DYNAMIC CHARACTERISTICS OF GAS-SOLIDS FLUIDIZED BEDS USING RADIOACTIVE ISOTOPE TECHNIQUES

 byJOE JACKSON STEWART B. S., Purdue University, 1959

A THESIS

submitted in partial fulfiliment of the requirements for the degreo

MASTER OF SCIENCE

Department of Nuolear Engineering

KANSAS STATE UNIVERSITY OF AgRICULTURE AND APPLIED SCIENGE

DYNAMIC CHARACTERISTICS OF GAS-SOLIDS FLUIDIZED BEDS USING RADIOACTIVE ISOTOPE TECHNIQUES

By JOE JACKSON STEWART

Department of Nuclear Engineering-Kansas State University, Manhattan Engineering Experiment Station, Project Number 284

TABLE OF CONTENTS

INTRODUCTION. 1
Background. 1
The Bubble Phenomena 2
Application to Nuclear Reactore 3
Purpoee 4
EXPERIMENTAL. 6
General Coneideration 6
Apparatue 7
The Column and Ite Acceeeories 7
Gammaray Source and Nuclear Instrumentation 11
Matorials 14
Calibrations. 14
Calibration Technique 15
Average Density - Varianoe Calibration 20
Procedure 23
BED QUALITY AND THE STATISTICAL APPROACH. 26
Previous Inveetigatione 26
General Consideration 27
Teet of Normality 28
Statietics Derived From Sume of Powers 28
k-statistice 29
g-statistics and Standard Error of g-statietics
Derived From Samples of N Obeervatione 30
Statietice for Data Analyels. 39
Data Analysie 42

TABLE OF CONTENTS (cont.)
Index of Stabllity and Uniformity. 44
DISCUSSION AND RESULIS 49
General Observations 50
Calibrations 50
Accoptabillty of Data 50
Comparison of $0.3-s e c o n d$ and 30-second TIme Constants 52
Effect of Operational Variables Upon Bed Properties. 54
Effect of Air Velocity and Helght in Bed 54
ISU and Bed Expansion 60
Effect of Packed Bed Helght 61
Effect of Particle $S i z e$ and Bed Composition 61
Channeling 67
CONCLUSIONS. 74
AC KNOWLEDGMENT 79
LITERATURE CITED 80
LIST OF SYMBOLS. 82
APPENDIX 84
Description and Explanation of IBM-650 Computer Program for the Statistical Analysis 85
Program 85
Symbolic Representation 86
Input Data. 86
Output Data 87
Console Settings for Operation. 88
Tables 92

INTRODUCTION

Baokground

In the paet twenty years the ooncept of iluidization and the fluidized bed hae been utilized in many induetrial prooesses. The reason for the inoreaeed activity in this field undoubtedly lies in the many advantagee that the fluidized bed has over the fixed bed in certain industrial prooeesee. Leva (6) and Othmer (9) have enumerated many of the advantages and disadvantages of pluidization. The moet important of these are ae followe: Advantagee

1. Agitation as reeult of fluidization provides a more uniform temperature and solide dietribution.
2. The emaller particle eize of fluidized syetems providee less reeletance to diffusion through the particle. This le important in certain chemical reactione.
3. Fluidization permits a continuous addition and withdrawal of solids from the bed. Thie ie important in refueling operations.
4. Heat transfer coefficients from the bed to the surroundings are higher for fluidized beds with comparable flow rates.
5. High solide-gas heat tranefer ratee are prevalent.
6. In many cases the preesure drop across the bed is lees for a fluidized bed.

Dieadvant ages

1. In general, concurrent flow ie found in fluidized bede. Thie 18 unfavorable to the driving force of the chemioal reactione.
2. Collisione between ths partioles may reeult in attrition of the partiolee.
3. Erosion of the reaotor vsesel may ocour.
4. Ths rluid velooity muet be cloesly ooordinated with the properties of the particles. Thie rsstricts the vsiocity range.
5. Fluidization with gae ie only possibls whsn ths reaction forms no liquid or wax. This restricts certain hydrocarbon eynthesie.

Some of ths more important applications of fluidization are ae follows: catalytio oracking of petroleum, oatalytio reforming, ooking, catalytio oxidation of ethylene, production of alkyl chlorides, iron-ors reduction, roaeting or pyritic orse, gold oree, and limsstone, sizing and drying, ooal gasification and oarbonization, hydrocarbon eyntheels, production of phthalio anhydride, coating, airslide conveyore, aerosol filtration, nuolear reactore, reduction and fluorination of uranium, retorting of oil ehales, taxtils drying, and smoking of tobaoco.

Ths Bubbls Phsnomsna

In epite of the fact that fluidized gas-eolide prooeesse have operated sucoeesfully, sevsral of the fundamental principles involved in the gas-flow msohaniem within a fluidized bed are
relatively unexplored. It hae been ouggeoted and is generally aooepted that there exiets a two-phaee eystem in the gae-solide fluldized bed. These two phases are known as the dense phase and the bubble phase. The denee phase oonelste of the eoldd partiolee and a portion of the gae held in the intersticee of the eollde, while the bubble phase represents totally geeeoue matter. The effect ls thue one of gae by-passing the denee phaee In the form of bubblee. Thie menne that only a portion of the total gas throughput oomes into contact with the solids. Thie ie very undeeirable in many processes because it defeate one of the primary purposes of fluidization, to increaee sollds-gae contact. This lowers the officienoy of the procese.

In addition, previoue investigations have shown that the bubble phaes paesee through the bed, at a velooity several timee the superficial (gae velocity in empty column) gae velocity (1), (14). Thie factor aleo contributes an unde日irable effect in that the two types of gas are held in the reactor different lengthe of time. Thie leads to different degrees of conversion for the two phases.

These unoertainties involved in the bubble phenomena have emphaelzed the importance of the bubble formation in the flu1dized bed.

Application to Nuclear Reactors

One of the most unique applications of fluidization that hae been proposed io the fluld-bed nuclear reactor (14). The
uee of a fluid-bed core hae the dietinct advantage of oomparative eaee in addition of freeh fuel and in the withdrawal of epent fuel. Other advantagee include freedom in control rod arrangement and favorable heat transfer characterietice.

The Texaco Development Corporation (14) has designed a gaefluldized bed nuclear reactor. In thie deelgn uranium oxide or uranlum carbide can be used ae a fuel and hydrogen or helium ae the fluldizing gae.

The Westinghouse Electric Corporation (14) hae reoently proposed an organic-moderated, fluldized-bed reactor uelng $1 / 8-$ inch-diameter uranium oxide pellets and a liquid organio ooolantmoderator. The organic fluld would flow upward through the bed of uranium oxide pellete. Control would be achieved by regulating the bed expansion with the flow. rate of organic coolant.

In nuclear reactors the uniformity of fluldization le quite important, and probably eesential. The reeult of bubble formation would be the development of hot spote and thermal stresee日 when the coolant gae by-paesed the eolide. In addition, other uncertainties accompanying bubble formation could have undesirable effecte upon the control of the reactor by bed expension and/or contraction.

Purpoee

Although a few research workere have made studiee of bubble formation in gae-solids fluidized beds, there still exiete an area of uncertainty which ehould be explained. Even,though it

Is widely accepted that gas by-paseing is charaoteristio of gaeoolide fluidized ejeteme, it would be desirable to minimize the effeot of thie inherent property.

Doteon (2), uelng the capaoitance probe method in a statistically deelgned experiment, found that the moet important variablee affeoting denelty fluotuations were gas velooity, height In bed, and particle eizo.

Moree and Ballou (B), Shueter and Klellak (12), Doteon (2) and Romero (ll) have all defined a type of uniformity or quality Index in order to investigate the bubble effect. Baumgarten (1) did not present a quality index ae euch, but presented data on elve and frequency of bubblee as function of dietanoe from the distributor for several operating variables. A more detailed description of these investigatione.will be diecussed later. In each of these casee relatively little hae been done with the defined index as a funotion of the operating variablee and bed characteristics. It wae the purpose of this investigation to introduce a statistical approach in defining an index of etabilitJ and uniformity, and in addition, to investigate the effect of gas velocity, height in bed, particle eize, and paoked bed height upon thie index.

EXPERIMENTAL

Genaral Consideration

Density fluctuations in the two-phese, ges-solide, fluidized bed were determined using the radiation attenuation method described by Petrick and Swanson (10), and Groshe (4). A radioactive γ-ray source provided a beam of γ-radiation which wae directed through the center of the fluidizing column. Deneity fluctuations were determined by detecting, measuring, and recordIng the portion of Y -radiation which was not attenuated, the relation between density and attenuation being,

$$
I / I_{0}=e^{-\mu d}
$$

where I / I_{0} is the fraction of photons remaining in the beam after passage through an absorber of thickness d. The innear absorption coefficient, μ, is given by

$$
\mu=\left(N_{\mathbf{a}} / M\right) \sigma_{T} \rho
$$

where N_{a} is Avagadro's number, M is the gram-atomio weight, ρ is the deneity of the absorbing medium, and σ_{T} is the microsoopio oroes eection.

Dry air was used ae the fluidizing medium, while spherioal glase beads were used in the bed. The glaes beade were of two sizes, 40-45 mesh and 80-100 mesh.

The variable日, euperfioial air velocity, height in bed, particle size, and packed bed height, were inveotigated. Three alr velooitiee were used; 30,60 , and $90 \mathrm{ft} / \mathrm{min}$. Nine partiole mixturee ranging from 100 percent $40-45$ meeh to 100 peroent 80 100 mesh, and packed bed heights of 3,6 , and 9 inohee were inveetigated on the 100 percent particle mixturee. Complete vertical traverees of the fluidized bed were made in each caee.

A detalled deeoription of the experimental portion of this investigation followe.

Apparatue

A photograph of the equipment ie ehown in Fig. 1 while a schematic diagram is presented in Fig. 2. The equipment may be divided into two categories; (1), the column and ite aooeesoriee, and (2), the gamma-ray eource and nuclear inetrumentation for detection, meaeurement, and recording of the tranemitted gammaray beam.

The Column and Its Accessoriee. A 24-inch-high, 3.97-inohdiameter, lucite column was used. The oolumn wae oovered at the top with a fine ecreen to permit the exhaust of the fluidizing air, but to rotain any particlee that might have boen fluidized ae high ae the top of the column. The lower flange of the oolum wae equipped with a preeeure tap for measuring the pressure drop over the bed. Other tape were located every four inches up the column; however, none of these were used in thie work. The lower flange of the column wae bolted directly to the distributor

Fig. I. Photograph of column and associated equipment.

Fig. 2. Schematic diagram of column, accessories, and instrumentation.
assembly.
Aooessoriee to the column inoluded the distributor assembly for distributing the air, manometers for measuring the pressure drops over the oolum and aoross the distributor, an alr supply to provide dry air at a known velooity, and a jaok for raising and lowering the oolumn so that different heights in the bed could be investigated. Theee aocessories will be discussed in this order.

Distributor Assembly. The air was distributed by the distributor assembly ehown in Fig. 3. The air first passed through an B-inch calming section of $\frac{1}{4}$-inoh oeramio spheres. Above the bed of ceramio spheres, the air wae distributed by a cenvas filter oloth positioned between two 20-mesh wire screene. This provided for a fine dispereion of air. The two wire eoreens and filter cloth were positioned between the lower flange of the column and a second lucite flange similar to the lower flange of the colum. The pressure drop across the dietributor was taken from the preesure tape in theee two flanges.

