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INTUODUCTIUN

It la eoBBon knowledg* that one of the inpertftnt

function of Bathosatics la to aolvt aquation. A

polynouial aquation of tho firat degrae ax b « can

ba aolvad. The aolution hart' ia x ~b/a. A polynomial

2
aquation of tha aacond da^rae ax •*- bx •t' o • alao

can ba aolvad and tha aolution ia x « (-b -fib •> 4 ae)/2a«

Aa tha dagrae incraaaaa, howavar, tha aolution baeoaaa

rapidly more difficult, and it ia wall-known that Baihaaaticiana

cannot aolva by radicala polynonial aquationa of dagraa

highar than four. Galoia (1811-1832), bowevar, ahowad

that an equation ia aolvabla by radicala if and only if

ita group, for a field containing ita coaf f ieienta, ia

a aolvable gruup. That ia to aay, one can determine whether

it ia poanible or iaposaibla to aolve a high order equation

by radicala by applying the theory of groupa. Rovewer, it

ia iaportaut to nake clear At this point juat what ia meant

by poaaible or iiipesaible. \afhether a prubleta ean or cannot

ba aolwed depends upon the condit&ona iapoaed upon the

aolution. Thua, x 4^ 2 • 3 can be aolved if poaitive integera

are pernitted. On the contrary, it cannot be aolvad if

1. Including addition, aubtraction, sultiplication

and diviaion.
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only nagfttive integers are pernitted. A polynoslal Miy

be reducible or irreducible depending upon the field la

2
which the factoring is to be done. Thus, x - 2 is ir-

reducible in the field of rational nuobers but reducible

in the field of irrational nuubers. Hence it would be

abstird to say whether a polynomial is reducible or ir-

reducible without specifying the field.

To use the relationship between roots and the

coefficients of an equation to solws the equation Itself

is a ooDuuon method for solving an equation. For instance,

2
having given a quadratic equation, say x bx * c " 0,

then by the theory of equations, x. x„ « -b and x.Xg * e»

where x. and x^ are two roots of the quadratic equation.

If this pair of equations is soivsd for x, and x^, then one

quickly discovers that tuis aethod does not work because

one is only led back to the original equation. However,

if it were possible to obtain a pair of equations both

of which were linear, then one could find the values of

x^ and Xj from thea. The sane argoBsnt also holds for

equations of higher degree.

These are the ideai upon which tialois based bis

solution of an equation by the theory of groups. The

developnent of his theory and its application to the

solution of an equation will be discussed in the

following sections.
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GKOOPS

fitlioiUfia. ^ «'^*"*P G !• • Sftt of elM«ntt

with a binary oparation e which aatiafiea tha fallawing

postulates:

Posiulata 1. o is olaaad on tha aat.

Postulata 2. d is associativa on the sat.

Postulate 3. Thara axiata an identity alamant in tha

sat for tha operation o.

Postulate 4. For every element in tha aat thert^ eziatA

in tha set an inverse with respect to a.

For example, the set of four elements 8 «)l,-l,i,-ij

under nultiplication forms a group. Multiplication ia

closed on the set because the product of any two elementa

in S ia again in S. Multiplication ia associative on the

oovplex number ayatam. 1 ia the identity element under

multiplication. 1 ia its own inverse and so is -1; i is tha

inverae of -i and -i ia the inverse of i. Thus this set of

elements satisfies all tha four loatulates and hence it forma

a group.

Definition , If the aet of elementa tthieh eonatitutea

Q ia finite, then G ia called a finite group.

Per exaeple, the set S • 1, -1,1,-i forms a finite group

under multiplication becauaa the set S is a finite sat.

t":
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D<f inition . An Abclian group is a group with th«

additional postulate:

Postulate 3» o is oesaiDatative en the set.

Again, the set S i|l,-l,i,-i} is an Abelian group

because fflultiplicatioc is conuButative en the complex

nonber systen.

Definition. The order ef a finite group is the nusber

of elements in 6.

Defini tion. A subset S of a group G is called a

subgroup of G if S itself is a group vitb respect to the

binary operation of G.

In any group 6 the set consisting of the identity e alone

is a subgroup of 6. The whole group G is also a subgroup ef

G itself. Doth of t tese are called iaproper subgroups.

Theoren 1. The order of a finite group G is a

nultiple of the order of every one ef its subgroups.

Definition . The order ef an eleneut a of a finite

group is the least postive integer such that a" « e,

where e is the identity of the finite group.

Theorem. 2 The order of a finite group G is a aultiple

of the order of any of the elenents of G.

Proof; The proof is obTious by using the preceding

theorea and definition*

1. For a proof » refer to p. 94 in Benner, Newhouse, Uader

Yates: Topics In Modern Algebra.
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Dtfinition. A cyclic group is one which cootain* «

P«rticalar •l*n«nt, called the generator of tbegrsup, aucb

tlwt the order of this elcme;tt ia equal to the order of the group.

Tbeereio 3. There exiata a cyclic group for any order.

Proof: Let 4 be any arbitrary poaitlTe integer. The

group Bade up of the elwieuta b,b »...tb ,b • e under

tultiplication ia a cyelie group of order n. Thia proves

the tbeoren.

Definition. Let G and B be two aeta of eloMenta each

with a particular operation. If the napping 6-^ baa tha

property that for gj»82^'' *"* *'i»'*2^^» •l'*^i»'2"''*2

iapliea fi|6o'*^i'^<2 * ^'**° ^^* napping ia a heaeaierpbiaii.

Definition . Let 6 and B be two aeta of elesenta eaeh

with a particular operation. If the mapping G-^I ia one-to-one,

and if for gj.ggtG, h^.h^t H, g^~»bj and gg^^ij inpllee

g g -r^ h , then the mapping ia an iaomorphiaa.

definition. If the two syateBS in the preceding

definition are the aaae ayaten, then the mapping ia an

automorphiam.

Theorem 4. Two cyclic groupa ef the aame order are iaouorphic.

Proof; Let the two cyclic groupa be G.and G . Let

a be a generator of 6 and b be a generator of G ; alao let

a -^ and a'^-^''. Since G and G,^ have the aame. ordeg,, thia

ia a one-to-one correapendenoe between G. and G

1. From now en* juxtaioaition will be uaed inatead

•f operation ••
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a^.^^ and a^--»4>% Sine* G. and G^ have the saaa order, thi«

is a one-to-one correspondence between G. and • Then since

aV - a**^ and b^-^ - b^*-*' a^***^^**^. Thus G^and G^ are

isoBorpbie.

