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Chapter 1
*
INTRODUCTION

Recently, several researchers investigated a tower fermentor for con-
ducting growth processes [1, 2, 3, and 4].** Prokop et al, [1] investi-
gated an elght stage tower fermentor with co-current flow of ailr and
medium from the bottom to the top of the column. Their work consisted
of an experimental study of the residence time distribution of liquid
media and cells as well as a steady state investigation of the substrate
and cell concentrations throughout the fermentor. They found that the
residence time characteristics of the continuous phase and the dispersed
(microorganisms) phase are distinct. Falch and Gaden [2] studied con-
tinuous culture in a 4 stage tower fermentor, in which air and medium
were introduced into the column counter-currently, They also developed
a method for anmalyzing the reactor behavior of a continuous multistage
tower fermentor and set up a model consisting of a system of intercon-
nected ideal subreactors on the basis of the fermentor's configuration
and flow pattern [5]. A least-squares fitting procedure was used to
identify the proper model., The effects of the plate and agitator design
on backflow, oxygen transfer rate and gas holdup have been reported by

Kitai et al., [3].

*®
A portion of this chapter has been taken from reference (9}.

®%k
Equations, figures, tables, appendices, and references cited will all be

found within the chapter in which they are cited except where specific
references is made to another chapter,



High productivity, reduced operating cost and flexibility of operation
and control are the major advantages of a tower type fermentor, The im-
portant factors Influencing the operating performance in a tower type
fermentor are feed geometry, system dilution rate, backflow, and sedi-
mentation. The degree of mixing between stages i1s influenced by the back-
flow rate while the sedimentation greatly influences the cell concentration
in each stage., The feed geometry allows for a wide range of growth rates
and cell physiological states,

The tower system considered here is assumed to be constructed such
that compartments are separated by perforated plates., Complete mixing is
assumed in each stage. The oxygen for the biological growth is supplied
from air bubbles which are introduced at the bottom, Oxygen transfer and
mass transfer rates which depend upon the distribution of bubbles, bubble
size and air velocity have been studied by other researchers [3, 6, 7 and 8].

Continuous processes can be classified into three different flow models
with respect to their macroscopic degree of mixing; (1) plug flow, (2) com—
plete mixing and (3) partial mixing. The flow behavior corresponding to
each of these three different flow models can be approached by properly
designing and operating the tower system., Plug flow is achieved if the
number of stages is large and fluid backflow is prevented. Complete mixing’
is achieved when fluid backflow is increased. Partial mixing is the most
general case found in tower systems, as it is the intermediate case between
the two extreme cases,

Lee [9] has discussed the modelling of microbial growth, analysis of

steady state performance and the stability of growth processes in tower



systems, and the optimization of biological waste treatment processes
using the tower system,

A tower type biological system has certain advantages over the con-
ventional stirred tank system. Redispersion and circulation of air bubbles
makes the individual stage almost equivalent to a completely mixed tank.
Appearance of backflow and sedimentation can be realized in the tower
system., The principle disadvantages of the tower fermentor are its
relative instability and foaming. Perhaps the greatest potential value
to the tower fermentor is its range of operation and the possibility of
varying the substrate, cell and fluid age distributions relatively inde-
pendent of each other. Besides providing a potentially useful piece of
equipment for optimizing certain fermentation systems, a tower type system
may require less space and land,

This work is concerned with the handling of batch and continuous
tower system data. Data analysis is often useful in understanding process
mechanisms and predicting process behavior for the design of continuous
tower fermentation processes, An analysis was conducted of nonlinear
parameter estimation for both algebraic and differential models based on
experimental and simulated data of known error distributioms, A brief
description of the various nonlinear parameter estimation techniques can
be found in reference [10].

Sequential simplex pattern search [11] which minimizes or maximizes
a selected criterion function was used for estimating parameters in a
four stage tower system using unsteady state simulated data and a dif-

ferential model. Various types of experimental errors including normally



distributed error, instrument drift, zero error in the Instrument and
various combinations of these were taken into account for simulating
the data. TFlow nonidealities like fluid backflow and dispersed (micro-
organism) phase sedimentation were included in the mathematical model,

One of the problems often encountered in experimental procedures
using a tower type of system is the measurement of back flow rate from
each stage, Hence once again parameter identification techniques were
employed to estimate the backflow parameters and to observe the relation—
ship between the flows from individual stages, A linear flow model was
used in this study.

The problem of curve fitting, where one tries to fit the available
experimental data to a certain curve is often encountered in practice.
If the experimental data can be approximated by a straight line, the
problem is simple, but on the other hand if the data shows the trend of
a curve, which is the case in most practical situations, the problem is
slightly complicated. The obvious thing to do next, is to try a certain
degree polynomial to fit such data. If one fails to find a suitable
polynomial to approximate the data, an attempt is made to include the
cross-terms, reciprocal terms and logarithmic terms etc, There is no
unique statistical procedure which will tell us the degree of the poly-
nomial to use or when the addition of cross—terms, reciprocal terms or
logarithmic terms will improve the model for predictive purposes., Per-
sonal judgement will always be a necessary part in the analysis. A
number of methods have been proposed to discriminate between models.

Examination and analysis of residuals is often useful in selecting the



best regression equation. A brief description of this appears in refer-
ence [12], The other procedures for selecting the best regression equ-
ation are also discussed in reference [12], and can be listed as follows

(1) all possible regressions

(2) backward elimination

(3) forward selection

(4) stepwise regression

(5) stagewise regression,

A similiar problem was encountered in the analysis of tower fermentor
performance using a flow model, The object was to estimate the backflow
parameters from the available tracer data in a multistage tower system.
The problem was formulated in such a way that it was necessary to approx-
imate the tracer data in one of the individual stages with a curve. For-
tunately it was possible to fit the available data by a polynomial., Per-
sonal experiehce éombined with statistical techniques formed the basis of
judgement to find the exact degree of polynomial., In particular, graph-
ical techniques were used to examine and analyze the residuals obtained
from various regression models, and an attempt was made to suggest the most
adequate and satisfactory regression model for the available experimental

data,
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Chapter 2

ANALYSIS OF UNSTEADY STATE, CONTINUOUS MULTISTAGE

TOWER FERMENTOR PERFORMANCE

2.1 INTRODUCTION
It is generally agreed that continuous processing offers a number of
advantages over batch operation. These include higher productivity
through reduced "downtime," elimination of some labor requirements, and
the opportunity for improved process control [1], Continuous processing
has found few applications in the microbiological process industries,
The most important factor in limiting the use of continuous processing
is the fact that fermentation plants have small capacities. Furthermore,
flexibility has been a major concern in the design of fermentation plants
in the past and this consideration certainly favors batch operation [2].
Falch and Gaden [2] have discussed the design of a multistage tower
fermentor, They have also discussed a reactor system for continuous
microbial processes, in which they say that the behavior of a continuous
reactor system ranges between the "ideal" extremes of plug flow and
complete backmixing. The backmixed, continuous stirred tank reactor (CSTR)
has found considerable application in the development of fermentation
technology. For many of the industrially important fermentations, however,
the plug flow or a combined reactor system has been shown to be 0ptimél
[3]. Most of the experimental continuous cultivation studies have been
carried out in highly backmixed (CSTR) systems., The plug flow reactor

has not been extensively studied for continuous fermentation. The practical



design of continuous fermentors with plug flow characteristics involves
considerable problems because of the difficulty of providing adequate
aeration while maintaining plug flow conditions [2]. Falch and Gaden {2]
have also suggested that plug flow behavior can be approximated by a re-
action system comprised of a large number of stirred tanks connected in
series, By varying the number of stages it is also possible to obtain
reaction systems with characteristics intermediate between the two ideal-
ized continuous quels. The number of stages may then be optimized [4].
In this chapter a four stage tower fermentor has been investigated.
The mathematical model considered is relatively simple and takes into
account the sedimentation of cells besides the other factors. Medium is
fed to the second stage. The parameters of the model have been estimated
using simulated data and a simplex-pattern search technique [5]. The same
program can be used for estimating parameters for any unsteady state ex-
perimental data available on a continuous tower fermentor. In this work
no attempt has been made to discuss the continuous tower fermentor system

in general, the major cbjective being to demonstrate the applicability of

simplex pattern search techniques [5] in estimating parameters in a multi

stage tower system.

2,2 PARAMETER IDENTIFICATION IN TOWER SYSTEMS

Mathematical models are the basic symbolic forms which describe the
relationships between physically measured variables. Mathematical models
are often necessary to quantitatively describe the mechanism or predict
the behavior of a chemical or biochemical system or process, These are

mathematical equations, algebraic or differential in nature which attempt



to describe as far as possible the physical system. These mathematical
equations contain dependent variables, independent variables and con—
stants., These constants are known as parameters, and are generally de-
termined experimentally by employing parameter estimation techniques,
Since experimental results Include some experimental error, the values of
the parameters selected to be used in the mathematical model are called
the estimates of the parameters, It is the objective of all parameter
estimation techniques to find the most accurate estimate of parameters.

Consider the following mathematical model

Y' = f(El, EE, seey EM; Pl, P2, aeny PP) + E (l)
where

Y' = measured dependent variable

Ei = measured independent variable, i =1, ,.. M

Pj = parameter of the model, j =1, s0u, P

experimental error

Equation (1) is said to be linear (in parameters) if it is of the form

[6].

Yl

P +PZ.+ 4o +P Z +E (2)
o 11 PP

where

21

function of gi, L=1, 2, «aay P

Any parameter estimation problem which cannot be converted into this

form is considered to be nonlinear [6]. Parameter estimation in a linear
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system is simple and can be found in many standard treatments of regression
analysis. In this chapter a non-linear differential model has been con-
sidered, The effect of experimental error and number of parameters is
considered for the non-linear model, using simulated data.

A simplex pattern search technique [5] which minimizes or maximizes a
selected criterion function has been used for estimating parameters in the
tower system. A brief description of this technique is included in Appen-

dix II.

2.3 KINETIC MODEL

In 1942 Monod [7] presented a model for the kinetics of biological
growth. The equation proposed by Monod [7] to describe the relationship
between growth rate and concentration of limiting nutrient has the same
form as the Michaelig-Menten equation, which describes the kinetics of
enzymatic reactions. Although this is a gross oversimplification of the
complex phenomena that occur, considerable effort will be required before
a model which accounts for the varicus complex phenomena occuring in
growth processes can be developed, Hence Monod's [7] model is used in
this study.

The growth of microorganisms will be expressed in terms of a single
growth rate equation which is at all times a function of the concentrations
of the growth limiting substrate (nutrients) and organisms. If oxygen and
trace nutrients are available in sufficient quantities, the growth rate

of the microorganisms can be expressed as follows:

X . oux (3)
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where 1 is the specific growth rate and X is the concentration of the bac-
terial cells, In 1942 Monod [7] showed that the value of py is not con~-

stant, but depends on the concentration of growth limiting substrate, S,

according to the equation

u

_ “max
() (4
S
where
Mooy = Maximum specific growth rate, nr L

KS = gaturation constant, concentration of organics at which
the specific growth rate is one half the maximum value,
gms/1it,

Substituting Equation (4) in Equation (3) gives

§§ - umaxSX (5)
dt (KS+S)

Monod [7] was the first to establish that, for a given organism and
limiting substrate, the weight of the bacterial cells produced per weight
of nutrient utilized is a constant under the same environmental conditions.
The relationship is expressed in Equation (6) where Y is the yield constant.

_ 49X _ weight of organism formed

L= dS weight of limiting substrate utilized (6)

From Equations (5) and (6) one can obtain the following equation for the

rate of substrate utilization:



dsS _ umaxSX

Tde T (K +5) (7)

It is important to note, however, that the work of Hetling et.al., [8],
Marr et. al. [9], and Rao and Gaudy [10] have shown that the yield co-
efficient is not necessarily a true constant either for pure cultures

or mixed cultures,

2.4 MATHEMATTICAL MODEL

Figure 1 shows the flow diagram for the four stage tower fermentor
system, with feed to the second stage. Writing the material balances
for substrate and cells around stages one through four, respectively, one

can get the following equations by taking into account the sedimentation

of cells:
v dSl - fS_ - f5. - umaxslxlvl (8)
1 dt 2 1 Y(K +5.)
< P
dX U S.X.V
1 _ max 111
V13 T R YR S
ds M 5.X.V
2 max 272 2
V2 s fSl + qSO + fS3 (q+2f)82 _-—_Y(KS"'SZ) (10)
dX v 5, X,V
2 _ max 2°2 2
v2 e fol + fx3 (q+f)BX2 fx2 + —————(KS 5 (11)
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ds R VI - 0. O}
3 _ max 3733
V3 ol (q+f)82 + fS4 (q+2f)S3 Y(K5+S3) (12)
dx M 5. X,V
3 _ _ max 3 3 3
VB'EE— (q+f)BX2 + fX4 (q+f)BX3 fX3 + ——TE;;ET—— (13)
ds U 5 .X,V
4 _ max 4 4 4
Vo 35 = (atf)s, - (qtf)S, - W;;S—ZT— (14)
1 PonayS 42474
V4 g (gq+£f) BX3 - qBX4 - fX4 + —_(@'g)_ (15)
where
Si = gubstrate concentration in the ith stage (gms/lit.), 1=1, 2, ...4
X.i = cell mass concentration in the ith stage (gms/lit.), i=1, 2, ...4
t = time which is the independent wvariable (hr.)
q = rate of medium flow (lit,/hr)
f = rate of backflow (lit./hr)
B = gsedimentation coefficient (dimensionless)
Y = yield constant (dimensionless)
Vi = effective liquid volume in the ith stage, i=1, 2, ,., 4
SO = substrate concentration in the feed, (gms/lit.)

The following initial conditions are known:

§,(0) = 1,0, =1, 2, ... 4

Xl(O) 0.1

X2(0) X3(O) = X4(0) =0
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Note that some microorganisms are assumed to be present in the first

stage.

2,5 SIMULATION OF EXPERIMENTAL DATA

Generated experimental data can be useful in demonstrating the useful-
ness and applicability of a certain parameter egtimation technique, Ex-
perimental data are often not available for some chemical or biclogical
systems, It is worthwhile, in such a situation to use simulated data to
investigate the feasibility of a particular parameter estimation technique,
Experimental results often include some experimental error or uncertainity.
Simulated data may be employed to consider the effects of various types of
experimental errors, which might possibly be present, Data was generated
taking into account several types of experimental errors and parameters were

estimated taking them into account,

2.5a MYormally distributed error

It has often been found that an error distribution is a special case
of the normal distribution with mean zero and standard deviation 0. Several
sets of data were generated taking different values for the standard de-
viation in order to study the effect of standard deviation of the error on
the parameter estimates, The system of non-linear differential equations
was first numerically integrated assuming the following numerical values
of the parameters using fourth~order-Runge-Kutta integration with fixed
step size, Subroutine RKGS [11] was employed for numerical integration.

q = 4,0 lit,/hr.

£ = 0,6 lit,/hr,



SO =
Y =
Pmax T
vy =
vy =
V3 =
V4 =

The system of

1.0 gms/1lit.,

1,0

1.0 hr—l

1 1it.

1 1lit,

1 1it,

1 1it,

0.05 gms/1it,
0.8

simultaneous equations was integrated from initial time of

O-hours to a final time of 20-hours taking a step size of 0.1 and with

known initial

introduced in

conditions of all the dependent variables. Error was then

these integrated results. Subroutine GAUSS [12] and RANDU

[13] were used for this purpose, Random numbers were generated using

the RANDU subroutine and these random numbers were then distributed nor-

mally with some standard deviation and mean zero with the help of GAUSS sub-

routine, The

data was essentially generated for substrate and cell mass

concentrations, wheatre

1
Sim

=
T

where

= (Sic + E) 1=1,2,4..,4 (16

(Xic + E) 1=1,2,...,4 (17

16

)

)
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S:;.E = generated experimental substrate concentration of the
ith stage,

XiE = generated experimental cell mass concentration of the
ith stage,

8ic = calculated substrate concentration of the ith stage with
assumed parameters.

Xic = calculated cell mass concentration of the ith stage with
assumed parameters.

E = experimental error introduced with mean zero and standard

deViation [+ 28
Data was generated for the following values of standard deviations,

g = .01 (Data Set 1)
g = ,001 (Data Set 2)
g = ,0001 {Data Set 3)

¢ = ,00001 (Data Set 4)

2.5b Zero error in the instrument

The presence of a zero error in the measuring instrument might result
in undesirable experimental measurements, It was assumed that a zero error
is present and this was superimposed over the normally distributed error.

Now

SH

e (s'iE + 0.001) w1, 2y swe & (18)

X!

T (X:;_E + 0,001) 1wl 2 suw B (19)
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where

S;E = experimental substrate concentration of the ith stage.

X;E = experimental cell mass concentration of the ith stage.

Here 0,001 is a constant number (the assumed zero error) which was com-

bined with Data Set 2 to obtaln Data Set 5,

2,5¢ Instrument drift

Here account was taken of the fact, that the experimental error
changes with time., As experimentation proceeds the error due to instru-
ment drift increases, Once again this type of error was superimposed

over the normally distributed error, One now has

ey . qf 1
SiE siE + 0,05 t/t (20)
T . oy 1
X:LE X:LE + 0,05 t/t (21)
where

t
S!!' = experimental substrate concentration of the i " stage.
; . th
X!''' = experimental cell mass concentration of the i~ stage.
t = any instant of time (between 0-20 hours)

t' = final time (20 hours)

Here 0,05 is an assumed constant, By adding instrument drift to Data
Set 3, Data Set 6 was obtained. It is known that 99.73% of the random

numbers should 1lie between (p' + 30) to (u' - 30). In other words, these
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are the upper and lower bounds of the error introduced, Figures 2 through

4 show the variation of introduced error with time for Data Sets 1, 2, 5,

and 6,

Inspection of these plots shows that in all the cases except

Data Set 6, the introduced error lies between the upper and lower bounds,

Tabular values of the six sets of data may be found in Appendix I.

2,6 FORMULATION OF THE CRITERION FUNCTION

Three different models were considered for the identification of

parameters:

1.

3.

2-Parameter Model: the parameters were maximum growth rate
(ﬁmax) and sedimentation coefficient (R).

4-Parameter Model: the parameters were maximum growth rate
(umax)’ sedimentation coefficient (B8), vield constant (Y), and
saturation constant (KS).

6-Parameter Model: the parameters were maximum growth rate
(umax)’ sedimentation coefficient (B), yield constant (Y),
saturation constant (KS), rate of medium flow (q), and rate of

backflow (f).

The simulated experimental data can essentially be represented by the

following matrix, which has 21 rows corresponding to the 21 data points

in time and 8 columns corresponding to the eight dependent variables.



Introduced error.

02 4 6 8 10 12 14 18 18 20
Time, hrs.

Fig.2. Infroduced error vs. time for data set [;
standard deviation (o) =0.0l.

20



21

-003r ——m d'o’rq set 5
— data set 2
.OCE_

00!