Manometers. A $30-1 n c h$ manometer using water as the manometer fluld was used to measure the pressure drop over the column. A 20-inch, U-shaped manometer using a manometer oil with epecifio gravity of 0.818 was used for meaeuring the preseure drop across the distributor.

Air Supply. A compreesed-air line from the Kaneas State University Physical Plant provided air for fluidizing. The flow rate of air was measured by using a rotameter. A stainlees steel float was used for air velocities of $90 \mathrm{ft} / \mathrm{min}$. or greater,
while an aluminum float was ueed for velocities below $90 \mathrm{ft} \cdot / \mathrm{min}$. The rotameter was calibrated at various pressure readinge by meane of Anemostat Corporation of America Anemotherm. The Anemotherm had been previously oalibrated with a wet-test meter. The alr was dried by passing it through a eilica-gel air dryer.

Jack Assembly. The column-distributor assembly wae mounted on an iron frame which was ralsed and lowered by means of a hand jack making it possible to investigate various heights in the column.

Gamma-ray Source and Nuclear Instrumentation. Two gammaray souroes were used to provide a greater intensity, thereby increasing the oount rate and improving the statietics. Theee two oources were a flve millicurie Ra^{226} source and a twentyfive millicurie Cs ${ }^{137}$ source. The two eources were placed in a 5/8-inch hole drilled lengthwise in a $2 \times 4 \times 8-1$ noh lead brick. The 5/8-1nch hole served as a collimator for the γ-radiation from the two sourcee. For added shielding other lead bricks were placed around the brick containing the source. The beam was direoted through the center of the oolumn. On the opposite side of the column a $7 / 16-1 n c h$ diameter collimator tranemitted the beam to the ecintillation probe which was positioned directly behind the collimator. This collimator consisted of two bricke with the hole drilled through the 2-inch width of the bricks. Thle was done so that the 8-inch side of the bricke could be used to ehleld the probe from etray radiation. A close-up view of the eource, collimators, column, and probe ie ehown in Fig. 7. Instrumentation for the measurement, detection, and the

Fig. 3. Distributor assembly.

TO THE
TIME-CONSTANT

CIRCUIT

Fig. 4. Bucking-voltage circuit.
recording of the transmitted gamma-radiation inoluded a scintillation probe, power supply, modified count rate meter, bucking voltace supply, and recorder. These instruments will be discussed in this order.

Scintillation Probe. The probe, a Model DP3, B-J Electronics, Borg-Warner Corporation, was used without modification. This instrument consisted of a Type 704, thallium-activated sodium iodide scintillation crystal, a Type 6292, Dumont photomultiplier tube, and a one-tube (6AK5) preamplifier. The probe was operated at 1200 volts.

Power Supply. A John Fluke Mfg. Co. Model 400BDA highvoltage power supply was used for operation of the scintillation probe.

Modified Count Rate Meter. The scintillation probe output was fed into a B-J Electronics Model DMl-D count rate meter that had been slightly modified. The rate meter was equipped with five scale multiplication constants; $10,30,100,300$, and 1000. After adding a $0.3-s e c o n d$ and a l-second time constant, the meter included five time constants, $0.3,1,3,10$, and 30 seconds. Only the 0.3-second and 30-second time constants were used. Either the 300 or 1000 scale multipliers could have been used; however, the 300 was chosen since it made the measurement more sensitive, i.e., the same deviation on the 300 scale appeared 3.3 times as great as on the 1000 scale. In choosing the 300 scale multiplier it bacame necessary to modify the rate meter. With the high activity used, it was necessary to apply a bucking voltage in order that the CRM would road on-scale, and so that
the full range of density fluctuatione could be covered. To the input of the vacuum-tube voltmeter cirouit of the CFM, the bucking voltage was added. Thie bucking voltage acted as a negative bias on the input grid of the voltmeter circuit. (Fig. 4).

Recorder. This instrument, an Esterline-Angus Model AW graphic ammeter wae ueed without modification. Tho recorder wae connectod in seriee with the CRM.

Materials

Spherical glass beads obtained from the Minnesota Mining and Manufacturing Co. were used exclusively. The beade were of two alzes, 40-45 mesh and 80-100 mesh. The $40-45 \mathrm{mesh}$ beads ranged in size from 0.0138 inchee to 0.0164 inchee in diameter while the $80-100$ mesh beads ranged in size from 0.0049 inches to 0.0070 inches in diameter. The material of the beads had a density of $2.47 \mathrm{~g} \cdot / \mathrm{cc}$. The beads were reclaselfied and ovendried each time the bed was changed.

Calibratione

Before any ueeful experimental reeults could be obtained, It wae neceesary to calibrate the instruments so that the radiation attenuation technique would be accurate. In using the 300 scale multiplier of the count rate meter, it was necee日ary to calibrate the deneity ve. recorder reading for several different bucking voltages. This was done eo that the full range of den-
sities, i.e., empty bed to packed bed, could be covered without the CRM going off scale. The calibration curves were made to overlap to eome extent.

Calibration Technique. Spacers similar to that shown in Fig. 5 were used in making the average denelty-recorder reading calibration. These spacere were designed to fit snugly into the column. The column was filled with glass beads of a known packed density. Spacers of various width were then inserted perpendicular to the γ-ray baam. The spacers were made from very thin sheet metal and had inside air-gap widths of $0.25,0.50,0.75$, $1.00,1.25,1.50$, and 2.00 inches. The process was aleo reversed, 1. e., beads were put inside the spacers, and the area surrounding the spacers was empty. Each time the γ-ray beam had to pass through the walls of the column. The wall thickness was constant; therefore, the portion of the beam attenuated by the column could be disregarded since it was the same for all cases. When spacers were inserted, the beam was partially attenuated by two thicknessee of the sheet metal. It was therefore necessary to position two thicknosses of shoet metal in front of the collimator opening when spacers were not used. Figures 6 and 7 illustrate these two eituations. The density corresponding to a particular spacer was calculated from the following relatione. (Density packed) $\times\left(\frac{R_{c}-R_{s}}{R_{c}}\right)$, when the beads were outside the epacer,

Fig. 5. Calibration spacer.

Fig. 6. Calibration technique with spacer inserted.

Fig. 7. Bed arrangement with spacer out.
and
(Deneity packed) $x\left(\frac{R_{g}}{R_{0}}\right)$, when the beads were inside the spacer.
The packed density of the bed was $1.52 \mathrm{~g} \cdot / \mathrm{cc}$.; R_{c}, the column width, was 3.97 inches; and R_{s}, the width of the spacer, corresponded to the spacer used. In ueing these relations it was assumed that the density of air was negligible, and that the thickness of the spacer wall was negligible. These assumptions were quite satisfactory for the purposes of this investigation. The calculated densities corresponding to various spacers are presented in Table 1.

Table 1. Densities corresponding to various spacers.

Spacer	: Calculated density (g./oc.)
Densely packed bed	1.520
0.25-inch, beads out	1.424
$0.50-$ inch, beads out	1.329
0.75-inch, beads out	1.233
1.00-1nch, beads out	1.137
1.25-inch, beads out	1.041
1.50-1nch, beads out	0.946
2.00-1nch, beads out	0.754
2.00-1nch, beads in	0.766
1.50-1nch, beads in	0.574
1.25-inch, beads in	0.479
1.00-1nch; beads in	0.383
0.75-inch, beads in	0.287
$0.50-1 \mathrm{nch}$, beads in	0.191
0.25-inch, beads in	0.096
Empty.column	0.0

In addition, the calibration was checked before each experimental mun was made.

The denelty-recorder reading callbration wae made using both the $0.3-s e c o n d$ and the $30-s e c o n d t i m e ~ c o n s t a n t a . ~ T h e ~ 30=$ seoond time conetant trace was relatively constant and could be read directiy from the atrip chart; however, the 0.3-8econd calibration data showed considerable fluctuation and vere averaged over 40 readings to give a large ampling wich was required by the statistical approach.

During this investigation the 25 millicurio cesium source was replaced because it was suspected of leaking. Therefore, the equipment was recalibrated. The two eets of calibration curves are prosented in Figure 8 and 9 .

Averano Density Varianoe Calibration. A sooond type of calibration was made. This was done for the atatiatioal ap= proach. After the density-reoorder reading calibration was made, the 0.3 -gecond oalloration data were used to caloulate the variance (etandard deviation equared) In apparent density for paoked bede of average deneities correaponding to the various spacers. These fluctuatione in the apparent deneity were due to the etatistical nature of radioactive decay. A linear regression technique was used to fit the best stralght line through the calibration pointa. The relation used was

$$
\sigma_{p}^{2}=A+B \bar{P}
$$

where A was the variance intercept and B was the slope of the

Fig. 8. Density - recorder reading calibration (\#|).

Fig. 9. Density - recorder reading calibration (\#2).
line. This type of calibration was also repeated when the 25 millicurie cosium source was replaced. The constants A and B are tabulated below, and the curves are ahown in Figures 10 and 11.

Table 2. Conetants A and B from linear regression.

	0.0004288	0.0006108
Calibration \#1 Runs 1-8		
Calibration \#2 Runs 9-38	0.0003812	0.0004915

Procedure

The instrumentation was set, and the calibration was checked. The column was loaded with the desired particle mixture. The air velocity was set, and a vertical traverse of the fluidized bed was made. Data were generally taken at every half-inch in the bed, starting at one inch above the distributor. Near the top of the fluidized bed, data were taken every quarterInch in orier to better define the expended bed. The data were taken on both the $0.3-8 e c o n d$ and the $30-s e c o n d$ time constants, and the bucking voltage appropriate for the particular density range. The recorder was allowed to mun for about one minute on the $0.3-s e c o n d$ time constant so that a large sampling (forty) of densities could be obtained. All electronic equipment remained on 24 hours per day to provide stability in the system.

Fig. II. Average density - variance calibration (\#2).

BED QUALITY AND THE STATISTICAL APPROACH

Previoue Investigatione

Short time-constant data for determining bed quality have been treated in numerous manner by other research workers. Most of these inveetigators have defined a quality index based upon the percent deviation in some bed property divided by the bubble frequency. Morse and Ballou (8) used the capacitance probe method for determining bed uniformity. They defined an index of uniformity as percent deviation in density divided by the bubble frequency. Dotson (2) also used the capacitance probe method and defined a non-unifomity index as the variation in density divided by the average density expreesing the result ae a percentage. Shuster and Kisliak (12) defined the uniformity Index as the average pressure drop divided by the bubble frequency. All of these investigators used an average value from which deviations could be measured. Recently Romero (11), ueing a hot-wire anemometer, defined a quality index as a constant times the sum of peak side lengths divided by the frequency cubed. Thie was actually an average area divided by frequency, and therefore, similar to the definition of Morse and Ballou, and Shuster and Kisliak.

Morse and Ballou, and Dotson by inserting a capacitance probe into the fluidized bed were creating an additional disturbance'to which extent was indeterminable.

With the exception of Dotson, who did not use bubble frequency, it was generally necessary for these investigators to decide which deviations were bubbles and which were not, i.e., equipment variations, etc. This made their determinations less quantitative because of the uncertainty involved.

