: Il)nsert Dlelete E)xchange R)eplace Q)ther @luit’)

END;
N A NN A AL LN
FROCEDURE EDITOR_COMMAND_INTERPRETER;

VAR INPUT : CHAR;:
BEGIN

REPEAT
READ (KEYBOARD, INPUT)
UNTIL INPUT INTC °"I', D", "R"', "@°, *X*, ’'0°’, CHR(CURSOR_LEAD) 1I1:

IF (INPUT = CHR (CURSOR_LEAD)) AND (LEAD_IN)
THEN READ (KEYBOARD, INPUT):

IF INPUT = CHR(DOWN) THEN MOVE_DOWN;

IF INPUT = CHR(UP) THEN MOVE_UP;

IF INPUT = CHR(LEFT) THEN MOVE_LEFT;

IF INPUT = CHR(RIGHT) THEN MOVE_RIGHT;

CASE INPUT OF
"I’ 1 SCREEN_INSERT;

D” 1 SCREEN_DELETE;
"X 3 EXCHAMNGE;
R’ : REPLACE;
*0° : OTHER:
Q : BEGIN
CLEAR_SCREEN;
EXIT (SCREEN_EDIT):
END;
END3;
IF INPUT INC "I°, X7, °D*, "R", '0"]
THEN BEGIN

EDITOR_MENU;
GOTOXY (COLUMN, ROW)j;
END;

END;
R R RN N N R R K R AN R RN NN AR REN)
PROCEDURE SET_UP_SCREEN_EDITOR;

BEGIN

TABS := [8, 12, 16, 20, 32, 36, 40, S&, 73 Ij
TAB_CHARACTER := """

LINE_NUMBER := 03

NL := CHR (CR)3j

COMMAND := BADCOMMAND:

EDITING_FROM_SCREEN := TRUE;

CLEAR_SCREEN; !
EDITOR_MENU;

122

FROCEDURE ™MOVE_DQuwhN;

BEGIN

IF LINE_NUMBER - TOTAL_LINES

THEN BEGIN
LINE_NUMEER := SUCC (LINE_NUMBER):
ROW := SUCC (ROW):
ROW_MARE := SUCC (ROW_MARE) 3
END
ELSE
ROW := ROW_MARK:

GOTOXY (COLUMN, ROW);
IF ROW . 22
THEN EBEGIN
IF (LINE_NUMBER + 10) “= TOTAL_LINES
THEN LINE_NUMBER := LINE_NUMBER -10

ELSE LINE_NUMBER := TOTAL_LINE - Z0:
PAGE;

END;

END:

R R N A R AN AR A AN A KA A RN AN A TR MR RN AR KK)
FROCEDURE MOVE_RIGHT;

BEGIN

COLUMN := SUCC (COLUMN) 3
IF COLUMN = 75 THEN BELL:
IF COLUMN = 79
THEN BEGIN
COLUMN := 0O
MOVE_DOWN:
END3:

GOTOXY (COLUMN, ROW);
END:

R R R A NN A NN N AR AR KA A AR XA AKK AR R)
FROCEDURE MOVE_LEFT:

BEGIN

COLUMN == FRED
IF COLUMN -~ ©
THEN EEGIN -
COLUMN 1= 793
MOVE _UF;
END;
GOTOXY (COLUMN, ROWY;:

(COLUMN} 3

END;

R R R N R R R A AN RN RO AL AR LA %)
FROCEDURE EDITOR_MENUj

123

LINE_INDEX := T3
FAGE:

EMND s
RN R NN K KR N N R R N KN A AN R RN R AR AR NN AR XX
. MAIN BODY OF SEGMENT SCREEN_EDIT

I E S e P PR R R e R R SR R3320 222333222233 D
BEGIN

SET_UF_SCREEN_EDITOR;

EDITOR_COMMAND _INTERFRETER;

REFEAT

EDITOR_COMMAND_INTERPRETER;

