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Abstract 

  Soil erosion is a serious problem resulting in degradation of soil systems and nonpoint 

source (NPS) pollution of water resources.  Concentrated overland flow is the primary transport 

mechanism for many NPS pollutants including soil, and locating areas where sheet flow 

transitions into concentrated flow is useful for assessing the potential for soil erosion.  The 

ability to predict areas where overland flow transitions to concentrated flow and soil erosion 

potential is high assists land managers in implementing best management practices (BMPs) to 

reduce soil erosion and NPS.   

 An erosion model, called the nLS model, was developed to identify transitional overland 

flow regions.  The model is based on the kinematic wave overland flow theory and uses 

Manning’s n values, flow length, and slope as inputs to determine where overland flow 

transitions to sheet flow and soil erosion potential increases.  Currently, the model has only been 

tested and validated for watersheds within Kansas.  In order to assess model uncertainties and 

evaluate the model’s applicability to other regions, a sensitivity analysis on key input parameters 

was conducted. 

To assess model operations, several sensitivity analyses were performed on model inputs, 

including digital elevation models (DEMs) and landuse/landcover data (LULC).  The impact of 

slope was assessed using two methods.  First, by modifying the DEMs in a stepwise fashion from 

flatter to steeper terrains, and second, by modifying the elevation of each DEM cell based on the 

associated elevation error.  To assess difficulties that might arise from the parameterization of 

surface roughness, LULC classes were assigned Manning’s n values within the suggested range 

 



 

using a Monte Carlo simulation.  In addition, the critical threshold value used for locating 

erosion potential sites was modified, and alternative model calculations were used to assess the 

potential for improving model accuracy.  Finally, the model was run using data from multiple 

sites, including two study areas in Hawaii and two in Kansas.  The outputs for each site were 

analyzed in an attempt to identify any trends caused by site characteristics. 

Results from this study showed that the nLS model was sensitive to all of the inputs.  

Modifying the Manning’s roughness coefficient significantly altered the final nLS values and 

shifted the critical threshold points, especially in areas of the upper watershed.  Changes in the 

slope value modified the nLS model outputs in a predictable manner, but there was some 

variability, especially in areas with lower slope values.  In addition, discrepancies in the DEM, 

which may be present due to measurement or processing error, were shown to significantly alter 

the flow paths of a watershed.  These findings suggest that accurate roughness coefficients and 

LULC data are especially important for regions with a steeper topography, and accurate elevation 

data is important for regions with lower slope values.  The results also suggest that the threshold 

value for the model plays a vital role in locating potential soil erosion sites, and adjustments to 

this value could possibly be used as a method for calibrating the nLS model.  Finally, the 

alternative model calculations used in this study did not significantly improve the accuracy of the 

nLS model, so the existing model is sufficient for obtaining accurate nLS estimates.  The 

information gained from this study can improve the assessment of soil erosion processes due to 

concentrated overland flow.  By successfully implementing a land management program that 

makes use of the nLS models, it should be possible to improve BMP placement and design, 

helping to improve water and soil quality. 



Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................. ix 

Acknowledgements......................................................................................................................... x 

CHAPTER 1 - Introduction ............................................................................................................ 1 

CHAPTER 2 - Literature Review................................................................................................... 3 

Soil Erosion and Nonpoint Source Pollution.............................................................................. 3 

Environmental Issues on Military Installations .......................................................................... 4 

Best Management Practices ........................................................................................................ 5 

Predicting and Modeling Soil Erosion........................................................................................ 8 

Existing Models ...................................................................................................................... 8 

Kinematic Wave Approach................................................................................................... 10 

The nLS Model ......................................................................................................................... 12 

Model Sensitivity Approaches.................................................................................................. 13 

Research Objectives.................................................................................................................. 15 

CHAPTER 3 - Study areas ........................................................................................................... 16 

Fort Riley, Kansas..................................................................................................................... 18 

Cheney Reservoir Watershed, Kansas ...................................................................................... 19 

Keamuku Training Area, Hawaii.............................................................................................. 21 

Kahuku Training Area, Hawaii................................................................................................. 23 

CHAPTER 4 - Materials and Methods ......................................................................................... 27 

Model Description .................................................................................................................... 27 

Data Acquisition and Description............................................................................................. 29 

Model Implementation.............................................................................................................. 38 

Sensitivity Analysis .................................................................................................................. 41 

Input Slope Parameter........................................................................................................... 41 

Elevation Data Error ............................................................................................................. 42 

Input Landuse and Landcover Distribution .......................................................................... 42 

Manning’s n Parameter ......................................................................................................... 43 

 iv



Output Threshold Value........................................................................................................ 44 

Variation in Model Calculations ........................................................................................... 45 

CHAPTER 5 - Results and Discussion......................................................................................... 48 

Sensitivity Analysis .................................................................................................................. 48 

Input Slope Parameter........................................................................................................... 48 

Elevation Data Error ............................................................................................................. 54 

Spatial Arrangement of Landuse/Landcover ........................................................................ 56 

Manning’s n Parameter ......................................................................................................... 57 

Variation in Model Calculations ........................................................................................... 61 

Study Area Comparisons .......................................................................................................... 63 

CHAPTER 6 - Summary and Conclusions................................................................................... 69 

Limitations and Recommendations .......................................................................................... 72 

References..................................................................................................................................... 74 

Appendix A - Illustrations of Models used in nLS Analyses ....................................................... 80 

Advanced nLS Model ............................................................................................................... 80 

Slope Sensitivity Analysis ........................................................................................................ 82 

Flow Variations within Slope Sensitivity and DEM Error Analyses.................................... 83 

Landuse and Landcover Distribution Analysis......................................................................... 84 

Manning’s n Sensitivity Analysis ............................................................................................. 85 

Variation in Model Calculations............................................................................................... 87 

Appendix B - ArcGIS Tool Descriptions...................................................................................... 88 

 v



 

List of Figures 

Figure 3.1  Locations of the four study areas within the United States, including two in Kansas 

and two in Hawaii, overlaid over a precipitation map. ......................................................... 16 

Figure 3.2  Aerial view of the Fort Riley Army installation, located in northeast Kansas........... 18 

Figure 3.3  Cheney Reservoir watershed, located in south-central Kansas. ................................. 20 

Figure 3.4  Aerial view of the Keamuku Training Area, part of Pohakuloa Training Area on 

western portion of the Big Island, Hawaii. ........................................................................... 22 

Figure 3.5  Aerial view of the Kahuku Training Area, part of Schofield Barracks on the northern 

edge of the island of Oahu, Hawaii....................................................................................... 24 

Figure 4.1  Values associated with the direction of flow from each raster cell. Values range from 

one for the East and increase by powers of two clockwise to 128 for the Northeast. .......... 28 

Figure 4.2  Demonstration of the flow accumulation tool.  Flow direction data shown on the left 

is used to determine the total accumulated flow into each output raster cell........................ 28 

Figure 4.3  Elevation and hydrologic data for Fort Riley, Kansas. .............................................. 31 

Figure 4.4  Landuse/landcover data for Fort Riley, Kansas. ........................................................ 32 

Figure 4.5  Elevation and hydrologic data for the Cheney watershed, Kansas. ........................... 33 

Figure 4.6  Landuse/landcover data for Cheney Watershed, Kansas. .......................................... 33 

Figure 4.7  Elevation and hydrologic data for Keamuku Parcel, located on the Big Island of 

Hawaii. .................................................................................................................................. 34 

Figure 4.8  Landuse/landcover data for Keamuku Parcel, on the Big Island of Hawaii. ............. 35 

Figure 4.9  Elevation and hydrologic data for Kahuku Training Area, Hawaii............................ 36 

Figure 4.10  Landuse/landcover data for Kahuku Training Area, Hawaii.................................... 37 

Figure 4.11  Illustration of the basic nLS model, divided into five processing steps: Manning’s n 

reclassification, slope calculation, flow direct determination, individual nLS calculations, 

and output nLS accumulation. .............................................................................................. 40 

Figure 5.1 Graph of the nLS model response to changing slope values during the slope sensitivity 

analysis.................................................................................................................................. 49 

 vi



Figure 5.2 Location of the observation points used for the slope sensitivity analysis.  Red points 

indicate observation points with nLS values that did not follow the nLS equation. ............ 51 

Figure 5.3 Variations in the flow network caused by uniform DEM modifications.  The majority 

of the area is either consistent flow (blue) or lack of flow (white).  A small portion 

experienced fluctuating flow paths (yellow to red). ............................................................. 52 

Figure 5.4 Sample modification of the DEM during a Monte Carlo simulation, in which each 

raster cell was assigned the original elevation data ±7 meters. ............................................ 54 

Figure 5.5 Variations in the flow network caused by DEM modification based on DEM error, 

with flow paths for the original DEM.  The majority of the area experienced fluctuations in 

flow (yellow to red). ............................................................................................................. 55 

Figure 5.6 Sample distribution of the Manning’s roughness coefficient, which was randomly 

assigned within a defined range for each landuse/landcover class. ...................................... 58 

Figure 5.7 Shift in output nLS threshold points caused by modifying the uniformity of the 

Manning’s n assignment. ...................................................................................................... 59 

Figure 5.8 Coefficient of variation for the nLS output at 300 observation points during the 

Manning’s n Monte Carlo simulation, divided into three elevation zones. .......................... 60 

Figure 5.9 Shift in output points caused by adjusting the critical threshold value for the nLS 

model..................................................................................................................................... 61 

Figure 5.10 Comparison of the existing model, which calculates total accumulated flow lengths, 

to an alternative model, which calculates the longest flow path........................................... 62 

Figure 5.11 Relationship between average slope of the erosion potential areas and that of the 

entire study area. ................................................................................................................... 64 

Figure 5.12 Relationship between average Manning’s roughness coefficient of erosion potential 

areas and that of the entire study area. .................................................................................. 65 

Figure 5.13 Relationship between overall site slope and predicted erosion potential areas, as 

percent of total area............................................................................................................... 66 

Figure 5.14 Relationship between overall site roughness coefficient and predicted erosion 

potential areas, as percent of total area. ................................................................................ 67 

Figure 5.15 Relationship between overall site drainage density and predicted erosion potential 

areas, as percent of total area. ............................................................................................... 68 

 vii



Figure A.1 Complete nLS model, which uses elevation and landuse/landcover data to locate 

areas of potential soil erosion. .............................................................................................. 81 

Figure A.2 Modified nLS model used for slope sensitivity, which modifies the elevation from 

10% to 200% of the original. ................................................................................................ 82 

Figure A.3 Model used for examining inconsistent flow paths. ................................................... 83 

Figure A.4 Modified nLS model used for analyzing landuse/landcover distribution by randomly 

assigning a LULC. ................................................................................................................ 84 

Figure A.5 Modified nLS model used for the sensitivity analysis of Manning’s n uniformity.... 85 

Figure A.6 Submodel used within the Manning’s n sensitivity analysis to assign Manning’s n 

values to each area. ............................................................................................................... 86 

Figure A.7 Modified nLS model with alternative calculations, which calculates nLS using 

longest flow length................................................................................................................ 87 

 viii



 

List of Tables 

Table 3.1  Summary of site characteristics at the four study areas............................................... 17 

Table 4.1  Elevation and landuse/landcover data description and source..................................... 30 

Table 4.2  Reference table of Manning’s roughness coefficients for general landcover/landuse 

classification (Chow, 1959). ................................................................................................. 38 

Table 4.3 Summary of parameters used for sensitivity analyses performed on nLS model......... 41 

Table 4.4 Manning’s n values associated with landuse/landcover classifications for Kahuku 

Training Area (Chow, 1959)................................................................................................. 44 

Table 5.1 Summary of the change in flow caused by the uniform slope modifications.  The 

majority of the study area experienced either consistent flow or a lack of flow, and a small 

percentage (1%) experienced varying flow tendencies......................................................... 53 

Table 5.2 LULC class and area for ten randomly generated landuse/landcover (LULC) maps, 

including the resulting accumulated nLS value at a single sample point. ............................ 56 

Table 5.3 Statistical comparison of the two forms of the nLS model.  Critical threshold points 

from each form of the model were compared to nLS values of the other............................. 63 

Table 5.4 Characteristics of potential erosion areas for each study site, as predicted by the nLS 

model using a threshold value of 100. .................................................................................. 63 

Table B.1 Summary of GIS tools used within analyses................................................................ 88 

 ix



 x

 

Acknowledgements 

The guidance provided by my faculty advisor, Dr. Stacy Hutchinson, was extremely 

helpful and vital to the completion of this work.  My committee members also provided 

important assistance during this project.  The knowledge provided by Dr. Shawn Hutchinson on 

the subject of geographic information systems was crucial, and the assistance of Dr. Phil Barnes 

was especially helpful in completing this work.  Previous work performed by Ik-Jae Kim at 

Kansas State University was also important for this project.  Finally, the cooperation of the 

ITAM offices at Fort Riley, Schofield Barracks, and Pohakuloa Training Area throughout the 

duration of this research was greatly appreciated. 

This study was funded by the Environmental Security Technology Certification Program 

(ESTCP), ‘Validating the Kinematic Wave Approach for Rapid Soil Erosion Assessment and 

Improved BMP Site Selection to Enhance Training Land Sustainability’ (Project Number 08 EB-

SI2-017).



CHAPTER 1 - Introduction 

To determine areas of high erosion potential on  military training lands, the nLS model 

(Kim, 2006) was developed as part of a Strategic Environmental Research Development 

Program (SERDP), ‘Assessing the Impact of Maneuver Training on NPS Pollution and Water 

Quality’ (Project number SI-1339).  This model utilizes readily available elevation and 

landuse/landcover (LULC) data in a Geographic Information System (GIS) to apply the 

kinematic wave theory for predicting where overland flow transitions to concentrated flow and 

soil erosion potential increases.  The nLS model requires less data and is less labor-intensive than 

other pollution models (i.e. WEPP, RUSLE, KINEROS, EUROSEM, and SWAT), making it 

ideal for military land managers who must evaluate the environmental impacts of training 

exercises in a rapid manner. 