Introduced error

_OO[

-002¢

_.OCB_

02 4 6 8 1012 14 16 18 20
Time, hrs.
Fig- 3. Infroduced error vs. time for data set 2 and

5; standard deviation (o-)=0.00! and zero error
=0.00l.
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Dy(1,1)
Dy(2,1)

Dy(J,I) =

Dy(21,1)

=

Dy(1,2) . . . Dy(l,S)_
Dy(2,2) . . . Dy(2,8)

Dy(21,2). . . Dy(21,8)

, J=1, 2, ... 21

23

(22)

I=l’ 2’ LB 8

The matrix which was generated from the mathematical model at each iter-

ation using assumed values of parameters can be represented as

—

Ey(1,1)

Ey(2,1)

EY(J sI) =

Ey(21,1) Ey(21,2) ,

. 8 Ey(l, 8)

. Ey(2,8)

Ey(1,2)

Ey(2,2)

. . Ey(21,8)

-—

¢ dlly B wus 20 (23)

I=1, 2, ... 8

The objective function which was minimized can be represented as follows;

N

v, = 1
L 7ai 11

M

[Dy(3,I) - Ey(3,I)1°

M = number of variables (8 in our case)

N

2,7

number of data points (21 in our case)

(24)

PARAMETER ESTIMATION RESULTS FOR NON-LINEAR DIFFERENTIAL MODELS

The optimal results for two, four and six parameter models are

presented in Table 1 through Table 3,

Results at intermediate iterations



Table 1. Parameter Estimates for Cases with Two Parameters
Data Set Iteration No. “max B . y
0 1.000 0.800 0.0381
1 20 0.976 0.796 0.0234
34 0.978 0.797 0.0233
0 2,000 2.000 15.1117
9 20 2.089 1.208 7.7558
60 0.974 0.794 0.0044
81 0.977 0.796 0.0041
0 3.000 3.000 21,2583
3 20 3.720 2.096 17.8026
60 0.986 0.803 0.0077
91 6.977 0.796 0.0039
0 1.000 0.800 0.0190
4 20 l1.001 0,802 0.0190
36 0.979 0.798 0.0039
0 1.000 0.800 0.01906
5 20 0.978 0.796 0.00399
46 0.976 0.795 0.00391
0 1.000 0.£00 0.1595
6 20 0.952 0.774 0.1021
33 0.957 0.775 0.1015
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Table 2. Parameter estimates for Caseswith Four Parameters

Date Set IFera~ pmax KS Y B y
tion No.

0 1.G600 0.05 1.000 0.800 0.0381

20 0.987 0.052 1.013 0.808 0.0265

1 60 0.984 0.061 0.984 0.785 0.0227
80 0.983 0.062 0.978 0.782 0.0225

120 0.955 0.045 0.963 0.777 0.0204

139 0.954 0.045 0.961 0.775 0.0204

0 1. 4000 0.050 1.G0o0 0.800 0.0192

20 0.985 0.052 1.013 0.805 0.0067

2 60 0.973 0,057 0.974 0.779 0.0023
80 0.972 0,057 0.971 0.778 0.0023

120 0.969 0.558 0.969 0.777 0.0021

166 0.960 0.050 0.965 0.776 0.0019

0 1.000 0.050 . 1.000 0.800  0.0190

20 0.985 0.052 1.013 0.805 0.0064

3 60 0.973 0.057 0.974 0.779 0.0021
80 0.972 0.057 0.971 0.778 0.002

120 0.970 0.055 0.972 0.778 0.0019

160 0.961 0.050 0.966 0.776 0.0017

0 1.000 0.050 1.000 0.800 0.0190

20 0.985 0.052 1.013 0.805 0.0065

4 60 0.981 0.063 0.968 0.773 0.0036
80 0.980 0.063 0.97 0.776 0.0028

120 0.976 0.056 0.978 0.782 0.0027

159 0.977 0.050 0.975 0.779 0.0017

0 1.000 0.050 1.000 0.800 0.01¢0

20 0.985 0.052 1.013 0.805 0.0065

5 60 0.973 0.056 0.974 0.778 0.0022

80 0.972 0.057 0.972 0.777 0.0021

146 0.962 0.051 0.967 0.776 0.0020

0 1.000 0.050 1.000 0.800 0.1595

20 0.965 0.055 1.026 0.788 0.0988

6 60 0.984 0.064 1.041 0.793 0.0901

80 1.058 0.122 1.052 0.783 0.0663

120 1.088 0.139 1.055 0.784 0.0639

168 1.092 0.140 1.050 0.784 0.0637
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Table 3.

Parameter Estimates for Cases with Six Parameters

26

Data Set

Iteration No.

20

100
200
227

20

100
200
290

20

100
200
300

100
200
239

20

100
200
300
550

max

1.000
0,997
0.990
0.986
0.960
0.958

1.000
0.997
0.990
0.982
0.971
0.955

1.000
0.998
0.991
0.988
0.970
0.952

1.000
0.997
0,950
0.989
0.965
0.964

1.000
0.997
0.990
0.989
0.970
0.963

1.Coo
0.994
0.978
0.974
0.940
0.978
1,067

0.050
0.050
0.052
0.052
0.055
0.055

0.050
0,050
0.052
0.052
0.052
0.052

0.050
0.050
0.052
0.052
0.048
0.049

0.050
0.050
0.052
0.052
6.047
0.048

0.050
0.050
0.052
G6.G652
0.050
0.055

0.050
0.050
0.053
0.055
0.070
0.084
0.154

1.000
1l.100
1,100
1l.100
1.100
1.001

1.000
1.004
1.013
1.010
0.982
1.003

1.c00
1.004
1.011
1.011
0.984
0.999

1.000
1.004
l.011
l.011
0.986
0,988

1.¢00
1.004
1.014
l.012
0,992
0.939

1.G00
1.054
1.040
1.039
1.052
1.101
1.111

0.800
0.803
0.804
0.802
0.802
0.800

0.800
0,803
0,808
0.806
0.788
0.801

0.800
0.803
0.807
0.3806
0.791
0.800

0. 800
0.803
0.807
0.806
0.792
0.793

0.800
0.803

0.808.

0.806
0.794
0.797

0.800
0.799
0.800
0.797
0.802
G.829
0.817

4.000
4.010

4.000

4.000
3.780
3.786

4.000
4,013
3.990
3.994
3.975
3.796

4,000
4.013
3.997
3.995
4.001
3.811

4,000
4,013
3,997
4.002
3.956
3.950

4,000
4,013
3.991
4.000
3.954
3.843

4,000
4.012
3.997
3.943
3.546
3.569
3.573

0,600

-0.627.
. 0.615

0.615
0.567
0.566

0.600
0.627
0.616
0.613
0.608
0.568

0,600
0.627
0.616
0.615
0.611
0.571

0.600
0.627
0.6186
0.615
0.602
0.599

0.600
0.627
0.6186
0.614
0.600
0.578

0.600
0.606
0.607
0.596
0.511
0.519
0.522

y

0,0381

- 0.0293

0.0206
0.0202
0.0190
0.0190

0.0192
0.0099
0.0018
0.0015
0.0007
0.0002

¢.0190
0.0096
0.0015
0.0012

© 0.0005

0.0002

0.01904
0.00095
0.00015
0.00014
0,00003
0.00002

0.01%0
0.0094
0.0016
0.0014
0.0005
0.0003

0.1595
0.1172
0.0959
0.0935
0.0885
0.0799
0.0622
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have also been shown to facilitate a close observation of the variation
of the parameters as the iterative computaiions proceed, Results are
presented for each of the six data sets in each table. In Tables 1
through 3 the parameter values at the zeroth iteration are the initial

estimates.

2,8 DISCUSSION AND CONCLUDING REMARKS

The main advantage of using the simplex pattern search for estimating
parameters is the fact that it is neither based on gradients (first-order
derivatives) nor on quadratic forms (second-order derivatives). Box [14]
has suggested that in using this technique to find the optimum point, the
feasible region must be convex, which essentially means that the function
should be unimodal (either concave or convex) in the feasible region.
However with the multidimensional nature of the problem, it is practically
impossible to test for convexity of the function in the feasible regionm,
In this situation experience combined with ingenuity are helpful in finding
a satisfactory solution of the problem.

It has been noted by Nelder and Mead [5] and Spendler and Himsworth
[15] that the effect of step size on the number of evaluations is not very
large.

The vaiues of the constants o, n and y appearing in the search tech-
nique equations are taken to be 1, 1/2 and 2 respectively for all compu-
tational work, as suggested by Nelder and Mead [5]}.

The stopping criterion used for convergence is

n+1 -2 112 6
{ I Gy -nt n} < 10 (25)
i=1
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Figure 5 shows how the optimum function value changes as the standard
deviation of introduced error is wvaried, for two, four and six parameters.

Comparison of optimum function value obtained from two, four and six
parameters models using data sets 1 through 6 indicates that it decreases
appreciably as the number of parameters in the model are increased from
two to six. The results reveal that a better fit for the experimental
data can be obtained if one uses the six parameter model.

The effect of standard deviation of introduced error on the final esti-
mates of parameters can be studied with the help of Tables 1 through 3.

The parameter estimates should diverge, in general, from the parameter
values used for generating the data (¢ = 0.0), as the standard deviation

of introduced error increases. This was, however not found very pre-
dominant from the results obtained, but still is noticeable in the case

of four and six parameter models. These curves suggest that for all par-
ameter models the optimum function value decreases as the standard deviation
of the error is decreased.

Figure 6 shows the variation in the computing time with the number of
parameters in the model. It can be seen that in going from the 2-parameter
model to the 4-parameter model the computing time is almost tripled. Fur-
ther increasing the number of parameters does not increase the computing
time in the same manner, as can be seen from the plet. This technique
took 5.5 mins. of computing time on the IBM 360/50 computer for the 2-
parameter model, 16.4 mins. for the 4-parameter model and 21 mins. for the
b-parameter model. The considerable amount of computing time taken for

estimating parameters in the tower system occurs because the system of
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Fig. 5. Standard deviation of normally distributed
error vs. optimum function value.
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20

Computing fime (min)

No. of parameters
Fig. ©. No. of paramefers in the model vs. compufing
| fime.
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non-linear simultaneous differential equations must be numerically inte-
grated at each iteration, It would be worthwhile to estimate parameters
for the tower system using other non-linear parameter estimation tech-
niques like Bard's modification [16] and Davidon's method [17] ete, and

to compare the results, as the employment of a very efficient search tech-
nique is needed in this problem,

Figure 7 shows the variation of the number of function evaluations
with the number of parameters in the model for different values of stan-—
dard deviation of introduced error., The general trend of the curves shows
that as the number of parameters in the model increase, the number of
evaluations are increased for all the cases considered, The curves, how-
ever, indicate how this change occurs, For example for a case with st;n-
dard deviation of error (¢) = 0,01, the number of evaluations are almost

directly proportional to the number of parameters in the model,



300 g

250

200 « =-00I

evaluations.

Function

1007

50f

O 3 3 4 5 &
No. of parameters.

Fig. 77 Number of parameters in the model wvs.
function evaluations for different values of

deviations of normally distributed error.
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2,9 NOTATION

Jth element of Ith column of data matrix

DY (J,I) =

E = experimental error

EY(J,I) = Jth element of Ith columm of generated matrix

£ = rate of backflow, (lit./hr)

Ky = saturation constant, (gms/lit.)

n = dimension of the problem

th

PJ = J  parameter in the model

Pi, Pé, Pé = trial points in the starting simplex

PA = centroid of points Pi and Pé

Pg = reflection of the point Pé with respect to PL

1 - '

P6 expansion of P5

P} = contraction of the highest valued point Pé with respect
to P!

4

Pé = centroid of a set of n points in a simplex

q = rate of medium flow, (lit,/hr)

5, = initial substrate concentration, (gms/lit.)

S th

i = substrate concentration in i~ stage, (gms/lit.)

SiE = generated experimental substrate concentration for ith
stage with normally distributed error, (gms/lit.)

Sic = calculated substrate concentration for ith stage with
normally distributed error, (gms/lit.)

S;E = pgenerated experimental substrate concentration for ith

stage with zero error superimposed over normally dis-
tributed error, (gms/lit.)



Tt
siE

t!

1
XiE

e
XiE

1B ]
%R

Greek Letters

o

B

max

th
generated experimental substrate concentration for i

stage with instrument drift superimposed over normally
distributed error, (gms/lit.)
any time, (hrs)
final time, (hrs)
th
effective volume in the i~ stage
generated experimental cell mass concentration for the

ith stage with normally distributed error, (gms/lit.)

generated experimental cell mass concentration for the

ith stage with zero error superimposed over normally
distributed error, (gms/lit.)

generated experimental cell mass concentration for the

34

ith stage with instrument drift superimposed over normally

distributed error, (gms/lit.)

objective function value

= objective fumction value at P!, P!, and P!

2! 3
average of TR Y and Y4

vield constant

functions of Ei

reflection coefficient
sedimentation coefficient
contration coefficient
expansion coefficient
specific growth rate, (hrhl)

maximum growth rate when the organic concentration is

not limiting the rate of growth, (hr-l)



mean

standard deviation
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Appendix II

SIMPLEX PATTERN SEARCH TECHNIQUE FOR ESTIMATION

OF PARAMETERS IN DIFFERENTIAL MODELS

The purpose of various parameter estimation techniques and search
techniques is to minimize the selected criterion function, This cri-
terion function is a measure of the difference between the measured ex-
perimental value of the response at particular wvalues of the independent
variable and the predicted response (from the mathematical model) based
on the values of independent variables and parameters. The lineari-
zation techniques are based on the particular form of the conventional
sum of squares criterion function with the assumption that the linearity
assumption around the minimum criterion function value allows efficient
progress, Sometimes for some non-linear models and for poor initial
estimates of parameters the usuai parameter estimation techniques like
Gauss method [18], Steepest deécent method [19], Marquardt modification
[20], generalized Newton-Raphson method [21], and Bard's modification
[16] may be quite inefficient, Hence, here a search technique developed

to minimize an objective function can be used,

44

The pattern search techniques are efficient and simple to use because

they do not require derivatives., The Simplex method [5], Box method [14]
and Hooke-Jeeves method [22] are commonly used methods of this type. The
particular method proposed by Nelder and Mead [5] will be described here
briefly. A simplified description of the same can be found in the paper
by Fan, Hwang, and Tillman [23]. To use this method for the minimization

of a function of n variables, it is necessary to set up a Simplex of
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(n + 1) vertices, that is, to select (n + 1) trial points in n-dimensional
space, The values of the objective function are then calculated at each
of these points, By comparing the objective function value of these
(n + 1) points, the point with the highest value is replaced by a point
with a lower value of the ohjective function. A lower function value is
selected by a reflection, expansion or contraction operation through the
centroid of the current Simplex. If none of these operations are success-
ful, the Simplex is reduced 1in size around the lowest functional value
before starting the next iteration,

For a two-dimensional problem where the objective function
y = f(xl,xz) is to be minimized, a Simplex with (n + 1) = 3 points is're-

quired. Let Pi, Pé and Pé be three trial points, such that y; <y, < yj.

where

= objective function value at point 1

‘-<'.
=
1

objective function value at point 2

-]
N
n

objective function value at point 3

]
W
]

The various operations to get a point with lower objective function

value are defined as

Reflection: Pé = PL + a(Pa - Pé) (II-1)

Expansion: P; = PL + n(Pg - PL) (I1-2)
. pt' = p!? Y . op! -

Contraction: P7 P4 + y(P3 P4) (11-3)

where



centroid of points Pi and Pé, in general the centroid of a

set of n points in a simplex is

n
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I (e /m) | (11-4)

i=1

reflection of the point Pé with respect to PL

expansion of Pé

contraction of the highest valued point Pé with respect to
T
4

The values of the coefficients, o, n and y, considered best by Nelder

and Mead [5] are

a=

1, n=

L

, and y = 2

However the best values of these coefficients may be different for dif-

ferent problems and should be found by experience. The details of the

procedure and a flow diagram to facilitate the description has been given

by Fan, Hwang, and Tillman [23].

One stopping criterion is the occurrence of five consecutive values

of the objective function which are considered "equal'., Another stopping

criterion would be to compare the '"standard error'" of the y's in the form

n+1

!

i=1

1/2

(g -9 /n] (11-5)

with a preset value and stop the program when it falls below this wvalue [5].
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The success in employing the criterion for stopping computations depends
upon the simplex not becoming too small in relation to the curvature of
the surface as the final minimum is reached. The reasoning behind this
criterion is given by Nelder and Mead [5]. They have suggested that in
statistical problems where one is concerned with finding the minimum of
a negative likelihood, the curvature near the minimum gives the information
on unknown parameters. If the curvature is slight, the sampling variance
of the estimates will be large and there is no sense in finding the co-
ordinate of the minimum very accurately, while, if the curvature is very
large, there is justification for pinning down the minimum more exactly.

Chen [24] describes a modified technique, called the "modified simplex
method." This method is similar to the simplex method except that if the
expansion step produces a new minimum, then the centroid of the simplex
for the next iteration is moved closer to this improved value to allow
more rapid movement in the favorable direction. The computer program
that is used to estimate the parameters is written by Chen [24], the only
difference being that subroutine RKGS [11] was coupled with this program
to numerically integrate the system of non~linear differential equations
which constitute the mathematical model for the tower system.

Figure II-1 shows the flow diagram which must be coupled with the one
given by Fan, Hwang, and Tillman [23] to estimate parameters in a multi-

stage tower fermenter model.
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‘ ENTER

Cpoosg
F P> P3

Y
Substitude Pj in the
Model call RKGS

¥

Calculate EY(J,I)
J=l;--N. I=l;--M

DY(J,I) J
i J==-N.I=1;--M

Form 2
y7 [DYW.D-EY(, )],

Substitude Poin the
model call RKGS —r_ocme F R j
| such that ¥« o<y
Form ) |
y2=[DY(J,I)-EY(J,I)]g
1 ‘ i
Substitute P3in the Call
model call RKGS SIMPLEX
1
v [DY(JI,:I)?';EHW}(J,I)]i el

Fig.-. Flow diagram for estimation of parameters
in fower system.
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Chapter 3

ANALYSIS OF FLOW BEHAVIOR IN A CONTINUOUS MULTISTAGE

TOJER FERMENTOR: ESTIMATION OF PARAMETERS

3.1 INTRODUCTION

Many types of continuous reactors, which could be used for continuous
fermentation reactions, were proposed by Herbert [1]. The behavior of
continuous multistage tower fermentors cannot, in general, be simulated
by either of the ideal continuous reactor models, plug-flow or completely
backmixed, and, therefore, a nonideal model such as a "mixed model" [2]
must be employed, The tower system considered here is assumed to be
constructed such that compartments are separated by perforated plates.
Complete mixing of the liquid phase was assumed in each compartment,
Interstage backflow was included in the model., Rotating disc contactors
[3], and multistage fluid bed reactors [4] are examples of industrial
flow systems which use a cascade of stirred vessels with back flow between
stages,

A tracer study is often useful in investigating the flow behavior
of a column fermentor, An understanding of the flow behavior and the
growth kinetics is necessary if one wishes to develop a simulation model
for the fermentor. In the tower fermentor, flow models can be developed
for each phase (gas, liquid, and solid), The model developed here is
for the liquid phase.

