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Abstract 

Shiga-toxin-producing Escherichia coli (STEC), of which enterohemorrhagic E. coli 

(EHEC) are a pathogenic sub-group, are foodborne pathogens of significant public health 

importance in the United States. STEC belong to the family Enterobacteriaceae commonly 

found in the large intestine of humans and other warm-blooded animals. EHEC harbors shiga 

toxin (stx1 and/or stx2) and eae genes which confers the ability to cause human illnesses. The 

U.S. Department of Agriculture Food Safety and Inspection Service declared seven STEC (O26, 

O45, O103, O111, O121, O145, and O157) as adulterants in ground beef and non-intact beef 

products to reduce/eliminate the burden of the pathogens in the beef production chain. STEC 

control efforts in the U.S. include the development of quantitative microbial risk assessment 

(QMRA) to identify mitigation strategies that are effective and economical in reducing exposure 

and reduce occurrence and public health risk from STEC in the beef chain.  

Collection of accurate and unbiased data is critical for the development of a QMRA that 

is valid for decision making. Determining the prevalence and concentration of the seven STEC in 

the different cattle types and seasons is valuable for the development a valid QMRA for STEC in 

beef production in the U.S. Our systematic review and meta-analysis study of the prevalence and 

concentration of E. coli O157 along the beef production chain indicated differences in the fecal 

prevalence of E. coli O157 among cattle types and seasons, revealed decreasing prevalence and 

concentration of E. coli O157 on cattle hides and carcass surfaces from pre-evisceration to the 

final chilled carcass stage, and identified study setting, detection method, hide or carcass swab 

area, and study design as significant sources of heterogeneity among studies reporting prevalence 

of E. coli O157 along the beef production chain.  



  

Bayesian estimation of the diagnostic performance of three laboratory methods (culture, 

conventional PCR [cPCR], and multiplex quantitative PCR [mqPCR]) used for the detection of 

the seven STEC in the feces of cattle is necessary to estimate true prevalence of EHEC in cattle. 

The analysis revealed highest sensitivity of mqPCR, followed by cPCR, and culture for the 

detection of E. coli O157; the cPCR and mqPCR had comparable specificity, but specificity of 

mqPCR method was heavily dependent on prior specification. The mqPCR method was the most 

sensitive for the detection O26, O45, and O103 serogroups. The cPCR method was more 

sensitive than the culture method for serogroups O26, and O121, but comparable for serogroups 

O45, O103, O111, and O145. The cPCR method showed higher specificity than mqPCR within 

serogroups O45, O121, and O145 but no apparent differences within serogroups O26, O103, and 

O111.  

A second order quantitative microbial risk assessment was developed to quantify the 

prevalence and concentration of the seven STEC on pre-evisceration beef carcasses and evaluate 

the impact of peri-harvest interventions. Simulation scenarios of current industry peri-harvest 

intervention practices showed variable effectiveness in reducing STEC contamination on pre-

evisceration beef carcass, however, a scenario of increased adoption of peri-harvest interventions 

was more effective at reducing STEC contamination. Fecal-to-hide transfer and hide-to-carcass 

transfer had a large effect on prevalence and concentration of STEC on pre-evisceration 

carcasses. 
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Abstract 

Shiga-toxin-producing Escherichia coli (STEC), of which enterohemorrhagic E. coli 

(EHEC) are a pathogenic sub-group, are foodborne pathogens of significant public health 

importance in the United States. STEC belong to the family Enterobacteriaceae commonly 

found in the large intestine of humans and other warm-blooded animals. EHEC harbors shiga 

toxin (stx1 and/or stx2) and eae genes which confers the ability to cause human illnesses. The 

U.S. Department of Agriculture Food Safety and Inspection Service declared seven STEC (O26, 

O45, O103, O111, O121, O145, and O157) as adulterants in ground beef and non-intact beef 

products to reduce/eliminate the burden of the pathogens in the beef production chain. STEC 

control efforts in the U.S. include the development of quantitative microbial risk assessment 

(QMRA) to identify mitigation strategies that are effective and economical in reducing exposure 

and reduce occurrence and public health risk from STEC in the beef chain.  

Collection of accurate and unbiased data is critical for the development of a QMRA that 

is valid for decision making. Determining the prevalence and concentration of the seven STEC in 

the different cattle types and seasons is valuable for the development a valid QMRA for STEC in 

beef production in the U.S. Our systematic review and meta-analysis study of the prevalence and 

concentration of E. coli O157 along the beef production chain indicated differences in the fecal 

prevalence of E. coli O157 among cattle types and seasons, revealed decreasing prevalence and 

concentration of E. coli O157 on cattle hides and carcass surfaces from pre-evisceration to the 

final chilled carcass stage, and identified study setting, detection method, hide or carcass swab 

area, and study design as significant sources of heterogeneity among studies reporting prevalence 

of E. coli O157 along the beef production chain.  



  

Bayesian estimation of the diagnostic performance of three laboratory methods (culture, 

conventional PCR [cPCR], and multiplex quantitative PCR [mqPCR]) used for the detection of 

the seven STEC in the feces of cattle is necessary to estimate true prevalence of EHEC in cattle. 

The analysis revealed highest sensitivity of mqPCR, followed by cPCR, and culture for the 

detection of E. coli O157; the cPCR and mqPCR had comparable specificity, but specificity of 

mqPCR method was heavily dependent on prior specification. The mqPCR method was the most 

sensitive for the detection O26, O45, and O103 serogroups. The cPCR method was more 

sensitive than the culture method for serogroups O26, and O121, but comparable for serogroups 

O45, O103, O111, and O145. The cPCR method showed higher specificity than mqPCR within 

serogroups O45, O121, and O145 but no apparent differences within serogroups O26, O103, and 

O111.  

A second order quantitative microbial risk assessment was developed to quantify the 

prevalence and concentration of the seven STEC on pre-evisceration beef carcasses and evaluate 

the impact of peri-harvest interventions. Simulation scenarios of current industry peri-harvest 

intervention practices showed variable effectiveness in reducing STEC contamination on pre-

evisceration beef carcass, however, a scenario of increased adoption of peri-harvest interventions 

was more effective at reducing STEC contamination. Fecal-to-hide transfer and hide-to-carcass 

transfer had a large effect on prevalence and concentration of STEC on pre-evisceration 

carcasses. 
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Preface 

Shiga-toxin-producing Escherichia coli (STEC) are important foodborne pathogens of 

significant public health impact. In the U.S., they cause over 175,000 human illnesses annually. 

Cattle are the principal reservoir of STEC and they shed the bacteria in their feces, contaminating 

the environment and hides of cattle within herds. Bacterial contamination of beef carcasses may 

occur from transfer of fecal material from hides or rarely, gut rupture during processing, and 

consumption of contaminated and undercooked beef and beef products may result in significant 

human morbidity and mortality. The goal of this project is to develop a probabilistic second 

order quantitative microbial risk assessment (QMRA) for the seven major STEC–O26, O45, 

O103, O111, O121, O145, and O157– (collectively known as STEC-7) in the beef production 

chain with focus on the peri-harvest phase. Data were obtained from existing literature and new 

research studies to populate the QMRA. Chapter 1 begins with a review of the sources, reservoir, 

and transmission of STEC-7, methods for the detection and quantification, and control of STEC-

7 in the beef production system, and a review of existing QMRA for STEC in beef in the United 

States and Canada. Chapter 2 uses a systematic and transparent approach, known as systematic 

review and meta-analysis, to collect and summarize exiting published data on the prevalence and 

concentration of E. coli O157 in different seasons and cattle types processed in North America. 

The results of this study were utilized in the QMRA.  In Chapters 3 and 4, we use Bayesian 

latent class analysis to estimates the diagnostic performance (diagnostic sensitivity and 

specificity) of three laboratory methods use for the detection of STEC-7 in cattle feces. Briefly, 

the Bayesian estimation procedure combines prior knowledge about the unknown parameters of 

interest with data obtained from sample testing (i.e. likelihood function) to produce updated 

posterior distributions for parameters of interest. i.e.,  



xxi 

 

 

The prior is a probability distribution that describe the current state of knowledge about the 

parameter of interest. The likelihood describes the additional information obtained through the 

collection of data. The posterior is a probability distribution that describe the new state of 

knowledge after combining the prior with the data. The posterior distribution is summarized as 

means or medians with estimates of variability (standard deviation, quantile, credibility interval). 

The estimated diagnostic sensitivity and specificity were used to adjust the apparent prevalence 

of E. coli O157 obtained from chapter 2 and the six non-O157 obtained from recent studies to 

derive the true prevalence of each of the STEC-7 serogroup in cattle feces. These estimates of 

true prevalence were utilized in the QMRA. Finally, Chapter 5, incorporates the true prevalence 

and concentration data for STEC-7, fecal-to-hide transfer, and the hide-to-carcass transfer data in 

a second order QMRA to derive an estimate of the prevalence and concentration of STEC-7 on 

cattle hides and on pre-wash, pre-evisceration beef carcass. Impact of pre-harvest intervention 

(E. coli O157 vaccination and inclusion of direct fed microbials in feed of fed cattle) and peri-

harvest intervention (application of hide washes on cattle processed at large plants) on the 

prevalence and concentration of STEC-7 on pre-wash pre-evisceration beef carcass was assessed.  
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Chapter 1 - Literature Review – Epidemiology, control, and 

quantitative risk assessment of Shiga toxin-producing Escherichia coli 

(STEC) in beef production 

 

 Introduction 

Escherichia coli is a Gram-negative, rod-shaped, facultative anaerobic bacterium of the 

family Enterobacteriaceae commonly found in the large intestine of humans and other warm-

blooded animals in a mutually beneficial relationship (Farrokh et al., 2013). Most E. coli strains are 

commensal, providing resistance against pathogenic organisms and often used as indicator 

organisms for fecal contamination; however, some E. coli strains have virulence factors that have 

allowed them in some cases to cause serious illness in humans (Callaway et al., 2009), although 

commensal strains may also cause illness in immunocompromised hosts (Katouli, 2010). Pathogenic 

E. coli that affect the intestines of humans are classified into six categories: Shiga-toxin-producing 

E. coli (STEC), of which enterohemorrhagic E. coli (EHEC) are a pathogenic sub-group; 

enteropathogenic E. coli (EPEC); enterotoxigenic E. coli (ETEC); enteroaggregative E. coli 

(EAEC); enteroinvasive E. coli (EIEC); and diffusely adherent E. coli (DAEC) (Farrokh et al., 

2013). 

The disease usually associated with the pathogenic E. coli strains include mild bacillary 

dysentery for EIEC, infantile diarrhea for EPEC and EAEC, infantile and traveler’s diarrhea for 

ETEC and DAEC, and bloody diarrhea, hemolytic uremic syndrome and death for STEC / EHEC 

(Nataro and Kaper, 1998; FDA, 2012). Among the pathogenic E. coli strains, the most significant is 

enterohemorrhagic E. coli O157:H7 (EHEC O157).  This bacterium is highly virulent and capable of 
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producing large quantities of toxins, called Shiga toxin 1 (stx1) and Shiga toxin 2 (stx2), which cause 

severe damage to the intestinal mucosa and may lead to severe disease symptoms. Of the two toxins, 

the presence of stx2 is linked with more severe human disease (Boerlin et al., 1999). In humans, E. 

coli O157:H7 colonize mostly the large intestine (Katouli, 2010). Intimin, an adhesin encoded by the 

E. coli attaching and effacing gene (eae) and present on the locus for enterocyte effacement (LEE) 

island of the bacteria chromosome, enables the attachment of the bacteria to the intestinal epithelial 

cells (Boerlin et al., 1999; Fairbrother and Nadeau, 2006). The adherent bacteria produce Shiga toxin 

(Stx) which is transported across the epithelial cells to the blood vessels resulting in abdominal 

symptoms (Schuller, 2011). E. coli serogroups are characterized by the presence of an O antigen. 

STEC possess an O antigen, along with stx1 and/or stx2. EHEC possess the intimin gene (eae) in 

addition to an O antigen and stx1 and/or stx2. E. coli O157:H7 is the most prevalent cause of STEC-

induced human disease and outbreaks. A dose of 5-50 pathogenic E. coli O157:H7 viable cells can 

cause illness (Farrokh et al., 2013), with symptoms ranging from mild to bloody diarrhea, abdominal 

cramps, and may result in hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) 

characterized by acute renal failure, anemia, and lowered platelet counts. The presence of Stx in 

blood circulation results in renal failure in 5-15% of HUS patients. Stx circulating in blood binds to 

a glycosphingolipid receptors (Gb3) present in the kidney resulting in inflammatory responses or 

cell death (Obrig, 2010). In the United States, E. coli O157:H7 is estimated to cause 63,153 human 

foodborne illnesses, 2,138 hospitalizations, and 20 deaths annually (Scallan et al., 2011; Painter et 

al., 2013). Six other non-O157 STEC serogroups have emerged as leading causes of infection. They 

are E. coli O26, O45, O103, O111, O121, and O145. They cause the same type of disease as E. coli 

O157:H7. (Koohmaraie et al., 2005). The six non-O157 STEC and E. coli O157:H7 are collectively 

referred to as STEC-7 / EHEC-7 in this study.  The non-O157 STEC cause a total of 112,752 
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illnesses and 271 hospitalizations annually in the US (Scallan et al., 2011; Painter et al., 2013). 

STEC foodborne illness imposes a significant health burden on the US population.  The U.S. 

Department of Agriculture’s Economic Research Service (USDA-ERS) estimates that illnesses due 

to STEC cost the United States more than $1 billion annually (Scharff, 2012; Hoffmann et al., 2015). 

Additionally, STEC management activities are a significant economic burden, including cost to 

cattle producers and the beef industry in terms of investment in beef safety research, food safety 

technology implementation and process validation. Also, significant costs of microbiological testing 

of products by the beef industry and the USDA-FSIS, and costs associated with frequent lost product 

sales, product diversion, and product recalls must be considered (BIFSCo, 2011; USDA-FSIS, 

2013b).  

 STEC: Sources, Reservoir, and Transmission 

 Cattle are the major reservoir of STEC bacteria (Gyles, 2007; Hussein, 2007), and cattle-

derived foods, particularly ground beef contaminated with pathogenic strains of STEC, are believed 

to be a principal source of STEC related human illnesses (Bell et al., 1994; Bettelheim, 2007). Based 

on outbreak data obtained from 1998 to 2008 by the U.S Centers for Disease Control and 

Prevention, 2,469 of 4,589 (53.8%) foodborne disease outbreaks were attributable to bacterial agents 

(Painter et al., 2013). Of the 2,469 bacterial associated outbreaks, 186 (7.5%) and 3 (0.12%) were 

further attributable to E. coli O157 and non-O157 STEC, respectively.  Of the 186 outbreaks caused 

by O157 STEC, 103 (55.3%) were attributable to beef, and 59 (31.7%) were attributable to leafy 

vegetables. Other implicated food commodities include sprouts, fruit nuts, beans, dairy, and eggs. Of 

the 6 outbreaks caused by non-O157 STEC, 3 (50.0%) were attributable to beef, and 3 (50.0%) were 

attributable to fruits, nuts, and leafy vegetables.  
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Cattle and other ruminants are colonized by STEC in their intestinal tract and they may shed 

the organism in the feces. Young cattle are most likely to excrete the organism (Cray and Moon, 

1995) but importantly, cattle shedding STEC in their feces show no clinical disease (Wray et al., 

2000). STEC have also been isolated from other animals including sheep, goats, pigs, deer, and 

wildlife (Beutin et al., 1996), flies (Ahmad et al., 2007), and manure from cattle farms (Cernicchiaro 

et al., 2012).  Observational and experimental studies showed that cattle intermittently shed STEC in 

their feces (Besser et al., 1997; Mechie et al., 1997; Sargeant et al., 2000), but may also shed 

persistently over several months (Widiasih et al., 2004; Hussein and Sakuma, 2005b; Gyles, 2007). 

Shedding of STEC among cattle varies by production system (LeJeune and Wetzel, 2007), 

geographic area (LeJeune et al., 2006; Islam et al., 2014), season (Berry and Wells, 2010), age 

(Wilson et al., 1998), diets (Jacob et al., 2009), stress (Rostagno, 2009), presence of pigs, dogs or 

wild geese on the farm (Synge et al., 2003; Schouten et al., 2004), and introduction of new animals 

into the herd (Schouten et al., 2004).  

Apart from contaminated and undercooked beef products, other bovine-derived food such as 

unpasteurized milk (Centers for Disease Control and Prevention, 2007), raw milk cheeses and butter 

(Rangel et al., 2005), and dry-cured salami (Centers for Disease Control and Prevention, 1995) have 

been implicated as modes of transmission of STEC to humans.  Plant produce such as spinach, 

lettuces, unpasteurized apple cider and juice, coleslaw, salad, melons, and sprouts have been linked 

with outbreaks (Rangel et al., 2005). Other STEC-linked human outbreaks have been traced to 

contaminated drinking water and recreational waters (Bruce et al., 2003). Human contacts with cattle 

or their manure on farms, at fairs, and at petting zoos, as well as person to person transmission have 

also resulted in outbreaks (Centers for Disease Control and Prevention, 2005). 
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 STEC in the beef production system 

The first association of STEC with human illnesses in the United States was made in 1982 

among patients who consumed undercooked hamburgers at a fast-food restaurant chain in Oregon 

and Michigan (Riley et al., 1983). Since then, several STEC-caused outbreaks have been reported 

(Sparling, 1998; Brooks et al., 2005; Rangel et al., 2005; Heiman et al., 2015). These illnesses have 

been traced to both O157 and non-O157 STEC serogroups (Hussein and Bollinger, 2005). Following 

a large foodborne outbreak, in the fall of 1992 and spring of 1993, caused by the consumption of 

undercooked hamburgers (Centers for Disease Control and Prevention, 1993), the United States 

Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) in 1994 declared E. 

coli O157:H7 as an adulterant in raw ground beef, and in 1999 in all non-intact raw beef products 

(Federal Register, 1999), and established a zero-tolerance policy for this pathogen in these food 

products. Similarly, the six selected non-O157 strains were declared adulterants in September 2011 

(Federal Register, 2011), and testing for pathogenic Top-7 STEC in beef trimmings of cattle 

slaughtered on-site was initiated by USDA-FSIS in June 2012.  

Contamination of beef carcasses or products with STEC occurs during harvest at the 

slaughter facility and it is associated with both the prevalence and concentration of the pathogens in 

cattle feces and on hides (Arthur et al., 2008; Fox et al., 2008). STEC-colonized cattle shed the 

bacteria in feces and contaminate the production environment (Arthur et al., 2010b). Typically, 

cattle shed E. coli O157:H7 at levels < 102 CFU/g of feces, some cattle (referred to as high/super 

shedders) can shed the organism at levels ≥ 104 CFU/g of feces at a single or multiple periods in 

time (Low et al., 2005; Chase-Topping et al., 2007). There is a large variation in shedding 

concentration from animal to animal (between-host variability), as well as within a single animal 

(within-host variability), and both are important drivers of transmission of E. coli O157 in cattle 
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farms (Chen et al., 2013). The high shedders have been estimated to constitute about 9% of cattle 

positive for E. coli O157, but they are estimated to be responsible for > 80% of the E. coli O157 

shed by cattle (Matthews et al., 2006). Limited data suggest the same might be true for the six non-

O157 STEC. In a recent study, Shridhar et al. (2017) reported that 15.5% of culture positive samples 

contain at least one or more of the six non-O157 serogroups at levels ≥ 104 CFU/g of feces by spiral 

plating method. A high load of STEC in the environment can contaminate cattle hides which in turn 

can serve as the major source of carcass contamination during slaughter and dressing of cattle at 

abattoirs (McEvoy et al., 2000; Fox et al., 2008; Jacob et al., 2010). Arthur et al. (2007a) reported a 

marked increase in the prevalence of E. coli O157:H7 on cattle hides and the number of cattle 

having >0.4 CFU/cm2 of pathogen on their hides from the time cattle were loaded at the feedlot to 

the time hides were removed in the processing plant.  Arthur et al. (2008) highlighted the 

significance of bacteria present in the lairage environments of U.S beef processing plants to the 

overall contamination of hides and beef carcasses during processing. Their study indicated that the 

transfer of bacteria onto cattle hides that occur in the lairage environment accounts for a larger 

percentage of the hide and carcass contamination than does the initial bacterial population found on 

the cattle leaving the feedlot. Jacob et al. (2010) from a study evaluating association among fecal, 

hide, and pre-evisceration carcass prevalence of E. coli O157:H7 reported significant correlation 

between fecal shedding and hide prevalence (R2 = 0.55), and between hide prevalence and carcass 

contamination prevalence (R2 = 0.70). The presence of a high shedder within the cattle cohort, high 

within-cohort fecal and hides prevalence, and having a positive hide were significantly associated 

with the probability of detecting E. coli O157:H7 on a pre-evisceration beef carcass.   
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 Prevalence of STEC in cattle feces 

Based on available literature, there is high variability in the prevalence estimates of O157 

and non-O157 STEC in cattle, ranging from 0 to > 90% of animals and from 0 to 100% of herds 

(Sargeant et al., 2003; Gyles, 2007). Some of the variations in prevalence estimates of E. coli 

O157:H7 have been attributed to factors such as world region and country where cattle are located, 

type of cattle, type of specimen, detection methods, and health status of animals (Islam et al., 2014). 

In the U.S, fecal prevalence of O157 and the six non-O157 STEC varies by season and cattle type 

(Barkocy-Gallagher et al., 2003; Hussein, 2007; Dewsbury et al., 2015). Fecal prevalence of E. coli 

O157:H7 is usually greater in the summer than in winter months (Barkocy-Gallagher et al., 2003; 

Omisakin et al., 2003); non-O157 STEC were found in more fecal samples in the fall and spring 

than in the summer and winter (Barkocy-Gallagher et al., 2003). Among dairy cows, fecal 

prevalence ranged from 0.2 to 48.8% for EHEC O157:H7 and 0.4 to 74.0% for non-O157 STEC 

(Hussein and Sakuma, 2005a). Fecal prevalence of E. coli O157:H7 within a pen or group of feedlot 

cattle has been observed to vary widely from 0% to > 90% among pens and over time (Sargeant et 

al., 2003; Renter et al., 2008). Dargatz et al. (2013) using a polymerase chain reaction assay (PCR) 

on 1145 fecal pools collected from July to September in 21 feedlots from four U.S states, reported 

O-serogroup prevalence of 19.7%, 13.8%, 9.9%, 9.3%, 5.5%, 1.1%, and 0.5% for O157, O45, O26, 

O103, O121, O145, and O111, respectively.  

In a recent study conducted in a large commercial feedlot during summer and winter months 

in the U.S, Dewsbury et al. (2015) reported a 0 to 79.2%, 0 to 8.3%, 0 to 12.5%, and 0 to 12.5% pen-

level fecal prevalence for STEC O157, O26, O103, and O145, respectively, but 0% prevalence for 

STEC O45, O111, and O121 during summer months, and likewise, 0% fecal prevalence for all seven 

STEC during the winter months. Cull et al. (2017) reported 0 to 12.5%, 0 to 6.5%, 0 to 68.7%, 0 to 
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33.3%, 0 to 41.7%, and 0 to 83.3% within pen-level fecal prevalence for EHEC O26, O45, O103, 

O111, O145, and O157, respectively, and 0% for O121, from a study conducted in eight commercial 

feedlots in two major U.S cattle feeding areas during the summer months.  

Estimates of fecal prevalence vary by cattle types, season, detection method, and world 

region (Islam et al., 2014; Ekong et al., 2015). Likewise, it is important to note the case definition 

used in different prevalence estimation studies as the case definitions (O-serogroup vs. 

STEC/EHEC) have different implications for food safety risk assessment. Apart from the prevalence 

of STEC in cattle feces, the level or concentration of shedding of STEC by individual infected cattle 

is of much greater importance to food safety risk than the prevalence rate (Omisakin et al., 2003). 

 Concentration of STEC in cattle feces 

The concentration at which E. coli O157 and non-O157 STEC are shed in cattle feces varies 

from animal to animal (Omisakin et al., 2003; Farrokh et al., 2013). Cattle can shed E. coli O157:H7 

in their feces at concentrations ranging from 102 to 106 CFU/g, or occasionally at levels exceeding 

106 CFU/g (Robinson et al., 2004a), however, the majority shed at a low level (<102 CFU/g), 

representing the minimum detection limit of the enumeration assay (Pearce et al., 2004). Some cattle 

transiently shed STEC at levels >104 CFU/g of feces and have been reported to have significant 

impact on the persistence of these pathogens in feedlot environments, transmission among cattle 

within the pen (Matthews et al., 2006), and subsequent hide and carcass contamination (Arthur et al., 

2007a; Fox et al., 2008; Arthur et al., 2009).  

Fecal enumeration studies of the concentration of E. coli O157:H7 in feedlot cattle in the 

United States during summer months revealed E. coli O157:H7 shedding levels of 102 to <107 

CFU/g of feces (Arthur et al., 2007a; 2008; 2011), and <102 to <109.3 CFU/g of feces among 

Canadian cattle during summer and winter (Stephens et al., 2009). In a recent study, Shridhar et al. 
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(2016) using multiplex quantitative PCR (mqPCR) assays found the concentrations of E. coli 

serogroups O26, O45, O103, O111, O121, O145, and O157 to range from 104 to 107 CFU/g of feces. 

The six non-O157 serogroups had concentrations from 104 to <106 CFU/g, and the O157 serogroups 

had concentrations from 104 to <107 CFU/g of feces. In another study, Shridhar et al. (2017)  

recorded concentrations ranging from 103 to <106 CFU/g for O26, O45, and O145 serogroups and 

103 to <107 CFU/g for O103 and O121 using a spiral plating method. However, quantification of the 

same samples using the mqPCR method revealed a concentration ranging from 104 to <107 CFU/g 

for all serogroups except O111 and O121 which had concentrations ranging from 104 to <106 CFU/g. 

Based on the spiral plating method, approximately 16% of culture positive samples had 

concentration values ≥ 104 CFU/g (high shedders) for at least one of the six non-O157 serogroups. 

Conversely, based on the mqPCR method, approximately 32% of PCR positive samples were high 

shedders for at least one of the six non-O157 serogroups. The two quantification methods differ in 

sensitivity, consistent with the findings for E coli O157 (Jacob et al., 2014). The spiral plating 

method, however, can be used to quantify pathogenic EHEC, whereas quantification with the 

mqPCR method is at the serogroup level (Shridhar et al., 2017).   

 Prevalence of STEC on cattle hides 

Cattle hides are the primary source of beef carcass contamination with STEC during cattle 

processing at slaughter (Van Donkersgoed et al., 2001; Barkocy-Gallagher et al., 2003; Arthur et al., 

2004; Bosilevac et al., 2005; Arthur et al., 2008; Moxley and Acuff, 2014). The hide becomes 

contaminated through pathogen transmission at the feedlot, during transport, and in the lairage 

environment at the processing plant (Arthur et al., 2007c;  2011). Data suggest that the survival of E. 

coli O157:H7 on cattle hides ranges from 7-9 days (Arthur et al., 2011). As with fecal prevalence, 
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available evidence suggests that the prevalence of E. coli O157:H7 and non-O157 STEC on cattle 

hides is higher during summer than winter months (Barkocy-Gallagher et al., 2003).  

The prevalence for E. coli O157:H7 in North American beef cattle hide samples was reported 

to range from 9 to 85% (Arthur et al., 2007c). STEC prevalence on cattle hides has been shown to 

increase on lots of cattle between load-out at the feedlot and the beginning of processing after 

lairage.  Arthur et al. (2007a) recorded an increase in hide prevalence of E. coli O157:H7 from 

50.3% to 94.4% between when cattle were loaded on transport trailers at the feedlot to hide removal 

in the processing plant. Similarly, using pulse field gel electrophoresis, Arthur et al. (2008) 

confirmed the transfer of E. coli O157:H7 from the lairage environment area onto cattle hides and 

concluded that the lairage-derived pathogens account for a larger proportion of hide and carcass 

contamination than the STEC population on the cattle hides when leaving the feedlot.   

In a recent study conducted in a large commercial feedlot in the central U.S during summer 

months, Stromberg et al. (2015a) using the PCR/mass spectrometry-based NeoSEEKTM STEC 

detection and identification test (NeoSEEK) reported 49.9%, 37.1%, 12.5%, 11.0%, 2.2%, 2.0%, and 

0.2% prevalence for EHEC O145, O45, O103, O157, O111, O121, and O26, respectively on hide 

samples from fed cattle at harvest. Similarly, using NeoSEEK, Stromberg et al. (2016) reported 

27.1%, 18.6%, 12.0%, 10.0%, 1.5%, 6.0%, and 1.7% prevalence for EHEC O45, O145, O111, 

O103, O26, O157, and O121, respectively on hide samples from culled dairy cows at harvest. 

 Concentration of STEC on cattle hides 

Similar to the hide prevalence studies, several studies have reported the concentration of E. 

coli O157:H7 on cattle hide samples collected during cattle load-out at the feedlot and during 

harvest at the processing plant (Arthur et al., 2004; 2007a; 2007b; Brichta-Harhay et al., 2007; 

Arthur et al., 2008; Brichta-Harhay et al., 2008; Bosilevac et al., 2009; Arthur et al., 2011). From 
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these studies, concentration of E. coli O157:H7 on cattle hides ranges from 101 to 104 CFU/100cm2. 

Brichta-Harhay et al. (2007) observed a median count of 8.0 x 101 CFU/100cm2 and a maximum 

count of 9.8 x 103 CFU/100cm2 for E. coli O157:H7 on hides of cattle at beef-processing plants.  

In a study conducted in four cull cattle plants, Brichta-Harhay et al. (2008) observed a 

median count of 8.0 x101, minimum count of 4.0 x 101, and maximum of 9.8 x 103 CFU/100cm2 for 

E. coli O157:H7 on hides during the summer, and median, minimum, and maximum of 4.0 x 101, 4.0 

x 101, and 7.2 x 102 CFU/100cm2, respectively during winter. The proportion of hide samples that 

carried E. coli O157:H7 at enumerable levels varied significantly between plants and was associated 

with the prevalence of E. coli O157:H7 on the hides of cattle sampled at the farm before load-out, 

hide contamination during transportation to the plants, and contamination in the lairage environment.  

Comparable hide concentrations of E. coli O157:H7 were observed among large and small 

beef processing plants. In a study conducted at a U.S abattoirs processing fewer than 1,000 head of 

cattle per day, Bosilevac et al. (2009) observed median, minimum, and maximum counts of 8.4 x 

101, 4.0 x 101, and 4.0 x 103 CFU/100cm2, respectively. In a recent study conducted by Stromberg et 

al. (2016) to quantify the level of EHEC-7 on hides of cull cows at harvest, only one hide sample 

was enumerable at 3.7 log CFU/100cm2; none of the non-O157 EHEC were enumerable by spiral 

plating.  

 Prevalence of STEC on beef carcasses 

The primary source of contamination of beef carcasses during processing is the hides of 

animals (Elder et al., 2000; Barkocy-Gallagher et al., 2001; 2003; Arthur et al., 2007b). Direct 

contact between carcass and hide during the skinning process may result in the transfer of pathogens 

onto carcass. Pathogens may also be transferred by direct contact with contaminated equipment, 

surfaces and hands of personnel (Thomas et al., 2012). Although a rare event, rupturing of the 
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intestinal tract during the evisceration process may also result in carcass contamination (Bell, 1997).  

Significant plant-to-plant variations in levels and prevalence of pathogens on carcasses were 

reported from several studies (Arthur et al., 2004; 2008; Brichta-Harhay et al., 2008; Bosilevac et 

al., 2009), and the levels of contamination found to be associated with the incoming load of E. coli 

O157:H7, as well as Salmonella, on the hide. In-plant interventions, such as antimicrobial washes, 

are applied at different processing stages to reduce microbial contamination on carcass surfaces 

(Arthur et al., 2004).  

The prevalence of E. coli O157:H7 on pre-evisceration carcasses from four cull cattle 

processing plants in the U.S was reported to range from 7 to 42% (Brichta-Harhay et al., 2008). 

Bosilevac et al. (2009) reported a 0 to 93% range for pre-evisceration carcass prevalence of E. coli 

O157:H7 recorded over multiple days and at seven different small processing plants in the U.S. 

Barkocy-Gallagher et al. (2003) from a study conducted at three large beef processing plants in the 

Midwestern U.S reported a significant drop in overall prevalence of E. coli O157:H7 from 26.7% on 

pre-evisceration carcasses to 1.2% on post-intervention carcasses (carcasses that had received 

complete antimicrobial interventions), suggesting the effectiveness of the interventions to reduce 

pathogens on carcass.  

Based on the recent study by Stromberg et al. (2015a) in feedlot cattle, the prevalence of 

EHEC O157, O145, O103, O45, O26, O111, and O121 on pre-intervention carcass surface samples 

was estimated as 2.8%, 1.6%, 1.2%, 1.1%, 0.2%, 0.0%, and 0.0%, respectively using the NeoSEEK 

test method. In a similar study conducted in a plant processing culled dairy cows, the prevalence of 

EHEC O103, O145, O26, and O157 on pre-intervention carcass surface samples was estimated as 

4.0%, 2.0%, 1.4%, and 1.0%, respectively. EHEC O45, O111, and O121 were not detected on pre-

intervention carcass surfaces (Stromberg et al., 2016). 
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 Concentration of STEC on beef carcasses 

Several studies have reported on the concentration of E. coli O157:H7 on carcass samples 

collected during harvest at the processing plant (Arthur et al., 2004; 2007a; 2008; Brichta-Harhay et 

al., 2008; Bosilevac et al., 2009).  From the studies, concentration of E. coli O157:H7 ranged from 

0.5 x 100 to 102 CFU/100cm2 on pre-evisceration carcasses. Brichta-Harhay et al. (2007) observed a 

median count of 1.6 x 100 CFU/100cm2 and a maximum count of 4.6 x 101 CFU/100cm2 on pre-

evisceration carcass at beef-processing plants. In another study, Brichta-Harhay et al. (2008) 

reported a significantly lower concentration for E. coli O157:H7 on pre-evisceration carcasses 

during spring (median count = 0.8, minimum = 0.8, maximum = 5.6 CFU/100cm2) compared to 

winter (median count = 1.6, minimum = 0.8, maximum = 45.6 CFU/100cm2). Significant variation 

in pre-evisceration carcass concentration of E. coli O157:H7 across plants was also recorded. In a 

2004 study, Arthur et al. (2004) observed that post-evisceration and post-intervention carcasses 

sampled during six visits at two commercial fed beef processing plants only harbored E. coli O157 

at levels below the detection limit (<1.5 MPN/100cm2) of the assay used.  In the Stromberg et al. 

(2016) study, no EHEC-7 were quantifiable from the pre-intervention carcass samples. Available 

data suggested the presence of E. coli O157:H7 on pre-evisceration carcass during harvest is mainly 

due to contamination during hide removal (Koohmaraie et al., 2005; 2007; Brichta-Harhay et al., 

2008). The prevalence and concentration varies by season and from plant to plant and drops 

significantly as interventions are applied (Brichta-Harhay et al., 2008; Bosilevac et al., 2009).   

 Methods for detection and quantification of STEC in the beef production system 

STEC are genetically and biochemically diverse and their detection from different sample 

matrices can be challenging (Stromberg et al., 2015b). Many approaches have been developed to 

identify and quantify STEC in food and environmental samples. Traditional culture based methods 
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explore the specific biochemical characteristics of each serogroup. They involve an enrichment step, 

followed by immunomagnetic bead separation (IMS), and plating on a selective medium. 

Immunological detection methods use monoclonal or polyclonal antibodies to capture the target. 

Nucleic acid based detection methods detect DNA or RNA targets using complementary labeled 

nucleic acid probes.  

 Culture-based methods 

Culture-based methods used to detect O157 and non-O157 STEC/EHEC in cattle feces, 

hides, and carcasses commonly include selective enrichment, IMS, and plating onto selective and 

differential media that contain antibiotics or chromogenic substrates. Modified Trypticase soy broth 

(mTSB) and E. coli (EC) broth are commonly used for enrichment in the detection of these STECs 

in all sample matrixes. Isolates obtained from the culture media are confirmed by biochemical tests, 

antigen agglutination, and/or PCR detection of virulence genes (Elder et al., 2000; Bai et al., 2010; 

Jacob et al., 2014). For the non-O157 STEC, the enriched suspensions are subjected to IMS 

procedures with serogroup-specific IMS beads, then spread-plated onto Possé differential agar for 

detection in fecal samples (Noll et al., 2015a; 2016), hides and carcass samples (Stromberg et al., 

2015a). For the detection of O157 and non-O157 STEC in beef trim and other ground beef 

components, the FSIS (USDA-FSIS, 2013a) proposed a two-stage PCR screening test on post-

enrichment samples, followed by IMS and inoculation onto Rainbow agar, with confirmation by 

latex agglutination and biochemical tests.  

Culture methods used to quantify E. coli O157 in feces include the most-probable-number 

(MPN) dilution technique (Arthur et al., 2004; Fegan et al., 2004), spiral plating on selective or 

chromogenic media (Robinson et al., 2004b; Fox et al., 2007), and a technique of directly plating 

ground beef, cattle carcass, hide or fecal samples onto a selective medium (Brichta-Harhay et al., 



15 

 

2007; Sanderson et al., 2007; Jacob et al., 2010). The culture methods are usually inexpensive, 

simple, and highly specific; however, they are low in sensitivity, time consuming and laborious. 

 Immunological-based methods 

The detection of STEC by immunological-based methods is based on antibody-antigen 

reactions (Law et al., 2014). E. coli O157 antigen present in the test sample binds to specific 

antibody in the detection assay to form an antigen-antibody complex evident by color change in the 

conjugate or particle agglutination. Several immunoassays have been developed and used for the 

detection of foodborne pathogens including E. coli O157:H7 and non-O157 STEC in ground beef, 

cattle feces and hides. These assays include the enzyme-linked immunosorbent assay (ELISA) 

(Thompson et al., 2007; Hegde et al., 2012a; Shen et al., 2014), polymyxin-ELISA (Blais et al., 

2005; Blais et al., 2006), lateral flow immunoassay (Ching et al., 2015; Wang et al., 2016), 

microplate enzyme immunoassay (EIA) (Hoefer et al., 2011), and flow cytometry (Flanagan and 

Martinez, 2010; Hegde et al., 2012b) for the detection of top six non-O157 STEC O groups in 

ground beef. Others include fluorescence polarization assay (Nielsen et al., 2007; Aydin et al., 

2014), immunochromatography assay (Qi et al., 2011), latex agglutination (March and Ratnam, 

1989; Medina et al., 2012), and optical immunoassay (Wang et al., 2013). These assays are generally 

less sensitive than traditional cultural techniques; however they offer advantages in terms of rapidity, 

reduced labor costs and high volume throughput (Chapman et al., 2001).  