Definition. If all properties of the eleaents sf a

group are abstracted except those of its nultiplication

table, then this group so formed is an abstracted ; roup.

Theorem. 3. If p is a prisi** the cyclic group is ths

only abstract group of order p.

Proof: If 6 is of order p, then it contains an

eleiaent b which differs froa e. Since p is a priae, it

follows from Theorem 2 that the order of b is p; hence

G is cyclic. Since two cyclic groups of the same order

are isomorphic, the cyclic group is the only abstract

group of order p.

Def inition . A permutation group on a set of symbols

la a group with permutations on a given (finite) set of

•ymbols as its elements and multiplication of permutations

as its oparation.

For example, tha set of permutations 11,(ab)(od),

(ae)(bd), (ad)(bc)^ forms a permutation group.

Let P be the aet ef all permutatioua on n letters.

If there exists a maximiiB subset of P such that when all

the elements of this subset are appliei^ to a function
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Individually and if the vain* of this function reaalns

unaltarcd, than thla aubaat of P forBss a group. It is

•aid to bo th« group under which th« function ia inTariant*

At an illustration, it ana applies ilia pamutatiena 1 and

(ab) to tha function a + b individually, than tha valua of

this function roaiains unchangad. Thua ^^l, (ab)} faraa a group.

Dafiaition. The total sat of pamutations en n letters

biftoo»«"»*> contain* n! peraiutations. This set of elemeDts
X « n

farms a group of order nS/$. which is a syciaetric group.

Def inition . The total aet of even perautatioua ou n

letters b.,b-,...,b foms a group of order n!/2. This

group is an alternating group.

Definition. A transitive group is a perautation group

with the additional property that it contains a perautation

iriileh replaces any given one of its elesients by any other

given one.

The group conaiating af the percoutations 1, (ab)(cd},

(ac}(bd), (ad)(bc) ia a tranaitive graup becauae these

•leaiattts in order replace a by a,b,c,d, b by b,a,d,c and

•0 on. The following five defiuitiana play an iapartant

role in dealing with the aolutlon of equations by using

Galaia theory, aa one will aee later.

1. For a proof, refer to p. 21 in Caniiehaelt

Introduction to the Theory of Groups of Finite order.
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Definition. A transform of an element b is a ba, where a,b(:6.

Definition. A group T is a normal subgroup of G if it

rewiins unchanged when all of its elements are transformed

by all the elements of G.

Definition, per H^G and fixed xtQ, ^hx[heH}is a

left coset of H, denoted by Hx, and (xhjheH}is a right coset

of H denoted by xH.

Definition. If G is a group and T is a normal subgroup

of G, then the set H containing all distinct xT, for all x^G,

is the factor group of G with respect to T, designated by H-G/T.

Definition. Let G be a group. If it contains a sequence ef

subgroups G - G 3 G, 3 6_ 3 ... ^G « 1, each a normal subgroup ef
o 1 ^ s

the preceding, and with G. ./G. Abelian, then G is a solvable group.

Theorem 6. A homomorphic image of a solvable group is solvable.

Proof: Let G be a solvable group; i.e., G 3G^ ^Gg-^ . , ..:>6 "1,

each a normal sub^^roup of the preceding and with ^t^/^i Abelian,

Let T be a homomorpbism of the group G on the group G'. Hence

there exist G .
' such that T is a homomorpbism of G on G.', where

G. are normal subgroups of G, and G.' are norical subgroups of G*,

and G' 3G, '3 G^'_-:> ... 3G • • 1. However, G. ,/G. is iiomorphic to12 8 X-'l X

G. i'/G.'^. This lijiplies that G. ^'/G^' is Abelian. Therefore

G* is solvable.

1. For a proof, refer to p. 28 in Hall: The Theory ef

Groups.
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Definition. If p - (l23...n) denotas a pararotation ©n k

lettara b^.bg h^» and if (123...a) haa a lettera (k * n),

than p ia an n>cycle.

Thaoram 7. If G ia a synnetric group on n lattara (n>*),

if H ia a aubgrenp of G containing avery 3-cycle, and if

H ia a noraal iubgvoup of H auch that H/H^ ia Abalian, than

n. containa every 3-cycla.

Praof: Let x • (ijk) and y - (kra) be two elementa of

B, whare i,J,k,r and a are fiva diatinct letters. Lat B-^li/E^

ba a hOBOBorphiam. If x-^x', y-*y\ where x'.y* are two elesenta

af H/Hj, than x'V^xy-^^'V*"! ^V - L («/»! i« Abalian).

Hence x'V^aytUj. Howerar, x^VV - (kji)(«rk)(ijk)(kra)

- (ikr). Tbarafora, for each l,k,r, the 3-cycla (ikr)/cH^.

fhaoran 8. The oyamatrio group G on n lattara ia not

aolvabla for n>4.

Proof: Snpposa the ayrametrie grotip G ia aolvable. Then

by definition there exista an ezpreasion G - 0^^®i^®2^ ''^r
" ^

auch that each 6 ia a normal aubgroup of the preeading one,

and G. ^6 ia Abelian. As one can obaerve from the preceding

*ha9ra»^ G containa every 3-cycle. Since G ia a nomal aubgroup

of G, G containa a 3-cycle. Hence G / 1. This centradicta the

fact that G ia a aolvabla group.
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FliilLD Tii£OUY

Definition. A field F is a set of ftlenents with two

closed operations (Ji.' and f2,' which satisfies the following

postulates:

Postulate 1. (X and (i) are both commutative.

Postulate 2. (Tj and (g) are both associative.

Postulate 3. The set contains an identity element e
o

forCJpand an identity element e for (2.4

Postulate 4. ESvery element has an inverse with respect

to (X) and (2; except e » which does not have

an inverse with respect to(j)«

Postulate 5. (2^ is distributive with respect to Q).

If £ and F are two fields with the sane operations, and

if every element in F is also in £, then F is called a subfield

of E, and E is called an extension of F. This is designated by

FCE. Suppose E' is the additive group of the field E and

F is a field. If for each A(=.E' and a^F, one defines a particular

operation o which is the same as operation (§) defined above such

that Aoa is again an element, in £', then E can be considered as

a vector space over F. This is because all the vector space

postulates are satislied by the properties of an additive Abelian

((roup and this particular operation. Hence one can consider the

degree of £ over F, denoted as (e/p), as the dimension of tha

vec4or space of E over F. In case this value is finite, £ is a

a finite extension of F.