The elevation and LULC input parameters of the nLS model are used to estimate 

Manning’s roughness coefficient (n), flow length (L), and slope (S) for a study area.  From these 

values, the model determines areas of transitional flow regimes based on the nLS equation, 

, as described by McCuen and Spiess (1995).  Soil erosion is closely associated with 

areas where water runoff transitions from overland flow to concentrated flow.  By predicting 

areas where water runoff makes this transition, sites with higher potential for soil erosion can be 

located.   

5.0/ SnL

While the nLS model has been tested with field data and proven successful for two 

watersheds in Kansas (Kim, 2006), it has yet to be tested in ecoregions outside of this area.  

Varying conditions that exist at a site, including topography, LULC, soil types, and precipitation 

levels, may have an effect on the accuracy of the model.  By using a sensitivity analysis to 

 1



examine the impacts of individual model inputs, as well as field parameter estimation and 

calculations used on the model, the importance of each component was determined.  

To quantify variations that may occur in the nLS model outputs, the input parameters 

were modified using several methods.  To analyze the effects of slope, the elevation data was 

modified in a stepwise fashion, from flatter to steeper terrains.  To examine the potential for 

DEM error to effect model calculations, the elevation values were modified based on an 

appropriate error range.  The LULC was also examined by randomly distributing the individual 

LULC classes across the study area multiple times and comparing the results.  To analyze the 

effects of estimating the Manning’s roughness coefficient, the LULC classes were assigned 

random Manning’s n values within a preset range during a Monte Carlo simulation.  To study the 

effects of the threshold value used for locating erosion potential sites, multiple values were used 

in the model.  To examine the accuracy of the model calculations, alternative model processes 

were implemented and evaluated.  Finally, the model was applied to four distinct study sites to 

identify trends in the model outputs caused by site characteristics.  By identifying limitations that 

may exist within the model, it is possible to improve the accuracy of the model outputs.  In this 

way, the model calculations can be assessed and properly utilized at multiple sites with varying 

conditions. 
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CHAPTER 2 - Literature Review 

Soil Erosion and Nonpoint Source Pollution 

Reducing soil erosion and surface runoff are major concerns across the country.  Soil 

erosion can lead to a variety of problems, including the pollution and sedimentation of various 

water bodies.  This type of pollution is described as diffuse pollution, or nonpoint source (NPS) 

pollution, that can come from a variety of sources, including agriculture, urban runoff, 

construction, and forestry (USEPA, 2003).  NPS pollution is the leading cause of degradation 

throughout the nation’s surface water (USEPA, 2003).  It occurs when water runoff transports 

and deposits natural and man-made pollutants.  According to the 2004 National Water Quality 

Inventory (USEPA, 2004), 44% of the assessed streams, 64% of the assessed lake areas, and 

30% of the assessed bay and estuarine areas do not meet the national water quality standards, 

including 246,002 miles of river, 10,451,402 acres of lake, and 7,641 square miles of estuary 

(USEPA, 2004).  According to the report, agriculture, including NPS pollution from cropland 

and grazing, is the leading cause of pollution in rivers and streams, and it is the third largest 

source of pollution for lakes, ponds, and reservoirs.  In addition, atmospheric deposition, 

including NPS pollution from contaminated air, is the leading cause of pollution in estuaries and 

lakes (USEPA, 2004). 

There are many negative impacts that result from NPS pollution.  Nutrients, sediments, 

and pathogens are all major problems associated with NPS pollution (Baker, 1992).  

Sedimentation caused by excess erosion can alter aquatic habitat, suffocate fish eggs and bottom-

dwelling organisms, and interfere with drinking water treatment processes and recreational use 
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(USEPA, 2002).  Excess nutrients from NPS pollution can cause nuisance overgrowth of algae, 

depleting the dissolved oxygen and disrupting the existing ecosystem of a water body (USEPA, 

2002).  Other pollutants carried by runoff can contaminate both surface and groundwater sources 

of drinking water (Baker, 1992). 

Environmental Issues on Military Installations 

Much focus is placed on water and soil management in agricultural and urban 

environments for handling the problems associated with NPS pollution.  Military training lands 

can also experience significant amounts of soil erosion leading to NPS pollution.  Military 

training exercises can cause significant land degradation, leading to adverse environmental 

impacts, particularly soil erosion.  The military has been required to minimize these impacts 

since the passage of the National Environmental Policy Act of 1969 (NEPA) and the publication 

of U.S. Army Regulation 200-2 (Department of Army, 1988).  To optimize the sustainable use of 

training land, the Army has initiated the Integrated Training and Management (ITAM) program.  

The ITAM program allows the military to manage and maintain training lands while still 

supporting military readiness. 

A management program for military installations requires unique considerations.  The 

military must maintain high-quality training to remain prepared for their mission, so land 

management practices must be flexible with minimal impacts on training exercises.  In addition, 

the various factors effecting soil erosion must be considered.  Military training exercises often 

include many military vehicles that are large, heavy, and have the capability of covering 

considerable areas of land (Quist et al., 2003).  The movement of these vehicles can cause 

significant land degradation, compacting the soil and removing the vegetative cover (Milchunas 

et al., 1999).  The extent of the degradation depends on the vehicles involved, their operating 
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characteristics, and the existing soil conditions within the training area (Ayers et al., 2005).  

Most military vehicles are heavy, and the small turning radii associated with tracked vehicles 

have been shown to cause severe rutting and compaction (Liu et al., 2007).  The path taken by 

these vehicles is typically determined by military doctrine, so certain areas, like stream crossings, 

will have significantly higher traffic.  In addition, climate plays a significant role in soil erosion.  

Temperature, rainfall, and storm frequency can have significant impacts on land degradation 

(Lal, 1994).  Because of these various factors, military training exercises can lead to significant 

land degradation. 

Best Management Practices 

To alleviate runoff problems and reduce NPS pollution, various Best Management 

Practices (BMPs) can be implemented.  BMPs can be structural, which use physical formations 

to alter hydrologic pathways; vegetative, which use plants with root systems that stabilize the 

soil as well as absorb and store water; or management techniques that reduce negative impacts 

(Novotny, 2003).  Many of these BMPs focus on agricultural and urban applications.  While 

many of them can be applied in different ways, there are some significant differences between 

these practices and those needed for military installations. 

For urban areas, typical BMPs include surface basins, infiltration and exfiltration 

trenches, pervious pavement, and swales (Livingston, 2000).  Unlike BMPs suitable for the 

rangeland of military installations, these practices focus on the limited space and impervious 

surfaces of an urban environment.  Nearly all BMPs focus on reducing water runoff and 

increasing soil infiltration.  However, BMPs for application outside of urban areas are typically 

more expansive in a spatial context. 
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For agricultural areas, there are various BMPs that can be applied.  These practices come 

in various forms, but the overall goal is to reduce the negative impacts of agricultural activities, 

while retaining the productive capacity of the land (Mostaghimi et al., 1997). Typical BMPs 

include terracing, contour farming, cover crops, stream fencing, buffer strips, brush management, 

and various management techniques (NRCS, 2001; 2002; 2003; 2007; 2008).  While a majority 

of these practices focus on agricultural land, many of them can be applied toward military 

rangeland.   

To employ these techniques on military installations, the major differences between 

military and agricultural practices must be considered.  While agricultural areas experience 

significant erosion due to farming and ranching practices, the majority of environmental 

problems on military installations is due to training exercises.  Military vehicles can be 

significantly heavier than farming equipment, and tracked vehicles can cause significant damage 

to vegetation and soil (Liu et al., 2007).  These vehicles, with a turning radius that is much 

tighter than agricultural equipment, form deep ruts and have a much larger cumulative impact 

width (Liu et al., 2007; Ayers et al., 2005).  In addition, the movement of military vehicles and 

personnel is governed by military doctrine.  On the other hand, the movement of agricultural 

equipment is often uniform across entire fields.  This results in unique erosion patterns between 

the two landuse types. 

Due to the different conditions found on military installations, the implementation of 

BMPs within these areas is unique.  One notable practice for military installations is the 

appropriate timing of training exercises.  By avoiding times when the land is especially 

vulnerable, like after a precipitation event, land degradation can be reduced.   
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To direct hydrologic flow, terraces, diversions, and dikes can be used to decrease erosion.  

These land-forming techniques can reduce soil erosion and NPS pollution while occupying a 

minimal amount of the training area.  Terraces, which are earth embankments constructed across 

the slope, can reduce erosion by decreasing slope length and reducing water runoff (NRCS, 

2008).  Diversions, which are channels constructed across the slope, can be used to break up 

water concentrations and divert surface flow from eroding areas (NRCS, 2001).  Dikes, which 

are earthen barriers, can be used to protect sensitive areas from excessive water flows and control 

water levels (NRCS, 2002).  On military installations, any of these structures could be applied 

around areas with high traffic flow, where soil compaction is greatest.  Compacted ruts formed 

by military vehicles will cause water runoff to concentrate, increasing the sediment transport 

capacity (Gatto, 2001).  By redirecting the hydrologic flow path, runoff concentration can be 

reduced and erosion can be prevented. 

Maintaining vegetative cover is also important for preventing excessive erosion.  One 

method that can be applied to rangeland is the use of vegetative barriers.  Strips of stiff, dense 

vegetation are planted along the overall contour of the terrain or across concentrated flow areas 

to manage water problems (NRCS, 2003).  This practice can be used to reduce sheet, rill, and 

ephemeral gully erosion, trap sediment, and stabilize steep slopes.  On military installations 

vegetative barriers can be placed alongside streams to minimize the loss of valuable training 

lands.  Critical Area Planting is another vegetative BMP that can help reduce erosion.  By 

establishing permanent vegetation, this practice can stabilize areas with high rates of soil erosion 

(NRCS, 2007).  This practice is useful for areas that have had significant land degradation from 

military training exercises.  By restoring the vegetation at vital locations within a training area, 

environmental impacts can be reduced.  
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All of these BMPs are important, and their proper implementation across the landscape 

can help reduce runoff and soil erosion.  Most importantly, maintaining vegetation across 

susceptible areas will have significant positive impacts.  By dissipating the erosive force of water 

runoff, vegetation can significantly decrease NPS pollution.  In addition, the root structure can 

help increase infiltration into the soil.  Also important for areas that are susceptible to erosion is 

the placement of appropriate structures, including terraces, diversions, and dikes, that can 

improve hydrologic flow.  While the timing of training exercises can aid in improving the 

conditions of vegetation and soil, the need for quality training may make it difficult to avoid 

military exercises at times when the land is more susceptible to degradation. 

Predicting and Modeling Soil Erosion 

To maximize the effectiveness of a land management program, it is necessary to 

determine ideal locations for BMPs.  Extensive, widespread BMPs would be cost-intensive and 

inefficient (Veith, 2003). Improper placement of BMPs can make them less effective and reduce 

the availability of land for other purposes.  A predictive model could be used to assist in the 

placement of BMPs.  In addition, the model could aid military officers in selecting the best time 

and location for a particular training exercise. 

Existing Models 

Various models have been developed to estimate soil erosion, but the majority of these 

models focus on agricultural applications (Fiener et al., 2008).  Such models include the Water 

Erosion Prediction Project (WEPP), the Revised Ephemeral Gully Erosion Model (REGEM), the 

European Soil Erosion Model (EUROSEM), the kinematic runoff and erosion (KINEROS) 

model, the Agricultural Non-Point Source Pollution (AGNPS) model, the Revised Universal Soil 
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Loss Equation (RUSLE), the Soil and Water Assessment Tool (SWAT), and many others.  

WEPP is a model developed for the USDA that predicts soil loss and sediment deposition 

(Flanagan and Nearing, 1995).  REGEM was developed to model water runoff after a rainfall 

event (Gordon et al., 2006).  EUROSEM was developed to predict sediment transport, erosion, 

and deposition by rill and interill flow for single storm events (Morgan et al., 1998).  KINEROS 

was developed to describe the process of interception, infiltration, surface runoff, and erosion in 

agricultural and urban watersheds using one-dimensional kinematic equations (Smith et al., 

1995).  SWAT was developed by the USDA to quantify the impact of land management 

practices in large watersheds (Gassman et al., 2007).  This model is the most comprehensive, 

incorporating eight factors including hydrology, weather, sedimentation, soil temperature, crop 

growth, nutrients, pesticides, and agricultural management (Neitsch et al., 2002).  However, it is 

also the most difficult to use because it requires the most data and time to obtain results.   

All of these models address soil erosion.  However, they may not be the best applications 

for military installations.  While both WEPP and REGEM can be used to address the growth of 

gullies caused by erosion (Gordon et al., 2006), none of the models predict initiation points of 

soil erosion.  This ability would be useful for determining potential gully sites for military land 

managers.  WEPP and REGEM are also limited for military applications because they were 

specifically designed for agriculture and forestry purposes (Flanagan and Nearing, 1995).  

EUROSEM was designed only to predict erosion for single fields or small catchments (Morgan 

et al., 1998).  KINEROS is also limited to small watersheds (Smith et al., 1995).    

Many of these models, including SWAT, AGNPS, and RUSLE, require a large amount of 

input data.  The acquisition of the initial input data can be very time-intensive (Jetten et al., 

1996).  For agricultural purposes, these models are sufficient, since the agricultural processes 
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occur on a slower timescale.  However, military training exercises are very dynamic, and a 

management program set around these exercises would require a predictive model that takes less 

time to run.  Because of this, a rapid assessment tool would be ideal for land managers on 

military installations.  

Simpler models often lump parameters into over simplified generalities, which has the 

potential to make them less accurate (Merritt et al., 2003).  However, there are several 

advantages to a rapid-assessment model that can assist in a land management plan for military 

training.  More complex models that require large amounts of data can lead to increased input 

errors, making simpler models more desirable (Jetten et al., 2003).  In addition, a rapid-

assessment model supplies faster results, which would give the military more flexibility in 

planning their training exercises.  For military land managers, such a tool can help determine the 

environmental cost of training exercises and prioritize areas for BMP implementation and more 

intensive management practices.  In this way, environmental impacts can be reduced without 

compromising the quality of military training. 