It is supeested here that a more reasonable and necessary approach would be statistical in nature. The statistical approach was chosen because the methods used in statistics are specifically prescribed for observational data. In addition, the statietical treatment of data is widely accepted. In choosing the statistical approach, it was kept foremost in mind that the ultimate goal was in defining an index of stability and uniformity for the fluidized bed. It was also desirous to include a criterion by which data could be judged for their acceptability.

General Consideration

The works of Fisher (3) and Snedecor (13) proved quite valuable in outlining this statietical approach.

One of the most practical uses of etatistics is in the study of variation. Thie is extremely convenient because this is the situation present in observing a fluidized bed, i. e., the change or variation from packed to fluidized. However, before any tests of variance can be used on a sampled population, it must be proved that the sample is distributed in the same distribution upon which the test of variance is based. The
simplest and beet known distribution is the normal dietribution. All of the statistics used in this study of bed uniformity and stability tend to be normally distributed for large eamples. From thie standpoint, the firet step in the deta anelysis is to ehow that the sample $1 e$ normally distributed.

Test of Normality

Two types of departure from normallty are frequently considered. These are asymmetry or skewness and kurtosis. In the first case, the data are asymmetrically distributed, 1. e., the mean and median are differont. The second type of deperture from normality, kurtosis, Le characterized by elther an excese or deficit of items near the center of the range. These departures are lllustrated in Figure 12. In making the tests for departure from normality the third and fourth powers of the deviations from the mean are used, the third power for asymmetry, the fourth power for kurtoels.

The relationships used in testing for these deperturee from normality follow.

Stat Istice Derived From Sums of Powers. If x_{1} io the varlate of which N observations are made, the sume of powers of the observed values are:

$$
\begin{array}{ll}
s_{1}=\sum_{i=1}^{N}\left(x_{1}\right) & \theta_{2}=\sum_{i=1}^{N}\left(x_{1}{ }^{2}\right) \\
s_{3}=\sum_{i=1}^{N}\left(x_{i}^{3}\right) & s_{4}=\sum_{i=1}^{N}\left(x_{1}^{4}\right),
\end{array}
$$

and the average or man is given by

$$
\begin{equation*}
\bar{x}=\frac{{ }^{B} 1}{N} . \tag{1}
\end{equation*}
$$

The sums of paws of the deviations from the mean are given by

$$
\begin{align*}
& S_{2}=s_{2}-\frac{1}{N} s_{1}{ }^{2} \tag{2}\\
& S_{3}=s_{3}-\frac{3}{N} s_{2} s_{1}+\frac{2}{N^{2}} s_{1}^{3} \\
& S_{4}=s_{4}-\frac{4}{N} s_{3} s_{1}+\frac{6}{N^{2}} \theta_{2} s_{1}^{2}-\frac{3}{N^{3}} s_{1}^{4}
\end{align*}
$$

k -statistic. The k-statistics needed ass bass upon the above relations and ares given by

$$
\begin{aligned}
& k_{1}=\frac{1}{N} s_{1} \\
& k_{2}=\frac{1}{N-1} s_{2} \\
& k_{3}=\frac{N}{(N-1)(N-2)} s_{3}
\end{aligned}
$$

$$
k_{4}=\frac{N}{(N-1)(N-2)(N-3)}\left[(N+1) S_{4}-3 \frac{N-1}{N} S_{2}^{2}\right] .
$$

g-statistics and Standard Error of g-atatistice Derived From Samples of \mathbb{N} Observations. The two measures of departure from normality are determined from the g-statistice. The getatietics are functions of the k-statietice and are given by

$$
\begin{array}{ll}
g_{1}=\dot{k}_{3} / k_{2}^{3 / 2} & \text { for asymmetry or skewnees, and } \\
g_{2}=k_{4} / k_{2}^{2} & \text { for kurtoele. }
\end{array}
$$

The sampling varlance or standard error squared of E is a function of only the number of observational data and is given by

$$
\begin{aligned}
& \sigma_{g_{1}^{*}}^{* 2}=\frac{6 N(N-1)}{(N-2)(N+1)(N+3)} \text { for } g_{1}, \text { and } \\
& \sigma_{g_{2}^{* 2}}^{* 2}=\frac{24 N(N-1)^{2}}{(N-3)(N-2)(N+3)(N+5)} \text { for } g_{2} .
\end{aligned}
$$

The g-statistic is normally distributed about its mean which is zero. A positive g_{1} indicatee a skewness such that the mean ie greater than the median, while a negative g_{1} indicatee the opposite. A positive g_{2} indicates an excees of items near the mean and far from it, with a correeponding deficit in between. A negative g_{2} indicates a flat-topped distribution. The ultimate criterion for deciding whether or not the departure from normality is eignificant is based upon the ratio,

a. Skewness. A, mean greater than median (g, positive); B, median greater than mean (g, negative); N, normal curve ($g_{1}=0$).

b. Kurtosis. A, g_{2} pasitive; B, flat-topped distribution $\left(g_{2}\right.$ negative); N, normal curve ($\left.g_{2}=0\right)$.

Fig. 12. Departures from normality.

$$
y=\frac{\bar{x}-m}{\sigma_{x}^{j t}}
$$

where \vec{x} is the average value of the statistic investigated, and m is the median. The relation becomes

$$
y=\frac{g-0}{\sigma_{g}^{3}}
$$

since the median for the g-etatietic is zero. The commonly accepted criterion for significanoe is the 5 percent level. The value for y at the 5 percent level 1s 1.960 . This means that the departure from normality is not significant unless the value of g is more than 1.960 times the standard error, σ_{g}^{*}, of the g-statistio.

These relations were used in showing that the observational data from the fluldized bed were of the normal form. Fifty data points were taken from each of six bed oonditions. Two of these were on the packed bed, while the remaining four were from beds fluidized with low and high gas velocities. It was expected that the static bed data would be normally distributed since it is known that radioactive decay follows the normal distribution. However, there was eome question as to whether the fluidized bed data would be normally distributed. The results of these tests for normality are given in Tables 3-8. All tests resulted in values of y well below the critical value of 1.960 , indicating that the sampled populations were normally dietributed and could be analyzed statistically.
Table 3. Normality test for packed bed.

N	x_{1}	$x_{1}{ }^{2}$	x_{1}^{3}	$x_{1}{ }^{4}$	N	x_{1}	$x_{1}{ }^{2}$	x_{2}^{3}	$x_{1}{ }^{4}$
1	8.0	64.00	512.000	4096.0000	33	4.0	16.00	64.000	256.0000
2	8.0	64.00	512.000	4096.0000	34	5.0	25.00	125.000	625.0000
3	9.0	31.00	729.000	6561.0000	35	9.0	81.00	729.000	6561.0000
4	2.5	6.25	15.625	39.0625	36	6.0	36.00	216.000	1296.0000
5	8.6	73.96	636.056	5470.0816	37	7.0	49.00	343.000	2401.0000
6	8.6	73.96	636.056	5470.0816	38	3.0	9.00	27.000	81.0000
7	6.5	42.25	274.625	1785.0625	39	6.0	36.00	216.000	1296.0000
8	6.0	36.00	216.000	1296.0000	40	11.2	125.44	1404.928	15735.1936
9	5.2	27.04	140.608	731.1616	41	4.5	20.25	91.125	410.0625
10	6.0	36.00	216.000	1296.0000	42	1.3	1.69	2.197	2.8561
11	10.0	100.00	1000.000	10000.0000	. 43	4.8	23.04	110.592	530.8416
12	8.3	68.84	571.787	4745.8321	44	9.0	81.00	729.000	6561.0000
13	4.0	16.00	64.000	256.0000	45	6.0	36.00	216.000	1296.0000
14	8.0	64.00	512.000	4096.0000	46	3.2	19.84	32.768	104.8576
15	6.2	38.44	238.328	1477.6836	47	6.2	38.44	238.328	1477.6336
16	12.1	146.41	1771.561	21435.8881	48	5.2	27.04	140.608	731.1616
17	10.0	100.00	1000.000	10000.0000	49	5.2	27.04	140.608	731.1616
18	4.0	16.00	64.000	256.0000	50	2.1	4.41	9.261	19.4481
19	9.0	81.00	729.000	6561.0000					$\begin{array}{r} 173320.7355 \\ -518648.2100 \\ 621019.7000 \\ -270737.6700 \end{array}$
20	8.0	64.00	512.000	4096.0000	s	325.9	$\begin{array}{r} 2436.27 \\ -2124.22 \end{array}$	$\begin{array}{r} 19892.923 \\ -47638.820 \\ 27691.280 \end{array}$	
21	6.0	36.00	216.000	1296.0000					
22	7.5	56.25	421.875	3164.0625					
23	7.8	60.84	474.522	3701.5056					
24	6.0	36.00	216.000	129.6.0000					
25	5.0	25.00	125.000	625.0000	S		312.05	-54.62	4954.56
26	4.2	17.64	74.088	311.1696		6.52			
27	10.1	102.01	1030.301	10406.0601	k		6.37	1.16	-15.00
28	8.0	64.00	512.000	4096.0000					
29	7.3	53.29	389.017	2839.8241	8	0.07	-0.37		
30	1.2	1.44	1.728	2.9736	σ_{g}^{*}	0.3366	660.6619		
31	6.0	36.00	216.000	1296.0000					
32	10.1	102.01	1030.301	10406.0401	8 7	0.21	-0.56		

Table 4. Normallty test for packed bed.

N	x_{1}	$x_{1}{ }^{2}$	$x_{1}{ }^{3}$	x_{1}^{4}	N	x_{1}	$x_{i}{ }^{2}$	x_{1}^{3}	x_{1}^{4}
1	6.0	36.00	216.000	1296.0000	33	8.1	65.61	531.441	4304.6721
2	6.0	36.00	216.000	1296.0000	34	6.0	36.00	216.000	1296.0000
3	7.5	56.25	421.875	3164.0625	35	4.2	17.64	74.088	311.1696
4	6.0	36.00	216.000	1296.0000	36	5.0	25.00	125.000	625.0000
5	9.9	98.01	970.299	9605.9601	37	10.2	104.04	1061.208	10824.3216
6	3.0	9.00	27.000	81.0000	38	7.1	50.41	357.911	2541.1681
7	12.5	156.25	1953.125	24414.0625	39	7.3	53.29	389.017	2839.8241
8	8.0	64.00	512.000	4096.0000	40	10.0	100.00	1000.000	10000.0000
9	9.0	81.00	729.000	6561.0000	41	10.0	100.00	1000.000	10000.0000
10	9.3	86.49	804.357	7480.5201	42	6.0	36.00	216.000	1296.0000
11	9.0	81.00	729.000	6561.0000	43	7.0	49.00	343.000	2401.0000
12	12.0	144.00	1728.000	20736.0000	44	11.3	127.69	1442.897	16304.7361
13	5.3	28.09	148.877	789.0481	45	7.7	59.29	456.553	3515.3041
14	4.0	16.00	64.000	256.0000	46	5.0	25.00	125.000	625.0000
15	9.0	81.00	729.000	6561.0000	47	6.2	38.44	238.328	1477.6336
16	7.1	50.41	357.911	2541.1681	48	4.2	17.64	74.088	311.1696
17	8.0	64.00	512.000	4096.0000	49	10.0	100.00	1000.000	10000.0000
18	6.0	36.00	216.000	1296.0000	50	8.0	64.00	512.000	4096.0000
19	6.0	36.00	216.000	1296.0000					
20	4.0	16.00	64.000	255.0000	s	375.3	3119.03	27923.853	264533.5007
21	6.0	36.00	216.000	1296.0000			-2817.00	-70234.32	-838385.67
22	9.2	34.64	778.688	7163.9296				42288.83	1054357.57
23	2.3	5.29	12.167	27.9841					-476129.95
24	10.0	100.00	1000.000	10000.0000					
25	8.0	64.00	512.000	4096.0000	S		302.03	-21. 64	4375.45
26	12.3	151.29	1860.867	22888.6641					
27	7.5.	56.25	421.875	3164.0625	k	7.51	6.16	-0.46	-20.38
28	9.0	81.00	729.000	6561.0000					
29	7.0	49.00	343.000	2401.0000	g	-0.03	-0.54		
30	3.0	9.00	27.000	81.0000					
31	10.1	102.01	1030.01	10406.0401	σ_{g}^{*}	0.336	660.66		
32	10.0	100.00	1000.000	10000.0000	\%	-0.09	-0.82		

Table 5. Normality test for fluidized bed with low gas flow rate.