/
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Theorem 9. If F, B, E, are three finite fields •uch

that P^B^E, then (b/p) - (b/f)(b/b).

Proof: Let the distinct elenenta w. ,...,w for* a basis
X o

for B OTer B and u.,...,nj^ for« a basis for B over F. Foijany

•leaent x^S, z can be represented as a linear combination of

*«»•••»*_» i«*»}

(1) X -5^r.w., with all r .t B.

I'l ^ ^ •"

One can use the same argument to show that

(2) r. -Za^.tt., with all a^j^^ F.

Substitnting (2) into (l), one obtains

J » * '

Suppose z B 0. Then (l) implies that all r.« 0, j « l,...,m. If

all r. " 0, (2) implies that all a. - 0, j » l,...,is,i l,...»n.

It follows that the m»n elements in (3) are linearly independent

with respect to P. Thus, they form an extension E of F* Since (e/P)

is m»n, (b/p) is n and (e/b) is m, the statement (e/f)-(b/P)(e/b) is true.

Corollary. If P.,...,F are n finite fields such that

PjClP2C...CP^. then (ryPj) - (V^l^^V^2^---^VVi-
Proof: One can extend the same technique used in proving

the preceding theorem to show that the corollary is true.

A polynomial of degree n in F is an expression

,x"~^ + ... + a such that all a.fc P with a / 0. A
1 n 10

polynomial P is called irreducible in P if it cannot be expressed

B n—

1

a X + a,x
o

as a product of two polynomials of degree at least one in P;

otherwise P is called reducible.
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Theoren 10. If £(x) is an irreducible polynomial of

degree n in P, then it cannot divide the product of any two

polynomials g (x) and h(x) of degree less than n in P,

Proof t Let h(x) be a polynomial in P of degree lees than

n. Suppose there exist some g.(x), i » 1 k in P of degree

less than n such that gj(x)'h(x) is divisible by l(x). Then

one can select one, say gj^(x) such that the degree of gj(x) is

the least among all gj^(x) and form the equality k(x)«f(x) -

g (x)'h(x), where k(x) is any polynomial that satisfies this

condition. Using the Euclidean Algorithm, one obtains

f(x) „ g (x)q(x) + r(x), where r(x) is the remainder of degree

leas than g,(x). Since f(x) is irreducible, r(x) ^ 0. koreover,

h(x)f(x) - h(x)g^(x)q(x) h(x)r(x),

r(x)h(x) - h(x)f (x) - h(x)gj(x)q(x) - h(x)f(x) - k(x)f(x)q(x)

- f(x)( h(x) - k(x)q(x) ).

This implies that r(x)h(x) is divisible by f(x), which leads te

a contradiction in selecting g^(x) as the g. of least degree.

This proves the theorem.

If F E, and a E, then a is called algebraic with respect to

P if there exist polynomials in P such that these polynomials in

F have a as a root.

Theorem 11. If g(x) is a polynomial among all the polynomials

in F having a as a root such that g(x) is of the least degree

and the coefficient of the highest degree term of g(x; is one,

then g(x) is unique and irreducible in P and is a divisor of

all the said polynomials.
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Proof: That g(x) is irreducible follows directly from the

choice of g(x). Let f(x) be a polynomial in P such that f(a) «• 0.

Applying the division algorithm, one obtains f(x) » g(x)q(x) + r{x)

and f(a) « - + r(0) = r(0). The statement that r(x) is of

degree less than g(x) but has a as its root is a contradiction

to the choice of g(x). Therefore, r(x) » 0. This shows that

f(x) is divisible by g(x) and g(x) is unique.

Theorem 12. If F is a finite field of n elements, then

the ietldf all polynomials in F of degree less than n forms a

field £ with n distinct elements.

Proof: Let f(x) be irreducible polj-nomial in F of degreen. Let

the general form of the polynomials in F of degree less than n

be g.(x) « c •• c,x Cf,x + ... + c ,x .3efine(P
1 X A n—x

as the addition and (^ as the particular multiplication such

that g (x)g.(x) " gJx) (mod f(x)). By using a theorem in

congruences modulo a polynomial that the remainder of the

product of two remainders of two polynomials is the remainder

of the product of these two polynomials, one observes that

(D is closed. Also every g.(x) has an inverse with respect to

except the zero polynomial because g.(x) / and g.(x)g (x)

implies that g.(x) • 0. Hence, they form a field E.

Since if g^(x) - c^ + c^x + o^x ... c _jx""^»

and if F contains n distinct elements, then each of the n

independent coefficients c.may have any one of n values.

This proves the existence of n distinct elements in £.
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Theoren 13, (Kronecker) If f(x) is a polynoaial In a

field F, tiiere exists an extension E of F in which f(x) has a root.

Proof: Case 1. If f(x) has a root in F, then the theorem

is proved.

Case 2. If f(x) does not have a root in F, one can

construct an extension E of F in which an irreducible factor

of f(x) has a root. The procedure is as follows!

Let f(x) = x° + '*n-l*'*" * •** * *o ** irreducible in

P. Let S be the set of all polynomials g^a; " c^ + c^^a + ... + c^^^a

of degree less than n with c.£F. Define(i)as addition and

(2) as the particular multiplication such that g.(a)g^a) - gj.(a)

(mod f(a)). Then E is an ad itive group. Since a is a particuipf

element of £, if one performs operation (2^ on a itself n times,

then one will obtain a Remainder of the polynomial a , This remainder is

(1) a° - f(a) - -b„_ia-l - b^^.a""^' - ... - b^

On the other hand, instead of computing a and then reducing it

to an element in E, one can compute this remainder using operations

(l) and (2) with respect in £ avoiding the appearance of the a

power. This remainder, however, must again be equal to a ,i.e.;

(2) a » -b -a - b „a - ... - b.
^ ' n-1 n-2

Equating (l) and (2) yields f(a) - An £. Uence contains F

as subfield and a satisfies the equation f(a) 0.