A tracer study was undertaken at the Department of Chemical Engineering

at the University of Pennsylvania by Humphrey and his associates, using the
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eight stage tower fermentor described previously [5]. Experimental
measurements of tracer concentration vs. time were recorded for the first
three stages and the eighth stage to determine the extent of backflow in
the tower system, In this chapter, the parameter estimation techniques
which can be used to estimate the extent of backflow are presented. One
set of their experimental data was used to illustrate uses of the tech-

niques,

3.2 MATHEMATICAL MODEL

An eight stage tower fermentor with feed introduced at the second
stage was used for the tracer study [5]. Experimental measurements were
made using salt as a tracer for the first three stages and the eighth
stage only, The flow model of the tower fermentor is shown in Figure 1,
A dotted boundary is used to designate the subsystem consisting of the
first three stages from which the data employed in estimating the para-
meters were obtained, Complete mixing was assumed in each compartment
and backflow from each stage was included in the model., One of the im-
portant factors considered was the rate of backflow, and this will be

represented by F 59 where i is the fraction of the total flow F. from

i i
the ith stage which appears in the backflow,
The unsteady state tracer material balances around each stage of the

tower fermentor are as follows:

dCl
First stage: Vl - FZYZC2 - Flcl (1L
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Fig. |.. Flow model of the tower fermentor.



dc

=FC +F F,C

Second stage: V2 3t 161 37303 - F,G,

dC

Stages 3 to 7: Vi e Fi_l(l )C C

=Yy % T F Y Ca

i=23,4,5,6,7

dc

Eighth stage: V8 "&E§ = F7(1 - Y7)C7 - FSCS

The initial conditions are

Qatt=0,41i=1, 3, 4, 5, 6, 7, 8

(e]
I

0 finite at t = 0

g
]

= Byl

During the tracer experiment, the liquid flow rate was constant,

steady state material balances are as follows:

Overall balance: F. = Fs(l - YS)

0
Stage 1; FZTZ - Fl = 0
Stage 2: Fl+ F3~(3 - Fz = - FO

Stages 3 to 7: Fi_l(l - Y:L—l) + Fi+lYi+l - Fi =0,

i=3,4,5,6,]7

Stage 8: F7(l - 77) - FS =0

(2)

(3

(4)

(5)

(6)

1)

(8)

(9
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where
Vi = yolume of the ith stage (1lit.), i =1, 2, ..., 8
Cy = tracer concentration in the ith stage, (gm./c.c.),
i=1,2, ..., 8
Fi = flow out of stage 1, (lit./hr.), i =1, 2, ..., 8
FO = feed flow rate to the second stage, (lit./hr.)
t = time, (hrs)
Ty = backflow coefficient for ith stage (i = 2, 3, ..., 8)

Two simplifications were made in the above mathematical model. First
of all the individual stage volumes are assumed to be equal i.e. V; =V,
=Vg = .ieen = V8 = V. The backflow coefficients for stages three
through eight are assumed to be equal i.e. Y3 =Y SY5 T creee =Yg
= y. The backflow coefficient for stage two may differ from y because

the feed is introduced to the second stages; Yo will be represented by v'.

3.3 ANALYSIS OF EXPERIMENTAL DATA

Experimental measurements were made for tracer concentrations in the
first three stages and eighth stage at different times as shown in Table 1.
One of the important aspects to note is the fact that the tracer concen-
trations Cy, Cj, C3, and Cg were measured at different instants of time.
The time lag between measurements of C, and C, 1s practically constant.

One of the objectives of this tracer study was to compare the backflow
from the third stage to the second stage with that from the second stage to

the first stage. This can be done by estimating the backflow parameters
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appearing in the mathematical model. Since the initial tracer concentration
in the second stage 1s a finite unknown quantity, it was considered as a

third unknown parameter,

Method I:

Two distinct approaches were used to identify the unknown parameters.
In the first one (Method I), the differential mathematical model consisting
of Equations (1) through (4) was considered and the parameters were esti-
mated using a modified simplex pattern search technique [6] together with
the numerical integration subroutine RKGS [7]. The fact, that the inde-
pendent variable time is different for each set of experimental data makes
it rather difficult to estimate the parameters using a differential model,
Simplifications were made at this point to get a satisfactory solution to
this problem, The tracer concentrations in the first, second, third, and
eighth stages were plotted on an enlarged scale and numerical values at
equal intervala of time were tabulated from the smooth curves, Linear
interpolation was used to obtain the tracer concentrations, at desired
time values, if otherwise not avallable from the experimental measurements.
The idea behind this was to transform the experimental data such that the
usual parameters estimation techniques for differential models can be ap-
plied,

The steady state material balance equations may be solved to obtain
flow rates from individual stages as a function of unknown parameters

v, v', and 02(0) and known flow rate F Equations (10) through (17) rep-

0.
present the flows Fl through F8 as obtained by solving Equations (6) through

(9.



1 5y

2 3

1 5y

1-v' (1-yp°

= OY & ] (10)

(L-%3° fl-~v3"

2 3

1 -1’ (1-%°

+

6y Y
- ] (11)
1-v> @a-n°

2
1 dy 3y
F.=F_ [ - + ] (12)
30t a-nt a-pnt
F, 0 [ o oS . ] (13)
R T -t et
- 1 2y
Fo= F [ - ] (14)
e T T
Fy = Fy —2— - —L—] (15)
1-v> @-v
1
Fo=F | ] (16)
7 0 (1 - Y)Z
1 an

Fg = o i y!

These flows can be substituted back into the differential model to reduce

the number of unknown parameters,

Since the experimental measurements
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are available for first three stages and the eighth stage only, it is
assumed that the experimental tracer concentrations for fourth, fifth,
sixth, and seventh stages are the same as predicted by the differential
model, With the above simplifying assumptions, theoretically the backflow
parameters and the unknown initial condition (CZ(D)) can be estimated
using parameter estimation techniques for differential models. The

mathematical objective function to be minimized is given by Equation (18)

3 7. .5 z X 2
5= ] (BCy -7+ [ (EC = 6"+ [ (ECy - Cy)
i=1 i=1 i=1
= 2
+ ) (ECgy - Cgy) (18)
i=1
where
] = objective function value
EC1 = experimental tracer concentration in stage 1, (gm./c.c.)
EC2 = experimental tracer concentration in stage 2, (gm./c.c.)
E03 = experimental tracer concentration in stage 3, (gm./c.c.)
ECg = experimental tracer concentration in stage 8, (gm./c.c.)
N = number of data points

Method II:
The alternative approach (Method II) which was employed to solve this

problem is to use a partial model consisting of Equations (1) and (2) only.
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Substituting Equation (6) in Equation (1) one gets
VE'E— = F]_(C2 - Cl) (19)

Substituting Equation (7) in Equation (2), one gets

F.C, F.C
V2 =0 - 22,13
Y2 T2

dt 1-1 - F.C, - F.C (20)

173 073

Rearranging Equations (19) and (20), one gets

o O e o1
dt v ‘ )
dc, T F F

21 - 2 - __0

T~ 5 (€7 G 5 (G- C) -5 Cy (22)

Equations (21) and (22) have the following initial conditionms.

C,=0 at t=0 i=1,3

Cz = finite at t =20

The mathematical model consisting of Equations (21) and (22) can
be used to estimate the above mentioned parameters if an expression for
C3 js available. In this method a polynomial equation and the experi-
mental data were used to find a suitable expression for C3. An unsteady

state balance for C3 cannot be written, as was done for tracer concen-

trations Cl and CZ’ because of the fact that Ca (tracer concentration in
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the fourth stage) starts appearing in the material balances and experi-
mental data is not available for 04. Thus, parameter estimation tech-
niques were used to develop a polynomial equation for C3 in Method II,
Statistical techniques described in Chapter 4 were used to select the
degree of the polynomial to be used for approximating the tracer concen-
trations in the third stage.

With the polynomial equation for 03 it is posgible through integration
to analytically reduce the differential model represented by Equation (21)
and (22) to an algebraic model. Equations (21) and (22) may be integrated
with the given initial conditions and a fourth order polynomial for CB’

Cy= Ay + At + AR+ At + At (23)
where AO’ Al’ A2, A3, A4 are constants to be estimated from the experi-

mental data on C3. The results of the integration are

cC.(O)F ALt
1 2 1 1
] + (J\ZK0 - Kl)]e

= [
L (hy = Ay v

C.(0)F Aot
1 2 (0)Fy 2
- {(Al e B2+ Ok, - KD + Kyle
+ (K. + K.t + K.t2 + Kot? + Kt (24)
o T Kt + K, 3 4

C,(0)F At

~ 1 (0 Fy 1

C, = O, - ip [+ Oy - Kple



C,(0)F Aok
1 gAEy A9
B {(Al =) ==+ Ok KD} +Kle

i
= [ - { + (ALK, - KD} e
Fp (g =2y ] 270 1l |

C.(OF At
1 2 I 2
{ + (AZKO - Kl)} + KO]AZe

- [

v 2 3
+ 3 Ky + Kt + K, t” + MK,

1

where

F F, 2 F, - F
-+ +\/(1+F—2> -
1 1

Y o= 1
1
v
2 F
1
F, 1+ Fz)z .Y (Fz - Fl)
- (1.+__9 - F F v
F 1 1
i 1
2
23
1

and KO’ Kl, Kz, K3, K4 are constants, The form of these constants is

shown in Appendix II.

(25)
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The computational procedure used with Method II is as follows:

(1) Find constants AO’ Al’ A,, AB’ Al}

Squares Curve Fitting.," For this part the objective function to be

in equation (23} by '"Least

minimized is

N
- _ 2 3 by 42
8 121 [EC,; = (Ay + A, + Atl + Agty + Aati)} (26)

where N is the number of data points for C3'
(2) Find the parameters Fl, F2 and 02(0) so as to minimize the fol-

lowing objective functionm,

N N
104 1
s=1 [Bct-ct|+ ¥ o.5EC: - ¢
L FaT G i£1 2~ %

N :
| + } 0.5(EC, - cé)2
i=1

(27
(3) Simulate the system using the optimal estimates of the parameters
to predict the tracer concentrations in individual stages. C,S.M.P., (con-

tinuous systems modeling program) [8] or RKGS [7] can be employed for this.

3,4 CRITERIA FOR ESTIMATION: The parameter estimates are determined by
minimizing a selected criterion function, S, which is a measure of the dif-
ference between the measured experimental value of the response and the
predicted response from the mathematical model, Various criterion functions
differ in their appropriateness for engineering interpretation and ease of
determining optimum parameter estimates,

The method of maximum likelihoed is a general method for parameter

estimation [9]. Box [10] has presented a discussion for selecting a
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criterion function based on this approach. The conventional sum of squares
criterion function is widely used and allows sufficient statistical analysis,
This criteria seems to bé more favorable when the errors can be assumed to
be uncorrelated and normally distributed with mean zero and variance 02.

The objective function in this case can be written as follows:

N

S® = Ity - 16y, D1 (28)
i=

where y, are the dependent variables, The subscript i denotes the ith

experiment in a total of N experiments, X, = (xli’ Xggs sees xHi) are

the independent variables and p = (pl, Pps sess pp) are the parameters.

Weighted sum of least squares where

N
s= ) Iy, - £, w17 (29)

is frequently a more useful criterion for parameter estimation, This
arises when the level of experimental error is dependent on the values

of the independent variables, x Hence the same variance Gi, for all i

i'
may be an unacceptable assumption,
Another appreoach is to use the sum of absolute differences as the

criterion function [11].

N
S = ly, - £(x;, P)| (30)
L by - £y

This criterion puts equal weights on all differences.
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For Method I, the conventional sum of squares was the only criterion
function used in this work; however, for Method II several criterion
functions were considered. The conventional sum of squares was the first
criterion function which was selected to get the optimum estimates of
backflow parameters., It was found that the optimal estimates obtained
from this approach overestimated the experimental response curves of
tracer concentrations in various tanks, On the other hand, the use of
sum of absolute differences as the criterion function underestimated them,
However, a weighted combination of these two criterion functions gave

satisfactory results, This criteria is represented by Equation (27),

3.5 RESULTS AND DISCUSSION: Modified sequential simplex pattern search
[6] was used to estimate the unknown parameters in the differential model
(Method I). Subroutine RKGS [7] was coupled with this search technique
in order to numerically integrate the differential equations. The com—
puter program for simplex pattern search was written by Chen [12], Using
the estimated values of the parameters the set of linear algebraic Equa-
tions (6) through (9) is solved to obtain the flows out from each stage.
This information was fed back into the unsteady system of differential
equations and the whole system was simulated using C,S.M.P. (continuous
systems modeling program ) [8] to predict the values of the response.
This process was repeated until the optimal estimates of the parameters
are obtained. The computer program for this simulation is included in
Appendix I, Figures 3 through 6 indicate the fit for the experimental
data for tracer concentrations in stages 1, 2, 3 and 8, respectively,

using this approach.
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Table 2.

Parameter

Estimated Values of the Constants in the Polynomial

Mean

0.13914 x

~0.11796 x

0.36202 x

-0.46428 x

0.90998 x

10

-2

Std. Deviation

0.5691 x 10
0.2637 x 107"
0.4463 x 107>
0.2470 x 107°
0.3589 x 10
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Alternatively the simplex pattern search [6) was emploved to estimate
the unknown parameters using the algebraic model (Method 2) consisting of
Equations (24) and (25). 1In the first part of the estimation Bard's pro-
gram [13] for "Single equation least square curve fitting" was used. The
central function of this program is to maximize a selected criterion
function., There are two alternative subroutines available for this pur-
pose, Gauss-Newton method with modifications by Greenstadt-Eisenpress
[14], Bard [13] and Carroll [15] was used for maximization. Since the
problem considered is a minimization problem, the negative of the selected
criterion function was maximized, The estimated values of the constants
AO’ Al’ Az, A3, A4 and their standard deviations are shown in Table 2,

These constants were gubstituted back into Equation (23) and the

values of C, were calculated at the time values (t) at which the experi-

3

mental data was taken., Figure 2 shows the curves for C, predicted from

3
experimental data, It can be seen that experimental data and the pre-
dicted values match well, However, at this point one does not have any
theoretical basis for assuming a fourth order polynomial for C3. If a
higher degree polynomial is assumed one might sometimes overestimate the
parameters and if on the other hand the degree of the polynomial is less

cne might face the difficulty of underestimation. Hence as an extension

of this work, polynomials of varying degrees will be assumed and statistical
methods will be employved to investigate the degree of polynomial to be used
in our estimations., It should be realized that this is an important step in

the estimation procedure as the accuracy of the parameter estimates de~

pends on the tracer concentration in the third tamnk (C3)°
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In the next step the modified simplex pattern search [6] was used
to estimate the parameters CZ(O)’ Fl and F2, using Equations (24) and
(25). Plots of tracer concentrations in stages 1, 2, 3, and 8 as obtained
from the experimental data and mathematical model are shown in Figures 3
through 6. Once again the dynamic system of differential equatiocns was
gimulated using C.S.M.P. [8] to predict the values of response, Compari-
son of results obtained from the differential model and the algebraic
model indicate that a better fit for the experimental data can be obtained
when the parameters are estimated using an algebraic model, and a partial
system, The optimal results obtained from the algebraic and differential
models are compared in Table 3. The ratio (F3y/Fzy') represents the re-
lationship between the flows from the third stage to second stage and
second stage to first stage.

The application of parameter identification techniques to estimate
the extent of backflow appears to give useful information for fermentor
design, If sufficient experimental information is available, one can
study the effect of backflow rate on various design variables such as
hole diameter and hole void area of the sieve plates, air and medium flow
rate etc., which may be useful in improving the overall performance of

the tower fermentor,



Table 3.

Parameter

c,(0)

Comparison of Parameter Estimates Obtained

from Algebraic and Differential Models.

Algebraic model

0.00375

0.289

0.089

330

3700

4730

4700

4620

4430

3960

2810

4.15

Differential model

.00375

0.099

340

3830

4960

4920

4830

4600

4080

2850

393
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3.6 NOTATION
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= constants in Equation (23)

constants in Equation (II-25)

tracer concentration in ith tank, (gm./cc)
initial tracer concentration in ith tank, (gm./cc)
experimental tracer concentration in ith tank,
(gm. /cc)

feed flow rate, (lit,/hr)

flow out from the ith stage, (lit,/hr)

= constants in Equations (24) and (25)

number of data points
parameters
objective function value
time (hrs.)
th ;

volume of the 1 tank (lit,)

th
i~ independent variable

ith dependent variable

backflow coefficient in ith stage

roots of Equation (II-22)
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APPENDLX I

Continuous systems modelling program (C.S.M.P.) used for simulating
the tower fermentor flow model has been included in this Appendix, Com—
puter output also shows the tracer concentration profiles in different

tanks as predicted from the mathematical model for one of the experi-

ments,
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12 ¥ ONTINUCUS SYSTEM MCDEL ING PROGRAMY 43X
+EFPROBLEM INPUT STATEMENTS*#¢

*DATA STATEFENTS

CONST FQ=2.C4F1=233,F2=3.7,F3=4.73CBLl,F4=4.69913,F5=4,6213% 04s.
F6=24.43CT,F1=3.96289,61=.0891892,6G2=,2895%,F8=2.81528
PZRAM V=,5633

*[ATA STATENENTS

*[NITIAL CCANCITION

INCCN C10=C.,C20=.00375C0C,C30=04+4C40=0.,C50=0,,C60=0.,070=0.,C80=0.
#*CLTPUT CCATROL STATEMENTS

PRTPLT C1 :

LABEL TRACER CONCENTRATICON PROFILE IN TANKI(1)}
PRTIPLY C2

LABEL TRACER CONCENTRATICN PROFILE IN TANK({2}
PRTPLT C3

LABEL TRACER CONCENTRATICN PROFILE IN TANK(3)
PRTPLT C4

LABEL TRACER CONCENTRATION PROFILE IN TANKI(4)
PRTPLT C5

LABEL TRACER CCNCENTRATION PROFILE IN TANK(S)
PRTPLT Cé

LABEL TRACER CONCENTRATIOUN PROFILE IN TANK(G)
PRTIPLY C7 ) :
LABEL TRACER CONCENTRATICON PROFILE IN TANKI{T7)
PRTPLT C8

LABEL TRACER CONCENTRATION PROFILE IN TANKI8)
*STRUCTURE STATEMENTS
Cl=INTGRLICIC,{F2*G1*C2~-F1%C1)/V} )
C2=INTGRLICZCy (F1*Cl+F3%G2%C3-F2%C2)/V)
CI=INTGRLIC3C,(F2*(1.-Gl)*C2+F4%¥G2*C4-F3*C3)/V]
C4=INTGRLICAC, IF3% {1, -G2)*CI+FS*G23C5-F4*C4)/V)
CS5=INTGRLICSC,(F4*{1.~G2)*Ca+FOo*G29CE~F5¥C5)/V)
CoO=INTORLICEC {FS*{ 1. -2 2CS+FTRG2HCT-FoXL 61/ V)
CT=INTGRLICTC,(F6¥(1.—-G2)2C6+FB8*G24CB-FT*LT)/V)
CB=INTGRLICBL (FT¥(1.~-G2)*CT-F8¥C8)/V)
#EXECUTION CCNTROL STATEMENTS

TIMER QUTCEL=0.25,FINTIM=10.0,0ELT=0.1

END
sTae
CUTPLT VARIABLE SEQUENCE
120¢C2 C1 220004 C2 ZZ0C06 C3 120008 C4 Z1C0L10 C5
ZIC¢C12 Cb 110014 C7 110016 C8
QUTFUTS INPUTS PARAMS INTEGS + MEM BLKS FCRTRAN CATA CCS