Kinematic Wave Approach 

The kinematic wave theory has proven to be useful for assessing certain aspects of 

overland flow transport at varying flow regimes (Laguna and Giraldez, 1993; Wong and Chen, 

1999; Singh, 2001).  The initial purpose behind the development of the kinematic theory was to 

explain the movement of flood waves (Singh, 2001).  The uses of the kinematic wave theory 

have been expanded to additional uses.  For example, it is often used to calculate time of 

concentration within a drainage area as a shock wave runoff hydrograph (McCuen and Spiess, 

1995; Willgoose and Kucera, 1994; Jaber and Mohtar, 2002).  The kinematic wave model used 

to calculate the time of concentration for overland flow is commonly combined with Manning’s 
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surface roughness coefficients (Ragan and Duru, 1972; McCuen and Spiess, 1995; Wong, 2005).  

The equation for this model is  
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where  is the time of concentration for sheet flow (minutes);  ct i is the rainfall intensity 

(millimeters per hour);  is the Manning’s coefficient (unitless measure of surface roughness for 

overland flow); is the length of sheet flow (meters); is the slope (meters per meter); and  is 

a constant. 
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To implement the kinematic wave equation, there are several assumptions that must be 

made.  First, momentum and pressure forces are neglected.  Second, there is no local inflow that 

occurs within a given area.  Third, there are no backwater effects.  Fourth, detention storage is 

negligible.  Fifth, discharge is a function of depth only.  And sixth, the equation is only 

applicable for non-concentrated flow (McCuen and Spiess, 1995).  Because of these 

assumptions, which are unrealistic in most cases, additional information is required for the 

accurate application of the kinematic wave model under different flow regimes in varying 

drainage areas.  To address this problem, McCuen and Spiess (1995) determined that the value of 

nL/S0.5 could be used to determine when the model could accurately calculate times of 

concentration for sheet flow.  In the study, it was found that a value of just over 100 could be 

used to as a threshold value for determining where sheet flow transitions into concentrated flow 

(McCuen and Spiess, 1995).  In a study of more complex watersheds, Kim (2006) determined 

that a value of around 131 could be used as a threshold value for sheet flow.  Areas in the 

watershed that have a value near this threshold value can be described as transitional areas 

between sheet flow and concentrated flow. 
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The nLS Model 

To assist in reducing environmental impacts on military bases, a predictive model was 

developed for Fort Riley, Kansas based on the kinematic wave theory.  This model, referred to as 

the nLS model, was used to predict gully formations in two watersheds within Kansas, and was 

shown to have an overall model accuracy as high as 89% (Kim, 2006).  The model requires few 

input requirements, which are relatively easy to obtain.  This reduces the time needed to acquire 

data.  The inputs include digital elevation models (DEMs) and landuse/landcover data (LULC), 

which are then integrated into a geographic information system (GIS). 

As water moves down a watershed, it transitions from overland sheet flow into 

concentrated flow.  The concentration of this overland flow is a primary cause of soil erosion 

(Abrahams and Atkinson, 1993).  As the flow concentrates, its erosive energy increases.  Due to 

this increase in energy, concentrated flow is closely associated with increased soil erosion, and 

determining where water begins to transition from overland flow into concentrated flow can be 

used to find areas with higher erosion potential, where gullies are likely to begin (Kim, 2006; 

Bennett et al., 2000).  By locating the points at which this event occurs in a watershed, the best 

placement for BMPs can be determined.   

The nLS equation is used to determine the transition point of overland flow from sheet to 

concentrated flow.  The equation, as used in the model, is 

 
S

nLValuenLS =         [2] 

where n is the Manning’s coefficient (unitless measure of surface roughness for overland 

flow); L is the length of sheet flow (feet); and S is the slope (feet per feet). 

Input data for the nLS model was derived from LULC data and DEMs.  Manning’s 

coefficients were obtained from LULC data.  This value accounts for vegetation, soil, and land-
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use properties that may have an impact on water movement (Ward and Trimble, 2003).  To 

determine the slope, flow length, and flow path, topographic information from a DEM was used.  

Once the values were inputted into the model and the nLS values were calculated, any areas that 

had nLS values within the threshold range of 131 ± 22.6, were described as areas with a higher 

erosion potential (Kim, 2006).  By locating the sites with nLS values close to the given threshold 

value, it was possible to predict the future formation of gullies from soil erosion. 

To successfully implement the nLS model, a GIS was used.  GIS technology allows data 

to be preprocessed from large stores into suitable forms, analyzed for modeling, and processed 

after the results have been obtained (Goodchild et al., 1993).  The ability to handle large 

quantities of data makes GIS ideal for integrating elevation and LULC data into an 

environmental model.  However, there are also limitations to using GIS with the nLS model.  

The potential for errors in the calculations of surface properties may exist due to the 

misrepresentation of spatial variability caused by data resolution that is too coarse (Corwin and 

Vaughan, 1997; Verro et al., 2002).  Zhang and Montgomery (1994) reported that 10-m DEMs 

offered more reliable hydrologic assessments than 30-meter DEMs.  Similarly, Kim (2006) 

found that the accuracy of the nLS model increased as the data was improved from a resolution 

of 30 meters to 10 meters and up to 3 meters. 

Model Sensitivity Approaches 

While the nLS model has been tested with field data from the Cheney Reservoir 

watershed and the Fort Riley study area, model errors related to input parameters and model 

calibration could make it more difficult to obtain accurate results for other sites.  Locations with 

different precipitation regimes, LULC conditions, topographic characteristics, and soil types may 

not be as well-represented by the model.  For example, the Manning’s n coefficient, which has 
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proven effective for grasslands, may be less helpful for predicting erosion in forested, volcanic, 

or desert areas.  Model limitations need to be identified to ensure that the model can be 

effectively implemented at other sites.  A sensitivity analysis assists with analyzing uncertainties 

in the output caused by variations in input parameters (Tiscareno-Lopez et al., 1993).  This type 

of analysis can help assess the mathematical simulations of the model, increasing its accuracy.  

In addition, the most sensitive variables in the model prediction can be identified, allowing the 

less sensitive variables to be generalized or omitted, and potentially simplifying the model 

(Zerihun et al., 1996).  A sensitivity analysis can also help detect errors resulting from nonlinear 

equations and numerical solution methods, complicated computer programming, and the 

theoretical approaches used to model natural phenomena (Ferreira et al., 1995).   

Quantifying model simulation error can be done using various methods of sensitivity 

testing.  The most common method is the independent parameter perturbation (IPP), which is 

based on a linear system where parameters are individually varied by a fixed percentage from a 

given base value (Ferreira et al., 1995).  This method has been used with various NPS pollution 

models.  For example, the WEPP model was analyzed by Nearing et al. (1990) and Tiscareno-

Lopez et al. (1993) to determine the average model response of selected output variables.  This 

study was based on a linear regression analysis, as well as a Monte Carlo simulation.  In erosion 

modeling, the high spatial and temporal variability associated with the model parameters makes 

it difficult to select an initial value for each parameter (Quinton, 1997).  To address this, Monte 

Carlo techniques involve repeated numerical samplings for sets of parameters based on 

postulated distributions, creating many samples of varying values (Veihe and Quinton, 2000).  

Ma et al. (2000) used similar analysis techniques to determine uncertainties of the Root Zone 

Water Quality Model (RZWQM), and Wedwick et al. (2001) used a Monte Carlo simulation to 
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analyze the Groundwater Loading Effects of Agricultural Management Systems (GLEAMS-IR) 

model.   

Research Objectives 

The nLS model was developed as a tool for predicting locations with high soil erosion 

potential.  The ability of the model to accurately and rapidly predict areas with high soil erosion 

potential makes it ideal for land management programs on military installations.  Currently, the 

model has been tested and validated for the Cheney Reservoir watershed, as well as a study area 

located in Fort Riley Kansas.  In these areas, the model has proven very effective at locating 

potential soil erosion sites (Kim, 2006).  However, the accuracy of the model has not been tested 

in areas outside of Kansas. 

The potential for input parameters to affect the accuracy of the model must be analyzed 

before the nLS model can be implemented effectively.  Therefore, the objective of this study is to 

determine the sensitivity of the model to the different parameters.  This will be done by 

evaluating model uncertainties that result from changing the input data during IPP and Monte 

Carlo simulations.  In addition, the effects of modifying the nLS threshold value used for 

identifying soil erosion potential sites will be evaluated.  Finally, the model will be modified 

using alternative calculation methods to determine the validity of the current model’s 

calculations.  By successfully implementing the nLS model for a military installation, erosion 

problems can be predicted.  This allows land managers to assess environmental impacts of 

training exercises and take the proper steps to alleviate the problems.  BMPs can be better 

implemented for repairing and preventing excess soil erosion.  There is also potential for the nLS 

model to be expanded to help land managers in forestry or agriculture. 
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CHAPTER 3 - Study areas 

Four study areas, two located in Kansas and two in Hawaii, were selected for analysis 

(Figure 3.1).  Each study area has unique climatic, topographic, and vegetative conditions (Table 

3.1).  Three of the sites are located on U.S. Army military installations, making them different 

from the surrounding areas because of the potential for maneuvering activities that can induce 

the transport of sediment and other pollutants.  The fourth study site was a much larger area that 

includes the contributing watershed of a large municipal water supply reservoir in south-central 

Kansas.  By selecting a variety of diverse locations for this study, the impacts of site-specific 

characteristics on the nLS model were examined. 

 
Figure 3.1  Locations of the four study areas within the United States, including two in 
Kansas and two in Hawaii, overlaid over a precipitation map. 
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Table 3.1  Summary of site characteristics at the four study areas. 
 

Study Area Size 
(km2) Ecoregion 

Annual 
Precipitation 

(mm) 
Temperature 

(°C) 
Elevation 

Range 
(m) 

Average 
Slope 

(%) 

Fort Riley, KS 411 Flint Hills1 8503 6 – 193 312 - 420 6.84 

Cheney 
Watershed, KS 2,564 Central Great 

Plains1 
673 (West) 
798 (East)3 5 – 213 433 - 669 1.44 

Keamuku 
Parcel, HI 93 Tropical Dry 

Forest2 6404 16 – 214 806 - 1866 34.49 

Kahuku Training 
Area, HI 38 

Tropical 
Moist & Dry 

Forest2 

1020 (North) 
3810 

(South)5 
20 – 254 16 - 647 38.14 

1 – Omernik, 1995 
2 – Ricketts et al., 1999 
3 – Daly et al., 2002 
4 – NOAA/NCDC, 2009 
5 – U.S. Army, Hawaii and 25th Infantry Division, 2001 

 
The datasets from each site were used as model inputs to calculate nLS values and 

potential erosion areas for each study area.  To incorporate any run-on from the surrounding 

area, model inputs included the area covered by all watersheds overlapping the study sites.  

Watersheds for the Kansas sites were based on the available 14-digit Hydrologic Unit Code 

(HUC 14) delineations (http://water.usgs.gov/GIS).  For Hawaii, watersheds were derived from 

USGS DEM data (GDSI, 1995).  Transitional flow areas were defined as those pixels with a 

critical nLS threshold value of 131 ± 22.6, based on the findings of Kim (2006).  Although the 

entire area of contributing watersheds was used as input, the analysis of model outputs was 

limited to the area within each study site.  Data for the Kahuku Training Area was used for 

various sensitivity analyses of the nLS model.  Comparisons of the predicted erosion areas were 

then made between each site.  Model outputs were examined as functions of overall slope, 

Manning’s roughness coefficient, and drainage density.  By analyzing the relationship between 

site characteristics and model predictions, generalizations could be made on the expected model 

performance within specific ecoregions. 
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Fort Riley, Kansas 

Fort Riley is a U.S. Army training installation located in northeastern Kansas (Figure 

3.2).  The base covers more than 410 km2 and is located just west of the city of Manhattan.  The 

military units stationed at the installation employ large numbers of tracked and wheeled vehicles.  

Fort Riley is located within the Flint Hills ecoregion, which spans the area from northeastern 

Kansas to the Oklahoma border, and contains the largest remnant of uncultivated tallgrass prairie 

in the U.S. (Omernik, 1995). 

 
Figure 3.2  Aerial view of the Fort Riley Army installation, located in northeast Kansas. 
 

 

 
Elevations on Fort Riley range from 312 and 419 m above sea level, based on the 10-

meter USGS National Elevation Data.  By overlapping the installation boundaries with the HUC 
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14 watershed boundaries, it was determined that the study area contains 10 watersheds which 

empty to the Kansas River.  The drainage density (total length of streams per total drainage area) 

on Fort Riley is 1.80 (km/km2) as calculated using surface hydrography data from the National 

Hydrography Dataset (NHD, http://nhd.usgs.gov).  Mean annual precipitation is 850 mm, and 

maximum and minimum temperatures are 19 °C and 6 °C, based on weather data from 1971 to 

2000 (Daly et al., 2002).  The majority of the soils on Fort Riley are silty clay loams and silty 

loams, which tend to have moderate permeability (Jantz et al., 1975).  The three major LULC 

groups on Ft. Riley are wide hillslope grasslands, shrublands, and woodlands (Egbert et al., 

2001).  The study area includes 15 distinctive vegetative classes as well as urban areas and water 

bodies. 

Cheney Reservoir Watershed, Kansas 

The Cheney Reservoir watershed is located in south central Kansas near the city of 

Wichita (Figure 3.3).  The reservoir comprises an area of 40 km2 with a contributing drainage 

area of approximately 2,524 km2, comprised primarily of agricultural land.  The Cheney 

Reservoir has been the primary drinking water source (60-70% daily basis) for the city of 

Wichita, Kansas and the surrounding area since construction in 1965 (Pope and Milligan, 2002).  