Let h(a) "^ b.a and g(a) / be two elements
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in E. Then there exists an eleaent X(a) - z.a <^E such

that g(a)x(a) - h(a). Computins the left hand product, one

obtains an expression L + L.a ...•• ^__|* t where L,

is a linear combination of z. with coelficieata in F. Hence

L B b .i > 0.1, ....n-l. This set of simultaneous linear equations

has a solution if and only if the rank of the augmented matrix

is equal to the rank of the coefficient matrix. This is equivalent to

saying that L. = b. has a solution if the corresponding set of

ho^pgeueous equations L. s 0, i K0,l,...,n-1 has only the

trivial solution. The hoaogeneous case would occur if X(a)

satisfies the condition g(a)x(a) - 0. This implires that

g(a)x(a) is divisible by f(a). According to Theorem 10, this

is only possible for X(a} « 0. lience £ is a field.

Definition. If F, B and £ are three fields having the

relation that F<=-B<^E, then B is an intermediate field.

Def inition. A splitting (root) field E is an extension

of a field F with the property that f(x) (a polynomial in F)

can be decomposed into linear factors in £ but but cannot be

so factored in any intermediate field.

1. Refer to pp 43-47 in Perils : Theory of llatrices.
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Theorem Ik, There exists a root field K of i{x)9 where

f(x) is a polynotuial in a field F.

Proof: Case 1. If f(x) can be factored into linear factors

in P, then F is a foot field of f(x).

Case 2. If f(x) cannot be factored into linear

factors in F, then one can express f(x) - fj(x)f2(x) ... fj.(x),

vhere f.(x),...,f (x) are irreducible non-linear factors of

f(x) in F. It is true that there exists an extension £. of

F in which f.(x),...,f (x) into irreducible factors in E^^

and proceed as before. Since the dej&ree of f(x) is finite,

%ae will finally arrive at a field such that f(x) can be

decomposed into linear factors.

Theorem 1^. A polynomial f(x) in F can be decoaposed

into unique factors belonging to and irreducible in F in

just one way.

Proof: Let f(x) = pj(x).p^(x).. .p^(x) - q^(x)»qo(x).. .qg(x),

where the leading coefficients of p.(x) and q.(x) are one.

Let F(a) be an extension of F in which p^(a) » 0. Then

f(a) - » Pj(a),..Pj.(a) - q^la),. ,q^(a) , This inplies that

there must be one factor q.(a), say q^(a), which equals zero.

Hence p^(x) » qj(xj| Theorem 11 ); i.e.,

Pl(x)(Po(x)»»»Pr(x) - q2^*^***'^8^*^^ " ^»

P2(»)»»'P i*) - q2^*^****^s^*^*
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If one repeats this procedure r times, one obtains f(x) - q^(x),

i = l,2,...,r. Using the fact that a polynomial equation of

degree n can have only n roots, it follows that r » a.

Definition. Let S -^^T^.T^, . . . .Tq]; be a set of isoraorphlsMS

of a field E onto a field E*. Then an element a of E with the

property that T^(a) - '2^*^ " ***
^n^*^

^^ * fixed point

of £ under T.^T^ Tn.

In case S is a set of automorphisms, and T. is the identity,

one obtains T.(x) = x. If x is a fixed point, then Tj(x) = x,

i » 1,2, ...,n.

Theorem 16. The set of all fixed points of £ forms a

fixed (invariant) field which is a subfield of £.

Proof: Let a and b be two fixed points ^£, Then

I,(a + b) = T.(a) T (b) - T (a) + T (b) « T (a + b),

Tj(a.b) - Tj(a).T^(b) - T^(a)»T^(b) - T^(a.b),

(T^(a))-^ - (Tj(a))"^ - T.(a"^) - T^Ca"-^) and -T.(a) - T^(-a) etc.

Uence, this set forms a field. Since every element in this set

is also an element in E, this field is a subfield of E.

Theorem 17. If T,,...,T are n mutually distinct isomorphisms

of a field £ onto a field £*, and if F is the fixed l|ield of

E, then (e/F) ^ n.

Proof: Let (e/f) = r<n. Let 'lij,...,w^ be a set of

generators of £ over F. Consider the set of homogeneous

linear equations.
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(1) Tj(*i)xj + ^^(w^hg -. ... + T^(wjjx^ -

(2) Tj(w^)xj * T2(w^)x2 + ... I T„(*2K " <>

. • • . • •

(if) T,(w )x. + T„(w )x„ + ...+ T (w )x = 0,
* ' l^ r 1 2^ r' 2 n^ r' n

Since r<^n, ibis set of hoDogeneous linear equations has

ore unknowns than equations. It follows that there exists a

hon-trivial solution X|,...,x . Multiply (l) by Tj(a| ),...,

(r) by Tj(aj,), where a^fe F, i = 1 r. Since ^.(a.) « ,,,

- T^(a.) and Tj^(a^)-T^(wJ « T^Ca^w^.

Tj(ajWj)xj + ... + T^(ajWj)x^ =

• • • • • •

^l^^^'^^'i ... + T (a w )x - 0/irrx nrrn
For any cc: £> it is true that

c - aw + ,,, + a w , where a.fcF, i = l,2,..,,r. Thus,

Tj(c)xj + T^(c)x^, + ... + T^(c)x^ - 0. Since not all x. - 0,

i » l,2,,..,n, T.(c), i » l,2,...,n are not mutually distinct.

This contradiction arises fron r<!n. Therefore, (e/f) ^ n.

Corollary. If T,,T,,,...,T are distinct autonorphisas

of the field £, and F is the fixed field, then (e/f) ^ n.

Theorem 18. If E is an extension field of F, the set G

of all automorphisms which leave F fixed is a group G.

Proof: Let T^,...,!^ be the set G. Since T,(T„(a)) - a

- TjTj,(a) - T^(a), Tj"^(a) = Tj"^T^(a)) - TjTj~^(a) = a, the

Set -l^-crf^-i ,^ r''-F
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It is necessary to point out th« fact that ths group 6

docs not DQod to have F as its fixsd fisld, since G oay also

Isave invariant some elenents h(c E, but h^ F. Hence, the

diasDsion of the fixed field of G ever E may be larger than

ibe disension of F over E»

Definition. If £ is a finite extension of F, and if the

group of autonorphisms of ¥, which leave F invariant has F for

its invariant field, then £ is a noraal extenaion.