201EC0) 43{14C0} 23{400) 8+ 0= 8(3CC) 17{6C0} 22
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TRACER CCNCENTRATICN PROFILE IN TANK(1) PAGE 1
MINLMUM c1 VERSUS TIME MAX IMUM
0.0 3. 3909E-04
TINE c1 [ 1
0.C C.C +
2.5CC0E-01 ZeBEETEQE  mmem i om e o im im aim i cmim  i s n +
5.CCCCE-CL . BUDBADESDR s oo o i i o o 0 G S S i B +
T.5CCCE-01 FAGCGESOh s e s s L U e L e +
1.CCCCE 00 Tio TETCE DY s oo v o o o i oo i o 7 +
1.25C0DE 0O Pio TULDE SOl oomrmemmowmsnmmasse i ioibim 1o ot 0 500 80 5 +
1.5CCCE 00 2.92BSE-04  —m e e +
1.75CCE ©OC 2.TCITE-04 = mmm s +
2.CCCOE CO 2ol TG2E=04  mmmm e e e e +
2.25CCE 0O 202629E~08 @ e +
2.5CCCE 00 2.C58EE=04  —o—m—emtm e +
2.75CCE 00 1.8685E=084  ————mm e e +
3.CCCCE 00 1.6926E-08  =mmmc e +
3.,25(CE €O 1.5311E~0& ———scsm e mmsommmeao +
3.5CCCE CO 1o383BE-04  —m—mmm e e +
3,75CCE 00 1.2489E-04 ———m—w—————mm———— +
4,CCCCE CO 1.12867FE-04  ——m——mmmmmaimm e +
4.25C0E 00 1.C157E=08  =—=——mem—————— +
4.,5CCCE 00 9.1528E=05  =—=—m—e————— +
4,75CCE GO Bo2443F-05  ——mm—mm—m—e
5.CCCCE €C 7.4234E-05  —=——meeee-
5.25CC0E 00 6.EBZIE-0E  ——m————m- +
S.5CCCE QO 6.0139E-05  ——=—=mm- +
S.15CCE €O 5.411CE-05  ——===—m +
6.CCCCE 0OC 4.8861G6E-05 —-—=—— +
6.25CCE 0O 4.378£E=05  —————m +
6.5CCCE €O 3.9381E-G5  ~—=—=m +
6.75CCE 00 3.5415E-0%  —=———t
7.CCOCE 00 3.1845E-05  ——==+
7.25CCE OO0 2.8633E-05  w=-—4¢
T.5CCCE 00 2.5T44E-05 —--—+%
7.75C0E 00 2.3145E-05% ---+%
B.CCCCE €O 2.08C7E-05 —-—+
8.25CCE 00 1,87C56-05 —-—+#
8.5CCCE 0O 1.68156E-05 ~--+
B+15CCE 0O L.5115E-05 ——+#
9.CCCCE GO 1.35876-0% —-+
9.25CCE 00 1.22136-05 -+
9,5CCCE 0O 1.0977E-05 -+
9.75CCE 00 9,8669E-06 -+
1.CCCCE 01 8.86£7E-06 -+



TRACER CCNCENTRATICN PROFILE IN TANK(2)

TIME
0.C

2.5CCOE-01 |

5.CCCCE-O01
7.5CCCE-01
1.CCCCE 00
1.25CCE €O
1.5CCCE 00
1.75CCE 00
2.CCCCE 00
2.25CCE 00
2.5CCCE CO
2.75C0E 00
3.CCCCE €O
3.25CCE 00
3.5CCCE 00
" 3,75CCE €O
4.CCCCE GO
4.25CCE GO
4,5CCCE GO
4.750CE 0O
5.CCO0E 00
5.25CCE 0O
5.5CCCE 00
5.75CCE 00
6.CCCCE 00
6.25CCE 00

.5CCOE 00
6.75CCE 00
T.CCCCE QO
7.25CCE CO
7.5C0CE CO
7.75CCE 00
. 8.CCCCE 0O
8.25CCE 00
8.5CCCE 00
8.75CCE 0OC
9.CCCOE ©O
9.25CCE Q0
9,5CCCE 00
9.75CCE 00
1.CCO0E 01

MINIMUM c2

VERSUS TIME

1.6106E-06

c2
3.750CE-03
1.1919E-03
5.7414E-04
3.3934E-04
2.258CE-04
1.6214E-04
1.22756-04
9.6567E-05
7.8181E-05
6+ 4684E-05
5.4411E-05
4.6358C-05
3.9852E-05
3.45976-05
3.C192E-05
2.64TBE-05
2.33156-05
2.0567E-05
1.82456-05
1.615EE-05
1.44C8E-05
1.28366-05
1.145CE-05
1.G226€E-05
9.1411€-06
B.178CE-06
7.3214E-06
6.5584E-06
5.877EE-06
5.27CCE-06
4.T268E-06
4,2409E-06
3.806CE-06
3.4164E-06
3.06726-06
2.7542E-06
2.47356=06
2.2216£-06
1.9956C-06
1.7927E-06
1.61CEE-06
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TRACER CUNCENTRATICN PROFILE IN TANK{3) PAGE 1
MINI MUM . Cc3 VERSUS TIME MAXTMUN
0.0 1.1875€E~03
TIME c3 1 [
0.C c.0 +
2.5CCCE-01 11 BTAE=03  mmccmmme s T A A T e O T e T e +
5.CCCCE-01 e e 1 I +
«SCCCE-01 BeblT2E=0%  erssssassuranniigeyei +
1.CLCCE €O 3.7791E-04  ~——=—=—mm——————
1.25CCE QQ 22T116E-04  ==m==——=mee-
1.5CCCE 00 2.0261E-04  —==—=——e +
1.715CCE CO 1.556¢E~-04  ———==— +
2.CCCCE 00 1.2262E-04 e
2.25CCE 0OC 2«B605E-05 —-———1
+SCCCE Q0 B.CEEHE-0S —-——
2.75CCE GO 6.6932E-05 -—t
3.CCCCE OO 5.62C3E-05 -—t
3.25CCE 00 4.T664E-05 -—+
3.ECCCE 0O 4.076¢E-05 . -+
3.75C0E 00 3.51C8E-05 -+
4.CCCCE CO 3.0421E-05 o
4.25CCE QO 2.649€E€E-05 -+
4.5CCCE 00 2.3175€-05 +
%.75CCE 00 2.0355E-05 +
S.CCCCE 0C 1.7934E-05 +
5.¢5C0E QO 1.5845e~05 +
5.5CC0E 00 1.4C34E-05 +
5.75CCE 0C 1.2456E-05 +
6.CCCCE QO 1.1C75E-05 +
6.2z5C0E CO 9.8623€E-06 +
&.5CCCE 00 8.7944E-06 +
6.75CCE OC 7.8511E-06 +
7.CCCCE 00 T.015EE~-06 +
T«.25CCE 00 6.2747E~08 +
T.5CCCE 00 5.616CE-06 +
7.75C0E 00 5.02S5E-06 +
8.CCGCE OQ 4.50€6LE-06 +
8.25CCE 00 4.,03%9E-06 +
8.5CCCE 00 3.6225E-06 +
8.75CCE "GO 3.25C1E-06 +
9.CCCCE 00 2.9164E-06 +
9. 25CCE CO 2.617¢6E-06 +
9.5CCGE 00 2.34G9SE-06 +
9.7150CE 00 2.1C95E-006 +
1.CCCCE 01 1.8548E-06 +



TRACER CCNCENTRATICN PRUFILE IN TANK{8)

TIFE

0.C

2.5C0CE-01
7T.6CCCE-01
1.CCCCE 0O
1.250CE CO
1.5CCCE 0C
1.75C0E OC
2.CCCOE 00
2.¢5CCE GO
2.5CCCE OO
2.75GCE 00
3.CCCCE 00
3.25(CE CC
3.5CCOE CO
3.75CCE CO
4.,CCCCE CO
4,.25CCE 00
4.5CCCE CO
4.75CCE CC
5.CCCCE 00
5.25CCE GO
5.5CCCE CO
5.15CCE Q0
6.CCCCE CC
6.25CCE CO
6.5CCCE 00
6.15CCE €O
7.CCCCE OO
T.25CCE CO
7.5CCCE 00
7.75CCE 00
8.CCCCE CO
B.25CCE CO

B.5CCCE QO

8.75CCE 0OC
9.{CCCE CO
9.¢5C0E CO
9.5CCCE 0C
9.75CCE ©COC
1.CCCCE 01

c8
0.0

4.60C5E-06
6.9373E-05
2.1247E-04
3.5728E-04
4.475CE-04
4.76C2E-04
4.593SC-04
4.17226-04
3. 6454E-04
3.1C7CE~04
2.6071E~-04
2.16756-04
1.7932E-04
1,4811E-04
1.2241E-04
1.C141E-04
8.4318C-05
7.041¢E-05
5.91C2E-05
4+98€GE-05
4.2308E-05
3.6CEBE-05
3.0944C-05
2.66E£7E-05
2.3C5CE-05
2.CCBCE-05
1.7522E6-05
1.5363E-05
1.35C6E-05
1.15CEE-05
1.0527€-05
9.32626-06
8.27516-06
7.36226-06
6.556SE-06
S.B472£-06
5.22CZE-06
4.6649E-06
4.17226-06
3.7342E-06
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0.0

VERSUS TIME
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APPENDIX II

The complete analytical solution of the performance equations used

with the partial model are presented in this appendix.

81
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The performance of the partial system can be represented by Equation

(21) and (22)

Lk C, - C
dt v 2

1) (11-1)
dC F F F
2 1 2 0
FTTTC - €+ (G- Cy) -5 Gy (I1-2)
From equation (ILI-1)
dc
v 1
(32 Cl + T aE (II-3)
1
asgsuming
C, = (A +At+At2+At3+At4) (11-4)
3 0 1 2 3 4
Substituting equations (II-3) and (II-4) in equation (II-2)
dc F
d v 1 1 2 3 4
'a't":-[Cl'l'"i:I*&'E-"] 7 [Cl-(A0+A1t+A2t +A3t +A4t )]
F dcC
2 2 3 4 v 1
+ 5 [(Ay + At + At + Agt +A4t)-(cl+:F—1--d—t—)]
Fo 2 3 4
m [(A0 + AL+ AT+ At + AT )]
dc atc. c F, dC
-:—];+'Y-'———1-=—§-(F—F—F)+-*}:'(F-F)~'—2--—-;~
dt F 2 i 2 1 0 v 1 2 F, dt

1dt 1



2

g dc ag .S 8

7 tap LrFlry [
1 dt 1

‘making the following substitutions

Let
& L
Ey

F

B = {1 + i3°
1

& v

. (F, = F = Ey)
v

Equation (II-5) becomes

e, dg
a;—;—-+b€t—+ gC1=II1C3

C
sl
2 1 v

[F2 =i R

1

-F

0l
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(I1-5)

(II-6)

Equation (II-6) is a linear, non-homogenous, second order differential

equation which can be solved without much difficulty.

The solution of

equation (II-6) consists of the sum of a particular solution and a homo-

genous solution. The particular solution of equation (II-6) is assumed

to be of the following form
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_ 2 3 4
Cl (pP) = (KO + Klt + Kzt + K3t + K4t ) (I1-7)
dc, (P) 2 3
e (Kl + 2K2t + 31(31: + 4K4t ) (II-8)
dzcl ) )
—_— = (2K, + 6Kt + 12K,t7) (II-9)
dtz 2 3 4

where KO’ Kl’ Kz, K3, K4 are constants to be found out.
Substituting equations (II-4), (II-7), (II-8), and (II-9) into equation

(II-6) one gets

o+ K.t + 4K4t3]

2
t + 12K4t ] + b[K1 + ZKZ 3

a[ZK2 + 6K3

2 3 b, _ 2 3 4
+ g[KO + Klt + K2t + K3t + K4t i= m[AD + Alt + Azt + A3t + A4t ]
(II-10)

Comparing coefficients of equal powers of t in equation (II-10) one gets

Coefficients of to

2K2a + bKl + gKO = mA0 (II-11)
Coefficients of t

6K3a + 2K2b + Klg = mAl (I1-12)
Coefficient of t2

12K,a + 3K.,b + K,g = mA (II-13)

4 3 2
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Coefficient of t3

Kb + Kqg = mAq (II-14)
. 4
Coefficient of t
K4g = mA4 (II-15)
Constants KO’ K 2, K4 can be found out from equations (II-11)

through (II-15) since there are five equations and five unknowns.

mA,  2amh, 24a2mA4 6abma, 24ab2mA4 bmA,
K, = [— - + ¥ - -
0 g 2 3 3 4 2
g g g g g
GabmA.  24abZmA.  2b%mA,  24ab°mA,  6bomA.  24b*ma
+ 3 _ 35 s 4 _ 2 4 4 (11-16)
3 7 3 7 7 5
g g g g g g

mA. Gamh,  24abmA 2bmA2 24abma, L BmA. . ohER

_ My bamby 4 3 - 4
B = b A 7 o —g 7]
g g g g g 8
(11-17)
ma, 12amh,  3bmA, 12b2mA4
Ky = 57 - -5+ 7 (I1-18)
g g
wA, Gbma,
K3 = [—E-' - 5 ] (I1-19)
g
mA

K, = [—gi] ' (11-20)
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Knowing the constants KO’ Kl’ KZ’ K3 and K4 the particular solution for

Cl can be found out,

Homogenous solution

.d7c dc
1 1
a +b P + gC1 0

dt?

The auxiliary equation can be written as;

(@ +br+g) =0

= 2a

Hence

A =B+ Jbz'é‘égg

1 2a

y == b - b2 - bag

2 2a
whence

ALt Azt

C () = (Bje © +Bye )

= Cl(P) + Gl(h)

AL }\21’.
e + Bze Y+ (KO + Kl

2

£+ K.t® 4 Kot

3

4

+K4t

4

CrT-21)

(I1-22)

(I1-23)

(1I-24)

(1I-25)

(11-26)



..C=C+Vdcl
* 2 1 F. dt
1
At At
_ v 1 2 2 3
C, —vFI [(Blhle + leze ) + (Kl + 2K2t + 3K3t + 4K4t 3]
At At
1 2 2 3 4
+ [(Ble + Bze ) + (KO + Klt + K2t + K3t + K4t )]

Applying the initial conditions in equations (II-26) and (II-27)

o
=9
"t
]
=]
o]
]
o

@ £=0 02 = 02(0)

0= Bl + B2 + KO

- B2 = - (Bl + KO)

From equation (II-27)

_ Vv
02(0) = Bl - (Bl + KO) + KO + Fl [Bl}\l - 12 (Bl + KO) + Kl]

Rearrangement of terms in equation (II-29) gives

CZ(O) F

1 [ .

1 (Al - A

1

5)

Substituting equations (II-28) and (II-30) in equations (II-26) and

(I1I-27) gives the final solutions for C, and C2 in terms of unknown

1
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(I1-27)

(1II-28)

(II1-29)

(II-30)

parameters and time, which are given by Equations (24) and (25) in the

main text.
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Chapter 4

ANALYSIS OF FLOW BEHAVIOR IN A CONTINUOUS, MULTISTAGE TOWER FERMENTOR:

EXAMINATION AND ANALYSIS OF RESIDUALS

4,1 INTRODUCTION

In recent years, a number of techniques have been proposed for the
examination and analysis of residuals. These give information on various
questions of Interest, Often, one makes use of these techniques to assess
the validity of appropriateness of the conventional analysis techniques such
as analysis of variance and least-squares curve fitting [1].

Although the work of this chapter is restricted to linear regression
models only, the same methods can be applied to nonlinear regression models
and analysis of variance models. In general, the techniques for the examin-
ation and analysis of residuals can be classified into three broad cate-
gories: graphical, numerical, and mixed, However, emphasis is placed
on the graphical examination of residuals in this chapter. The residuals
are defined as the differences e, = (Yi - yi), i=1, 2, «¢s, n, where Yi
is an observation, v is the corresponding fitted valué obtained by the
fitted regression model and n 1s the number of observations, According
to Draper and Smith [2] the residuals e, are the differences between what
is actually observed, and what is predicted by the regression equation,

In other words, this 1s the amount which the regression equation has not
been able to explain., This can also be thought of as the observed errors,
if the model is correct, The usual assumptions made about the errors

while performing the regression analysis are that the errors are independent,
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have zero mean and constant variance, ¢Z, and follow a normal distri-
bution, The assumption that errors follow a normal distribution is often
required in making F-tests. If after the examination of residuals one
observed that the residuals show tendencies that tend to confirm the
basic assumptions, then one has sufficient reason to believe that the

model is adequate and correct.

4,2 GENERAL CONSIDERATIONS

Once the residuals have been calculated, a number of alternative
approaches are possible, These have been discussed in considerable detail
by Anscombe and Tukey [1]., A rather short description of them is presented
here,
1., The relationship of residuals to external variables, such as time of
observation and geographical position, can be examined best graphically,
Sometimes it is useful to look for a variety of trends including both
straight and curved trends.
2, Two important things which can be examined by eye-judgment from the
residuals are (i) outliers (ii) shape of the distribution of the deviations
which the residuals reflect,
3, The individual residuals can be plotted against individual fitted
values to find out (i) removable nonadditivity (ii) dependence of vari-

ability of response on level of response,*

*
Discussion of these terms (removable nonadditivity and dependence of

variability on level) and techniques for their measurement appear
elsewhere [1].
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4, Groups of residuals from different parts of data can be used to indi-
cate difference in variability of response in these parts,

Anscombe and Tukey [1] have also suggested that, as- a result of the
above mentioned approaches, one may try to
1. Improve the precision of results by rejecting or modifying observations
corresponding to residuals identified as extremes.

2. By measuring the extent of removable nonadditivity and the extent of
dependence of variability on level, one can obtain information as to how
we should modify our model to fit the experimental data better.

Anscombe and Tukey [1l] are of the opinion that the graphical tech-
niques for the examination of residuals offer valuable assistance in dif-
ferential diagnosis. According to them it is best to begin the analysis
with the graphical method. Once the most important sort of misbehavior
has been found, it is usually important to deal with it. The usual thing
to do at this stage is to reject or modify observations associated with
the outliers or transform the observations. After this has been done at-
tempts should be made to find out if there are any other types of mis-
behavior.

Anscombe and Tukey [1] have described the various ways by which the
improvement in the analysis is possible (i) by modifying the form of the
"model" and calculating the fitted values from this model which is supposed
to be a better representation of the experimental observations (ii) by
changing the mode of expression of the observation and then applying the
original analysis in the new mode (for example when log Yi's are analysed

in place of Yi's) (iii) by discriminating among the individual observations,
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this may include the assignment of different weights to different obser-
vations or a set of observations, rejection of certain observations or the

replacement of some observed values by modified values before the analysis.

4,3 CORRELATION AMONG THE RESIDUALS

Draper and Smith [2] have presented a mathematical approach to find the
correlation among the residuals. According to them, when 6 parameters are
estimated from n observations, the n residuals are associated&wiéh only
(n-9) degrees of freedom. This suggests that the residuals cannot be in-
dependent and correlations exist among them. The correlation between e;

and ej is given by

covariance (e,,ei)
i

13~ (1)
+ 1/2
[V(ei) . V(Ej)]
where
pij = correlation coefficient between the ifP residual the jth resi-
dual
i=4ith residual

ji= jth residual

variance of the ith residual

v(ei)

[

v(ej) variance of the jth residual
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In this chapter, however, no attempt has been made to consider the
correlations among the residuals. The reason is that the Investigation
was restricted to the application of graphical techniques only. The
justification for this is given by Anscombe [3] as follows: although
correlations and constraints affect distribution of functions of the
residuals, the corresponding effects on the graphical procedures can
usually be neglected. Draper and Smith [2] have stated that, in general
regression situations, the effect of correlations between residuals need
not be considered when plots are made, except when the ratio (n-6)/n is

quite small.

4.4 OUTLIERS

One of the most important purposes of calculating the residuals
is to detect the outliers. Outliers are the observations having large
residuals, in comparison to others, which suggests to us that they need
very careful examination. The outlier is a peculiarity and represents a
data point which is mnot at all typical of the rest of the data. This is
the reason why one submits the outlier to careful examination so as to
find the cause of this peculiarity. There are many sources of outliers,
for example, mistake in reading a scale or an error in conducting an experi-
ment, such as unknowingly measuring the wrong thing, or failing to notice
whether some intended condition is satisfied [1].

Various rules have been proposed for the rejection of outliers, and
will be described here briefly. A rather exhaustive treatment is given
to this subject by Anscombe [3]. According to Draper and Smith [2]

automatic rejection of outliers is not always a very wise procedure.
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Sometimes the outlier is providing information, which other data points
cannct, due to the fact that it arises from an unusual combination of
circumstances, which may be of vital interest and require further investi-
gation rather than rejection.

4.4a Rejection of Outliers

Variability or dispersion in a set of observations can arise from
several different sources. These may include inherent variability, measure-
ment error and execution error etc. Inherent variability is sometimes ob-
served in the population even if all measurements are perfectly correct.
This variability cannot be reduced without changing the population itself
or the object of study. Measurement errors are caused by the measuring
instruments. Execution error might include any discrepancy between what
one intends to do and what is actually done [3].