The entire area is considered to be part of the Central Great Plains ecoregion, which includes 

parts of Nebraska, Kansas, Oklahoma, and Texas (Omernik, 1995). 
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Figure 3.3  Cheney Reservoir watershed, located in south-central Kansas. 
 

 

 
Elevations in the watershed vary from 433 m to 669 m above sea level with an average 

slope of 1.44%, based on the USGS 10-meter DEM.  Mean annual  precipitation increases from 

west to east with an average of 673 mm at the west end of the watershed and 798 mm at the east 

end of the watershed (Daly et al., 2002).  Mean annual temperatures range from 5.9 °C to 20.8 

°C (Daly et al., 2002).  According to local county soil survey (Rockers et al., 1966), soils in the 

watershed mainly consist of sandy loam, loamy fine sand, and fine sandy loam.  Nineteen HUC 

14 subwatersheds comprise the study area.  The drainage density for Cheney is 0.76 km/km2, 

based on NHD high-resolution data. 
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There are 25 LULC classifications within the watershed based on Kansas GAP landcover 

data.  Land in the watershed is typically used for agricultural production (54%), and areas of 

CRP (Conservation Reserve Program) are also fairly common throughout the watershed.  The 

major crops grown within the watershed are wheat (63%), sorghum (24%), corn (10%), and 

soybeans (3%) (Mau, 2001). 

Keamuku Training Area, Hawaii 

The Keamuku Parcel (KP) is part of Pohakuloa Training Area, an Army Installation 

located on the island of Hawaii.  The study area covers 93.3 km2 and is located on the northwest 

section of the installation (Figure 3.4).  The area was used primarily as pasture land from the 

middle 1800s until very recently, but was purchased by the U.S. Army to serve as additional 

training land.  The study area is located within the Hawaiian Dry Forest ecoregion (Rickets et al., 

1999) and receives much less rainfall than the majority of the Hawaiian Islands. 
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Figure 3.4  Aerial view of the Keamuku Training Area, part of Pohakuloa Training Area 
on western portion of the Big Island, Hawaii. 
 

 

 
Elevations for KP range from 806 m to 1,866 m above sea level, based on the USGS 10-

meter DEM.  Annual precipitation across KP varies from 250 to 750 mm across the landscape, 

and average temperature ranges from 15 to 21°C (NOAA/NCDC, 2009).  The island of Hawaii is 

the youngest island of the Hawaiian island chain, and was formed as the Pacific Plate passed 

over a hotspot in the earth’s mantle (Chytka et al., 2008).  The soils of this area are relatively 

young and poorly developed, being formed from past lava flows (Chytka et al., 2008).  The 

Natural Resources Conservation Service (NRCS) Soil Survey identifies several soil types within 
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the Keamuku Parcel.  The majority of these soils are stony sand, stony peat, and loamy sands.  

The entire training area is located within a single watershed, based on the GDSI (1995) 

delineations, which flows directly into the Pacific Ocean.  Using the NHD high resolution data, 

the drainage density for Keamuku is 0.77 km/km2. 

Due to the training area’s ranching history, the majority of the native vegetation has been 

replaced by non-native species (TTI, 2004).  Within Keamuku, the majority of the area is 

comprised of either herbaceous grasslands or shrublands, and there are several trails that cross 

the site.  In the surrounding watershed, there are large portions of barren land formed by lava 

flows, as well as grasslands and shrublands.  In all, there are 16 distinct LULC classes in the 

surrounding watershed based on Hawaii GAP data, with 12 of those classes falling within the 

study area. 

Kahuku Training Area, Hawaii 

The Kahuku Training Area (KTA) is part of Schofield Barracks, a U.S. Army installation 

on the Island of Oahu, Hawaii (Figure 3.5). The area has held a military presence since 1944 (US 

Army and 25th Infantry Division, 2001).  The training area covers 38.3 km2 of leased and 

federally owned land at the northern tip of the Ko‘olau mountain range.  The Army conducts 

various military training exercises in the area, and activities taking place on adjacent and 

surrounding properties include cattle ranching along the north and northeast property boundaries, 

diversified agriculture, and recreation (SRGI, 2009).  Due to site’s location and the significant 

change in elevation, the area is actually located in two different ecoregions.  To the south, the 

mountainous forests of are considered part of the Hawaiian Moist Forest, while a small portion 

of the north end of the installation is located in a Hawaiian Dry Forest (Rickets et al., 1999). 
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Figure 3.5  Aerial view of the Kahuku Training Area, part of Schofield Barracks on the 
northern edge of the island of Oahu, Hawaii. 

 

 

 
The elevations across KTA range from 16 meters up to 647 m along the Ko‘olau 

mountains, based on the 10-meter National Elevation Data. A large percentage of the area is 

dominated by extremely rugged terrain and steep slopes.   Annual average rainfall ranges 

between 3810 mm at the Ko‘olau summit to 1020 mm near the coast (US Army and 25th Infantry 

Division, 2001).  Average annual temperatures range from 20 to 25°C (NOAA/NCDC, 2009).  

The Island of Oahu lies within the tropical latitudes and is periodically subjected to storms with 

high rainfall magnitudes (SRGI, 2009).  Because Oahu is older than the island of Hawaii, the 

soils are more developed.  The NRCS Soil Survey identifies five soil series within KTA, all of 
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which are considered to be either well-drained silty clays or rock land, developed from 

weathered basalt lavas.  Based on the GDSI (1995) boundaries, four subwatersheds are 

delineated across the boundaries of KTA, all of which drain into the Pacific Ocean. Based on 

NHD high resolution flow lines, the drainage density of the area is 1.95km/km2. 

Vegetation communities within KTA include upland tree-shrubs, shrub-grasses and 

mixed grasses, all of which are dominated by plant species that are non-native and several that 

are invasive (SRGI, 2009).  Native species exist in scattered locations throughout the training 

area, however they are primarily found in small patches at higher elevations. Native vegetation 

communities found within KTA include the Aleurites moluccana (Kukui), Metrosideros 

polymorpha (Ohia), Acacia koa, and Dicranopteris linearis (Uluhe) forest species, and  the 

remaining area is made up of non-native mixed vegetation communities including species of 

Brothriochloa ischaemum (Yellow Bluestem), Andropogon virginicus (Broomsedge Bluestem) 

Panicum maximum (Guinea Grass), Lycium carolinanum (Christmas berry), species of 

Eucalyptus, and species of Eusideroxylon (Ironwood) (SRGI, 2009).  In all, there are a total of 25 

distinctive landcover and landuse classifications, including various classifications for crop and 

urban areas. 

KTA experiences several unique land-use activities that affect its susceptibility to soil 

erosion.  Military training on the area involves the use of vehicles on roads and trails and, to a 

lesser extent, off road areas. Other military activities that impact soils include foot traffic and 

military air operations, which include the use of terrestrial landing areas and drop zones (SRGI, 

2009).  Civilian off-road vehicles are also an issue within the training area (SRGI, 2009).  As 

part of their shared lease agreement with the State of Hawaii, the Army is permitted use of a 180-

hectare training area during the weekdays, while a civilian off-road vehicle organization, the 
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Hawai‘i Motor Sports Association, is allowed access during the weekends and federal holidays 

(US Army and Infantry Division, 2001). Off-road vehicle damage to soil resources is widespread 

and significant across KTA. In addition, animal impacts caused by both feral pigs and 

domesticated cattle are common.  These hoofed animals often turn up soils during foraging and 

movement.  The damage caused by feral pigs to Hawaii watersheds has been well documented 

(Diong, 1982; Miller and Holt, 1992).  

It was observed that the military training, off-road vehicles, and animal activity each have 

a significant impact on the vegetative cover and soil erosion at KTA. All of these activities can 

cause significant vegetation removal and soil compaction, increasing the potential for water 

runoff, soil erosion, and resulting in increased NPS pollution. These activities, especially animal 

impacts, may be difficult to control, and consequently it may be more difficult to predict areas 

that are more susceptible to land degradation.  
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CHAPTER 4 - Materials and Methods 

Model Description 

To locate areas with higher erosion potential, the nLS model was developed to determine 

where water transitions from overland flow to concentrated flow (Kim, 2006).  To do this, the 

model makes use of the nLS equation, as developed by McCuen and Spiess (1995), within a GIS 

environment.  The equation, restated here, is 

S
nLValuenLS =         [2] 

where n is the Manning’s roughness coefficient; L is the length of sheet flow (feet); and S 

is slope (feet per feet). 

To calculate the nLS values, the model required only elevation data and LULC data, 

which were used to acquire the necessary values for the calculations.  From the LULC data, a 

Manning’s n value was determined based on a lookup table that was located within the model.  

From the elevation data, slope was obtained using the deterministic eight-direction (D8) method 

(O’Callaghan and Mark, 1984), which finds the rate of maximum change in elevation for each 

cell by examining the eight surrounding cells.  In addition, flow direction and flow accumulation 

were both obtained from the elevation data using GIS tools that also made use of the D8 method.  

Flow direction determines the direction to each raster cell’s steepest downslope neighbor and 

assigns a value that is associated with that direction (Figure 4.1).  Flow accumulation uses the 

information from flow direction to create output that represents accumulated flow to each cell 

(Figure 4.2).  See Appendix B - for detailed tool descriptions.   
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Figure 4.1  Values associated with the direction of flow from each raster cell. Values range 
from one for the East and increase by powers of two clockwise to 128 for the Northeast. 

 

 

 
Figure 4.2  Demonstration of the flow accumulation tool.  Flow direction data shown on the 
left is used to determine the total accumulated flow into each output raster cell. 
 

  

  

The process of pit removal was not applied to the elevation data.  Pits are defined as local 

sinks in the topography that interrupt the flow networks.  The pits may be present due to DEM 

error, but they can also exist in the actual topography of an area.  To create continuous flow 

networks, artificial adjustments to the elevation are often used to smooth over potential pits.  

However, continuous flow networks are not vital to the operation of the nLS model, since the 

analysis is primarily concerned with potential erosion areas located in the uppermost regions of a 
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watershed.  In addition, this method may remove important erosion features, and so it was not 

implemented in the nLS model.  

Once the initial model parameters were obtained, the nLS values were calculated for an 

entire study area.  From these calculations, any areas with nLS values near a given threshold 

value were extracted.  These sites were described as areas where water flow transitions from 

overland flow to concentrated flow. By determining where flow transition occurs, areas of higher 

soil erosion potential are also found.  In this way, the model can assist land managers in 

determining ideal locations for implementing best management practices. 

Data Acquisition and Description 

The data for this study was obtained either through nationally available datasets or 

through the Integrated Training Area Management (ITAM) offices of the military installations.  

The spatial data includes elevation and LULC information for each of the sites.  The elevation 

data was comprised of 10-meter DEMs that were taken from the National Elevation Dataset.  

While data with finer resolution has been shown to produce more reliable results, a 3-meter 

DEM was only available for one study site.  To obtain comparable results, 10-meter data was 

used at all four sites.  The LULC data was comprised of United States Geological Survey 

(USGS) Gap Analysis Program (GAP), National Landcover Data, or more detailed data taken 

from the ITAM offices (Table 4.1).   
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Table 4.1  Elevation and landuse/landcover data description and source. 
 

Elevation Data Landuse/Landcover Data Site 
Dataset Spatial 

Resolution 
Source Dataset Spatial 

Resolution 
Source 

Fort Riley, KS 
Cheney 
Reservoir 
Watershed, KS 

Kansas 
GAP 

30 meters KARS4 

Keamuku 
Training Area, HI1 

GAP5 

Kahuku Training 
Area2 

National 
Elevation 
Dataset 
(NED) 

10 meters USGS3 

Hawaii 
GAP 

30 meters 

ITAM 

1 – Part of Pohakuloa Training Area, Hawaii, Hawaii 
2 – Part of Schofield Barracks, Oahu, Hawaii 
3 – U.S. Geological Survey (http://ned.usgs.gov/) 
4 – Kansas Applied Remote Sensing Program (http://www.KansasGIS.org) 
5 – Gap Analysis Program (http://gapanalysis.nbii.gov) 
 

Input data for Fort Riley include a 10-meter DEM obtained from USGS National 

Elevation Data (Figure 4.3) and LULC classifications obtained from Kansas GAP (Figure 4.4).  

To capture accurate hydrologic flow, all watersheds that intersect Fort Riley were included, 

based on HUC 14 delineations.  DEM values range from 300 m to 433 m above mean sea level 

for the entire watershed area.  LULC data includes 17 separate LULC classifications across the 

study area. 
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Figure 4.3  Elevation and hydrologic data for Fort Riley, Kansas. 
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Figure 4.4  Landuse/landcover data for Fort Riley, Kansas. 
 

 
 

Input data for Cheney watershed include a 10-meter DEM taken from the USGS National 

Elevation Data (Figure 4.5) and LULC classifications obtained from Kansas GAP data (Figure 

4.6).  DEM values range from 433 m to 669 m in elevation for the study area.  LULC data 

includes 25 separate LULC classifications for the study area.  The Cheney watershed is divided 

into subwatersheds, based on HUC 14 delineations.   
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Figure 4.5  Elevation and hydrologic data for the Cheney watershed, Kansas. 
 

 
 

Figure 4.6  Landuse/landcover data for Cheney Watershed, Kansas. 
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Input data for KP includes a 10-meter DEM obtained from USGS National Elevation 

Data (Figure 4.7) and LULC classifications obtained from the Hawaii GAP data (Figure 4.8).  

DEM values range from Sea level to 1866 m in elevation for the study area.  LULC data includes 

10 separate LULC classifications for the entire watershed. Watersheds that intersect KP were 

included, based on GDSI (1995) delineations.   

 
Figure 4.7  Elevation and hydrologic data for Keamuku Parcel, located on the Big Island of 
Hawaii. 
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Figure 4.8  Landuse/landcover data for Keamuku Parcel, on the Big Island of Hawaii. 
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Input data for KTA include a 10-meter DEM taken from the USGS National Elevation 

Dataset (Figure 4.9).  LULC classifications were obtained from the ITAM office for areas in and 

around the installation boundaries, and from Hawaii NLCD data for the remaining areas (Figure 

4.10).  DEM values range from sea level to 709 m in elevation for the entire watershed.  LULC 

data includes 25 separate LULC classifications for the entire watershed area. Watersheds that 

intersect KTA were included in the analysis of the study area, based on GDSI (1995) 

delineations. 