N	x_{1}	$x_{1}{ }^{2}$	$x_{i}{ }^{3}$	$\mathrm{x}_{1}{ }^{4}$	N	x_{1}	$x_{1}{ }^{2}$	$x_{1}{ }^{3}$	$x_{1}{ }^{4}$
1	12.0	144.00	1728.000	20736.0000	33	10.0	100.00	1000.000	10000.0000
2	12.3	151.29	1860.867	22888.6641	34	4.2	17.64	74.088	311.1696
3	13.6	184.96	2515.456	34210.2016	35	6.0	36.00	216.000	1296.0000
4	4.0	16.00	64.000	256.0000	36	6.3	39.69	250.047	1575.2961
5	2.0	4.00	8.000	16.0000	37	7.0	49.00	343.000	2401.0000
6	5.3	28.09	148.877	789.9481	38	3.2	10.24	32.768	104.2576
7	9.0	81.00	729.000	6561.0000	39	9.2	84.64	778.688	7163.9296
8	4.2	17.64	74.088	311.1696	40	7.3	53.29	389.017	2839.8241
9	6.0	36.00	216.000	1296.0000	41	5.0	25.00	125.000	625.0000
10	9.0	81.00	729.000	6561.0000	42	12.0	144.00	1728.000	29736.0000
11	7.0	49.00	343.000	2401.0000	43	10.0	100.00	1000.000	10000.0000
12	10.0	100.00	1000.000	10000.0000	44	5.5	30.25	166.375	915.0625
13	5.2	27.04	140.608	731.1616	45	6.0	26.00	216.000	1296.0000
14	8.0	64.00	512.000	4096.0000	46	8.0	64.00	512.000	4096.0000
15	11.8	139.24	1643.032	19387.7776	47	2.3	5.29	12.167	27.9841
16	2.3	5.29	12.167	27.9841	48	9.0	81.00	729.000	6561.0000
17	8.2	67.24	551.368	4521.2176	49	8.5	72.25	614.125	5220.0625
18	11.1	123.21	1367.631	15180.7041	50	8.5	72.25	614.125	5220.0625
19	8.0	64.00	512.000	4096.0000					
20	4.0	16.00	64.000	256.0000	s	372.1	$\begin{array}{r} 3254.03 \\ -2769.17 \end{array}$	$\begin{gathered} 31341.403 \\ -72649.47 \\ 41216.30 \end{gathered}$	$\begin{aligned} & 323562.0191 \\ & -932970.80 \\ & 1081314.77 \\ & -460097.55 \end{aligned}$
$\cdot 21$	6.0	36.00	216.000	1296.0000					
22	0.0	00.00	000.000	0000.0000					
23	10.0	100.00	1000.000	10000.0000					
24	13.5	182.25	2460.375	33215.0625	S		$484 \cdot 86$	-91.77	11808.44
25	8.7	75.69	658.503	5728.9761					
26	5.3	28.09	148.877	789.0481		7.44	9.90		
27	4.2	17.64	74.088	311.1696	k			-1.95	-40.22
28	6.3	39.69	250.047	1575.2961					
29	8.0	64.00	512.000	4096.0000	g	-0.06	-0.41		
30	8.3	68.89	571.787	4745.8321	σ_{g}^{*}	0.3366	$66 \quad 0.6619$		
31	9.3	86.49	804.347	7489.5201					
32	12.0	144.00	1728.000	20736.0000		-0.18	-0.62		

Table 6. Normality test for fluidized bed with low gas flow rate.

N	x_{1}	$x_{1}{ }^{2}$	$\mathrm{x}_{1}{ }^{3}$	x_{1}^{4}	N	x_{1}	$x_{1}{ }^{2}$	$x_{1}{ }^{3}$	xi_{1}^{4}
1	4.5	20.25	91.925	410.0625	33	8.7	75.69	658.503	5728.9761
2	8.0	64.00	512.000	4096.0000	34	2.0	4.00	8.000	16.0000
3	7.2	51.84	373.248	2687.3856	35	3.8	14.44	54.872	208.5136
4	6.0	36.00	216.000	1296.0000	36	11.0	121.00	1331.000	14641.0000
5	5.5	30.25	166.375	915.0625	37	7.0	49.00	343.000	2401.0000
6	8.0	64.00	512.000	4096.0000	38	13.0	169.00	2197.000	28561.0000
7	8.0	64.00	512.000	4096.0000	39	2.0	4.00	8.000	16.0000
8	9.8	96.04	941.192	9223.6816	40	7.5	56.25	421.875	3164.0625
9	3.0	9.00	27.000	81.0000	41	6.2	38.44	238.328	1477.6336
10	7.5	56.25	421.875	3164.0625	42	6.8	46.24	314.432	2138.1376
11	6.0	36.00	216.000	1296.0000	43	10.0	100.00	1000.000	10000.0000
12	14.2	201.64	2863.288	40658.6896	44	12.0	144.00	1728.000	20736.0000
13	10.0	100.00	1000.000	10000.0000	45	11.5	132.25	1520.875	17490.0625
14	9.0	81.00	729.000	6561.0000	46	14.0	196.00	2744.000	38416.0000
15	8.7	75.69	658.503	5728.9761	47	10.0	100.00	100C.000	10000.0000
16	1.0	1.00	1.000	1.0000	48	16.0	256.00	4096.000	65536.0000
17	4.0	16.00	64.000	256.0000	49	10.0	100.00	1000.000	10000.0000
18	11.0	121.00	1321.000	14641.0000	50	12.5	156.25	1953.125	24414.0625
19	4.0	16.00	64.000	265.0000					
20	8.0	64.00	512.000	4096.0000	s	41C. 6	3966.62	42568.604	493720.2938
21	8.7	75.69	658.503	5728.9761			-3371.85	-97721.65	-1298293. 37
22	8.0	64.00	512.000	4096.0000				55379.22	1604980.38
23	4.8	23.04	110.592	530.8416					- 682161.21
24	5.0	25.00	125.000	625.0000					
25	5.2	27.04	140.608	731.1616	S		594.77	226.17	18246.09
26	8.5	72.25	614.125	5220.0625			594.77	226.17	-2.6.0.
27	11.0	121.00	1331.000	14641.0000	k	8.21	12.14	4.81	-49.52
28	6.0	36.00	216.000	1296.0000					
29	15.0	225.00	3375.000	50625.0000	g	0.11	-0.34		
30	8.8	77.44	681.472	5996.9536					
31	9.2	84.64	778.688	7163.9296	$\sigma_{\mathrm{g}}{ }^{*}$	0.336	660.661		
32	13.0	169.00	2197.000	28561.0000	\%	0.33	-0.51		

Table 7. Normality test for fluidized bed with high gas flow rate.

N	x_{1}	$x_{1}{ }^{2}$	$x_{1}{ }^{3}$	$\mathrm{x}_{1}{ }^{4}$	N	x_{1}	$x_{i}{ }^{2}$	$x_{1}{ }^{3}$	$x_{i}{ }^{4}$
1	23.0	529.00	12167.000	£79841.0000	33	11.0	121.00	1331.000	14641.0000
2	14.0	196.00	2744.000	$38 \leqslant 16.0000$	34	13.0	169.00	2197.000	28561.0000
3	16.0	256.00	4096.000	65536.0000	35	20.0	400.00	8000.000	160000.0000
4	17.6	309.76	5451.776	95951.2576	36	15.0	225.00	3375.000	50625.0000
5	10.0	100.00	100C.000	10000.0000	37	22.5	506.25	11390.625	256289.0625
6	12.0	144.00	1728.000	29736.0000	38	16.0	256.00	4096.000	65536.0000
7	24.0	576.00	13824.000	331776.0000	38	13.2	174.24	2299.958	30359.5776
8	9.7	94.09	- 912.673	8852.9281	40	21.7	470.89	10218.313	221737.3921
9	13.5	182.25	2460.375	33215.0625	41	24.0	576.00	13824.000	331776.0000
10	10.2	104.04	1061.208	10824.3216	42	16.0	256.00	4096.000	65536.0000
11	20.0	400.00	8000.000	160000.0000	43	22.0	484.00	10648.000	234256.0000
12	10.0	100.00	1000.000	10000.0000	44	15.8	249.64	3944.312	62320.1296
13	9.0	81.00	729.000	6561.0000	45	10.5	110.25	1157.625	12155.0525
14	11.0	121.00	1331.000	14641.0000	46	16.0	256.00	4095.000	65536.0000
15	18.0	324.00	5832.000	104970.0000	47	10.0	100.00	1000.000	10000.0000
16	18.2	331.24	6028.558	109719.9376	48	18.3	334.89	6128.487	112151.3121
17	22.0	484.00	10648.000	234256.0000	49	16.0	256.00	4095.000	65536.0000
18	14.0	196.00	2744.000	38416.0000	50	17.0	289.00	4913.000	83521.0000
19	16.5	272.25	4492.125	74120.0625	s 787.2 13654.32 255028.000 5044970.5980				
20	14.0	196.00	2744.000	38416.0000					
21	22.3	497.29	11089.567	247297.3441	$\begin{array}{r} -12393.68-544920.84 \\ 390252.10 \end{array}$				-16060661.59
22	14.0	196.00	2744.000	38416.0000					20307267.48
23	27.0	729.00	19683.000	531441.0000					-9216193.48
24	21.5	462.25	9938.375	213675.0625					
25	14.0	196.00	2744.000	38416.0000	S		1260.64	359.55	75383.01
26	4.5	20.25	91.125	410.0625					
27	6.0	36.00	216.000	1296.0000	k	15.74	25.73	7.64	-374.40
28	20.0	400.00	8000.000	160000.0000					
29	10.0	100.00	1000.000	10000.0000	g	0.06	-0.57		
30	10.7	114.49	1225.043	13107.9601					
31	16.5	272.25	4492.125	74120.0625	σ^{*}	0.3366	60.661		
32	20.0	400.00	8000.000	160000.0000	y	0.18	-0.86		

Table 8. Normality test for fluldized bed with hlgh gas flow rate.