 Nucleic acid-based methods 

Several nucleic acid-based methods have been developed for the detection and 

characterization of STEC. The methods use polymerase chain reaction (PCR) to amplify specific 

gene targets in STEC (Hara-Kudo et al., 2000). The recent nucleic acid-based methods described are 
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conventional PCR (Arthur et al., 2005; Islam et al., 2006; Jacob et al., 2014), multiplex PCR 

(mPCR) (Stefan et al., 2007; Wang et al., 2007; Bai et al., 2012; Jacob et al., 2014), real-time / 

quantitative PCR (qPCR) (Fu et al., 2005; Jacob et al., 2012; Conrad et al., 2014; Jacob et al., 2014; 

Luedtke et al., 2014; Verstraete et al., 2014), loop-mediated isothermal amplification (LAMP) 

(Dong et al., 2014), and NeoSEEKTM detection and identification test, a PCR/mass spectrometry-

based method (Stromberg et al., 2015a; 2016). In two recent studies, mqPCR assays were developed 

and validated for quantification of STEC O157 (Noll et al., 2015b), and E. coli O26, O45, O103, 

O111, O121, and O145 serogroups and three virulence genes (stx1, stx2, eae) in preenriched cattle 

feces (Shridhar et al., 2016). The nucleic acid-based methods have high analytical sensitivity and 

specificity, detect multiple pathogens, have faster turnaround time, high throughput capacity, and 

produced reliable results. However, the method is affected by PCR inhibitors, requires DNA 

purification, and can be difficult to differentiate between viable and non-viable cells (Law et al., 

2014). 

Evidence from published literature revealed well established diagnostic methods for 

detection of STEC O157 and recently the non-O157 STEC in food matrices. Combinations of 

methods have also been used to improve the sensitivity of detection. However, none of these 

methods constitute a reference standard for the detection of STEC in feces, hide or beef products.  

Further research is needed on evaluating the diagnostic sensitivity and specificity of the detection 

methods in order to determine the accuracy of these methods in quantifying the true prevalence of 

STEC in food matrices and avoiding misclassification bias.  

 Control of STEC in animal food products 

Successful control and /or reduction of human exposures and resultant illnesses due to STEC 

requires the implementation of pathogen-reduction interventions in live cattle (pre-harvest) to reduce 
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the level of STEC entering the food supply (Loneragan and Brashears, 2005; Callaway et al., 

2013a), as well as in-plant (post-harvest) intervention strategies during cattle slaughter, dressing and 

processing to reduce carcass contamination and levels of STEC and other pathogens on beef 

products (Koohmaraie et al., 2005; Moxley and Acuff, 2014; Wheeler et al., 2014).  Implementing 

effective pre-harvest controls would help reduce pathogen loads on hides of cattle entering 

processing plants and make in-plant interventions more effective, reduce animal-to-animal cross 

contamination that occurs during transport and lairage, and reduce potential environmental 

contamination and risk to persons in direct contact with animals such as through petting zoo and 

open farms (Callaway et al., 2013b; Wheeler et al., 2014). Implementation of good on-farm animal-

health management practices, such as maintenance of clean cattle feed and water, a well maintained 

environment and appropriate biosecurity have been described as important prerequisites for 

successful pre-harvest interventions (Wheeler et al., 2014).    

 Pre-harvest interventions 

Pre-harvest intervention is the first control step proposed for the reduction of food safety 

risks in the integrated beef production system (USDA-FSIS, 2014). Pre-harvest interventions used 

for the reduction of STEC shedding in cattle can be classified into three types: (i) exposure reduction 

strategies, (ii) exclusion reduction strategies, and (iii) direct anti-pathogen strategies. Exposure 

reduction strategies are targeted at limiting exposure of cattle to various sources of contamination in 

the environment, thereby lowering the prevalence of STEC in live animals (USDA-FSIS, 2014). 

This involves practices such as provision of clean water and feed, appropriately drained and cleaned 

environment, proper housing, adequate biosecurity (Loneragan and Brashears, 2005), and good 

transportation to reduce cross-contamination among animals (Stanford et al., 2011).  Exclusion 

reduction strategies are targeted at modifying the gut microflora of cattle in favor of bacteria less 
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harmful to humans (USDA-FSIS, 2014). This involves provision of treated water (Callaway et al., 

2002), fasting of cattle before and during transportation (Buchko et al., 2000), inclusion of feed 

additives and probiotics (Younts-Dahl et al., 2005; Stephens et al., 2007b), feed type and feeding 

strategies (Callaway et al., 2009) which may decrease STEC counts in cattle feces. The direct anti-

pathogen strategies target and kill the STEC in and on cattle (USDA-FSIS, 2014). This involves 

practices such as cattle hide washing prior to slaughter (Arthur et al., 2011; Schmidt et al., 2012), 

use of bacteriophages (Sheng et al., 2006; Garcia et al., 2008), feeding of competitive exclusion 

products (Brashears et al., 2003b), and vaccination (Potter et al., 2004; Snedeker et al., 2012). These 

strategies are effective for reducing STEC shedding in feces and their levels on cattle hides and beef 

carcasses in the production environment.   

 Direct-fed microbials 

Direct-fed microbials (DFM) are widely used in the livestock industry to improve ruminal 

fermentation and enhance production efficiency of meat and milk (Martin and Nisbet, 1992). In 

recent years, they have been used to reduce foodborne pathogens in live cattle. They include 

probiotics and competitive exclusion cultures, mainly made up of yeast, fungal or bacterial cultures 

or end-products of fermentation (Callaway et al., 2013a) with the potential to decrease pathogen 

carriage on the hides and in the feces of livestock.  The mechanisms of action of the DFM products 

may include alterations to the intestinal microbiome, competition for colonization sites, 

enhancement of intestinal efficiency, and stimulation of the host innate immune response (Buntyn et 

al., 2016).  

Numerous DFM intervention studies comprising different culture products, doses, duration 

and timing of the intervention are reported in the literature. These studies reported variable efficacy 

of DFM to reduce E. coli O157:H7 shedding in cattle. In a Lactobacillus-based DFM study, the fecal 
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prevalence of E. coli O157:H7 was reduced by more than 50% in individual cattle during the feeding 

period in addition to a significant decrease in number of E. coli O157:H7 positive hide samples at 

harvest (Brashears et al., 2003a). In a 2007 study, Stephens et al. (2007a) fed various strains and 

dosages of Lactobacillus-based DFM to feedlot cattle throughout the feeding period and observed a 

reduction in prevalence and concentration of E. coli O157 among specific strains (NP51 and NP28) 

or combination of strains (NP51 with NP35) compared with controls, and a 1 to 2-log reduction in 

concentration as determined using the MPN technique.  In a similar study, Stephens et al. (2007b) 

evaluated the effectiveness of DFM comprising different doses of Lactobacillus acidophilus in 

combination with Propionibacterium freudenreichii and reported up to 74% reduction in E. coli 

O157:H7 fecal shedding among treated groups with no significant dosing effect.  

A study by Arthur et al. (2010a) evaluated the efficacy of a Bacillus-based DFM fed to 

feedlot cattle and found no significant differences in E. coli O157:H7 fecal or hide prevalence and 

concentration between treatment and control groups. Cull et al. (2012) found no evidence of effect 

of a low dose Lactobacillus-based DFM (Bovamine®) on E. coli O157:H7 shedding in feedlot 

cattle. Additionally, the Bovamine®, though formulated for E. coli O157:H7, had no significant 

effects on fecal prevalence of the six non-O157 STEC serogroups in the feedlot (Cernicchiaro et al., 

2014; Paddock et al., 2014).  

In a recent systematic review and meta-analysis (SR-MA) study of the use of DFM to reduce 

fecal shedding of E. coli O157 in beef cattle,  Wisener et al. (2015) observed that the combination of 

L. acidophilus (NP51) and P. freudenreichii (NP24) DFM was more efficacious at reducing the fecal 

prevalence of E. coli O157 in cattle at the time of harvest and throughout the trial period. The 

summary effect size of DFM (measured as fecal prevalence) based on 26 comparisons as measured 

at the end of the trial, and based on 23 comparisons as measured through-out the trials was 
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protective; odds ratio = 0.46 (95% CI: 0.36–0.60) and 0.55 (95% CI: 0.45–0.68), respectively.  A 

recent study (Luedtke et al., 2016) compared the use of two different doses of a commercially 

available DFM (Bovamine®: 109 L. acidophilus + 106 P. freudenreichii CFUs/head/day and 

Bovamine Defend®: 109 L. acidophilus + 109 P. freudenreichii CFUs/head/day) on total EHEC load 

based on a PCR assay targeting ecf1 gene in a commercial feedlot. No significant difference in the 

fecal concentration of total EHEC was observed between the two doses suggesting that the increased 

dosage provided no additional reduction. According to the USDA-National Animal Health 

Monitoring System’s (NAHMS) Feedlot 2011 study, 28.5% of U.S. feedlots with a capacity of 1,000 

or more head of cattle incorporate probiotics in cattle rations, overall, 53.8% of cattle receive 

probiotic in their diet (USDA-NAHMS, 2013b). 

 Vaccination 

Cattle vaccination is a viable pre-harvest intervention for the reduction of public health risk 

associated with E. coli O157:H7. Vaccine confers immunity against E. coli O157:H7 by reducing 

colorectal colonization and duration of carriage in cattle, minimizes shedding of this pathogen into 

the farm environment, and reduces hide contamination (Smith, 2014). Two E. coli O157:H7 

vaccines have been used in the livestock industry for reduction of fecal shedding. A Siderophore 

Receptor and Porin (SRP) protein vaccine (Epitopix SRP®), conditionally approved in the U.S, 

targets the bacterial cell membrane proteins (siderophore proteins) and disrupts iron transport into 

the bacterium leading to cell death (Callaway et al., 2013a; Wheeler et al., 2014). The second is E. 

coli O157 bacterial extract vaccine (type III secreted proteins [TTSP]) licensed in Canada as 

Econiche®. This vaccine confers protection by blocking the protein that allows E. coli to colonize 

the terminal rectum of the bovine intestine (Potter et al., 2004; Peterson et al., 2007; Martorelli et al., 

2017).  Two or three doses of the vaccine are administered to cattle at the feedlot. Results from 
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several studies indicated that these vaccines reduced E. coli O157:H7 shedding in feedlot cattle 

(Potter et al., 2004; Fox et al., 2009; Smith et al., 2009a; 2009b; Thomson et al., 2009; Cull et al., 

2012). 

In a feedlot study, vaccination of cattle with SPR vaccine reduced the fecal prevalence of E. 

coli O157 by nearly 50%, significantly reduced the number of days cattle tested culture positive for 

E. coli O157, and the number of days cattle were identified as high-shedders (Fox et al., 2009). 

Similarly, using the SPR vaccine, Cull et al. (2012) reported a significant reduction in fecal 

prevalence of E. coli O157:H7 and prevalence of high shedders in a commercial feedlot with 

observed vaccine efficacy of 53.0% and 77.3%, respectively. In a large-scale clinical vaccine trial 

conducted in 19 commercial feedlots across Nebraska using a two-dose regimen of the TTSP 

vaccine, Smith et al. (2009b) reported reduced rectal colonization by E. coli O157:H7, with 

vaccinated cattle being 92% less likely to be colonized with E. coli O157:H7 compared to non-

vaccinated cattle. In a similar study, Smith et al. (2009a) reported a 52% to 63% vaccine efficacy for 

fecal shedding of E. coli O157:H7 and 55% efficacy for hide contamination among vaccinated fed 

cattle compared to non-vaccinated cattle. 

In a recent SR-MA study of the use of vaccine treatment to reduce fecal shedding of E. coli 

O157 in beef cattle, Snedeker et al. (2012) concluded that both TTSP and SPR protein vaccines 

significantly reduce fecal prevalence of E. coli O157 in cattle. The summary effect size of TTSP 

vaccine based on 8 comparisons and the SPR protein vaccine based on 4 comparisons was 

protective; odds ratio = 0.38 (95% CI: 0.29–0.51) and 0.42 (95% CI: 0.20–0.61), respectively. In a 

different systematic review and meta-analysis study of vaccine treatment, Varela et al. (2013) 

demonstrated the efficacy (pre-harvest and at-harvest) of the two commercial vaccines combined 

(TTSP and SPR) for all dose regimens combined (OR = 0.43; 95% CI: 0.35–0.53) and two-dose 
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regimens (OR = 0.52; 95% CI: 0.44–0.61) to reduce the prevalence of E. coli O157:H7 under field 

conditions. Using simulation modeling, Vogstad et al. (2014) defined efficacy of a three dose 

regimen of TTSP vaccine with a log normal distribution (µ=0.58, SE=0.13) and predicted a decrease 

in average summer-fed pen level prevalence of STEC O157 from 30% (range: 0% - 80%) to 13% 

(range: 0% - 52%) indicating a decrease in mean pen prevalence, a reduced variability of STEC 

O157 fecal pen shedding, and a reduction of the highest prevalence pens due to vaccine intervention.  

In a 2009 study that quantified the efficacy of the SRP protein-based vaccine on the 

prevalence and concentration of E. coli O157:H7 in two commercial feedlots, Thomson et al. (2009) 

reported a 49.7% reduction in prevalence of E. coli O157:H7 among vaccinated cattle compared to 

control cattle over the study period, and a 98.2% reduction in concentration of E. coli O157 in feces 

of  SRP vaccinated cattle, equivalent to a 1.7 mean log reduction in concentration (0.80 ± 0.56 log10 

MPN per gram in vaccinated group and 2.53 ± 0.24 log10 MPN per gram in the placebo group). 

Contrary to the efficacy of the E. coli SPR vaccine in reducing STEC O157 prevalence and 

concentration, the vaccine produced no significant effects on fecal prevalence of the six non-O157 

STEC serogroups in feedlot cattle (Cernicchiaro et al., 2014; Paddock et al., 2014), suggesting the 

vaccine may not provide cross-protection against the non-O157 STEC.  

It has been estimated that vaccination of cattle would reduce human illnesses due to O157 

STEC in ground beef by 60 - 85% reduction (Hurd and Malladi, 2012; Matthews et al., 2013); 

however, despite this potential, adoption of E.coli vaccination by cattle producers is very limited 

(Callaway et al., 2013a; Matthews et al., 2013). According to the USDA-National Animal Health 

Monitoring System’s (NAHMS) Feedlot 2011 study, only 2.4% of U.S. feedlots with a capacity of 

1,000 or more head of cattle are using the E. coli O157 vaccine on at least some cattle; overall, only 

0.1% of cattle receive E. coli O157 vaccination (USDA-NAHMS, 2013a). The low adoption rate of 
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E. coli vaccination by cattle producers has been attributed to risk of animal injury and impacts on 

production as a result of handling cattle for the recommended three-dose vaccine regimen. 

Additional factors include added cost for the vaccine and the labor to administer it (USDA-NAHMS, 

2013a), given that cattle health and production efficiency are not adversely affected by presence of 

E. coli O157 and there is no economic compensation to the producer for vaccinating cattle against E. 

coli O157.  Tonsor and Schroeder (2015) estimated 1-1.8 billion dollars in welfare losses over 10 

years to cattle producers if they adopt E. coli O157 vaccination but proposed a 2-3% increase in 

domestic consumer demand for beef, 18-33% increase in export wholesale market, 2-4% reduction 

in retailer cost, or 1-2% reduction in processor cost as sufficient economic incentives for cattle 

producers to adopt E. coli O157 vaccination.  Pre-harvest controls in cattle hold enormous potential 

to reduce spread of STEC on farms, in the environment, and entering the food supply. However, pre-

harvest controls must be implemented along with in-plant interventions in a multiple-hurdle 

approach, in order to maximize reduction of pathogens in the food supply (Callaway et al., 2013b). 

Research into new intervention strategies with the potential to further reduce or eliminate food borne 

pathogens from the beef system will go a long way.  

  Quantitative microbial risk assessment of STEC in beef production  

Quantitative microbial risk assessment (QMRA) has been described as a valuable tool and is 

increasingly used in the management of microbial food safety risks and establishment of standards 

for food in international trade (FAO/WHO, 2014). QMRA provides scientific evidence for the 

development of regulatory impact assessment of food safety risk to inform policy decisions. QMRA 

follows a structured and systematic process that includes hazard identification, exposure assessment, 

hazard characterization, and risk characterization, and considers the whole “production-to-

consumption” food pathway.   
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Hazard identification identifies known or potential biological pathogens capable of causing 

adverse effects (illness or death) on the public health and which might be present in a particular food 

or group of foods. Exposure assessment is a quantitative estimation of the presence and number of 

pathogens at key points in the food chain – production, slaughter, food preparation and storage, and 

estimates of amount of contaminant in a single serving. Hazard characterization estimates the 

relationship between the exposure level (dose) and the frequency of adverse health effects 

(response). The dose-response relationship is used to estimate the number of pathogens required to 

cause illness and the susceptibility of different populations. Risk characterization combines the 

outputs of exposure assessment with outputs of hazard characterization to estimate the likelihood of 

adverse health effects on given population groups as a consequence of exposure to the pathogen, as 

well as estimates of the uncertainty associated with the predicted risk values. This may be calculated 

as an annual risk of illness or a prediction of illness per typical serving of food (USDA-FSIS, 2001; 

Duffy et al., 2006).    

Quantitative risk assessment should distinguish between variability and uncertainty in input 

parameters since ecological systems are both highly variable and our knowledge of model input 

parameters is uncertain (Regan et al., 2003). Variability represents a true heterogeneity of the 

population. It can occur because a quantity fluctuates over time, location or within a group, and it is 

not reducible by further study. It is a quantitative measure of the range or spread of a given 

population parameter.  In exposure risk assessment, variability is classified as temporal, spatial, 

intra-individual, and inter-individual (US-EPA, 2011). Temporal variability refers to differences 

over time, for example, seasonal differences in E. coli O157 fecal prevalence among fed cattle. 

Spatial variability refers to differences due to location, for example, environmental conditions such 

as soil temperature, rainfall, and humidity may directly affect E. coli O157 survival. Intra-individual 
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variability refers to differences in individual physiologic or behavioral characteristics over time or 

space, for example, differences in E. coli O157 fecal concentration within individual cattle over 

time. Inter-individual variability refers to differences across individuals or subpopulations, for 

example, variation in fecal prevalence of E. coli O157 among different cattle types or between 

production systems. Variability in exposure parameters may be defined as standard deviation, 

variance, percentile, range or probability distributions with defined parameter estimates and 

confidence intervals from which random samples are drawn to represent variability across the study 

population (US-EPA, 2011).     

Uncertainty in exposure assessment represents a lack of perfect knowledge about the true 

value of one or more components of the system under assessment. It may be reduced by collecting 

additional data or conducting further study (Cummins et al., 2008). Uncertainty in exposure 

assessment is broadly categorized as parameter uncertainty, scenario uncertainty, and model 

uncertainty (Ozkaynak et al., 2008). Sources of parameter uncertainty include random error relating 

to imperfections in measurement techniques, systematic error relating to biases in measurement, use 

of surrogate data for a parameter due to lack of data for the parameter of interest, and non-

representativeness with regards to specified criteria (US-EPA, 2011). Sources of scenario 

uncertainty include errors in information used in formulating exposure pathways and incomplete 

specification of exposure scenarios. Sources of model uncertainty includes oversimplified 

representation of the system of interest, exclusion of relevant variables, failure to account for 

correlation between variables, and incorrectly specified causal pathway (US-EPA, 2011). Guiding 

principles for reducing uncertainty in exposure assessment includes collecting new data using 

unbiased study design, identifying the appropriate target population or a more direct measurement 
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method, using models to estimate missing values, using default assumptions, using surrogate data, 

narrowing the scope of the assessment, and obtaining expert opinion (US-EPA, 2011).  

Variability and uncertainty should be treated separately in risk assessment (Pouillot and 

Delignette-Muller, 2010). The separation allows for the estimation of uncertainty bounds on the risk 

estimate (Cassin et al., 1998), as well as provides greater accountability and transparency for key 

elements of the model, and clarifies communication of results to decision-makers (Cummins et al., 

2008; Pouillot and Delignette-Muller, 2010). Risk assessors use a probabilistic second-order Monte 

Carlo modeling approach to separately classify variability and uncertainty in model inputs and 

parameters. The distributions representing variability and uncertainty are sampled separately in the 

Monte-Carlo simulation framework to separately estimate the variability and uncertainty in the 

model output.  

 Sensitivity analysis 

Sensitivity analysis is a tool used by risk assessors to provide insight on the relative 

importance of the components of a risk assessment (FAO, 2009). It provides a clearer understanding 

of how model outputs respond to changes in model input values and assumptions. It can be used to 

assess the robustness of model results when making decisions and as an aid in identifying important 

sources of uncertainty, variability or both to aid additional data collection or model refinement 

(Ozkaynak et al., 2008; FAO, 2009).  

Quantitative sensitivity analysis is based on four approaches, namely: scenario, graphical, 

mathematical, and statistical analysis (Yoe, 2012). Scenario analysis is used to compare different 

situations to identify differences in important model outputs. The different situations may include 

the best-case, worst-case, common practice, or a new policy case scenario where model inputs are 

entered as point estimates that represent the different scenarios. The different scenarios may lead to 
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different characterization of risk which may help to guide the risk managers in their decision-making 

process. In a recent risk assessment study to estimate the risk of illness due to E. coli O157:H7 

contamination of ground beef and beef cuts in Canada, Smith et al. (2013) evaluated 20 intervention 

scenarios that included worst-case, no intervention, single or combined interventions, and current 

practices intervention scenarios in a sensitivity analysis.  

Graphical methods for sensitivity analysis represent sensitivity in the form of graphs, such as 

scatter plots used to visually assess the influence of individual input on model output. Patterns 

(linear or non-linear) in the plot could depict potential relationship between an input and an output 

(Yang et al., 2012). Tornado graphs may be used to show relative sensitivity of model output to 

input variables. Sensitivity is measured by a correlation or normalized regression coefficient. The 

bar from the plot may extend to the right or left of the zero axis, indicating a positive or negative 

relationship with the length of the bar indicating the relative strength of the relationship. In a risk 

assessment study that evaluated the effects of pre-harvest and harvest interventions for E. coli O157 

contamination on beef carcasses, Dodd et al. (2011) used tornado graphs and Spearman rank 

correlation coefficients and fixing input parameters at the 5th, 50th, and 95th percentiles to compare 

the risk of carcass contamination in a sensitivity analysis.  

The mathematical methods for sensitivity analysis are deterministic and rely on calculating 

outputs for a range of input values or different combinations of input values (Yang et al., 2012). The 

statistical methods rely on simulations in which inputs are represented by probability distributions. 

The statistical methods for sensitivity analysis use methods such as regression analysis, correlation, 

analysis of variance (ANOVA), response-surface methods (RSM), Fourier amplitude sensitivity test 

(FAST), and mutual information index (MII) (Yang et al., 2012).  
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 Quantitative risk assessment for STEC in beef in the United States and Canada 

A number of quantitative risk assessments have been developed for STEC, specifically E. 

coli O157:H7, in beef production in the United States and Canada (Cassin et al., 1998; USDA-FSIS, 

2001; Ebel et al., 2004; Smith et al., 2013; Kiermeier et al., 2015). 

 Cassin et al. (1998): E. coli O157:H7 in ground beef hamburgers in Canada 

 This risk assessment was based on a Process Risk Model. The model applied quantitative 

risk assessment with scenario analysis and predictive microbiology to predict public health risk 

associated with E. coli O157:H7 in home-prepared ground beef hamburgers. The exposure 

assessment modeled the prevalence and concentration of E. coli O157:H7 in cattle feces, through 

production of beef trim at processing plants, grinding and storage at retail, cooking and consumption 

of hamburgers. The data used to estimate the distribution of E. coli O157:H7 prevalence in cattle 

feces was based on six studies conducted at dairy farms, feedlots and processing plants in Canada 

and the USA. The E. coli O157:H7 fecal prevalence data used in the model ranged from 0 to 3.1%. 

Data for concentration of E. coli O157:H7 in cattle feces was from a Zhao et al. (1995) study and 

ranged from < 2 to 5.0 log10 CFU/g. The dose-response assessment used a Beta-Binomial model 

derived from Shigella dysenteriae human outbreak data based on the assumption that the virulence 

of E. coli O157:H7 was similar to that of Shigella. Using Monte Carlo simulation with Latin 

Hypercube sampling in the @Risk software package, the exposure estimate was used as input in the 

dose-response model to estimate the health risk association with the consumption of contaminated 

hamburger.  

 The exposure model predicted a mean prevalence of 2.9% for E. coli O157:H7 in 

contaminated packages of fresh retail ground beef with concentration ranging from 0 to 8 log10 

CFU/package with approximately 90% of contaminated packages having pathogen load of < 3 log10 
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CFU/package. The model predicted a probability of illness of 5.1 x 10–5 from a single meal for 

adults and 3.7 x 10–5 for children; a probability of HUS of 3.7 x 10–6 and a probability of mortality of 

1.9 x 10–7 per meal for children.  

 Using the Spearman rank correlation coefficient, the model ranked the concentration of E. 

coli O157:H7 in cattle feces, host susceptibility, carcass contamination factor, cooking preference, 

retail storage time and temperature as the most important predictors of human health risk from E. 

coli O157:H7.  Using scenario analysis, the model predicted retail storage temperature control 

(minimum 4oC, mode 8oC, and maximum 13oC) as the most effective control strategy resulting in 

80% reduction in E. coli O157:H7 illness. Pre-slaughter screening (reducing the maximum 

concentration of cattle fecal E. coli O157:H7 shedding to 4 log10 CFU/g) was predicted to reduce 

illness rates by 46%, while consumer education programs on cooking temperature was predicted to 

reduce E. coli O157:H7 illness by 16%. 

The exposure assessment incorporated prevalence and concentration of E. coli O157:H7 in 

harvest ready cattle to predict probability of illness, mortality and HUS for the young and adult 

populations. However, important parameters such as seasonality, differences in shedding levels 

among cattle types, and effect of on-farm interventions were not considered. The dose-response 

model was based on human Shigella outbreak data which may have resulted in over-estimation of 

predicted risk.  

 USDA-FSIS (2001) and Ebel et al. (2004): E. coli O157:H7 in ground beef in USA 

 This risk assessment estimated the occurrence and number of E. coli O157:H7 in servings of 

ground beef from production of cattle, through slaughter, preparation, and consumption of ground 

beef. Exposure assessment estimated the prevalence of E. coli O157:H7 in culled breeding cattle and 

feedlot cattle in the U.S. during the low (October – May) and high (June – September) seasons. The 
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mean prevalence in breeding herds was 63% (95% CI: 55 – 72%), and within-herd prevalence was 

3% (95% CI: 2 – 4%) during low season, and 4% (95% CI: 3 – 5%) during high season. For feedlot 

cattle, the mean prevalence was 88% (95% CI: 78 – 97%), within-feedlot prevalence was 9% (95% 

CI: 6 – 14%) during low season, and 22% (95% CI: 21 – 24%) during high season. Prevalence of 

infection within truckloads of cattle served as inputs to the slaughter phase. Slaughter plants that 

processed culled cattle and those that processed feedlot cattle were modeled separately. Following 

carcass contamination during the de-hiding process and decontamination as a result of in-plant 

interventions, on average 6% (range: 3 – 12%) of combo bins from slaughter of culled cattle 

contained E. coli O157:H7 during the low season, and an average 8% (range: 3 – 15%) were positive 

during the high season. For combo bins from slaughter of feedlot cattle, an average of 13% (range 3 

– 45%) of bins contained E. coli O157:H7 during the low season, and an average of 43% (range: 17 

– 58%) were contaminated during the high season. Final internal product temperature data from a 

commercial food temperature database was used to determine effect of product cooking. 

 The model predicted that 0.007% (range: 0.002 – 0.014%) of post-cooked servings 

consumed during the low-prevalence season and 0.018% (range: 0.004 – 0.042%) during the high-

prevalence season were contaminated with at least one E. coli O157:H7 cell. Based on a Beta-

Poisson dose-response relationship adapted from (Powell et al., 2000), the model predicted a 

probability of illness of 9.6 x 10–7 from a single meal for adults and 2.4 x 10–6 for children (about 2.5 

times higher in children). The average population risk of developing HUS was 4.2 x 10–9, and the 

average population risk of death from E. coli O157:H7 in ground beef was 5.9 x 10–10 per serving. 

The average population risk of illness was three times higher during the high-prevalence season (1.7 

x 10–6) compared to the low-prevalence season (6.0 x 10–7).   
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 Using sensitivity analysis, the model ranked feedlot and within-feedlot prevalence, 

probability of carcass contamination following de-hiding, and surface area of carcass contaminated, 

effectiveness of decontamination procedures, and carcass chilling as the most important predictors 

of E. coli O157:H7 contamination of beef trim; these predictors varied by season and type of cattle. 

The model ranked the occurrence and extent of E. coli O157:H7 contamination in beef trim and 

grinder loads, proportion of ground beef that is frozen, the maximum population density of E. coli 

O157:H7 in ground beef, home storage temperature, and cooking as the most important predictors of 

E. coli O157:H7 contamination of cooked ground beef servings. 

 The exposure assessment considered seasonality in prevalence of E. coli O157:H7 

among feedlot and breeding cattle in predicting the probability of illness as a result of consumption 

of E. coli O157 contaminated ground beef among children and adults. However, the assessment did 

not include the concentration of E. coli O157:H7, which is a more important parameter for risk 

estimation. Effects of pre-harvest interventions on levels of E. coli O157:H7 in live cattle and 

carcasses were not considered.  The dose-response model used in this assessment may have resulted 

in underestimation of predicted probability of illness reported (Duffy et al., 2006).  

 Smith et al. (2013): E. coli O157:H7 in ground beef and beef cuts in Canada 

 This assessment estimated the human health risk associated with consumption of ground beef 

and beef cuts contaminated with E. coli O157:H7 from cattle production, through processing at 

slaughter, storage at retail and home, and consumption; evaluating the effect of pre-harvest and 

processing interventions.  The exposure assessment predicted E. coli O157:H7 prevalence and 

concentration throughout the farm-to-fork continuum.  E. coli O157:H7 fecal prevalence values for 

adult cows, heifers, or steers in farms or feedlots obtained from peer-reviewed sources were adjusted 
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for diagnostic test sensitivity and represented as beta distributions for the high shedding (May–

September) and low shedding (October–April) periods.  

Hide prevalence was simulated by adjusting fecal prevalence with a fecal-to-hide transfer 

ratio derived from literature. The simulated hide E. coli O157:H7 prevalence was adjusted using the 

hide-to-carcass transfer ratio derived from literature to estimate the pre-intervention carcass 

prevalence. The data used to estimate the distributions for E. coli O157:H7 concentration in cattle 

feces were based on Stephens et al. (2009) study and were adjusted using a transfer factor to derive 

concentration on hides. Hide concentration distributions were equally adjusted using a hide-to-

carcass transfer factor to derive concentrations on carcasses. Efficacy of interventions on prevalence 

and concentration of E. coli O157:H7 were obtained from systematic review and meta-analyses 

studies (Sargeant et al., 2007; Greig et al., 2012; Snedeker et al., 2012) and defined mostly as 

triangular distributions for effects on prevalence and mixture of uniform and triangular distributions 

for effects on concentration for pre-harvest and processing interventions.  

Retail and consumer storage temperatures were modeled using ground beef storage 

temperature data from a USA survey (EcoSure, 2008).  E. coli O157:H7 growth throughout retail 

and consumer storage at temperature ≥ 0oC were modeled using a model developed by Baranyi and 

Roberts (1994) and Tamplin et al. (2005). Consumer storage growth at temperature < 0oC was 

modeled based on a cumulative distribution described by USDA-FSIS (2001). Thermal inactivation 

of E. coli O157:H7 in ground beef was modeled using the relationship determined by Juneja et al. 

(1997) for cooking hamburgers to internal temperatures between 56.1 and 74.4oC. The amount of 

ground beef and beef cuts consumed in a single serving were assumed to follow a lognormal 

distribution with a mean of 64.8 g and standard deviation (SD) of 72.6 g for ground beef, and mean 

of 104 g and SD of 97.3 g for beef cuts. The Beta-binomial dose-response model described in Cassin 
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et al. (1998) was used to determine the probability of illness from exposure to E. coli O157:H7 in 

ground beef, non-intact, and intact beef cuts.  

Effect of pre-harvest interventions (probiotic, SPR and TTSP vaccines) on E. coli O157:H7 

fecal prevalence was modeled as a log logistic distribution for probiotic and triangular distribution 

for vaccines. Effect on fecal concentration was modeled as a uniform distribution for both probiotics 

and vaccines. Application of a single pre-harvest intervention resulted in 30.9%-61.9%, 37.1%-

61.4%, and 35.3%-72.1% reduction in average probability of illness per serving of ground beef, non-

intact beef cut, and intact beef cuts, respectively.  Effect of processing interventions (carcass wash, 

hot water wash, steam pasteurization, acid spray chill, dry-aged chill, and water spray chill) on E. 

coli O157:H7 carcass prevalence and concentration was modeled as triangular distributions. 

Application of a single processing intervention post-evisceration resulted in 45.3%-92.4%, 44.3%-

95.5%, and 44.0%-96.5% reduction in average probability of illness per serving of ground beef, non-

intact beef cut, and intact beef cuts, respectively.   For a combination of pre-harvest and processing 

interventions, the model predicted a reduction in average probability of illness of 95.1% - 99.6%, 

95.3% - 99.9%, and 95.1% - 99.9% per serving of ground beef, non-intact beef cuts, and intact beef 

cuts, respectively. Based on intervention practices applied in Canada, the model predicted an 

average probability of illness per serving of 8.7 x 10–6, 3.3 x 10–8, and 2.9 x 10–9 for ground beef, 

non-intact beef cuts, and intact beef cuts, respectively. Average risks from consumption of ground 

beef were 263 and 2965 times greater than average risks associated with non-intact beef cuts and 

intact beef cuts, respectively. 

In a sensitivity analysis based on Spearman’s rank order correlation, the model ranked 

cooking temperature, host susceptibility, home storage method, contamination area, shedding period, 

serving size, fecal concentration, and retail storage method as the most important predictors of 
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probability of illness from E. coli O157:H7 in ground beef.  For non-intact beef cuts and intact beef 

cuts, host susceptibility, cooking temperature, concentration in feces, hide-to-carcass transfer factor, 

consumer storage method, shedding period, contaminated area, and feces-to-hide transfer factor 

were the most important predictors of probability of illness, including tenderization method for the 

non-intact beef cuts. 

This study is the first to evaluate the human health risk associated consumption of E. coli 

O157:H7 contaminated ground beef, intact beef cuts, and non-intact beef cuts. The exposure 

assessment modeled prevalence and concentration of E. coli O157:H7 in cattle while accounting for 

seasonality, cattle types (though not separated), sensitivity of the detection method, effect of 

probiotics and vaccines on level of pathogen on live cattle, and effect of multiple on-farm 

interventions. The dose-response model, however, was based on human Shigella outbreak data used 

in the Cassin et.al. (1998) model considered to result in overestimation of the risk of illnesses (Duffy 

et al., 2006).  

 Kiermeier et al. (2015): E. coli O157 in USA hamburgers made from Australian beef 

  This assessment estimated the public health risk associated with E. coli O157 contaminated 

hamburgers produced from manufacturing beef imported from Australia but consumed in the United 

States. The assessment was based on prevalence and concentration of E. coli O157 in lots of beef 

that were withdrawn from the export chain following detection of the pathogen.  The model assumed 

no product was removed from the supply chain following testing; and modeled contamination from 

grinding and patty forming, retail storage, transport home, home storage, cooking and consumption. 

Australian manufacturing beef (trim) is imported frozen in 60 lb cartons arranged in container lots of 

up to 700 cartons. The proportion of E. coli O157 in contaminated cartons from contaminated lots 

was modeled with a beta distribution. The concentration of E. coli O157 in contaminated lots, 
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derived by an MPN enumeration technique, was modeled with a lognormal distribution. Growth 

during retail storage, transport to home, and home storage for ground beef was modeled using 

temperature data from the Ecosure survey (EcoSure, 2008). Thermal inactivation of E. coli O157:H7 

in ground beef was modeled using the relationship determined by Juneja et al. (1997) for cooking 

hamburger patties. It was assumed that only one patty was consumed per serving. The Beta-binomial 

dose-response model described in Cassin et al. (1998) was used to determine the probability of 

illness from exposure to E. coli O157 in a hamburger patty. The model was implemented in the 

open-source R software utilizing functions from “mc2d” and “fitdistrplus” packages. 

 Two product consumption pathways were modeled, namely, home consumption and quick-

service restaurant (QSR) consumption pathways. The home consumption pathway included chilled 

storage at retail, transport to home, chilled storage at home, and home cooking at variable 

temperature, while the QSR pathway included only frozen storage and cooking at fixed temperature 

(68oC). For the home consumption pathway, the model predicted an average number of illnesses per 

contaminated lot of 13.5 (range: 12.3 – 14.9) for the 50 g patties, and an average of 10.8 illnesses 

(range: 9.8 – 11.8) for the 100 g patties per contaminated lot. The authors attributed the higher 

number of illnesses associated with the consumption of the 50 g patties to the doubling of the 

number of burgers obtained and consumed from each lot when the patty size is halved. The number 

of illnesses per 107 burgers was 1.78 and 2.83 when 50 g and 100 g patties are consumed, 

respectively. For the QSRs consumption pathway, the number of illnesses per 1011 burgers from all 

Australian lots was 1.72 and 7.30 when 50 g and 100 g patties are consumed, respectively. A total of 

49.59 illnesses were predicted to occur yearly from patties produced from only Australian 

manufacturing beef, all of which were due to patties cooked and consumed in the home.  
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 In the sensitivity analysis, exclusion of the retail storage temperature outlier (19.4oC), 

limiting retail and home storage durations to 10 days, and using spoilage-based maximum storage, 

produced little impact on the average number of illnesses per lot and the illness rate per 100,000 

patties consumed.   Spreading carton contamination over fewer patties resulted in 10% reduction in 

rate of illness, while spreading carton contamination over more patties produced a 10% increase in 

rate of illness. Cooking patties to temperature of 69oC instead of 68oC, reduced the rate of illness to 

1.1 and 3.1 per 1011 burgers when 50 g and 100 g patties were consumed, respectively. 

The risk assessment modeled the risk of E. coli O157:H7 illnesses in the U.S from 

consumption of burgers produced from beef trim imported from Australia. The exposure assessment 

monitored the prevalence and concentration of E. coli O157:H7 from trim in cartons through 

storage, retail and cooking at home and at restaurants. The dose-response used the Cassin et al. 

(1998) model considered to result in overestimation of the risk of illnesses (Duffy et al., 2006).  

Overall, the available QMRA for the estimation of the public health risk associated with 

STEC contamination in beef in the U.S are based on E. coli O157:H7 contamination of ground beef, 

intact beef cuts, and non-intact beef cuts produced in the U.S, and beef trim imported from Australia. 

Some of the models have incorporated measures of prevalence and concentration of E. coli O157:H7 

in the assessment of exposure while accounting for major confounding variables, such as seasonality 

of shedding, differences among cattle types, and impact of pre-harvest and processing interventions. 

Two dose-response models have been used; each suspected to have either over- or underestimated 

the risk of illness. Concentration of E. coli O157:H7 in feces, host susceptibility, probability of 

carcass contamination, effectiveness of decontamination procedure, storage temperature, and 

cooking temperature are some of the important predictors identified for E. coli O157:H7 

contamination of beef products. 
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 Conclusion 

STEC are important foodborne pathogens of significant public health impact in the U.S. 