UNTIL FINISHED:
END;
B F st s et e et et ettt Pt sttt iz issiseetineissy
PROCEDURE OUTER_COMMAND_MENU;
BEGIN

ND_SCREEN_FUT
(’COMMAND: S)creen edit Tlranslate A)nalyze [@uit L)ine edit’):

END3;
[t 2 e 3 S PRt ettt R esee ittt s8023 2232823820
PROCEDURE GET_FILE (VAR FOUND : BOOLEAN):
BEGIN
FILE_CHANGED := FALSE;
ND_SCREEN_FUT
(’FILE NAME: <cr> new file <file name:> existing file: ')j
READLN (FILE_NAME) ;
READ_FILE (FOUND, FILE_NAME, TOTAL_LINES, NEW_FILE);
IF NOT FQUND
THEN BEGIN
ERROR (NOT_FOUND) ;
EXIT (COMMAND_INTERPRETER):
END:
END;
(AR AR A KRR AKX AN AR AN RN EC AR R K)
PROCEDURE GET_NAME (VAR Ok : BOOLEAN);
BEGIN

0K := FALSE:
ND_SCREEN_FUT

("FILE NAME: <cr: deletes edited file <file name> names new file: 7):

READLN (FILENAME):
IF LENGTH (FILE_NAME) > O

124

THEN OF := TRUE;
CLEAR_3CREEN;:

EMD:
(R RN AN RN AR RN A AR RN AR AN RN R R RN XN LR &)
FROCEDURE FILE_REFORM (VAR DK : BOOLEAN):

VAR IN_NAME, OUT_NAME : NAME_TYPE;:
SELECT_TYPE : REFORM_TYPEj;
RESPONSE : CHAR;

BEGIN

ND_SCREEN_PUT (’File Reform Utility’)g
GOTOXY (O, 2) s
WRITE ("Name of File ta Refarm: ");:
READLN (IN_NAME) 3
WRITE ("Name of Reformed File: ");
READLN (OUT_NAME) ;
WRITELNg
WRITE (’Reform Types:s <C* Carriage Return, <L> Linefeed/Carriage Return:
REPEAT
READ (KEYBOARD,RESFONSE)
UNTIL RESPONSE IN C °*L*, ’C* 1:
IF RESPONSE = °“L°
THEN SELECT_TYPE := LF_CR
ELSE SELECT_TYPE := CR_ONLY;
REFORM (FOUND, Ok, IN_NAME, OUT_NAME, SELECT_TYFE);
IF NOT FOUND
THEN BEGIN
ERROR (NOT_FOUND) 3
Ok := TRUE:
EXIT (COMMAND_INTERFPRETER)
END

END3:
R R R AR AN A AN ATRRN)

PROCEDURE COMMAND_INTERPRETER;

VAR CH 1 CH-";
Ok, : BOGLEAN:
BEGIN .
REPEAT

READ (FEYBOARD. CH)
UNTIL CH IN ["A’, °T", ’8°, *@*, °L°, R’ Ij
CASE CH OF
ST : BEGIN
GET_FILE (OK);:
SCREEN_EDIT:
IF NEW_FILE
THEN Ok := FALSE
ELSE IF NOT FILE_CHANGED
THEN OK := FALSE
ELSE IF LENGTH (FILE_NAME) <= O

125

an

THEM GET_NAME (Ok;
ELSE IF LENGTH (FIL_E__NQMEJ -0
THEN Ok := TRUE}:
JIF Ok
THEN BEGIN
WRITE_FILE (0K, FILE_NAME)3:
CLEAR_SCREEN;:
IF NOT QK
THEN ERROR (WRITING) 3
WRITE_CLOSE (OK)3:
END
ELSE WRITE_CLDSE (0Ok) ;
END;
BEGIN
GET_FILE (OK)1
TRANSLATOR (OK);
IF NOT 0K
THEN ERROR (TRANS_ERROR);
END:
BEGIN
GET_FILE (OK):
ANALYZER (OK)
IF NOT Ok
THEN ERROR (UPDATING);
END;
'L ¢ BEGIN
GET_FILE (OK);
CLEAR_SCREEN;
LINE_EDIT (EDIT_IT);
IF NEW_FILE
THEN OK := FALSE
ELSE IF NOT FILE_CHANGED
THEN OK := FALSE
ELSE IF LENGTH (FILE_NAME) <= 0
THEN GET_MNAME (0OK)
ELSE IF LENGTH (FILE_NAME) > 0O
THEN OK := TRUE;