Tbeorea 19. If £ is a noreal extension of F, then (e/f) • n«

Proof; Lot T tG for i - l,...,n. Let (e/f)> n. Then

there exist n •> 1 independent elements b.6; £| i"> 1,...,d-*>1

vith respect to F. The systsn of hosiogeneous equations

XlTi(bj) ... * x„^iTi(b„^i) -

(1) V2(h) * ••• ^^^I'^a^Vi) '^

• • • • • *

Vn<h) * - * ^.l'^n^»'n.l> " «

has a non-trivial solution in E. If t lis non-trivial solution

is in F, then the first equation of (l) leads to a dependence

uiong the elBJsents b.,...,b ., which vil^lates the assunption*

Let a ,...,a ,1,0, ...,0, where a,/ 0, i « l,,,,,r-l,

be a particular non-trivial solution with toe least nuaber

of elenents different from stero. It is true that t; / 1. bince

T-(b ) « b / 0, *,T (b ) - would iaiply a - 0. Thus, one

obtains
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(2)
•••

Suppose a,^ E but a, ^ F, This implies that there exists a Tj^^ C

such that T^(ag) ^ a^. Multiplying (2) by Tj^ , one obtains

Tk(aiTi(bi)) + T^(a2Ti(b2)) * ... + T^C^r-l'^iCVl)) * T^(Ti(^)) " <>

/gi) ...

(3)
•••

Tk(^>Vn(h> * ••• * ^^^-l^ Vn(^-1> * V„<^) = °-

Since T T- T., 1 ^ i,j,k * n, n - l,...,n, if ons Bakes some

suitable rearrangement of the order of tUe aquations in (3) and

perforins (2)-(3)» one obtains

(a, - T^(ai))T^(bp * . . . . (a^^^ - \{\,i)ni<\-l^ ^ °

(4)
•••

which is also a non-trivial solution of (i). The fact that

this solution has fewer than r elements different from zero leads

to a contradiction in the choosing of r. This proves the theorem.

Corollary. If E is a normal extension of F, then every

automorphism that leaves F fixed beionge to G.

Proof: It is true that (e/F) = order of G - n. Let T^^^

be an automorphism that leaves F fixed but not in G. Then F

would remain fixed for all T., i = l,...,n+l. This implies that

(e/f) ^ + 1. (Corollary to Theorem 1?). Bnt the last statement is

a contradiction to (e/f) « n. Thus, T , must be in G.
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Corollary. No two distinct finite groups G and G have

the sane fixed field.

Definition. A polynomial f(z) of degree n is separable over

a field F if it has n distinct roots in its root (splitting)

field E; otherwise f(x) is inseparable. E is called a separable

extension of F,

Let f(x) « a -f ax -f . . . + a x be a given polynomial

of degree n. The polynomial f*(x) - a^ + (2a2)x •»> ... + (na )x"''^

is defined as the formal derivative f'(x) of f(x). If the

coefficients of f(x) are in the field of real numbers, this

formal derivative is the^ame as the ordinary derivative in cauculus.

Theorem 20, A polynomial f (x) is separable when factored

over E if and only if f(x) and f'(x) are relatively prime.

Proof: Factoring f(x) into powers of distiact linear

factors over any root field, one obtains

(1) f(x) » a^(x-uj)*l. ,... (x-uj^)*k . (a^/0)

The fortoal derivative of (l) would be an expression which is

the sum of (k - l) terms each of which contains (x - U|)*l

as a factor and one term a e,(x - u,)®!"" (x - u^)®-...(x - u. )*k.

If f(x) is separable, then e^ = e,. = ... =ej^ = 1. Hence,

(f(x),f'(x)) - 1. If (f(x),f(x)) = 1, then f(x) and f(x) have no

factor in common except 1. This implies that e, - 1; otherwise

f(x) and f'(x) would have a factor (x - u,) in common. The same

argument can be used to prove tcT pro^e e^» e>>>.. .«e. •!. Thus,

'(x) - a„(x - Uj)...(x - Uj^).
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Definition, If E «= F(u|,..,,u ) is the root field of

m polyhoffiial f(x) = (x - n )...(x - u ), then the group G

of the automorphisms of E over F is (l) the Galois group or

(2) the group of the equation f(x) - or (3) the Galois group

of the field £ over F.

Theorem 21. B is a normal extension of F if and only if

the number of automorphism of B is (b/f)«

Proof: If B is a normal extension of F, the number of

distinct automorphisms of B vhich leave F fixed is (b/f).

(Theorem 19 and its corollary). Let the number of distinct

automorphisms of B which leave F fixed be (b/f). Let F* be

an intermediate field of all these automorphisus; i.e.,

FCF'Cb. By Theorem 9 and Theorem 19, one has (b/F«) » (b/f),

(F'/f) = 1 or F « F*. Thus, i) is a normal extension of F.

Theorem 22. E is a normal extension of F if and only if

£ is the Tooji field of a separable polynomial f(x) in F.

The following theorem which is known as the fundamental

theorem of Galois theory gives the relation between the

structure of a root field E of a polynomial f(x) in F and its

group of automorphisms G.

Theorem 23. If G is the Galois group for the root

field £ of a separable polynomial f(x) over F, then:

(1) Each intermediate field B is the fixed field for a

subgroup Gu of G, and distinct subgroups have distinct

fixed fields. One says B and Gn belong to each other.

1. For a proof, refer to pp. 44-40 in Artin: Galois Theory.
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(2) For each iuteruediets field B, (E/b) is the erder ef

Gjj and (b/f) is the index of G^ in G.

Proof: (1) It is true that the root field E of t{*) in

F is also the root field of f(x) in fi, where U is an interaediate

field. It is also true that £ is a normal extension of B.

Therefore, there pxists a subgroap G„ of G such that G^ leave ii

B invariant. The saae argnaent can be extended to provev the

ease when there is more than one iutenaediate field. Since no

two diatinot finite groups G^ and G^ bare the saaie fixed field,

this proves that distinct suberoups have distinct fixed fields.

(2) The index of G^ in G is defined as the order

of G divided by the order of G^^ . Since G has B as its fixed

field, by Theoresi 19 one has (B/d) • order of G.^ and (e/f) » order

of G. By definition, order of G • index of Gg in G tiiaes or er of

Gjj . Since (e/f) • (d/F)(e/B), the index of G^^ - (b/f).