Cattle are the principal reservoir and they shed the bacteria in their feces, contaminating the 

environment and hides of cattle within the herd. Bacterial contamination of carcasses may occur 

from transfer of fecal material from hides or rarely, gut rupture during processing. STEC 

transmission to humans may occur through contaminated food, water, environment, direct contact 

with animals, or person-to-person contact, and may lead to significant morbidity and mortality in 

young, elderly, and immunocompromised individuals. 

Prevalence and levels of STEC in cattle production systems vary by region of origin of the 

cattle, age, season, cattle type, type of specimen, and at various stages in the beef production 

continuum. There is high variability among studies on the estimated prevalence of the O157 and 

non-O157 STEC in cattle and along the beef production chain. It is crucial to systematically identify, 

evaluate, critically appraise, and summarize the data from the various and frequently small sample 

size studies evaluating pathogen burden in the same specimen, season, cattle types, and under 

similar conditions, to obtain more informative pooled effect estimates across studies.    

Several diagnostic methods have been developed and evaluated for the detection and 

quantification of the seven STEC serogroups–O26, O45, O103, O111, O121, O145, and O157–

already declared adulterants in ground beef and non-intact raw beef products. These methods, 

however, need to be validated for their diagnostic performance, to allow establishment of unbiased 

estimates of the true prevalence and levels of individual STEC serogroups. This is required for 

implementation of quantitative microbial risk assessment of the burden of the pathogens along the 

beef production chain.   
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A number of quantitative microbial risk assessments have been developed in the United 

States and Canada to estimate the public health risk associated with consumption of ground beef and 

beef cuts contaminated with E. coli O157:H7 from cattle production, processing, through 

consumption. The goal of this project is to create a probabilistic second order quantitative microbial 

risk assessment for the seven major STEC–O26, O45, O103, O111, O121, O145, and O157–in the 

beef production chain. The model will use current data to simulate and track prevalence and 

concentration of the seven STEC in different cattle types and season from primary production at the 

feedlot, through harvest and processing in the slaughter plant, retail to consumption in order to 

estimate their public health impact. In addition, these models will evaluate the efficacy of existing 

(pre-harvest and processing) and novel interventions for reducing beef carcass contamination and 

risk of illness in humans following consumption of contaminated beef products.   
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 Abstract 

Systematic review (SR) and meta-analyses (MA) methodologies were used to identify, 

critically evaluate and synthesize prevalence and concentration estimates for Escherichia coli O157 

contamination along the beef production chain, and to illustrate differences based on cattle types and 

seasonality in North America from the scientific peer-reviewed literature.  Four electronic databases 

were searched to identify relevant articles. Two independent reviewers performed all SR steps. 

Random effects MA models were used to estimate the pooled prevalence and concentration of E. 

coli O157 in feces, hides and carcasses of cattle processed in North America, including their 
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seasonal estimates. The potential sources of between studies heterogeneity were identified using 

meta-regression and sub-group analysis.  Results indicated differences in the fecal prevalence of E. 

coli O157 among cattle types: 10.68% (95% CI: 9.17–12.28%) in fed beef, 4.65% (95% CI: 3.37–

6.10%) in adult beef, and 1.79% (95% CI: 1.20–2.48%) in adult dairy. Fed beef fecal prevalence was 

10.65% (95% CI: 8.93–12.49%) during summer and 9.17% (95% CI: 5.24–13.98%) during the 

winter months. For adult beef, the fecal prevalence was 7.86% (95% CI: 5.43–10.66%) during 

summer, and 4.21% (95% CI: 1.95–7.13%) during winter. Among adult dairy, the fecal prevalence 

was 2.27% (95% CI: 1.5–3.18%) during summer, and 0.36% (95% CI: 0.09–0.74%) during winter. 

There was a significantly higher percentage of hides with E. coli O157 concentration ≥ 40 

CFU/100cm2 on hides of fed beef sampled at the processing plant (23.81%; 95% CI: 14.79–34.15%) 

compared to those sampled at the feedlot (1.74%; 95% CI: 0.53–3.44%). Prevalence of E. coli O157 

on carcass surfaces differed by season only at the post-evisceration stage, but decreased considerably 

through the subsequent processing stages.  Country, study setting, detection method, hide or carcass 

swab area, and study design were identified as significant sources of heterogeneity among studies 

reporting prevalence of E. coli O157 along the beef production chain. The pooled prevalence and 

concentration estimates from this study provide a sound and reliable microbiological basis for risk 

assessment modeling of E. coli O157 and other pathogens in the food chain.  

 

Keywords: E. coli O157; Prevalence; Concentration; Beef production, Food safety, Systematic 

review, Meta-analysis, North America 
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 Introduction 

Foods of bovine origin are frequently implicated in human outbreaks of Shiga toxin-

producing Escherichia coli (STEC) O157 (Bell et al., 1994; Dodson and LeJeune, 2005) and non-

O157 STEC (Mead et al., 1999; Scallan et al., 2011).  E. coli O157 is estimated to be responsible for 

63,153 episodes of domestically acquired foodborne illnesses, 2,138 hospitalizations, and 20 deaths 

among humans in the United States (US) annually (Scallan et al., 2011). Approximately 58% of 

foodborne disease outbreaks caused by E. coli O157 in the US during 1998 – 2008 were attributed to 

beef, about 17% to leafy vegetables, 10% to dairy products, 9% to fruits / nuts, and about 3% for 

each of poultry and game (CDC, 2013). Beef includes ground beef (Riley et al., 1983; Hussein, 

2007; CDC, 2013), intact, and non-intact beef cuts (USDA-FSIS, 1999). Interestingly, the beef 

source (beef or dairy cattle) was not known in most cases.  

Ground beef is produced mainly from culled dairy and beef cattle and low-value cuts from 

finished steers or heifers. In the US, an estimated 34% of domestic ground beef comes from culled 

cows; 17% from culled dairy cows and 17% from culled beef cows (Troutt and Osburn, 1997). The 

remaining percentage is from young beef cattle raised on pasture and/or feedlots. In New York State 

alone, culled dairy cows contribute 10.5 million pounds of hamburger annually (Segelken, 1996). In 

general, it is difficult to trace a specific ground beef outbreak to dairy or beef cattle.  A statewide 

outbreak of Escherichia coli O157:H7 infections in Washington State in November 1997, which 

resulted in 37 cases, with 3 hospitalized for hemorrhagic colitis, was traced to consumption of 

contaminated ground beef originating from dairy cattle (Ostroff et al., 1990). Similar outbreaks, at 

other times, had been traced to beef cattle (Rodrigue et al., 1995), contact with animals at fairs or 

exposure to animal environments (CDC, 2001; Crump et al., 2003; CDC, 2005, 2009). The 

prevalence and concentration of STEC, especially E. coli O157:H7, vary in the environment, feces, 
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hides, and carcasses of cattle in different production systems—beef or dairy (Hancock et al., 1994; 

Hussein and Sakuma, 2005; Hussein, 2007), seasons (Renter and Sargeant, 2002; Barkocy-Gallagher 

et al., 2003; Williams et al., 2010), and at different stages of slaughter and meat processing at the 

harvesting plant (Arthur et al., 2008).  

Understanding the epidemiology of E. coli O157 in the beef chain is important for risk 

assessments aiming to estimate the prevalence and concentration of the pathogen at different points 

along the beef chain, and ultimately help reduce its occurrence and public health risk. Obtaining data 

for the prevalence and concentration of E. coli O157 for different cattle types, seasons, and 

following control interventions at the pre-, post-harvest and post-processing stages of beef 

production is crucial for quantitative microbial risk assessments.  Islam (Islam et al., 2014) in 2014 

reported on the variation in the prevalence of E. coli O157 in cattle feces at the global level. Our 

review describes both the prevalence and concentration of E. coli O157 in cattle feces, hides and 

carcasses with a focus on the North American beef production chain, and further explores sources of 

variation in the prevalence estimates. 

The objective of this study was to identify, critically evaluate and synthesize prevalence and 

concentration estimates for E. coli O157 along the beef production chain, and to illustrate 

differences based on cattle types and seasonality in North America, using a systematic review of the 

literature and meta-analyses. 

 Methods 

 Definitions 

 Escherichia coli O157, the outcome of interest in this study, include E. coli O157 or 

E. coli O157:H7 isolated from feces, hides or carcasses of adult cattle using the immunomagnetic 

separation (IMS) method for detection. Cattle types include fed cattle (young cattle being fed for 



57 

 

slaughter), adult beef (breeding cows on farms and cull cows) and adult dairy (lactating cows on 

farms and cull cows). Season was defined as summer (April, May, June, July, August and 

September) and winter (October, November, December, January, February and March). An 

identified peer-reviewed publication that described the prevalence and/or concentration of E. coli 

O157 in North American cattle was classified as an article. An article may contain one or more 

datasets, which could represent data obtained on different sampling dates, months, different sample 

types or different cattle types. 

 Literature search  

A systematic search was conducted to identify all published studies reporting prevalence 

and/or concentration of E. coli O157 in cattle from North America. Four electronic databases – 

Agricola (EBSCO), CAB Abstracts, Food Science and Technology Abstracts (FSTA), and PubMed 

were searched using these terms: “(Escherichia coli OR E. coli OR STEC OR O157) AND (cattle 

OR dairy OR cow OR feedlot OR cull) AND (feces OR hide OR carcass) AND (prevalence OR 

concentration)”. No language restrictions were applied. All searches were conducted from the 20th to 

22nd of December 2013. We also included a hand search of authors’ collections of relevant peer 

reviewed articles. All citations located in the searches were entered into EndNote X6 (Thomson 

ResearchSoft, Philadephia, PA). Duplicate references (where information about study setting / 

location, numerator, denominator, and the study period were exactly the same for different articles) 

were removed, and abstracts were obtained for all remaining citations.  

 Relevant screening, inclusion and exclusion criteria 

Four inclusion criteria were applied to screen in abstracts considered relevant to the research 

question. The articles had to describe studies that: (1) measured animal level prevalence and/or 

concentration of E. coli O157 in natural field conditions (farm, feedlot or slaughter plant); (2) 
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measured prevalence or concentration in the feces, hides or carcasses of slaughter-ready fed cattle, 

or adult beef or dairy cows in North America (United States, Canada and Mexico); (3) included 

immunomagnetic separation (IMS) for detection of E. coli O157; and (4) had to be published from 

year 2000 through 2013. Descriptive studies (survey), observational studies (cross-sectional, case-

control, and cohort), or field trials (control arms) were eligible for inclusion. Studies were excluded 

if they were a duplicate population group, i.e., separate articles reporting results from the same 

study, and for failing to meet the inclusion criteria above. Unpublished studies, conference abstracts, 

inoculation studies, and calf studies were not included in this meta-analysis. Full publications were 

obtained for all abstracts that passed the relevance screening.  If there was not sufficient information 

in the abstract to assess whether all four inclusion criteria were met, the full publication was also 

obtained and screening was repeated using the full publication. Articles were identified as peer-

reviewed research article by searching on Ulrichsweb (https://ulrichsweb.serialssolutions.com/), an 

electronic database that determines if a journal was indicated as being peer-reviewed. The abstracts 

were screened by two independent reviewers with all disagreements resolved by consensus. The 

relevance screening form, data extraction and assessment of risk of bias form were created in 

Microsoft Excel (Microsoft Corp., Redmond, WA, USA). 

 Data extraction process 

All article information (author’s name, article title, and year of publication) were captured in 

the data extraction and assessment of risk of bias form. The form was pilot tested on seven articles 

by all three authors. Data were extracted on population (cattle type, production system, country, and 

study date), study design, type of specimens, specimen collection date, number of samples analyzed, 

number or proportion positive, percentage or number enumerable, and methods used for detection. 

Data were extracted for all articles at the farm/plant level based on sampling dates including studies 

https://ulrichsweb.serialssolutions.com/
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that were designated as longitudinal, surveys, and field trials, thus data represented outcome 

measurement at one specific point in time.  Study design was therefore categorized as cross sectional 

(including longitudinal studies and surveys) studies, and field trials. Specimen collection dates were 

categorized into seasons. Data for the methods used for pathogen detection were extracted to include 

IMS, latex agglutination or ELISA, with or without PCR. This was re-categorized as methods that 

included IMS and PCR, and those that included IMS but no PCR. Data were extracted for three 

types of cattle; fed cattle (young cattle being fed for slaughter), adult beef (breeding cows on farm 

and cull cows) and adult dairy (lactating cows on farm and cull cows). For articles with insufficient 

or no information on the date when specimens were collected, the corresponding author was 

consulted by e-mail to request sampling dates and additional data where necessary. For articles that 

presented only the total sampled (denominator) and proportion of positives, the total positives 

(numerator) were calculated. Prevalence and / or percentage of enumerable samples were extracted 

or calculated for cattle feces, hides sampled at feedlots and at processing plants. Pre-evisceration 

carcass prevalence and percentage of enumerable samples were extracted for carcasses immediately 

after complete hide removal but before application of any antimicrobial interventions. Post-

evisceration carcass prevalence was extracted for carcasses after evisceration, splitting, and 

trimming, but before further antimicrobial interventions.  Post-intervention carcass prevalence was 

extracted for carcasses after final plant antimicrobial intervention on carcasses hanging in the cooler 

for no more than 2 hours after final intervention. Chilled carcass prevalence was extracted for 

carcasses hanging in the cooler for approximately 24 hours post- mortem. Data were extracted from 

the included studies by the first author and validated by a second author. All disagreements were 

discussed and resolved. 
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 Statistical analysis 

Descriptive statistics were calculated to determine the total number of cattle included at each 

level of analysis and the ranges of prevalence estimates. Random-effects meta-analyses were carried 

out (using the total sample size and number of positives) to estimate the prevalence of E. coli O157 

in cattle feces, hides and carcasses. Between-study variations were assessed using: (1) the Cochran’s 

Q (chi-square) test of heterogeneity, to evaluate whether the variation between studies exceeded that 

expected by chance,  P ≤ 0.1 indicated significant heterogeneity, and (2) the Higgins I2 statistic, to 

estimate the percentage of total variation in effect estimates across the studies attributable to 

heterogeneity rather than chance, I2 > 50% may indicate substantial heterogeneity (Higgins et al., 

2003). Testing for subgroup differences was based on Cochran’s Q (chi-square) test of 

heterogeneity, to test for heterogeneity across subgroups.  

Separate meta-analyses (subgroup analysis) were conducted on data subsets to estimate the 

pooled prevalence and/or concentration (percentage enumerable) of E. coli O157 in different cattle 

types and seasons for fecal samples, hides sampled at farm or at slaughter plants, and beef carcasses 

(pre-evisceration and post-intervention) in North America and by country. For this analysis, our 

combinations of months to define season represented the most accurate definition of high and low 

prevalence months for E. coli O157:H7 in cattle, and was also supported by the USDA data  

(USDA-FSIS, 2002, 2013). Other months combinations to define seasons were assessed (data not 

shown). The point estimates (with 95% CIs) from separate datasets were pooled using the 

DerSimonian-Laird random effects (DerSimonian and Laird, 1986) method, with the variances of 

the raw proportions stabilized using the Freeman-Tukey double arcsine transformation (Freeman and 

Tukey, 1950; Viechtbauer, 2010).  
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Meta-regression was used to explore additional potential sources of heterogeneity below the 

initial grouping levels of type of sample (feces, hide or carcass), type of cattle (fed beef, adult beef 

or adult dairy), and season (summer or winter). The explanatory variables were: study setting 

(commercial vs. research facility), sampling setting (farm/feedlot vs. slaughter plant), study design 

(cross sectional studies vs. field trials), country of origin (USA, Canada, or Mexico), detection 

method (IMS with PCR vs. IMS no PCR), hide swab area (<1,000 vs. 1,000 cm2), and carcass swab 

area (1,000 vs. >1,000 cm2). Initially, univariable meta-regression models were built to explore the 

association between the variables and the prevalence of E. coli O157. Variables with P < 0.2 in the 

univariable analysis were included in the multivariable model. For models where a variable category 

contained fewer than 3 studies, the variable category was dropped (e.g. category “Mexico” within 

the variable “country”.  Subgroup analyses were conducted to obtain prevalence estimates by 

country given cattle types and seasons. All meta-analyses were carried out using “metaprop” in the 

“meta” package in open sources 64 bit R 3.0.2 (R Core Team, 2013). 

 Assessment of quality of reporting 

This evaluation involved the assessment of information reported in the primary studies on 

factors related to internal validity (risk of bias) and external validity (generalizability). Ten criteria 

were extracted for further exploration. Factors related to internal validity were study design, study 

setting, sampling setting, and detection method. Factors related to external validity were cattle type, 

country, sample type, date/season of sampling, and coverage area for hide and carcass swabs. 

 Results 

From the initial searches, 1,966 (1,961 from databases, 5 from hand-search) potentially 

relevant articles, all written in English, were identified. After primary screening of titles and 
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abstracts, 137 articles were selected for full text search. A total of 53 relevant articles (satisfied 

inclusion criteria) reporting prevalence and/or concentration of E. coli O157 in cattle feces, hide or 

carcasses were identified. Among these, we requested additional information (total number of 

samples tested and positive for E. coli O157 stratified by sampling date/month) through e-mail from 

the lead authors for 35 of the articles, of which 18 provided the requested data. Of the 17 articles for 

which additional data was not available from the authors, two were completely excluded (LeJeune et 

al., 2004a; Varela-Hernandez et al., 2007) in the MA, and 15 were included in the MA of E. coli 

O157 prevalence by cattle type based on the data reported in the articles (Sargeant et al., 2000; 

Barkocy-Gallagher et al., 2003; Riley et al., 2003; Rivera-Betancourt et al., 2004; Dewell et al., 

2005; Dodson and LeJeune, 2005; Childs et al., 2006; LeJeune et al., 2006; Woerner et al., 2006; 

Brichta-Harhay et al., 2007; Stephens et al., 2007; Dewell et al., 2008; Fox et al., 2008b; Stephens et 

al., 2009; Fink et al., 2013). However, six of these 15 articles were excluded in the MA by season 

because sampling dates could not be separated into defined seasons. (Sargeant et al., 2000; Childs et 

al., 2006; Woerner et al., 2006; Brichta-Harhay et al., 2007; Stephens et al., 2007; Stephens et al., 

2009).  

Finally, a total of 51 articles (representing 631 datasets) were included in the MA for 

prevalence (575 datasets) and/or concentration (61 datasets) of E. coli O157 based on cattle types for 

all sample types. Out of the total 51 articles, 45 (representing 603 datasets) were included in the MA 

to assess the effect of season (Figure 2.1). Out of all articles, 44 represented studies conducted in the 

United States, five conducted in Canada and two in Mexico.  Based on study design, included 

articles represented 43 cross-sectional-surveys, five longitudinal (data extracted as cross-sectional), 

and three field trial (control arm) studies. A total of 40 articles contained fecal prevalence and /or 

concentration data, 19 contained hide and 14 contained carcass data (Figure 2.1 and Table 2.1). Data 
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describing the characteristics of all studies included in the estimation of the prevalence and 

concentration of E. coli O157 in the beef production chain are presented in Table 2.2. 

 Prevalence of E. coli O157 in cattle feces 

 Cattle type and seasonality 

The estimated fecal prevalence for E. coli O157 differed significantly (P < 0.01) among 

cattle types (fed beef, adult beef, and adult dairy). For fed beef, estimated fecal prevalence was 

10.65 % (95% CI: 8.93–12.49%) during summer and 9.17 % (95% CI: 5.24–13.98%) during winter 

in North America (P > 0.05). For adult beef, the summer prevalence was 7.86% (95% CI: 5.43–

10.66%), and 4.21% (95% CI: 1.95–7.13%) during winter (P < 0.05). Among adult dairy, the 

estimated fecal prevalence was 2.27% (95% CI: 1.5–3.18%) during summer, and 0.36% (95% CI: 

0.09–0.74%) in winter (P < 0.05).  The estimated percentage of enumerable (≥ 200 CFU/g of feces) 

fecal samples for fed beef sampled during summer was 5.78% (95% CI: 2.41–10.31%). For each of 

the prevalence estimates (fed beef, adult beef, adult dairy, and fed beef % enumerable), there was 

heterogeneity across studies [Cochran’s Q (chi-square) P < 0.1 and the Higgins I2 > 50%], (Table 

2.3). Univariable meta-regression analysis was conducted to assess study characteristics at each level 

of the explanatory variables. Detection method (IMS with PCR vs. IMS no PCR), and country (USA 

vs. Canada) were the only significant variables (P < 0.2) when exploring sources of heterogeneity 

among studies reporting fecal prevalence for fed beef during summer months. No variable was 

significant (P > 0.2) during winter. For adult beef, country was significant (P < 0.2) during summer, 

while detection method was significant (P < 0.2) during winter. Neither of these factors were 

significant for adult dairy in summer or winter. In a multivariable meta-regression model, country 

and detection method remained as the only significant sources of heterogeneity for fed beef fecal 

prevalence during summer months.  
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 Prevalence of E. coli O157 on hides 

There were reports of E. coli O157 measured on hides at the feedlot immediately prior to 

transport to processing plants and following the arrival of the cattle at the plant or post 

exsanguination (Table 2.4). Hide prevalence at the feedlot was reported for fed beef only. The 

estimated prevalence of E. coli O157 on hides measured at the feedlot was 52.01% (95% CI: 31.43–

72.25%) during summer and 47.51 % (95% CI: 0.00–100.00%) during winter (based on 2 studies) in 

North America (P > 0.05).  The percentage of enumerable hides (≥ 40 CFU/100 cm2) at the feedlot 

was 1.74% (95% CI: 0.53–3.44%) for summer, but no data were available to estimate percentage of 

enumerable hide samples for winter (Table 2.4).  For all hide estimates (summer and winter 

prevalence, % enumerable), there was heterogeneity across studies [Cochran’s Q (chi-square) P < 

0.1 and the Higgins I2 > 50%]. Univariable meta-regression was conducted to assess study 

characteristics at each level of the explanatory variables. Study setting (Commercial feedlot vs. 

Research farm), country (USA vs. Canada) and hide swab area (<1,000 vs. 1,000 cm2) were the only 

significant variables (P < 0.2) when exploring sources of heterogeneity among studies reporting hide 

prevalence during summer months; there was not sufficient data to assess sources of heterogeneity 

for winter months. In a multivariable meta-regression model, only area of hide swabbed remained a 

significant source of between-study heterogeneity.   

For hide prevalence measured at the processing plant (Table 2.5), the estimated prevalence of 

E. coli O157 was 54.63% (95% CI: 44.5–64.57%) during summer and 59.33% (95% CI: 46.76–

71.33%) during winter in fed beef (P > 0.05).  The percentage of enumerable hides (≥ 40 CFU/100 

cm2) was 23.81% (95% CI: 14.79–34.15%) for summer, and 14.5% (95% CI: 6.72–24.56%) during 

winter (P > 0.05).  For all the hide in-plant prevalence and the percentage of enumerable hide 

estimates, there was heterogeneity across studies [Cochran’s Q (chi-square) P < 0.1 and the Higgins 
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I2 > 50%]. Univariable meta-regression was conducted to assess study characteristics at each level of 

the explanatory variables. Study design (cross sectional vs. field trial), country (USA vs. Canada) 

and hide swab area (<1,000 vs. ≥1,000 cm2) were the only significant variables (P < 0.2) when 

exploring sources of heterogeneity among studies reporting hide prevalence during summer months. 

For winter months, country and hide swab area were significant (P < 0.2). In the multivariable meta-

regression model, only country and hide swab area remained significant sources of heterogeneity for 

summer, and only country was significant during winter.  In adult beef and dairy cattle, the 

estimated prevalence of E. coli O157 on hides at the plant was 45.34% (95% CI: 30.38–60.73%) 

during summer and 47.49% (95% CI: 20.57–75.22%) during winter (P > 0.05). There were 

significant differences in the overall, and estimated seasonal prevalence of E. coli O157 on hides of 

fed beef cattle when sampled at the slaughter plant compared to when sampled at the feedlot (P < 

0.05).  

 Prevalence of E. coli O157 on carcasses 

Pre-evisceration-pre-intervention carcass prevalence estimates were available for fed beef, 

adult beef and adult dairy cattle (Table 2.6). There was no difference (P > 0.05) in the estimated 

prevalence of E. coli O157 on pre-evisceration carcasses comparing fed beef with adult beef and 

adult dairy cattle.  Prevalence was estimated as 14.06% (95% CI: 9.24–19.64%) during summer and 

22.49% (95% CI: 13.45–33.00%) during winter for fed beef (P > 0.05). The estimate was 14.38% 

(95% CI: 8.34–21.70%) during summer and 13.79% (95% CI: 1.38–35.53%) during winter for adult 

beef and adult dairy cattle (P > 0.05). However, the percentage of pre-evisceration enumerable 

carcasses (≥ 0.5 CFU/100 cm2) in fed beef was 0.0% (95% CI: 0.00–0.37%) during summer and 

3.26% (95% CI: 1.01–6.62%) during winter (P < 0.05). For each of the prevalence estimates (fed 

beef, adult beef and dairy and % enumerable for fed beef), there was heterogeneity across studies 
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[Cochran’s Q (chi-square) P < 0.1 and the Higgins I2 > 50%]. Univariable meta-regression was 

conducted to assess study characteristics at each level of the explanatory variables. Study design 

(cross-sectional vs. field trial) and country (USA vs. Mexico) were the only significant variables (P 

< 0.2) when exploring sources of heterogeneity among studies reporting summer prevalence for fed 

beef, whereas only country was significant (P < 0.2) for winter. In a multivariable meta-regression 

model, country and study design remained significant (P = 0.01) in the summer data. 

Post-evisceration carcass prevalence estimates (Table 2.7) for fed beef were 8.90% (95% CI: 

2.49–18.16%) during summer, and 1.25% (95% CI: 0.0–4.09) during winter (P < 0.05). There was a 

significant (P < 0.2) difference by country (USA vs. Mexico) in a univariable meta-regression.  Post-

intervention carcass prevalence estimates for fed beef were 1.02% (95% CI: 0.22–2.20%) during 

summer, and 0.04% (95% CI: 0.0–0.49%) during winter (P < 0.05). Chilled carcass prevalence 

estimates (Table 2.7) were 0.19% (95% CI: 0.0–1.83%) during summer, and 0.0% (95% CI: 0.0–

0.70%) during winter (P > 0.05). The Cochran’s Q (chi-square) tests of heterogeneity for the post-

intervention estimates were non-significant (P > 0.1) and the Higgins I2 < 50%, indicating no 

between-study heterogeneity in the model. 

 Assessment of quality of reporting 

For all sample types (feces, hide and carcass), the majority of the variables (study design, 

study setting, sampling setting, detection method, cattle type, country, and coverage area for hide) 

were reported in all studies. Among studies that reported the prevalence of E. coli O157 in cattle 

feces, hides, and carcasses, 5.8% (19/327), 3.6% (6/169), and 2.1% (2/97) of studies could not be 

clearly classified into our season variable, respectively.  In addition, among studies that reported the 

prevalence of E. coli O157 on pre-, post-evisceration and chilled carcasses, 4.4% (4/92) of studies 
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did not report the coverage area of the carcass swab. No articles were excluded based on assessment 

of quality of reporting. 

 Discussion 

Our systematic review identified a large number of articles reporting the prevalence of E. 

coli O157 in feces, hides, and carcasses of fed beef cattle; some articles reporting on the prevalence 

of E. coli O157 in feces of adult beef and dairy cattle; but no article reporting the prevalence of E. 

coli O157 in fed dairy cattle. Few articles reported on the concentration / levels of E. coli O157 in 

feces, hides, and carcasses of fed beef cattle. After the screening process was applied, 51 relevant 

articles reporting prevalence and six articles reporting concentration of E. coli O157 were available 

for quantitative analyses.  

Results of MA for the fecal prevalence of E. coli O157 in North America indicated 

significant differences among cattle types. This finding supports the conclusion by Islam et al., 

(2014) who identified cattle type as one of the sources of heterogeneity when estimating the 

prevalence of E. coli O157 in cattle across the globe. The differences in the fecal prevalence of E. 

coli O157 in the different cattle types have been associated with animal (genetic / physiological) 

factors (Jeon et al., 2013), and diet (type of diet and diet practices) factors (Callaway et al., 2003; 

Callaway et al., 2009; Jacob et al., 2009). Potential environmental and management factors may 

further account for the differences in the estimates in the different cattle types. Adult beef are mostly 

raised on pasture and forage with occasional supplemental feeding. Their population structure is 

generally more dispersed, with seasonal perturbations in population density and size, mainly related 

to calving.  Fed beef are fed a high-energy ration of grain, silage, hay, and/or protein supplement and 

housed in high population density with high population turnover (Nielsen et al., 2002; Callaway et 

al., 2013).  Adult dairy cattle are also fed a high-energy ration of grain, silage, hay, and/or protein 
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supplement and housed in high population density but with much lower population turnover.  These 

differences may alter infection and shedding dynamics of E. coli O157 and may at least partially 

account for the differences in prevalence.  Further research on these factors may be useful to 

optimize implementation of pre-harvest control interventions. 

Several studies have identified season as an important explanatory variable for the 

prevalence of E. coli O157 in cattle feces (Albihn et al., 2003; Barkocy-Gallagher et al., 2003; 

Ogden et al., 2004; Alam and Zurek, 2006; Khaitsa et al., 2006; Hussein, 2007; Arthur et al., 2009). 

In our study, we found the prevalence of E. coli O157 in feces of adult beef, and adult dairy to vary 

by season, with a higher prevalence during summer compared to the winter months. Possible 

influencing factors are day length and ambient temperature (Edrington et al., 2006). Increased 

temperatures have been hypothesized to enhance pathogen survival and proliferation (McClure and 

Hall, 2000; Kovats et al., 2004) leading to potentially increased exposure dose and prevalence in 

cattle (Lal et al., 2012).  Human outbreaks of E. coli O157:H7 have been described by several 

authors to mirror the seasonal shedding patterns of cattle, occurring predominantly in the warm 

months (LeJeune et al., 2004b; Rangel et al., 2005; Hussein, 2007; Lal et al., 2012). In our study, we 

did not have sufficient data to assess the impact of season on the concentration of E. coli O157 shed 

in feces. A study conducted in Scotland found that high shedding beef cattle (excreting > 104 g-l) 

shed a greater concentration of E. coli O157 in the warmer months (Ogden et al., 2004).  

Hides have been established as a major source of carcass contamination during cattle 

processing (Koohmaraie et al., 2005; Arthur et al., 2007a; Arthur et al., 2008; Bosilevac et al., 

2009). The overall estimated prevalence of E. coli O157 on hides of fed beef cattle, and estimated 

seasonal prevalence were comparable when sampled at the slaughter plants and when sampled at the 

feedlots prior to shipment to the plants. However, the percentage of enumerable hides (≥ 40 
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CFU/100 cm2) increased from 1.74% when sampled at the feedlot to 23.81% when sampled at the 

plant during the summer months. These findings agree with those reported by Arthur et al. (Arthur et 

al., 2007a; Arthur et al., 2008), who also emphasized that pathogen enumeration rather than 

prevalence is a more precise indicator of the risk of food contamination (Arthur et al., 2007b) and of 

human exposure and infection with foodborne pathogens (Hussein, 2007). The difference in the 

level of E. coli O157 on cattle hides sampled on farm and at the plant could be attributed to the 

transfer of pathogens between cattle and from the surfaces of transport trailers and lairage 

environments at the processing plants to cattle hides (Arthur et al., 2007a; Arthur et al., 2008; 

Dewell et al., 2008), and to transportation stress (Barham et al., 2002; Dewell et al., 2008). The level 

of E. coli O157:H7 contamination on the hides of cattle entering the processing facility is of most 

concern (Nou et al., 2003; Bosilevac et al., 2004) as it plays a large role in carcass contamination 

rates (Barkocy-Gallagher et al., 2003; Arthur et al., 2004). 

Our analysis showed no difference in the estimated prevalence of E. coli O157 on pre-

evisceration carcasses from fed beef, adult beef or adult dairy cattle following hide removal during 

the summer or winter months. These estimates represent the level of hide-to-carcass contamination. 

However, the pooled estimate for percent enumerable carcasses (≥ 0.5 CFU/100 cm2) was 

significantly higher during winter in fed beef (Table 2.6). This finding is unusual. It may possibly be 

related to the variability in levels of pre-evisceration carcass contamination and different 

interventions applied at this processing point from plant to plant (Arthur et al., 2004; Bosilevac et 

al., 2009), however the data did not include any plant identification to separate plant and season 

variability. Additionally, our estimate during the summer months was based on a small sampling 

from four plants compared to nine plants during the winter months.  Following evisceration and 

application of initial interventions, post-evisceration prevalence was reduced. The estimated post-
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evisceration carcass prevalence was significantly higher during the summer than winter months. 

After the application of final antimicrobial interventions and cooling of the carcasses for between 2 

to 29 hours, the pooled prevalence estimates markedly dropped and there was no significant summer 

to winter differences (Table 2.6). The low level of E. coli O157 contamination on the final carcass 

can be attributed to the effectiveness of the carcass intervention strategies implemented at the 

processing plant (Elder et al., 2000). Despite the success of multiple-sequential interventions during 

processing, intermittent outbreaks of E. coli O157 continue to occur perhaps due to the low 

infectious dose in humans (Nataro and Kaper, 1998; Kaper et al., 2004).  Additionally, the 

phenomenon surrounding processing plant event days, where contamination levels are above 

normal, should be thoroughly researched to identify possible responsible factors. Other sources of 

human infection, besides consumption of undercooked contaminated ground beef and other meats, 

are consumption of unpasteurized dairy products, contaminated fresh fruits and vegetables, 

environment-mediated transmission (increased tendency for outdoor cooking with concomitant 

lapses in hygiene, recreational water use), and direct transmission (physical human–animal contact 

such as in petting zoos) (Ferens and Hovde, 2011). 

The strengths of this study are that it provided a systematic and robust analysis of current 

primary research on the prevalence and concentration of E. coli O157 along the beef production 

chain in North America, and measured the degree of heterogeneity among studies reporting similar 

outcomes. There are some limitations of this study. First, there was no report of prevalence and/or 

concentration of E. coli O157 in fed dairy cattle, thus a comparison of these estimates with those of 

other cattle types could not be made.  Secondly, there were limited studies available for some 

categories in our analysis, and limited studies to estimate the percentage of enumerable samples of 

E. coli O157 in feces and on hides at feedlots for the summer and winter months, thereby limiting 



71 

 

the precision of the reported estimates. In addition, studies were not available to estimate the 

prevalence and percent of enumerable carcasses for adult beef and adult dairy. The small number of 

studies used for some of the subgroup analysis and meta-regression call for caution in the 

interpretation of some of the estimates due to low statistical precision. Thirdly, imperfection of the 

sensitivity and specificity of the detection methods further limits the precision of the studies’ and 

overall meta-analysis estimates. Finally, unpublished studies, conference abstracts, and government 

reports were not included in this systematic review-meta analysis. Though these forms of 

publications could bring more data into the analysis, these publications rarely contain sufficient 

information to allow for relevance screening, data extraction and analysis.   

From this review, no estimate was found for the prevalence and/or concentration of E. coli 

O157 in fed dairy cattle. Limited data existed for concentration of E. coli O157 among other cattle 

and sample types.  Future research should include the estimation of the prevalence and concentration 

of non-O157 STEC in beef production in order to generate complete and reliable data needed to 

inform quantitative assessment of the risk of E. coli O157 and non-O157 serogroups (O26, O45, 

O103, O111, O121, O145) in the beef production chain. 