If a rather pronounced degree of abnormality is expected in our experi-
mental observations, to work with medians instead of means is often useful
according to Edgeworth (1887). A modified least-squares method, with
weights depending upon the residuals, has been suggested by Jeffreys [4].

The rejection rules discussed here are the ones proposed by Anscombe
[3]. According to him rejection rules are not significance tests. Signifi-
cance tests are appropriate, where the object of study is how often spurious
observations occur in a certain field.

Before the rejection rules are investigated, it will be assumed that
the following conditions are met.

(i) All observations are independent of each other. It was also

assumed that spuriousness is uncorrelated with the reading that would have



94

been obtained, had the observation been made without abnormal error.

(ii) No prior knowledge of the means or regression coefficients that
are to be estimated from the data is incorporated in the rejection rule,
which is, therefore, "impartial."

According to Anscombe [3], it is useful to consider rejection cri-
teria based on the magnitude of residuals. In the least squares analysis,
the computation of residuals is a standard procedure when Bard's method
[5] is used, and hence a rejection criterion based on residuals is partic-
ularly convenient.
4.4b Rules for Rejection

Consider observatiomns Y;, Yy, ..., ¥, (n > 3), where n is the total
number of observations. It is hoped that they are a random sample from
a normal population N(u, 02), where p is known and o is to be estimated.
But one of the Yi's is spurious, and ought to be rejected. Consider the
effect of applying a rejection rule routinely to samples of fixed size n.

Let

n
Z,=(, -9, ¥ = )] ¥, (2)

where

Zi(i=l, 2, ... n) are the residuals and hereafter v will denote the
number of residual degrees of freedom.

If Yi is omitted, the average of the remaining observations is

; /v = x - z,/v), v = (n-1) (3)
J#i

More generally when several observations, say Yl’ Y2, v weE Yr’ are
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omitted the average of the rest is

¥ - (zl + 22 + ..+ Zr)/(n - 1) (4)

where r is the number of observations omitted. Let m be the serial

number of the observation having the greatest residual, so that
[Zm| > [Zi[ for all 1 # m (5)

assuming no two residuals are equal in magnitude if they are recorded to
a sufficient number of decimal places.
Rule (i) For given C, reject Y, if jZm’ > Co; otherwise no rejections.

Estimate p by the means of the retained observations; thus

b

=
fl

Y if |z | < Co (6)

]

(¥ -z, /v) if |zm] > Co (7)

Under this rule not more than one observation can be rejected. If
more than one observation out of a very small sample (having 3 or 4 obser-
vations) appears too spurious, the observer would most likely wish to
scrap all of them. For large samples, however, the possibility of multiple
selective rejections needs to be considered, and Anscombe [3] has suggested
the following rule:

Rule (ii): Apply Rule (i). 1If an observation is rejected, consider the
remaining observations as a sample of size (n-1) and apply Rule (i) again;
and so on. Estimate u by the mean of the retained observatioms. It would

be possible for the values of C to differ in successive applications of
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Rule (i), but there is no obvious advantage in this, and, in so far as

Rule (ii) is considered, C will be assumed constant. In fact, it is dif-
ficult to study Rule (ii) exactly, apart from Monte Carlo computation.

Rule (i) is easier, and sometimes has almost the same effect as Rule (ii) -
namely, when there is not more than one spurious observation present in

the sample, C is not very small and n is not very large.

4.5 MATHEMATICAL MODEL

The problem of polynomial approximation is often encountered wherein
one tries to fit the experimental data to a polyno%ial. A similar problem
was encountered in Chapter 3 where a fourth degree polynomial was assumed
for predicting the tracer concentration in tank (3). This choice was
random. No theoretical basis for assuming a fourth degree polynomial was
present., It appears to be plausible that the higher the degree of the
polynomial, the better will be the predicted values of the response. How-
ever, this is not true in some situations. If one assumes a higher degree
polynomial one might sometimes overestimate the parameters in the modei
and if on the other hand the degree of the polynomial is less, one might
face the difficulty of underestimation. The compromise between these two
extremes is what is usually called "selecting the best regression equation."
There is no unique statistical procedure for doing this, and personal
judgment is always a necessary part of any method.

Equations (8) through (13) represent the various polynomials assumed
for the tracer concentration in stage (3). Graphical techniques were

used to investigate which model gives the best fit for the data.



c, = a' + alt

C,=b +blt

where
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(8)
+ b2t2 ’ (9)
+ m2t2 + m3t3 (10)
+ dot? + dge3 + a,¢ (11)
+ eétz + e:;t3 + e;t[’ + elt? (12)
+ byt + hyt? + nyed + bt + n e (13)

Cg = tracer concentration in tank (3), (gms./c.e.)

t = time in hrs.

by, b2

L] 1

a', ai = parameters for first order model.
= parameters for second order model.
m;, My, Mg = parameters for third order model.

dl’ d,, dg, d4 = parameters for fourth order model.

els ef» eé, eé, eA, eé = parameters for fifth order model.

o? 1

h,, ho, h3, h4, h

5 h6 = parameters for sixth order model.

ESTIMATION OF PARAMETERS IN VARIOUS MODELS

The parameters appearing in various models represented by equations



(8) thru (13) must be found out before one can proceed to analyze the
residuals. The Gauss-Newton method with modifications by Bard [5],
Carroll [6] and Eisenpress and Greenstadt [7] was used to estimate these
parameters. A brief description of this method is presented here. De-
tailed description of the method and programming details can be found in
reference [5]. This method will be referred to as Bard's method here-

after.
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Bard's program is designed to estimate unknown parameters in a variety

of mathematical models using a wvariety of best-fit criteria. Whenever
Bard's method [5] is used, the measure of fit depends upon the residuals.
Sum of squares of residuals is one of the most common criterion usually

employed, although more sophisticated measures exist.

4.6a Best Fit Conditions
If the mathematical model is represented by yu = f(au,e) then the

residuals can be stated mathematically as follows;

U, = f(au,e) - YU (u=1,2,...,n) (14)

y]J = f(au,e) (p = 1432444.4m) {15)
where

a, = independent variables (p =1, 2, ..., n).

8 = (87, 82, T 82) = parameters.
Y = observed variables (p =1, 2, ..., n).

n = number of observations.



Uu = residuals (p =1, 2, ..., n).

The main object of parameter estimation techniques is to find a set
of parameters, 0, which minimize or maximize a certain selected criterion
function of the residuals, Uu. This function will be denoted by F(Uu) =
F(f(au,e) - Yu) when au and Y“ are given, F(Uu) becomes a function of the
parameters alone. This function will be denoted by G(8). Some of the
commonly employed functions are given below.

(i) Least Squares (L. S.)
Consider the case where there is only one observed variable per ex-

periment. Defining

n
F () = } u2 (16)
L.s. BT Sw
i.e.,
L 2
G g, (8) = uzl [f(a,8) - Y] (17

one can determine 6 so as to minimize GL s {6). In some situations it
is advantageous to use a weighted least squares criterion, in which case

the G-function to be minimized can be written as

n k

G (8) = W, [f:(a ,8) - Y ]2 (18)
W.L.S. uzl izl ittt b pi

where k is the number of wvariables.

One can also assign weights to the cross product of variables. The

99
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problem often encountered here is that one frequently does not know what
weights to assign. This is one of the shortcomings of least squares
estimation. However this problem is overcome by maximum likelihood

methods.

(ii) Maximum Likelihood (M. L.)

One may assume that the residuals U are random variables possessing a
joint probability density function P(U,¢) of known mathematical form,
possibly containing some unknown parameters ¢. Here U denotes a matrix
of the residuals. According to the maximum likelihood principle, one
seeks those values of 6 and ¢ which maximize the likelihood of having
made the actual observations, i.e., which maximize P or more conveniently

its logarithm. Thus
GM_L. (6,¢) = log P (f(au’e) = Yu’¢) (19)

Bard [5] has shown that if there is one observed variable per experiment
then maximum likelihood is equivalent to least squares and the residuals,
U, are normally distributed with zero mean and variance 02. If the number

of observed variables per experiment is more (k>1) then maximum likelihood

reduces to weighted least squares.

(iii) Bayesian Estimation

An expression such as P(U,¢) states the probability distribution of
Yu given the parameters 6. In fact, however, observations Yu are given
and the parameters 6 are sought. One may concelve of many possible
universes, each with its own values of 6. Given the observations, one

may assign relative probabilities to these universes, and ask which of these
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universes is most probable. The above explanation comes from statistical
theory. Cornfield [8] has summarized the current thought on this subject.
We maximize P(6|Yu) i.e., the probability density of 8 given the

observations YU' According to the Bayes formulae
P(OlY) = ;.lé' P (Y l0) B (8) (20)

where
c' = fP (YU|B) P, (6) d6 = a normalizing constant.
P(Yule) = probability density of Yu given 0

P, (8) = prior distribution of 8 i.e., it is the probability
distribution one would have assigned to & prior to
having made the observations Yu.

Ignoring the irrelevant constant c, we seek then to maximize
65(8,¢) = log P[f(a ,8) - ¥ ,4)] + log P, (8) (21)

If absolutely nothing is known a priori about 6, one assumes a uni-
form prior distribution. Then P (8) = constant, and maximizing P(G[YU) is
equivalent to maximizing P(U,¢), i.e., the Bayesian and maximum likelihood

estimates will be identical.

4,6b Method of Solution
The central function of Bard's [5] program is to maximize a selected
criterion function. Since the problem considered in this chapter is essen-

tially a minimization problem, the negative of the mathematical objective
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function was maximized. The objective functions which were minimized for
the models represented by Equations (8) through (13) are given by T;

through Ty given below.

n

T, =} [Cy - (af +a'ye)]? O (22)
i=1
n 212
T, = Z [c31 - (bo b BB By AY] (23)
i=1
2 2 3. .2
T2 = izl [c31 - (m0 + mlti o+ mzti + m3ti )] (24)
7 2 3 4y12
T, = 1£ [Cyy = (dg + dyt, +dyt, 2 +dt, " +d,tH)] (25)
v 2 3 4 5.2
= - ] 1 1
Tg 1£1[C3i (ef + ejty +ejt;” + elt,” + gt ? +alt )] (26)
2 2 3 4 5
T6 = 1£1 [c3i - (h0 + hlti + hzti + h3ti + hyt % + h5tjL
6412
+ h6ti )] (27)

Two alternative subroutines are provided for effecting the maximization.

These are

(1) The Gauss-Newton method, with modifications by Greenstadt-Eisenpress

[7], Bard [5], and Carroll [6].
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(ii) The Davidon-Fletcher-Powell method [9]
The modified Gauss-Newton method was used for maximization. Davidon's
method is fully described in reference [9]. A brief description of the

Gauss—-Newton method is given in Appendix V.

4.7 GRAPHICAL EXAMINATION OF RESIDUALS

The usual assumptions made about the errors while performing the re-
gression analysis are that the errors are independent, and follow a norﬁal
distribution with mean zero and variance, c?. Hence the residuals should ex-
hibit tendencies that tend to confirm the assumptions, provided the fitted
model is correct. While examining the residuals one should try to investi-
gate whether the assumptions made, appear to be violated or not; of course
the latter does not mean that the assumptions are correct, but it merely
means that on the basis of the experimental data, it appears that one does
not have any valid reason to say that the assumptions are incorrect.

There are several graphical methods of examining the residuals in
order to check the models and see which model gives the best fit for the
experimental data. These procedures indicate to a great extent whether
the assumptions are violated or not. A rather detailed description of
these techniques can be found in reference [2]. A brief description of
them will be given here. The residuals can be plotted in the following
ways;

A. Overall plots
B. Time sequence plots
C. Against the fitted wvalues ¥y for i=1, 2, ..., n

D. Against the independent variable aju’ for =1, 2, ..., K
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4,7a Overall plots of residuals

If the model is correct and appropriate for predictive purposes the
residuals should resemble tﬂirty-seven observations (equal to the number of
data points) from a normal distribution with mean zero. The mean should
necessarily be zero for any regression model with the constant term in it.
The constant terms in our models are 8,5 by My, do’ e, and h.

One can make use of a table of random deviates for judging the overall
plots of residuals. An extensive table is published by the Rand Corporatiom
[10]. Thirty-seven normal deviates were selected randomly from this table
and plotted. Figure 1 shows the plot of random normal deviates. Now the
overall residual plots obtained from different models were compared with
this plot. Visual observation reveals that the plot obtained by using a
fifth order model (Figure 2) is best as compared to the others.

An alternative approach will be to construct the '"normal plot" or a
"half normal" plot of the residuals on standard probability paper. The
points should fall approximately on a straight line. Daniel [11] has de-
scribed the use of these plots.

Overall residual plots obtained from other models are included in the

Appendix and can be used for comparison.

4,7b Time sequence plot of residuals

If the "step back" view of the time sequence plots gives an impression
of a horizontal "band" of residuals as shown in Figure 3, one can conclude
that a long-term time effect is not influencing data. However, if we obtain
"step back' views from the plots of residuals resembling those of Figure 4,

it is indicative of the fact that a time-effect was not accounted for. The
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Random normal deviates.

Fig.1. Plot of random normal deviates.
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2
MODEL Cz=(0.0014- 0001431 t000056t
-0.000106t3 t 0000009614

- 0.00000033t° )

2 -5 -1 -05 0 05 | 15 2

Residuals x 1072

Fig.2. Overall plot of residuals.



Fig.3. Horizontal band of residuals.

Case (1)

Case (2)

Case (3)

Fig4. Discrepencies indicated by
"step’ back view.
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various cases in Figure 4 indicate the following facts.
Case 1. The variance is not constant but increases with time. This sug-
gests that weighted least squares analysis should have been
used.
Case 2. This indicates that a linear term in time should have been in-
cluded in the model.
Case 3. This suggests that linear and quardratic terms in time should have
been included in the model.
. The observation of time sequence plots for the various models indicates
that the "step-back" view of a plot of the fifth-order model (Figure 5)
can be closely approximated by Figure 3. Most of the residuals lie within
a horizontal strip, which is indicative of the fact, as explained earlier
that a long-term time effect is not influencing the data. This conclusion
is restricted to the fifth order model only. Comparison between the fifth
order model and the sixth order model indicates that increasing the order
of the model does not necessarily make it better for predictive purposes

(Figure 5).

4.7c Plots of residuals vs. predicted wvalues of response

Tables 9 through 14 show the predicted values of tracer concentrations
in tank (3) and residuals for various models. Once again the "horizontal
band" indicates no abnormality. Defects or abnormalities will be indicated
by plots of the form shown in cases (1), (2) and (3) in Figure 4. The
following facts are indicated by the various cases in Figure 4.
Case 1. The variance is not constant, as assumed. This suggests the use

of weighted least squares or a transformation on the observatioms



Residuals x 10"3

Fig.3.
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Table 1. Mean and Standard Deviation of Parameters.

MODEL C3 = (0.00055 - 0.000097t)

Parameter Mean (Expected Value) Standard Deviation
aé 0.5562 x 1073 0.7338 x 10~%
a' -0.9756 x 1074 0.1743 x 1074
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Table 2. Mean and Standard Deviation of Parameters

MODEL C, = (0.0009 - 0.00037t + 0.000033t2)

Parameter Mean (Expected Value) Standard Deviation
b 0.9258 x 10~3 0.6768 x 10™%
b, ~0.3714 x 1073 0.3841 x 1074
b 0.3306 x 10~ 0.4446 x 1075
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Table 3. Mean and Standard Deviation of Parameters.

MODEL C, = (0.0012 - 0.00076t + 0.000147t2

- 0.0000088t3)
Parameter Mean (Expected Value) Standard Deviation
mg -0.7601 x 10™3 0.5034 x 1074
m, 0.1473 x 1073 0.1358 x 1074
m, ~0.8794 x 107 0.1027 x 107
0.1204 x 1072 0.5025 x 1074
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Table 4. Mean and Standard Deviation of Parameters.
MODEL CB = (0.0013 - 0.00117¢t + 0.00036t2

~0.0000464t3 + 0.0000021t%)

Parameter Mean (Expected Value) Standard Deviation
ds 0.1391 x 102 0.3589 x 1074
d; -0.1179 x 1072 0.5691 x 10~%
4, 0.3620 x 1073 0.2637 x 1074
dy -0.4642 x 10™4 0.4463 x 107>
d 0.2099 x 107 0.2470 x 107°



Table 5. Mean and Standard Deviation of Parameters.
MODEL C3 = (0.0014 - 0.00143t + 0.00056t2
- 0.000106t3 + 0.0000096t%

- 0.00000033t>

Parameter Mean (Expected Value) Standard Deviation
el 0.1468 x 10~2 0.7470 x 10~4
el ~0.1432 x 1072 0.5070 x 10~%
e 0.5616 x 1073 0.1436 x 1074
e} -0.1065 x 1073 0.1779 x 107
e 0.9694 x 107 0.3509 x 1077
e! -0.3386 x 107° 0.7940 x 1077

114



Table 6. Mean and Standard Deviation of Parameters.

MODEL Cq = (0.0014 - 0.00137t + 0.000496t2

- 0.0000772t3 + 0.00000352t2

+ 0.000000269t> - 0.0000000225t?)

Parameter Mean (Expected Value)
hy 0.1455 x 1072
B, -0.1374 x 1072
h 0.4965 x 1073
h, ~0.7726 x 107%
h, 0.3527 x 1077
by 0.2691 x 107
h -0.2258 x 1077

Standard Deviation

0.3562

0.7547

0.5308

0.1801

0.3473

0.3590

0.1472

b

[

9
=~
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Tabhle 7.

Model

2
dlt + dzt

3 4
dst + d4t

't + e:'zt2

+ e"‘t4 + elt

_ 2
hit + hyt

No. of
Parameters

Sum of Squares of

Residuals

0.2183 x 10

0.8311 x 10

0.2581 x 10~

0.7993 x 10~

0.5691 x 10

0.5651 x 10

-5

-6

-7
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Mean and Sum of Squares of Residuals for Different Models.

Mean of
Residuals

2.73 x 10~

3.39 x 10'10

9.67 X 10‘11

9.53 x 10

2.58 x 10

4,78 x 10'7



Model

n

Table 8.
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Computing Time, No. of Iterations and Optimum

Function Value for Different Models.

No. of
Parameters

2

Computing
Time Sec.

25.20

28.80

31.2

39.50

57.50

407

Optimum Function Devivative
Function Value Evaluations Evaluations
0.975 x 10~% 6 4

-6
0.831 x 10 6 4

-6
0.258 x 10 8 5

-7
0.799 x 10 15 7

-7
0.569 x 10 19 9
0.565 x 10~/ 237 81



Time, hrs.

o~~~ LLLWLWWWNRODNMNMNNMNNNNMERERREREFRPOODOODO

.1166
. 2666
.4333
. 6000
. 7666
+9333
.1166
. 2667
.4333
.6000
. 7667
.9333
.1000

-

2667

+4333

. 6000
. 7667
.9333
1000
. 2667
.4333
.6166
. 7667
.9500
.2333
. 4833
.7333
.0667
. 4000
.7333
. 0667
. 4000
. 7333
.0667
.5666
.0667
.0667

Table 9. Residuals and Predicted Values of

Tracer Concentration in Tank (3).