Theereg 24. The intermediate field B is a normal extension

of F if and only if the subgroup G- is a uorisal subgroup of 6,

Proof: Let G be a subgroup of G. Then for any two eleiuents

TjiTj^c Ggand any ar B At is true that Tj(a)-aW^(a), If one

lets TTj, TTg be two distinct elements iu TG^ , then for any

•r. B, TTj(a) - T(a) - TT2(a). Hence the elements of G in any

one loft coset of G^ nap B in the same way. Let T and S be

two distinct isonorphisms such that T(a) - S(a) for any a- B.
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Then T" S{a) » a or T_ - T S, where T- is an isoBorphisB

in Gg . This implies that S - TT_ and SG_ - TT_G g- TG^ . Hence

elements of different cosets give different isomorphisms.

But the index of G „ in 6 is equal to the numher of left cosets

of Gg , therefore the number of isomorphisms is equal to the

index of G^j in G

Each ison^orphisa of B which is the identity on F

is given by an automorphis, belonging to G; i.e,, it aapa

B isomorphically into some other subfield B* of £ and is

the identity on F. Suppose T^G but I ^ G^. Let b^B, b^B'

and T(b) = b«. Let G_ be the group of B. Then TG-T"^(b') -
D O

TGgT'*(T(fa)) « TGjj(b) = T(b) - b*. This implies that the

group TG„T"" leaves every element b'^B* unaltered. Hence

the isomorphisBB are identical to the automorphiass Jf llnd

only if 6g is a noraal subgroup of G; i.e., if and only if

Gn < TGgT • Hence the number of antomorphisas of B is equal

to the index of Gg in G; i.e., equal (b/f) if and only if

Gg is a normal subgroup of G. But by Theorem 21 B is a

normal extension of F if and only if the number of automorphisms

of B is (b/f). This completes the proof.

Let u ,u.,u„,...,u _, be a set of s distinct elements.

If this set of elements forms an Abelian group of order s under

addition and also forms an Abelian group of order s-l under

multiplication by deleting u , and if the distributive law
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holds, that is u,(n. + u.) - u.u + «."k =(«• '*!,)"• ^°'

1 <£ i,j|k ^ 8-1, then this set of elements forms a finite

field of order s. In general, the elenents u and Q| have the

properties of zero and unity respectively* If one defines

n*a to be an element in F which is obtained by addfng a to

itself n times for any a^ F, then if there exists a positive

integer p such that p«a « 0, and if p is the least j ositve

integer with this property, then p is called the characteristic

of the field.

Theorem 25. The characteristic p of a field is a

prime number.

Proof: Let p - r»s , r ^ p, s < p, and a / 0. Clearly p^a

(r'8)a « r(s*a) = implies that r ^ p, a<p, then p»a f

contrary to p»a « 0, Hence r(8*a)=0 implies that r=»p, 8=1.

Corollary. If na • for a ;^ 0, then p divides n.

Proof: Let n » qp •• r with ^ r ^ p. Then na • qpa + ra,

implies - + ra. Hence ra « 0. Since a / 0, r = 0.

Theorem 20* The number of elements in any finite field

F is a power of its characteristic.

Proof: Let v^ be any element of the field different

from u . Let r. = U,l,...,p-1. Then rjV. gives p distinct

elements of the field. If these p distinct elet^ents exhaust

the total elements of F, then the theorem is true.

If there are some elements in the field not



p. 26

in the preceding set, then one can pick out one, say v^ , and

perform the sane procedure. Then 'jVj ^2^2 ^'l»'2 " ^»^»***»P~^)

2
would give p distinct elements of the field. One may continue

similarly until all the eleiDents are exhibited in the following

fern}

^1^1 * ^'^^'^ * ••• * ^n'n ^'i " ^'^'^ P"^' ^ "^ ^'^* "'^

However, t is forni gives exactly p° distinct elements.

Theorem 27.(Fermat) Every element of a field F of order
n

P satisfies the equation x^ - x » 0.

Proof: Let the number of elenents of F be p -q. Then

all the elements except u form a multiplication group of

order q-1. The order of any element in this group is a factor

of the order of the group. Hence every element in this group

satisfies the equation x^ = 1, or x*' - x - 0. Moreover,

n
XX

^ - u « 0. Thus all u. , i = 0,1,..,, q-1 satisfy the equation.
1

Proof: Since all elements of F satisfy x^ - x 0.

and the order of every element in the multiplication group

is a divisor of q - 1, (x - u )...(x -
"(_i)

^* * divisor

of x^ - X. But (x - u ),..., (x - tt _i) »r« relatively prime

polynomials each of which divides x" - x. The polynomial

obtained by performing t as product is nionic and of degree q.

Therefore x^ - x = (x - u )...(x - u ,) -IT (« - "<)•
^" i-0
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Corollary, If an iBoaerphisa S b«tw«»n fields F and P*

carries the coeffioicnta of an irreducible polynoalal f(x)

into the correepondlng coefficient* of a polynooial f"(x)

over P", and If F(u) and F"(u") are algebraic extanalons

generated respectively by roots u and u" of these polynomials,

then S can be estended to an isonorpbisD S* of F(q) to F^Cu"),

in which uS* > u*.

Proof} Let f(x) • a^ a.x »•... a. x , a. c P
** ^

,,
i-0,l,...,k.

f"(x)- b^ bjX ... bj^x , b^cP*

Since uS* - u", and a.S* • a.S - b^, i«0,l k,

(a * B^n -* ,,. * a.u*')b* - a S* + (a,S«)n'' f . , . + (a S*)(u'')
O A K O A R

• a^S (a^S)a* ...* (aj^S)(u'')*'

• b b-u" ... b, u* •
o 1 k

After this eorrespondAnoe has been determinedt one can follow

ill* •«• proeedure used in proving the prii*d4«f iliec^rto to

show that F(a) and F"(u") are isonorpbic.

Theorem 29. If an isoaorphica S of F to F" carries f(x)

into a polynoBial f"(x) and if E - P and E*i « F* are, respectively,

root fields of f(x) and f"(x), tho isomorphisB S can be extended

to an isoQorphistn of £ to K".

Proof: One can use the induction ncthod to prove the

theorem is true.

Let n < (E/F). For n * 1, the case is trivial.

Suppose it is true for all root fields £ of degree less than

n over some P. Since n >1, there exiBts at leaat otie irreducible
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factor p(x) of degree d^l of f(x) in F. Let u be a root of

p(x) in £, and let p^Cx) be the factor of f*(x) corresponding

to p(x} under S. Then E" contains a root n" of p"(x)« Using

the preceding corollary, S can be extended to S*, and the

following properties hold:

(F(ti))S* = F"(u"), uS* - u", p(u) - 0, p"(u") o 0.