 

 Conclusion 

The prevalence and concentration of E. coli O157 varied along the beef production chain in North 

America. In feces, the prevalence varied by cattle type and season. The concentration on cattle hide 

differed at the feedlot and when sampled at the plant. The prevalence decreased substantially from 

the pre-evisceration carcass to the final chilled carcass demonstrating the effectiveness of post-

harvest interventions. The prevalence and concentration estimates from this study, obtained using 
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systematic review and meta-analysis of similar studies, provide a sound and reliable microbiological 

basis for risk assessment modeling of E. coli O157 in the food chain.  
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Figure 2.1 - Flow of information through the different stages of article selection process for the 

systematic review and meta-analysis 
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Table 2.1 - List of the articles included in the systematic review meta-analysis by the inclusion criteria 
 

Variable 
Articles 
in MA 

(#) 
Reference 

Cattle types 51 
 

Fed Beef 36 

Elder et al., 2000; Smith et al., 2001; Barkocy-Gallagher et al., 2003; Nou et al., 2003; Sargeant et al., 2003; 
Arthur et al., 2004; Rivera-Betancourt et al., 2004; Bosilevac et al., 2005; Dewell et al., 2005; Greenquist et 
al., 2005; Alam and Zurek, 2006; Callaway et al., 2006; Childs et al., 2006; Khaitsa et al., 2006; Woerner et 
al., 2006; Arthur et al., 2007a; Arthur et al., 2007b; Arthur et al., 2007c; Brichta-Harhay et al., 2007; 
Stephens et al., 2007; Arthur et al., 2008; Brichta-Harhay et al., 2008; Dewell et al., 2008; Fox et al., 2008a; 
Fox et al., 2008b; Miller et al., 2008; Renter et al., 2008; Bosilevac et al., 2009; Kalchayanand et al., 2009; 
Stephens et al., 2009; Jacob et al., 2010; Walker et al., 2010; Cernicchiaro et al., 2013; Fink et al., 2013; 
Narvaez-Bravo et al., 2013; Stanford et al., 2013 

Adult Beef 7 Sargeant et al., 2000; Gannon et al., 2002; Riley et al., 2003; Callaway et al., 2004; Branham et al., 2005; 
Cernicchiaro et al., 2009; Kondo et al., 2010 

Adult Dairy 9 Byrne et al., 2003; Callaway et al., 2004; Dunn et al., 2004; Edrington et al., 2004a; Edrington et al., 2004b; 
Dodson and LeJeune, 2005; LeJeune and Kauffman, 2005; LeJeune et al., 2006; Cernicchiaro et al., 2012 

Seasonality 45 
 

Summer  40 

Elder et al., 2000; Smith et al., 2001; Gannon et al., 2002; Barkocy-Gallagher et al., 2003; Byrne et al., 2003; 
Nou et al., 2003; Sargeant et al., 2003; Arthur et al., 2004; Dunn et al., 2004; Edrington et al., 2004a; 
Edrington et al., 2004b; Rivera-Betancourt et al., 2004; Bosilevac et al., 2005; Branham et al., 2005; Dewell 
et al., 2005; Dodson and LeJeune, 2005; LeJeune and Kauffman, 2005; Alam and Zurek, 2006; Callaway et 
al., 2006; Khaitsa et al., 2006; LeJeune et al., 2006; Arthur et al., 2007a; Arthur et al., 2007b; Arthur et al., 
2007c; Arthur et al., 2008; Brichta-Harhay et al., 2008; Dewell et al., 2008; Fox et al., 2008a; Fox et al., 
2008b; Renter et al., 2008; Cernicchiaro et al., 2009; Kalchayanand et al., 2009; Jacob et al., 2010; Kondo et 
al., 2010; Walker et al., 2010; Cernicchiaro et al., 2012; Cernicchiaro et al., 2013; Fink et al., 2013; Narvaez-
Bravo et al., 2013; Stanford et al., 2013 
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Winter 23 

Gannon et al., 2002; Barkocy-Gallagher et al., 2003; Riley et al., 2003; Arthur et al., 2004; Callaway et al., 
2004; Dunn et al., 2004; Edrington et al., 2004a; Rivera-Betancourt et al., 2004; Branham et al., 2005; 
Greenquist et al., 2005; Alam and Zurek, 2006; Arthur et al., 2007c; Brichta-Harhay et al., 2008; Renter et al., 
2008; Bosilevac et al., 2009; Cernicchiaro et al., 2009; Kalchayanand et al., 2009; Kondo et al., 2010; Walker 
et al., 2010; Cernicchiaro et al., 2012; Fink et al., 2013; Narvaez-Bravo et al., 2013; Stanford et al., 2013 

Country 51 
 

USA 44 

Elder et al., 2000; Sargeant et al., 2000; Smith et al., 2001; Barkocy-Gallagher et al., 2003; Byrne et al., 2003; 
Nou et al., 2003; Riley et al., 2003; Sargeant et al., 2003; Arthur et al., 2004; Dunn et al., 2004; Edrington et 
al., 2004a; Edrington et al., 2004b; Rivera-Betancourt et al., 2004; Bosilevac et al., 2005; Branham et al., 
2005; Dewell et al., 2005; Dodson and LeJeune, 2005; Greenquist et al., 2005; LeJeune and Kauffman, 2005; 
Alam and Zurek, 2006; Callaway et al., 2006; Childs et al., 2006; Khaitsa et al., 2006; LeJeune et al., 2006; 
Woerner et al., 2006; Arthur et al., 2007a; Arthur et al., 2007b; Arthur et al., 2007c; Brichta-Harhay et al., 
2007; Stephens et al., 2007; Arthur et al., 2008; Brichta-Harhay et al., 2008; Dewell et al., 2008; Fox et al., 
2008a; Fox et al., 2008b; Miller et al., 2008; Bosilevac et al., 2009; Kalchayanand et al., 2009; Jacob et al., 
2010; Kondo et al., 2010; Walker et al., 2010; Cernicchiaro et al., 2012; Cernicchiaro et al., 2013; Fink et al., 
2013 

Canada 5 Gannon et al., 2002; Renter et al., 2008; Cernicchiaro et al., 2009; Stephens et al., 2009; Stanford et al., 2013 

Mexico 2 Callaway et al., 2004; Narvaez-Bravo et al., 2013 

Study type 51 
 

Cross 
sectional 43 

Elder et al., 2000; Smith et al., 2001; Barkocy-Gallagher et al., 2003; Byrne et al., 2003; Riley et al., 2003; 
Sargeant et al., 2003; Arthur et al., 2004; Callaway et al., 2004; Dunn et al., 2004; Edrington et al., 2004a; 
Rivera-Betancourt et al., 2004; Bosilevac et al., 2005; Branham et al., 2005; Dewell et al., 2005; Dodson and 
LeJeune, 2005; Greenquist et al., 2005; Callaway et al., 2006; Childs et al., 2006; Khaitsa et al., 2006; 
LeJeune et al., 2006; Woerner et al., 2006; Arthur et al., 2007a; Arthur et al., 2007b; Arthur et al., 2007c; 
Brichta-Harhay et al., 2007; Stephens et al., 2007; Arthur et al., 2008; Brichta-Harhay et al., 2008; Dewell et 
al., 2008; Fox et al., 2008a; Fox et al., 2008b; Renter et al., 2008; Bosilevac et al., 2009; Cernicchiaro et al., 
2009; Kalchayanand et al., 2009; Stephens et al., 2009; Jacob et al., 2010; Walker et al., 2010; Cernicchiaro et 
al., 2012; Cernicchiaro et al., 2013; Fink et al., 2013; Narvaez-Bravo et al., 2013; Stanford et al., 2013 
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Longitudinal 5 Sargeant et al., 2000; Gannon et al., 2002; LeJeune and Kauffman, 2005; Alam and Zurek, 2006; Kondo et 
al., 2010 

Field trial 3 Nou et al., 2003; Edrington et al., 2004b; Miller et al., 2008 

Sample type 51 
 

Fecal 40 

Elder et al., 2000; Sargeant et al., 2000; Smith et al., 2001; Gannon et al., 2002; Barkocy-Gallagher et al., 
2003; Byrne et al., 2003; Riley et al., 2003; Sargeant et al., 2003; Callaway et al., 2004; Dunn et al., 2004; 
Edrington et al., 2004a; Edrington et al., 2004b; Branham et al., 2005; Dewell et al., 2005; Dodson and 
LeJeune, 2005; Greenquist et al., 2005; LeJeune and Kauffman, 2005; Alam and Zurek, 2006; Callaway et 
al., 2006; Childs et al., 2006; Khaitsa et al., 2006; LeJeune et al., 2006; Woerner et al., 2006; Arthur et al., 
2007a; Brichta-Harhay et al., 2007; Stephens et al., 2007; Arthur et al., 2008; Dewell et al., 2008; Fox et al., 
2008a; Fox et al., 2008b; Renter et al., 2008; Cernicchiaro et al., 2009; Stephens et al., 2009; Jacob et al., 
2010; Kondo et al., 2010; Walker et al., 2010; Cernicchiaro et al., 2012; Cernicchiaro et al., 2013; Fink et al., 
2013; Narvaez-Bravo et al., 2013 

Hide 19 

Elder et al., 2000; Barkocy-Gallagher et al., 2003; Nou et al., 2003; Arthur et al., 2004; Rivera-Betancourt et 
al., 2004; Bosilevac et al., 2005; Arthur et al., 2007a; Arthur et al., 2007b; Arthur et al., 2007c; Arthur et al., 
2008; Brichta-Harhay et al., 2008; Dewell et al., 2008; Miller et al., 2008; Renter et al., 2008; Bosilevac et al., 
2009; Kalchayanand et al., 2009; Jacob et al., 2010; Narvaez-Bravo et al., 2013; Stanford et al., 2013 

Carcass 14 
Elder et al., 2000; Barkocy-Gallagher et al., 2003; Nou et al., 2003; Arthur et al., 2004; Rivera-Betancourt et 
al., 2004; Bosilevac et al., 2005; Woerner et al., 2006; Arthur et al., 2007a; Arthur et al., 2008; Brichta-
Harhay et al., 2008; Fox et al., 2008a; Bosilevac et al., 2009; Jacob et al., 2010; Narvaez-Bravo et al., 2013 
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Table 2.2 - Descriptive statistics of the study characteristics assessed in the systematic review-
meta analysis of the prevalence and concentration of E. coli O157 in the beef chain.  

 Fecal  Hide  Carcass 
Characteristic # Study (%)  # Study (%)  # Study (%) 

   Feedlot Plant  Pre-
evisceration 

Post-
evisceration 

Post-
intervention Chilled 

Cattle type          

Fed beef 163 (57.8)  17 (100) 101(91.0)  82 (89.1) 19 (100) 18 (100) 11 (100) 
Adult beef 46 (16.3)  - -  - - - - 
Adult dairy 73 (25.9)  - -  - - - - 
Adult beef and dairy -  - 10 (9.0)  10 (10.9) - - - 

Season          

Winter 46 (16.1)  2 (11.8) 43 (38.7)  35 (38.0) 12 (63.2) 7 (38.9) 7 (63.6) 
Summer 240 (83.9)  15 (88.2) 68 (61.3)  57 (62.0) 7 (36.8) 11 (61.1) 4 (35.4) 
Study design          

Cross sectional survey 224 (79.4)  16 (94.1) 107 (96.4)  88 (95.7) 19 (100) 18 (100) 11 (100) 
Longitudinal 54 (19.2)  - -  - - - - 
Field trial 4 (1.4)  1 (5.9) 4 (3.6)  4 (4.3) - - - 

Study setting          

Commercial farm 263 (93.3)  13 (76.5) 111 (100)  92 (100) 19 (100) 18 (100) 11 (100) 
Research facility 19 (6.7)  4 (23.5) -  - - - - 

Sampling setting          

Farm 115 (40.8)  - -  - - - - 
Feedlot 115 (40.8)  17 (100) -  - - - - 
Plant 52 (18.4)  - 111 (100)  92 (100) 19 (100) 18 (100) 11 (100) 

Country          

USA 253 (89.7)  15 (88.2) 101(91.0)  87 (94.6) 14 (73.7) 18 (100) 6 (54.6) 
Canada 22 (7.8)  2 (11.8) 5 (4.5)  - 5 (26.3) - - 
Mexico 7 (2.5)  - 5 (4.5)  5 (5.4) - - 5 (45.4) 

Detection method          

IMS 99 (35.1)  - 4 (3.6)  - - - - 
IMS PCR 183 (64.9)  17 (100) 107 (96.4)  92 (100) 19 (100) 18 (100) 11 (100) 
Area of hide swab (cm2)          

< 1,000 -  3 (17.6) 44 (39.6)  - - - - 
1,000 -  14 (82.4) 67 (60.4)  - - - - 
Area of carcass swab (cm2)         

1,000 -  - -  29 (32.9) 8 (42.1) 8 (57.1) - 
>1,000 -  - -  59 (67.1) 11 (57.9) 6 (42.9) 11 (100) 
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Table 2.3 - Pooled fecal prevalence and concentration of E. coli O157 in North American cattle 
stratified by cattle type, season and country.  
 

Subgroup # Articles 
(# studies) N Prevalence, % I2, %  

(P-value) 

   Observed 
Range 

Pooled Estimate 
(95% CI)  

Fed beef 25 (163) 32,264 0.00 – 55.00 10.68 (9.17–12.28) 94.8 (<0.01) 
Meta-analysis by season in North America    
Summer (North America) 19 (140) 22,997 0.00 – 55.00 10.65 (8.93–12.49) 94.6 (<0.01) 
Winter (North America) 7 (14) 2,626 0.30 – 27.78 9.17 (5.24–13.98) 92.4 (<0.01) 
Meta-analysis of seasonal prevalence by country   
Summer (USA) 17 (136) 22,289 0.00 – 55.00 10.80 (9.11–12.61) 94.2 (<0.01) 
Summer (Canada) 1 (1) 600 37.00* – – 
Summer (Mexico) 1 (3) 108 0.00 – 0.00 0.00 (0.00–1.80) – 
Winter (USA) 5 (9) 2,155 0.30 – 27.78 8.37 (4.37–13.46) 92.2 (<0.01)  
Winter (Canada) 1 (3) 390 8.33 – 26.67 13.86 (3.30–28.51) 0.0 
Winter (Mexico) 1 (2) 81 3.33 – 7.84 – – 

Adult beef 7 (46) 11,111 0.00 – 26.00 4.65 (3.37–6.10) 86.5 (<0.01) 

Meta-analysis by season in North America    
Summer (North America) 4 (17) 5,430 0.00 – 20.00 7.86 (5.43–10.66) 84.9 (<0.01) 
Winter (North America) 6 (19) 3,623 0.00 – 26.00 4.21 (1.95–7.13) 87.3 (<0.01) 
Meta-analysis of seasonal prevalence by country   
Summer (USA) 2 (7) 260 5.00 – 20.00 11.83 (7.98–16.25) 0.0 (0.65) 
Summer (Canada) 2 (10) 5,170 0.00 – 18.00 6.46 (3.93–9.51) 89.7 (<0.01) 
Winter (USA) 3 (11) 542 0.00 – 20.00 4.84 (1.50–9.49) 71.6 (<0.01) 
Winter (Canada) 2 (7) 2,961 0.00 – 26.00 4.25 (1.04–9.10) 93.7 (<0.01) 
Winter (Mexico) 1 (1) 120 0.83* – – 
Adult dairy 8 (73) 17,168 0.00 – 35.00 1.79 (1.20–2.48) 86.4 (<0.01) 
Meta-analysis by season   
Summer (USA) 7 (60) 13,966 0.00 – 35.00 2.27 (1.50–3.18) 88.0 (<0.01) 
Winter (North America) 4 (13) 3,202 0.00 – 2.08 0.36 (0.09–0.74) 22.0 (0.22) 
Winter (USA) 3 (12) 3,082 0.00 – 2.08 0.31 (0.06–0.67) 18.9 (0.31) 
Winter (Mexico) 1 (1) 120 1.67* – – 
Percentage Enumerable     
Fed beef      

Summer (USA) 2 (9) 818 1.34 – 18.56 5.78 (2.41–10.31) 81.59 (<0.01) 
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Estimates for subgroup categories with fewer than three studies were omitted. Summer (Apr, May, Jun, Jul, Aug, Sept); 

Winter (Oct, Nov, Dec, Jan, Feb, Mar); N = number of cattle included in the study; I2 = between-study heterogeneity; P-

value = Cochran’s Q (chi-square) test of between study heterogeneity; North America = studies conducted in at least any 

two of Canada, Mexico and USA. *Point prevalence is presented because category contained only one study. Percentage 

enumerable = number of samples with E. coli O157 counts ≥ 200 CFU/g of feces / total number of samples analyzed 
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Table 2.4 - Pooled prevalence and concentration of E. coli O157 in hides of North American 
cattle, sampled at feedlots, stratified by cattle type and season.  
 

Subgroup # Articles 
(# studies) N Prevalence, % I2, %  

(P-value) 

   Observed 
Range 

Pooled Estimate 
(95% CI)  

Fed beef: Hide at feedlot 6 (17) 3,659 1.45–98.00 51.40 (31.97–70.62) 99.2 (<0.01)  

Meta-analysis by season in North America    

Summer (North America) 6 (15) 3,057 4.21–98.00 52.01 (31.43–72.25) 99.2 (<0.01) 
Winter (North America) 2 (2) 602 1.45–98.00 – – 
Meta-analysis of seasonal prevalence by country   
Summer (USA) 5 (14) 2,059 6.11–98.00 56.39 (34.14–77.40) 98.9 (<0.01) 
Summer (Canada) 1 (1) 998 4.21* – – 
Winter (USA) 1 (1) 50 98.00* – – 

Winter (Canada) 1 (1) 552 1.45* – – 

Percentage Enumerable: Hides at feedlot   

Fed beef      

Summer (USA) 2 (9) 181 0.00–7.41 1.74 (0.53–3.44) 49.5 (0.05) 
Estimates for subgroup categories with fewer than three studies were omitted. Summer (Apr, May, Jun, Jul, Aug, Sept); 

Winter (Oct, Nov, Dec, Jan, Feb, Mar); N = number of cattle included in the study; I2 = between-study heterogeneity; P-

value = Cochran’s Q (chi-square) test of between study heterogeneity; North America = studies conducted in at least any 

two of Canada, Mexico and USA; *Point prevalence is presented because category contained only one study. Percentage 

enumerable = number of hide samples with E. coli O157 counts ≥ 40 CFU/100 cm2 / total number of samples analyzed 
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Table 2.5 - Pooled prevalence and concentration of E. coli O157 in hides of North American 
cattle, sampled at processing plants, stratified by cattle type and season.  

 

Subgroup # Articles 
(# studies) N Prevalence, % I2, %  

(P-value) 

   Observed 
Range 

Pooled Estimate 
(95% CI)  

Fed beef: Hide at plant 16 (101) 12,802 0.00–100.00 56.41 (48.56–64.11) 98.7 (<0.01) 
Meta-analysis by season in North America    

Summer (North America) 15 (63) 8,264 0.00–100.00 54.63 (44.50–64.57) 98.8 (<0.01) 

Winter (North America) 8 (38) 4,538 0.58–100.00 59.33 (46.76–71.33) 98.6 (<0.01) 

Meta-analysis of seasonal prevalence by country   

Summer (USA) 13 (58) 7,523 0.00–100.00 59.04 (48.94–68.78) 98.7 (<0.01) 

Summer (Canada) 1 (2) 591 3.69–8.75 – – 

Summer (Mexico) 1 (3) 150 0.00–42.00 12.38 (0.00–44.58) 95.2 (<0.01) 

Winter (USA) 6 (33) 3,754 8.51–100.00 69.29 (59.43–78.35) 97.5 (<0.01) 

Winter (Canada) 1 (3) 686 0.58–8.82 3.82 (0.57–9.45) 88.9 (<0.01) 

Winter (Mexico) 1 (2) 98 2.00–4.17 – – 

Adult beef & dairy 1 (10) 3,040 6.84–90.00 46.39 (31.88–61.22) 98.5 (<0.01) 

Meta-analysis by season    

Summer (USA) 1 (5) 1,520 20.53–66.84 45.34 (30.38–60.73) 96.9 (<0.01) 

Winter (USA) 1 (5) 1,520 6.84–90.00 47.49 (20.57–75.22) 99.1 (<0.01) 

Percentage Enumerable: Hides at processing plant   

Fed beef 5 (19) 3,263 0.00–50.00 19.06 (12.45–26.67) 96.3 (<0.01) 
Summer (USA) 3 (10) 980 0.00–41.67 23.81 (14.79–34.15) 92.3 (<0.01) 
Winter (USA) 2 (9) 2,283 3.16–50.00  14.50 (6.72–24.56) 97.4 (<0.01) 

Estimates for subgroup categories with fewer than three studies were omitted. Summer (Apr, May, Jun, Jul, Aug, Sept); 

Winter (Oct, Nov, Dec, Jan, Feb, Mar); N = number of cattle included in the study; I2 = between-study heterogeneity; P-

value = Cochran’s Q (chi-square) test of between study heterogeneity; North America = studies conducted in at least any 

two of Canada, Mexico and USA; Percentage enumerable = number of hide samples with E. coli O157 counts ≥ 40 

CFU/100 cm2 / total number of samples analyzed 
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Table 2.6 - Pooled pre-evisceration carcass prevalence and concentration of E. coli O157 in 
North American cattle stratified by cattle type and season.  
 

Subgroup # Articles  
(# studies) N Prevalence, %  I2, %  

(P-value) 

   Observed 
Range 

Pooled Estimate 
(95% CI)  

Fed beef: Pre-evisceration 11 (82) 8,293 0.00–93.33 17.00 (12.39–22.15) 97.1 (<0.01) 

Meta-analysis by season in North America    
Summer (North America) 10 (52) 5,299 0.00–93.33 14.06 (9.24–19.64) 96.6 (<0.01) 

Winter (North America) 4 (30) 2,994 0.00–92.63 22.49 (13.45–33.00) 97.6 (<0.01) 

Meta-analysis of seasonal prevalence by country   

Summer (USA) 9 (49) 5,149 0.00–93.33 15.25 (10.11–21.17) 96.7 (<0.01) 

Summer (Mexico) 1 (3) 150 0.00–4.00 0.65 (0.0–3.91) 35.6 (<0.01) 

Winter (USA) 3 (28) 2,894 0.00–92.63 25.10 (15.46–36.13) 97.6 (<0.01) 

Winter (Mexico) 1 (2) 100 0.00–0.00 – – 

Adult beef & dairy 1 (10) 3,040 1.05–67.89 14.06 (6.56–23.76) 97.8 (<0.01) 
Meta-analysis by season    
Summer (USA) 1 (5) 1,520 5.26–27.89 14.38 (8.34–21.70) 91.8 (<0.01) 

Winter (USA) 1 (5) 1,520 1.05–67.89 13.79 (1.38–35.53) 98.9 (<0.01) 

Percentage Enumerable: Pre-evisceration Carcass    
Fed beef 4 (18) 3,101 0.00–4.91 1.28 (0.25–2.87) 87.9 (<0.01) 

Meta-analysis by season   

Summer (USA) 2 (9) 818 0.00–1.06 0.00 (0.00–0.37) 0.0 (0.98) 

Winter (USA) 2 (9) 2,283 0.00–4.91 3.26 (1.01–6.62) 92.8 (<0.01) 
Estimates for subgroup categories with fewer than three studies were omitted. Summer (Apr, May, Jun, Jul, Aug, Sept); 

Winter (Oct, Nov, Dec, Jan, Feb, Mar); N = number of cattle included in the study; I2 = between-study heterogeneity; P-

value = Cochran’s Q (chi-square) test of between study heterogeneity; North America = studies conducted in at least any 

two of Canada, Mexico and USA; Percentage enumerable = number of carcass samples with E. coli O157 counts ≥ 0.5 

CFU/100 cm2 / total number of samples analyzed 
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Table 2.7 - Pooled post-evisceration, post-intervention and chilled carcass prevalence of E. coli 
O157 in North American cattle stratified by cattle type and season.  
 

Subgroup # Articles  
(# studies) N Prevalence, %  I2, %  

(P-value) 

   Observed 
Range 

Pooled Estimate 
(95% CI)  

Fed beef: Post-evisceration 3 (19) 870 0.00–54.35 5.40 (1.66–10.72) 87.2 (<0.01) 

Meta-analysis by season in North America   

Summer (North America) 3 (12) 530 0.00–54.35 8.90 (2.49–18.16) 89.5 (<0.01) 

Winter (North America) 2 (7) 340 0.00–10.42 1.25 (0.00–4.09) 54.8 (0.04) 
Meta-analysis of seasonal prevalence by country   
Summer (USA) 2 (9) 380 1.85–54.35 13.73 (4.92–25.61) 88.2 (<0.01) 
Summer (Mexico) 1 (3) 150 0.00–2.00 0.32 (0.00–2.45) 0.0 (0.45) 
Winter (USA) 1 (5) 240 0.00–10.42 2.20 (0.01–6.60) 60.1 (<0.01) 
Winter (Mexico) 1 (2) 100 0.00–0.00 – – 

Fed beef: Post-intervention 3 (18) 1,852 0.00–5.41 0.49 (0.04–1.24) 36.3 (0.06) 

Meta-analysis by season   
Summer (USA) 3 (11) 975 0.00–5.41 1.02 (0.22–2.20) 21.6 (0.24) 
Winter (USA) 2 (7) 877 0.00–2.08 0.04 (0.00–0.49) 0.0 (0.43) 

Fed beef: Chilled Carcass 2 (11) 538 0.00–2.00 0.03 (0.00–0.67) 0.0 (0.99) 

Meta-analysis by season   

Summer (USA) 2 (4) 198 0.00–2.00 0.19 (0.00–1.83) 0.0 (0.69) 

Winter (USA) 2 (7) 340 0.00–0.00 0.00 (0.00–0.70) 0.0 (0.99) 
Estimates for subgroup categories with fewer than three studies were omitted. Summer (Apr, May, Jun, Jul, Aug, Sept); 

Winter (Oct, Nov, Dec, Jan, Feb, Mar); N = number of cattle included in the study; I2 = between-study heterogeneity; P-

value = Cochran’s Q (chi-square) test of between study heterogeneity; North America = studies conducted in at least any 

two of Canada, Mexico and USA.
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 Abstract 

Cattle are a reservoir for Escherichia coli O157 and they shed the pathogen in their feces. 

Fecal contaminants on the hides can be transferred onto carcasses during processing at slaughter 

plants, thereby serving as a source of foodborne infection in humans. The detection of E. coli 

O157 in cattle feces is based on culture, immunological, and molecular methods. We evaluated 

the diagnostic sensitivity and specificity of one culture- and two PCR-based tests for the 

detection of E. coli O157 in cattle feces, and its true prevalence using a Bayesian implementation 
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of latent class models. A total of 576 fecal samples were collected from the floor of pens of 

finishing feedlot cattle in the central United States during summer 2013.  Samples were enriched 

and subjected to detection of E. coli O157 by culture (immunomagnetic separation, plating on a 

selective medium, latex agglutination, and indole testing), conventional PCR (cPCR), and 

multiplex quantitative PCR (mqPCR). The statistical models assumed conditional dependence of 

the PCR tests and high specificity for culture (mode = 99%; 5th percentile = 97%). Prior 

estimates of test parameters were elicited from three experts. Estimated posterior sensitivity 

(posterior median and 95% highest posterior density intervals) of culture, cPCR, and mqPCR 

was 49.1% (44.8–53.4%), 59.7% (55.3–63.9%), and 97.3% (95.1–99.0%), respectively. 

Estimated posterior specificity of culture, cPCR, and mqPCR were 98.7% (96.8–99.8%), 94.1% 

(87.4–99.1%), and 94.8% (84.1–99.9%), respectively.  True prevalence was estimated at 91.3% 

(88.1–94.2%). There was evidence of a weak conditional dependence between cPCR and 

mqPCR amongst test positive samples, but no evidence of conditional dependence amongst test 

negative samples. Sensitivity analyses showed that overall our posterior inference was rather 

robust to the choice of priors, except for inference on specificity of mqPCR, which was 

estimated with considerable uncertainty. Our study evaluates performance of three diagnostic 

tests for detection of E. coli O157 in feces of feedlot cattle which is important for quantifying 

true fecal prevalence and adjusting for test error in risk modeling. 

 
Keywords:  Escherichia coli O157; true prevalence; sensitivity; specificity; diagnostic methods; 

culture; conventional PCR; quantitative PCR; Bayesian modeling; cattle feces 
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 Introduction 

Shiga toxin-producing Escherichia coli O157 is a foodborne pathogen of significant 

impact on beef industry and public health (Callaway et al., 2013). It can cause mild to bloody 

diarrhea in humans which may progress to hemolytic uremic syndrome (Centers for Disease 

Control and Prevention, 1993; Hussein, 2007) that can be fatal in children, the elderly and 

immuno-compromised individuals.  In the United States, E. coli O157 is responsible for an 

estimated 63,153 illnesses, 2,138 hospitalizations and 20 deaths annually (Scallan et al., 2011). 

Cattle are a major reservoir of this pathogen (Gyles, 2007). E. coli O157 colonizes the hindgut of 

cattle and is shed in their feces, which can contaminate cattle hides and the environment (Jacob 

et al., 2010). Subsequently, hides may serve as main source of contamination of carcasses and 

beef products during processing (Arthur et al., 2008).   

Laboratory methods used for the detection of E. coli O157 in cattle feces, on hides, and in 

beef products include traditional culture methods, immunological, and molecular based 

diagnostic methods (Barkocy-Gallagher et al., 2002; Deisingh and Thompson, 2004). The 

culture-based detection method exploits the specific biochemical characteristics of the pathogen 

for identification. It involves sample enrichment in a selective broth, followed by 

immunomagnetic bead separation, plating on selective agar medium, and confirmation of isolates 

by biochemical tests, agglutination, and/or PCR detection of serotype-specific and virulence 

genes (Elder et al., 2000; Bai et al., 2010; Jacob et al., 2014). Immunological-based detection 

methods use monoclonal or polyclonal antibodies to capture the pathogen specific antigen. 

Examples include  ELISA-based assays (Thompson et al., 2007; Shen et al., 2014), microplate 

enzyme immunoassays (Hoefer et al., 2011), and fluorescence polarization assays (Nielsen et al., 

2007). Molecular-based detection methods, which amplify serotype-specific DNA targets, 
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include conventional PCR (Arthur et al., 2005; Islam et al., 2006; Bai et al., 2012; Jacob et al., 

2014), real-time / quantitative PCR (Stefan et al., 2007; Jacob et al., 2014; Luedtke et al., 2014; 

Verstraete et al., 2014; Noll et al., 2015), and loop mediated isothermal amplification (Dong et 

al., 2014).  However, none of these methods constitute gold standards for the detection of E. coli 

O157 in cattle feces, hides, or beef products.  Furthermore, quantitative assessment of the 

diagnostic performance (sensitivity and specificity) of these methods is lacking. 

Estimating the sensitivity and specificity of the detection methods is crucial for the 

evaluation of the true E. coli O157 prevalence and the true public health risk.  In the United 

States, estimated apparent prevalence of E. coli O157 depends on cattle type and season, and 

based on a recent systematic review and meta-analysis study, it ranges from 0.0% to 55.0% in 

cattle feces (Ekong et al., 2015). On hides, estimates of apparent prevalence ranged from 0.0% to 

100.0%; on beef carcasses during slaughter, apparent prevalence estimates ranged from 0.0% to 

93.3% in pre-eviscerated carcasses, and from 0.0% to 2.0% in chilled carcasses (Ekong et al., 

2015). It is possible that due to imperfect sensitivity and specificity of the diagnostic tests 

currently available, apparent prevalence estimates reported may misrepresent the true prevalence 

of E. coli O157 due to misclassification of some of the tested samples. Therefore, there is need to 

assess the diagnostic performance of current detection methods using fecal samples from 

naturally shedding commercial cattle.  

In the absence of a gold / reference standard, latent class models implemented through 

Bayesian estimation procedures have been successfully used to estimate true disease prevalence 

and diagnostic performance for two or more diagnostic tests applied to samples from test 

subjects of unknown underlying disease status (Berkvens et al., 2006; Fablet et al., 2010; Haley 

et al., 2011; Paradis et al., 2012; Paul et al., 2013; Kostoulas et al., 2017). The objective of this 
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study was to evaluate the diagnostic performance (diagnostic sensitivity and specificity) of 

culture-based, conventional PCR, and multiplex quantitative PCR tests used for the detection of 

E. coli O157 in cattle feces, and to estimate the true prevalence of E. coli O157 in feces of 

naturally shedding central US feedlot cattle, using latent class models in a Bayesian approach. 

 Materials and methods 

  Study population and sample collection 

A total of 576 pen floor fecal samples were collected from crossbred finishing cattle, 

within 24 hours of harvest, from a large commercial finishing feedlot in the central United States 

from June to August 2013.  The feedlot was visited weekly during a 12 week period (Dewsbury 

et al., 2015). Sample size was calculated to detect seasonal differences in prevalence and full 

complements of samples were collected at each visit. Two pens of cattle were sampled during 

each visit and 24 freshly excreted fecal samples were collected from each pen floor. In most 

cases, samples were collected from cattle observed to defecate. The presence of E. coli O157 in 

cattle is not associated with any clinical disease. The average number of finishing cattle housed 

per pen at this feedlot during the study period was 270 (range: 121- 299). About 10 grams of 

freshly excreted feces were collected in individual plastic bags (WHIRL-PAK®; Nasco, Fort 

Atkinson, WI) using plastic spoons, then shipped on ice to the Pre-harvest Food Safety 

Laboratory at Kansas State University for processing within 36 hours of sample collection. For 

each sample, approximately 2 grams of feces were added to 18 mL of E. coli enrichment broth, 

vortexed, and incubated for 6 hours at 40oC.  The enriched fecal suspension obtained from 

individual samples was used for the three diagnostic tests evaluated here which were run 

concurrently. 
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  Culture-based testing  

A culture-based test previously described by Dewsbury et al. (2015) was used. Briefly, 

the enriched fecal suspension was subjected to immunomagnetic separation (IMS) using O157-

specific IMS beads (Abraxis, LLC, Warminster, PA). The IMS bead suspension was spread 

plated onto Sorbitol MacConkey agar with cefixime and potassium tellurite. Putative O157 

colonies from the blood agar were tested for the O157 antigen by latex agglutination and if 

positive, tested for indole production. For this analysis, samples were considered positive for E. 

coli O157 serogroup by culture if recovered isolates tested positive for O157 antigen by latex 

agglutination and indole positive.  

 Conventional PCR testing  

A multiplex conventional PCR (cPCR) assay targeting rfbEO157, stx1, stx2, and eae genes 

(Bai et al., 2010; 2012) was used. DNA was extracted from the enriched fecal suspension using 

GeneClean DNA extraction kit (MP Biomedicals, Solon, OH), then subjected to the cPCR assay. 

The amplified DNA was separated on a capillary electrophoresis system in a QIAxcel Advanced 

System (Qiagen, Valencia, CA) and was analyzed using QIAxcel Screengel software. For this 

analysis, samples were considered positive for E. coli O157 serogroup if the DNA extracted from 

enriched fecal suspensions tested positive for the rfbEO157 gene. 

 Multiplex quantitative PCR testing 

A multiplex quantitative PCR (mqPCR) assay targeting rfbEO157, stx1, stx2, and eae 

genes (Noll et al., 2015) was used. DNA was extracted from the enriched fecal suspension as 

described above, and then subjected to the mqPCR assay. Samples with amplification of the 



97 

 

rfbEO157 gene target below a cycle threshold (Ct) value of ≤ 38.1 were considered positive for E. 

coli O157. For this analysis, samples were considered positive for E. coli O157 serogroup if the 

DNA extracted from enriched fecal suspensions tested positive for rfbEO157 gene. The detection 

methods have been previously validated for their analytical performance (Bai et al., 2012; Jacob 

et al., 2014; Noll et al., 2015) 

 Statistical analysis 

 Model description 

The Bayesian analysis approach described by Branscum et al. (2005) was applied here to 

estimate the sensitivity and specificity of the three tests of interest, and also the true prevalence 

of E. coli O157 in cattle feces. Briefly, the Bayesian estimation procedure combines prior 

knowledge about the unknown parameters of interest with data obtained from sample testing (i.e. 

likelihood function) to produce updated posterior distributions for parameters of interest. For our 

analysis, cPCR and mqPCR tests were considered to be conditionally dependent because the two 

tests have a similar biologic basis; however, culture and the two PCR tests were considered 

conditionally independent because the two tests measure different biological attributes 

(biochemical activity vs DNA content). Conditional dependence between cPCR and mqPCR was 

explicitly modeled and estimated as a conditional correlation (Gardner et al., 2000; Branscum et 

al., 2005). The model required the estimation of nine parameters, namely sensitivity and 

specificity of the three tests, true prevalence, and the conditional correlation between cPCR and 

mqPCR amongst test positive (rhoD-Se) and amongst test negative (rhoD-Sp) samples. So 

specified, the likelihood for this model is non-identifiable because the data consists of eight (23, 

i.e., two possible outcomes [positive or negative] from each of three detection methods) ‘classes’ 
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of test results, thereby allowing for a maximum of seven estimable parameters (Branscum et al., 

2005). To ensure identifiability of all model parameters, proper informative priors were 

incorporated for apparent prevalence, sensitivity, and specificity of the three tests (Dendukuri 

and Joseph, 2001; Branscum et al., 2005; Berkvens et al., 2006).  

  Prior specifications 

External prior information on sensitivity of culture, cPCR, and mqPCR, and on 

specificity of cPCR and mqPCR were elicited from three experts (a microbiologist, a molecular 

microbiologist, and an epidemiologist) individually through face-to-face interviews. In order to 

inform priors for test sensitivity, the experts were asked to give their best estimate of the most 

likely number of samples that each test would detect as positive given a hypothetical set of 100 

known E. coli O157 positive fecal samples and the minimum number out of the 100 known 

positive samples that they were 95% sure the test could recognize as positive. For specifying 

priors on test specificity, experts were also asked to give their best estimate of the most likely 

number of samples that each test would detect as negative given a hypothetical set of 100 true 

negative samples and the minimum number out of the 100 known true negative samples that they 

were 95% sure the test could recognize as negative. Next, consensus prior information was 

generated from that elicited individually from the three experts. Each expert and consensus prior 

information was used to specify mode and 5th percentile of a beta distribution [Beta (a,b)] using 

the Beta Buster© software (http://betabuster.software.informer.com/1.0/), which in turn derived 

the corresponding a and b hyper parameters (Jones and Johnson, 2014). The prior apparent 

prevalence of E. coli O157 in feedlot cattle feces was specified as having a mode of 50% and a 

5th percentile as low as 10%, corresponding to beta parameters a = 1.53 and b = 1.53. Such vague 

http://betabuster.software.informer.com/1.0/
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prior specification was based on previous evidence that the fecal prevalence of E. coli O157:H7 

within a pen or group of feedlot cattle can vary widely from 0% to > 80% among pens and over 

time (Sargeant et al., 2003; Renter et al., 2008). The data set represented 24 pens of cattle so we 

established our prior based on the expected average prevalence of 24 pens of cattle.  The 

probability of obtaining extremely low or high prevalence for E. coli O157:H7 in samples of 

cattle feces from 24 pens is much lower compared to probability of obtaining values closer to the 

mode. In all cases, the culture method was considered to be highly specific (Cernicchiaro et al., 

2011; Jacob et al., 2014) and modeled using a beta prior distribution with mode 99% and 5th 

percentile of 97% (a = 212.12 and b = 3.13). The prior information on sensitivity of the three 

tests and specificity of cPCR and mqPCR yielded by consensus of experts was used for the 

Bayesian analysis in this study and is summarized in Table 3.1. The models derived using the 

consensus prior information are here referred to as the consensus model (CM). 

  Sensitivity analysis  

Sensitivity to prior specification using consensus information was assessed by comparing 

posterior inference with models that fitted widened priors reflecting greater uncertainty relative 

to the priors elicited by experts and their consensus (Kostoulas et al., 2006; Praud et al., 2012; 

Rahman et al., 2013). For parameters defining sensitivity of culture, cPCR and mqPCR, and 

specificity of cPCR and mqPCR, widened priors were generated by using the smallest values of 

prior mode elicited by the three experts and by halving the value of the 5th percentile of the 

consensus prior for each parameter. Our sensitivity analysis compared posterior inference for 

three models that considered widened priors and combinations of widened and consensus priors 

(Table 3.1). Specifically, sensitivity analysis model 1 (SM1) used widened priors for sensitivity 
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of culture, cPCR and mqPCR, and specificity of cPCR and mqPCR. Sensitivity analysis model 2 

(SM2) used consensus priors for sensitivity of culture, cPCR and mqPCR, and widened priors for 

specificity of cPCR and mqPCR.  Sensitivity analysis model 3 (SM3) used widened priors for 

sensitivity of culture, cPCR and mqPCR, and consensus priors for specificity of cPCR and 

mqPCR. Priors for the apparent prevalence of E. coli O157 and for specificity of culture were 

specified as previously described in all cases.   

 Software implementation and posterior inference 

All models were fitted using OpenBUGS© version 3.2.3 rev 1012 (Thomas et al., 2006), 

with an R software (R Core Team, 2015) interphase through the “R2OpenBUGS” (Sturtz et al., 

2005) package. For each model, three parallel Markov Chain Monte Carlo chains were run, each 

consisting of a burn-in period of 10,000 iterations followed by 100,000 saved iterations for 

posterior inference. Chain convergence was assessed by visual inspection of the Gelman-Rubin 

diagnostic plots and evaluation of the corresponding statistic (Gelman and Rubin, 1992). 

Convergence diagnostics were implemented using the “coda” (Plummer et al., 2006) package in 

R. Posterior inference on sensitivity and specificity for each of the three tests, on the conditional 

correlation between cPCR and mqPCR, and on the true prevalence was reported as posterior 

median and corresponding 95% highest posterior density intervals (HPDI), defined as the 

narrowest possible interval containing 95% of the posterior samples. In other words, HPDI is the 

collection of the most likely values of a parameter (Christensen et al., 2011). We can interpret a 

95% HPDI as the interval within which we can be 95% sure that the parameter value of interest 

lies.  

 Model assessment 
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The relative fit of competing models to the data can be compared using the deviance 

information criterion (DIC) (Spiegelhalter et al., 2002) and the log pseudo marginal likelihood 

(LPML) (Christensen et al., 2011), both of which assess which of a subset of models fit the data 

better. DIC is a Bayesian measure of the model goodness-of-fit penalized by a complexity term 

pD interpreted as effective number of parameters (Spiegelhalter et al., 2002). Models with a 

lower DIC are considered better fitting to data (Spiegelhalter et al., 2003), with differences of at 

least 5 to 10 units indicating substantial improvement in model fit (Lunn et al., 2012). In turn, 

LPML is a posterior predictive statistic that is useful as an overall measure of model fit (Geisser 

and Eddy, 1979). It is derived from conditional predictive ordinate (CPO) statistics (Gelman et 

al., 2014), and expressed as  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  ∑ log (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , where n is the number of classes of test 

results as illustrated in table 3.2. The model with largest LPML is preferred (Christensen et al., 

2011). Lack of fit of a proposed model to data can be assessed in absolute terms using the 

Bayesian p-value, which is a posterior predictive check statistic based on the difference between 

the deviance of the realized observations and the deviance of predictions generated from the 

fitted model (Berkvens et al., 2006). A model that adequately fits the data is expected to have a 

Bayesian p-value of around 0.50 (Rahman et al., 2013). As a rule of thumb, there is no evidence 

for lack of model fit when the Bayesian p-value is between 0.30 and 0.70 (Smit, 2013) and well 

away from the extremes at 0 and 1 (Gelman et al., 2014).  