N	x_{1}	$x_{1}{ }^{2}$	x_{1}^{3}	$\mathrm{x}_{1}{ }^{4}$	N	X_{1}	$x_{1} 2$	x_{1}^{3}	x_{1}^{4}
1	8.0	64.00	512.000	4096.0000	33	13.0	169.00	2197.000	28561.0000
2	14.0	196.00	2744.000	38416.0000	34	15.0	225.00	3375.000	50625.0000
3	20.0	400.00	8000.000	160000.0000	35	24.2	585.64	14172.488	342974.2096
4	16.5	272.25	4492.125	74120.0625	36	14.3	294.49	2924.207	41816.1601
5	20.0	400.00	8000.000	160000.0000	37	14.0	196.00	2744.000	38416.0000
6 7	14.0	196.00	2744.000	38416.0000	38	19.0	361.00	6859.000	130321.0000
7	11.0	121.00	1351.000	14641.0000	39	16.0	256.00	4096.000	65536.0000
8	17.0	209.00	4913.000	83521.0000	40	14.0	196.00	2744.000	38416.0000
9	19.0	361.00	6859.000	130321.0000	41	28.0	784.00	21952.000	614656.0000
10	10.0	100.00	1000.000	10000.0000	42	16.0	256.00	4096.000	65536.0000
11	21.0	441.00	9261.000	194481.0000	43	17.0	289.00	4913.000	83521.0000
12	14.0	196.00	2744.000	38416.0000	44	14.0	196.00	2744.000	38416.0000
13	13.0	169.00	2197.000	28561.0000	45	20.0	400.00	8000.000	160000.0000
14	16.0	256.00	4096.000	65536.0000	46	18.8	353.44	6644.672	124919.8336
15	21.0	441.00	9261.000	194481.0000	47	6.0	36.00	¢16.000	1296.0000
16	16.0	256.00	4096.000	65536.0000	48	25.0	625.00	15625.000	390625.0000
17	9.0	81.00	729.000	6561.0000	49	14.0	196.00	2744.000	38416.0000
18	14.0	196.00	2744.000	38416.0000	50	26.0	676.00	17576.000	456976.0000
19	12.6	158.76	2000.376	25204.7376					
20	15.0	225.00	3375.000	50625.0000	3	783.2		244390.130	4789425.1380
21	15.0	225.00	3375.000	50625.0000				-626531.18	-15312507.99
22	14.0	196.00	2744.000	38416.0000				384333.21	19627968.75.
23	12.0	144.00	1728.000	20736.0000					- 9030295.39
24	14.0	196.00	2744.000	38416.0000					
25	12.0	144.00	1728.000	20736.0000	S	1064.68		2192.26	74590.51
26	14.5	210.25	3048.625	44205.0625					
27	18.0	324.00	5832.000	104976.0000	k	15.66	21.73	$46 \cdot 60$	213.26
28	18.0	324.00	5832.000	104976.0000					
29	21.0	441.00	9261.000	194481.0000	g	0.46	0.45		
30	8.0	64.00	. 512.000	4096.0000					
31	13.3	176.89	2352.637	31290.0721	σ_{g}^{*}	0.3366	0.6619		
32	8.0	64.00	512.000	4096.0000					
					J	1.37	0.68		

Statistics for Data Analysis

The proof of normality for the sampled population makes it possible to continue the statistical approach. Two well-known statistics which are quite useful are the mean and the variance from the mean. The mean has been previously defined as

$$
\bar{x}=\frac{s_{1}}{N},
$$

and the variance is the standard deviation squared which is given by

$$
\begin{equation*}
\sigma^{2}=\frac{s_{2}}{n-1} \tag{3}
\end{equation*}
$$

It should be noted that the standard deviation as defined in this case is the estimated standard deviation and is a function of both the variate x_{1} and the number of observations, N, while σ^{*}, which has been previously defined, is the standard deviation of the sampling and is a function of only N.

These two well-known statistics are used in the χ^{2} test which is used to test the goodness of fit between observation and hypothesis. This test is quite useful in testing whether a sample from a normal distribution confirms or contradicts the variance which it is expected to have. For the variate x_{1} with known standard deviation, $\sigma_{\text {known }}$

$$
\begin{equation*}
\chi_{N-1}^{2}=\frac{\sum_{i=1}^{N}\left(x_{1}-\bar{x}\right)^{2}}{\sigma_{\text {known }}^{2}}=\frac{s_{2}}{\sigma_{\text {known }}^{2}}=\frac{(N-1) \sigma_{\text {observod }}^{2}}{\sigma_{\text {known }}^{2}} \tag{4}
\end{equation*}
$$

where $N-1$ is the degreee of freedom, V, that characterizee the eample. It ie obvious from the above relation that the nearer are the values of x_{1} to the mean, the emaller will be χ^{2}. In other worde smaller deviatione yield smaller χ^{2} valuee.

In 1900, K. Pearson established the distribution of χ^{2} for any value of V. This makes it possible to calculate the probabllity, P, that a particular value for χ^{2} will be exceeded. There existe a probability, p, for every value of χ^{2}. As χ^{2} is increaeed from zero to infinity, P decreases from one to zero. The relation between χ^{2} and P is a complex one, and tables have been made for this χ^{2} dietribution with various degrees of freedom.

The χ^{2} statistic, as stated before, is a test to determine how well certain data fit a known or given hypothesis. In practice an exact value for p is not desired, but it ie desirous to know whether or not the data are open to euspicion. The commonly accepted value for P is 0.05 , the five percent level. Thie may be interpreted in the following way. Unless the obeerved value of χ^{2} is greater than the χ^{2} value given by the χ^{2} dietribution for a given V and $P=0.05$, there is no reason to euspect the hypothesis being tested. On the other hand, in the event that the observed χ^{2} is greater, indicating that the probability of
this occuring is less than 0.05 , one must suspect the tested hypothesis. In the first of these two cases, the value of χ^{2} may be interpreted as a sampling veriation, while in the second case rejection of the hypothesis is suggested.

This conoopt is of importance to the fluidized bed because this statistic can provide a criterion for deciding whether or not there is a significant difference betweon the packed bod state and the fluidized state. For instance, let the packed bed be hypothesized and the fluidized bed be observed. The value for χ^{2} should exceed the value given by the tables since it is known that the hypothesis is incorrect. In the event that the observed χ^{2} should be less than the statistical value, the data could be rejected owing to the fact that it followed an incorrect hypothesis. Thus the χ^{2} test is useful for judging the acceptability of data.

Another, statistic which is quite useful in the analysis of two groups of data is the variance ratio, often called the F ratio for its discoverer, Fisher. Fisher tabulated the F distribution for Vand P as was done for the χ^{2} distribution. This veriance ratio is useful in testing whether or not two groups of data are from the same normal distribution. The test is made by simply taking the ratio of the variance, for the two groups, putting the larger over the smeller. Unleas the value for F is greater then the value indicated for a particular V and P, the samples are considered to be from the same normal distribution. The Fratio is based upon random sampling.from normal populations. The Fratio could be used in an analogous manner to the
χ^{2} test, providing each sample wae taken at random.

Data Analysis

A typical strip-chart recording is presented in Fig. 13. The 30-second time-constant portion was used only to determine the average density for comparison with the 0.3-second timeconetant data. For most of the 30-second time-constant data the recorder reading was constant or varied only to a small extent. The average density corresponding to the recorder trace was obtained from the calibration curves for the long time-constant data. For instance, the strip-chart reading of Fig. 18 is 62 on the 300 C scale. From the calibration curve, Fig. 9, this correeponde to an average density of $0.368 \mathrm{~g} \cdot / \mathrm{cc}$.

The 0.3-second time-constant data were analyzed with the statistical approach. The trace made on the strip chart was the trace of the normally distributed fluidized bed population. It ehould be noted that this trace would be different for inetrumentation (including recorder) with a different reeponse time. Each time this trace crossed one of the curved vertical ines, the population was sampled. Because of the fact that the statistical tests previously deecribed were designed for large samples, the trace was allowed to cross at least forty of the vertical lines. From these recorder readings, the corresponding density wae read from the callbration curvee for the 0.3-second time-constant data. For instance, the first two points in Fig. 13, indicated with arrows are 37 and 47 on the 300 c scale.

These two points correspond to densities of 0.634 and 0.540 , respectively. The forty densities from the recorder trace were then punched on IBM data cards and loaded into the IBM-650 computer for calculation. The 650 program with detailed explanation is presented on page 85. For a particular set of forty densities from the fluidized bed, the computer calculations yielded the following important quantities: the average density, $\bar{\rho}$; the sum of the deviations square, S_{2}; the variance, σ_{p}^{2}, for a packed bed with the same average density as the input data; the ratio of S_{2} to σ_{p}^{2} which is χ^{2}; the variance, σ_{f}^{2}, of the flu1dized bed, 1. e., the variance of the forty input densities; and, the ratio σ_{f}^{2} to σ_{p}^{2} which was defined as the index of stability and uniformity.

The X^{2} test was used to determine the acceptability of data. The value for χ_{39}^{2} at the 5 percent level is 54.56 (7). With the exception of two extreme conditions, data that yielded an observed χ_{39}^{2} less than this value were rejected for the variance analysis. This was done because a value less than 54.56 meant that the data followed the hypothesis that the bed was packed which was impossible since all data were taken on the fluidized bed. The two exceptions to this rule were for data taken very near the distributor or in the dispersed phase at the top of the fluidized bed. Data from very near the distributor were not rejected because it was expected that this location would yield small deviations owing to the fact that bubbles had little chance to form (1), and the uniformity of fluidization might be great enough to make the bed appear packed. Data from the dispersed
phase near the top were also expected to have small deviations and therefore approximate a packed condition. Actually, thie state is near an empty column which is a packed condition with average density near zero.

The remsinder of the data analysis consisted of correlations ueing the computer output. In all of the graphical analysis the data were eubjected to a confldence test. The level used for the confidence test was the 5 percent level. This test consisted of examining the data by a linear regression technique and rejecting data that were outside the 5 percent confidence level. Thie was necessary because of the statistical nature of the study.

> Index of Stability and Uniformity

The index of stability and uniformity has been defined ae

$$
\begin{equation*}
\text { ISU }=\frac{\sigma_{f}^{2}}{\sigma_{p}^{2}} \tag{5}
\end{equation*}
$$

This is obviously a variance ratio, and at first glance appeare to be the Fratio previously mentioned. However, it differs slightly in that the denominator, σ_{p}^{2}, is not obtained from a random sample, but from the equation,

$$
\begin{equation*}
\sigma_{p}^{2}=A+B \bar{\rho} \tag{6}
\end{equation*}
$$

of the variance-average density calibration. The variance of the fluidized bed is from a random sampling; therefore, in the strictest sense, ISU is not the F ratio. Because of this, the F test of significance cannot be used. This in no way affects this study since the χ^{2} test is used for a significence test. The ISU eerves the purpose of comparing the unstable fluidized bed to the stable packed bed.

Consider Fig. 17b, where the bed is packed, and the Fig. 13, where the bed is fluidized. In the first case the variance is a result of only the random nature of radioactive decay and is dependent only upon the average density of the bed. In the latter case the variance is due to both the radioactive decay and the disturbance caused by fluidization. The ratio of these variances for a particular average density is then the factor by which the variance is increased due to the fluldizing process, and has been named the index of stability and uniformity.