 
Figure 4.9  Elevation and hydrologic data for Kahuku Training Area, Hawaii. 
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Figure 4.10  Landuse/landcover data for Kahuku Training Area, Hawaii. 
 

 
 

Within the GIS environment, the elevation data was used with the “slope” tool to 

calculate percent slope, which was then converted into slope grade, in feet per feet.  In addition, 

the elevation data was also used to calculate flow accumulation within the study area using the 

“flow direction” and “flow accumulation” tools.  The LULC data was used to estimate 

Manning’s surface roughness coefficients.  As the vegetative cover for a given LULC increases, 

the surface roughness increases as well.  Chow (1959) determined a range of Manning’s 

coefficients associated with a variety of LULC classifications (Table 4.2).  Based on these 

associations, the table of Manning’s roughness coefficients was related to the LULC divisions 

using a “reclassify” tool within the GIS environment. 

 37



Table 4.2  Reference table of Manning’s roughness coefficients for general 
landcover/landuse classification (Chow, 1959). 

 

Landuse/Landcover Description Minimum n Normal n Maximum n 
Pasture, no brush       
   1.short grass 0.025 0.03 0.035 
   2. high grass 0.03 0.035 0.05 
Cultivated areas       
   1. no crop 0.02 0.03 0.04 
   2. mature row crops 0.025 0.035 0.045 
   3. mature field crops 0.03 0.04 0.05 
Brush       
   1. scattered brush, heavy weeds 0.035 0.05 0.07 
   2. light brush and trees, in winter 0.035 0.05 0.06 
   3. light brush and trees, in summer 0.04 0.06 0.08 
   4. medium to dense brush, in winter 0.045 0.07 0.11 
   5. medium to dense brush, in summer 0.07 0.1 0.16 
Trees       
   1. dense willows, summer, straight 0.11 0.15 0.2 
   2. cleared land with tree stumps, no sprouts 0.03 0.04 0.05 
   3. same as above, but with heavy growth of sprouts 0.05 0.06 0.08 
   4. heavy stand of timber, a few down trees, little 
       undergrowth, flood stage below branches 

0.08 0.1 0.12 

   5. same as 4. with flood stage reaching  branches 0.1 0.12 0.16 
 

Model Implementation 

The nLS model was implemented in the ArcGIS 9.3.1 GIS program developed by the 

Environment System Research Institute (ESRI, Redlands, CA).  By integrating the DEMs and 

LULC spatial data into a GIS-based algorithm, large amounts of data can be processed to 

calculate the soil erosion potential for a study area.  The ESRI ModelBuilder was used in the 

ArcGIS system to develop and refine the nLS model for analysis. 

To prepare the input parameters for data processing, several steps were taken.  First, the 

data was project to the appropriate coordinate system for each site.  The LULC data and DEMs 

were clipped to match the boundaries of the contributing watersheds for each study area.  In 

addition, the LULC data was converted from a shapefile format to a raster dataset in order to 
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make use of ArcGIS’s raster calculator functions.  Once the inputs were prepared, they were 

introduced into the model. 

ovides users with a variety of tools that can be utilized to calculate the 

surface represented by raster datasets.  In ost basic  the DEM
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Figure 4.11  Illustration of the basic nLS model, divided into five processing steps: 

nLS calculations, and outp
 

Manning’s n reclassification, slope calculation, flow direction determination, individual 
ut nLS accumulation. 
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Sensitivity Analysis 

To test the impacts of the model parameters on the overall model performance, sensitivity 

analyses were run on several components of the model (Table 4.3).  Input parameters, including 

elevation and LULC data, were modified to determine the effects of these values on the model.  

In addition, adjustments of the nLS threshold value were investigated.  Finally, the model 

operations were revised to examine the impacts on model efficiency and accuracy. 

 
Table 4.3 Summary of parameters used for sensitivity analyses performed on nLS model. 

 

Model Parameters  
Analysis Input DEM Input LULC Derived 

Manning's n Model Calculations 

Slope 
Sensitivity 

Modified by 
intervals of 10% 

Original LULC 
Data 

Normal 
Manning's n Original Model 

LULC 
Distribution Original DEM Modified Spatial 

Distribution 
Normal 

Manning's n Original Model 

Manning's n 
Classification Original DEM Original LULC 

Data 
Range of 

Manning's n Original Model 

Modified Model 
Processes Original DEM Original LULC 

Data 
Normal 

Manning's n 
Alternative 

Calculations 

 
 

Input Slope Parameter 

An IPP analysis on the slope input parameter was completed using data from KTA on the 

island of Oahu.  The original LULC data was used to determine the Manning’s n value, while the 

DEM was adjusted from 10% of the original elevation up to 200% using intervals of 10%.  

Modifying the DEM in this way effectively changed the slope for the study area.  The model 

used for the analysis is illustrated in Appendix A -.  For each modified DEM, the response of the 

nLS model was evaluated by examining points with an nLS value of 100 for the original slope 
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values.  By analyzing the change in nLS values at these points, the impacts of steeper slopes 

could be compared to those of flatte

DEM error was analyzed.  According to the USGS, national elevation data can vary as much as 

15 meters from the published value.  The actual accuracy depends on the original DEM source 

ated to 

error, the o odified based on  A model was developed that 

would alter the DEM by random  ± 7 meters of the 

original value.  A Monte Carlo sim  assignment of 

elevation values 20 times.  Once the simul mple  outputs were examined.  

By analyzing the impacts of randomly assign M valu iven range, the 

impor urate elevation data can be ed. 

Input Landuse and Landcover Distribution 

Sensitivity analyses were performed on the LULC input parameter at KTA.  The original 

10-meter DEM was used to determine slope and flow length values for the model.  For LULC 

parameters, two analyses were done.  The first analyzed the spatial arrangement of the individual 

LULC classes with the study area watershed.  For the current nLS model, it is unclear how the 

location and spatial arrangement of LULC classes within a watershed impacts the resulting 

“downstream” nLS values.  To examine this problem, new and different LULC maps were 

created using a random raster creation function in the GIS environment.  A Monte Carlo analysis 

r slopes. 

Elevation Data Error 

 In addition to the effects of a uniform modification of slope, the model’s sensitivity to 

and the resolution level.  For the 10-meter resolution data, the vertical accuracy was estim

be plus or minus 7 meters (http://seamless.usgs.gov).  To determine the effects of this potential 

riginal DEM was m this range of error. 

ly assigning new el

ulation was 

evation values within

completed by repeating the random

ation was co te the model

ing DE es within a g

tance of acc assess
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was performed on the LULC distribution by repeating the random LULC creation several tim

to create ten LULC layers.   Each of these LU

es 

LC layers had similar total areas for each LULC 

class but different spatial arrangements of individual LULC pixels.  The model was run and the 

nLS values at fixed locations were analyzed, in addition to the contributing LULC for those 

points.  By changing the arrangement of the LULC pixels while keeping the same total area for 

each LULC class, it was possible to observe the effects of the spatial location of a LULC class 

on resulting nLS values. 

LC 

signed 

f values appropriate for a given LULC 

class at KTA (Table 4.4).  These values were based on the reference values previously discussed 

(Table 4.2).  Once the Manning’s n values were assigned, the nLS model was run and the 

potential erosion areas were obtained using a threshold value of 100.  A Monte Carlo simulation 

was performed by repeating this process 100 times, thereby allowing the model output to be 

analyzed for sensitivity to the Manning’s n roughness coefficient input.  By analyzing the 

impacts of randomly assigning Manning’s n values within a given range, the importance of an 

accurate Manning’s n value was assessed. 

 

Manning’s n Parameter 

The second analysis of nLS model sensitivity to the LULC input parameter examined the 

impacts of selecting an appropriate Manning’s n value for a given LULC class.  For each LU

class present at the KTA study area, a range of Manning’s roughness coefficient values was 

determined.  In the original nLS model, design a single Manning’s n to all raster cells of each 

LULC class.  Here, the nLS model was changed so that each raster cell was randomly as

one Manning’s n value from the predetermined range o
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Table 4.4 Manning’s n values associated with landuse/landcover classifications for Kahuku

 

Manning's n Values 

 
Training Area (Chow, 1959). 

Landuse/Landcover Description Minimum Normal Maximum 
Bare Soil 0.02 0.03 0.04 
Kukui Forest 0.11 0.15 0.2 
Mixed Alien Grassland 0.03 0.035 0.05 
Bays and estuaries* 0.075 0.1 0.15 
Ironwood Mixed Forest 0.08 0.1 0.12 
Commercial and Services* 0.01 0.015 0.02 
Cropland and pasture* 0.02 0.03 0.04 
Disturbed Alien Grasslands 0.025 0.03 0.035 
Eucalyptus Mixed Forest 0.11 0.15 0.2 
Evergreen forest land* 0.11 0.15 0.2 
Haole koa / Guinea grass Mixed Grassland 0.03 0.035 0.05 
Paper bark eucalyptus Forest 0.15 0.2 0.11
Ohi'a / Acacia koa / Uluhe Diverse Native Forest 0.1 0.12 0.16 
Mixed Cliff Communities 0.03 0.04 0.05 
Mixed Rangeland* 0.04 0.06 0.08 
Other agricultural land* 0.02 0.03 0.04 
Other urban or built-up land* 0.04 0.08 0.12 
Guinea grass Grassland 0.03 0.035 0.05 
Strawberry guava Shrubland 0.07 0.1 0.12 
Reservoirs* 0.075 0.1 0.15 
Residential* 0.04 0.08 0.12 
Roads 0.01 0.015 0.02 
Christmas berry Forest 0.04 0.06 0.08 
Java plum Forest 0.04 0.06 0.08 
Transportation, communications and services* 0.03 0.05 0.07 

*LULC taken from National Landcover Dataset (NLCD).  These areas are located within the 
surrounding watershed, but outside of base's more detailed vegetative classification. 
 

Output Threshold Value 

In addition to analyzing the input parameters, the magnitude of the critical threshold 

value was also examined using a simple IPP analysis.  Adjusting the threshold value has no

impact on the calculation of the nLS values, but the location of the resulting threshold points, 

where the critical value is realized, will shif

 

t up- or downslope according to the adjusted 

thresho lue.  To test the impacts of this parameter, the model was run two separate times and 

the output grid queried to identify where each threshold value was located. For the first run, a 

ld va
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threshold value of 100 was used, as suggested by McCuen and Spiess (1995).  For the second 

run, a threshold value of 131 was used, as suggested by Kim

oice of a threshold value influences the resulting prediction of 

Variation in Model Calculations 

nLS values within the model lso ex d in t dy.  To test 

 calculating nLS values, the input parameters were utilized in several 

  To test these variations important to understand the 

 model itself.  The model, as prev y desc , can b marized by 

 (2006).  The results were then 

compared to evaluate how the ch

potential soil erosion. 

The calculation of were a amine his stu

alternative methods of

different ways within the model. , it is 

mathematics of the nLS iousl ribed e sum

the equation: 

( ) ∑=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∗

i

ii
Existing S

Ln
SloCell

thCellnCelldmulate )()(
  [3] 

ting is the nLS value obtained using the origina  mode  the 

 (feet), S is t pe for dividual grid cell (feet 

per .  

Through the use of the model (Figure 4.11) Equation 3 was implemented for every point 

across a landscape, creating an output raster layer of nLS values for an entire study area.  This 

method provides a reasonable estimate that can be used to find areas where water transitions 

from overland flow to concentrated flow (Kim, 2006).  However, the model required noticeable 

adjustment of the threshold value from just over 100 (McCuen and Spiess, 1995) in the original 

study to 131 in the original Kansas study site (Kim, 2006).  It may be possible to reduce the 

magnitude of this adjustment by using a model that more closely resembles the original nLS 

calculations presented in Equation 2.   

= AccunLS
pe
Leng

 

where (nLS)Exis l nLS l, n is

Manning’s n coefficient, L is the flow length he slo  an in

 feet), and i is a variable used to index the grid cells in a contributing watershed
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To investigate the possibility of generating more accurate results, an alternative version

of the nLS model was developed that used available GIS tools to calculate average Manning

and average slope for the upstream watershed of a given cell.  The values from this modification

may represent Equatio

 

’s n 

 

n 2 more accurately than the existing nLS model.  The calculations in this 

modified version of the model are shown in Equation 4 below. 

( )

cellsofnumberTotal
S

LcellsofnumberTotal

SAverage
LTotalnAverage

Alt

∑

∑n

nLS

∑ ∗⎟⎟
⎠

⎜⎜
⎝∗)(

.

Alt.

⎞⎛

==   [4] 

where (nLS)  is the nLS value obtained using the alternative nLS model, and the term 

“Total number of cells” refers to the total number of grid cells in the contributing watershed of a 

given point in the study area.   

Because the accumulation of a given value is equal to the summation o h  value  

respect to flow direction in ArcGIS (Equation 5), it can be summarized as shown in Equation 6. 

f t at  with

( )
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CellsdAccumulate
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⎜
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        [6] 
LnnL

i

ii ∗⎞⎛ ∑∑

Using the same input data as the original nLS model, Equation 6 can be applied to derive 

an accumulated nLS value everywhere across a study area. This alternative method provides an 
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nLS va

 

lue that is derived from the average Manning’s n, average slope, and total flow length of 

the contributing watershed, in contrast to the original model (Equation 3).  The magnitude, range,

and location of specific nLS threshold values were then compared. 
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CHAPTER 5 - Results and Discussion 

Sensitivity Analysis 

Overall, the analyses performed in this study revealed that each of the model input 

parameters had a significant impact on model outputs.  Accurate elevation and LULC data is 

required to ensure reliable results.  Varying slope, elevation, and LULC data can dramatically 

change the output nLS values, and the Manning’s roughness coefficient must be carefully 

selected for each LULC type.  Similarly, the model was highly sensitive to adjustments of the 

critical nLS threshold value used for identifying areas of transitional flow.  In addition, variations 

in the model calculations used with the model did not indicate any potential to improve model 

accuracy.  The results from each of the four study sites suggest that the model will need to be 

calibrated for each location to ensure accurate predictions of transitional flow locations. 