 Results 

 Descriptive statistics on data 

In total, 576 cattle pen floor fecal samples were analyzed by culture, cPCR, and mqPCR 

assays. The cross classified test results of the three detection methods for E. coli O157 are shown 
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in Table 3.2. Overall, 44.3% (255/576), 54.7% (315/576), and 89.8% (517/576) of enriched 

samples were positive by culture, cPCR, and mqPCR, respectively, though only 27.8% (160/576) 

of samples were positive by all three methods. In turn, 8.5% (49/576) of samples were negative 

by all three methods, whereas 91.5% (527/576) were positive by at least one detection method. 

For the culture method, a total of 98.0% (250/255) of samples that tested positive for O157 

antigen by latex agglutination and indole tests were confirmed positive for rfbEO157 gene by 

PCR. A total of 97.3% (248/255) of samples that tested positive for O157 antigen (O157 

serogroup) were also positive for stx1 and/or stx2 genes (O157 STEC). A total of 96.9% 

(247/255) of samples that tested positive for O157 antigen also tested positive for eae, stx1 

and/or stx2 genes (O157 EHEC). Similarly, 96.9% (247/255) of samples that tested positive for 

O157 antigen also tested positive for the eae, fliCH7, and at least one stx gene (O157:H7 EHEC). 

PCR based methods identified E. coli O157 based on the presence or absence of the rfbEO157 

gene in the sample. Other genes (stx1, stx2, eae) may originate from non-O157 E. coli that may 

also be present in the sample, therefore they were not considered during analysis.  

 Bayesian posterior inference on diagnostic performance and true prevalence 

Consensus priors based on information elicited independently from three experts were 

used in model fitting to obtain the posterior median and 95% HPDI used in assessing diagnostic 

performance of the three detection methods and true prevalence of E. coli O157 (Table 3.3). 

Based on these data, mqPCR yielded the greatest sensitivity (97.3%, HPDI: 95.1%–99.0%), 

followed by cPCR (59.7%, HPDI: 55.3%–63.9%); culture was the least sensitive of the detection 

methods (49.1%, HPDI: 44.8%–53.4%). All the three methods were relatively specific for E. coli 

O157, as indicated by the magnitude of their posterior medians (≥94.1%) and that of the lower 
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bound of the HPDI (≥84.1%). The true prevalence (sample level) of E. coli O157 in the study 

population was estimated to be 91.3% (HPDI: 88.1%–94.2%).  There was evidence of 

conditional dependence between cPCR and mqPCR amongst test positive samples as the 95% 

HPDI of the correlation coefficient (i.e. rhoD-Se) did not include the null value of zero (Table 

3.4). However, there was no evidence for conditional dependence between cPCR and mqPCR 

amongst test negative samples as the 95% HPDI of the correlation coefficient (i.e. rhoD-Sp) did 

include zero (Table 3.4). The posterior probability of rhoD-Sp was significantly different than 

zero.  

 Sensitivity analyses and model comparisons 

Model fit statistics obtained from our sensitivity analyses indicated that competing 

models with either consensus or widened priors yielded comparable fit to the data (Table 3.3). 

Bayesian p-values for all models considered were in the range of 0.45–0.66, indicating no 

evidence for lack of fit of any of the models; in fact, all models seemed to fit the data reasonably 

well. Further, the differences in DIC between the consensus model and any of the sensitivity 

analysis models considered was 2.1 units, while their difference in LPML was less than 0.7 units, 

indicating no evidence for substantial differences in fit across models. Diagnostic sensitivity of 

all three diagnostic methods, specificity of cPCR, and true prevalence of E. coli O157 showed 

posterior medians of comparable numerical magnitude and overlapping 95% HPDI across the 

consensus prior model and the sensitivity analysis models considered (Table 3.3). However, the 

width of the 95% HPDI for specificity of cPCR and for true prevalence seemed to differ 

substantially between models, whereby SM1 and SM2 had the lowest posterior precision (i.e. 

wider intervals), consistent with the more diffuse priors specified on these models. Also, 
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posterior inference on specificity of the mqPCR method was sensitive to prior specification both 

in terms of point estimates and uncertainty estimation (Table 3.3).  A lower posterior median and 

a wider 95% HPDI were obtained for specificity of mqPCR when wider, more diffuse priors 

were specified for this parameter.  This result is consistent with the fact that only a few samples 

tested negative for E. coli O157 using mqPCR (Table 3.2), thereby indicating limited 

information available in the data for mqPCR specificity such that the influence of the prior was 

substantial. 

 Discussion 

This is the first reported study using a Bayesian analysis framework to estimate the 

sensitivity and specificity of culture, cPCR, and mqPCR methods for detection of E. coli O157 in 

cattle feces. Posterior estimates of diagnostic sensitivity for the three detection methods seemed 

to differ, mqPCR being the most sensitive, followed by cPCR, and lastly culture. The posterior 

estimate of sensitivity of mqPCR was approximately twice as much as that of culture. This 

finding is in agreement with the study of Noll et al. (2015) which found a disagreement between 

the proportions of positive samples detected by these methods based on Cohen’s K statistics and 

the McNemar’s chi-square. Further, the optimum diagnostic sensitivity and specificity of cPCR 

was reported to be 85.7% and 96.9%, respectively at a Ct value of 31 based on receiver operating 

characteristic curve analysis (Noll et al., 2015). In a 2014 study conducted using fecal samples 

from cattle farms in Belgium (Verstraete et al., 2014), the diagnostic sensitivity and specificity of 

a quantitative PCR (qPCR) assay were estimated to be 82.8% (95% CI: 64.2–94.1%) and 76.7% 

(95% CI: 57.7–90.0%), respectively, using culture method as a reference standard. Also, based 

on culture as a reference standard, Jacob et al. (2014) compared multiplex real-time (mqPCR) 

and conventional PCR (cPCR) methods (both targeting the rfbEO157, stx1, and stx2 genes) to a 
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culture-based method for detection and quantification E. coli O157 in cattle naturally shedding 

high (≥ 104 CFU/g of feces) and low (≤ 102 CFU/g of feces) concentrations of E. coli O157 in 

their feces. Their study estimates for diagnostic sensitivity of mqPCR and cPCR were 64% and 

54%, respectively and diagnostic specificity were 60% and 71%, respectively. These estimates 

fall mostly within the ranges observed in our study for sensitivity of cPCR, specificity of cPCR 

and mqPCR, which assumed no gold standard among the three methods. Culture methods used 

for detection of E. coli O157 in cattle feces have very high specificity but limited sensitivity. 

Various estimates have been reported for the sensitivity of different culture-based methods.  For 

example, Cernicchiaro et al. (2011) reported sensitivities of 72.9% (95% CI: 66.9–78.3%), 

70.2% (95% CI: 64.1–75.9%), and 29.6% (95% CI: 23.9–35.7%) for rectoanal mucosal swab 

immunomagnetic separation (RAMS-IMS), fecal-IMS, and direct plating protocols, respectively 

for E. coli O157 at the sample level. These estimates were based on logistic regression modeling 

and assumed parallel interpretation of the three protocols (positive by at least one of RAMS-

IMS, fecal-IMS, and direct plating) as the gold standard. Williams et al. (2014) reported 

diagnostic sensitivity of 67.0% (95% CI: 59.6–73.1%) for fecal-IMS relative to RAM-IMS. The 

estimates of sensitivity of the fecal-IMS protocol reported by Cernicchiaro et al. (2011) and 

Williams et al. (2014) were higher than the estimates obtained for the sensitivity of the culture 

method from our consensus and sensitivity analysis models. It is important to note that not all 

culture or PCR methods reported in the literature are equivalent, i.e., culture may include direct 

plating, fecal-IMS, RAMS-IMS, or spiral plating while PCR may differ in their targeted genes. 

Unlike previous studies (Cernicchiaro et al., 2011; Jacob et al., 2014; Verstraete et al., 2014; 

Williams et al., 2014), by implementing a latent class modeling approach, we were able to 

estimate the performance of the three methods without a gold standard. This method removed 
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naturally accounts for diagnostic uncertainty and removes the biases associated with using a 

single imperfect test as reference standard when estimating tests performance (Toft et al., 2007). 

The estimated true prevalence of E. coli O157 in the study population was found to be 

high (91.3%). This estimate is consistent with previous reports of E. coli O157 shedding in pens 

of feedlot cattle, especially during the summer months (Smith et al., 2001; Keen and Elder, 2002; 

Khaitsa et al., 2003; Renter et al., 2008). The estimated true prevalence is also higher than the 

apparent prevalence detected by culture (44.3%) and cPCR (54.7%) methods, but similar to 

mqPCR (89.8%). This is not surprising since the median posterior estimates of specificities of 

both culture and cPCR methods are high (91.1 – 98.7%), implying few false positive results 

while the median posterior estimate for sensitivity of mqPCR is high implying few false 

negatives. The prevalence of E. coli O157 estimated in our study represents animal level true 

prevalence as the majority of the samples were collected from cattle observed to be defecating at 

the time of sample collection.   

In this study, weak conditional dependence between cPCR and mqPCR among test 

positive samples and no evidence for dependence among test negative samples were observed. 

While both PCR tests are based on amplification of bacterial DNA, differences in cPCR and 

mqPCR reaction chemistry as well as differences in post-PCR analyses of these methods result in 

a substantial increase (~100-fold) in sensitivity for mqPCR compared to cPCR (Biassoni and 

Raso, 2014). This may explain the weak correlation observed between the two PCR among test 

positive samples. There were few samples tested as negative by the mqPCR method; this may 

help explain the wider, less precise, 95% HPDI for the coefficient of conditional dependence 

between mqPCR and cPCR for test negative samples (rhoD-Sp), which overlapped with zero for 
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all models. Given the limited information available for true negative parameters, the 5% level of 

significance may be too restrictive and a more liberal threshold might need to be considered. 

In the consensus model, the computed Bayesian p-value (0.66) indicated adequate model 

fit to the data, thus supporting compatibility between prior and observed data. The effective 

number of parameters estimated by the model (pD) was positive (4.73), thereby supporting use 

of DIC to compare fit between competing models.  As shown in the table 3.3, neither DIC nor 

LPML were particularly informative to discriminate between the models as DIC differences 

amongst the models were < 5 and LPML difference < 1 unit. Choosing to report only the model 

with the lowest DIC could be misleading especially when the competing models produces 

posterior estimates that are very different even if the DIC difference amongst models is < 5 units 

(Lunn et al., 2012). LPML does not suffer from the same limitations as DIC. In all cases 

considered here, model selection based on DIC was aligned with that of LPML, thus removing 

concerns about the validity of DIC for these models. A sensitivity analysis was used to determine 

the impact of consensus prior information on posterior inference of performance of the 

diagnostic tests. The posterior distributions of true prevalence, sensitivity of the three detection 

methods, and specificity of cPCR overlapped substantially across the competing models 

considered regardless of consensus or widened priors, thus suggesting robust inference to prior 

specification. Yet, inference on specificity of mqPCR showed considerable sensitivity to prior 

specification, as indicated by a markedly decreased posterior median and wider 95% HPDI when 

widened priors were used for specificity of cPCR and mqPCR. That specificity of mqPCR was 

sensitive to prior specification is not entirely unexpected as only few samples tested negative by 

the mqPCR method, thus indicating limited available information in the data to make inference 

on this parameter. Interestingly, this sensitivity to prior specification was not apparent from 



108 

 

indicators of model fit. The Bayesian p-value obtained for the consensus and the sensitivity 

analyses models ranged from 0.45 – 0.66 indicating no evidence of lack of fit for any of the 

models. Also, values of DIC and LMPL obtained for the consensus model and sensitivity 

analysis models (SM1-SM3) were comparable. 

 Conclusion 

This study evaluated the diagnostic performance of culture, cPCR, and mqPCR methods 

for the detection of E. coli O157 in feces of feedlot cattle in central USA. These results showed 

that sensitivity estimates for the detection of E. coli O157 in cattle feces was highest for mqPCR, 

followed closely by cPCR, and last by culture. The estimated sensitivity for mqPCR was 

approximately twice as high as the estimated sensitivity for culture. The cPCR and mqPCR had 

comparable specificity in the consensus model, but a sensitivity analysis revealed that posterior 

inference on specificity of mqPCR method was heavily dependent on prior specification; this is 

likely associated with the few number of negative test results obtained by the mqPCR. There was 

evidence of weak conditional dependence between the two PCR methods amongst test positive 

samples. These data provide important estimates of test performance for calculating true 

prevalence of E. coli O157 in feedlot cattle and adjusting for test error in risk modeling. 
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Table 3.1 - Elicitation of prior information on diagnostic performance of culture, conventional PCR (cPCR), and multiplex quantitative 
PCR (mqPCR) for detection of Escherichia coli O157 in feces of finishing feedlot cattle in central USA 

Source Variable Culture   Conventional PCR    Multiplex quantitative PCR    
Most likely 5th percentile 

 
Most likely 5th percentile   Most likely 5th percentile 

Expert 1 Sensitivity 0.80 0.70 
 

0.70 0.50 
 

0.95 0.90 
  Specificity    0.90 0.80  1.00 0.95 

Expert 2 Sensitivity – –  0.95 0.80  0.95 0.80 

  Specificity    0.95 0.80  0.95 0.80 

Expert 3 Sensitivity 0.70 0.40  0.70 0.30  0.90 0.50 

 Specificity    0.99 0.88  0.99 0.88 

Expert consensus Sensitivity 0.75 0.55  0.78 0.53  0.93 0.73 

  Specificity 
   

0.95 0.83 
 

0.98 0.88 

Sensitivity model 1 Sensitivity 0.70 0.27  0.70 0.26  0.90 0.36 

  Specificity    0.90 0.42  0.95 0.44 

Sensitivity model 2 Sensitivity 0.75 0.55  0.78 0.53  0.93 0.73 

 Specificity    0.90 0.42  0.95 0.44 

Sensitivity model 3 Sensitivity 0.70 0.27  0.70 0.26  0.90 0.36 

 Specificity    0.95 0.83  0.98 0.88 

Sensitivity model 1 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR, and specificity of cPCR and mqPCR; Sensitivity model 2 used the lowest most likely value of the three experts prior, and 
halved consensus prior 5th percentile for specificity of cPCR and mqPCR but consensus priors for sensitivity of culture, cPCR, and mqPCR; 
Sensitivity model 3 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR but consensus priors for specificity of cPCR and mqPCR. 
 



114 

 

Table 3.2 - Tabulated detection results for Escherichia coli O157 in feces of finishing feedlot cattle in central USA based on culture, 
conventional PCR, and multiplex quantitative PCR diagnostic methods 

Culture Conventional PCR Multiplex 
quantitative PCR Number 

1 1 1 160 
1 1 0 1 
1 0 1 88 
1 0 0 6 
0 1 1 151 
0 1 0 3 
0 0 1 118 
0 0 0 49 

Total   576 
1: Positive; 0: Negative 
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Table 3.3 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on true prevalence, sensitivity and 
specificity of culture, conventional PCR, and multiplex quantitative PCR obtained from consensus prior model and its sensitivity analysis 
for the detection of Escherichia coli O157 in feces of finishing feedlot cattle in central USA  

 
Prior 
set 

Models and Tests Bayesp pD DIC LPML True prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.66 4.73 46.57 –936.85 91.3 (88.1, 94.2)   
 Culture      49.1 (44.8, 53.4) 98.7 (96.8, 99.8) 
 cPCR      59.7 (55.3, 63.9) 94.1 (87.4, 99.1) 
 mqPCR      97.3 (95.1, 99.0) 94.8 (84.1, 99.9) 
         
SM1 Widened prior for Se & Sp 0.47 5.12 44.78 –936.30 86.3 (77.3, 93.4) 

  

 Culture 
   

 
 

51.2 (45.1, 58.2) 98.6 (96.8, 99.8) 
 cPCR 

   
 

 
61.9 (56.2, 67.8) 91.9 (74.6, 99.9) 

 mqPCR 
   

 
 

97.3 (95.0, 99.1) 60.9 (35.0, 94.7) 
 

    
 

   

SM2 CP for Se; Widened for Sp   0.45 4.63 44.15 –936.22 84.5 (72.2, 93.2) 
  

 Culture 
   

 
 

52.9 (45.8, 61.8) 98.6 (96.8, 99.8) 
 cPCR 

   
 

 
63.1 (57.2, 68.9) 91.1 (69.2, 99.9) 

 mqPCR 
   

 
 

97.3 (95.1, 99.0) 54.2 (26.7, 88.2) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.65 4.87 46.59 –936.87 91.3 (88.1, 94.2) 
  

 Culture 
   

 
 

48.3 (43.9, 52.7) 98.6 (96.8, 99.8) 
 cPCR 

   
 

 
59.3 (54.9, 63.6) 94.0 (87.3, 99.1) 

 mqPCR 
   

 
 

97.4 (95.1, 99.2) 95.0 (84.9, 99.9) 

CM: Expert consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: Multiplex 
quantitative PCR; Bayesp: Bayesian p-value; pD: statistic for effective number of parameters estimated by the model, used for computation of 
DIC; DIC: Deviance Information Criterion; LPML: Log Pseudo Marginal Likelihood 
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Table 3.4 - Posterior median and 95% HPDI of conditional correlations between conventional PCR and multiplex quantitative PCR 
methods among test positive and test negative samples  

 
Prior set model  Correlation coefficient 
  rhoD-Se rhoD-Sp 
Expert consensus model  0.13 (0.02, 0.23) 0.26 (–0.07, 0.74) 
Sensitivity model 1  0.14 (0.02, 0.25) 0.16 (–0.19, 0.59) 
Sensitivity model 2  0.14 (0.03, 0.25) 0.17 (–0.19, 0.52) 
Sensitivity model 3  0.13 (0.01, 0.23) 0.27 (–0.07, 0.74) 

rhoD-Se: Conditional correlation between cPCR and mqPCR among test positive samples; 
rhoD-Sp: Conditional correlation between cPCR and mqPCR among test negative samples 
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.   

 Abstract 

Non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC) are foodborne 

pathogens of public health importance. Cattle serve as the principal reservoir, shedding these 

bacteria in their feces and contaminating the environment. In May 2012, the United States 

Department of Agriculture, Food Safety and Inspection Service declared six non-O157 STEC 

(O26, O45, O103, O111, O121, and O145) as adulterants in ground beef and non-intact beef 

products. Culture and PCR-based methods—conventional (cPCR) and multiplex quantitative 

PCR (mqPCR)—have since been developed for the detection of these serogroups in cattle feces. 

The objectives of this study were to evaluate the diagnostic sensitivity and specificity of PCR- 

and culture-based methods used for the detection of the six non-O157 serogroups, and to 

estimate their true prevalence in cattle feces, using a Bayesian latent class modeling approach 

that accounts for conditional dependence among the three methods. Fecal samples collected from 

576 cattle in a commercial feedlot in the summer of 2013 were used.  Fecal samples, suspended 
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in E. coli broth, were enriched and subjected to three detection methods: culture (involving 

immunomagnetic separation with serogroup specific beads and plating on a selective medium), 

cPCR, and mqPCR assays. Samples were considered serogroup positive if the sample or the 

recovered isolate tested positive by PCR for an O gene of interest; neither Shiga toxin (stx) nor 

intimin (eae) genes were assessed.  External prior information on the performance of the three 

methods was elicited from three subject experts. Diagnostic sensitivity of culture method was 

estimated using posterior medians as 38.0%, 53.3%, 69.2%, 49.2%, 46.1%, and 71.9% for 

serogroups O26, O45, O103, O111, O121, and O145, respectively. For cPCR, the posterior 

median diagnostic sensitivity was 70.1%, 53.5%, 64.8%, 70.3%, 75.9%, and 71.9%; for mqPCR, 

it was 91.2%, 93.2%, 95.7%,80.9%, 87.8% and 87.2%, both in the same order as culture method. 

The diagnostic specificity of cPCR for serogroups O26, O45, O103, O111, O121, and O145 had 

posterior medians at 94.0%, 96.4%, 96.4%, 98.9%, 81.0%, and 99.2%, respectively, and at 

89.7%, 62.2%, 92.3%, 98.8%, 46.5%, and 95.7%, respectively for mqPCR. Posterior medians for 

true prevalence were 58.5%, 28.9%, 85.8%, 0.2%, 4.5%, and 2.2% for serogroup O26, O45, 

O103, O111, O121, and O145, respectively. Sensitivity analysis indicated that posterior 

inferences on specificity of cPCR and mqPCR and on sensitivity of culture for O26 and O103, as 

well as on sensitivity of culture, cPCR and mqPCR for O111, O121, and O145, and sensitivity of 

culture for O45 were susceptible to prior specification due to few or no detections available in 

the data for selected combinations of diagnostic methods (i.e. extreme category problem). Our 

results characterize performance of detection methods and true prevalence of non-O157 

serogroups, thus informing necessary adjustments for test bias in risk modeling. 

Keywords:  Non-O157 Escherichia coli; true prevalence; sensitivity; specificity; diagnostic 

methods; culture; conventional PCR; quantitative PCR; Bayesian modeling; cattle feces 
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 Introduction 

Shiga toxin–producing Escherichia coli (STEC) are major foodborne pathogens with 

significant negative impact on the beef industry, food safety, and public health. In the United 

States, STEC cause more than 175,000 human illnesses, over 2,000 hospitalizations, and 20 

deaths each year (Scallan et al., 2011; Scharff, 2012). The annual total illness cost is estimated at 

more than $1 billion dollars (Scharff, 2010). For illustration, consider that in the 10-year-period 

following the E. coli O157 contamination of hamburger event of 1993, more than $2 billion 

dollars were spent by the cattle industry to combat STEC in processing plants (Kay, 2003). In 

May 2012, the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-

FSIS) declared six non-O157 STEC serogroups–O26, O45, O103, O111, O121, and O145–to be 

adulterants in ground beef and non-intact raw beef products (Federal Register, 2011). Since then, 

increasing efforts have been devoted to developing and validating laboratory methods for the 

detection and quantification of the non-O157 STEC in cattle and beef products.  

Diagnostic methods recently developed for the detection and quantification of the six 

major non-O157 STEC serogroups in cattle feces include culture and PCR-based assays. The 

culture method uses suitable substrate to detect the presence of specific enzymes. It requires 

selective enrichment of samples, immunomagnetic separation (IMS) using serogroup specific 

beads, plating on selective and differential media that contain antibiotics and chromogenic 

substrates, and confirmation of serogroup specific genes by multiplex PCR (Kalchayanand et al., 

2013; Dewsbury et al., 2015; Noll et al., 2015). The PCR based methods use conventional or 

real-time assays to amplify DNA targets in the samples (Bai et al., 2010; Anklam et al., 2012; 

Paddock et al., 2012). Several of these methods have been evaluated for the detection and 

quantification of non-O157 serogroups and associated virulence genes in feces of naturally 
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shedding cattle (Bai et al., 2012; Hofer et al., 2012; Baltasar et al., 2014; Verstraete et al., 2014; 

Noll et al., 2015; Shridhar et al., 2016). However, the diagnostic performance (i.e., diagnostic 

sensitivity and specificity) of these methods in populations of cattle naturally shedding non-O157 

serogroups has not been evaluated. Therefore, there are no estimates of the true prevalence of the 

six non-O157 serogroups in cattle feces; these are crucial for quantitative microbial risk 

assessment of the potential contamination burden of the pathogens along the beef production 

chain. Classically, the performance of a diagnostic test is evaluated against an ideally-available 

gold standard. A gold standard test is a perfect test that has sensitivity and specificity of 100%. 

None of the tests used for the detection of non-O157 serogroups in cattle feces are perfect. When 

a gold standard test is unavailable, Bayesian latent class analysis can be used as a practical 

option for the evaluation of diagnostic performance of multiple tests and true prevalence 

(Branscum et al., 2005; Berkvens et al., 2006).  

The objective of this study was to (i) evaluate the diagnostic performance (i.e., diagnostic 

sensitivity and specificity) of culture-based, conventional PCR, and multiplex quantitative PCR 

PCR tests used for the detection of the six major non-O157 serogroups: O26, O45, O103, O111, 

O121, and O145 in feces of naturally shedding commercial feedlot cattle, and to (ii) estimate the 

true prevalence of these serogroups using a Bayesian latent class modeling framework.  

 Materials and methods 

  Study population and sample collection 

The study population consisted of cattle in finishing pens in a commercial feedlot in the 

central United States. During the summer (June-August) of 2013, a total of 576 pen floor fecal 

samples were collected from pens housing crossbred finishing cattle a day before they were 
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transported to a slaughter plant. The feedlot was visited weekly during a 12-week period 

(Dewsbury et al., 2015). Two pens of cattle were sampled during each visit and 24 freshly 

voided fecal samples were collected off the pen floor upon entering each pen. In most cases 

samples were collected from cattle observed defecating. The average number of finishing cattle 

housed per pen at this feedlot during the study period was 270 (range: 121- 299). Approximately 

10 g of freshly voided feces were collected in individual plastic bags (WHIRL-PAK®; Nasco, 

Fort Atkinson, WI) using plastic spoons, and shipped on ice to the Pre-harvest Food Safety 

Laboratory at Kansas State University for processing within 36 h of sample collection. For each 

sample, approximately 2 g of feces were suspended in 18 mL of E. coli broth, vortexed, and 

incubated for 6 h at 40oC.  The enriched fecal suspension obtained from individual samples was 

used to conduct the three diagnostic methods.   

  Culture-based detection  

A culture-based method described by Noll et al. (2015) was used. Briefly, the enriched 

fecal suspension was subjected to IMS using six serogroup-specific beads (Abraxis, LLC, 

Warminster, PA). Following IMS, beads were plated on chromogenic Posse´ (Posse´ et al., 2008) 

medium modified to include novobiocin (5 mg/l) and potassium tellurite (0.5 mg/l) and 

incubated for 20-24 h at 37oC. Six chromogenic colonies were then picked and streaked onto 

blood agar plates and incubated for 18-24 h at 37oC. Colonies from each of the six streaks on the 

blood agar plate were pooled in 50 mL distilled water, boiled for 10 min, and used as a template 

for multiplex PCR targeting the six serogroups (Paddock et al., 2012). If the colony pool tested 

positive for one of the six non-O157 serogroups, then each colony was individually tested by a 

multiplex PCR (Bai et al., 2012) targeting six non-O157 serogroups and three virulence genes 
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(stx1, stx2, and eae).  For this analysis, samples were considered serogroup positive based on 

presence of the O gene regardless of the presence of virulence genes.  

  Conventional PCR method  

A multiplex conventional PCR (cPCR) assay targeting O antigen genes, i.e. the wzx gene 

for the detection of serogroups O26, O45, O103, O111, and O145 and the wbqE and wbqF genes 

for the detection of serogroup O121 (Bai et al., 2012), was used. DNA was extracted from the 

enriched fecal suspension by boiling, centrifuging and purifying using a GeneClean DNA 

extraction kit (MP Biomedicals, Solon, OH), then subjected to the cPCR assay (Shridhar et al., 

2016). Briefly, 2 µl of the extracted DNA were mixed with 18 µl of reaction mix and the 

amplification reaction was carried out as follows: 5 min denaturation at 94oC, followed by 35 

cycles of 94oC for 30 s, and 67oC for 80 s. The amplified DNA was separated on a capillary 

electrophoresis system in a QIAxcel Advanced System (Qiagen, Valencia, CA) and was 

analyzed using QIAxcel Screengel software. For this analysis, samples were considered positive 

for any of the six non-O157 serogroups if the DNA extracted from enriched fecal suspensions 

tested positive for that O gene. 

  Multiplex quantitative PCR method 

Two sets of multiplex quantitative PCR (mqPCR) assays targeting the wzx gene for the 

detection of serogroups O26, O45, O103, O111, and O145, and the wbqE and wbqF genes for 

the detection of serogroup O121 in cattle feces (Shridhar et al., 2016) were used. The first assay 

targeted O26, O103, and O111 serogroups while the second assay targeted O45, O121, and O145 

serogroups. DNA, extracted from the enriched fecal suspension as described above, was 

subjected to the two mqPCR assays. Briefly, 1 µl of the extracted DNA was mixed with 19 µl of 
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reaction mix and the reaction was carried out as follows: 10 minutes denaturation at 95oC, 

followed by 45 cycles of 95oC for 15 s, 56oC for 20 s, and 72oC for 40 s. An end-point cycle 

threshold (Ct) value of ≤ 37.6 and ≤ 37.9 were considered positive for the first and second 

assays, respectively. For this analysis, samples were considered positive for any of the six non-

O157 serogroups if the DNA extracted from enriched fecal suspension tested positive for that O 

gene. The detection methods have been previously validated for their analytical performance 

(Bai et al., 2012;  Paddock et al., 2012; Shridhar et al., 2016) 

  Statistical analysis 

 Model description 

A Bayesian formulation of the latent class model described by Branscum et al. (2005) 

was used in this study to estimate the sensitivity and specificity of the three diagnostic tests, as 

well as the true prevalence of each of the six non-O157 serogroups in cattle feces. Briefly, the 

Bayesian estimation procedure can be described as a process of adjusting and updating 

knowledge of an event based on data (Sanogo et al., 2014). Bayesian inference combines prior 

knowledge (described using probability distributions on the unknown population parameters of 

interest, such as sensitivity, specificity, and true prevalence) with observed field data (likelihood) 

from sample testing to produce updated posterior distributions for parameters of interest.  This 

approach is particularly useful in the absence of a gold standard (Enoe et al., 2000; Branscum et 

al., 2005; Kostoulas et al., 2017). For our analysis, diagnostic performance of all three tests 

(culture, cPCR and mqPCR) was considered to be conditionally dependent as all tests involve the 

detection of the nuclear DNA of specific non-O157 serogroups. Conditional dependence 

amongst the tests was explicitly modeled and estimated as a conditional correlation amongst test 
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positive samples and a conditional correlation amongst test negative samples (Gardner et al., 

2000; Branscum et al., 2005). For each of the non-O157 serogroups, we fitted a separate model 

that required the estimation of 13 parameters, namely sensitivity and specificity of each of the 

three tests, true prevalence, conditional pairwise correlations between tests (culture and cPCR, 

culture and mqPCR, cPCR and mqPCR), for test positive (rhoDplus) and negative (rhoDmin) 

samples. So specified, the likelihood for each of the six non-O157 models was non-identifiable 

because the data for each serogroup consisted of eight ‘classes’ of test results (23, i.e., two 

possible outcomes [positive or negative] each from the three detection methods), thereby 

allowing for a maximum of seven estimable parameters for each model (Branscum et al., 2005). 

To ensure parameter identifiability, proper informative priors were incorporated for prevalence, 

sensitivity, and specificity of the three tests (Dendukuri and Joseph, 2001; Branscum et al., 2005; 

Berkvens et al., 2006).  

For each of the non-O157 serogroups, we fitted competing models that accommodated 1) 

all three possible pairwise conditional dependences between culture, cPCR and mqPCR, 2) two 

pairwise conditional dependencies between culture, cPCR and mqPCR, or 3) only one 

conditional dependence between detection methods (Table 4.5).  Model fit statistics, namely DIC 

and LPML, were compared to select the best fitting model for each non-O157 serogroup. 

Detailed description of model fit statistics is presented in the model assessment section below. 

  Prior specifications 

External prior information on sensitivities of culture, cPCR, and mqPCR, and on 

specificities of cPCR and mqPCR for each of the six non-O157 serogroups were elicited from 

three experts, individually, through face-to-face interviews. To inform priors for test sensitivity, 
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the experts were asked to give their best estimate of the most likely and the minimum number of 

samples that each test would detect as positive given a hypothetical set of 100 known positive 

fecal samples that they were almost sure (i.e., 95% sure) the test could identify as positive. To 

inform priors for tests specificity, experts were also asked to give their best estimate of the most 

likely and the minimum number of samples that each test would detect as negative given a 

hypothetical set of 100 true negative samples that they were almost sure (i.e., 95% sure) the test 

could identify as negative.  Prior information on test sensitivity and specificity was obtained in 

this way for each of the six non-O157 serogroups. Next, consensus prior information (simple 

arithmetic means) for the three experts was generated from that elicited individually. For each of 

the six non-O157 serogroups, information from each expert and from their consensus was used 

to specify the mode and 5th percentile of a beta distribution [Beta (a,b)] using Beta Buster© 

software (http://betabuster.software.informer.com/1.0/) and thus derive the a and b shape 

parameters of the corresponding beta prior distributions (Jones and Johnson, 2014). Consensus 

priors for sensitivity of the three methods, specificity of cPCR and mqPCR for serogroups O26, 

O45, and O103 are summarized in Table 4.1, and for serogroups O111, O121, and O145 in Table 

4.2. In all cases, the culture method was considered to be highly specific (Cernicchiaro et al., 

2011; Jacob et al., 2014), so that the prior distribution for culture specificity had mode 99% and 

5th percentile of 97%, corresponding to a beta prior with shape parameters a = 212.12 and b = 

3.13.  External prior information on  prevalence of each of the six non-O157 serogroups in cattle 

feces were obtained from a systematic review-meta analysis study (Dewsbury, 2015) and used to 

specify mode and 5th percentile of a beta distribution, whereby the corresponding a and b shape 

parameters were obtained from Beta Buster as explained above (Table 4.3). For each non-O157 

serogroup, consensus priors based on information elicited independently from the three experts 

http://betabuster.software.informer.com/1.0/


126 

 

were used in model fitting to obtain the posterior distributions for diagnostic performance of 

each of the three detection methods and for the true prevalence of each of the six non-O157 

serogroup. The model specified using consensus prior is hereto referred to as the consensus 

model (CM). 

  Sensitivity Analysis 

Sensitivity to consensus prior specification was assessed by comparing posterior 

inference of the model selected as best fitting for each serogroup to that of models that fitted 

widened priors reflecting greater uncertainty relative to the priors elicited by experts and their 

consensus (Kostoulas et al., 2006; Praud et al., 2012; Rahman et al., 2013). Widened priors were 

designed to represent more diffuse prior information compared to that of individual experts or 

their consensus. For parameters defining sensitivity of culture, cPCR and mqPCR, and 

specificity of cPCR and mqPCR, widened priors were generated by using the smallest values of 

the prior mode elicited by the three experts and by halving the value of the 5th percentile of the 

consensus prior for each parameter. For each serogroup, sensitivity analysis compared posterior 

inference from three models using widened priors and combinations of widened and consensus 

priors (Tables 4.1–4.2).  Specifically, sensitivity analysis model 1 (SM1) used widened priors for 

sensitivity of culture, cPCR and mqPCR, and for specificity of cPCR and mqPCR (i.e., increased 

prior uncertainty for all 5 parameters). Sensitivity analysis model 2 (SM2) used consensus priors 

for sensitivity of culture, cPCR and mqPCR but widened priors for specificity of cPCR and 

mqPCR (i.e., increased prior uncertainty for specificity of cPCR and mqPCR only).  Sensitivity 

analysis model 3 (SM3) used widened priors for sensitivity of culture, cPCR, and mqPCR but 

consensus priors for specificity of cPCR and mqPCR (i.e., increased prior uncertainty for 
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sensitivity of culture, cPCR, and mqPCR only). For prevalence of each of the six non-O157 

serogroups, the same priors (Table 4.3) specified in each initial consensus model were used for 

all sensitivity analysis models.  

  Software implementation and posterior inference 

All models were fitted using OpenBUGS© version 3.2.3 rev 1012 (Thomas et al., 2006), 

with an R software (R Core Team, 2015) interphase through the “R2OpenBUGS” (Sturtz et al., 

2005) package. For each model, three parallel Markov Chain Monte Carlo chains were run, each 

consisting of a burn-in period of 10,000 iterations followed by another 100,000 saved iterations 

for posterior inference. Chain convergence was assessed by visual inspection of the Gelman-

Rubin diagnostic plots and evaluation of the corresponding statistics (Gelman and Rubin, 1992). 

Convergence diagnostics were implemented using the “coda” (Plummer et al., 2006) package in 

R.  Sensitivity analyses were conducted using a similar implementation of MCMC as that used 

for the consensus model.   

For each of the six non-O157 serogroups, posterior inference on sensitivity and 

specificity of each of the three tests, on the conditional correlations amongst the three methods, 

and on the true prevalence of the serogroups was reported as posterior median and corresponding 

95% highest posterior density interval (HPDI). HPDI is defined as the shortest possible interval 

containing 95% of the posterior samples (Christensen et al., 2011). Using the best fitting model 

for each serogroup, we compare the sensitivity and specificity of detection methods by 

computing the posterior density of their pairwise differences in diagnostic sensitivity and the 

posterior density of their pairwise differences in diagnostic specificity, respectively. Two 
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detection methods were considered to differ in either sensitivity or specificity if the 

corresponding 95% HPDI on their pairwise differences did not include the null value zero.  

  Model assessment 

The deviance information criterion (DIC) and the log pseudo marginal likelihood 

(LPML) were used to compare relative data fit amongst competing models (i.e., check which 

model fit the data better). The DIC is a Bayesian measure of relative model goodness-of-fit 

penalized by a complexity term pD (Spiegelhalter et al., 2002) that defines the effective number 

of parameters estimated by the model. A negative pD indicates substantial conflict between 

priors and data; when this happens the estimate for DIC is not reliable (Spiegelhalter et al., 2002; 

Berkvens et al., 2006). Given positive values of pD, models with smaller DIC values are 

considered better fitting (Spiegelhalter et al., 2003) and DIC differences of at least 5 to 10 units 

are indicative of substantial improvement in model fit between the competing models (Lunn et 

al., 2012). In turn, LPML is a posterior predictive statistic that is useful as an overall measure of 

relative model fit (Geisser and Eddy, 1979). It is derived from the conditional predictive ordinate 

(CPO) statistics (Gelman et al., 2014), and expressed as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  ∑ log (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , where n is 

the number of classes of test results as illustrated in table 4.4. The model with largest LPML is 

preferred (Christensen et al., 2011).  

In addition, we use the Bayesian p-value as a posterior predictive check statistic that 

expresses the absolute fit of a proposed model to selected features of the data. The Bayesian p-

value is a probability calculated as a function of the difference between the deviance of the 

observations and the deviance of observations predicted from the fitted model (Berkvens et al., 

2006). A model that provides adequate fit to the data is expected to yield a Bayesian p-value of 
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around 0.50 (Rahman et al., 2013). As a rule of thumb, Bayesian p-values between 0.30 and 0.70 

(Smit, 2013) and well away from the extremes of 0 and 1 (Gelman et al., 2014) provide no 

evidence for lack of fit.  

 Results 

 Descriptive statistics on data 

A total of 576 cattle pen floor fecal samples were analyzed by culture, cPCR, and 

mqPCR assays for the presence of the six non-O157 serogroups. The cross-classified test results 

of the three detection methods for each of the six non-O157 serogroups are shown in Table 4.4. 