This index must be defined more precisely so that its meaning will not be misinterpreted. The torms stability and uniformity have been used in the ilterature in several ways and need explicit definitions before they can be used.

Consider the ideal fluidized bed to be a column with liquid of a constant density in it. This bed has no voids, nor is there any disturbance as in gas-solids fluidization. If a vertical density traverse of this column were made with the radioactive beam, the result would appear as in Fig. 14. The density would be constant while the beam was in the bed and the drop to the density of air, 1. e., approximately zero at the bed surface.

Tho bed could be considared to be of uniform density.
Now consider a vertical ISU traverse. Tho packed and flu1dized states are exactly tho same, 1. 0., there are no disturbances, and the bed could be considored perfectly stable. The variance ratio would vary only slightly from one due to the statistical nature of tho variance. For theoretical purposes, the ISU could be considered ungty. Tho vertical profilo would then appoar as in Flg. 15. The bod could bo considered perfoctly stablo and uniform.

Consider now two non-ideal cases; first, a caso where the disturbancos are small at tho bottom of the column, but increase unt11 thoy become largo at tho top; and socond, a case where the disturbancos are large at the bottom and increase only slighty In going to the top. Examplos of thoso hypothetical cases are shown in Fig. 16. These two cases may be compared in the following manner using tho terms stability and uniformity. It may be said that bed "A" is more stable than bod "B"; however, bed "B" is more uniform than bed "A". Whon this statement is made, It bocomes evidont that tho magnitudo of disturbances is smaller in bod "A", and is more constant in bod "B". A small index means less disturbance, more stability and therefore, more uniformity of fluidization. A relativoly constant indox means less change in the disturbanoes throughout tho column; thus, the disturbance is uniform.

It is important to distinguish between uniformity and uniformity of fluldization. Uniformity rofers to the relative constancy of the indax, while uniformity of fluidization refers

Fig. 13. Typical recorder trace.

Fig. 14. Vertical density prafile af ideal bed.

Fig. 15. Vertical ISU prafile of ideal bed.

Fig. I6. Vertical ISU profiles for two non-ideal beds.
to magnitude of disturbances, 1. o., the stability of the bed. Since the disturbances in a gas-solids syster are in the form of bubbles; good stability indicatos uniformity of fluidization through small bubbles.

DISCUSSION AND RESULTS

For purposes of clarity this section has been divided into two parts. The first portion concerns general observations, which include calibrations, data acceptability, and comparison of long and short time-constant data. In the second portion, the offects of operational variables upon properties of the fluidized bed are discussed. Observations related to these effects are also presented.

In this investication, many data points were taken so that a good evaluation of various effects could be made. In previous investigations, definite effects upon bed quality have been hard to evaluate because of an insufficioncy of observational data. Over 40,000 data points were read for this investigation, and these are recorded on rolls of strip-chart paper. Since it would be practically impossible to present all of the data, only the reduced data, 1. 日., computer output, has been presented. These data are tabulated in the appendix with representative samplings discussed in this section.

General Observations

Calibrations. In view of the calibration curves (Figures 8 and 9), the spacer technique for density calibration appears to be quite successful, allowing smooth curves to be drawn through the experimental points. It can be seen that the short and long time-constant calibrations were very nearly the same. This consietency may be regarded as a positive check on the statistical concept of averaging the data points.

Figures 17 a and 17b, are sample recorder tracee for empty and packed beds. It can be seen that the variance was greater for the packed bed. This results from the fact that smaller count rates, due to a greater attenuation in dense beds, have larger deviations. This can readily be seen by noting that the variance io a function of $\frac{1}{N-1}$, where N, in this case, is the number of counts or count rate. This observation is confirmed In the average density-variance calibrations of Figures 10 and 11.

Acceptability of Data. None of the data were rejected on the basis of the χ^{2} test. Values of χ_{39}^{2} less than 54.56 were obtained in very few cases, and in each case the data were taken neur the distributor or at the top of the bed where the X^{2} teet did not apply as has been previously explained. The regions "near" the distributor and the "top" of the bed for the test were defined in the following manner. In ceses where the value was less than the required value at the lowest level

Fig. 17a. Recorder trace for empty bed.

Fig. 17b. Recorder trace for packed bed.
(1 inch), the next height in the bed was checked. This was re= peated until the value of χ_{39}^{2} became greater than 54.56. It was then decided that the region "near" the distributor no longer existed and the χ^{2} test wae applied. The same procese was ueed for the "top" of the bed. It must be emphasized that this wae neceseary in very few cases, and these caeee occurred when the stability was good, indicating that the bed was actually better represented as in a packed etate.

Approximately 10 percent of the data pointe were rejected by the 5 percent confidence test. The percentage increaeed with increasing air velocity. This will be explained in detail when the channeling effect is discussed.

Comparieon of 0.3-second and 30-second Time Constants. Fig. 18 illustrates vertical mean density profiles taken on the 0.3 and $30-e \theta c o n d t i m e ~ c o n s t a n t s$. It can be eeen that the results were almost identical, indicating that the calibration wae eatisfactory, and that either short or long time-constant data could be used to obtain density profiles in a fluidized bed.

The accuracy of $30-s e c o n d-t i m e-c o n s t a n t ~ d a t a ~ w e r e ~ c h e c k e d ~$ by Lee (5) who ueed the same apparatus as this author. This wae done by measuring the area under the deneity profile curve, converting it to weight, and comparing it with the known weight of the bed. This material balance method ehowed that the error was generally less than 5 percent and in many instancee near 1 percent indicating that the radiation attenuation method and calibrations were eatisfactory.

Fig. 18. Comparison of long and short time constants.

Effect of Operational Variables Upon Bed Properties

Effect of Air Velocity and Height in Bed. The effects of

 air velocity and height in bed upon the average density are shown in Fig. 19. The results shown are typical, and similar results were obtained for all particle mixtures and packed bed heights. It may be seen that the density in section $A B$ of each of the curves decreased with increasing air velocity. This was expected since more air was passing through the bod. With each increase in air velocity the density profiles became more oxpanded and deviated further from the ideal bed hypothesized in FIg. 14.The effect of air velocity and height in bed upon the index of stability and uniformity is presented in Figures 20a, b, and c. The ISU profiles indicate that both the stability and uniformity decreased with increasing air velocity. This trend was characteristic of all particie mixtures.

The fact that the lower velocities were more uniform is Indicated by the smaller slope of the lower portion of the ISU profiles. The better stability at lower velocities is indicated by the lower magnitude of the index. For instance, the index at three inches above the distributor was $1.5,4.7$, and 6.3 for the 30,60 , and $90 \mathrm{ft} . / \mathrm{min}$. velocities, respectively. At 6 inches above the distributor the index was $3.9,10.2$, and 12.0 for the three velocities. Results similar to this were also obtained for the other beds and are tabulated in the appendix.

Fig. 19. Effect of air velocity upon the density profiles.

Fig. 20a. Effect of air velocity upon ISU profiles.

Fig. 2Ob. Effect of air velocity upon ISU profiles.

Fig. 2Oc. Effect of air velocity upon ISU profiles.

The index increased with increasing height above the distributor until a maximum was reached and then dropped abruptly. Aesuming that the generally accepted bubble phenomena is characteristic of the gas-solids system, this trend in the ISU indicates the following machanism which was aleo suggested by Baungarten (1).

Ae the bubble riees, solids may be carried along with the bubble or forced out of the path of the bubble. It appears as though the rising bubble growe in size as it moves up the column, and it ie thue enabled to eupport the carriage of more solide. As the size increases, the solids mixing becomes more vigorous, and more and more solids must either be forced aside or carried along with the bubble. As the bubble approaches the eurface of the bed, the solids above it will be scattered into the empty space above the bed allowing the bubble to break the surface. The solids will then fall back to the bed. The point of maximum disturbance and instability would then be the point where the bubble breaks the surface, since at this point the eolids mixing is moet vigorous and the bubble is the largest. The epace fuet above the bed is disturbed by only the scattered eolids that are thrown by the rising bubble. Density fluctuations are, therefore, relatively small above the surface.

Density Profile-ISU Profile Correlation. It was found that the shape of the density profiles could be related to the ISU profiles. It was just shown that the density profilee became more expanded and less resembled the ideal (perfectiy uniform and etable) bed when the alr velocity was increased. It was also
shown that the stability and uniformity decreased with increasing air velocity. In every case, without exception, the density profiles and ISU profiles could be satisfactorily correlated. This suggeets that it would be possible to investigate, to some extent, deneity fluctuations, 1. e., bed quality, using a long time conetant and studying only the density profile. This would remove much of the troublesome data analysis resulting from using the short time constant.

ISU and Bed Expansion. In the past there have been some problems in defining the fluidized bed height. If one tries to visually interpret the bed expaneion, large discrepanciee may result owing to the constant fluctuatione as a result of fluidization. However, the index of stablilty and uniformity provides a good criterion for measuring the fluidized bed helght.

It has been previously illustrated that the point where the bubbles break the surface is the point of the maximum ISU. This point would also be the fluidized bed height because thie is the dense-phase surface.

Consider the ideal bed hypothesized in Fig. 14. The fluIdized bed height is obviously the point where the density falls to zero. Now, applying this reasoning to the deneity profiles one could choose a fluidized bed height. This height, however, could be any one of several since these beds were not 1deal, and the density drop to zero was over a range of two or three inches. The fluidized bed height was chosen to be the point of inflection, or the mid-point if no inflection was apparent.

Figure 21 shows a comparison of fluidized bed height using
the ISU and inflection techniques. In many of the cases the two methods gave the same fluidized bed height. The greatest difference wes only 0.50 inches with a 4.50 -inch bed.

This analyais illustrates that the expanded bed height can very definitely be taken as the inflection point of the density profile. An even better analysis would be to use the ISU profile.

It was found that bed expansion increased with velocity as illustrated by the ISU profiles.

Effect of Packed Bed Height. The static bed height did not have any apparent effect upon the constant density portion of the density profile. This is illustrated in Figure 22 where the sections $A B_{1}, A B_{2}$, and $A B_{3}$ are approximately the same density for all three packed bed helghts.

The packed bed height does affect, however, the stability and uniformity of the fluicized bed. This is readily seen in Figures $23 a, b$, and c which compare the ISU profiles for three packed bed heights. It is apparent that the best uniformity and stablify occurred in the shallow bed. In fact, the χ_{39}^{2} values for the lower portion of the 3.25-inch bed profile indicated a packed bed. This may be seen in Table 14 of the appendix. The reason for the better uniformity of fluidization in the shallow bed is most probably due to the fact that bubbles have little chance to form and grow in shallow beds.

Effect of Particle Size and Bed Composition. Figures 24a and 241 present the vertical ISU profiles for fluidized beds of 100 percent 40 mesh and 100 percent 80 mesh at an air velocity of $30 \mathrm{ft} . / \mathrm{min}$. These profiles indicate that the finer particle

Fig. 21. Comparison of fluidized bed heights from inflection and ISU methods.

Fig. 22. Effect of packed bed height upon density profiles.

Fig. 23a. Effect of packed bed height upon ISU profiles.

Fig. 23b. Effect of packed bed height upon ISU profiles.