Input Slope Parameter 

The response of the model output to changing elevation inputs clearly follows a power 

trend (Figure 5.1).  The relationship between slope and the nLS output, as determined by the 

input elevation data, can be described by the equation below: 

 ( )
ratioS

nLS 100
mod =  (R2 = 0.9999)      [7] 

where (nLS)mod is the nLS value obtained using the modified elevations and Sratio is the 

ratio of the modified slope to the original slope (Smod/S0), which was varied from 0.10 to 2.00. 
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Figure 5.1 Graph of the nLS model response to changing slope values during the slope 
sensitivity analysis. 
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2).  The value of 100 corresponds to the initial nLS value of 100 for the observed points with the 

origina e 

This result was expected due to the way slope was implemented in the model (Eq

l DEM data.  By back calculating, it is possible to derive the original nLS equation. Sinc

Manning’s n and flow length values were not changed, and since 100 was the original nLS value,  

( ) 1000 ==
nLnLS     

0S
   [8]. 

here (nLS)0 is the nLS val

roughness coefficient, nal DEM. 

w ue obtained using the original elevation, n is the Manning’s 

L is the flow length, and S0 is the slope obtained using the origi

Substituting Equation 8 into Equation 7 yields 

ratioratio S
SnL

S
nLS 0

mod

/100)( ==       [9].  
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Replacing Sratio with the slope values Smod and S0, Equation 9 becomes: 

mod0mod

0
mod /

/
)(

S
nL

SS

SnL
nLS ==        [10]. 

where Smod is the slope obtained using the modified DEM.  This result is equivalent to 

Equation 2 using an alternative value for slope. 

From this derivation, it becomes apparent that adjusting the slope across a watershed will 

modify the nLS value in a way that directly corresponds to the slope value in Equation 2.  This 

suggests that the nLS model implements slope in a way that correctly corresponds to the nLS 

equation.  While the overall trends for nLS outputs caused by a changing slope value can be 

easily predicted, there were several values from the sample points that were well outside the 

expected value.  Nearly all of the standard deviation (Figure 5.1) can be explained by these 

outlying points.  The points seem to be clustered in the lower watersheds of the study site, away 

 the more mountainous areas (Figure 5.2).  This suggests that the model is especially 

sensitiv  

will play a smaller role because slope is the driving factor for the nLS output. 

 

  

  

from

e to areas with lower slope values, where the nLS outputs are more variable.  Because of

this, study areas located in areas with a flatter topography, like Kansas, may experience more 

variability in the nLS outputs, so the input LULC data will play a large role in the output nLS 

values.  Steeper areas, like the volcanic terrain of Hawaii, will have less variability, and LULC 
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Figure nalysis.  Red 
points indicate observation points with nLS values that did not follow the nLS equation. 

 

 5.2 Location of the observation points used for the slope sensitivity a

 
 

Upon examination, it was determined that the outlying points were located in smaller 

reaches of the watersheds in the lowland areas of the study site.  These areas were typified by 

lower slope values.  To evaluate the cause for the unusual nLS values, the flow was analyzed 

across each of the modified DEMs.  By implementing flow analysis tools in ArcGIS, the flow 

paths for each DEM were determined using a 1000 m2 watershed for initial flow.  While certain 

areas h  consistent flow, other areas had fluctuating flow tendencies (Figure 5.3).  In the image, ad
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blue areas represent locations that were consistent flow paths for all modified DEMs, white areas 

represent consistent sheet flow, while yellow and red areas represent fluctuating flow paths.  

Observation points analyzed in the study are displayed as green circles.  The analysis showed 

that modifying the DEM caused changes in flow paths, which was an unexpected effect.  In 

addition, the observation points that experienced unusual nLS values were consistently located in 

reaches that have fluctuating flow paths.  This trend suggests that the unexpected nLS values of 

the analysis were a result of variations in the surface modifications, and do not reflect any errors 

in the model calculations.  It also illustrates that change in elevation values in areas of lower 

slope, whether purposely manipulated or caused by DEM error, have a greater impact on the 

resulting flow paths. 

 
Figure 5.3 Variations in the flow network caused by uniform DEM modifications.  The 
majority of the area is either consistent flow (blue) or lack of flow (white).  A small portion 
experienced fluctuating flow paths (yellow to red). 
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For a statistical analysis, the contributing area of the initial stream network was defined 

as 100m2, and the resulting stream network was analyzed (Table 5.1). The majority of the stud

area experienced either consistent flow or no flow, accounting for 99% of the entire site.  

However, the remaining 1% of the study area experienced flow path fluctuations caused by t

DEM modifications.  By accounting for these areas, the unusual nLS values observed in the 

outlying points can be explained as anomalies in the flow path delineations.  If these points are 

excluded, the relationship of slope to nLS output becomes very predictable. 

 

majority of the study area experienced either consistent flow or a lack of flow, and a sma

 

y 

he 

Table 5.1 Summary of the change in flow caused by the uniform slope modifications.  The 
ll 

percentage (1%) experienced varying flow tendencies. 

Flow Description Area (m2) Percent of Total 
No Flow 99,950 26.12% 
Low Tendency 362 0.09% 

. 56 0.01% 

. 99 0.03% 

. 586 0.15% 
22 0.01% . 

9 0.00% . 
27 0.01% . 
33 0.01% . 
28 0.01% . 

Moderate Tendency 12 0.00% 
23 0.01% . 

140 0.04% . 
33 0.01% . 
13 0.00% . 
11 0.00% . 

477 0.12% . 
163 0.04% . 

72 0.02% . 
High Tendency 945 0.25% 
Consistent Flow 279,560 73.06% 

Total: 382,621 m2 100.00% 
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Elevation Data Error 

For a Monte Carlo simulation, elevation values were randomly selected within a range of 

±7 meters for 25 model runs.  The modified DEM was slightly different than the original D

(

EM 

e 

 

 lower portions of 

the watershed, very few channels experienced flow for every elevation dataset. 

onte Carlo simulation, in which 
each raster cell was assigned the orig
 

Figure 5.4).  By selecting the DEM values from an error range, the resulting flow network was 

highly variable, except for the uppermost regions of the watershed (Figure 5.5).  Besides thes

areas where there was a consistent lack of flow, the majority of the study area experienced some

form of fluctuation in the flow tendencies.  While flow generally increased in

 
Figure 5.4 Sample modification of the DEM during a M

inal elevation data ±7 meters.   
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Figure 5.5 Variations in the flow n  modification based on DEM 
error, with flow paths for the original DEM.  The majority of the area experienced 
fluctua
 

etwork caused by DEM

tions in flow (yellow to red).    

 
 

Because DEM error has the potential to cause such significant geographic variations in 

the flow network, it is important to obtain the most accurate DEM that is available for a study 

site.  While there was a large change in the flow network, this change was less intense in the 

upstream portions of the watershed, where flow has not accumulated yet (Figure 5.5).  Because 

of this, the error associated with the DEM may have less of an impact on the nLS model, since 

transitional erosion areas occur primarily in the upstream watersheds.  However, accurate 

elevation data is still vital for accurate nLS output.  This analysis, along with the IPP analysis 

performed on slope, demonstrate the importance of accurate flow paths for the nLS model to 

operate effectively. 
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Spatial Arrangement of Landuse/Landcover 

Ten LULC maps, based on randomly generated rasters, were created for KTA such that 

each new raster contained approximately the same area for each of the 14 LULC classes present 

within the study area.  While the total area of each class was similar (Table 5.2), the exact spatial 

arrangement of individual pixels was varied randomly.  An observation point with a large 

contributing watershed was selected to provide comparisons of the accumulated nLS value after 

each model run using as input the ten different LULC rasters.    

 
Table 5.2 LULC class and area for ten randomly generated landuse/landcover (LULC) 
maps, including the resulting accumulated nLS value at a single sample point. 
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u

1 0.01 0.12 0.71 2.90 8.09 15.89 22.38 22.14 15.62 8.17 3.06 0.75 0.13 0.02 217.3
2 216.40.02 0.17 0.81 3.01 8.06 15.80 22.16 22.25 15.90 7.89 2.98 0.77 0.16 0.02 
3 0.02 0.14 0.74 2.83 8.38 15.81 21.87 22.42 15.91 8.04 2.88 0.79 0.14 0.02 216.7
4 0.03 0.15 0.74 2.87 7.89 15.82 22.10 22.56 15.82 8.22 2.81 0.83 0.13 0.01 217.5
5 0.03 0.11 0.77 2.94 8.04 15.86 21.90 22.19 16.11 8.04 3.05 0.80 0.13 0.01 217.1
6 0.01 0.12 0.78 2.92 8.10 15.71 22.40 22.08 16.00 8.06 2.96 0.75 0.11 0.01 217.0
7 0.02 0.15 0.76 2.90 7.88 15.82 22.32 22.05 16.26 8.15 2.76 0.76 0.18 0.01 217.1
8 0.02 0.12 0.82 2.90 8.15 15.77 22.40 22.27 15.61 8.15 2.89 0.75 0.12 0.02 217.3
9 0.02 0.13 0.75 2.88 8.00 15.62 22.30 22.19 15.82 8.20 3.10 0.85 0.13 0.01 217.5
10 0.02 0.11 0.81 2.85 8.06 15.88 22.30 21.85 16.14 8.11 2.95 0.76 0.14 0.02 216.8

 

Results show that there may be some effects of modifying the LULC distribution within a 

watershed (Table 5.2).  Examining the nLS equation, it is apparent that the distribution will 

affect the final output value.  For a given LULC distribution, the nLS equation∑ iii SLn  
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becomes iii SLnSLnS +++ K33322 .  If the LULC disLnSLn + 2111 tribution is varied 

such that iii SLnSLnSLnSLn ++++ K331221113 , the resulting nLS value will not be 

equal to that of the initial distribution.  However, these effects were found to be negligible 

(±0.3% of the mean nLS value) and some of this difference may be a result of the slight 

difference in LULC proportions.  Because of this, it is apparent that while the LULC distribu

does have an impact on the nLS model, it is not as crucial for estimating the nLS output value as 

the other model parameters, as long as the contributing area at a sam

tion 

ple point retains the same 

odel sensitivity to variat in nni s n s a ss s th onte Car

n . n ’s a  w randomly ec i  a e ng

l 00 d un A pl an ’s tp Fi e  il ra th ange in the 

n ’s istribution.  B ele g  a range, the spatial 

distribution of the surface roughness coefficients becomes less homogeneous, giving the 

r u m s i e e n a i  e l 

landscape features, and incorpor r y h s
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Figure 5.6 hness coefficient, which was  Sample distribution of the Manning’s roug
randomly assigned within a defined range for each landuse/landcover class. 

 

 
 

Using a critical nLS threshold value of 100, modifying the Manning’s n values had a 

noticeable effect on the output nLS values (Figure 5.7).  For different model runs, the variation 

in the Manning’s n values caused changes in where the critical nLS threshold value was realized.  

This geographic variability suggests that assigning an accurate Manning’s roughness coefficient 

is vital for accurate model outputs.  Because of the significant impact of the roughness 

coefficient, it may be necessary to adjust the Manning’s n value based on seasonal conditions, 

and mo ay need to be obtained for the LULC classes comprising a study area. re accurate values m
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Figure 5.7 Shift in output nLS threshold points caused by modifying the uniformity
Manning’s n assignment. 

 of the 

 

 

 
To further analyze the effects of Manning’s n, variation in elevation was also examine

To do this, the study area was separated into three zones of varying elevation.  The highest 

elevation zone (436-647m) included regions in the upper watershed with an overall slope of 

0.43m/m  the middle elevation zone (226-436 m) contained transitional areas with an average 

slope of 0.45m/m, and the lowest elevation zone (15-225 m) contained the lowest portio

watershed with an average slope of 0.30m/m.  Within each elevation zone, 100 observation 

points were randomly selected, and the nLS values for those points were extracted for all 100 

d.  

n of the 

Monte Carlo simulations.  From these values the coefficient of variation was calculated for each 

 59



observation point (Figure 5.8).  This statistic was calculated by dividing the standard deviation 

by the mean.  The majority of the points had a value of 25% or less, with some exceptions.  This 

indicated that varying Manning’s n within a range had an impact on the resulting nLS value, but 

that impact was not extraordinarily large, and it may be predictable to a certain extent.  There 

were more occurrences of values above 25% for areas within the upper region of the study site, 

accounting for 6.7% of the total number of points, compared to 3.0% for middle elevations and 

2.3% for lowest elevations. In general, the coefficient of variance increased with elevation.  The 

highest elevations had an average value of 30.3, the middle elevations had a value of 16.2, and 

the lowest elevations had an average value of 11.9.  This suggests that areas at higher elevations 

in the upper watershed create less predictable variations. 

 
Figure 5.8 Coefficient of variation for the nLS output at 300 observation points during the 
Manning’s n Monte Carlo simulation, divided into three elevation zones. 
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The locations of transitional flow, as indicated by critical threshold points computed by

the nLS model, were influenced significantly by adjusting the value of the threshold (Figure 5.9).
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Modifying the threshold value caused significant shifts in the location of predicted potential soil

erosion.  Based on these results, it is evident that selecting an appropriate critical threshold value 

is vital for obtaining accurate results when applying the nLS model to a given study area. 

 

nLS model. 