All samples tested positive for at least one non-O157 serogroup and by at least one detection 

method.  

Overall, 22.7% (131/576), 44.4% (256/576), and 59.0% (340/576) of enriched samples 

tested positive for serogroup O26 by culture, cPCR, and mqPCR respectively. Moreover, 61.8% 

(356/576) of samples tested positive for O26 by at least one detection method, and 14.9% 

(86/576) of samples tested positive for O26 by all three methods.  

For the O45 serogroup, 16.7% (96/576), 17.9% (103/576), and 55.9% (322/576) of 

enriched samples tested positive by culture, cPCR, and mqPCR respectively. Moreover, 57.6% 

(332/576) of samples tested positive for O45 by at least one detection method, and 7.9% 

(46/576) of samples tested positive for O45 by all three methods.  

 For serogroup O103, 60.2% (347/576), 56.6% (326/576), and 84.7% (488/576) of 

enriched samples tested positive by culture, cPCR, and mqPCR respectively. Moreover, 87.3% 

(503/576) of samples tested positive for O103 by at least one detection method, and 42.2% 

(243/576) of samples tested positive by all three methods.  
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For serogroup O111, none of the enriched samples tested positive by culture, cPCR, and 

mqPCR. Only 0.9% (5/576) of enriched samples was positive by at least one detection method 

and 99.1% (571/576) were negative by all three methods.  

For serogroup O121, 2.3% (13/576), 22.9% (132/576), and 57.8% (333/576) of enriched 

samples tested positive by culture, cPCR, and mqPCR, respectively. Moreover, 57.9% (334/576) 

of samples tested positive for O121 by at least one detection method, and 1.7% (10/576) of 

samples tested positive by all three methods.   

Finally, for serogroup O145, 2.9% (17/576), 1.9% (11/576), and 5.9% (34/576) of 

enriched samples tested positive by culture, cPCR, and mqPCR respectively. Moreover, 7.3% 

(42/576) of samples tested positive for O145 by at least one detection method, and 1.2% (7/576) 

of samples tested positive by all three methods.  

 Model selection by serogroup 

Fit statistics to compare competing models (DIC and LPML, pD) for each of the six non-

O157 serogroup are presented in Table 4.5. Models were selected based on lowest DIC and 

largest LPML values indicating improved fit to data relative to other models. In all cases, models 

selected as best fitting explicitly accommodated conditional dependence between cPCR and 

mqPCR. In addition, best fitting models for E. coli O103 and O121 also included conditional 

dependence between culture and cPCR, and best fitting model for E. coli O111 also included 

conditional dependence between culture and mqPCR. For all selected best-fitting models, 

Bayesp indicated no evidence of lack of fit (Table 4.5).  

 



131 

 

 Inference on diagnostic performance and true prevalence 

Tables 4.6-4.11 show the posterior median and 95% HPDI for sensitivity and specificity 

of the three detection methods and for the true prevalence of serogroups O26, O45, O103, O111, 

O121, and O145 respectively, as well as model fit statistics based on the selected consensus and 

sensitivity analysis models. Further, Table 4.12 presents relevant posterior inference to compare 

diagnostic sensitivity and specificity between detection methods. 

 Sensitivity analyses of selected models 

 Serogroup O26 

Sensitivity analyses indicated comparable data fit regardless of prior specification of the 

competing models (Table 4.6). Bayesian p-values for all models examined were in the range 0.52 

– 0.55, indicating no evidence for lack of fit of any of the models.  The DIC difference between 

CM and any of the sensitivity analysis models examined was smaller than 3 units, while their 

LPML difference was smaller than 0.3 units, indicating no evidence for substantial differences in 

fit across models. Diagnostic sensitivity of cPCR and mqPCR methods showed posterior 

medians and 95% HPDI of comparable ranges across the models considered (Table 4.6). In 

contrast, the posterior medians and corresponding 95% HPDI’s for diagnostic sensitivity of 

culture, specificity of cPCR, specificity of mqPCR and true prevalence of O26 showed 

susceptibility to prior specification across models. In particular, SM1 and SM2 showed the 

greatest posterior medians and lowest estimation precision, as indicated by the broader 95% 

HPDI, for sensitivity of culture. SM1 and SM2 also showed lowest posterior medians and 

estimation precisions for specificity of cPCR, specificity of mqPCR and true prevalence of O26, 

consistent with the more diffused priors specified on these models. The posterior distribution of 
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specificity of cPCR and mqPCR methods appeared to be particularly sensitive to prior 

specification in SM1 and SM2 (Table 4.6). 

Based on the consensus prior specification for the selected best-fitting model, diagnostic 

sensitivity to O26 differed significantly between the 3 methods, as indicated by a 95% HPDI on 

their pairwise differences that did not include the null value zero (Table 4.12). Specifically, 

diagnostic sensitivity was greatest for mqPCR, intermediate for cPCR and smallest for culture 

(Table 4.6). However, there was no evidence for differences between the detection methods in 

specificity to O26, as the corresponding 95% HPDI on their pairwise differences included zero. 

 Serogroup O45 

Sensitivity analyses indicated comparable data fit across competing models regardless of 

prior specification (Table 4.7). Bayesian p-values for all models examined were in the range 0.52 

– 0.59, indicating no evidence for lack of fit of any of the models.  The DIC difference between 

CM and any of the sensitivity analysis models examined was smaller than 2 units, while their 

LPML difference was smaller than 0.4 units, indicating no evidence for substantial differences in 

fit across models. Diagnostic sensitivity of cPCR and mqPCR, specificity of cPCR and mqPCR 

methods, and true prevalence of O45 showed posterior medians and 95% HPDI of comparable 

ranges across the models considered (Table 4.7). The posterior medians for diagnostic sensitivity 

of culture showed susceptibility to prior specification across models, SM1 and SM2 showed 

greater posterior medians though the corresponding 95% HPDI considerably overlapped (Table 

4.7).   

Based on the consensus prior specification for the selected best-fitting model for O45, 

there was no evidence for any difference in diagnostic sensitivity or specificity of culture 

compared to that of cPCR (Table 4.12). However, diagnostic sensitivity of mqPCR was higher 



133 

 

than that of both culture and cPCR and conversely, specificity of mqPCR was significantly lower 

than that of culture and cPCR (Table 4.7 and 4.12). 

 Serogroup O103 

Sensitivity analyses indicated comparable data fit regardless of prior specification of the 

competing models (Table 4.8). Bayesian p-values for all models examined were in the range 0.57 

– 0.66, indicating no evidence for lack of fit of any of the models.  The DIC difference between 

CM and any of the sensitivity analysis models examined was smaller than 4 units, while their 

LPML difference was smaller than 0.3 units, indicating no evidence for substantial differences in 

fit across models. Diagnostic sensitivity of cPCR and mqPCR methods showed posterior 

medians and 95% HPDI of comparable ranges across the models considered (Table 4.8). In 

contrast, the posterior medians and corresponding 95% HPDI’s for diagnostic sensitivity of 

culture, specificity of cPCR, specificity of mqPCR and true prevalence of O103 showed 

susceptibility to prior specification across models. In particular, SM1 and SM2 showed the 

greatest posterior medians and lowest estimation precision, as indicated by the broader 95% 

HPDI, for sensitivity of culture. However, SM1 and SM2 also showed lowest posterior medians 

and estimation precisions for specificity of cPCR, specificity of mqPCR and true prevalence of 

O103, consistent with the more diffused priors specified on these models. The posterior 

distribution of specificity of mqPCR method appeared to be particularly sensitive to prior 

specification in SM1 and SM2 (Table 4.8). 

Based on the consensus prior specification for the selected best-fitting model, diagnostic 

sensitivity of mqPCR was higher than that of culture and cPCR for O103 (Table 4.8 and 4.12). 
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However, there was no evidence for difference in sensitivity of culture compared to cPCR, 

neither in specificity amongst the three methods.   

 Serogroup O111 

Sensitivity analyses indicated comparable data fit regardless of prior specification of the 

competing models (Table 4.9). Bayesian p-values for all models examined were in the range 0.65 

– 0.72, indicating no evidence for lack of fit of any of the models.  The DIC difference between 

CM and any of the sensitivity analysis models examined was smaller than 1 unit, while their 

LPML difference was smaller than 0.4 units, indicating no evidence for substantial differences in 

fit across models. The diagnostic specificity of cPCR and mqPCR methods, the true prevalence 

of O111 in the study population showed posterior medians and 95% HPDI of comparable 

numerical magnitude across all models, thereby indicating robust inference to prior specification. 

However, diagnostic sensitivity for all three methods appeared to be highly sensitive to prior 

specification (Table 4.9).  

Based on the consensus prior specification for the selected best-fitting model, diagnostic 

sensitivity of mqPCR was greater than that of culture for O111 (Table 4.9 and 4.12). However, 

there was no evidence for difference in sensitivity between culture and cPCR, or between cPCR 

and mqPCR, neither in diagnostic specificity amongst any of the three methods.   

 Serogroup O121 

Despite negative pD value and thus unreliable DIC for SM3, sensitivity analyses 

indicated comparable data fit of the remaining models regardless of prior specification (Table 

4.10). The Bayesian p-value indicated no problems of lack of fit and the LPML did not suggest 

substantial relative advantages for any of the remaining models. The DIC difference between 
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CM, SM1, and SM2 was smaller than 2 units, while their LPML difference was smaller than 1 

unit, indicating no evidence for substantial differences in fit across models. Diagnostic sensitivity 

of all three methods was highly susceptible to prior specification. Notably, posterior medians for 

sensitivity were smaller in magnitude and 95% HPDI were wider when models specified 

widened priors on diagnostic sensitivity. In turn, the diagnostic specificity of cPCR and mqPCR 

methods and the true prevalence of O121 in the study population showed robustness to prior 

specification, as their posterior medians and 95% HPDI were of comparable magnitude across 

CM, SM1 and SM2 (Table 4.10). 

Based on the consensus prior specification for the selected best-fitting model, diagnostic 

sensitivity of mqPCR was significantly higher than that of culture for O121 (Table 4.10 and 

4.12). However, there was no evidence for difference in sensitivity between culture and cPCR, or 

between cPCR and mqPCR. Specificity of culture was significantly higher than that of cPCR and 

mqPCR, and that of cPCR higher than mqPCR (Table 4.10 and 4.12).  

  Serogroup O145 

Model fit statistics obtained from the sensitivity analyses indicated that the different sets of 

priors examined yielded alternative models with comparable fit to the data (Table 4.11). 

Bayesian p-values for all models examined were in the range 0.40 – 0.55, indicating no evidence 

of lack of fit of any of the models.  The DIC difference between CM and any of the sensitivity 

analysis models examined was smaller than 2 units, while the LPML difference was smaller than 

0.7 units, indicating no evidence for substantial differences in fit across models. The diagnostic 

specificity of cPCR and mqPCR methods, the true prevalence of O145 in the study population 

showed posterior medians and 95% HPDI of comparable numerical magnitude across the models 
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considered. However, diagnostic sensitivity of all three methods was susceptible to prior 

specification, particularly notable in the widened 95% HPDI between models that assumed 

widened priors on diagnostic sensitivity (SM1 and SM3) versus those that did not (CM and 

SM2) (Table 4.11).   

Based on the consensus prior specification for the selected best-fitting model, diagnostic 

specificity of mqPCR was lower than that of culture and cPCR method for O145, though there 

was no evidence for method differences in sensitivity neither on specificity of culture and cPCR 

(Table 4.11 and 4.12). 

 Inference on dependence between diagnostic methods 

For serogroups O26 and O45, results indicated evidence of moderate to high conditional 

correlation between cPCR and mqPCR both amongst test positive samples [i.e., posterior mean = 

0.45 (95% HPDI: 0.30, 0.59) and 0.24 (95% HPDI: 0.06, 0.40), respectively] and amongst test 

negative samples [i.e., posterior mean = 0.71 (95% HPDI: 0.30, 0.99) and 0.23 (95% HPDI: 

0.05, 0.36) respectively], as the 95% HPDI of the corresponding correlation coefficient did not 

include the null value of zero in either case. Similarly, for samples testing positive for serogroup 

O103, there was evidence of conditional correlation between cPCR and mqPCR [i.e., posterior 

mean = 0.27 (95% HPDI: 0.19, 0.34)] and between culture and cPCR [i.e., posterior mean = 0.18 

(95% HPDI: 0.08, 0.28]. For serogroup O111, O121, and O145, there was also evidence of 

conditional correlation between cPCR and mqPCR amongst test negative samples [i.e., posterior 

mean = 0.85 (95% HPDI: 0.59, 0.99), 0.44 (95% HPDI: 0.39, 0.50), and 0.31 (95% HPDI: 0.04, 

0.53), respectively]. No evidence of any additional pairwise conditional dependence was 
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apparent amongst test positive as well as test negative samples, as the 95% HPDI for the 

corresponding conditional correlations included zero.  

 Discussion 

In this study, we report Bayesian estimates for diagnostic sensitivity and specificity of 

culture, cPCR, and mqPCR methods for detection of the six major non-O157 serogroups in feces 

of finishing feedlot cattle, and for true prevalence of each serogroup in the absence of a gold 

standard. Our modeling approach is based on latent class analysis implemented on a Bayesian 

framework (Branscum et al., 2005) and allows for assessment of diagnostic performance in the 

absence of a gold standard. Further, our Bayesian implementation strengthens inference by 

recognizing correlations in the diagnostic performance of the methods based on the partial 

overlap of their diagnostic mechanisms, as implemented in this study (Branscum et al., 2005). 

We explicitly acknowledge that this analysis focused on the detection of O serogroups and not 

specifically STEC.  The frequency of STEC positive samples (i.e., isolates with at least one 

Shiga toxin gene) was too low (range from 0.0% - 1.7%) in this dataset to support reasonable 

inference on diagnostic performance of detection methods for the six non-O157 STEC.   

In the absence of a gold standard, the Bayesian approach to estimating performance of 

diagnostic tests, as well as true prevalence of infection/disease using a combination of imperfect 

diagnostic tests, prevents biased estimations of disease burden and tests performance 

(Speybroeck et al., 2013). The inferential quality of the posterior estimates, however, depends on 

the availability and quality of prior knowledge specified in the model (Sanogo et al., 2014). 

Informative prior knowledge, when available, can be elicited from relevant historical data 

(published values from previous similar studies) or from subject-matter expert opinion. The 
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combination of prior knowledge and data likelihood in the Bayesian model provides the best 

possible parameter estimates of in realistic settings (Sanogo et al., 2014). Where conditional 

correlation existed among tests, such as when combined tests target a similar biological 

phenomenon, Bayesian estimation methods allow for the estimation of the test parameters while 

accounting for such conditional dependence amongst tests. In turn, Bayesian estimation requires 

sensitivity analyses to evaluate robustness of posterior inference to prior information by using 

alternative prior distributions. The Bayesian estimation method provides an alternative approach 

for generating unbiased accurate estimates for performance of tests, as well as generating 

estimates of true pathogen prevalence in animal populations. This information is a critical 

requirement for microbial risk assessment of non-O157 STEC in the beef production chain.  

In this study, we targeted inference that relied heavily on prior elicitation from consensus 

of opinions elicited from three subject-matter experts. Elicitation of expert-opinion in this 

manner has been described to represent reasonable prior knowledge that reflects uncertainty 

about the parameters of interest (Garabed et al., 2009; Christensen et al., 2011). Based on 

procurable data, the results from this study represent the best estimates available at the moment 

for diagnostic performance for the three methods evaluated for the detection of the six non-O157 

serogroups in cattle feces. Keeping with the idea of Bayesian learning, these estimates of 

diagnostic performance can be further improved as more data becomes available. In particular, 

our consensus-based posterior estimates for diagnostic sensitivity of mqPCR were greater than 

those of cPCR and culture for O26, O45, and O103 serogroups, whereas the sensitivity estimates 

of mqPCR were greater than those of culture but not distinguishable from those of cPCR for 

O111 and O121 serogroups. Finally, sensitivity estimates were of comparable magnitude for the 

three methods for O145 serogroup. Also, based on the consensus model, the posterior estimate of 
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sensitivity of cPCR was higher than that of culture for serogroup O26, but not for serogroups 

O45, O103, O111, O121, and O145. There was no evidence of difference in diagnostic 

specificity among the three methods for serogroups O26, O103, and O111, nor between culture 

and cPCR for O45 and O145. However, there was significant difference in specificity of the 

three methods for the O121 serogroup and between culture and mqPCR, cPCR and mqPCR for 

serogroups O45 and O145. 

Previous studies have suggested differences in diagnostic performance among the 

detection methods as illustrated by disagreement in test results (Cernicchiaro et al., 2013; Noll et 

al., 2015; Shridhar et al., 2016). Shridhar et al. (2016) reported disagreement between the 

proportion of positive samples detected by mqPCR, cPCR, and the culture method applied to 

common enrichments based on a McNemar’s test from a study that applied the three methods for 

the detection of the six non-O157 E. coli serogroups in cattle feces. They found cPCR to be less 

sensitive than mqPCR. Cernicchiaro et al. (2013) and Noll et al. (2015) in separate studies 

reported only fair to no agreement between cPCR and culture-based results for detection of O26, 

O45, O103, and O111 serogroups. Our study provides quantitative estimates (posterior medians 

and their 95% HPDIs) for the sensitivity and specificity of each detection method for O26, O45, 

O111, O103, O121, and O145 serogroups in cattle feces.   

Based on the consensus model, the posterior median true prevalence was high for 

serogroups O26 (54.3%), O45 (26.3%), and O103 (85.5%), but low for serogroups O111 (0.3%), 

O121 (3.9%), and O145 (1.8%). This pattern is consistent with the estimates of apparent 

prevalence reported by previous studies. Cernicchiaro et al. (2013), using multiplex PCR and a 

culture procedure that involved IMS, found serogroups O26 (23.4%), O121 (16.4%), and O103 

(11.8%) to be the most frequently detected non-O157 serogroups in feces of cattle from a 
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commercial feedlot operation in the central United States. Similarly, Dargatz et al. (2013) 

investigated the apparent prevalence of the six major non-O157 serogroups from bovine pooled 

fecal samples from 21 feedlots in four U.S. states using a multiplex PCR method and reported 

apparent prevalence of 13.8%, 9.9%, 9.3%, 5.5%, 1.1%, and 0.5% for O45, O26, O103, O121, 

O145, and O111 serogroups, respectively. Also, from studies conducted during summer and 

winter months at a large commercial feedlot in the central United States, Dewsbury et al. (2015) 

used the culture-based method and found serogroups O26 and O103 to be the most commonly 

identified non-O157 E. coli during the summer and serogroups O26, O45, and O103 in the 

winter.  

Sensitivity analysis on prior specifications allowed us to assess the robustness of our 

posterior inference on diagnostic test performance to the priors elicited from expert consensus. 

For serogroups O26 and O45, the posterior distributions of true prevalence, sensitivity of the 

three detection methods, and specificity of cPCR and mqPCR overlapped substantially across the 

competing models considered regardless of consensus or widened priors, thus suggesting robust 

inference to prior specification, particularly for O26. For O103, the posterior distributions of true 

prevalence, sensitivity of the three detection methods, and specificity of cPCR also overlapped 

substantially across the competing models considered regardless of consensus or widened priors, 

thus suggesting relatively robust inference to prior specification. However, inference on 

specificity of mqPCR showed considerable sensitivity to prior specification, as indicated by a 

markedly decreased posterior median and wider 95% HPDI when widened priors were used for 

specificity of cPCR and mqPCR. This result is consistent with the fact that few samples tested 

negative for O103 using mqPCR, thereby indicating limited information available in the data for 

mqPCR specificity such that the influence of the prior was substantial. 
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For O111, O121, and O145 serogroups, the posterior distributions of true prevalence, and 

the specificity of cPCR and mqPCR overlapped substantially across the competing models 

considered, thus suggesting robust inference to prior specification. Yet, inference on sensitivity 

of the three methods showed considerable sensitivity to prior specification, as indicated by 

decreased posterior median and wider 95% HPDI when widened priors were used for sensitivity 

of culture, cPCR and mqPCR. For these serogroups, susceptibility to prior specification is to be 

expected as only few samples tested positive by one or more methods, thereby indicating limited 

available information in the data to make precise inference for sensitivity of the methods. In turn, 

for these serogroups, posterior estimates were largely dependent on expert-derived priors.  

Regarding model comparison, the fit statistics considered in this study (i.e. DIC, LPML or 

Bayesian p-value) showed little, if any, power to discriminate fit across competing models. This 

was despite the evident differences in posterior inference due to sensitivity to prior specification.   

The three diagnostic methods considered here involve amplification of specific gene 

targets in individual non-O157 serogroups, though they differ in sample preparation, reaction 

chemistry and post-PCR analyses. As a result, a substantial increase in sensitivity of mqPCR 

over cPCR (Biassoni and Raso, 2014), and cPCR and mqPCR over culture, was expected, as 

only samples with viable colonies on the Posse´ medium were tested by the PCR method. 

Altogether, it is sensible to consider potential correlations in the diagnostic performance of these 

methods. Indeed, we found evidence for conditional dependence between cPCR and mqPCR 

amongst test positive as well as test negative samples for O26 and O45 serogroups. For samples 

testing positive for serogroup O103, there was evidence of conditional dependence between 

cPCR and mqPCR and between culture and cPCR, but no evidence for any dependence amongst 

test negative samples. Fewer samples tested negative by the mqPCR methods compared to the 
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cPCR for O103 serogroup and this may be responsible for the lack of significant conditional 

dependence between the methods amongst test negative samples. Conversely, for samples testing 

negative to serogroups O111, O121, and O145, there was evidence of conditional dependence 

between cPCR and mqPCR. Generally, there were fewer test positive samples by both cPCR and 

mqPCR for serogroup O145 and almost no positives for O111. For O45, there were fewer tests 

positive samples by the cPCR compared to the mqPCR methods. The limited number of test 

positive samples in addition to differences in the number of test positive samples by the methods 

may be responsible for the lack of significant conditional dependence between the methods 

amongst test positive samples. The finding of conditional correlation between pairs of methods 

amongst the test positive and/or test negative samples support the a priori assumption of 

conditional dependence among the three methods. It is recommended that a conditional 

dependent model be considered when there is a moderate to high correlation between two or 

more tests (Georgiadis et al., 2003) as it may be possible to take advantage of the shared 

information between methods that is indicated by their correlation. Failure to account for 

correlation between tests can not only impairs precision of inference but it can also lead to a 

biased assessment on the diagnostic performance of the tests (Vacek, 1985). 

The diagnostic performance of the methods analyzed in this study represents the 

diagnostic sensitivity, specificity, as well as the true prevalence of each of the six O serogroups 

evaluated in the absence of the virulence genes. The presence of the virulence genes describes 

the pathogenicity of the isolate and its ability to cause human illnesses following exposure. 

Based on available data, the assessment of diagnostic sensitivity and specificity obtained from 

this study represent the best estimates of performance of these methods for the detection of six 

non-O157 serogroups in feces of naturally shedding commercial feedlot cattle.   
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 Conclusion 

This study evaluated the diagnostic performance of culture, cPCR, and mqPCR methods 

for the detection of the six major non-O157 E. coli serogroups in feces of feedlot cattle. Our 

analysis on data from test samples draws heavily from consensus knowledge carefully elicited 

from subject-matter experts. Evidence showed that mqPCR was the most sensitive detection 

method for the O26, O45, and O103 serogroups. The cPCR method was more sensitive than the 

culture method for serogroups O26, and O121, though their sensitivity was not distinguishable 

for serogroups O45, O103, O111, and O145. The cPCR method showed higher specificity than 

mqPCR within serogroups O45, O121, and O145 but no apparent differences within serogroups 

O26, O103, and O111. The posterior median true prevalence of the different non-O157 evaluated 

in the study varied by serogroup.  These results provide important estimates of test performance 

and also of true prevalence of the six major non-O157 E. coli in feces of feedlot cattle, which 

will be useful to make necessary adjustment for test error in risk modeling. 
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Table 4.1 - Elicitation of prior information on diagnostic performance of culture, conventional PCR (cPCR), and multiplex quantitative 
PCR (mqPCR) for detection of Escherichia coli O26, O45, and O103 in bovine feces  

Serogroup Source Variable Culture   Conventional PCR    Multiplex quantitative PCR 

 
  

Most likely 5th percentile 
 

Most likely 5th percentile   Most likely 5th percentile 
O26; O45 Expert consensus Sensitivity 0.60 0.40 

 
0.75 0.52 

 
0.87 0.67 

   Specificity    0.94 0.80  0.97 0.85 
 Sensitivity model 1 Sensitivity 0.60 0.20  0.60 0.26  0.70 0.34 
   Specificity    0.90 0.40  0.95 0.43 

 Sensitivity model 2 Sensitivity 0.60 0.40  0.75 0.52  0.87 0.67 
  Specificity    0.90 0.40  0.95 0.43 

 Sensitivity model 3 Sensitivity 0.60 0.20  0.60 0.26  0.70 0.34 
  Specificity    0.94 0.80  0.97 0.85 

O103 Expert consensus Sensitivity 0.65 0.40  0.78 0.53  0.93 0.73 
   Specificity 

   
0.95 0.83 

 
0.98 0.88 

 Sensitivity model 1 Sensitivity 0.60 0.20  0.70 0.27  0.90 0.37 
   Specificity    0.90 0.42  0.95 0.44 
 Sensitivity model 2 Sensitivity 0.65 0.40  0.78 0.53  0.93 0.73 
  Specificity    0.90 0.42  0.95 0.44 
 Sensitivity model 3 Sensitivity 0.60 0.20  0.70 0.27  0.90 0.37 
  Specificity    0.95 0.83  0.98 0.88 

Sensitivity model 1 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR, and specificity of cPCR and mqPCR; Sensitivity model 2 used the lowest most likely value of the three experts prior, and 
halved consensus prior 5th percentile for specificity of cPCR and mqPCR but consensus priors for sensitivity of culture, cPCR, and mqPCR; 
Sensitivity model 3 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR but consensus priors for specificity of cPCR and mqPCR. 
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Table 4.2 - Elicitation of prior information on diagnostic performance of culture, conventional PCR (cPCR), and multiplex quantitative 
PCR (mqPCR) for detection of Escherichia coli O111, O121, and O145 in bovine feces  

Serogroup Source Variable Culture   Conventional PCR    Multiplex quantitative PCR 

 
  

Most likely 5th percentile 
 

Most likely 5th percentile   Most likely 5th percentile 
O111; O121 Expert consensus Sensitivity 0.50 0.35 

 
0.72 0.47 

 
0.83 0.65 

   Specificity    0.92 0.77  0.95 0.82 
 Sensitivity model 1 Sensitivity 0.40 0.18  0.50 0.24  0.60 0.33 
   Specificity    0.90 0.38  0.90 0.41 

 Sensitivity model 2 Sensitivity 0.50 0.35  0.72 0.47  0.83 0.65 
  Specificity    0.90 0.38  0.90 0.41 

 Sensitivity model 3 Sensitivity 0.40 0.18  0.50 0.24  0.60 0.33 
  Specificity    0.92 0.77  0.95 0.82 

O145 Expert consensus Sensitivity 0.70 0.50  0.75 0.52  0.87 0.67 
   Specificity 

   
0.93 0.80 

 
0.97 0.85 

 Sensitivity model 1 Sensitivity 0.60 0.25  0.60 0.26  0.70 0.34 
   Specificity    0.90 0.40  0.95 0.43 
 Sensitivity model 2 Sensitivity 0.70 0.50  0.75 0.52  0.87 0.67 
  Specificity    0.90 0.40  0.95 0.43 
 Sensitivity model 3 Sensitivity 0.60 0.25  0.60 0.26  0.70 0.34 
  Specificity    0.93 0.80  0.97 0.85 

Sensitivity model 1 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR, and specificity of cPCR and mqPCR; Sensitivity model 2 used the lowest most likely value of the three experts prior, and 
halved consensus prior 5th percentile for specificity of cPCR and mqPCR but consensus priors for sensitivity of culture, cPCR, and mqPCR; 
Sensitivity model 3 used the lowest most likely value of the three experts prior, and halved consensus prior 5th percentile for sensitivity of culture, 
cPCR, and mqPCR but consensus priors for specificity of cPCR and mqPCR. 
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Table 4.3 - Prior information elicited, and corresponding beta distributions, for prevalence of each 
of the six non-O157 Escherichia coli serogroups in bovine feces  

Serogroup Prior prevalence  Prior beta distribution 
 Most likely 95th percentile  a b 

O26 0.19 0.40  3.99 13.78 
O45 0.10 0.30  2.56 15.03 

O103 0.12 0.40  2.11 9.10 

O111 0.02 0.20  1.30 15.80 
O121 0.07 0.30  1.84 12.17 
O145 0.02 0.20  1.30 15.80 
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Table 4.4 - Frequency table of detection results* based on culture, conventional PCR (cPCR), and 
multiplex quantitative PCR (mqPCR) for the six non-O157 Escherichia coli serogroups in bovine 
feces  

Diagnostic test result  Serogroup 

Culture Conventional 
PCR 

Multiplex 
quantitative PCR 

 O26 O45 O103 O111 O121 O145 

+ + +  86 46 243 0 10 7 
+ + –  0 0 0 0 0 0 
+ – +  29 40 89 0 2 2 
+ – –  16 10 15 1 1 8 

– + +  170 57 83 4 122 4 

– + –  0 0 0 0 0 0 
– – +  55 179 73 0 199 21 

– – –  220 244 73 571 242 534 
+: Positive; –: Negative 
*Out of a total of 576 samples 
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Table 4.5 - Model fit statistics for competing Bayesian models to estimate true prevalence, sensitivity and specificity of culture, 
conventional PCR, and multiplex quantitative PCR for the detection of E. coli O26, O45, O103, O111, O121, and O145 in bovine feces 

Competing models accommodate Serogroup O26  Serogroup O45 
 DIC LPML pD Bayesp  DIC LPML pD Bayesp 
Pairwise conditional dependence (CD) amongst all methods 40.96 -863.06 3.58 0.87  40.79 -821.41 3.54 0.74 
CD between CUL and cPCR, and between CUL and mqPCR 51.79 -867.96 4.56 0.89  47.50 -824.93 3.27 0.81 
CD between CUL and cPCR, and between cPCR and mqPCR 40.78 -863.07 3.31 0.65  40.92 -821.43 3.63 0.67 
CD between CUL and mqPCR, and between cPCR and mqPCR 39.54 -862.66 2.46 0.84  40.88 -821.33 3.66 0.68 
CD between CUL and cPCR 51.56 -867.82 4.55 0.89  47.73 -824.94 3.34 0.82 
CD between cPCR and mqPCR 39.73 -862.56 2.62 0.55  40.72 -821.21 3.61 0.58 
CD between CUL and mqPCR 52.18 -868.07 4.13 0.90  49.13 -825.10 4.39 0.82 
 Serogroup O103  Serogroup O111 
 DIC LPML pD Bayesp  DIC LPML pD Bayesp 
Pairwise conditional dependence (CD) amongst all methods 42.78 -900.3 4.56 0.78  15.86 -36.75 1.08 0.76 
CD between CUL and cPCR, and between CUL and mqPCR 60.90 -909.59 4.22 0.99  26.39 -42.01 1.49 0.86 
CD between CUL and cPCR, and between cPCR and mqPCR 42.66 -900.25 4.52 0.65  16.13 -36.80 1.00 0.72 
CD between CUL and mqPCR, and between cPCR and mqPCR 47.33 -902.81 4.31 0.91  15.81 -36.64 0.97 0.71 
CD between CUL and cPCR 60.98 -909.38 4.56 0.99  27.15 -42.32 1.43 0.88 
CD between cPCR and mqPCR 47.30 -902.81 4.23 0.81  16.48 -36.92 0.78 0.59 
CD between CUL and mqPCR 59.39 -908.71 4.39 0.98  27.69 -42.57 1.43 0.89 
 Serogroup O121  Serogroup O145   
 DIC LPML pD Bayesp  DIC LPML pD Bayesp 
Pairwise conditional dependence (CD) amongst all methods 34.82 -676.12 3.04 0.67  30.37 -212.48 3.87 0.60 
CD between CUL and cPCR, and between CUL and mqPCR 51.16 -684.30 2.92 0.95  34.36 -214.40 3.84 0.66 
CD between CUL and cPCR, and between cPCR and mqPCR 34.81 -675.99 2.94 0.67  30.17 -212.36 3.79 0.61 
CD between CUL and mqPCR, and between cPCR and mqPCR 35.68 -676.44 2.79 0.70  30.62 -212.54 3.65 0.56 
CD between CUL and cPCR 50.41 -683.82 2.81 0.95  33.80 -214.10 3.77 0.63 
CD between cPCR and mqPCR 35.45 -676.23 2.66 0.65  29.96 -212.17 3.49 0.48 
CD between CUL and mqPCR 50.75 -683.60 3.08 0.95  34.34 -214.32 3.56 0.66 
CUL; Culture; cPCR: Conventional PCR; mqPCR: multiplex quantitative PCR; DIC: Deviance Information Criterion; LPML: Log Pseudo 
Marginal Likelihood; pD: the number of parameters effectively estimated by a model; Bayesp: Bayesian p-value 
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Table 4.6 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O26 in bovine feces  

 
 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.55 2.62 39.73 –862.56 58.5 (50.1, 65.8)   
 Culture      38.0 (31.8, 44.7) 98.4 (96.4, 99.7) 
 cPCR      70.1 (63.3, 76.9) 94.0 (85.1, 99.7) 
 mqPCR      91.2 (85.5, 96.5) 89.7 (78.8, 98.0) 
         
SM1 Widened prior for Se & Sp 0.53 0.18 37.01 –862.79 33.2 (20.8, 51.9) 

  

 Culture 
   

 
 

64.6 (38.8, 91.8) 98.6 (96.7, 99.8) 
 cPCR 

   
 

 
66.7 (58.2, 75.0) 67.6 (58.9, 81.9) 

 mqPCR 
   

 
 

89.1 (82.7, 95.3) 57.2 (47.1, 75.3) 
 

    
 

   

SM2 CP for Se; Widened for Sp   0.52 1.76 38.45 –862.66 35.4 (24.4, 50.0) 
  

 Culture 
   

 
 

60.4 (41.7, 79.1) 98.5 (96.6, 99.8) 
 cPCR 

   
 

 
68.2 (60.0, 76.0) 68.9 (60.9, 80.7) 

 mqPCR 
   

 
 

90.1 (84.1, 95.6) 59.0 (49.4, 73.4) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.53 2.82 39.61 –862.43 59.7 (51.6, 66.8) 
  

 Culture 
   

 
 

36.5 (30.5, 42.9) 98.5 (96.6, 99.8) 
 cPCR 

   
 

 
68.9 (61.9, 75.8) 94.7 (86.4, 99.7) 

 mqPCR 
   

 
 

90.2 (83.9, 96.2) 90.9 (80.7, 98.4) 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by a model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood  



153 

 

Table 4.7 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O45 in bovine feces 

 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.58 3.61 40.72 –821.21 28.9 (20.2, 37.2)   
 Culture      53.3 (40.3, 69.5) 98.5 (96.8, 99.7) 
 cPCR      53.5 (43.2, 63.8) 96.4 (91.9, 99.7) 
 mqPCR      93.2 (87.3, 98.5) 62.2 (54.9, 69.3) 
         
SM1 Widened prior for Se & Sp 0.52 2.89 39.03 –820.87 24.8 (14.9, 36.2) 

  

 Culture 
   

 
 

61.6 (40.3, 90.8) 98.6 (96.9, 99.8) 
 cPCR 

   
 

 
51.5 (40.9, 62.2) 93.3 (81.1, 99.9) 

 mqPCR 
   

 
 

91.8 (84.8, 98.4) 56.9 (49.2, 66.4) 
 

    
 

   

SM2 CP for Se; Widened for Sp  0.53 3.41 39.71 –820.85 26.0 (17.5, 35.1) 
  

 Culture 
   

 
 

58.3 (42.7, 77.6) 98.4 (96.7, 99.7) 
 cPCR 

   
 

 
54.7 (44.6, 65.1) 94.7 (89.7, 99.9) 

 mqPCR 
   

 
 

92.7 (86.6, 98.4) 57.9 (50.7, 65.6) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.59 3.60 40.91 –821.44 30.8 (19.7, 40.8) 
  

 Culture 
   

 
 

49.9 (35.2, 71.5) 98.6 (96.9, 99.7) 
 cPCR 

   
 

 
49.8 (38.9, 60.7) 96.7 (91.5, 99.8) 

 mqPCR 
   

 
 

92.5 (85.9, 98.8) 63.4 (54.6, 72.0) 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by a model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood 
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Table 4.8 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O103 in bovine feces 

 
 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.65 4.52 42.66 –900.25 85.8 (81.7, 89.4)   
 Culture      69.2 (64.7, 73.6) 98.7 (96.8, 99.8) 
 cPCR      64.8 (60.2, 69.3) 96.4 (90.6, 99.7) 
 mqPCR      95.7 (93.5, 97.7) 92.3 (80.4, 99.7) 
         
SM1 Widened prior for Se & Sp 0.58 1.39 39.04 –900.08 72.0 (59.8, 82.4) 

  

 Culture 
   

 
 

81.8 (71.2, 96.4) 98.6 (96.8, 99.8) 
 cPCR 

   
 

 
70.5 (61.9, 77.4) 82.9 (60.9, 99.9) 

 mqPCR 
   

 
 

95.7 (93.3, 97.8) 47.0 (30.2, 68.6) 
 

    
 

   

SM2 CP for Se; Widened for Sp   0.57 2.92 40.48 –899.99 73.9 (64.2, 83.4) 
  

 Culture 
   

 
 

79.5 (70.2, 90.0) 98.6 (96.8, 99.8) 
 cPCR 

   
 

 
71.3 (62.6, 78.1) 89.7 (64.0, 99.9) 

 mqPCR 
   

 
 

95.8 (93.5, 97.7) 50.2 (34.0, 71.2) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.66 4.58 42.75 –900.29 85.8 (81.8, 89.4) 
  

 Culture 
   

 
 

69.2 (64.7, 73.6) 98.6 (96.7, 99.8) 
 cPCR 

   
 

 
64.5 (59.9, 69.0) 96.3 (90.6, 99.7) 

 mqPCR 
   

 
 

95.8 (93.4, 97.7) 92.4 (80.8, 99.7) 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by a model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood 
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Table 4.9 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O111 in bovine feces 

 
 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.71 0.97 15.81 –36.64 0.24 (0.00, 0.84)   
 Culture      49.3 (31.2, 66.6) 99.2 (98.4, 99.8) 
 cPCR      70.3 (46.1, 90.9) 98.8 (97.8, 99.6) 
 mqPCR      80.8 (63.8, 94.5) 98.8 (97.9, 99.6) 
         
SM1 Widened prior for Se & Sp 0.65 0.99 14.91 –36.25 0.29 (0.00, 1.12) 

  

 Culture 
   

 
 

38.8 (11.8, 68.8) 99.3 (98.6, 99.8) 
 cPCR 

   
 

 
50.9 (19.7, 79.4) 99.2 (98.2, 99.8) 

 mqPCR 
   

 
 

57.9 (29.1, 85.1) 99.1 (98.2, 99.8) 
 