Since F(u) is larger than F, £ is the root field of f(x) over

F, and £ is cer4ainly the root field of f(x) over F(u) with

a degree (e/F(u)) - m/d^a.

Using the assuaption just made, S* can be extended

from F(u) to £" . This proves the theorem.

Corollary . Any two root fields £ and £* of a given

polynomial f(x) over F are isomorphic.

Proof: T)ie proof is inunediate by using the theorem.

Theorem 30. Any two finite fields with the sane number

of elements are Momorphic.

Proof: Let £ and £' be two finite fields with the saae

number of elements q • p • By Theorem 27 and the preceding

corollary both £ and £* are the root fields of the polynomial

x^ - X over F , and hence £ and £' are isocorphic.

1. At this stage, one can say that F is actually equal to J ,

the field of integers modulo p, where p is a prime number.
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Corollary. For any prime p and any positive integer n

there exists a finite field with p < q distinct elements.

Theoreoi 31. In any finite F of q « p distinct elements,

the set of all non-zero elements forms a cyclic group under

multiplication.

Proof! That this set is an Abelian group is obvious.

Each of these elements satisfies the equation x^" " 1.

Now q - 1 can be written asq-l-p -1 = p|^Pr> '^••» P,^ ^$

where P|fPo****> Pi, a^* ^^^ distinct prime factors of p - 1.

a.

Then the equation x^'^ -1 = has V^,^^ roots, and the equation
aj-1 _.

2*^1 - 1 a> has p, 1 roots because an equation of the

form X - 1 <- has exactly d roots. This implies that there

exist (pj*l - Pi^~ )y^ elements of order Pi*l • The same

argument can be used to prove that there exist elements of

order p.^ » i " 2,...,k. Since P, iP,^, * • • »p. are distinct

frime facttors of p - 1* there exists at least one element,

•ay c, which is of order p, l,..p,*k - P° - 1* This proves

that c is a generator of the Abelian group.

By the precedini^ theorems, one can conclude that there

is one and essentially only one field with p elements.

This field is called the Galois field GF[p"lof order p° .

Hence a particular Galois field is completely determined

by its order if only its abstract properties are considered.
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Definition. If F is a field with p distinct elecieDts,

and if a, an element of F, is of order p** - 1, then a is

a primitive of the field*

Theorem 32. Any element u of a finite field F of order

p" satisfies an equation of the form

k k—

1

V f
c, x+c, ,x +... +c,x + c "0, wherekfcn and c . c F

»

k k~l 1 o ' 1

i K 0,1, ...,k, and c. j^ U.

Proof: Let u be any element of F. Then one can form

the n + 1 distinct elements u ,u ,n ,.,.,u . Only n of these

elements can be linearly independent over F. Hence these n -* 1

elements are linearly dependent over F. Hence there must exist

some c.^'F, not all c. > 0, i » 0,1,..., n such that the expression
n .

y c.u » holds. When c / 0, n ^ k. When c « 0, k<n,
i-O ^ " ""

This proves the theorem.

Theorem 33. A primitive w of a finite field F of

order p satisfies an equation of the form

X + c,x
*"

+ ... + c =0, where c.tF, i » l,...,n.
1 n .. i

Proof: Let w be any primitive '<«' of a finite field F.

^ i
By the preceding theorem, it is true that v satisfies ^ c.x = 0,

i=0
^

where k ^^ n and 0.(^^1 i *= 0,1,..., k. Hence

j^
k-1 ^.

(1) w -T a.w^, where a. (rF, i » 0,l,...,k-l.
i-'O ^

\
k

If one multiplies (l) by w,w ,...,wP individually

k / \ k
and reduces the degree of w by \1), then one obtains p - 1

distinct exprest^ions on the right hand side with respect to

2 p*"-!
w, w ,...,w on the left. However, w is a primitive of

F and it is of order p - 1. Thus n » k.
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APPLICATIONS

L«t p b« a cbaricteristic of F, and let E be the root

field of the polynomial x - 1 where (n,p) -> 1. Then £ is

called the field generated from F by the adjunction of a

primitive n root of unity.

Defini tion , If F contains a primitive n root of unity,

then the root field £ of a polynomial

(«" - «i)(x" - a^)...!*" - a^) where a^€:F for i = 1,2,,, ,,r,

ia the Kumner Field.

Theorem 33, If E is a Kunmer field, then (l) £ is a

normal extension of F, and (2) the Galois group of £ over

F is Abelian.

Proof: (l) Let p be the characteristic of F. Then

(y . 1)P = yP - pyP-1 ^ p(p-l)/2JyP-^ - 1 = yP - 1.

Suppose n is a multiple of p; i.e., n » qp. Then z'' - 1

- (x*')P - 1 = (x** - 1)P, This implies that x** -1 cannot

have more than q distinct roots. Since £ is a Kuoicier field,

F contains a primitive w, an n root oi unity. Therefore

X - 1 would have l,w,w ,,.,,w°~ as distinvt roots. It

follows that n ^ qp. Given a Kiimmar field £, none of the

factors X - a. , a. / has repeated roots because x°-a.

n-1 *" nand nx are relatively prime polynomials. Thuslf (x -a*) i»
i-1 *

separable and hence E is a normal extension of F.

(2) Let Wj,w^,,,,,w^ be the n distinct n***

roots of unity in F, and let b, be a root of x** - a. in £«
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Than b|W| ,b|W2». •« »b.w will b« the n distinct roots of

X - a.. The sane argument is also valid for th« other (x° - a.)
1 i'

factors. Hence £ - F(b^,b„ h }. Let T and T be two

automorphisms in the Galois group G. Then T. and T^ would

ap b. on some other root of (z - a.); i.e., '^1(^4) " ^iv •b »

and To(b.) *> w._ .fa., where w._ and w._ are two elements

U F. Sine, Ij(t;(b^)) . I,(.iT^(b.)) . ..i^Ii(b,) - w,,^.j,^bj

" ^o^'"'!^^' ^^' '''1 ^^^ '^2 '^'* commutative over the generators

of £. Thus G is Abelian.

Definition . Suppose £ is an extension of F» and Bj,B.,,...pD -K

are intermediate fields such that B. > B. ,(b.), where b is
i 1-1 i i

a root of an equation of the form x"^ - a » 0, a £r B •

Then £ is called an extension by radicals of F.