MODEL Cq = (0.00055 - 0.000097t)

C3 (Predicted)

0.5449%103
0.5302X10™3
0.5140%10~3
0.4977%10™3
0.4815%10~3
0.4652X103
0.4473x1073
0.4327%1073
0.4164X10™3
0.4001%10™3
0.3839X1073
0.3676X10™3
0.3514X10™3
0.3351X1073
0.3188%10™3
0.3026X10-3
0.2863%10™3
0.2701x10™3
0.2438%10™3
0.2375%X10~3
0.2213%x10-3
0.2034%1073
0.1888X10™3
0.1709x10-3
0.1432x10-3
0.1188x%10~3
0.9444X10™4%
0.6192%10™%
0.2940X10~4
-0.3120X107°
-0.3564%1074
-0.6816X10™4
-0.1007x1073
-0.6500X10™2
~0.1820x10~3
-0.2308%10™3
-0.3283%10™3

03 (Experimental)

0.1200X10~2
0.1120X10"2
0.1120X10™2
0.8600x10™3
0.6500X10™3
0.5000%10™3
0.3899x10~3
0.3150X10™3
0.2750X10~3
0.2100X10™3
0.1800X10~3
0.1500X1073
0.1300%10™3
0.1125%103
0.1000x10~3
0.8600X10™%
0.7800%10~%
0.6799%10™%4
0.5900xX10™4
0.5300X10~4
0.4699X10~%
0.4299X10~4
0.3900X10~%
0.3500X10~4
0.2900X10~4
0.2500X10~%
0.2150X10~4
0.1800%10™%4
0.1500X10~%
0.1200X10™%4
0.1050X10~%
0.8900X1072
0.7400X10™3
0.6500%X10™2
0.5200X10™°>
0.4450%107
0.3300X10™3

118

Residuals

0.6511X10™3
.5897x10~3
. 6060X10™3
.3622x103
.1685X10™3
.3481X10%
.5730X10™4
.1176X10™3
.1414%x1073
.1901X10™3
.2038X10™3
.2176X1073
.2213%10-3
.2226X1073
.2188x10™3
. 2165%X1073
.2083%1073
.2020x10™3
.1947x10"3
.1845x103
.1742%10"3
.1603%10™3
.1497x1073
,1358x10™3
.1142%X10-3
.9383X10™%
.7294X10™4
.4392X10~%
. 1440X104
.1511x10™4
4614X10™4
.7706X10™%
.1080%10™4
.1397x1073
0.1871x10~3
0.2352%1073
0.3316X10-3
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Table 10. Residuals and Predicted Values of
Tracer Concentration in Tank (3).
MODEL C3 = (0.0009 - 0.00037t
+ 0.000033t2)

Time, hrs. Cyq (Predicted) C3 (Experimental) Residuals
0.1166 0.8820X10™3 0.1200X10"2 0.3169X10™3
0.2666 0.8292%10~3 0.1120X10~2 0.2907x10"3
0.4333 0.7712%10™3 0.1120X10~2 0.3488%10~3
0.6000 0.7149x10-3 0.8600X10™3 0.1450%10™3
0.7666 0.6606X10™3 0.6500X10™3 -0.1057x10%
0.9333 0.6080X10™3 0.5000X10™3 -0.1080X1073
1.1166 0.5524%10~3 0.3899x1073 -0.1623X10"3
1.2667 0.5084X103 0.3150X10™3 -0.1934%1073
1.4333 0.4614X103 0.2750%10™3 -0.1864%10~3
1.6000 0.4162%10-3 0.2100x10"3 -0.2062x10"3
1.7667 0.3729x10-3 0.1800%10~3 -0.1928x10™3
1.9333 0.3314%10™3 0.1500X1073 -0.1813x10-3
2.1000 0.2917x10-3 0.1300x10-3 -0.1616X10-3
2.2667 0.2538X10-3 0.1125x10-3 -0.1413x10"3
2.4333 0.2178%1073 0.1000x10~3 -0.1178X10-3
2.6000 0.1837X1073 0.8600X10™% -0.9766X104
2.7667 0.1513%1073 0.7800X10™% ~0.7333%10™4
2.9333 0.1208%10~3 0.6799X10% -0.5283X10™%
3.1000 0.9218x104 0.5900X10™% -0.3318X10™%
3.2667 0.6536X10™% 0.5300%X10™% -0.1236X10™%
3.4333 0.4038X10~4% 0.4699X10~4 0.6621X10~3
3.6166 0.1503%X10™% 0.4299X10™4 0.2797X10~4
3.7667 -0.4077X10™3 0.3900X10™% 0.4307X10™%
3.9500 -0.2540%X10™4% 0.3500X10™4 0.6039X10™%4
4.2333 -0.5397X10% 0.2900%10™% 0.8296x104
4.4833 -0.7477%X10™% 0.2500X10™% 0.9977X10~%
4,7333 -0.9144X10~4 0.2150X10™4 0.1129%1073
5.0667 -0.1072x10-3 0.1800X10™% 0.1252%10-3
5.4000 -0.1157x10~3 0.1500X10~4 0.1306X10~3
5.7333 -0.1168x10"3 0.1200xX10™4 0.1287x10~3
6.0667 -0.1105%10"3 0.1050X10~4 0.1210xX10™3
6.4000 -0.9695X10™4 0.8900X10™° 0.1058X10™3
6.7333 ~0.7600%10™4 0.7400X10-5 0.8340X10~4
7.0667 -0.4771X10™% 0.6500X10™2 0.5421X104
7.5666 0.8497X107° 0.5200X107° -0.3297x1072
8.0667 0.8125X10™%4 0.4450X10™5 -0.7680X10™4
9.0667 0.2764%10™3 0.3300X10-5 -0.2730x103
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Table 11. Residuals and Predicted Values of
Tracer Concentration in Tank (3).
MODEL C3 = (0.0012 - 0.00076t

+ 0.000147t2 - 0.0000088t3)

Time, hrs. C3 (Predicted) C3 (Experimental) Residuals
0.1166 0.1118X1072 0.1200X10"2 0.8215%10~3
0.2666 0.1012X10~2 0.1120X10"2 0.1078x10-3
0.4333 0.9021x10™3 0.1120%10"2 0.2179%10~3
0. 6000 0.7995%10™3 0.8600X10™3 0.6045X10~%
0.7666 0.7044X10™3 0.6500%10"> -0.5439X10~4
0.9333 0.6162X103 0.5000%10"3 -0.1162%1073
1.1166 0.5272X10-3 0.3899%10~3 -0.1371x10-3
1.2667 0.4602X1073 0.3150X10-3 -0.1451%10"3
1.4333 0.3918x10~3 0.2750X10"3 -0.1167x10-3
1.6000 0.3295%10~3 0.2100X10"3 -0.1194x10"3
1.7667 0.2730X10™3 0.1800X10~3 -0.9300X10™4
1.9333 0.2221x10~3 0.1500%10-3 -0.7212%10™4
2.1000 0.1766X10~3 0.1300x10"3 ~0.4659%X10™%
2.2667 0.1362x10~3 0.1125%10"3 -0.2368X10~4
2.4333 0.1006X10-3 0.1000X10~3 -0.6351%10~6
2.6000 0.6971X10~% 0.8600X10™4 0.1629%10~4
2.7667 0.4315X10™4 0.7800X10"4 0.3484X10~4
2.9333 0.2073%10™% 0.6799X10-% 0.4726X10~%
3.1000 0.2198X10™2 0.5900X10~4 0.5680%10™%
3,2667 -0.1269%X10™4 0.,5300%10~4 0.6569%10™%4
3.4333 ~0.2418%10™% 0.4699X10™4 0.7118%10~%
3.6166 -0.3319X10~% 0.4299X10% 0.7618X10~%
3.7667 -0.3795X10™4 0.3900X10~% 0.7694x10~%
3.9500 -0.4085X10™4 0.3500X10~% 0.7584X10~4
4.2333 ~0.3974%10"% 0.2900X10™% 0.6873X10~%
4.4833 ~0.3396X10~% 0.2500X10~4 0.5896X10™%
4.7333 -0.2455X10~% 0.2150X10~4 0.4605X10™%
5.0667 -0.7775X1072 0.1800X10~% 0.2577X10™4
5.4000 0.1205X10™4% 0.1500X10™4 0.2955%10-3
5.7333 0.3295X10™% 0.1200x10™% -0.2095%10~4
6.0667 0.5299X10~% 0.1050X10~% -0.4249%10™%
6.4000 0.7022X10™% 0.8900X10™° -0.6131%X10™%
6.7333 0.8267X10™4 0.7400%10™> ~0.7526X10%
7.0667 0.8838%10™% 0.6500%10™3 -0.8188%X10™4
7.5666 0.8008X10~% 0.5200X10™° -0.7487X107%
3.0667 0.4563X10~% 0,4450X10™2 -0.4117%10™%
9,0667 ~0.1280X10~3 0.3300X10~5 0.1313X10™3
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Table 12. Residuals and Predicted Values of
Tracer Concentration in Tank (3).
MODEL C3 = (0.0013 - 0.00117t + 0.00036t2

- 0.0000464t3 + 0.0000021t%)

Time, hrs. C3 (Predicted) C3 (Experimental) Residuals
0.1166 0.1259X10~2 0.1200X10~2 ~0.5878X10™%
0.2666 0.1102x10~2 0.1120%10™2 0.1814X10™4
0.4333 0.9446X10~3 0.1120X10™2 0.1753x10°3
0.6000 0.8043%10-3 0.8600X10~3 0.5571X10~%
0.7666 0.6797X10~3 0.6500%10™3 -0.2974X10™%4
0.9333 0.5697X10~3 0.5000X10™3 -0.6971X10~4
1.1166 0.4643%10~3 0.3899x1073 -0.7431X10~4
1.2667 0.3892x10™3 0.3150X10-3 -0.7419X10™4
1.4333 0.3166X10~3 0.2750X10~3 -0.4160X10~%
1.6000 0.2545X10~3 0.2100x103 -0.4446X10~%
1.7667 0.2019x10-3 0.1800%10~3 ~0.2186X10™%
1.9333 0.1579x10™3 0.1500%10™3 -0.7879X1072
2.1000 0.1217x10-3 0.1300%10™3 0.8327x10~3
2.2667 0.9242X10~%4 0.1125%10-3 0.2008%10~%
2.4333 0.6934%10~% 0.1000%1073 0.3066X10™%
2.6000 0.5168X10™4 0.8600X10™4 0.3431X10~4
2.7667 0.3876X10™% 0.7800X10™%4 0.3924%10~%
2.9333 0.2990X10™% 0.6799%10™4 0.3810X10~4
3.1000 0.2448%10™% 0.5900X10~% 0.3452X10~4
3.2667 0.2191x10~4 0.5300X10™% 0.3108X10™%
3.4333 0.2165X10™4 0.4699X10™4 0.2534X1074
3.6166 0.2343X10™% 0.4299X10~% 0.1957X10™%
3.7667 0.2606X10™%4 0.3900X10~4 0.1293x10~%
3.9500 0.3024X10™% 0.3500X10™% 0.4756X10™2
4.2333 0.3765X10~4 0.2900X10~4 -0.8652X10™5
4.4833 0.4402X10™4 0.2500x10~4 -0.1902X10~%
4.7333 0.4925%10™4 0.2150X104 -0.2775%10™%
5.0667 0.5324%10™4 0.1800X10™%4 -0.3524X10"%
5, 4000 0.5278X10™%4 0.1500%10% -0.3778x10™%
5.7333 0.4732x104 0.1200X10™% -0.3532X10™%
6.0667 0.3693x10™% 0.1050X10~4 -0.2643%X10™4
6.4000 0.2232X10™%4 0.8900X10™2 -0.1342X10~4
6.7333 0.4785%X10™5 0.7400X1072 0.2611%1073
7.0667 ~0.1373%x10~4 0.6500X10™3 0.2022X10~%
7.5666 ~0.3754X10™% 0.5200X1072 0.4273%10™%
8.0667 -0.4638%10™% 0.4450X10~3 0.5083X10~4
9.0667 0.4172X10~4% 0.3300X10°3 -0.3841X10™%



Time, hrs.

0.1166
0.2666
0.4333
0.6000
0.7666
0.9333
1.1166
1.2667
1.4333
1.6000
1.7667
1.9333
2,1000
2.2667
2.4333
2.6000
2.7667
2.,8333
3.1000
3.2667
3.4333
3.6166
3.7667
3.9500
4,2333
4.4833
4,7333
5.0667
5.4000
5.7333
6.0667
6.4000
6.7333
7.0667
7.5666
8.0667
9.0667

Table 13.

Tracer Concentration in Tank (3).

Residuals and Predicted Values of
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MODEL C; = (0.0014 - 0.00143t + 0.00056t2

C3 (Predicted)

0.1309%10™2
0.1125%1072
0.9451X10™3
0.7895x10~3
0.6557X10™3
0.5412X10"3
0.4353%10~3
0.3623%X10™3
0.2940x10-3
0.2375X10-3
0.1914%10™3
0.1541X10™3
0.1245x10™3
0.1013x10-3
0.8344%10™4
0.7002X10™4%
0.6019X10™4
0.5318%10™4
0.4836X10™4
0.4514X10-4
0.4307X10~%
0.4161X10~%
0.4074X10™4
0.3980X10~%
0.3802X10~4
0.3570X10™4
0.3248%X10~4
0.2685X10™%
0.2012X10~4
0.1311X10™%
0.6738X10™2
0.1994X1072
-0.3990X10~6
0.2339%10~7
0.5652X1072
0.1402X10™%
0.1455%10™2

- 0.000106t3 + 0.0000096t%
- 0.00000033t2)

C3(Experimental)

0.1200X10~2
0.1120X10~2
0.1120%10~2
0.8600X10~3
0.6500%10™3
0.5000X103
0.3899x10-3
0.3150X10-3
0.2750%10™3
0.2100X10"3
0.1800X10™3
0.1500%10™3
0.1300%x103
0.1125X103
0.1000%10~3
0.8600X10~4
0.7800X10~4
0.6799X10™4
0.5900X10~4
0.5300X10~4
0.4699X10~4
0.4299X10~4
0.3900X10%
0.3500X107%
0.2900X10~4
0.2500%10™%
0.2150X10~4
0.1800X10~%
0.1500X10~%
0.1200X10™

0.1050%10~4
0.8900X10~3
0.7400X10™2
0.6500X10™"
0.5200X10™°
0.4450X10™2
0.3300X10"3

Residuals

-0.1092x10"3
-0.4830X10™°
0.1748x1073
0.7045X10™4
-0.5722X10™°
-0.4122X10~%
-0.4326X10™4
-0.4726X10™%
-0.1897x10™%
-0.2752X10"%
-0.1139X10-4
-0.4143%1073
0.5505%10~2
0.1122x10~%
0.1656X10™%
0.1598%X10~%
0.1781X10~4
0.1481X1074
0.1063C10~4
0.7850X10~2
0.3926X10™3
0.1393%10™2
-0.1745%1073
-0.4804X105
-0.9020X1073
-0.1069%X10~4
-0.1097X10-4
~0.8843X107°
-0.5116X10~
-0.1095X10"°
0.3768X10™°
0.6925X1072
0.7811X10™°
0.6489X10™
-0.4358%10~6
-0.9551X1072
0.1933X10™2
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Table 14. Residuals and Predicted Values of
Tracer Concentration in Tank (3).
MODEL C5 = (0.0014 - 0.00137t + 0.000496t°
- 0.0000772t3 + 0.00000352t%

+ 0.000000269t> - 0.0000000225t6)

Time, hrs. Cq (Predicted) Cq {Experimental) Residuals
0.1166 0.1302x10™2 0.1200X10~2 -0.1021x10"3
0.2666 0.1123%X10~2 0.1120%10~2 -0.3187X1072
0.4333 0.9473%10™3 0.1120X10~2 0.1727%10~3
0.6000 0.7936X10~3 0.8600X10™3 0.6637X10™%
0.7666 0.6604X10™3 0.6500%10"3 -0.1036X10™4
0.9333 0.5455X10™3 0.5000X10™3 -0.4548%10~4%
1.1166 0.4384%x103 0.3899%x10-3 -0.4842X10-4
1.2667 0.3642X10"3 0.3150x10-3 -0.4923%104
1.4333 0.2945X10~3 0.2750%10~3 -0.1954X10™4
1.6000 0.2368%10™3 0.2100X10~3 -0.2676X10~4%
1.7667 0.1895%10~3 0.1800x10™3 -0.9474X1073
1.9333 0.1513%X10-3 0.1500X10-3 -0.1332X10-3
2,1000 0.1211x10~3 0.1300x10-3 -0.8903%X10-3
2.2667 0.9762X10% 0.1125%10™3 0.1488%X10~%
2.4333 0.7982X10~4 0.1000X10~3 0.2017X10~4
2.6000 0.6674X10™% 0.8600X10~4 0.1926X10~4
2.7667 0.5748%10% 0.7800X10~% 0.2051X10~%
2.9333 0.5125X10™4 0.6799X10~4 0.1674X10~4
3.1000 0.4734X1074 0.5900X10~4% 0.1166X10~4%
3.2667 0.4510X10™4 0.5300X10~% 0.7897X10~3
3.4333 0.4401X104 0.4699%10™4 0.2989X10~5
3.6166 0.4357X10™4 0.4299X10~4 -0.5737X10"6
3.7667 0.4345X10™% 0.3900X10™4 -0.4457X1072
3.9500 0.4325X10™% 0.3500X10~4 -0.8253X10™5
4.2333 0.4214X1074 0.2900X10™4 -0.1315X10™4
4.4833 0.3986X10~4 0.2500X10~4 -0.1486X10~4
4.7333 0.3615X10™4 0.2150%10™% -0.1464X10™%
5,0667 0.2908X10~4 0.1800X10~% -0.1108X104
5. 4000 0.2031X10™4 0.1500%10™% -0.5310%1072
5.7333 0.1102x10™4 0.1200X10~% 0.9788%10~6
6.0667 0.2693X1072 0.1050x10~% 0.7805%X10~3
6.4000 -0.3170%1072 0.8900X10~5 0.1207X10~4
6.7333 -0.5344X10"3 0.7400X1072 0.1274X10~4
7.0667 -0.3070X10"> 0.6500X10™3 0.9569X10~2
7.5666 0.8222%10~3 0.5200X10™° -0.3024X10-4
8.0667 0.2350X10~4 0.4450%X10-3 -0.1905X10~%
9.0667 -0.1866X107° 0.3300X10~3 0.5163x10™3
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Yi (experimental values of tracer concentration in tank (3))
before making a regression analysis.

Case 2. This indicates probable error in the analysis, and also tells
that the departure from the fitted equation is systematic, which
means that negative residuals correspond to low predicted values
of Y;. This effect can also be due to omitting a constant term
in the model.

Case 3. This type of step-back view indicates that the assumed mathematical
model is inadequate and extra terms need to be included in the
model. These extra terms may be higher order terms or cross-
product terms. This also suggests a need for the transformation
of the experimental observations Yy (experimental values of Cq
in our case) before analysis. It was observed that the fifth

order model (Figure 5) shows least abnormalities.

4.7d Plots of residuals vs. independent variable

In these plots also, an overall impression of a horizontal band is
considered to be satisfactory. Observation of plots for various models
in this case also indicate that the fifth order model (Figure 6) approxi-
mates closely the ideal case. Most of the residuals here lie inside the
horizontal band. The abnormalities indicated in Figure 4 here reveal
that
Case 1, The variance is not constant. It is suggested to use weighted

least squares or some transformation on Y; (experimental values

of C3 in our case).
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Fig.6. Plot of residuals against predicted values of Cz.
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Case 2. There is some error in the calculations and the linear effect
of aj (independent variable) is not removed.

Case 3. This suggests that we should have some extra terms in the model
or should transform Y; (experimental values of Cq in our case)
before analysis.

Time sequence plots of residuals, plots against predicted values

of 83, and independent variable, for models other than the fifth order

model, are included in the Appendix and can be referred to for compari-

son.

A plot of residuals vs. time is shown in Figure 7.