Fig. 23c. Effect of packed bed height upon ISU profiles.
eize provided for both a more stable and a more uniform fluidized bed. Ae the velocity was increased this trend appeared to become less and in fact reversed at high velocity. For example, the ISU maxima for the $30 \mathrm{ft} . / \mathrm{min}$. velocity were 17.3 and 21.1 for the 40 mesh and 80 mesh particles, respectively. At an air velocity of $60 \mathrm{ft} / \mathrm{min}$. the maxima were 30.7 and 30.6 , and at $90 \mathrm{ft} . / \mathrm{min}$. the maxima were 29.0 and 21.2 for the 40 -meoh and 80-meeh particles.

The result at the low velocity can most probably be explained by the fact that larger particles require a greater minimum fluidizing velocity (1). No bubbles at all can form until the bed is supported by the pressure drop through the interstices. This means that the bubble size will be smaller for coarse particles since a greater portion of the fluidizing gae is required for minimum fluidization.

Doteon (2) also found that coarse particles produced better uniformity of fluidization at low gas velocity; however, he attributed this trend to the presence of channeling in small particle beds which he confirmed by visual interpretation.

The reversal of the particle eize effect at high velocity may be attributed to factors which oppose the minimum fluidizing effect. Increased permeability in coarse particle beds permits an increased flow of gas from the denee phase to the bubble phase, thus increasing bubble growth and the ISU. Thie effect becomes more important at high velocities because the amount of gas held in the dense phase ie relatively constant, and at high velocities more of the gas flows into the bubble phase (14).

Reversals similar to this were also obtained by Doteon (2) and Baumgarten (1).

Figures 24a-1 illustrate the offect of bed composition upon the index at low gas velocity. From these profiles it is very difficult to make any precise statement regarding bed stability and uniformity. It does appear, however, that the trend is one of relatively good stability and uniformity for particle mixtures of 100,98 , and 95 percent $40-\mathrm{mesh}$ beads. The etability and uniformity appear to decrease for particle mixtures with more then 10 percent 80 mesh beads. For particle mixtures of 50 percent or more $80-m e \theta$ beads the stability and uniformity were relatively poor.

In order to better predict the effects of particle size and bed composition, it is euggestod that a wider range of particle sizes be investigated.

In view of these resulte, the effect of air velocity and height in bed appear to be much more pronounced than that of particle size and bed composition. This is consistent with the findings of Dotson (2).

Channeling. It was mentioned earlier that the number of data points rejected by the 5 percent confidence test increased with air velocity. This may be explained by the increase in channeling at higher velocitiee. Leva (6) hae pointed out that very few gas-solids systems approach ideal behavior, and most are characterized by either through-channeling or intermediatechanneling, or both. When this occurs, a portion of the gas

Fig. 24a,b. Effect of particle size and composition.

Fig. 24 c ,d. Effect of particle size and composition.

Fig. 24e. Effect of particle size and bed composition.

Fig. $24 \mathrm{f}, \mathrm{g}$. Effect. of particle size and composition.

Fig. 24h. Effect of particle size and bed composition.

Fig. 24i. Effect of particle size and bed composition.
flow is actually piped through the bed in chennels. These channels could be located anywhere in the bed. This has two undesirable effects upon the gas-solids system that has been proviously described. The first effect is the addition of another phase which is nelther tho bubble nor the dense phase. This now phase may be pictured as meroly the piping of gae through the bed. Thie is another form of gas by-passing the solids. This leads to the second undesirable effect. The fact that gas channels are formed moans that the by-passing is no longer completely in the form of randomly distributed bubbles. Instead, the channeling results in the flow of gas through one location in the bed. This destroys the statistical concept which is based upon randomiy distributed bubbles. It may be seon in the normality test (Tablos 3-8) that the high-velocity data producod the largest valuo for g_{1}. Although this value of g_{1} was insignificant, it was found that the channoling bocamo apparont in some cases. Figures. 25 and 26 illustrate the offoct of channeling upon the denalty profile and ISU profile. The constant density portion of tho density profile practically disappeared and the valuos of the index showed ifttle or no trend whatsoever.

CONCLUSIONS

The results of this investigation have gielded the following important conclusions about gas-solids fluidized systems.

1. Using short time-constant data, the statistical approach

Fig. 25. Density profile when channeling is prevalent.

Fig. 26. Effect of channeling upon ISU.
to the study of bed quality is quite satisfactory for determining the relative effects of operational variables upon the gas-solids fluidized bed.
2. Long time-constant data may be used to a limited extent in studying bed uniformity and stability with density profiles.
3. Both stability and uniformity of fluidized bods decrease with increasing superficial gas velocity, and at high gas velocities channeling of the gas flow becomes apparent.
4. Bubbles grow in size as they move up tho column and incroase in size with increasing gas velocity.
5. Tho fluidized bed height is the point where the bubbles break the dense-phase eurface and is characterized by a peak in the ISU profile. This point also corrooponds to the inflection point in the vertical portion of the avorape density profile.
6. Static bed helght does not affect tho mean donsity of the fluidizod bed; however, the mean donsity (constant portion of the average density profile) decreases with increasing gas velocity.
7. Shallow beds are more stable and uniform than deop beds owing to the fact that bubbles have little chance to form and then grow.
8. At low gas velocities, courser particles produce better bod stabil1ty and uniformity. Th1s most probably results from the f"act that no bubbles can form until the bed reachee minimum fluidization, and the minimum fluidizing volocity increases with particle size. As the velocity is incressed, this trend appears to reverse, and ot high velocities finer perticles provide better
uniformity and stability. This is probably due to the greater permeability of coarse particles which allows more bubble formation through flow of gas from the dense phase to the bubble phase.
9. The effects of gas velocity and height in the bed upon bed quality are much more pronounced than the packed bed height, particle size, and bed composition.

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to the following persons and organizations:

Dr. Liang-tseng Fan, for his constant advico and guidance throughout the course of the investigation.

Professor Richard C. Bajlie, for suggesting the statistical approach using the isotope technique, for devising the original instrumentation scheme, and for directing the use of the IBM-650 Computer.

Dr. William R. Kimel, Head of the Nuclear Engineering Department at Kansas State University, for his help and encouragement.

The staffs and students of both the Nuclear Engineering and Chemical Engineering Departments for their helpful suggestions and their willingness to assist when called upon.

The Engineering Experiment Station of Kansas State University for supporting this project.

LITERATURE CITED

(1) Baumgarten, P. K.

Density fluctuation in fluidized beds. Ph. D. Thesis. University of Delaware, 1957.
(2) Dotson, J. M.

Factors affecting density transients in fluidized beds. A. I. Ch. E. J. 5:169-174. 1959.
(3) Fisher, R. A.

Statistical methods for research workers. 6th ed. London: Oliver and Boyd, 1936.
(4) Groshe, E. W.

Analysis of gas-fluidized solid systems by X-ray absorption. A. I. Ch. E. J. 1:358-365. 1955.
(5) Le日, C. J.

Unpublished thesis. Kansas State University, 1961.
(6) Leva, Max. Fluidization. New York: MCCraw-Hill, 1959.
(7) Lindley, D. V., and J. C. P. Miller. Cambridge elementary statistical tables. Cambridge: Cambridge University Press, 1953.
(8) Morse, R. D., and C. O. Ballou. The uniformity of fluidization - its measurement and use. Chem. Eng. Prog. 47(4):199-204. 1951.
(9) Othmer, Donald F.

Fluidization. New York: Reinhold, 1956.
(10) Petrick, M. and B. S. Swanson.

Radiation attsnuation method of measuring density of a two-phase fluid. Rev. Sci. Instruments. 29(12):10791085. December, 1958.
(11) Romero, J. B. Factors affecting, fluidized bed quality. Ph. D. Thesis. University of Washington, 1959.
(12) Shuster, W. W., and P. Kisliak. The messurement of fluidization quality. Chem. Eng. Prog. 48(9):455-458. 1952.
(13) Snedecor, George W. Statistical methods. 4th ed. Ames: Iowa State College Press, 1946.
(14) Zenz, F. A., and D. F. Othmer.

Fluidization and fluid - particle systems. New York: Reinhold, 1956.

IIST OF SYMBOLS

A - variance intercept of inear regression.
B - slope of line in linear regression.
d - thickness of absorber, cm.
F - variance ratio of the F-test.
$g-g-s t a t i s t i c$.
H - height in bed (above distributor), inches.
I/Io - fraction of photons remaining in the beam after passage through absorber of thickness d.

ISU - index of stability and uniformity.
k - k-statistic.
m - median of the variate x_{1}.
M - atomic weight, g./g-mol.
N - number of observational data
$N_{a}-$ Avagodro's number $\left(6.025 \times 10^{23}\right.$ nuclei/g-mol.).
P - probability.
R - width for the beam path, inches.
s - sums of powers of the variate x_{1}.
S - sums of powers of the deviations in x_{1} from the mean \bar{x}.
x_{1} - variate.
$\bar{x}-m e a n ~(a v e r a g e)$ value of the variate x_{1}.
y - criterion for the significance of the test for normality.

LIST OF SYMBOLS (cont.)

Greek letters.
γ - gamma radiation.
μ - linear absorption coefficient, cm^{-1}.
γ - degrees of freedom.
ρ - density, g./cc.
$\bar{\rho}$ - average density, g./cc.
σ - standard deviation (estimate of).
σ^{2} - variance.
σ^{*} - standard error in samplIng.
$\sigma^{* 2}$ - sampling variance.
σ_{T}^{2} - microscopic cross section, $\mathrm{cm}^{2} \cdot / n u c l e u s$.
χ^{2} - chi-square test for goodness of fit.

Subscripts.
c - column.
f - fluidized.
$g-g-s t a t 1 s t 1 c$.
p - packed.
s - spacer.
x - variate x_{1}.
$1,2,3,4$, - refer to different statistics such as s_{1}, g_{2}, k_{3}, atc.
V - degrees of freedom.

Description and Explanation of IBM-650 Computer Program for the Statistical Analysis

The IBM-650 code for the statistical analysis was written in SOAP II form. The SOAP output and a logic diagram of the program are presentod at the end of this section.

Program. The program was written to give the following important quantities from the forty densities of the fluidized bed recorder trace:

1. code number,
2. number of experimental data points, N,
3. highest density, $P_{\max }$.
4. Lowest density, $P_{m i n}$.
5. average density, $\bar{\rho}$,
6. variance in density of the fluidized bed, σ_{f}^{2},
7. variance for the packed bed of similar density, σ_{p}^{2},
8. variance ratio, index of stabllity and uniformity, ISU,
9. sum of the squares of the deviations from the mean, S_{2}, and
10. chi-square, χ^{2}.

Equations used for the calculation of $\bar{\varphi}, \sigma_{f}^{2}, \sigma_{p}^{2}, ~ I S U, ~ S_{2}$, and χ^{2} were (1); (3), (6), (5), (2), and (4) respectively.

The code number was used for keeping track of the experiments, $1 . e_{-}$, run number, particle size, velocity, height in bed at which the data were taken. The highest and lowest values of density were useful in finding mistakes in data card punching. The number of data points was also quite useful in checking
unusual reoults. The highest value, lowest value, and number of data points made it relatively easy to find most program errors. Symbolic Reprosentation. The symbols corresponding to terme in the equations are listed below.

```
A - the constant, A, in the linear regression, equation
``` (6).
\(B\) - the constant, \(B\), in the inear regreesion, equation (6).