T

A’

IF Ok
THEN BEGIN
WRITE_FILE (OK, FILE_NAME):
CLEAR_SCREEN;
IF NOT OK
THEN ERROR (WRITING);
WRITE_CLOSE (DK);
END
ELSE WRITE_CLOSE (OK)3
END;
"R* : BEGIN
FILE_REFORM (OK)g;
IF NOT 0K
THEN ERROR (REFORM_ERROR)
END;
'@ : BEGIN
CLEAR_SCREEN:
GOTOXY (25,12)%
WRITELN ("END HLSEW SESSION’):
EXIT (FROGRAM)
END;
END;

126

END3
N RN AT KA RN RN SRR KRR RN ANX LA LR)
PROCEDURE INITIALIZE;

VAR 0K : BOOLEAN:
BEGIN

READ_TERM (LEFT, DOWN, UF, RIGHT, CLRL. CLRS,
CLRP. CURSOR_LEAD. LEAD_IN, OK):
IF NOT OK
THEN BEGIN
WRITE ("Error: Unable to Open TERMCODE File’):
EXIT (PROGRAM)3
END;
EDITING_FROM_SCREEN := TRUE:
CLEAR_SCREEN:
GOTOXY (25.12):
WRITELN ("WELCOME TO HLSEW’)3
GOTOXY (22,350)4
WRITE ("copywrite pending 19817);
OUTER_COMMAND _MENU;
NL := CHRI(CR):
FINISHED := FALSE;:
VERIFY_CHANGES := TRUE}:

END:

2 PR e R8sttt sdttte st siesscsbttiatasettss]
_ MAIN PROGRAM

EEEEE RN RN AN RN R R NN AR AR XA N XXX R XXX AR AEX)

BEGIN

INITIALIZE:
COMMAND _ INTERFRETER:
REPEAT
OUTER_COMMAND _MENU;
COMMAND _INTERFRETER:
UNTIL FINISHED;:

END.

127

Appendix VI

Installation Source Code

128

R A A A A N X N A A A XXX E XXX AT AR XL

TERMINAL % SYSTEM INSTALLATION

DESIGNED BY

g
T
¥
X
x
X
X
X
X
Russell J. Holt ¥
X
4
|
L &

X
&
x
x
E
b
x
x
E
x
b ¢
|
x
x

LR e Rt bR R e R R R R R R R PP R R R R R R e tseRtgs)

FPROGRAM INSTALL;:
TYPE KEYCODE = PACKED ARRAY [1..&6 1 OF INTEGER:

VAR T_FILE : FILE OF KEYCODE;
LEFT. DOWN, UP, RIGHT, CLRL, CLRS, CLRP, RAM_SYS : KEYCODE;:
CURSOR_IN : STRING:
I : INTEGER:
0O, LEAD_IN : BOOLEAN:
SYS_OPT, KEY_OFT : CHAR;:

PROCEDURE IO0_CHECK (RESPONSE : INTEGER)i

BEGIN
IF RESFONSE aQ
THEN
BEGIN
GOTOXY (Q.0)3
WRITE (CHR ¢« 7), "Illegal Respanse’)
EXIT (TERMCODE)
END;
END;
BEGIN
{$1-3
RESET ¢« T_FILE, "#9:TERMCODE.DATA")
IF IORESULT » O { ioresult #1
THEN BEGIN
REWRITE (T_FILE, *#%9:TERMCODE.DATA");
IF IORESULT + 0 { ioresult #2 [
THEN BEGIN