 

Figure 5.9 Shift in output points caused by adjusting the critical threshold value for the 

 
 

Variation in Model Calculations 

The modified version of the nLS model resulted in output values that were noticeably 

different from the original model (Figure 5.10).  In this image, large differences in the two 

models are shown as purple, while smaller differences are shown as yellow.  Threshold values of 

100 are shown in red for the alternative model and green for the existing model.  From the 

illustra lear that where the critical threshold is achieved differs according to the model 

calculation applied.  This difference is less dram

tion, it is c

atic in the upstream portions of the watershed, 
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but escalates rapidly in the downstream portions, suggesting that proper calculation methods are 

vital for the accurate predictions of potential erosion sites. 

 
Figure 5.10 Comparison of the existing model, which calculates total accumulated flow 
lengths, to an alternative model, which calculates the longest flow path. 

 

 
 

sing a threshold value of 100, the existing model predicts 1367 transition points for the 

study area, while the alternativ 7.  Comparing both models 

at each o

 

U

e form of the model predicts only 109

thers threshold points, the existing model had nLS values of 136±5 at points where the 

alternative model had nLS values of 100.  Conversely, the alternative model had nLS values of 

523±1000 at points where the alternative model had nLS values of 100.  Statistical results of the 

comparison suggest that the existing nLS model can easily be adjusted to find the threshold 

locations predicted by the alternative model (Table 5.3).   
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Table 5.3 Statistical comparison of the two forms of the nLS model.  Critical threshold 

 

Alternative Model Threshold 

points from each form of the model were compared to nLS values of the other. 

Points Existing Model Threshold Points 

  

nLS Value for 
Alternative 

Model 
nLS Value for 

Existing Model
nLS Value for 

Existing Model 
nLS Value for 

Alternative 
Model 

Average nLS Value: 100 136 100 523 
Maximum Value: 100 159 100 4484 
Minimum Value: 100 90 100 0 
Median Value: 100 136 100 98 
Number of Points: 1097 1097 1367 1367 
Standard Deviation: 0 5 0 1000 

 

Study Area Comparisons 
Each of the four study areas has unique characteristics that affect nLS model results.  In 

general, the Hawaii study areas have steeper, more mountainous topography than those located 

in Kansas.  In addition, the vegetative conditions for each site created varying effects on the nLS 

outputs.  Using a threshold value of 131 ± 22.6, the total area of potential erosion sites, which 

was calculated by multiplying the total number of cells by the area of each cell, varied 

significantly between study areas.  However, the percentage of these values with respect to each 

site’s to

Table 5.4 Characteristics of potential erosion areas for each study site, as predicted by the 

tal area was more consistent, falling between 3.5% and 7.5% (Table 5.4).   

 

nLS model using a threshold value of 100. 
 

  
Erosion Area (sq. m) 

Area of Potential 
Erosion as 

Percent of Total 

Average Slope 
at Erosion 

Areas (m/m) 

Average 
Manning's n at 
Erosion Areas 

Fort Riley 16,557,500 4.02% 0.060 0.065 
Schofield 2,843,200 7.43% 0.324 0.081 
Keamuku 3,276,400 3.51% 0.092 0.043 
Cheney 11,809,100 4.61%% 0.010 0.045 

 
 

hile the table shows that the average slope and the average roughness coefficient 

varied, the relationship between these values and the overall characteristics each study site was 

W
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more predictable.  The average slope of the potential erosion areas was closely related to the 

average slope of the entire Figure 5.11).  Similarly, the average 

Manning’s roughness coefficient was  coefficient of the entire 

site (Figure 5.12).  These t st u en e fo udy 

s as of poten rosion to ha aracteristics that depend heavily on the study 

a nditions.  Since this may not b  case, the model may require adjustments to 

t  accurately capture the loc ons of potential erosion sites. 

 
Figure 5.11 Relationship betwe  potential areas and that of 
the entire study area. 
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Figure 5.12 Relationship between average Manning’s roughness coefficient of erosion 

 
potential areas and that of the entire study area. 

Relationship of Erosion Potential Roughness 
Coefficients to Overall Site Roughness Coefficients

KTA

KP

Cheney

Fort Rileys 
Co

ffi
ci

nt

0.03

0.04

0.05

0.07

0.08

0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Overall Roughness Coefficient

Er
os

io
n 

Po
te

nt
ia

l 
hn

es
e

e

0.06

Ro
ug

 

 
 To determine which characteristics of a specific study site will have the biggest impact on 

predicting potential erosion areas, several comparisons were made.  The effects of a study area’s 

overall slope, Manning’s roughness coefficient, and drainage density on the predictions of 

potential erosion sites were examined.  For slope, the flatter areas of Fort Riley, PTA, and 

Cheney seem to follow predictable trend, since increasing slope causes a decrease in the overall 

prediction of soil erosion potential (Figure 5.13).  However, the mountainous terrain of Schofield 
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creates an unusual outlier, with a much higher area of predicted erosion, as well as a very high 

slope. 

 
Figure 5.13 Relationship between overall site slope and predicted erosion potential areas, as 
percent of total area. 
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For Manning’s roughness coefficient, there is a roughly linear trend indicating an 

d area of soil erosion potential with increasing overall Manning’s 

roughness coefficient (Figure 5.14).  Between Cheney and Fort Riley, however, the trend does 

not hold.  The cause of this difference is unclear. 

 
Figure 5.14 Relationship between overall site roughness coefficient and predicted erosion 
potential areas, as percent of total area. 

increase in the predicte
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For drainage density, there is also a roughly linear trend indicating an increase in the 

predict 5).  

ey. 

Figure 5.15 Relationship between overall site drainage density and predicted erosion 

ed area of soil erosion potential with increasing overall drainage density (Figure 5.1

Similar to the roughness coefficient, the trend does not hold between Cheney and Fort Ril

 

potential areas, as percent of total area. 
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 Overall, there seem to be some basic trends formed among sites with varying 

characteristics.  To better understand these trends, it will be necessary to calibrate the model at 

each site using known gully head locations.  In addition, analyzing additional sites will better 

emonstrate any trends that may exist, providing a more accurate examination of model 

tendencies.

d
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he nLS model was developed as a rapid soil erosion assessment tool for predicting the 

data, landuse/landcover data, and corresponding Manning’s roughness coefficients to locate 

potential areas of transitional flow and where gully heads are likely to form.  The goal of this 

study was to conduct a sensitivity analysis of the nLS model by analyzing the impacts of 

elevation, LULC, and Manning’s coefficient input parameters on model output.  In addition, 

variations in model calculations and threshold parameters were examined.   

Overall, each of the model input parameters had unique impacts on the model outputs.  In 

general, the analyses performed on model inputs suggest that slope is more important for the nLS 

model within study areas that have a steeper terrain.  Conversely, Manning’s roughness 

coefficient is more important in study areas with low slopes.   

In the IPP analysis of slope, it was determined that adjusting the slope across an entire 

study area resulted in an output nLS value that corresponds very closely to the slope value of the 

nLS equation (nLS = nL/S0.5).  Variation from the equation occurred primarily in lowland areas 

with low slope values.  Based on these results, study areas located in areas of low slope will 

pecially 

 

ined 

rror has the potential to dramatically alter the calculated flow paths of a study site.  In 

CHAPTER 6 - Summary and Conclusions 

 T

locations of gully heads in areas of transitional flow (Kim, 2006).  The model uses elevation 

experience higher variability in the output nLS value, and so accurate LULC data is es

important.  

In the analysis of possible DEM error, modifications made to the DEM during a Monte

Carlo simulation helped assess the effects of variability in DEM accuracy.  It was determ

that DEM e
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the uppermost portions of the watershed, the lack of flow accumulation led to areas that 

consistently lacked any flow paths, regardless of the DEM error.  While flow tendencies were 

generally tion in these 

flow paths caused by DEM error.  Because DEM error has the potential to cause such significant 

geograp

 

are 

 

 While the 

distribu

rlo simulation helped assess the 

effects s, 

f 

l 

nd more accurate values may need to be obtained for the vegetative cover of a study 

area. 

higher in the lower portions of the watershed, there was significant varia

hic variations in the flow network, it is important to obtain the most accurate DEM that 

is available for a study site.  This analysis, along with the IPP analysis performed on slope, 

confirm the importance of accurate flow paths for the nLS model to operate effectively. 

In the analyzing the LULC distribution, a Monte Carlo simulation was use to assess the

effects of variability in the LULC distribution.  Results from this analysis show that there 

some effects of modifying the LULC distribution within a watershed.  However, these effects

were relatively small, varying only ±0.3% from the mean output nLS value. 

tion of the LULC data does have an impact on the nLS model, it is less important than 

other model parameters, as long as the contributing area for a sample point retains the same 

general distribution of LULC classes.   

In the analysis of Manning’s n assignment, a Monte Ca

of variability in assigning an appropriate roughness coefficient.  For different model run

the variation in the Manning’s n values caused changes in where the critical nLS threshold value 

was realized.  This geographic variability suggests that assigning an accurate Manning’s 

roughness coefficient is vital for accurate model outputs.  Because of the significant impact o

the roughness coefficient, it may be necessary to adjust the Manning’s n value based on seasona

conditions, a
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In the analysis of variability for Manning’s n, the effect of assigning the roughnes

coefficients was also examined as a function of elevation.  The nLS values at points within thre

elevation zones revealed that areas in higher regions of the watershed generally have a higher 

coefficient of variation.  In general, the coefficient of variance increased with elevation.  This 

value for the highest, middle, and lowest elevations was 30.3, 16.2, and 11.9, respectively.  Of 

the 38 points that had a high coefficient of variation (above 25%), 20 were located in the 

uppermost elevation zone, at the top of the watershed.  Based on these findings, areas at h

s 

e 

igher 

elevatio

 

en 

thin the model did not indicate any potential to improve 

model 

ings 

t, 

nt ecoregions.  For both slope and Manning’s n, the relationship between the overall site 

characteristics and those of potential soil erosion areas is directly proportional.  In addition, the 

ns in the upper watershed create less predictable variations in the nLS values.   

In the simple IPP analysis of the critical threshold value, modifying the threshold value

caused significant shifts in the location of predicted potential soil erosion.  This suggests that 

selecting an appropriate critical threshold value is vital for obtaining accurate results wh

applying the nLS model to a given study area.  It also suggests that the critical threshold value 

can be used as a simple way of calibrating the model for different study areas. 

Varying the calculations used wi

accuracy.  By modifying the model to calculate longest flow length rather than 

accumulated flow length, the overall nLS value was significantly decreased.  However, statistical 

results of the comparison suggest that the original nLS model can easily be adjusted to find the 

threshold locations predicted by the model developed in this study.  Because of these find

Analysis of the four study sites reveals some basic trends in the nLS model output.  Firs

the characteristics of the predicted potential soil erosion areas depend heavily on the overall site 

characteristics of the study area.  This suggests that the model will need to be calibrated for 

differe
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four stu

, 

 

. 

Limitations and Recommendations 

like those us

made detaile

Erosion is a continuous process that has the potential to substantially modify the topography of 

dy areas showed some basic trends relationships between the nLS output and site 

characteristics including slope, Manning’s n, and drainage density.  In general, the area of 

predicted erosion potential, as a percent of the total site area, increased with both roughness 

coefficient and drainage density.  For slope, this value seems to decrease with increasing slope

but KTA creates an outlying point that does not follow this trend.  Overall, the results suggest 

that there are some generalizations that can be made with the nLS model based on a site’s

conditions, but more study sites need to be included if a stronger relationship is to be determined

The various analyses presented in this study provide useful insight into the potential 

applications of the nLS model.  However, there are many limitations that should be addressed in 

future studies.   As suggested in previous sections, accurate elevation data is important to model 

performance, and this is especially true in areas with high slope values.  While 10-meter DEMs, 

ed in the majority of these analyses, have become widely available across the U.S., 

existing research suggests that finer resolution data would significantly improve the model 

performance.   In addition, accurate classification of the Manning’s coefficient with respect to 

LULC classifications is essential for improving model performance, especially in areas of low 

slope values (see Manning’s n Parameter, pg 57).  While remote sensing technologies have 

d LULC classifications increasingly available, updated Manning’s coefficients are 

rare.  It may be necessary to obtain more accurate Manning’s n values, which could be adjusted 

to account for seasonal fluctuations in vegetative cover. To test this, it would be necessary to 

perform additional sensitivity analyses that would better evaluate the Manning’s n parameter. 

In addition to data accuracy, the effects of temporal variability should be investigated.  
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an area.  Because of this, frequent acquisition of elevation and LULC data may be required

ensure up-to-date model outputs.  On military installations, information on training location

intensity, and timing could be used to predict current and future gully formations.  With accu

erosion points, the nLS model can be more precisely calibrated, improving model performance i

the future. Other non-hydrologic activities may also need to be considered, including the impac

of civilian movements and animals.  Such activities can lead to a loss in vegetative cover, a

even modify the flow paths within a study area, which would significantly alter model inputs.  A 

 to 

, 

rate 

n 

ts 

nd 

long-term study should be considered to assess the effects of temporal variability associated with 

these activities. 

ture 

The model results have been shown to vary in different ecoregions due to the DEM and 

LULC associated with varying ecoregions (see Study Area Comparisons, pg 63).  Because of 

this, it may be necessary to adjust the model, especially the threshold value, for different study 

areas.  While precipitation is not considered in the nLS model, a relationship between the 

number of gully heads and rainfall does exist (Kim, 2006).  This factor could be considered in 

assessing the model’s threshold value.  To determine if model adjustments are necessary, fu

studies should include accurate gully head locations to calibrate the model for a given study site. 
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each m

ages, the flow of model processing moves from left to right.  The blue circles represent input 

ed 

data. 

sion of the nLS model includes mathematical conversions, as well as the 

annin reshold 

e 

lso be active, but these have been excluded from 

 

Appendix A - Illustrations of Models used in nLS Analyses 

The following diagrams illustrate the flow of model calculations and processes within 

odel.  Each diagram is taken directly from ArcGIS 9.3 ModelBuilder.  Within these 

im

values, the yellow rectangles represent model processes, and the green circles represent deriv

Advanced nLS Model 
The complete ver

extraction of threshold values (Figure A.1).  Inputs for the model are a DEM, a LULC raster, 

g’s n lookup table, and the nLS threshold range.  Outputs for the model are nLS thM

points and an nLS raster for the entire study area.  More advanced versions of the model hav

en developed to make the model more user-intera

this study.