    
 

   

SM2 CP for Se; Widened for Sp   0.66 1.19 15.22 –36.44 0.28 (0.00, 0.99) 
  

 Culture 
   

 
 

48.7 (31.0, 66.3) 99.3 (98.5, 99.8) 
 cPCR 

   
 

 
70.7 (46.4, 91.5) 99.1 (98.2, 99.9) 

 mqPCR 
   

 
 

81.0 (64.3, 95.1) 99.1 (98.2, 99.9) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.72 0.84 15.90 –36.68 0.26 (0.00, 0.97) 
  

 Culture 
   

 
 

39.9 (12.3, 69.9) 99.3 (98.4, 99.8) 
 cPCR 

   
 

 
49.6 (19.1, 79.1) 98.8 (97.8, 99.5) 

 mqPCR 
   

 
 

57.2 (27.9, 84.0) 98.8 (97.8, 99.5) 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by a model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood 
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Table 4.10 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O121 in bovine feces 

 
 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.67 2.94 34.81 –675.99 3.87 (0.81, 8.09)   
 Culture      47.2 (28.6, 65.8) 99.1 (97.9, 99.8) 
 cPCR      71.8 (48.3, 90.6) 80.4 (76.5, 84.3) 
 mqPCR      87.7 (75.4, 97.0) 46.2 (41.9, 50.6) 
         
SM1 Widened prior for Se & Sp 0.70 1.59 33.26 –675.97 3.72 (0.05, 11.1) 

  

 Culture 
   

 
 

36.9 (10.5, 66.7) 98.7 (97.4, 99.8) 
 cPCR 

   
 

 
48.6 (19.5, 77.3) 78.4 (74.1, 82.6) 

 mqPCR 
   

 
 

75.8 (51.6, 94.2) 43.7 (39.2, 48.5) 
 

    
 

   

SM2 CP for Se; Widened for Sp  0.58 3.16 33.34 –675.16 3.33 (0.64, 6.68) 
  

 Culture 
   

 
 

49.2 (31.7, 67.2) 98.9 (97.7, 99.8) 
 cPCR 

   
 

 
70.6 (46.9, 90.0) 78.8 (74.9, 82.5) 

 mqPCR 
   

 
 

87.0 (74.2, 96.7) 43.8 (39.5, 48.0) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.69 –28.35 . –676.32 – 
  

 Culture 
   

 
 

– – 
 cPCR 

   
 

 
– – 

 mqPCR 
   

 
 

– – 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by a model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood 
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Table 4.11 - Model fit statistics and posterior inference (i.e. posterior median and 95% HPDI) on prevalence, sensitivity and specificity of 
culture, conventional PCR, and multiplex quantitative PCR based on consensus prior model and its sensitivity analysis for the detection of 
E. coli O145 in bovine feces 

 
 
Prior 
set 

Models and Tests Bayesp pD DIC LPML Prevalence  
(95% HPDI) 

Sensitivity  
(95% HPDI) 

Specificity  
(95% HPDI) 

CM Consensus prior (CP) for Se & Sp 0.48 3.49 29.96 –212.17 2.24 (0.95, 3.83)   
 Culture      71.9 (53.9, 88.2) 98.7 (97.7, 99.4) 
 cPCR      71.9 (53.4, 88.5) 99.2 (98.3, 99.9) 
 mqPCR      87.2 (73.0, 98.0) 95.7 (93.8, 97.3) 
         
SM1 Widened prior for Se & Sp 0.47 3.60 29.69 –212.18 2.69 (1.10, 4.71) 

  

 Culture 
   

 
 

66.5 (40.8, 90.9) 98.8 (97.9, 99.6) 
 cPCR 

   
 

 
61.7 (37.1, 85.1) 99.6 (98.8, 99.9) 

 mqPCR 
   

 
 

78.4 (54.8, 97.4) 95.9 (94.1, 97.6) 
 

    
 

   

SM2 CP for Se; Widened for Sp  0.40 3.52 28.67 –211.53 2.39 (1.04, 4.02) 
  

 Culture 
   

 
 

70.1 (52.1, 86.6) 98.7 (97.7, 99.4) 
 cPCR 

   
 

 
72.3 (54.0, 88.6) 99.6 (98.8, 99.9) 

 mqPCR 
   

 
 

87.4 (73.2, 97.8) 95.9 (94.0, 97.5) 
 

    
 

   

SM3 CP for Sp; Widened for Se 0.55 3.57 31.02 –212.83 2.51 (0.99, 4.46) 
  

 Culture 
   

 
 

70.3 (44.6, 93.9) 98.8 (97.8, 99.6) 
 cPCR 

   
 

 
61.2 (35.9, 84.6) 99.2 (98.3, 99.9) 

 mqPCR 
   

 
 

77.9 (54.1, 97.4) 95.7 (93.8, 97.4) 

CM: Consensus model; SM: Sensitivity analysis model; Se: Sensitivity; Sp: Specificity; cPCR: Conventional PCR; mqPCR: multiplex quantitative 
PCR; Bayesp: Bayesian p-value; pD: the number of parameters effectively estimated by the model; DIC: Deviance Information Criterion; LPML: 
Log Pseudo Marginal Likelihood 
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Table 4.12 - Posterior inference on the difference between detection methods on diagnostic 
sensitivity and specificity of E. coli O26, O45, O103, O111, O121, and O145 in bovine feces 

 
Serogroup Method comparison 95% HPDI of Difference  
  Sensitivity Specificity 
O26 Culture vs. cPCR –0.41, –0.23 –0.02, 0.14 
 Culture vs. mqPCR –0.61, –0.45 –0.00, 0.20 
 cPCR vs mqPCR –0.27, –0.15 –0.01, 0.10 
    
O45 Culture vs. cPCR –0.15, 0.17 –0.02, 0.07 
 Culture vs. mqPCR –0.54, –0.23 0.29, 0.44 
 cPCR vs mqPCR –0.50, –0.30 0.28, 0.40 
    
O103 Culture vs. cPCR –0.01, 0.10 –0.02, 0.09 
 Culture vs. mqPCR –0.31, –0.22 –0.02, 0.19 
 cPCR vs mqPCR –0.35, –0.27 –0.04, 0.16 
    
O111 Culture vs. cPCR –0.50, 0.09 –0.01, 0.02 
 Culture vs. mqPCR –0.54, –0.06 –0.01, 0.02 
 cPCR vs mqPCR –0.39, 0.17 –0.01, 0.01 
    
O121 Culture vs. cPCR –0.52, 0.07 0.15, 0.22 
 Culture vs. mqPCR –0.62, –0.17 0.48, 0.57 
 cPCR vs mqPCR –0.41, 0.05 0.30, 0.38 
    
O145 Culture vs. cPCR –0.24, 0.25 –0.02, 0.01 
 Culture vs. mqPCR –0.37, 0.07 0.01, 0.05 
 cPCR vs mqPCR –0.36, 0.05 0.02, 0.05 
* Two detection methods were considered to differ in either sensitivity or specificity if the corresponding 
95% HPDI on their pairwise differences did not include the null value zero 
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 Abstract 

A quantitative microbial risk assessment (QMRA) model was developed to estimate the 

prevalence and concentration of enterohemorrhagic Escherichia coli strains O26, O45, O103, 

O111, O121, O145, and O157, collectively known as “EHEC-7”, on pre-evisceration beef 

carcasses processed in the United States. We derived probability distributions for the true 

prevalence and concentration of EHEC-7 in feces of harvest-ready cattle in the U.S, and model 

the impact of peri-harvest interventions on the prevalence and concentration of EHEC-7 on pre-

evisceration beef carcass. The model incorporated data from targeted research, simulation, and 

from systematic review and meta-analysis of published literature. A second order Monte Carlo 

simulation model, programmed in R 3.2.2, accounting for variability and uncertainty in fecal 

concentrations of EHEC-7, was used to generate prevalence and concentration of EHEC-7 on 
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cattle hides and carcasses at harvest. Impact of on-farm control measures (vaccination and direct-

fed microbials), in-plant animal/hide wash interventions, fecal-to-hide transfer, and hide-to-

carcass transfer on the prevalence and concentration of EHEC-7 on pre-evisceration beef 

carcasses were evaluated. Each model run was based on 5,000,000 variability iterations and 100 

uncertainty iterations for a total of 500,000,000 simulated results for each scenario. The model-

estimated median prevalence of EHEC O26, O45, O103, O111, O121, O145, and O157 on pre-

evisceration carcasses from fed beef during summer was 0.16% (95% PI: 0.02–0.50%), 0.04% 

(0.01, 0.14%), 0.21% (0.03, 0.59%), 0.09% (0.02, 0.24%), 0.03% (0.01, 0.06%), 0.10% (0.05, 

0.16%), and 5.05% (0.27, 23.87%), respectively. The estimated median concentration (for 

positive and negative samples) of EHEC O26, O45, O103, O111, O121, O145, and O157 was    

–11.16 log10 CFU/100cm2 (95% PI: –17.87, –4.41), –12.53 log10 CFU/100cm2 (95% PI: –19.24, 

–5.81), –10.85 log10 CFU/100cm2 (95% PI: –17.73, –4.01), –14.13 log10 CFU/100cm2 (95% PI: 

–22.57, –5.82), –17.15 log10 CFU/100cm2 (95% PI: –26.59, –7.82), –14.49 log10 CFU/100cm2 

(95% PI: –23.07, –5.72), and –7.80 log10 CFU/100cm2 (95% PI: –14.75, –0.64), respectively. 

Implementation of a full peri-harvest intervention scenario (46% of fed beef vaccinated, 54% fed 

diet containing direct-fed microbials, and 100% of cattle processed at the large plants had hide 

wash prior to hide removal) resulted in 51% to 72% reduction in estimated median prevalence of 

EHEC-7 on beef carcasses and 1.4 to 2.8 log10 CFU/100cm2 reduction in estimated median 

concentration of EHEC-7 compared to the no intervention scenario. Sensitivity analysis indicated 

that fecal-to-hide transfer and hide-to-carcass transfer factors significantly affected prevalence 

and concentration of EHEC-7 on beef carcasses. The outputs from the study serve as input 

variables for the post-harvest, retail, and consumer phases of the quantitative risk assessment of 

the probability of human illness from consumption of beef products contaminated with EHEC-7 

in the United States. 
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 Introduction 

Enterohemorrhagic Escherichia coli strains O26, O45, O103, O111, O121, O145, and 

O157, collectively known as “top seven EHEC”, are important foodborne pathogens associated 

with severe illnesses such as bloody diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, 

and death in the United States (Centers for Disease Control and Prevention, 1993), especially in 

children, the elderly, and immunocompromised individuals. Cattle are a major reservoir of Shiga 

toxin-producing Escherichia coli (STEC) strains, of which EHEC are a pathogenic subset. 

Transmission to humans may occur through contaminated food, water, environment, or person-

to-person contact. In the United States, 73,890 bacterial associated foodborne disease outbreaks 

were reported from 1998 to 2008 with 4,844 (6.65%) outbreaks attributable to E. coli O157 

STEC and 37 (0.05%) to non-O157 STEC (Painter et al., 2013). Of the estimated 3,645,773 

bacterial associated foodborne illnesses recorded during the period, 63,153 (1.73%) were due to 

O157 STEC and 112,752 (3.09%) were due to non-O157 STEC. Of the estimated 35,797 

hospitalizations, 2,138 (5.97%) were due to O157 STEC and 271 (0.76%) were due to non-O157 

STEC; while 20 (2.32%) of the estimated 862 deaths were due to O157 STEC and 1 (0.12%) was 

due to non-O157 STEC. In the same study, 103 of 186 (55.3%) foodborne disease outbreaks 

caused by O157 STEC were attributable to beef and 59 (31.7%) to leafy vegetables; of 6 

outbreaks caused by non-O157 STEC, an equal proportion of outbreaks (50.0%) were 

attributable to beef and plant-based produce. 
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The beef industry in the United States is significantly impacted by STEC with billions of 

dollars spent by the industry to combat STEC in the beef production chain (Kay, 2003). Cattle 

shed STEC in their feces, which contaminates the environment and cattle hides (Jacob et al., 

2010). Contamination of carcass surfaces may occur from transfer of fecal material from the hide 

during the process of hide removal at slaughter (Arthur et al., 2010; Greig et al., 2012; Moxley 

and Acuff, 2014), leading to contamination of beef products further down the production line. 

Evidence of significant positive correlation exists for the prevalence and levels of E. coli O157 in 

feces, on hides, and carcasses within lots of cattle slaughtered in the U.S. (Elder et al., 2000; 

Barkocy-Gallagher et al., 2001; Arthur et al., 2004). Since the devastating E. coli O157:H7 

outbreak associated with the consumption of contaminated undercooked hamburgers in the U.S. 

in 1993, efforts have been made to ensure better meat safety and the protection of public health. 

These efforts include the application of pre-harvest interventions focused on reducing EHEC 

fecal shedding and concentration on hides of live cattle (LeJeune and Wetzel, 2007; Callaway et 

al., 2013), application of multi-hurdle intervention strategies focused at reducing carcass 

contamination and the decontamination of carcasses during the slaughtering process 

(Koohmaraie et al., 2005; Moxley and Acuff, 2014; Wheeler et al., 2014), and the testing of final 

beef products for EHEC presence to prevent contaminated products from entering the market 

(Koohmaraie et al., 2007). Other efforts included the development of quantitative microbial risk 

assessments (QMRA) to estimate the probability of illness from consumption of ground beef 

contaminated with E. coli O157 (Ebel et al., 2004; Kiermeier et al., 2015). QMRA is a tool 

increasingly used to provide scientific support for the assessment of food safety risks and 

development of regulatory policies.  It has been used to estimate the burden of illness associated 

with exposure to a food hazard, to evaluate potential risk reduction strategies, and to inform risk 

management policy decisions (Smith et al., 2013; Pouillot et al., 2015). Our study objectives 
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were i) to evaluate the available scientific evidence to derive probability distributions for the true 

prevalence and concentration of EHEC O26, O45, O103, O111, O121, O145, and O157 (EHEC-

7) in feces of harvest-ready cattle, on cattle hides and on carcasses after slaughter in the United 

States; ii) derive probability distributions for bacterial transfer factors and efficacy of peri-

harvest interventions; and  iii) generate a second order QMRA to evaluate the impact of peri-

harvest interventions on the levels of EHEC-7 on cattle at primary production to the pre-

evisceration carcass processing stage during slaughter. The outputs from the study serve as input 

variables for the quantitative microbial risk assessment of the probability of human illness from 

consumption of beef products contaminated with EHEC-7 in the United States. 

 Materials and methods 

 Model development 

This model was designed to generate prevalence and concentration distributions for 

EHEC-7 on beef carcasses at United States slaughter plants. The model begins with distributions 

of the prevalence and concentration of EHEC-7 in feces of harvest-ready feedlot cattle, adult 

beef cattle, and adult dairy cattle during the high (April-September) and low (October-March) 

shedding periods (seasons) in the U.S. Fecal-to-hide and hide-to-carcass microbial transfer 

coefficients were generated to quantify the transfer of pathogens from cattle feces to hides prior 

to slaughter, and from cattle hides to carcasses during slaughter at processing plants. Effect of 

interventions (pre-harvest use of E. coli vaccines and direct-fed microbials in live cattle at the 

feedlot, and peri-harvest application of animal/hide washes at the plant during processing) on 

prevalence and concentration of EHEC-7 on cattle hides and pre-evisceration carcasses were 

estimated from published data.  The conceptual model for the generation of EHEC-7 prevalence 

and concentration on cattle carcasses at slaughter is illustrated in Fig. 5.1.  The second order 
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Monte Carlo simulation approach was used to account for variability and uncertainty inherent in 

the starting concentration of EHEC-7 in feces at production and in the model outcomes. The 

outputs of the model are (i) the prevalence and concentration of EHEC-7 on cattle hides at 

harvest, (ii) the prevalence and concentration of EHEC-7 on carcasses post-dehiding and before 

carcass interventions, and (iii) the effectiveness of peri-harvest interventions at reducing the 

prevalence and levels of EHEC-7 on beef carcasses at harvest.   

 Input data 

 Fecal prevalence 

 Data describing the apparent prevalence of E. coli O157 in feces of fed beef, adult beef, 

and adult dairy cattle in the U.S. classified by seasons were obtained from a systematic review 

and meta-analyses study (Ekong et al., 2015).  Data describing the apparent prevalence of E. coli 

O26, O45, O103, O111, O121, and O145 in feces of fed beef and adult beef cattle were obtained 

from published field studies (Dewsbury et al., 2015; Cull et al., 2017), and data describing the 

apparent prevalence of E. coli O26, O45, O103, O111, O121, and O145 in feces of adult dairy 

cattle were obtained from a published field study (Stromberg et al., 2016). All data (Table 5.1) 

were based on culture detection methods. 

The true fecal prevalence of E. coli O157, and its estimate of variability, in the different 

cattle types and season were computed by applying the Rogan-Gladen estimator (Rogan and 

Gladen, 1978) in a simulation model.  

 TP = AP + Sp – 1 / Se + Sp – 1  

where TP = true prevalence, AP = apparent prevalence, Se = diagnostic sensitivity, and Sp = 

diagnostic specificity of the detection method obtained from a Bayesian estimation of diagnostic 
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test performance (Ekong et al., 2017a in review). Estimates of true prevalence of E. coli O26, 

O45, O103, O111, O121, and O145 were computed using the diagnostic sensitivity and 

specificity reported for detection of each O-group from a Bayesian estimation of diagnostic test 

performance (Ekong et al., 2017b in preparation). For the simulation, the apparent prevalence 

was fitted as a pert distribution using the minimum, most likely, and maximum values of the 

observed prevalence for each serogroup. Diagnostic sensitivity and specificity were defined as 

beta distributions based on the Bayesian analysis of test performance (Ekong et al., 2017a; 2017b 

in review). The true estimates of fecal prevalence were estimated using Latin Hypercube 

sampling in a Monte Carlo simulation model with 10,000 iterations.  The model was constructed 

in Microsoft Excel 2010 (Microsoft Corp., Redmond, WA, USA) with the add-on package 

@Risk (version 7, Palisade Corporation, New York, USA). The distributions of true fecal 

prevalence of E. coli O26, O45, O103, O111, O121, O145, and O157 used in the model are 

shown in Table 5.2.  

 Fecal concentration 

 Fecal concentration data for E. coli O157 during the high season were obtained from the 

literature (Arthur et al., 2007a; 2008; 2011) and from unpublished data from a 2013 field project 

(Cernicchiaro, unpublished). E. coli O157 fecal concentration during the low season was 

obtained from data reported by Stephens et al. (2009). These data represent fecal concentration 

of E. coli O157 among fed beef during summer and winter months. The high season fecal 

concentration dataset for E. coli O157 consisted of 1,752 samples. Each sample was first tested 

to confirm the presence/absence of E. coli O157 using immunomagnetic separation (IMS)–based 

culture method (after selective enrichment) with an assumed level of detection of 100 colony 

forming units (CFU) per gram of feces (2.0 log10 CFU/g). Samples that tested positive were 
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subjected to quantitative enumeration using a spiral plating method (Robinson et al., 2004) with 

a detection limit of 200 CFU/g (2.3 log10 CFU/g). Results from the culture and spiral plating 

assays were integrated to derive concentration data for E. coli O157 in cattle feces. Based on the 

1,752 samples, the observed prevalence of E. coli O157 in the fecal samples was 33.9% (596 

positives). A total of 152 samples had quantifiable concentrations above the detection limit with 

the highest observed concentration of 7.0 log10 CFU/g. The low season fecal concentration 

dataset for E. coli O157 consisted of 2,049 samples; the observed prevalence was 5.1% (105 

positives). Fifteen samples had quantifiable concentrations above the detection limit, with the 

highest observed concentration > 6.0 log10 CFU/g. To derive a fecal concentration distribution 

for E. coli O157 for use in the QMRA, a maximum likelihood estimation algorithm (Shorten et 

al., 2006) was used to fit a lognormal curve to the observed concentration data. The log10 mean 

and standard deviation of the lognormal distribution, uncertainty about the lognormal 

parameters, and the correlation coefficient between the mean and standard deviation were 

computed. The lognormal distribution has been described as an appropriate fit for pathogen 

concentration in food microbiology (Kilsby and Pugh, 1981; Legan et al., 2001; Limpert et al., 

2001; Crépet et al., 2007; Busschaert et al., 2010).  

 Fecal concentration data for the non-O157 E. coli were only available at the serogroup 

level (O-group), which includes E. coli without Shiga toxin or intimin virulence factors, because 

prevalence of non-O157 EHEC was too low to give reliable estimates of the concentration 

distribution. A total of 1,152 samples were tested to detect each of the 6 non-O157 serogroups. 

First, each sample was tested to confirm the presence/absence of each of the non-O157 

serogroups using IMS–based culture from selective EC broth enrichments, with an assumed level 

of detection of 2.0 log10 CFU/g of feces. Samples that tested positive were subjected to 
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quantitative enumeration using a spiral plating method  (Shridhar et al., 2017) with a detection 

limit of 3.0 log10 CFU/g of feces. Results from the culture and spiral plating assays were 

integrated to derive concentration data for E. coli serogroups O26, O45, O103, O111, O121, and 

O145 in cattle feces. These serogroup concentration distributions were inferred to apply to the 

non-O157 EHEC concentration distributions. For O26 serogroup, the observed prevalence was 

23.9%, and 19 samples had quantifiable concentrations above the detection limit with the highest 

observed concentration being < 6.0 log10 CFU/g. The observed prevalence for serogroup O45 

was 16.9%, and 12 samples had quantifiable concentrations above the detection limit, with the 

highest observed concentration being < 6.0 log10 CFU/g. For the O103 serogroup, the observed 

prevalence was 49.8%, and 99 samples had quantifiable concentrations above the detection limit, 

while the highest observed concentration was < 7.0 log10 CFU/g. The observed prevalence for 

serogroup O111 was 0.8%, and none of the samples were quantifiable. For the O121 serogroup, 

the observed prevalence was 6.3%, and 7 samples had quantifiable concentrations above the 

detection limit, with the highest observed concentration being < 7.0 log10 CFU/g. Observed 

prevalence for the O145 serogroup was 3.1%, and 2 samples had quantifiable concentrations 

above the detection limit, with the highest observed concentration being < 6.0 log10 CFU/g. As 

with E. coli O157, fecal concentration distributions were derived for E. coli serogroups O26, 

O45, O103, O111, O121, and O145 using the maximum likelihood estimation algorithm 

(Shorten et al., 2006; Busschaert et al., 2010).    

Fecal concentration distributions were then generated for E. coli O157 and the six non-

O157 at the EHEC level (not serogroup) for the different cattle types by season by integrating the 

standard deviation estimates of the fitted concentration distributions at the serogroup level with 

the true EHEC prevalence of E. coli O157 and the six non-O157 in the different cattle types and 
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season.  This was accomplished by running a 100,000 iteration simulation in the open-source R 

software version 3.4.0 (R Core Team, 2015) using the “uniroot” function (Brent, 1973) for each 

of the seven EHEC groups. In the simulation, pairs of values were randomly selected from the 

distribution of concentration standard deviation for each serogroup and the distribution of 

prevalence for each EHEC group. These values were passed to the function to find the geometric 

mean that matched the prevalence of each EHEC group based on the detection limit of the assay 

and the selected standard deviation. This approach assumed that the standard deviation fit from 

the concentration distribution was constant, and only the mean concentration changes as the 

prevalence changes. The average frequency from the simulation was determined to give the 

variability of the mean estimate and the standard deviation to estimate the uncertainty about the 

mean concentration.  The derived fecal concentration distributions for each of the seven EHEC 

serogroups are presented in Table 5.3. It includes estimate of variability (log10 mean and standard 

deviation), uncertainty (standard deviation of the mean and standard deviation of the standard 

deviation) about the lognormal parameters, and the correlation coefficient between the mean and 

standard deviation. The distributions at this stage represent concentration of the seven E. coli at 

the EHEC level. 

 Fecal-to-hide transfer coefficient 

 Field study data reported by Arthur et al. (2007a; 2008) were used to model transfer of E. 

coli O157 from cattle feces to hides. The study sampled feces and hides of tagged cattle at 

United States feedlots immediately prior to cattle loadout and again sampled hides at the 

processing plants immediately after stunning and bleeding.  Concentrations of E. coli O157 on 

fecal samples (expressed as log10 CFU/g) and on hides samples (expressed as log10 CFU/100cm2) 

were determined by spiral plating. Fecal-to-hide transfer factor (TFfh)was computed for use in 
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the model, 𝑇𝑇𝑇𝑇𝑓𝑓ℎ =  𝑙𝑙𝑙𝑙𝑙𝑙10 (𝐶𝐶ℎ) −  𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑓𝑓). Ch is the concentration on hides at the plants and Cf 

is the concentration in feces, each defined as a pert distribution having minimum, most likely, 

and maximum values of 0.003, 1.6, 3.6 log10 CFU/100cm2 and 0.1, 2.3, and 5.4 log10 CFU/g, 

respectively. Minimum values were derived as described in (Smith et al., 2013). Concentration 

on hides and feces were correlated using a coefficient of 0.24 derived from Arthur et al. (2007a; 

2008) data. The distribution of TFfh was determined using Latin Hypercube sampling in a Monte 

Carlo simulation model constructed in Microsoft Excel 2010 (Microsoft Corp., Redmond, WA, 

USA) with the add-on package @Risk (version 7, Palisade Corporation, New York, USA). The 

model was run with 25,000 iterations to generate TFfh. The resulting normal distribution (normal 

[–0.783, 1.065]) of TFfh (Table 5.4) was truncated at the minimum and maximum values 

determined in the simulation: –4.28 and 2.53 log10100cm2/g, respectively. The same fecal-to-

hide transfer coefficient was assumed for the six non-O157 serogroups. Concentrations of 

individual EHEC on hides were obtained by adding the log transfer factor to the concentration of 

individual EHEC in feces.  

 Hide-to-carcass transfer coefficient 

Hide-to-carcass transfer was modeled using data on transfer of generic E. coli from cattle 

hides to carcasses following the de-hiding process at slaughter plants in the United States. 

Concentration of generic E. coli on cattle hides and pre-wash pre-eviscerated carcasses were 

used as a surrogate indicator for the transfer of E. coli O157 and the other six non-O157 

serogroups. McKiearnan (KSU unpublished data) sampled cattle hides and pre-wash pre-

eviscerated carcasses during the commercial slaughter process in four plants in the central United 

States during summer, winter and spring months. Hide samples were collected post-

exsanguination, and pre-wash carcass samples were collected immediately after hide removal but 
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before any in-plant carcass interventions were applied. Approximately, 2,700 cm2 area from the 

brisket to umbilicus and elbow to mid line region was sampled. The concentration of E. coli on 

samples were determined by sponge sampling, followed by plating serial dilutions on 3MTM E. 

coli / coliform (ECC) PetrifilmTM plates. Enumeration data, expressed as log10 CFU/100cm2, 

from each sampling period were combined to represent the high and low season. Hide-to-carcass 

transfer factor,  𝑇𝑇𝑇𝑇ℎ𝑐𝑐 =  𝑙𝑙𝑙𝑙𝑙𝑙10 �𝐶𝐶𝑝𝑝𝑝𝑝𝑐𝑐� −  𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶ℎ), was computed for use in the model. Cpwc is 

the concentration on pre-wash carcasses and Ch is the concentration on hides. Distribution fitting 

to TFhc was implemented in the open-source software R version 3.4.0 (R Core Team, 2015) 

utilizing functions from “MASS” (Venables and Ripley, 2002) and “fitdistrplus” (Delignette-

Muller and Dutang, 2015) packages. The normal distribution provided the best fit for TFhc during 

the high and low seasons. The high season distribution mean and standard deviation were –3.64 

and 0.81 log10 CFU/100cm2, respectively.  For the low season, the distribution mean was –3.26 

and standard deviation was 0.96 log10 CFU/100cm2 (Table 5.4). Concentrations of individual 

EHEC on carcasses were obtained by adding the log transfer factor to the concentration of 

individual EHEC in hides. 

 Vaccination efficacy 

Data from a Systematic Review and Meta-Analysis (SR-MA) on the effect of vaccine on 

E. coli O157 fecal prevalence in cattle (Varela et al., 2013) was used to estimate vaccine effect in 

the model. From the study, a significant reduction in fecal prevalence of E. coli O157 due to 

vaccine treatment was reported (odds ratio = 0.46; 95% CI: 0.39-0.54). From this meta-analysis, 

the lower and upper estimates from the 95% confidence interval (CI) of individual studies were 

each ranked. From these ranked upper and lower estimates, the values corresponding to the 5th 

percentile of the lower 95% bound and 95th percentile of the upper bound were obtained to 
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represent the variability of vaccine effect across the population (i.e. 90% CI: 0.13-1.52 to 

represent the population standard deviation rather than standard error of the mean effect). The 

odds ratio (OR) was converted to relative risk (RR), the RR was used to compute the vaccine 

efficacy (expressed as 1 - RR) on fecal prevalence of E. coli O157 using the method described by 

(Vogstad et al., 2014). Vaccine efficacy was described as a lognormal distribution (lognormal [  

–0.694, 0.531]) based on data extracted from the SR-MA (Varela et al., 2013). Vaccine efficacy 

was implemented on the E. coli fecal prevalence estimate for vaccinated cattle and converted to 

fecal concentrations using the “uniroot” function (Brent, 1973) in the open-source R software 

version 3.4.0 (R Core Team, 2015). The estimated mean log reduction (0.153) and standard 

deviation (1.0), representing vaccine efficacy (Table 5.4) on E. coli O157 fecal concentration, 

were derived by simulating the difference in fecal concentration between vaccinated and non-

vaccinated cattle. 

 Direct fed microbial (DFM) efficacy 

Data from an SR-MA on the effect of DFM on E. coli O157 fecal prevalence in fed cattle 

(Wisener et al., 2015) was used to estimate DFM effect in the model. From the study, a 

significant reduction in fecal prevalence of E. coli O157 due to DFM treatment was reported 

(odds ratio = 0.55; 95% CI: 0.45-0.68). A total of 3810 fed cattle constituted the study units for 

the estimation of DFM effect. The standard deviation of DFM effect across the population was 

computed using the total number of study units and the standard error of the mean effect from 

the SR-MA. This resulted in a 95% confidence interval that captures the variability of DFM 

effect across the study population (OR = 0.55; 95% CI: 0.13-0.97). The OR was converted to 

RR, and the RR was used to compute DFM efficacy (expressed as 1 – RR), using the method 

described by Vogstad et al. (2014). DFM efficacy was described as a lognormal distribution 
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(lognormal [–0.89, 0.48]) based on data extracted from the SR-MA. DFM efficacy was 

implemented on the E. coli fecal prevalence estimate for cattle fed DFM and converted to fecal 

concentrations using the “uniroot” function (Brent, 1973) in the open-source R software version 

3.4.0 (R Core Team, 2015). The estimated mean log reduction (0.161) and standard deviation 

(1.0), representing DFM efficacy (Table 5.4) on E. coli O157 fecal concentration, were derived 

by simulating the difference in fecal concentration between DFM fed and non-DFM fed cattle. 

 Animal and hide wash efficacy 

 Data on the efficacy of hide washing was obtained from a recent meta-analysis study on 

the effect of in-plant interventions at reducing concentration of E. coli O157 and non-O157 on 

cattle hides and carcasses during processing (Zhilyaev et al., 2017). The study reported 3.66, 

3.02, 2.21, and 0.08 log CFU/cm2 reductions in pathogen concentration following hide wash with 

sodium hydroxide, lactic acid, acetic acid, and water, respectively. We defined hide wash 

efficacy as a normal distribution with a mean log reduction of 3.66 and standard deviation of 

0.54 to represent hide wash using sodium hydroxide antimicrobial compounds (Table 5.4). 

 Model implementation 

  The model was written in the open-source R software version 3.4.0 (R Core Team, 2015) 

and used the “snowfall” package (Knaus, 2010) for parallelization. A second-order Monte Carlo 

modeling approach was used. Each model run was based on 5,000,000 variability iterations and 

100 uncertainty iterations for a total of 500,000,000 simulated results for each scenario. To 

ensure reproducibility in model outcomes, the simulation seed was set at 12345. The fecal 

concentration of each of the seven EHEC pathogens was assumed to be uncertain and variable, 

other inputs were assumed to be certain but variable.   
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 Scenario analysis 

For each of the EHEC strains, cattle type and season combinations, three separate 

scenarios were explored to test the effect of peri-harvest interventions on the estimated 

prevalence and concentration of each EHEC strain on pre-wash pre-evisceration beef carcasses at 

slaughter. Scenario 1 represents the no intervention (reference scenario) model. In this scenario, 

no pre-harvest or peri-harvest interventions are applied. Scenario 2 represents the industry 

current practices (current practices) where selected STEC-targeted interventions were applied 

based on the proportion of cattle in U.S. establishments that receive the intervention.  Based on 

data from the United States Department of Agriculture, National Animal Health Monitoring 

System (USDA-NAHMS), 2.4% of U.S. feedlots with a capacity of 1,000 or more head of cattle 

use the E. coli O157 vaccine; overall, only 0.1% of U.S. fed cattle receive the E. coli O157 

vaccination (USDA-NAHMS, 2013a). Based on the same USDA-NAHMS data, only 28.5% of 

U.S. feedlots with a capacity of 1,000 or more head of cattle incorporate probiotics in cattle 

rations; overall, 53.8% of U.S. fed cattle receive probiotic in their diet (USDA-NAHMS, 2013b). 

Data from the USDA-Food Safety Inspection Service showed that 9% of slaughter operations 

apply pre-slaughter animal wash and 9% apply a pre-dehiding carcass wash as decontamination 

procedures to live or slaughtered cattle prior to hide removal (USDA-FSIS, 2008). Scenario 3 

represents a hypothetical situation (full intervention) where 46% of cattle received E. coli O157 

vaccination, 54% are fed probiotic incorporated in the diet, and all (100%) cattle processed in the 

large slaughter plants received an animal/hide wash intervention prior to de-hiding. Scenario 3 

upgrades pre-harvest intervention coverage to 100%, already approximately 54% of fed cattle 

receive a probiotic diet, and we assume E. coli O157 vaccination of the remaining 46%.  
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 Sensitivity analysis and assessment of model performance 

 Sensitivity analyses were performed to assess the independent influence of fecal-to-hide 

transfer and the hide-to-carcass transfer parameters on the estimated prevalence and 

concentration of EHEC-7 on pre-evisceration beef carcasses by fixing each of these input 

parameters at the 10th, 50th, and 90th percentile values and comparing the estimated prevalence 

and concentrations. The influence of the application of a vaccination only intervention (i.e., all 

fed cattle received E. coli O157 vaccination but no DFM) and DFM only intervention (i.e., all 

fed cattle received DFM in their diet but no E. coli O157 vaccination) on the prevalence and 

concentration of E. coli O157 on fed beef carcasses was assessed. Similarly, the influence of the 

application of only a hide intervention on the prevalence and concentration of EHEC O157 and 

non-O157 EHEC on pre-evisceration carcasses was assessed. Our model-estimated prevalences 

of EHEC O157 and non-O157 EHEC on hides and pre-wash pre-evisceration carcasses were 

compared with data from two independent field studies (Stromberg et al., 2015; 2016) not used 

in building our model. Similarly, our model-estimated concentrations for EHEC O26, O103, 

O145, and O157 on hides were compared with independent hide data from a field study (Renter 

et al., unpublished), as there is no suitable data currently available for concentration of EHEC on 

pre-evisceration beef carcasses.  

 Results 

 Prevalence and concentration in feces, hides and carcass 

 Model-estimated prevalence and concentration for E. coli O26, O45, O103, O111, O121, 

O145, and O157 in feces of fed beef, adult beef, and adult dairy cattle during summer and winter 

are presented in Table 5.5, while estimated prevalence and concentration on hides are presented 
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in Table 5.6. Model-estimated median fecal prevalence (proportion detectable by culture with 

limit of detection set at ≥ 2.0 log10 CFU/g or ≥ 100 CFU/g of feces) of EHEC O157 was higher 

for fed beef and adult beef compared to adult dairy cattle during summer and winter.  The model-

estimated median fecal prevalences (based on detection limit of ≥ 2.0 log10 CFU/g of feces) were 

lower for the non-O157 EHEC (ranged from 0.04% to 0.44% [95% PI: 0.01% to 1.80%]) 

compared to EHEC O157; however, among the non-O157 EHEC, O26, O103, and O111 were 

more prevalent.  

Model-estimated median fecal concentration (for all samples including positives and 

negatives) for EHEC O157 in fed beef, adult beef, and adult dairy cattle during summer ranged 

from –5.70 to –3.72 log10 CFU/g (95% PI: –12.18, 2.95), and ranged from –13.20 to –6.45 log10 

CFU/g (95% PI: –23.03, 3.55) during winter (Table 5.5). The model-estimated median 

concentrations for the non-O157 EHEC in feces ranged from –12.87 to –6.81 log10 CFU/g (95% 

PI: –21.62, –0.57).  

 Model-estimated median prevalence of EHEC O157 (proportion detectable by culture 

with limit of detection set at ≥ 0.7 log10 CFU/100cm2 or ≥ 5 CFU/100cm2) on hides of fed beef, 

adult beef, and adult dairy cattle followed a similar trend as in fecal prevalence; higher in the 

summer than winter for adult beef and adult dairy, but generally higher than the fecal prevalence 

estimates (Table 5.6). The model-estimated median prevalence of non-O157 EHEC (based on 

detection limit of ≥ 0.7 log10 CFU/100cm2) on cattle hides ranged from 0.09% to 0.97% (95% PI 

ranged from 0.03% to 3.52%); among the non-O157 EHEC, O26, O103, and O111 were more 

prevalent (Table 5.6).  
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Model-estimated median concentration of EHEC O157 on hides of fed beef, adult beef, 

and adult dairy cattle during summer ranged from –6.48 to –4.50 log10 CFU/100cm2 (95% PI:     

–13.28, 2.49), and ranged from –13.98 to –7.23 log10 CFU/100cm2 (95% PI: –24.03, 2.99) during 

winter (Table 5.6). The model estimated median concentration for the non-O157 EHEC on cattle 

hides ranged from –13.67 to –7.55 log10 CFU/100cm2 (95% PI: –22.69, –0.99). 

 Model-estimated median prevalence of EHEC O157 (proportion detectable by culture 

with limit of detection set at ≥ – 0.7 log10 CFU/100cm2 or ≥ 0.2 CFU/100cm2) on pre-wash pre-

evisceration carcasses from fed beef, adult beef, and adult dairy cattle followed a similar trend as 

for hide and fecal prevalence (Table 5.7), but lower than the estimated median prevalence on 

hides. Model-estimated median prevalence of non-O157 EHEC (based on a detection limit of     

≥ – 0.7 log10 CFU/100cm2) on pre-wash pre-evisceration beef carcasses ranged from 0.03% to 

0.28% (95% PI ranged from 0.01% to 1.07%).  EHEC O26, O103, and O111 were the most 

prevalent serogroups (Table 5.7).  