4.8 NUMERICAL STATISTICAL TECHNIQUES FOR THE EXAMINATION OF RESIDUALS

The various graphical procedures which have been used in this chapter
are essentially visual techniques for checking some of the basic regression
assumptions. Draper and Smith [2] have described briefly the numerical
measures for some of the discrepancies shown in Figure 4. They are of the
opinion that in practical situations a detailed examination of the various
residuals plots is sufficiently satisfactory. Consider the plots of e; vs.
¥y Three major types of discrepancies were described and related to the
diagrams of Figure 4. Draper and Smith [2] have suggested the following

statistics for measuring these defects. Define

n

Tpq = L ef ¥%
i=1

Then
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n
(1) T,, = Z 2 y. provides a measure for the type of defect shown in
21 4o1 & i
Figure 4 (Case 1). A more general treatment of this defect can be found

in the paper by Anscombe [13].

n

(ii) Tll = Z ey ¥y provides a measure for the type of defect shown in
i=1

Figure 4 (Case 2), which should always be zero.

n
(iii) le = X e y% provides a measure for the type of defect shown in

Figure 4 (Case 3).

Papers by Anscombe [12] and Anscombe and Tukey [2] have provided other
numerical statistical procedures to check the basic regression assumptiouns.
Anscombe [12] has discussed, besides other things, the empirical distri-
bution of residuals, relation of residuals with the fitted values, etc.
Their approach is mathematical in nature and very useful in certain situ-
ations. Anscombe and Tukey [l] have described numerical techniques for
measuring removable nonadditivity, dependence of variability upon level

of response and for assessing the distribution shape.

4.9 RESULTS AND DISCUSSION

There are two opposite criteria involved when one tries to select the
best regression equation. The first being, as in the present case, to
make the equation useful for predictive purposes, we should like the model
to included as many higher order terms in t as possible so that reliable
fitted values can be obtained, but on the other hand because of the cost

involved, besides the other factors, one would like to include as few terms
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in t as possible in the model. The purpose of this investigation was to
find a compromise between these two situations and suggest the model which
is most useful.

In the first part of this work the various parameters appearing in the
models represented by Equations (8) through (13) were estimated using
Bard's method of "Single Equation Least Squares" [5]. Tables 1 through 6
show the estimates of these parameters. The models were used to predict
the tracer concentrations in tank (3). Figures 8 through 11 show the agree-
ment between experimental values of 03 and those predicted from the models.*
It can be seen that the fourth, fifth and sixth order models give a reason-
ably good fit. Figures 12 and 13 compare some of the computational aspects
for the various models. Figure 12 shows the variation of computing time
as we increase the number of parameters in the model. It can be seen that
the variation is not appreciable when one goes from two to six parameters
(first order to fifth order model) but the computation time is increased
almost seven times in going from six to seven parameters (fifth order to
sixth order model). Table 7 also shows how the sum of squares of residuals
changes as we increase the number of parameters in the model. It can be
noticed that the sum of squares of residuals for the fourth, fifth and
sixth order models are all very small. They are almost the same for sixth
and seventh order models. Figure 13 indicates the variation of function
and derivative evaluation in the estimation procedures as the number of
parameters in the model increase. It can be seen from Table 8 that in
*

The data on the tower system using the flow model was taken by Dr. Arthur

E. Humphrey and his associates at the Biochemical Engineering Laboratory
University of Pennsylvania, Philadephia, Pennsylvania 19104.
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Fig.8. Tracer concentration in tank (3) vs. time.
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MODEL C, = (0.003-000II7t + 00003612
~0.0000464 t3 +0.000002! t*)
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Fig. 9. Tracer concentration in tank (3) vs time.
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MODEL  C; = 0004 — 0.00143t +0.00056t°
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= ~ 000000033 t3
<
2 10+ X Experimental  data
3 ’ — Predicted from the model
dl- [}
o
< 8r
0
~— ?‘ | .
>
5 X

6 =
£
§ Sr
s
o 3| »
Q
8 2L "
= A

x)(
| \kL
' e
0 ! 1 | xfn'"‘rxmx-_.* % X  S—
0 | 2 3 4 5 6 7 8 9 10

Time , (hrs.)

Fig. I0. Tracer  concentration in tank (3) vs time.
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going from the fifth order model to the sixth order model (six parameters
to seven parameters) the function and derivative evaluations increase ap-
preciably. However, this increase is comparatively inappreciable when the
number of parameﬁers are increased from two to five.

Figure 2 shows the overall plot of the residuals for the fifth order
model. To facilitate the judgment of this plot, a plot of random normal
deviates is made as shown in Figure 1. Comparison of overall residual
plots with Figure 1 suggests that the plot obtained from the fifth order
model has almost the same trend as this. This gives us an indication that
the fifth order model is more adequate and correct as compared to other
models for predictive purposes. Figure 5 shows the time sequence plot of
residuals for the fifth and sixth order models. The criterion for judging
these plots also indicates that most of the residuals lie within a hori-
zontal strip which tends to confirm that the fifth order model is reason-
able. The same criterion is used for judging the remaining plots also.
Figqre 6 shows the plots of fitted values of the tracer concentration in
tank (3) vs. residuals for the fifth order model. Time has been plotted
vs. residuals in Figure 7. Observation of this plot also shows that in the
case of the fifth order model most of the residuals lie within a horizontal
strip, which tends to indicate that the basic assumptions which were made
about the errors (residuals) are adequate.

Hence it can be concluded from the graphical examination of residuals
that one has sufficient reason to believe that the fifth order model is best
among the various models considered. In other words, available experimental
data fits the fifth order model best and no further improvement is obtained

if the order of the model is increased.



4,10 NOTATION

bgs by» By

Cov(ei, ej)

do, dl, dz, d3, dl}

ea, ei, eé, eé, EA’ eé

il
F(Uu)

G(8)

hg> hys hys hgy By, hgs b

1 2

P(U,9)

P(Yule)

Py(®)
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constants in Equation (8)
uth independent variable

constants in Equation (9)

constants in Equation (6)

tracer concentration in tank (3), (gms/c.c.)
normalizing constant (fP(Yule) P,(6)ds)
covariance of itP and jth residual

constants in Equation (11)

= constants in Equation (12)

ith residual

selected criterion function

F-function when independent and dependent
variables are known

= constants in Equation (13)

number of observations
joint probability density function

probability density of Yu given 6

prior distribution of 8



ik

jk

¥y

Greek Letters

%y

5(0)
1

6 (1)
1

positive definite matrix (- _uﬁgg__)

381 BBj

any positive definite matrix
time (hrs.)

objective function value for ith order
regression model

uth residual

1th element of the kth eigenvector of Q

jth element of the kth elgenvector of Q
th

i observation

fitted value obtained by fitted regression
model

lower bounds on 65

upper bounds on N

direction yector

ith parameter

initial estimate of Bi

value of ei after first iteration

step size
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Subscripts

B

|
w
]

=
=
]

T
oz
17p]
]

= correlation coefficient between ith and jth
residual

= mean

= kth eigen value of Q

= variance

= additional unknown parameter

baysian estimate
least squares estimate
maximum likelihood estimate

weighted least squares estimate
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APPENDIX I

Overall plots of residuals for various regression models
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MODEL  C3=000055-0.0000971

4 -8 -6 -4 -2 0 2 4 6 8 4

Residuals x 10

Fig.I-l. Overall plot of residuals.
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MODEL  C=00009-000037t+000003312

4 -3 -2 -1 0 | =2 3 4

Residuals x IO.'3

Fig.I-2. Overall plot of residuals.



MODEL ~ C3=000I2-0.00076t + 0.000147+2
-0.0000088t3
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Residuals x lO‘T3

Fig.I-3. Overall plot of residuals.
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MODEL  C,=000I3-000II7t+ 000036t 2

-00000464t+0.0000021t4
-2 -l <08-04 O 04 08] 2
3

Residuals x 10

Fig.I-4. Overall plot of residuals,
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MODEL c:3=(0.00|4--o.00|37'r+o.oooasac-:ﬂ2
-0.0000772% 000000352 1 4
+ 000000026 91°-000000002258)

-5 -l -05 0 05 A 1S

Residuals x 10'3

Fig.I-5. Overall plot of residuals.
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APPENDIX II

Time sequence plot of residuals for various regression models
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MODEL 03 =(0.00055~ 000000971)
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Fig.IL-1. Time sequence plot of residuals.
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MODEL. Cy =(0.0009-000037+0.0000331)
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Fig.I-2. Time sequence plot of residuals.
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MODEL. C_=(00012-000076f+0.000I47t e

-00000088t3)’
3
X
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Fig.I-3. Time sequence plot of residuals.
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MODEL. C=(0.0013-000II7t + 00003612
-0.00004641+ 0000002114
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Fig.I-4. Time sequence plot of residuals.
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APPENDIX TII

Plots of residuals against predicted values of C3 for various regression models
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MODEL C =(000055-0000097t)
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FigIL-1. Plot of residuals against predicted values

of C3.
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MODEL. C =(00009-0000374+0000033t2)

Residuals x 1072
O

-04 Predicted values of C3x 0™

Fig.I[-2. Plot of residuals against predicted values of C3.
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MODEL. Cg =(00012- 000076t +00001471 &

~00000088t3)-
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Fig.IL-3. Plot of residuals against predicted values of (23.
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Fig.I[-4. Plot of residuals against predicted values of 03.
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14 16

12

MODEL Cq =(000QI4- 0001371 +00004961 2
-000007721%-000000352t4
~000000026912-00000000225°)
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x x K
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-6 -4 -2 -1 -08-06-04-02 O 02 04 O6 08 1

Fig.IT-S. Predicted values of C3 vs residuals.
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APPENDIX IV

Plots of residuals against the independent variable for various regression

models
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MODEL C3 =(000055-00000971)
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FiggI¥-1. Time vs residuals.
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~0000000269t°-000000002251)

Timé, hrs.

. Time VS residuals.



164

APPENDIX V

Modified Gauss-Newton Method for maximization of a selected criterion

function 1s briefly described in this appendix.
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The Gauss-Newton method, with modification by Greenstadt-Eisenpress
[7], Bard [5], and Carroll [6] was used for maximizing the selected criterion
function. This method is fully described in reference [9]. A brief de-
scription taken from [9] is given below.

The maximization of the G(6) proceeds in an iterative fashion. At
each iteration we start with an initial guess 9(0) for the vector 8, and
proceed to find a new guess e(l) such that G(B(l)) > G(G(O)). This now be-
comes the initial guess for the next iteration. In the course of iteration
two things must be determined: a direction Af to proceed in, and length A
of the step to be taken along this direction, so that 8(1) = (8(0) + A AB).
To be acceptable, the direction must be such that as one proceeds along it
from 9(0) the value of G - function increases at least initially, i.e., for
sufficiently small A. The value of A is ideally such that as to take us
near the peak of G along the chosen direction. The other requirement being

(1

that, » must be small enough to insure that 8 satisfies all bounds and

constraints on 6.

(i) Choice of Direction

Let P be the vector of partial derivatives %% at e=e(°). If R is any

positive definite matrix, the direction A8 = RP is easily shown to be ac-
ceptable. If B(O) is sufficiently near a maximum of G, the matrix Qij =

_ 3%

BBiSBj

is positive (or at least non-negative) definite, and it can be

=1

shown that Q_l is the most efficient choice of R. Using R=Q = at all

points constitutes the Newton-Raphson method. In regions where Q is not
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positive definite this method is likely to yield non-acceptable directiens,
and hence fail to converge.
This problem can be overcome according to Greenstadt [7] if one repre-

sents the matrix Q by means of its eigenvalues and eigenvectors:

Q5 = E ViV kMK =L
where

Vik = ith element of the kth eigenvector of Q

ij = i™ clement of the kth eigenvector of Q

W = kth eigenvalue of Q

Now setting:

- 41
Ryy = E Y Ve M (v-2)

This R is always positive definite, and coincides with Q where the
latter is itself positive definite, i.e., around the maximum. It is im-

portant to note that if some p,. is zero, this value is replaced by a small,

k

non-zero number.

(ii) Choice of Step Size

As stated above, we computed A8 = RP’ with R as defined by Equation
(v-2). Let Ao be a positive number such that (8(0) + Xy A6) is in the

acceptable region. Now set A, = min (Ao, 1) and 8(2) = (6(0) + Aer).
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Define T(A) = G[6¢®) + A 40]. Then r(0) = c(6(9); r(r,) = ¢(e{®); and

dr _ 3G e . i
T lx=o o ]e=e(0) 88 = p « A = ] p A,

I'()) can be approximated by a parabola (a + bxA + clz) matching the values
of the parabola at A = 0 and X = 12, and its derivatives at A = 0 with cor-
responding known quantities of the function T'()A). Now values of ) are
computed, say AS, which maximize this parabola. If the parabola has no

maximum, A, is set equal to Az. If (8(0)+ ABAG) is infeasible, Ay is

3

truncated approximately. The following cases are considered:

; AqA
(1) F(lz) > Ir(0). If 2372 < 0.1, set A = Az or A = A3 and proceed to
A
0

the next iteration depending upon whether F(Az) is or is not greater than

T(Ag).
(11) T(hp) < T(0).

Set A4 = max(k3, %.lz) and compute P(Aa). If F(A4) > T(0) set X = Ad and

proceed to next iteration. Otherwise replace Az with A,, draw a parabola

4!

and proceed as before.

(iii) Convergence and Termination

In principle the method converges to a stationary point of the objective
function, provided the latter possesses continuous first derivatives [5].
The process is terminated when each component of the vector AA® is so small

as to satisfy the inequality:
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A48, < 0.0001 (0.001 + Jei(m]) (i=1, 2, ...,0) (V-3)

This criterion was suggested by Marquardt [13]. However it does not
guarantee that the maximum has been attained, but seems to work in most

practical situations.

(iv) Penaltvy Functions

It was stated above that objective function must have continuous first
derivatives. When bounds or complex constraints are placed on 8 the dis-
tribution function pO(B) may be discontinuous; that is it may be zero out-
side the acceptable region and finite inside it. Bard [5] has suggested
the following device to smooth out this discontinuity.

Suppose the restrictions placed on 6 are stated in the form of in-

equalities:
zi(e) <0 (k=1, 2, «.., ¥) (V=4)

where the Z; are specified functions. For instance, in the case of bounds

oy < ei E-Bi the corresponding Zi would be:

Now the prior distribution p, (8) is replaced by the function pg(e)

= po(e) Xp Z - (e) » Where v; are preassigned comstants. If v; are

sufficiently small, pg will not differ appreciably from P, in the interior
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of the acceptable region, where Z, are significantly different from zero.

i
As one approaches the boundry of the region, however, at least one Zg
approaches zero from the negative side and hence pg also approaches zero.
Since P, enters G through its logarithm, replacing P, is equivalent to
adding the penalty function Z Eﬁ%gy to G(B8), as suggested by Carroll [6].
i=1 &4

The maximization proceeds in several phases: first the maximum of
G and the penalty function is found. If at this point the value of penalty
function is not negligible, the v; are multiplied by 0.1, and the maximum
of the resulting function is found. If necessary, this process is repeated
once more. Finally, the true maximum of G is found. If the maximum of G

is an interior point of the admissible region, all the maxima will practically

coincide [5]. Letting

r ]
z= §] M (V=7)

r
02 _ .y Vi 9Zg (V-8)
98, i=1 zi(e) 98,
r
9z, Z
BT B S S P S SO LT
86,08, 11 3 96, 96, 1 2030,

The important thing to note here is that when the constraints are linear

(in particular, in the case of upper and lower bound), we have
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2
972 _
3 _30 0 (V-10)
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Chapter 5

ANALYSIS OF FLOW BEHAVIOR IN A CONTINUOUS, MULTISTAGE TOWER FERMENTOR:

EFFECT OF DESIGN VARTABLES ON THE EXTENT OF BACKFLOW

5.1 INTRODUCTION

In continuous fermentation processes, there are applications where
mixing patterns other than those of the chemostat (complete mixing) are
desired. Plug flow conditions, although very difficult to attaimn, offer am
opportunity to immediately apply knowledge gained in batch growth toc con-
tinuous processing. The desire to develop an economical fermentor that
could approximate plug flow conditions led to the development and con-
struction of the tower fermentor employed in this study [1]. In the design
of sieve plate columns such as the fermentor, control of liquid backflow
is an important factor. The need to develop techniques to measure and
control the backflow rate in a cocurrent tower fermentor provided the In-
centive for this study. One important goél was to show that the backflow
rate could be reduced to near zero so that_plug flow conditions could be
approximated. In the tower fermentor introduced by Prokop et. al. [1] and
the somewhat different tower fermentor of Falch and Gaden [2, 3], a non-
zero backflow rate is common, and zero backflow appears not to have been
encountered. Since the backflow rate may be influenced by hole size, hole
void area, plate thickness, air flow rate, and liquid flow rate, an investi-
gation to determine the extent of liquid backflow under various conditions was

undertaken. Three variables, hole void area, air flow rate, and liquid flow
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rate are varied in this study to determine their effect on liquid back-
flow.

A tracer study is employed to investigate the flow behavior of the
liquid phase in the tower fermentor. A flow model for the liquid phase
is developed and used to investigate the extent of backflow in the tower

system.

5.2 EXPERIMENTAL PROCEDURE

Flow behavior studies were carried out in an aerated column, consisting
of eight compartments, separated by sieve plates, with feed to the second
stage. Water and air flow were cocurrent from the bottom to the top of the
column. The column fermentor employed in the tracer study has been de-
sceribed previously [1]. Tracer (salt) was injected to the second stage and
its concentration was recorded in the first three stages and the eighth
stage at different instants of time. Sieve plates with hole area per plate
of 3.43 and 15 percent were employed. Air flow rates of 4, 8, and 15.5 lit./

min and water flow rates of 2, 4, and 8.55 lit./hr were used.

5.3 MATHEMATICAL MODEL

An eight stage tower fermentor with feed introduced at the second stage
was used for tracer study. Experimental measurements were made using salt
as a tracer for the first three stages and the eighth stage only. The
flow model of the tower fermentor is shown in Figure 1. A dotted boundary
is used to designate the partial system consisting of the first three stages
which is used in estimating the parameters. Complete mixing is assumed in

each compartment and backflow from each stage is included in the model.
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Fig. |.. Flow model of the tower fermentor.
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One of the important factors considered is the rate of backflow, and this
is represented by Fiyi, where Yi is the fraction of the total flow Fi from
the ith stage which is backflow.

The unsteady state tracer material balances for each stage of the

tower fermentor are as follows;

dC
. . 1 _
dC
. 2 -
Second StagE- VZ 'dT = Flcl + F3YBC3 F2C2 (2)
dcC

i

Stages 3 to 7: Vi " Fi-l(l - Yi—l)ci-l + Fi9Y141C141 Fici’

i=3, 4, 5, 6, 7 (3)
dc
Eighth stage: Vg d_t.§ = F7(1 - v7)C7 - FgCg (4)
The initial conditions are
Ci =0 at t=0, i=1, 3, 4, 5, 6, 7, 8
C2 = finite at t=0

During the tracer experiment, the liquid flow rate is constant. The follow-

ing steady state material balances are used in this study:
Overall balance: Fj = F8(l - vg) (5)

-F, =0 (6)

Stage 1: F 1

272
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Stage 2: Fl + F3Y3 - F2 = - FO (7

Stages 3 to 7: Fi—l(l - vi-p) * Fip1Yier — F4 =0, 1=3, 4, 5, 6, 7 (8)
Stage 8: Fy(l - vy7) - Fg =0 (9)
where

V, = volume of the ith stage, (lit.), i =1, 2, ..., 8

Ci = tracer concentration in the ith stage, (gm./cec), 1 = 1,2,...,8

F, = flow out of stage i, (lit./hr.), i =1, 2, ..., 8

F_ = feed flow rate to the second stage, (lit./hr.)

t = time, (hrs.)