WRITE ¢ “Unable to open TERMCODE file”)i
EXIT ¢ TERMCODE)
END { then ioresult #2
ELSE FOR I := 1 TO 6 DO { new term file >
BEGIN

LEFT C I
DOWN C I
UP L I 1

2
]

an as ss

#)
0
0

129

RIGHT C I 1 :=

WRITELN;:
LEAD_IN := FALSE;

WHILE NOT 0Ok DO
BEGIN

GOTAOXY (Q,3);:

WRITE (*A* Cursor Left -3

FOR I := 1 TO & DO

IF LEFT L I 1 <> ©

THEN WRITE (LEFT L I 1, * *)
ELSE WRITE (° L

WRITELN:

WRITE (*B» Cursor Right -
FOR I := 1 TO & DO
IF RIGHT L I 1 <> ©
THEN WRITE (RIGHT C I 1, ~ °
ELSE WRITE (* L
WRITELN; -

WRITE ("C» Cursor Up -
FOR I := 1-TO & DO
IFWUP LI 10
THEN WRITE (uP C I 1, > ~
ELSE WRITE (* ')
WRITELN;

WRITE ("D» Cursor Down =3
FOR I := 1 TO & DO
IF DOWN C I 1 <> O
THEN-WRITE (DOWN C I 3, ° ")
ELSE WRITE (° i & ;
WRITELN:

130

b

T e]

_FILE™;

CLRL C I 1 := O3
CLRS [I 1 := O3
CLRF L I 1 := 03
END { else % 1oresult #2
END { then ioresult #1
ELSE BEGIN
LEFT := T_FILE~
GET (T_FILE)3 DOWN t= T_FILE™
GET ¢« T_FILE)3 UP 1= T_FILE™
GET « T_FILE)3 RIGHT := T_FILE"™
GET ¢ T_FILE >3 CLRL := T_FILE™
GET (T_FILE)3 CLRS 1= T_FILE™
GET (T_FILE 13 CLRF t= T_FILE™;
GET ¢ T_FILE »: RAM_SYS :1=T
CLOSE (T_FILE 1
END: { else ioresult #1
GOTOXY (0.9)3
FOR I := 1 TO 22 DO
EFEGIN
WRITE ¢ °
WRITELN ¢ °
END:
" DK := FALSE:
GATOXY ¢ 0,0)3
WRITELN (* Present Key Configuration®

13

)3

WRITE ("E.° Clear Line - '
FOR I := 1 TO & DO
IFCLRL C I 1 v O
THEN WRITE (CLRL C I 1, *)
ELSE WRITE ¢ -)

WRITELN:
WRITE ("F>» Clear screen - i
FOR I := 1 TD & DO
IFCLRSES €L I 1 <> 0
THEN WRITE (CLRS L I 1, * *)
ELSE WRITE (~ s
WRITELN;

WRITE ("G* Clear Remainder of Screen -: 2
FOR I := 1 TO & DO
IFCLRP C I 1 <> O
THEN WRITE (CLRP C I 1, * *)
ELSE WRITE (* ')
WRITELN;:

IF RAM_SYS [1 1 =1
THEN WRITELN (’H> Ram Disk System -> YES
ELSE WRITELN ("H>* Ram Disk System =-> NO

GOTAXY ¢ 0,12)3
KEY_OPT == * *;

"WRITE (" Enter Selection To Change, <RETURN> To Exit:

READ (KEYBOARD, KEY_OFT)j
IF (KEY_OPT < A%) OR ¢ KEY_QFT - *2’)
THEN OK := TRUE
ELSE BEGIN
GOTOXY ¢ 0,12);
WRITE ¢ °
WRITE (
END;
GOTOXY (0,12)3

CASE KEY_OPT QF
"A®,"a’ 1 BEGIN

FOR I := 1 TO € DO LEFT L I 1 := O3
WRITELN (’Press the Cursor Left key~
WRITELN (® Followed by a <return:" 13