Figure A.1 Complete nLS model, which uses elevation and e/landcover data to locate areas of potential soil erosion.  landus
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Slope Sensitivity Analysis 
To analyze the impacts of slope, a model was developed that modified the elevation values by increments from 10% to 200% 

of the original landscape (Figure A.2).  Inputs and outputs for the model are identical to those of the advanced model. 

 
Figure A.2 Modified nLS model used for slope sensitivity, which modifies the elevation from 10% to 200% of the original. 
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Flow Variations within Slope Sensitivity and DEM Error Analyses 

 A model was developed for evaluating the  on flow paths (Figure A.3).  For each modified 

DEM t

impacts of elevation modification

he flow paths were calculated and summarized in an output raster.  Inputs for the model are the modified DEMs, while the 

output is a raster that summarized the change in flow paths (Figure 5.3).  

 

Figure A.3 Model used for examining inconsistent flow paths. 
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Landuse and Landcover Distribution Analysis 
A model was developed for randomly distributing the LULC while retaining the basic composition of LULC types (Figure 

A.4).  Inputs for the model are a DEM, a folder workspace for the random LULC rasters, and a Manning’s n lookup table.  Outputs fo

the model include the nLS threshold points and the nLS raster. 

r 

dcover distribution by randomly assigning a LULC. 
 

Figure A.4 Modified nLS model used for analyzing landuse/lan
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Manning’s n Sensitivity Analysis 
A model was developed that p  Manning’s n for each LULC type 

(Figure ual 

erforms a Monte Carlo simulation by repeatedly varying the

 A.5).  Inputs are a LULC raster, a flow direction raster derived from the DEM, a workspace folder, a flow length value (eq

to the DEM resolution), a raster of S  derived from the DEM, a threshold range, a raster representing the extent of the study area, 

and the number of model iterations.  Outputs are the nLS threshold points and the nLS raster. 

 
Figure A.5 Modified nLS model used for the sensitivity analysis of Manning’s n uniformity. 
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Manning’s n Submodel 
A submodel (Figure A.6) was develo  analysis for Manning’s n.  Each LULC type was 

’s n values to each area. 

ped to be used within the sensitivity

assigned a random Manning’s n value within a preset range.  Inputs include the LULC raster, a workspace folder, and a raster 

representing the extent of the study area.  The output is the Manning’s n raster. 

 

Figure A.6 Submodel used within the Manning’s n sensitivity analysis to assign Manning
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l 

each point in the study area.  Inputs are a DEM, a 

Manning’s n raster, the flow length (equal to raster resolution), and a threshold range.  Outputs are the nLS raster and threshold points. 

Variation in Model Calculations 
A model was developed for analyzing the effects of varying calculations within the nLS model (Figure A.7).  The mode

calculates the average Manning’s n and Slope for the contributing watershed at 

 
Figure A.7 Modified nLS model with alternative calculations, which calculates nLS using longest flow length. 

 



 

Appendix B - ArcGIS Tool Descriptions 

too ere used within the GIS analyses of this study.  A summary of the

tools is given below (Table B.1).  All information was taken from the ArcGIS Desktop 9.3 Help 

website elp i.com/arcgisdesktop/9.3/). 

Table B.1 Summary of GIS tools used within analyses 
Slope 

A variety of 

 (http://webh

ls w

.esr

se 

Identifie ax  change in z-value from each cell.  Slope is the rate of maximum change 
in z-valu ell.  range of slope values in degrees is 0 to 90. For percent rise, the range is 
0 for nea t s e is 0 percent, a 45 degree surface is 100 percent, and as the surface 
become l, th rcent rise becomes increasingly larger.  If the center cell in the immediate 
ne ind is NoData, the output is NoData.  If any neighborhood cells are NoData, 
they are assi va f the center cell; then the slope is computed.  The use of a z-factor is 
es ope ulations when the surface z units are expressed in units which are 
different from nd x,y units. 

s the rate of m
e from each c
r infinity. A fla

s more vertica
rhood (3 x 3 w

gned the 
l for correct sl

 the grou

imum
  The
urfac
e pe
ow) 

lue o
 calc

ighbo

sentia

Pa ace ter, output slope raster, measurement units (degree or percent rise), z-
fac

rame
tor 

ters: input surf  ras

Flow Direction 
Cr m each cell to its steepest downslope neighbor.  The output of the 
Flo r n i er raster whose values range from 1 to 255.  If a cell is lower than its eight 
ne giv e value of its lowest neighbor, and flow is defined toward this cell. If 
multiple neig e t west value, the cell is still given this value, but flow is defined with one of 
the two meth low. This is used to filter out one-cell sinks, which are considered noise.  If 
a cell ha an  z-value in multiple directions and is not part of a sink, the flow direction is 
as  ta efining the most likely direction.   For adjacent cells, this is analogous to 
the lls. Across a flat area, the distance becomes the distance to the nearest 
ce  Th sult is a map of percent rise in the path of steepest descent from each cell.  
W A ion, a cell at the edge of the surface raster will flow toward the inner cell 
with the stee  in lue. If the drop is less than or equal to zero, the cell will flow out of the 
surface 

eates
w Di
ighbo

signe
 perc

ll of lo
hen u

 a raster of flow direction fro
ection tool is a
rs, that cell is 

hbors hav
ods explaine

s the same ch
d with a lookup
ent slope betwee
wer elevation.
sing the NORM

pest drop
raster. 

nteg
en th
he lo
d be
ge in
ble d
n ce
e re

L opt
z-va

Parame ace ter, output direction raster, flow at edge cells (normal or forced), optional 
output d

ters: input surf
rop raster 

 ras

Flow Accumulation 
Creates cum ed flow to each cell.  The result of Flow Accumulation is a raster of 
accumul ach , as determined by accumulating the weight for all cells that flow into each 
downslo  of fined flow direction will only receive flow; they will not contribute to any 
downstr ll i sidered to have an undefined flow direction if its value in the input flow 
direction rast hin er than 1, 2, 4, 8, 16, 32, 64, or 128.  The accumulated flow is based on 
the num win o each cell in the output raster. The current processing cell is not 
considered in this umulation.  Output cells with a high flow accumulation are areas of concentrated 
flow and to i ify stream channels.  Output cells with a flow accumulation of zero are local 
topograp  ca  used to identify ridges.  If the input flow direction raster is not created with 
the Flow m there is a chance that the defined flow could loop. If the flow direction does 
loop, Flow A o o into an infinite loop and never finish. 

 a raster of ac
ated flow to e
pe cell.  Cells
eam flow. A ce

er is anyt
ber of cells flo
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 can be used 
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 Direction com
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Parameters:  di n raster, output flow accumulation raster, optional input weight raster, 
output type ( teg

 input flow
float or in

rectio
er) 
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Table B.1 Summary of GIS tools (continued) 
Reclass by Table 
Reclassifies or changes the values of the input cells of a raster using a remap table.  The input raster 
must have valid statistics.  The 'from value field', 'to value field', and 'output value field' are the field 
names in the , a .dbf file, an 
Access table, item. The 
assignment values in the output field must be integers.  Values in the from field for .dbf, INFO and 
Geodata
ascendi

 table that define the remapping.  The remap table can be an INFO table
 or a text file.  The values in the from and to fields can be any numerical 

base tables do not need to be sorted. For text-file based tables, they must be sorted in 
ng order. The values should not overlap in either case.  The output raster will always be of 

integer type. 
Parameters: input raster, input reclassification table, table field holding beginning range value, table field 
holding ending range value, table field holding new value, output reclassified raster, missing value option 
(reclass as data or nodata) 
Build Raster Attribute Table 
Adds a raster attribute table to a raster dataset or updates an existing one.  If you want to delete an 

ild 

existing table and create a new one, check the Overwrite check box. A new raster attribute table will be 
created.  If you have an existing table and you do not check the Overwrite check box, the table will be 
updated. No fields will be deleted, but the values in the table will be up-to-date.  It is not possible to bu
a raster attribute table for a raster dataset that is a pixel type of 32-bit floating point. 
Parameters: input raster, overwrite option (none or overwrite existing attribute tables) 
Extract by Attributes 
Extracts the cells of a raster based on a logical query.  If the Where clause evaluates to true, the original 

 

ster will be floating point.  If the input raster is floating point, the query must 
  Any extra items (other than Value and Count) of the input raster are dropped for the 

input value is returned for the cell location.  If the Where clause evaluates to false, the cell location is
assigned NoData.  If the input raster is integer, the output raster will be integer. If the input raster is 
floating point, the output ra
reference Value.
output raster.  If an item other than Value of Input raster is specified in the Where clause, the original 
input value is returned for the cell location.   
Parameters: input raster, output point features, raster value field 
Raster to Point 
Converts a raster dataset to point features.  For each cell of the input raster dataset, a point will be 
created in the output feature class. The points will be positioned at the centers of cells that they 
represent. The NoData cells will not be transformed into points.  The input raster can have any cell size
and may be any valid raster dataset.  The feature output is assumed to be a shapefile.  The Field 
parameter allows you to choose which column in the raster dataset will become an attribute in the output 
point file. The column containing the cell values (VALUE) will become a column with the heading 
Grid_code in the attribute table of the output feature class. 

 

Parameters: input raster, overwrite option (none or overwrite existing attribute tables) 
Square Root 
Calculates the square root of cells in a raster.  Output values are always floating point, regardless of the 

 input values.  Input values must be greater than or equal to zero. If they are not, the output will be
NoData.  A number can be used as an input; however, the cell size and extent must first be set in the 
environment. 
Parameters: input raster, output raster 
Divide 
Divides the values of two rasters on a cell-by-cell basis.  The order of input is relevant for Divide.  When
a number is divided by zero, the output result is NoData.  If both inputs are integers, Divide performs an 
integer division, and the output result is an integer. For example, if 3 is divided by 2, the output is 1.  If 
either input is of floating-point type, Divide performs a floating-point division, and the result is a floating-
point value. For example, if 3 is divided by 2.0, the output is 1.5.  A number can be used as an input; 
however, the cell size and extent must first be set in the environment.

 

 
Parameters: input numerator raster or constant, input denominator raster or constant, output raster 
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Table B.1 Summary of GIS tools (continued) 
Times 
Multiplies the values of two rasters on a cell-by-cell basis.  The order of input is irrelevant in the 
multiplication expression.  If both inputs are integers, the output values will be integer; otherwise, the
output values will be floating point.  A number can be used as an input; however, the cell size and ext
must first be set in the environment. 

 
ent 

Parameters: input first raster or constant, input second raster or constant, output raster 
Float 
Converts each cell value of a raster into a floating-point representation.  Input values are integers and 
can be positive or negative.  If floating-point values are input, the output will be the same as the input.  A 
number can be used as an input; however, the cell size and extent must first be set in the environment. 
Parameters: input raster, output floating-type raster 
Int 
Converts each cell value of a raster to an integer by truncation.  Integer rasters cannot have values 
larger than 2,147,483,647 (maximum size determined by 231 – 1), or smaller than -2,147,483,648 
(minimum size determined by 231). If Int is used on a floating-point raster in which any value is outside
this range, all of the cells in the resulting raster will be NoData.  Input values should be floating point and 
can be either positive or negative.  A constant (number) can be used as an input; how

 

ever, the cell size 
 integer raster 

 disk space than the same information stored as a floating-point raster. 
and extent must first be set in the environment.Storing categorical (discrete) data as an
will use significantly less
Whenever possible, it is recommended to convert floating-point rasters to integer with the Int function. 
Parameters: input raster, output integer-type raster 
Con 
Performs a conditional if/else evaluation on each of the input cells of an input raster.  If either the true 
raster or optional false raster is floating point, the output raster will be floating point. If both the true 
expression and optional false raster are integer, the output raster will be integer.  If the evaluation of th
expression is nonzero, it is treated as True.  I

e 
f no input false raster or constant is specified, NoData will 

ession.  If NoData does not satisfy the 
s not receive the value of the input false raster; it remains NoData.  The maximum 

be assigned to those cells that do not result in True from the expr
expression, it doe
length of the expression is 4096 characters. 
Parameters: input conditional raster, input raster or constant for true test,  input raster or constant fo
false test, output raster, selective SQL expression 

r 

 

 

 

 


	CHAPTER 1 -  Introduction
	CHAPTER 2 -  Literature Review
	Soil Erosion and Nonpoint Source Pollution
	Environmental Issues on Military Installations
	Best Management Practices
	Predicting and Modeling Soil Erosion
	Existing Models
	Kinematic Wave Approach

	The nLS Model
	Model Sensitivity Approaches
	Research Objectives

	CHAPTER 3 -  Study areas
	Fort Riley, Kansas
	Cheney Reservoir Watershed, Kansas
	Keamuku Training Area, Hawaii
	Kahuku Training Area, Hawaii

	CHAPTER 4 -  Materials and Methods
	Model Description
	Data Acquisition and Description
	Model Implementation
	Sensitivity Analysis
	Input Slope Parameter
	Elevation Data Error
	Input Landuse and Landcover Distribution
	Manning’s n Parameter
	Output Threshold Value
	Variation in Model Calculations


	CHAPTER 5 -  Results and Discussion
	Sensitivity Analysis
	Input Slope Parameter
	Elevation Data Error
	Spatial Arrangement of Landuse/Landcover
	Manning’s n Parameter
	Variation in Model Calculations

	Study Area Comparisons

	CHAPTER 6 -  Summary and Conclusions
	Limitations and Recommendations

	References
	Appendix A - Illustrations of Models used in nLS Analyses
	Advanced nLS Model
	Slope Sensitivity Analysis
	Flow Variations within Slope Sensitivity and DEM Error Analyses
	Landuse and Landcover Distribution Analysis
	Manning’s n Sensitivity Analysis
	Variation in Model Calculations
	Appendix B - ArcGIS Tool Descriptions