Model-estimated median concentration of EHEC O157 on pre-wash pre-evisceration 

carcasses of fed beef, adult beef, and adult dairy cattle during summer ranged from –9.78 to        

–7.71 log10 CFU/100cm2 (95% PI: –16.82, –0.52), and ranged from –17.19 to –10.44 log10 

CFU/100cm2 (95% PI: –27.40, –0.04) during winter (Table 5.7). The model-estimated median 

concentrations of the non-O157 EHEC on pre-evisceration carcasses ranged from –16.92 to        

–10.85 log10 CFU/100cm2 (95% PI: –26.11, –4.01). 

 Scenario analysis 

 The simulated current practices (scenario 2) and full intervention (scenario 3) models 

resulted in a relative reduction in estimated median prevalence and concentration of EHEC O157 
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and non-O157 EHEC on beef carcasses (Table 5.8). Scenario 2 resulted in variable reductions in 

estimated median prevalence of EHEC O157 on beef carcasses ranging from 0.85% to 53.5% 

(95% PI: 0.12%, 62.4%) and reduction in estimated median prevalence of non-O157 EHEC 

ranging from 2.1% to 61.2% (95% PI: 0.14%, 68.4%) compared to the no intervention scenario 

(scenario 1), Table 5.8. Scenario 2 produced higher reductions in estimated median prevalence 

for EHEC O26 and O111 in adult dairy, and EHEC O157 among all cattle types during summer 

compared to the no intervention scenario. Similarly, scenario 3 resulted in reductions in 

estimated median prevalence of EHEC O157 ranging 53.1% to 71.6% (95% PI: 41.8%, 83.4%) 

and reductions in non-O157 EHEC prevalence ranging from 51.4% to 64.8% (95% PI: 32.9%, 

71.4%) on beef carcasses compared to scenario 1 (Table 5.8). Scenario 3 produced higher 

reductions in estimated median prevalence for all EHEC groups and cattle types during summer 

and winter compared to scenarios 1 and 2.  

For impact on estimated concentration, scenario 2 resulted in a log10 reductions in 

estimated median concentration ranging from 0.04 to 1.99 log10 CFU/100cm2 (95% PI: 0.01 to 

2.83 log10) for EHEC O157 on beef carcasses and reduction ranging from 0.09 to 1.95 log10 (95% 

PI: 0.07 to 2.77 log10 CFU/100cm2) for non-O157 EHEC compared to scenario 1, (Table 5.9). 

Higher log reductions were observed for EHEC O26 and O111 in adult dairy, and for O157 in 

adult beef, and adult dairy cattle during summer. Scenario 3 resulted in a higher log reduction in 

estimated median concentration for all EHEC groups by cattle type and season combinations 

compared to scenarios 1 and 2. The log reductions in estimated median concentration due to 

scenario 3 range from 2.13 to 2.78 log10 CFU/100cm2 (95% PI: 1.20 to 3.73 log10 CFU/100cm2) 

for EHEC O157 and range from 1.37 to 2.50 log10 CFU/100cm2 (95% PI: 1.04 to 3.28 log10 

CFU/100cm2) for non-O157 EHEC on beef carcasses compared to scenario 1 (Table 5.9).  
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 Sensitivity Analysis 

 Sensitivity analysis indicated that fecal-to-hide transfer and hide-to-carcass transfer had a 

large effect on the prevalence and concentration of EHEC-7 on pre-wash pre-evisceration beef 

carcasses. Results are presented for EHEC O103 and O157 to represent the effect of transfer 

factors on O157 and non-O157 EHEC (Table 5.10). Reductions of 82.6% and 92.7% in 

estimated median prevalence of EHEC O157 and O103, respectively, on pre-evisceration beef 

carcasses were observed when fecal-to-hide transfer value was fixed at the 10th percentile 

compared to when it was fixed at the 90th percentile value; the difference in estimated median 

concentration was 2.7 log10 CFU/100cm2 for both EHEC O157 and EHEC O103. Similarly, 

81.2% and 89.5% differences in estimated median prevalence of EHEC O157 and O103, 

respectively, were observed on pre-wash pre-evisceration beef carcasses when the hide-to-

carcass transfer value was fixed at the 10th percentile compared to when it was fixed at the 90th 

percentile value; the differences in estimated median concentration were 2.5 log10 CFU/100cm2 

and 2.4 log10 CFU/100cm2, respectively. 

The vaccination only intervention, applicable only to fed beef cattle in this model, 

resulted in an approximate 39% (95% PI: 27%, 45%) reduction in estimated median prevalence 

of EHEC O157 on pre-evisceration beef carcasses, and a 0.88 log10 CFU/100cm2 (95% PI: 0.71, 

0.97) reduction in estimated median concentration. Similarly, the DFM only intervention 

scenario resulted in an approximate 36% (95% PI: 27%, 44%) reduction in estimated median 

prevalence of EHEC O157 on pre-evisceration beef carcasses, and a 0.84 log10 CFU/100cm2 

(95% PI: 0.69, 0.91) reduction in estimated median concentration. The hide wash only 

intervention scenario resulted in approximately 47% to 67% reductions in estimated median 
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prevalence of EHEC O157 and non-O157 EHEC on pre-wash pre-evisceration beef carcasses, 

and a 1.6 to 2.8 log10 CFU/100cm2 reduction in estimated median concentration for all EHEC. 

 Assessment of model performance  

 The industry current practice scenario (scenario 2) model outputs for the prevalence of 

EHEC O157 and non-O157 EHEC on cattle hides and pre-wash pre-evisceration carcasses were 

generally within the range of data obtained from two independent field studies (Stromberg et al., 

2015; 2016) that were not included in generating input values in our model building. The data 

are presented in Table 5.11. On hides, our model-estimated prevalence for EHEC O26 in adult 

dairy cattle was within the lower end of observed prevalence in the field study, Conversely, for 

EHEC O157 in fed beef cattle, our model-estimated median hide prevalence and 95% prediction 

interval were higher than observed in the field study. For pre-wash pre-evisceration carcasses, 

our model-estimated median prevalence was within the range observed in the field study 

(Stromberg et al., 2015; 2016) as shown in Table 5.10. For EHEC concentration on cattle hides, 

our model output prediction intervals for the concentration of EHEC O26, O103, O145, and 

O157, for which suitable field concentration data were available, were within the range observed 

in the field study (Renter et al., unpublished). For EHEC O26 and O103, our model estimated ≈ 

0 – 2% hide contamination at ≥ 2.0 log10 CFU/100cm2 (detection limit of the culture-based 

enumeration assay) among fed beef cattle during summer, while observed field data indicated ≈ 

1% hide contamination at this concentration (Figure 5.2). For EHEC O145, our model estimated 

≈ 0 – 4% hide contamination at ≥ 2.0 log10 CFU/100cm2 among fed beef cattle during summer, 

while observed field data indicated ≈ 2% hide contamination at this concentration. For EHEC 

O157, our model estimated ≈ 0 – 8% hide contamination at ≥ 2.0 log10 CFU/100cm2 among adult 
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beef cattle during summer, while the observed field data indicated ≈ 2% hide contamination at 

this concentration (Figure 5.2). 

 Discussion 

In this study, we conducted a quantitative microbial risk assessment using a second-order 

Monte Carlo simulation model to generate prevalence and concentration distributions for EHEC 

O26, O45, O103, O111, O121, O145, and O157 on cattle hides and pre-wash pre-evisceration 

beef carcasses. We generated starting concentrations for the seven EHEC strains in feces of 

harvest-ready fed beef, adult beef, and adult dairy cattle during summer and winter seasons, and 

derived an expected distribution for the transfer of the EHEC strains from cattle feces onto cattle 

hides to simulate the level of pathogens on cattle as they arrive the slaughter facility for 

processing. We also generated a distribution for the transfer of EHEC from cattle hides to the 

carcass surface (inferred from in-plant generic E. coli data) during the de-hiding process to 

simulate the level of pathogens that gets presented to the post-harvest phase of beef production. 

We evaluated the impact of E. coli O157 vaccination and inclusion of direct-fed microbials in 

feedlot cattle as a pre-harvest intervention for control of EHEC O157 in live cattle, and the 

impact of hide/animal washing as a peri-harvest intervention strategy to reduce the frequency 

and levels of the seven EHEC strains on beef carcasses.  

 The model-estimated prevalence and concentration of EHEC O157 on cattle hides and 

pre-evisceration carcasses were generally higher than those of non-O157 EHEC. This pattern is 

consistent with the observed prevalence of the seven EHEC strains in cattle feces, hides, and 

carcasses where EHEC O157 was the most frequently observed EHEC strain (Dewsbury et al., 

2015; Stromberg et al., 2015; Stromberg et al., 2016; Cull et al., 2017).  
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The application of the industry current practices (scenario 2) as an intervention scenario 

resulted in variable reductions in median prevalence of EHEC strains on pre-wash pre-

evisceration carcasses compared to the no intervention scenario. Scenario 2 interventions 

resulted in high reductions (> 20% reduction in prevalence) in pre-evisceration carcass 

prevalence of EHEC O26 and EHEC O111 on adult dairy, and EHEC O157 on fed beef, adult 

beef, and adult dairy during summer compared to scenario 1. Conversely, scenario 2 resulted in 

minimal reduction (< 20% reduction in prevalence) in median prevalence of EHEC O26, O45, 

O103, O111, O121, and O145 on fed beef, and EHEC O157 on fed beef, adult beef, and adult 

dairy pre-wash pre-evisceration carcasses during winter compared to scenario 1. The varied 

effectiveness of scenario 2 in reducing prevalence of EHEC on pre-evisceration carcasses may 

be related to the proportion of establishments/cattle that received the treatment. Given that 

vaccination and DFM interventions were only applied for fed beef cattle and only 18% of large 

processing plants (who harvest about 60% of beef cattle) applied animal/hide wash, appreciable 

numbers of cattle/carcasses did not receive the interventions, hence the minimal effect recorded 

with some strains and cattle types. We observed greater log reductions (median log concentration 

> 1.0 log10) for EHEC O26 and O111 in adult dairy and EHEC O157 in adult beef and adult 

dairy pre-wash pre-evisceration carcasses during summer comparing scenario 2 to scenario 1, but 

minimal reduction (median log concentration < 1.0 log10) for other EHEC, cattle types, season 

combinations. These findings indicate varied effectiveness of the current industry peri-harvest 

intervention approach at reducing EHEC contamination on pre-evisceration beef carcass, 

possibly due to differential application of intervention to different cattle types (i.e., higher 

prevalence and log reductions amongst adult beef and adult dairy) and / or due to limited 

opportunity for interventions to impact median concentration in low prevalence EHEC groups. 
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Implementation of an alternative scenario (scenario 3) where 46% of fed cattle are 

vaccinated, 54% are fed probiotic containing diets, and large slaughter plants perform a hide 

wash on all (100%) beef carcasses prior to hide removal resulted in a higher percent reduction in 

estimated median prevalence (51% to 72% reduction in median prevalence) and higher log 

reduction (1.4 to 2.8 log10 CFU/100cm2 reduction) in estimated median concentration for all 

seven EHEC compared to the no intervention scenario. Cattle E. coli O157 vaccination at the 

feedlot and the feeding of direct-fed microbials at the feedlot have been shown in research trials 

to decrease E. coli O157 prevalence and concentrations in cattle feces (Stephens et al., 2007; 

Thomson et al., 2009; Cull et al., 2012). Use of animal/hide wash interventions at processing 

plants prior to hide removal has been demonstrated to be effective at reducing the presence and 

level of E. coli O157 and Salmonella on beef carcass (Bosilevac et al., 2005; Arthur et al., 

2007b; 2008; Bosilevac et al., 2009), suggesting the possible effectiveness of hide wash 

interventions to reduce the presence and concentration of non-O157 EHEC on cattle hides. Our 

model showed a 47% to 67% reduction in median prevalence of the non-O157 EHEC on pre-

wash pre-eviscerated carcasses, and a 1.6 log10 CFU/100cm2 to 2.6 log10 CFU/100cm2 reduction 

in estimated median concentration as a result of a hide wash only intervention approach. 

Importance of vaccination and use of direct-fed microbials in live cattle in supplementing in-

plant interventions for reducing fecal, hide and carcass contamination have been emphasized 

(Dodd et al., 2011). Despite the limited adoption of E. coli O157 vaccination, our analysis 

suggests that moderate adoption of a probiotic in cattle diets, combined with a hide wash 

intervention at the plant, resulted in substantial reduction in EHEC O157 load on pre-

evisceration beef carcass during harvest compared to a baseline no intervention scenario. 

Increasing the proportion of vaccinated cattle, however, lowered E. coli O157 prevalence and 

median concentration further in our model.    
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  Sensitivity analysis regarding the fecal-to-hide and hide-to-carcass transfer parameters 

showed that the prevalence and concentration of EHEC on pre-wash pre-evisceration beef 

carcasses were sensitive to the values of the transfer parameters. As expected, separately fixing 

the transfer parameters to their 90th percentile values while other model parameters were allowed 

to vary resulted in a considerable increase in estimated median prevalence and concentration of 

EHEC O157 and non-O157 EHEC serogroups on pre-evisceration beef carcasses. Likewise, 

fixing the parameter values to their 10th percentile resulted in lower estimated median prevalence 

and concentration. Carcass contamination that occurs during harvest at the slaughter facility is 

associated with both the prevalence and concentration of the pathogens in cattle feces and on 

hides (Arthur et al., 2008; Fox et al., 2008). Evidence suggests that reduction in the prevalence 

and concentration of pathogens on hides can lower the prevalence and concentration of 

pathogens on carcasses (Arthur et al., 2004; Bosilevac et al., 2004). High fecal-to-hide transfer 

may indicate a peak in fecal prevalence, which may lead to increased pathogen load on hides of 

cattle entering the processing facility. Implementation of pathogen-reduction interventions in live 

cattle would help reduce pathogen loads on hides of cattle entering the processing plants. 

Similarly, high hide-to-carcass transfer may be an indication for high pathogen load on hides or 

significant hide-to-carcass cross-contamination during the de-hiding process, suggestive of poor 

dressing practices. Several hide and carcass interventions are implemented at the slaughter plants 

and they have been found to be effective at reducing EHEC contamination on beef carcasses. 

Combinations of pre-harvest and harvest interventions have been described as the most effective 

strategy for reducing pathogen contamination in the beef production chain (Loneragan et al., 

2005; Callaway et al., 2013; Wheeler et al., 2014). 
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 Conclusion 

  Our risk assessment model estimated the prevalence and concentration of EHEC-7 on 

pre-wash pre-evisceration carcasses. The simulation scenario analysis showed the variable 

effectiveness of current industry intervention practices at reducing carcass contamination, 

however, a scenario of increased adoption of pre-harvest and hide wash interventions was more 

effective at reducing risk of carcass contamination. Sensitivity of our model output to fecal-to-

hide and hide-to-carcass transfer highlights the importance of good process management as a 

pathogen reduction strategy.  In addition, this study provides the critical initial data required for 

the farm-to-fork quantitative risk assessment of the public health threat of EHEC O26, O45, 

O103, O111, O121, O145, and O157 in the beef production chain.    
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Figure 5.1 - Flow diagram for the risk assessment of EHEC O26, O45, O103, O111, O121, O145, 
and O157 on pre-evisceration beef carcass. Dashed boxes indicate intervention point, bold boxes 
indicate model outputs.  
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Table 5.1 - Apparent fecal prevalence of EHEC O26, O45, O103, O111, O121, O145, and O157 in 
fed beef, adult beef, and adult dairy cattle classified by seasons 

Strain Season Fed beef 
Mean (Range) 

Adult beef 
Mean (Range) 

Adult dairy 
Mean (Range) 

O26 Summer 1.0 (0.0–5.00) – 1.01 (0.1–9.90)* 
 Winter 0.0 (0.0–0.00) –  
O45 Summer 0.2 (0.0–4.10) – 0.0 (0.0–0.00)* 
 Winter 0.0 (0.0–0.00) –  
O103 Summer 2.4 (0.0–7.40) – 0.0 (0.0–0.00)* 
 Winter 0.0 (0.0–0.00) –  
O111 Summer 0.3 (0.0–4.20) – 1.0 (0.12–7.94)* 
 Winter 0.0 (0.0–0.00) –  
O121 Summer 0.0 (0.0–1.00) – 0.0 (0.0–0.00)* 
 Winter 0.0 (0.0–0.00) –  
O145 Summer 0.8 (0.0–4.50) – 0.0 (0.0–0.00)* 
 Winter 0.0 (0.0–0.00) –  
O157 Summer 10.8 (0.0–55.00) 11.83 (5.0–20.0) 2.27 (0.0–35.0) 
 Winter 8.37 (0.3–27.78) 4.25 (0.0–20.0) 0.31 (0.06–0.67) 

*Interval represents 95% confidence interval;  
Source: Ekong et al., 2015; Dewsbury et al., 2015; Stromberg et al., 2016; Cull et al., 2017 
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Table 5.2 - Distribution for true fecal prevalence of E. coli O26, O45, O103, O111, O121, O145, 
and O157 after adjusting for diagnostic sensitivity and specificity of the detection method. The 
derived distributions based on best fit were truncated to represent the minimum and maximum 
values of the estimated true prevalence. 

Strain Season Fed beef Adult beef Adult dairy 

O26 Summer Beta (1.91, 5.90, 0, 0.14) – Beta (1.45, 5.99, 0, 0.25) 
O45 Summer Beta (1.23, 7.06, 0, 0.09) – – 
O103 Summer Beta (2.33, 3.91, 0, 0.11) – – 
O111 Summer Gamma (1.48, 0.013, 0, 0.09) – Gamma (1.83, 0.024, 0, 0.17) 
O121 Summer Gamma (1.08, 0.004, 0, 0.03) – – 
O145 Summer Beta (1.77, 6.15, 0, 0.07) – – 
O157 Summer Beta (1.81, 4.59, 0, 1.18) Beta (4.47, 4.07, 0, 0.46) Beta (1.26, 4.83, 0, 0.73) 
O157 Winter Beta (2.26, 4.15, 0, 0.59) Beta (1.87,4.54, 0, 0.43) Beta (1.72, 4.74, 0, 0.05) 
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Table 5.3 - Input parameters for distribution of fecal concentration of E. coli O26, O45, O103, 
O111, O121, O145, and O157 by season and cattle type 

   Variability estimate 
(log10 CFU/g) 

 Uncertainty estimate 
(log10 CFU/g) 

EHEC Season Cattle type Mean SD  SD of Mean SD of SD Correlation 

O26 summer Fed beef –7.062 3.100  1.168 0.175 –0.782 
O26 summer Adult dairy –6.614 3.100  1.343 0.175 –0.782 
O45 summer Fed beef –8.609 3.164  1.269 0.224 –0.871 
O103 summer Fed beef –6.928 3.198  0.939 0.107 –0.405 
O111 summer Fed beef –10.500 4.128  2.310 0.743 –0.959 
O111 summer Adult dairy –9.028 4.128  2.206 0.743 –0.959 
O121 summer Fed beef –12.820 4.453  1.888 0.511 –0.961 
O145 summer Fed beef –10.310 4.128  2.179 0.743 –0.979 
O157 summer Fed beef –3.454 3.355  1.997 0.115 –0.641 
O157 summer Adult beef –3.554 3.355  0.956 0.115 –0.641 
O157 summer Adult dairy –5.612 3.355  1.715 0.115 –0.641 
O157 winter Fed beef –5.955 4.975  2.250 0.451 –0.959 
O157 winter Adult beef –7.851 4.975  2.242 0.451 –0.959 
O157 winter Adult dairy –13.220 4.975  1.923 0.451 –0.959 

SD: Standard deviation 
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Table 5.4 - Input parameters and references for transfer factors and peri-harvest intervention 
efficacies for modeling the concentration of E. coli O26, O45, O103, O111, O121, O145, and O157 
on cattle hides and carcass 

 

Parameter Distribution Unit Reference(s) 

Fecal-to-hide transfer factor Normal (–0.78, 1.07) log10CFU100cm2/g Arthur et al., 2007; 
2008 

Hide-to-carcass transfer factor Normal (–3.26, 0.96) log10CFU McKiearnan (KSU 
data, unpublished) 

Vaccine efficacy Normal (0.15, 1.00) log10CFU Varella et al., 2013 
Direct fed microbial efficacy Normal (0.16, 1.00) log10CFU Wisener et al., 2014 
Animal/Hide wash efficacy Normal (3.66, 0.54) log10CFU Zhilyaev et al., 2017 
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Table 5.5 - Model predicted prevalence and concentration of E. coli O26, O45, O103, O111, O121, O145, and O157 in cattle feces in the no 
intervention scenario. Prevalence was computed using culture method detection limit of ≥ 2.0 log10 colony forming unit (CFU) per gram of 
feces or ≥ 100 CFU/g of feces. 

Season Cattle type Pathogen Prevalence (%)  Concentration (log10 CFU/g) 
  EHEC Median 2.5th 

percentile 
97.5th 

percentile  Median 2.5th 
percentile 

97.5th 
percentile 

Summer Fed beef O26 0.247 0.034  0.807  –7.095 –13.140 –0.942 
 Adult dairy O26 0.443 0.044 1.795  –6.816 –12.930 –0.645 
 Fed beef O45 0.058 0.011 0.197  –8.490 –14.580 –2.359 
 Fed beef O103 0.337 0.045 0.962  –6.806 –13.110 –0.567 
 Fed beef O111 0.151 0.032 0.357  –10.083 –18.030 –2.279 
 Adult dairy O111 0.441 0.181 1.075  –9.122 –17.550 –0.840 
 Fed beef O121 0.044 0.017 0.084  –12.873 –21.620 –4.126 
 Fed beef O145 0.165 0.079 0.255  –10.440 –18.550 –2.176 
 Fed beef O157 8.120 0.434 35.822  –3.761 –10.110 2.827 
 Adult beef O157 5.111 1.865 11.289  –3.718 –10.260 2.952 
 Adult dairy O157 2.122 0.061 8.875  –5.695 –12.180 0.827 
Winter Fed beef O157 6.301 1.959 17.837  –6.446 –16.330 3.552 
 Adult beef O157 2.750 0.704 7.248  –8.098 –17.870 1.810 
 Adult dairy O157 0.129 0.047 0.285  –13.200 –23.030 –3.429 
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Table 5.6 - Model predicted prevalence and concentration of E. coli O26, O45, O103, O111, O121, O145, and O157 on cattle hides in the no 
intervention scenario. Prevalence was computed using culture method detection limit of ≥ 0.7 log10 CFU/100cm2 or ≥ 5 CFU/100cm2. 

Season Cattle type Pathogen Prevalence (%)  Concentration (log10 CFU/100cm2) 
  EHEC Median 2.5th 

percentile 
97.5th 

percentile  Median 2.5th 
percentile 

97.5th 
percentile 

Summer Fed beef O26 0.610 0.101 1.805  –7.879 –14.270 –1.393 
 Adult dairy O26 0.971 0.126 3.520  –7.597 –14.060 –1.089 
 Fed beef O45 0.178 0.034 0.539  –9.162 –15.690 –2.767 
 Fed beef O103 0.794 0.142 2.121  –7.547 –14.220 –0.985 
 Fed beef O111 0.323 0.099 1.035  –10.896 –19.100 –2.765 
 Adult dairy O111 0.835 0.351 2.222  –9.941 –18.620 –1.359 
 Fed beef O121 0.093 0.038 0.186  –13.668 –22.690 –4.695 
 Fed beef O145 0.326 0.175 0.541  –11.190 –19.580 –2.724 
 Fed beef O157 11.083 0.881 42.373  –4.542 –11.230 2.366 
 Adult beef O157 7.823 3.211 15.764  –4.500 –11.350 2.490 
 Adult dairy O157 3.478 0.173 13.129  –6.479 –13.280 0.364 
Winter Fed beef O157 8.070 2.606 22.134  –7.231 –17.330 2.998 
 Adult beef O157 3.799 1.015 9.969  –8.876 –18.870 1.255 
 Adult dairy O157 0.223 0.079 0.520  –13.982 –24.030 –3.997 
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Table 5.7 - Model predicted prevalence and concentration of E. coli O26, O45, O103, O111, O121, O145, and O157 on beef carcass by 
simulated intervention scenarios. Prevalence was computed using culture method detection limit of ≥ –0.7 log10 CFU/100cm2 or ≥ 0.2 
CFU/100cm2. 

Scenario Season Cattle type Pathogen Prevalence (%)  Concentration (log10 CFU/100cm2) 

   EHEC Median 2.5th 
percentile 

97.5th 
percentile  Median 2.5th 

percentile 
97.5th 

percentile 
No Intervention Summer Fed beef O26 0.158 0.031 0.502  –11.157 –17.870 –4.405 
  Adult dairy O26 0.276 0.030 1.072  –10.849 –17.560 –4.068 
  Fed beef O45 0.041 0.008 0.135  –12.530 –19.240 –5.807 
  Fed beef O103 0.213 0.032 0.589  –10.850 –17.730 –4.007 
  Fed beef O111 0.096 0.029 0.244  –14.130 –22.570 –5.820 
  Adult dairy O111 0.274 0.109 0.667  –13.160 –22.070 –4.408 
  Fed beef O121 0.029 0.011 0.061  –16.920 –26.110 –7.751 
  Fed beef O145 0.104 0.050 0.160  –14.490 –23.070 –5.724 
  Fed beef O157 5.053 0.308 23.871  –7.800 –14.750 –0.641 
  Adult beef O157 3.091 1.144 6.292  –7.713 –14.840 –0.518 
  Adult dairy O157 1.248 0.041 5.386  –9.780 –16.820 –2.684 
 Winter Fed beef O157 4.237 1.294 12.530  –10.366 –20.640 –0.051 
  Adult beef O157 1.852 0.527 5.026  –11.965 –22.050 –1.795 
  Adult dairy O157 0.081 0.029 0.174  –17.153 –27.240 –6.939 
Current practice Summer Fed beef O26 0.135 0.023 0.425  –11.246 –18.360 –4.483 
  Adult dairy O26 0.102 0.009 0.339  –12.795 –20.330 –5.163 
  Fed beef O45 0.036 0.007 0.126  –12.790 –19.990 –5.880 
  Fed beef O103 0.209 0.028 0.586  –11.110 –18.510 –4.121 
  Fed beef O111 0.078 0.024 0.157  –14.610 –23.350 –6.071 
  Adult dairy O111 0.118 0.055 0.235  –15.070 –24.460 –5.836 
  Fed beef O121 0.027 0.012 0.052  –17.150 –26.590 –7.816 
  Fed beef O145 0.089 0.039 0.189  –15.050 –24.100 –6.198 
  Fed beef O157 3.877 0.268 13.658  –8.164 –15.930 –0.743 
  Adult beef O157 1.498 0.458 4.144  –9.710 –17.660 –1.660 
  Adult dairy O157 0.560 0.024 2.254  –11.686 –19.650 –3.701 
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 Winter Fed beef O157 4.035 1.162 11.841  –10.442 –20.730 –0.037 
  Adult beef O157 1.817 0.462 4.883  –12.063 –22.220 –1.792 
  Adult dairy O157 0.080 0.029 0.171  –17.188 –27.400 –7.023 
Full Intervention Summer Fed beef O26 0.056 0.009 0.177  –13.392 –20.930 –5.807 
  Adult dairy O26 0.100 0.007 0.307  –12.872 –20.340 –5.265 
  Fed beef O45 0.015 0.003 0.044  –15.030 –22.520 –7.212 
  Fed beef O103 0.092 0.021 0.258  –13.220 –20.890 –5.430 
  Fed beef O111 0.036 0.011 0.092  –16.580 –25.680 –7.451 
  Adult dairy O111 0.111 0.039 0.216  –15.370 –24.530 –5.926 
  Fed beef O121 0.014 0.007 0.035  –18.290 –27.800 –8.791 
  Fed beef O145 0.041 0.021 0.063  –16.480 –25.770 –7.109 
  Fed beef O157 1.435 0.045 7.264  –10.456 –18.330 –2.315 
  Adult beef O157 1.450 0.387 3.206  –9.841 –17.660 –1.798 
  Adult dairy O157 0.456 0.022 2.022  –11.995 –19.880 –3.884 
 Winter Fed beef O157 1.547 0.415 3.559  –12.798 –23.570 –1.994 
  Adult beef O157 0.824 0.199 2.615  –14.841 –25.950 –3.820 
  Adult dairy O157 0.031 0.013 0.063  –19.839 –30.790 –8.908 
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Table 5.8 - Model estimated percentage difference in prevalence of EHEC O26, O45, O103, O111, O121, O145, and O157 between the 
reference, industry standard, and the full intervention scenarios on beef carcass. Prevalence was computed using culture method detection 
limit of ≥ –0.7 log10 CFU/100cm2 or ≥ 0.2 CFU/100cm2. 

   Percent difference in estimated prevalence 

Season Cattle type Pathogen Scenario 1 vs 2  Scenario 1 vs 3 

  EHEC Median 2.5th 
percentile 

97.5th 
percentile  Median 2.5th 

percentile 
97.5th 

percentile 
Summer Fed beef O26 14.31 10.14 25.27  64.76 63.45 64.99 
 Adult dairy O26 61.24 42.60 68.38  63.80 48.41 71.40 
 Fed beef O45 12.31 6.95 19.50  62.81 49.09 67.31 
 Fed beef O103 2.08 0.59 14.50  55.70 43.53 56.24 
 Fed beef O111 19.28 11.41 35.86  60.03 53.56 62.55 
 Adult dairy O111 56.93 29.25 63.90  59.55 49.65 64.82 
 Fed beef O121 3.07 0.14 13.97  51.40 32.91 55.40 
 Fed beef O145 14.17 7.55 21.64  60.26 58.64 60.65 
 Fed beef O157 23.27 12.93 42.78  71.59 55.27 83.41 
 Adult beef O157 51.52 34.13 59.97  53.09 49.04 62.26 
 Adult dairy O157 53.46 45.80 62.43  55.15 41.80 66.16 
Winter Fed beef O157 4.77 1.39 10.21  63.50 54.69 67.92 
 Adult beef O157 1.91 0.29 3.84  54.66 46.45 56.72 
 Adult dairy O157 0.85 0.12 3.20  62.26 53.85 63.89 
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Table 5.9 - Model estimated relative difference in concentration of EHEC O26, O45, O103, O111, O121, O145, and O157 between the 
reference, industry standard, and the full intervention scenarios on beef carcass  

   Relative difference in estimated concentration (log10 CFU/100cm2) 

Season Cattle type Pathogen Scenario 1 vs 2  Scenario 1 vs 3 

  EHEC Median 2.5th 
percentile 

97.5th 
percentile  Median 2.5th 

percentile 
97.5th 

percentile 
Summer Fed beef O26 0.089 0.078 0.490  2.235 1.402 3.060 
 Adult dairy O26 1.946 1.094 2.770  2.023 1.197 2.780 
 Fed beef O45 0.260 0.073 0.750  2.500 1.405 3.280 
 Fed beef O103 0.260 0.114 0.780  2.370 1.423 3.160 
 Fed beef O111 0.480 0.251 0.780  2.450 1.631 3.110 
 Adult dairy O111 1.910 1.518 2.460  2.210 1.428 2.390 
 Fed beef O121 0.230 0.065 0.480  1.370 1.040 1.690 
 Fed beef O145 0.560 0.474 1.030  1.990 1.385 2.700 
 Fed beef O157 0.364 0.102 1.180  2.656 1.674 3.580 
 Adult beef O157 1.997 1.142 2.820  2.128 1.280 2.820 
 Adult dairy O157 1.906 1.017 2.830  2.175 1.200 3.060 
Winter Fed beef O157 0.076 0.015 0.090  2.356 1.957 2.840 
 Adult beef O157 0.098 0.003 0.170  2.778 2.028 3.730 
 Adult dairy O157 0.035 0.008 0.160  2.705 1.885 3.390 
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Table 5.10 - Sensitivity analysis showing the impact of fecal-to-hide transfer and hide-to-carcass transfer factors (10th, 50th, and 90th 

percentiles) on the prevalence and concentration of EHEC O157 and O103 on beef carcass. Prevalence was computed using culture method 
detection limit of ≥ –0.7 log10 CFU/100cm2 or ≥ 0.2 CFU/100cm2. 
    Prevalence (%)  Concentration (log10 CFU/100cm2) 

Input parameter Parameter 
distribution Value  Median 2.5th 

percentile 
97.5th 

percentile  Median 2.5th 
percentile 

97.5th 
percentile 

EHEC O157 FBS           
Fecal-to-hide transfer factor 10th –2.118  1.14 0.08 8.00  –8.78 –15.63 –1.93 
 50th –0.829  2.97 0.24 15.30  –7.39 –14.23 –0.55 
 90th 0.545  6.54 0.71 26.80  –6.08 –12.92 0.77 
           
Hide-to-carcass transfer factor 10th –4.504  1.08 0.10 10.95  –8.74 –15.64 –1.85 
 50th –3.321  2.53 0.29 18.83  –7.53 –14.42 –0.65 
 90th –2.022  5.73 0.85 30.62  –6.24 –13.14 0.64 
EHEC O103 FBS           
           
Fecal-to-hide transfer factor 10th –2.118  0.03 0.00 0.16  –12.20 –18.72 –5.67 
 50th –0.829  0.11 0.02 0.57  –10.92 –17.45 –4.39 
 90th 0.545  0.41 0.09 1.82  –9.55 –16.08 –3.02 
           
Hide-to-carcass transfer factor 10th –4.504  0.04 0.00 0.15  –12.14 –18.73 –5.56 
 50th –3.321  0.12 0.02 0.50  –10.94 –17.51 –4.37 
 90th –2.022  0.38 0.08 1.22  –9.70 –16.28 –3.12 
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Table 5.11 - Model predicted median prevalence of EHEC O26, O45, O103, O111, O121, O145, and O157 
on hides and pre-evisceration carcass and empirical data from published studies used in assessing model 
simulation accuracy. Prevalence in our model was computed using culture method detection limit of ≥ –0.7 
log10 CFU/100cm2 or ≥ 0.2 CFU/100cm2.  

  
Median prevalence [ (95% prediction interval)] 

  Hide  Pre-evisceration carcass 

EHEC Cattle type Model estimate Stromberg et al., 
2015; 2016  Model estimate Stromberg et al., 

2015; 2016 
O26 Fed beef 0.54 (0.14, 1.71) 0.42 (0.11, 1.66)  0.14 (0.02, 0.43) 0.21 (0.03, 1.40) 
O26 Adult dairy 0.35 (0.04, 1.04) 3.19 (0.50, 17.59)  0.10 (0.01, 0.34) 1.39 (0.09, 17.35) 
O45 Fed beef 0.15 (0.03, 0.51) 0.00 (0.00, 0.00)  0.04 (0.01, 0.13) 1.13 (0.47, 2.71) 
O103 Fed beef 0.07 (0.11, 1.92) 0.00 (0.00, 0.00)  0.21 (0.03, 0.59) 1.23 (0.50, 2.99) 
O111 Fed beef 0.26 (0.09, 0.62) 0.00 (0.00, 0.00)  0.08 (0.02, 0.16) 0.00 (0.00, 0.00) 
O111 Adult dairy 0.34 (0.12, 0.66) 1.00 (0.14, 6.75)  0.12 (0.06, 0.24)  
O121 Fed beef 0.09 (0.04, 0.20) 1.01 (0.09, 9.90)  0.03 (0.01, 0.05) 0.00 (0.00, 0.00) 
O145 Fed beef 0.28 (0.15, 0.62) 0.21 (0.03, 1.48)  0.09 (0.04, 0.19) 1.58 (0.74, 3.36) 
O157 Fed beef 8.63 (0.99, 26.84) 0.63 (0.20, 1.94)  3.88 (0.27, 13.66) 2.78 (1.71, 4.49) 
O157 Adult beef 3.89 (1.38, 9.54)   1.50 (0.46, 4.14)  
O157 Adult dairy 1.33 (0.08, 5.59) 6.65 (1.85, 21.22)  0.56 (0.02, 2.25) 1.00 (0.14, 6.75) 
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Figure 5.2 - Comparison of model predicted cumulative probability of hide contamination from EHEC O26, O103, O145, O157 and data 
from published field studies.  
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Chapter 6 - Dissertation conclusion 

The purpose of this research was to develop a quantitative microbial risk assessment 

(QMRA) model for the seven major Shiga toxin-producing Escherichia coli – O26, O45, O103, 

O111, O121, O145, and O157 – in beef production with a focus on the peri-harvest phase, 

identify intervention strategies that are effective at reducing risk of exposure, and generate data 

for the farm-to-fork quantitative risk assessment of the public health threat of the seven EHEC in 

the beef production chain. Integrating the results of this risk assessment with economic analysis 

will provide decision makers with the needed tool to determine the effectiveness (public health 

impact) and efficiency (economic cost) of risk reduction strategies.  

Collection of accurate and unbiased data is critical for the development of a QMRA that 

is valid for decision making. This QMRA incorporated data on the true prevalence and 

concentration of the seven STEC at the EHEC level in cattle feces with data of fecal-to-hide 

transfer and hide-to-carcass transfer to estimate the prevalence and concentration of the seven 

EHEC on cattle hides and pre-evisceration carcasses. Data of the efficacy of pre-harvest (E. coli 

O157 vaccination and use of direct fed microbial in cattle feed at production stage) and peri-

harvest (animal/hide wash during slaughter) intervention were incorporated into the QMRA to 

measure the impact of control strategies. 

Estimates of the prevalence of E. coli O157 in cattle varies by region (country), cattle 

type, type of sample, and season. Our systematic review and meta-analysis study provide 

estimates of the prevalence and concentration of E. coli O157 along the beef production chain in 

the U.S. It revealed differences in the fecal prevalence of E. coli O157 among cattle types and 

seasons, as well as decreasing prevalence and concentration of E. coli O157 on cattle hides and 

carcass surfaces from pre-evisceration to the final chilled carcass stage. Additional sources of 
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heterogeneity among studies reporting prevalence of E. coli O157 along the beef production 

chain were identified.  

Given the imperfection (possibility of misclassification of samples – false positives and 

false negatives) in the laboratory methods used in detection of the seven STEC in cattle feces, 

which produce bias estimates of true prevalence, we applied Bayesian formulation of the latent 

class analysis to estimate the diagnostic performance of three laboratory methods (culture, 

conventional PCR [cPCR], and multiplex quantitative PCR [mqPCR]) used for the detection of 

the seven STEC in the feces of cattle. This is the first time this approach was used to estimate the 

diagnostic sensitivity and specificity of culture, cPCR, and mqPCR methods for the detection of 

E.coli O157 in cattle feces which as enable us to estimate the true prevalence of the seven EHEC 

in cattle feces.  

A second order quantitative microbial risk assessment was developed, based on the data 

generated studies reported in this research, to quantify the prevalence and concentration of the 

seven EHEC on pre-evisceration beef carcasses and to evaluate the impact of peri-harvest 

interventions on the risk of carcass contamination. Simulation scenarios of current industry peri-

harvest intervention practices showed variable effectiveness in reducing STEC contamination on 

pre-evisceration beef carcass. A scenario of increased adoption of peri-harvest interventions was 

more effective at reducing EHEC contamination and the fecal-to-hide transfer and the hide-to-

carcass transfers had a large effect on prevalence and concentration of EHEC on pre-evisceration 

carcasses. The studies provide the critical initial data required for the farm-to-fork quantitative 

risk assessment of the public health threat of EHEC O26, O45, O103, O111, O121, O145, and 

O157 in the beef production chain. 
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