READ (KEYBOARD, CURSOR_IN)3

I0O_CHECK (IORESULT)3

FOR I := 1 TO LENGTH (CURSOR_IN) DO
LEFT [I 1 := ORD (CURSOR_IN [I I

IF LENGTH (CURSOR_IN > > 1 THEN LEAD_

READLN (KEYBOARD)
WRITELN
END;:

"B, ¢ BEGIN
FOR I := 1 7O 6 DO RIGHT [I 1 =:= 13
WRITELN (*Fress the Cursor Right key’
WRITELN (° Followed by a <return?’)
READ (KEYBOARD, CURSOR_IN)3
I0O_CHECEKE (IDRESULT)
FOR I := 1 TO LENBTH (CURSOR_IN) DO

131

)i

L]
IN

'3

)
Y3

TRUE:

TRt

RIGHT C I 3 := ORD (CURSOR_IN L I 1);
IF LENGTH (CURSOR_IN)
READLN (KEYBOARD) ;

WRITELN
END:
,'ec” + BEGIN
FOR I =1 TO &6 DOUFP C I 1 1= O3

WRITELN ("Press the Cursor Up key®)

WRITELN (° Followed by a <returnz")

READ (KEYBOARD, CURSOR_IN J;

IO_CHECK (IORESULT)3

FOR I := 1 TO LENGBTH (CURSOR_IN) DO
UF C I 1 :=0RD (CURSOR_IN C I 1)3

N
H
-
1

1 THEN LEAD_IN := TRUE:

IF LENGTH (CURSOR_IN ?» > 1 THEN LEAD_IN := TRUE;:

READLN ¢ KEYBOARD)
WRITELN

END;
D,"d” : BEGIN

FOR I z= 1 TO 6 DO DOWN C I J := O3

WRITELN (*Fress the Cursor Down key’)3

WRITELN { ° Followed by a <return:’)}

READ (KEYBOARD, CURSOR_IN)3

I0O_CHECEK (IORESULT)3

FOR I 3= 1 TO LENGTH (CURSOR_IN) DO
DOWN [I 1 :=0ORD (CURSOR_IN [I 1)3

IF LENGTH (CURSOR_IN) > 1 THEN LEAD_IN := TRUE;

READLN (KEYBOARD)3
WRITELN

END;:
‘E’y"®” : BEGIN

FOR I := 1 TO & DOCLRL L I 1 1= O3

WRITELN ("Enter Ascii Codes to Clear a Line

WRITELN ("End sequence with a "0" ")3
WRITELN;

WRITE (*Ascii Code #1: s

READLN (CLRL [1 1)3

I0O_CHECEK (IDORESULT):

I 5= 1;

WHILE (CLRL L I 1 <> @) AND (I < &) DO

BEGIN
I := SUCC ¢ I)3
WRITE ("Ascii Code #°, I, ’:]
READLN (CLRL C I 1)
I0_CHECK (IORESULT)
END

END3;

§°

: BEGIN
FOR I := 1 TO 6 DOCLRS [I 1 := O3

s

]

WRITELN ("Enter Ascii Codes to Clear the Screen

WRITELN ("End sequence with a "0" *)
WRITELN:

WRITE ("Ascii Code #1: -

READLN (CLRS C 1 1)3

I0_CHECK (IORESULT)3

I 2= 13

WHILE (CLRS [I 1 <> 0) AND (I < &) DO
BEGIN
I := SUCC (I)3
WRITE ("Ascii Code #°, I, ": =)3

READLN (CLRS L I 1)3

132

El

yi

I0_CHECK (« IDRESULT)

END
"END;
"GT,'g’ : BEGIN
FOR [:= 1 TO 6 DOCLRF C I 1] := 03
WRITELN. ¢ "Enter Ascii Codes to Clear the Remainder of Screen
WRITELM { "End sequence with a "O" *)
WRITELN;