A polynomial f(x) in F is said to be solvable by radicals

if and inly if its root field is in £, an extension by radicals

of F.

Theorem 34« The polyhooial f(x) is solvable by radicals

if and only if its group is solvable.

Proof: Suppose it is true that f(x) is solvable by

radicals. Let E be a normal extension of F by radicals containing

the root field B of f(x). Let G be the group of E over F,

Let Bj.bc the intermediate fields, i = l,...,r. Then it is

true that B is a Knmmer extension of B. . for i « 2,3,,.,,r.

Hence the group of B. over B. , is Abelian; i.e. , G_ /G.,
X i-l Bj^j B^
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is Abelian. Since B. is a normal sxtension of B^_j, thers

exists the sequence of groups G - G. O G_ O ...OGjj = 1

o 1 r

each a normal subgrou] of the preceding. All these imply

that G is solvable. Since G „ is a normal subgroup of G,

G/G_ is the group of B over F or the group of the polynomial

f(x). However, G/G is a homomj^tlic image of the solvable

group G, Then by Theorem 6, G/g_ is solvable.

Suppose the Galois group 1^ of f(x) is solvable.

Let E be the root field. Then G » g::?G,=>G_=> , . . O G^ - 1
o i <d r

is a sequence of normal groups with the groups ^ti/^t

Abelian, where i = l,...,r. Let B^ be the fixed field

corresponding to G, , Then using Theorem 24, B. is a normal

extension over B, .. Since G . /O . is Abelian, B is a Kummer

extension of B. , , This implies that B. is the root field

of a polynomial of the form TT (x" - a.), ilence it is true
i=l *

that B is an extension of B. y by radicals. Therefore E

is an extension by radicals.

Let the polynomial f(x) have the form

f(x) - x" - Ujx"-^ + u^x"-^ - ... + (-l!f u^, then f(x) is

known as the general equation of degree n over F(u^,,..,u2»
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If £ is the root field of f(x) ov«r F(u.,...,u ), and if

v-.,V2,...(V are the root of f(x) in L, then the following

expressions will hold: u » v.-t- %. * ... •* v ,

«2 " V2 * ^r3 *•••' 'n-l%*-"» "n " ^1^2' •%•

Theorem 33* The group of the general equation of

degree n is the syn-aetric group on n letters.

Proof: Let F(x,,...,z ) be the field generated by the

variables x.,...,x . Let a.,..., a be a set of syiunetric

functions such that a. » x, * x,, * ... * x , a,.- x.x^-t- x.x.-t-. . .-!• x ,z ....
1 I 2 n21213 n-1 n

\ - XjX^... x^. Then (x - Xj)(x-x<^). . .(x - x^)

- x° - a^x"" +... +(-l)"a^ - f*(x). Let gCa^.a.^, . . . ,a^)

be a polynomial in a., a , «..,a . Let the v. defined above

replace the x^^. Then gCa^.a^, . . . .a^) - g (^Xj, ^x^x ,...)

- «( ^Vj^, XvjV.,,..,) -= g(uj,U2,...,u^). ilence gCa^.ag, , . . ,a^) -

implies that g is identically zero.

Now consider the subfield F(a,,...,a ) of
1 * n'

F(x.,...,x ) and the field F(u. ,u„, . . • ,u ). For convenience

sake, let (u) denote (u ,u ,...,u ), (a) denoted (a|f^^,...,a )

1 2 n 1 ^^ n

and so on. One can always set up the correspondence f(u)/g(u)

-^f(a)/g(a). where f(u)/g(u) 6:f(u) and f(a)/g(a) ^(a).

This is clearly a napping of f(u) on all of F(a). If f(a)/g(a)

- 'i(*)/«i(a). then f(a)gj(aj - g(a)f^(a) - 0. This implies

that f(u)g;|[u) - g(u)fj(u) - 0; i.e., f(u)/g(u) - fj(u)/gj(u).

Therefore tais mapping is an isomorphism, iiowever, this correspondence

is actually the correspondence between f(x) and f*(x). By
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Theorem 29, this isotnorphism can be extended to an

isomorphism between £ and F(x). This implies that the group

of E over F(u,,Ur,,...,u ) is isomorphic to the group of

F(xi,X2,...,x„) over Ftaj.ag, . . . ,a^}.

Since each permutation oi' x,fXnf»'t^^ leaves

a,,a^ a fixed» it indvces an automorphism of F(x^,X2, . « . »x^)

which leaves F(a. ^a^^, . . . ,b ) fixed. On the other hand, each

automorphism of F(x.,Zr, x ) which leaves F(a.,...,a )

fixed must permute ti.e roots x,,x^,...,x of f*(x), and thit

automorphism is completely determined by the permutation

it effects on x.,x , ...,x . This implies that the group of

F(xj,X2 x^) over F(aj,a^, . . . ,a^) is symmetrie group

on n letters. Therefore, the group of £ over F(n. ^u^, • . • ,u )

is also a symroetric^group.

Theorem 36. The general equation of degre greater

than four is not solvable by radicals. •

Proof: Since the Galois group of the general equation

is the sjrametric group on n letters, and since the symmetric

group for n^4 is not solvable, the general equation of degree

greater than four is not solvable.
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This report is a discussion of the existence of the

root field of a polynomial equation by applying Galois

Theory* Some basic definitions and properties of a group

are introdvced first. Then soae particular theorems which

are needed in developing Galois Field are proved. Among

them, the theorems concerning the solvable group are of

utmost impsrtance because these theorems will determine

whether or not an equation is solvable by radicals.

The first step in developing the Field Theory is to

define what is meant by a field. Then some properties of

polynomial equations are taken into consideration. The

Kroneckei' Theorem assures that if f(x) is a polynomial in

a field F, then there exists an extension field £ of F in

which f(x) has a root. This fundamental theorem contributes

to the further development of the Field Theory, especially

in establishing the root field of a polynomial equation*

The combination of the root field of a polynomial equation

and the definition of automorphisms of a field gives meaning

to the Galois Group and the Galois Field which are the main

idea of this report. Some more properties of Galois Fields

are considered which are useful for the purpose of

application.



One of the nain objects of Galois Theory is to determine

the solvability of a polynomial equation. A few theorems

necessary for this are introduced* The theorem that the

general equation of degree greater than four is not solvable

by radicals, which is one of the most important results

of Gllois Theory, is the last theorem of this report.