Y; = backflow coefficient for ith stage, (1 = 2, 3, ..., 8)

Two simplifications are made in the above mathematical model., First
of all the individual stage volumes are assumed to be equal i.e. Vl =V, =
Vg3 = ... =Vg =1V, The backflow coefficients for stages three through
eight are assumed to be equal i.e. Yg3 = Y4 = Y5 = +er =Yg = Y. The
backflow coefficient for stage two may differ from vy because the feed is

introduced to the second stage: Yo will be represented by vy'.

5.4 FORMULATION OF THE PROBLEM

Experimental measurements were made for tracer concentrations in the
first three stages and eighth stage. Two distinct approaches may be used
to identify the unknown parameters. In the first one (Method 1), the dif-

ferential mathematical model consisting of Equations (1) through (4) may be



considered and backflow parameters can be estimateﬁ using the usual iden-
tification techniques for differential models. However an alternative
approach would be to consider the partial model indicated by the dotted
boundary in Figure 1. The performance equations for the first two stages
can be solved to obtain ﬁhe tracer concentrations C1 and C, as a function
of time and unknown parameters, if the tracer concentration in the third
tank is approximated by a polynomial. The backflow parameters can then

be estimated using a direct search procedure.

Both of these approaches (Method 1 and Method 2) were employed to
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estimate the extent of backflow using one set of data from the experimental

study (Experiment 1). Comparison of the optimal results indicated that
Method 2 gave a better fit for the experimental data [Chapter 3]. Hence
Method 2 was used to identify the backflow parameters in the rest of

the experiments (Experiments 2 through 11).

Equations (1) and (2) were solved to obtain tracer concentrations in
the first and second tank as a function of time and unknown parameters.
Detailed description of these techniques and complete analytical solution
of the partial system has been presented elsewhere [Chapter 3]. The

solution of Equations (1) and (2) can be written as follows:

(O)F Aqt
=__ 1 271 % - 1
g (A =2, v g = Bp)le
L (O,

N T - - 10
[(’\1‘7\2) (—‘“‘V‘_“""("ZK K))+K]e (10)
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2 3 4
+ KO + Klt + K2t + KSt + K4t
C,(0)F ALt
_ 1 2 1 1
CEmToy T Ok - K e
1 2
C.(0)F Aqt
1 g 1 2
[U\1 4 Az) { v + (szO - Kl)} * KO] e
C,(0O)F Yt
' 1 2 1 1
rE Ty T 0K - KD Age
1 1 2
C.(0)F A
1 2 1 5 2
- [(Al - 123 { v + [Azko - KIJ} + KO] A,®
v 2 3
+ EI [k, + 2Kyt + 3K tT o+ 4K 7] (11)
where
F ' F. 2 F. - F
w ot AT 4 ] w8 ey
¥y - ¥y V
A, = (12)
1
'
2 F
1
F ' F. 2 F. - F
2 2 vV 2 1
o R B HOS - Bl T
1 1 1
Ay = (13)
2 V_
By
2 2
mA 2amA 24a mA 6abmA 24ab " mA bmA
K=[ O_ 22+ 34+ 3_ 4 4_ 21
0 & g g g> g g
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6abmA 24ab%mA . 2b°mA 24ab°mA.  6bmA.  24b7mA
. 5 4, 4 4 3, S
3 7) 3 7} 7 T
g g g g g g
mA., 6amA, 24abmA, 2bmA. 24abmA, 6b°mA.  24b°mA
i 3, 4 2, 4, 3 4 as)
5 3 3 7 3 3 )
g g g g g g
mA. 12amA, 3bmA.  12b°mA
i 3 4 3, 4 16
g 2 2 3
g g g
mA.  4bmA
3
= I"‘g—‘ - 24] (17)
g
mA,
) 18
I g] (18)
v_
Fy
F
1+ 3
1
v
(F, - B, - F)
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A fifth order polynomial

2 3 4 5
= A +
03 Ay + AL+ AT+ AT+ At + At

where AO’ Al, A2, A3, A&, and As are constants, was employed to approxi-

mate the tracer response curve in stage 3.

The criterion function employed in this investigation was of the form

N N .
s= 7§ |ect -ct|+ T o.5 |ECE - i
T S | 22

N
+ 1 0.5 (rcl - cly? (19)

i=1 #
where ECl and E02 are experimental values of tracer concentrations in stage
1 and 2 respectively. As described in Chapter 3, a modified sequential
simplex pattern search [4] 1s used to estimate the backflow parameters
by minimizing the criterion function using Equations (10) and (11). The
statistical techniques which were used to select the degree of the polyno-
mial are described in Chapter 4. Bard's method [5] for "Single Equation

Least Squares' was used to estimate the parameters in the polynomial.

5.5 RESULTS AND DISCUSSION

Backflow parameters were estimated for the 11 tracer experiments de-
scribed in Table 1. Table 2 shows the parameter estimates, optimum function
value, and total number of data points (N) for each experiment. Reasonable

fit was obtained for all the experiments. Three parameters 02(0), v and
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v' are estimated using the tracer data from stages 1, 2, and 3. Quantities
S/N and /E?ﬁ; which give an approximate measure of the mean error (or de-
viation) were computed and used to compare the goodness of the fit for
different experiments. Two typical experiments (3 and 6) have been chosen
to illustrate the agreement between the predicted and experimental tracer
concentrations in different stages (see Figures 2 through 5). Good agree-
ment between experimental and predicted tracer concentrations was obtained
as shown in the figures. Based on the value of S/N, experiment 3 illustrates
the best fit obtained while experiment 6 illustrates the poorest fit. Be-
cause of the nature of the criterion function employed, S/N under estimates
the mean error, while /§7ﬁ- over estimates the mean error,

The sieve plate design is the same for the first nine experiments;
however, for experiments 10 and 11 the hole void area is increased from
3.43% to 7.627% and 157 respectively. Figures 6 through 9 show the extent
of backflow from each stage as a function of air and medium (water) flow
rates and per cent hole void area. The symbols denote the rate of backflow
at each stage. The lines connecting these points have no physical signifi-
cance.

The analysis of different experiments indicates that one can adjust
the backflow rate by changing either 1liquid or air flow rates or the hole
void area. The backflow rate increases as the water flow rate (or hole
void area) decreases (Figure 2 through 4). Lee [6] found that a compari-
tively wide range of operation can be obtained in a multistage tower fer-
mentor if the dilution rate (or backflow rate) can be controlled. If the

hole void area, hole size, and flow rates can be adjusted to obtain any
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Fig. 2. Tracer concentration in tank (1) vs. time.
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X experimental data for exp.3

— predicted from the model

© experimental data for exp.6
—--predicted from the model
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Fig. 3. Tracer concentration in tank (2) vs. time.
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Tracer concentration in tank (3) x 10°% (gms./cc.)

x experimental data for exp.3
— predicted from the model

© experimental data for exp. 6
—— predicted from the model
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Tracer concentration in tank (3) vs. time.
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x experimental data for exp.3
— predicted from the model
o experimental data for exp. 6
—-predicted from the model

Tracer concentration in tank (8) x IO"(gms./cc.)
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Fig. 5. Tracer concentration in tank (8) vs. time.
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desired extent of backflow, the tower fermentor can be very advantage-
ously employed. This work shows that conditions in which the backflow is
negligibly small can be found.

To illustrate the behavior of the tower fermentor as an approximation
to plug flow behavior, the results for experiment 3 were used. Simulation
of biological growth for these flow conditions with Mnax = 0.6 hr_l,

Y = 0.5, S0 = 10 gms/1lit., Xq = 0, and Kg = 0.1 gms/lit., gave the re-
sults shown in Figure 10. Because of the small amount of backflow to the
first stage, there is exponential growth in a large part of the fermentor.
Approximately 21 stages would be required for complete substrate utiliza-
tion. Continuous production of cells in physiological state ranging from
cells in exponential growth to cells growing in a rapidly decreasing sub-
strate environment can be obtained with the tower fermentor.

The results of this investigation show that the data collection pro-
cedures and parameter estimation procedures employed in this work give
good estimates of the backflow. The results show that the procedure of in-
jecting the tracer at a stage other than the bottom stage allows even small
quantities of backflow to be observed. Since some differences have been
observed from one type of tracer to the next and also from conditioms of

no active cell growth [l], it may be desirable to conduct further studies

using this procedure.
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5.6 NOTATION

AO, Al, AZ’ A3, A4 =

¢, (0)

EC

GREEK LETTERS

Yi

Mg Ay
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constants in Equations (14) through (18)

tracer concentration in itR tank, (gm./cc)

t

initial tracer concentration in i h tank, (gm./cc)

th

experimental tracer concentration in i tank,

(gm./cc)

dilution rate, (hr_l)

feed flow rate, (lit./hr)

flow out from the ith stage, (lit./hr)

= constants defined by Equations (14) through (18)

number of data points
objective function value

time (hrs.)

volume of the ith tank, (1it.)

cell mass concentration, (mg./ml)

backflow coefficient in itP stage

roots defined by Equations (12) and (13)
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Chapter 6
RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 INTRODUCTION

In this chapter several suggestions for further research are presented.
Although considerable research in many areas still needs to be conducted,
only suggestions for research closely related to the topic of this thesis

are presented in this chapter.

6.2 CONVERGENCE PROBLEMS

Future work needs to be done on the convergence problems of the non-
linear parameter estimation techniques, resulting from poor initial esti-
mates of parameters. Related to Marquardt's approach, it appears desirable
to start with search techniques and then as the optimum of the sum of
squares is approached to use linearization methods which are efficient in

this region.

6.3 NONLINEAR ESTIMATION WITH SIMULATED DATA

Experimental data are often not avallable in certain chemical or
biochemical systems, hence the informa;ion which can be gained from the
simulation of experimental data to assist in nonlinear parameter esti-
mation seems to merit further consideration. An attempt was made to
demonstrate the applicability of a simplex pattern search technique [1]
for estimating parameters in continuous multistage tower fermentation systems
using unsteady state simulated data, considering various types of experi-

mental errors. The comparison of this technique with other nonlinear
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estimation techniques and application of this technique to other systems

should form the basis of future work.

6.4 PARAMETER IDENTIFICATION IN DIFFERENTIAL MODELS

In Chapter 3 the performance of a continuous multistage tower fer-
mentor was analyzed using a flow model. An eight stage tower system was
considered. Tracer measurements were available in some of the individual
stages. The purpose of this investigation was to estimate the backflow
parameters and relationship between them. Two distinet approaches were
employed, In the first one, the two coupled differential equations,
arising from the unsteady state tracer material balances in the first and
second stages, were solved analytically, to reduce the differential model
to an algebraic model. The other approach was to use the differential
model to estimate these backflow parameters. The results obtained from
the algebraic model gave a better fit for the experimental data. This was
probably due to the assumptions involved in using a differential model.
The tracer concentration measurements were available in individual stages
at different values of time, which make the independent variable, time, in
the differential model different for each equation, and linear interpo-
lation was used to transform the data to get the tracer concentrations at the
same intervals of time. The usual parameter estimation techniques developed
for differential models are incapable of handling the situation, where the
independent variable is different for each differential equation. However,
an attempt should be made, in the future, to develop parameter identifica-

tion techniques which will handle this kind of situation.
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6.5 SIMULTANEQUS MEASUREMENT OF TRACER AND KINETIC DATA

Two distinctly different situations have been considered in this
work while identifying the system parameters in multistage tower systems.
In the first one flow parameters were estimated using available tracer
data and a flow model. WNext, flow and kinetic parameters wére estimated
using an unsteady model with reaction, using simulated data. The infor-
mation that one obtains from the analysis of flow behavior is often use-
ful in analyzing the model with reaction. If such an experiment is car-
ried out under identical experimental conditions, the flow parameters
estimated from the flow model could be substituted as constants; this
reduces the dimension of the problem and then only kinetic parameters
need to be evaluated. This information becomes increasingly important
in case of unavailability of a sufficient number of data points. This
problem was encountered while identifying system parameters in the
steady state model with reaction. Prokop et. al. [1] took experimental
measurements on an eight stage tower system with the possibility of
backflow and sedimentation. Measurements were available for steady state
cell and substrate concentration in various stages and in the exit. An
attempt was made to estimate the backflow parameters (y and y') and
kinetic parameters (umax’ KS, and B) using two different constrained
optimization techniques (1) modified simplex pattern search [2], and (2)
modified SUMT [3], and a nonlinear algebraic model. However, reasonable
results could not be obtained because of missing observations and a mar-
ginal number of data points. Future work needs to be done on this problem.

Computer techniques will have to be developed to solve the nonlinear



algebraic system in a very short time, because all the parameter esti-
mation techniques will require the solution of this system at each
iteration.

The flow model of the tower fermentor which may be considered is

shown in Figure 1.

6.5a Mathematical model
The mathematical model presented here considers the possibility of
backflow and cell sedimentation. The following simplifying assumptions
are made
(i) complete mixing in each stage.
(i1) equivalent effective liquid volumes in each stage.
(iii) growth kinetics follows the Monod relationship.
(iv) Dbackflow can be expressed as a fraction of the flow leaving
a stage.
The steady state cell and substrate balances in each stage of the
tower fermentor can be written as follows:

First Stage

BTl Sl XV
Substrate balance: 0 = F! §' + F2 y's -F §,6 - _lax T "1
b 27171 TY(Rg + 5
(1)
5 S. X, V
Cell balance: 0 =F, y' X, -~ F 8 X, + max "1 "1 "1 )

(KS + Sl)
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Second Stage

g : 0 =TF'g! - t - it
ubstrate balance: 0 Fy 52 + F3 Y 85 + Fl 81 F2 Y 32 Fz(l Y )52

_ imax 32 X, V2

Y(KS + Sz) (3)

v = - 1 - |
Cell balance: - 0 F, 8 xl +Fy oy x3 Fp y' X F,(1-vy")B X,

2

+ HYmax S2 Xz V2
(KS + 52)

(4)

Third Stage

. = e T - - »
Substrate balance: 0 F2 (1-y )Sz + F4 Y S4 F3 ¥ 53 F3(1 7)83

G 3 5T
T(Kg + 55) (5)
. - T - - &
Cell balance: 0 F2(1 YX, + F4 Y X4 F3 Y X3 F3(l Y)8 X,
_tmax 53 %3 V3

Y(Kg + S3)



-Stages 4 to 7

Substrate balance

Cell balance: 0

Eighth Stage

Substrate balance

Cell balance: 0
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P00 =F (NS + Fayy ¥ Syy - BN

U 5, X, V.
_FiYSi—mRXiilsi=4’5,6:7
Y(KS + Si)
(7)
=F; 118 Xy TP ¥ Xy - B AV X
S, X, V.,
- Fi y X, +-EEEEL_;£_;£__L , i=4, 5, 6, 7
% (RKg + 84)
: (8)
: 0= F7(l-y)87 - F8 Y S8 - FB(LﬂQSB
- umax SS XS Vs (9)
Y(KS + 58)
= F?(l_Y)B x7 = FB Y XB = Fs(l-Y)B XS
u Sq X, V
4+ _max 8 °8 '8 (10)

(Kg + Sg)



The flow balances 1n each stage of the tower fermentor are as follows:

where

Stage

Stage

Stage

Stage

Stage

1:

3:

_F1+F2Y.="‘Fi

= = - 1
F Fy + Fy v F

1 2

-y ! - =
Fz(l ") F3 + F4 Y 0

4 to 7: Fi(l-Y) - Fi+‘l + Fi+2 Y = 0, i=3, 4, 5, 6

8:

F?(l—y) - F8 =0

substrate concentration in the feed to the first stage.
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(11)

(12)

(13)

(14)

(15)

substrate concentration in the feed to the second stage.

substrate concentration in the ith stage.

cell concentration in the ith stage.

maximum growth rate.

yield coefficient.

volume of the ith stage.

coefficient for cell sedimentation.

saturation constant, substrate concentration at which
the specific growth rate is one-half the maximum value.

flow out of ith stage.
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]

Bly B2

1 5y feed to the first and second stage, respectively.

backflow coefficient for stages 3 through 8.

=
]

backflow coefficient for stage 2.

-
il

However, an alternative approach would be to simultaneously obtain
tracer and kinetic data by operating the tower system continuously under
prescribed conditions. This may simplify the problem to a great extent
from the parameter identification standpoint. It may be possible to
obtain tracer data on liquid phase and cell phase, and measure substrate,

cell and other concentrations at the same time, for kinetic analysis.

6.6 SELECTION OF THE BEST REGRESSION EQUATION

The basis of selection, of the best regression model for predicting
the tracer concentration in one of the individual stages, in Chapter 5,
was the examination of residuals obtained from different assumed models.
More sophisticated techniques are sometimes required when the choice is
to be made among two or more models which are almost equally adequate
for predictive purposes, or when one tries to select the variables in
regression.

Several statistical techniques have been proposed for accomplishing
this which include (1) testing all possible regressions, (2) backward
elimination, (3) forward selection, (4) stepwise regression, and (5) stage-
wise regression procedures. Testing all possible regressions is rather
cumbersome and is quite impossible without high speed computers. The
backward elimination method is an improvement on the "all regressions"

method in that it attempts to permit the examination not of all regressions
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but of only the "best" regression containing a certain number of variables.
The backward elimination method beglins with the largest regression, using
all variables, and subsequently reduces the number of variables in the
equation until a decision is reached on the equation to use. The forward
selection precedure is an attempt to achieve a similar conclusion working
from the other direction, that is, to insert variables in turn until the
regression equation is satisfactory. The order of insertion is determined
by using a partial correlation coefficient as a measure of the importance
of a variable nmot yet in the equation.

The stepwise regression procedure is an improvement on the forward
selection procedure. The improvements involve the re-examination at
every stage of the regression of the variables incorporated into the
model in previous stages. A variable which may have been the best single
variable to enter at an early stage may, at a later stage, be superfluous
because of the relationship between it and other variables now in regres-
sion. To check on this, the partial F-criterion for each variable in the
regression at any stage of calculation is evaluated and compared with a
preselected point of the appropriate F-distribution. The stagewise re-
gression procedure does not provide a true least squares solution for the
variables included in the final equation. After a regression equation in
the x variable most correlated with y has been fitted, the residuals (yi—§i)
are found. These residuals are now considered as response values and re-
gressed against the x (of those which remain) most correlated with this new
response. The process is continued to any desired stage, Since at each

stage
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Response = Fitted Response + (Response - Fitted Response)
the regression equations can be back-substituted stage by stage until the
final stagewise equation is attained. A detailed description of all the
above mentioned methods for regression analysis can be found in reference
[4]. These techniques along with numerical statistical techniques should
be applied in the future, to the problem considered in this work and other
similar problems, to investigate, if any improvement in the analysis is

possible.
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This work is concerned with the handling and analysis of experimental
data for batch and continuous tower fermentors. Data analysis often plays
an important role in research designed to investigate the mechanism and
behavior of a process. An analysis of nonlinear parameter estimation
techniques for both algebraic and differential models was conducted using
both experimental data and simulated data of known error distributions.

Unsteady state, continuous, multistage, tower fermentor performance
was analyzed using a four stage tower system. Transient data was simulated
using various types of experimental errors including normally distributed
error, instrument drift, zero error in the instrument, and various combin-
ations of these. Flow nonidealities like fluid backflow and dispersed
(microorganism) phase sedimentation were included in the model.

The second part of this investigation employs tracer data made
available by Dr. Humphrey and his associates at the University of Pennsyl-
vania. Experimental measurements of concentration vs. time for the first
three stages and the eighth stage of an eight stage tower fermentor with
feed to the second stage are employed to determine the extent of backflow
in the tower system. Two approaches to the parameter estimation problem
are investigated. One method uses the differential model for the eight
stage system while the other uses the model for the first two stages to-
gether with a polynomial approximation to the ﬁracer response at stage
three. Statistical techniques are employed to determine the most adequate
and satisfactory regression model for the available tracer data for stage

three.