WRITE ¢ "Ascii Code #1: i
READLN ¢ CLRF C 1t 1 b3
I0_CHECK (IQRESULT)
I :1= 13
WHILE (CLRF T I 1 <> a) AND (I < &) DO
BEGIN
I 1= SUCC (I)3
WRITE ('Ascii Code #°, I, "z *)3
READLN ¢ CLRP C I 1)
I0O_CHECK (IDRESULT)
END3:
END3;
"H',*h" : BEGIN
SYS_OFT := * 73
WRITE (Do you wish to use a RAM-DISK system (Y/N)7T 7
READ (KEYBOARD, SYS_OPT);

IF (SYS_OPT = *Y*) OR (SYS_OPT = "y~)
THEN RAM_SYS [1 1 1= 1
ELSE RAM_SYS [1 1 3= 0
END;
END;
GOTOXY ¢ 0,12)3
FOR I := 12 TO 23 DO
WRITELN (° *)
END;
WRITE ("Are These Ascii Codes Carrect? Y/N *)
KEY. OPT &= & 2
READ (KEYBOARD, KEY_OFT):
IF (KEY_OPT = °*¥*) OR (KEY_OPT = *y*)}
THEN BEGIN
IF (LEAD_IN) AND
((LEFT [1 1 <> RIGHT L 1 1) OR
(t LEFT L 1 1 <>UP L 1 1) orR
(LEFT C 1 1 <> DOWN C 1 J) OR
(RIGHT C 1 1 <> UP C 1 1) (w5
(RIGHT [1 1 <> DOWN C 1 1) OR
CUP C 1 1 <>DOWNTLC L 1))
THEN BEGIN
WRITE ("The supplied Cursor codes are not supported by the °)3
WRITE ("HLSEW system, Please refer to your user manual’®)
END
ELSE BEGIN

REWRITE ¢ T_FILE, ’#9:TERMCODE.DATA’)
IF IORESULT » O THEN EXIT (TERMCODE 1} ;

T_FILE" := LEFT; PUT ¢ T_FILE)3;
T_FILE" := DOWN; FUT (T_FILE)3
T_FILE™ := UP; PUT (T_FILE)3
T_FILE" := RIGHT; FUT ¢ T_FILE);
T_FILE™~ == CLRL: PUT ¢ T_FILE)

133

T_FILE := CLRS:

T_FILE" CLRF3
“T_FILE™ := RAM_SYS;
CLOSE ¢ T_FILE, LOCK
END
($1+)
END:

GATOXY (0,0)3
FOR I := 1 TO 24 DO

BEGIN
WRITE ¢ "
WRITELN ¢
END:

END.

)

PUT
FUT
FUT

_~ o~ —~

_FILE)
_FILE)
FILE

S

134

as se anm

—

THE DISK STORAGE SYSTEM OF THE
HIGH LEVEL SOFTWARE ENGINEERING WORKSTATION
(HLSEW)

by

Russell J. Holt

B. S., Washburn University of Topeka, 1980

An Abstract of a Master's Report

submitted in partial fulfillment of the

requirements for the degree

Master of Science

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Ks

1985

Abstract

The author has developed the Data Storage System of an
interactive workstation referred to as the High Level
Software Engineering Workstation (HLSEW). This interactive
workstation whieh funetions as an "intelligent terminal®™, is
designed to aid programmers who use a pseudo-English
Programming language called a Program Design Language
(PDL). An intelligent terminal ecan do some local proceaﬁing
Wwithout communicating with a host computer, they offer users
flexibility while freeing the host for other tasks. The
HLSEW functions as an intelligent terminal which allows: 1)
the creating and editing of a PDL file, 2) the calculation
of program metrices, and 3) the translating of a PDL file
into a compilable source code file. The eventual purpose of
the HLSEW project is to develop an intelligent workstation
that helps to identify problems as the user enters the PDL
code.

The HLSEW project was originally designed on the PDQ=3,
The architecture of the PDQ-3 consists of a LSI-11 CPU, 128K
RAM memory, dual 8 inch floppy disk drives, and runs the
University of California at San Diego (UCSD) p-systenm.
Further development of the project resulted in the systen

being transferred te an IBM or IBM-compatible micro computer.