CHISQ - chi-square, \(\chi^{2}\).
CODE - codo number.
DSQDF - stundard deviation squared (variance) of the fluidized bed, \(\sigma_{f}^{2}\).

DSQDP - etandard deviation squared (variance) of the packed bed, \(\sigma_{p}{ }^{2}\).

HIGH - highest density in a given set of data.
LOW - lowest density in a given set of data.
\(N\) - number of data points.
RATIO - vuriance ratio, ISU.
SX - sum of the \(x\) terms, \(s_{1}\).
\(S X S Q\) - sum of the \(x^{2}\) terms, \(\theta_{2}\).
TEMP1 - sum of deviations squared, \(\mathrm{S}_{2}\).
TEMPZ - degrees of freedom, N-1.
\(X\) - density (data point), \(\rho\).
XAVG - average density, \(\vec{e}\).
Input Data. A sot of input data, consisting of a code number and forty densities was fed into the machine in the following manner. The code number and data points were put on IBM
cards at eight words to a card. The first word on the first card was the code number. The remaining seven words on the first card were data points. The second, third, fourth, and fifth cards each contained eight data points making a total of thirty-nine data points. The final data point was punchodas the first word on the sixth card, the remaining seven words being punched zero. Other sets of data followed directly after the first set with six cards to each set.

Each set of data was coded in the following manner. The code number, as the rest of the words, had ten digits. The first two digits were used for the run number, the next three for the percent of 40 -mesh particles, the next for the velocity, and the final four for the helght in the bed at which the data were taken. In general the sets of data for one complete vertical traverse, \(1 . \theta .\), one complete run, were grouped together. A transfer card was placed between the program deck and the data cards to start the program.

Output Data. The computer calculations yielded ten answers for each set of data. These were punched on two cards. The first card contained eight answers in the following order: CODE, N, HIGH, LOW, XAVG, DSQDF, DSQDP, and RATIO. The second card also contained eight answers, six of which were repeated from the first card. The answers were CODE, N, HIGH, LOW, XAVG, TEMPl, DSQDP, and CHISQ. When more than one set of data were analyzed, the answer cards were always punched in order, 1. e., set 1 , cards 1 and 2; set 2 , cards 1 and 2; etc.
```

    Console Settings for Operation. The following console
    settings were used:
Storage Entry Switches - 70 1951 1999 +
Programmed Stop - STOP
Half Cycle - RUN
Control - RUN
Address Selection - Anything
Display - Anything
Overflow - STOP
Error - STOP

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CONT 8 & \[
100
\] & \[
{ }^{N} 8001
\] & C0141 & SET IRATO & \[
\begin{aligned}
& 65 \\
& 66
\end{aligned}
\] & \[
\begin{array}{r}
0031 \\
0120
\end{array}
\] & 69
80 & \[
\begin{array}{llll}
0 & 0 & 1 & 7 \\
8 & 0 & 0 & 1
\end{array}
\] & \[
\begin{array}{lll}
012 & 0 \\
0 & 076
\end{array}
\] \\
\hline CON11 & RAO & HIGN & & FIn 0 & 67 & 0076 & 60 & 0056 & 0111 \\
\hline & F88 & x & A & NIGHESTX & 68 & 0111 & 33 & 3000 & 0127 \\
\hline & \(6 \pm 1\) & CONT9 & COM10 & VALUE & 69 & 0127 & 46 & 0030 & 0081 \\
\hline CONT9 & 100 & & A & & 70 & 0030 & 69 & 3000 & 0453 \\
\hline & Sto & H:GN & Cum10 & & 71 & 0453 & 24 & 0056 & 0081 \\
\hline CON 10 & \(8 \times 1\) & 0001 & & & 72 & 0081 & 51 & 0001 & 0037 \\
\hline & N21 & CON11. & CON12 & & 73 & 0037 & 40 & 0076 & 0041 \\
\hline CON12 & LOO & \(N\) & & & 74 & 0041 & 69 & 0017 & 0170 \\
\hline & RAA & 8001 & & & 75 & 0170 & 80 & 8001 & 0126 \\
\hline & L00 & 100 & & F.1 10 & 76 & 0126 & 69 & 0050 & 0503 \\
\hline & 8 T0 & \(10 \%\) & con 25 & LOMEST & 77 & 0503 & 24 & 0106 & \(\cup 459\) \\
\hline CON15 & RAO & L0算 & & value of & 78 & 0459 & 60 & 0106 & 0161 \\
\hline & F88 & \(\bar{x}\) & A & x & 79 & 0161 & 33 & 3000 & 0177 \\
\hline & 8M1 & CON 13 & CON14 & & 80 & 0177 & 46 & 0080 & 0131 \\
\hline CON14 & LOO & \[
x
\] & A & & 81 & 0131 & 69 & 3000 & 0553 \\
\hline & ST0 & L0\% & CON13 & & 82 & 0553 & 24 & 0106 & 0080 \\
\hline CON13 & Sxa & \[
0001
\] & & & 83 & 0080 & 51 & 0001 & 0036 \\
\hline & NZA & CON15 & COM 16 & & 84 & 0036 & 40 & 0459 & 4040 \\
\hline CON 16 & RAU & & & CONVERTN & 85 & 0040 & 60 & 0017 & 0221 \\
\hline & 8 CT & SHIFT & & TO FLOAT & 86 & 0221 & 36 & 0500 & 0043 \\
\hline & 30 P & 8008 & & POINT & 87 & 0043 & 11 & 8002 & 0051 \\
\hline & AUP & \(31 \times 1\) & & & 88 & 0051 & 10 & 0100 & 0205 \\
\hline & \(8 T U\) & N & & & 89 & 0205 & 21 & 0017 & 0220 \\
\hline & R80 & 3x & & FORM 8 UM & 90 & 0220 & 61 & 0012 & 0117 \\
\hline & FMP & \(9 \times\) & & OF & 91 & 0117 & 39 & 0012 & 0062 \\
\hline & Fov & N & & DEVIATIONB & 92 & 0062 & 34 & 0017 & 0167 \\
\hline & FAO & \$ \(\times 10\) & & 800 & 93 & 0167 & 32 & 0018 & 0095 \\
\hline & S.TO & TEMPI & & & 94 & 0095 & 31 & 0350 & 0603 \\
\hline & RAU & N & & FORM & 95 & 0603 & 60 & 0017 & 0271 \\
\hline & F88 & ONE & & OEGREES OF & 96 & 0271 & 33 & 0150 & 0227 \\
\hline & 8 TU & TEMPZ & & FREEOOM & 97 & 0227 & 21 & 0032 & 0035 \\
\hline & RAU & TEMP1 & & & 98 & 0035 & 60 & 0350 & 4255 \\
\hline & Foy & TEMPZ & & & 99 & 0255 & 34 & 0032 & 0082 \\
\hline & QTU & 0800 F & & VARIANCE & 100 & 0082 & 21 & 0086 & 0039 \\
\hline & RAU & \(5 \times\) & & FLUIDIZEO & 101 & 0039 & 60 & 0012 & 0217 \\
\hline & Foy & N & & & 102 & 0217 & 34 & 0017 & 0267 \\
\hline & STU & \(x \wedge \vee G\) & & AVGXVAL & 103 & 0267 & 21 & 0028 & 0075 \\
\hline & RAU & \(X \wedge \vee G\) & & & 104 & 0075 & 60 & 0022 & 0277 \\
\hline & FMP & 8 & & VARIANCE & 105 & 0277 & 39 & 0250 & 4400 \\
\hline & FA0 & A & & PACKEO & 106 & 0400 & 32 & 0200 & 0327 \\
\hline & STU & O\$00P & & & 107 & 0327 & 21 & 0132 & 0085 \\
\hline & RAU & 08005 & & VARIANCE & 108 & 0085 & 60 & 0086 & 0091 \\
\hline & Fov & 08908 & & RATIO & 109 & 0091 & 34 & 0132 & 0182 \\
\hline & \(8 T \mathrm{U}\) & RATIO & & & 110 & 0182 & 21 & 0136 & 0089 \\
\hline & RAU & TEMP1 & & & 111 & 0089 & 60 & 0350 & 0305 \\
\hline & FDV & 08008 & & CNI SOUANE & 112 & 0305 & 34 & 0138 & 4232 \\
\hline & 8 TU & CNISO & & & 113 & 0232 & 21 & 0186 & 4139 \\
\hline & LDO & CODE & & & 114 & 0139 & 69 & 1000 & 4653 \\
\hline & ST0 & \[
1977
\] & & & 115 & 0653 & 24 & 1977 & 4130 \\
\hline & 100 & \[
\mathrm{N}
\] & & & 116 & 0130 & 69 & 0017 & U270 \\
\hline & ST0 & 1978 & & & 117 & 0270 & 24 & 1978 & 0181 \\
\hline & L00 & HIGH & & & 118 & 0181 & 69 & 0056 & \(\cup 509\) \\
\hline & 6TO & 1979 & & & 119 & 0509 & 24 & 1979 & \(\cup 282\) \\
\hline & 100 & L0w & & & 120 & 0282 & 69 & 0106 & 0559 \\
\hline & \(8{ }^{4} 0\) & 1980 & & & 121 & 0559 & 24 & 1980 & 0033 \\
\hline & \(\square 00\) & \(\times 1\) ¢G & & & 122 & 0033 & 69 & 0022 & 0125 \\
\hline & 8 T0 & 1981 & & & 123 & 0125 & 24 & 1981 & 0034 \\
\hline & \[
100
\] & \[
0800 F
\] & & PUNCH DATA & 124 & 0034 & 69 & 0086 & \(\cup 189\) \\
\hline & 8TO & 1982 & & & 125 & 0189 & 24 & 1982 & 0135 \\
\hline & \[
100
\] & 08008 & & & 126 & 0135 & 69 & 0132 & 0185 \\
\hline & \(8 T 0\)
\(C 00\) & R1983 & & & 127 & 0185 & 24 & 1983 & 0236 \\
\hline & ¢ 00 & RAT10 & & & 128 & 0236 & 69 & 0136 & 0239 \\
\hline & 810
\(P C H\) & & CDPCN & & 129. & 0239
0087 & 24 & 1984 & 4087 \\
\hline COPGN & LOD & TEMP1 & COPCN & & 131 & 0087
037 & 71 & 1977
0350 & 0377
0703 \\
\hline & 8 ST & 1982 & & & 132 & 0703 & 24 & 1982 & 0235 \\
\hline & 100 & CHISD & & & 133 & 0235 & 69 & 0186 & U289 \\
\hline & 870 & 1984 & & & 134 & 0289 & 24 & 1984 & 0137 \\
\hline & PCH & 1977 & START & & 135 & 0137 & 71 & 1977 & 1999 \\
\hline
\end{tabular}

LOGIC DIAGAM far IBM 650 PROGRAM

Tables

Table 9: Reduced data for run \#l.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Packed bed height: & 6.65 & 1n. & \[
\begin{gathered}
\text { Air } \\
\text { velocity: } 30 \\
\hline
\end{gathered}
\] & ftsin. & & \[
\begin{gathered}
\text { article } \\
\text { size: }
\end{gathered}
\] & \[
\begin{array}{r}
100 \% 40 \text { mesh, } \\
0 \% 80 \text { mesh. }
\end{array}
\] \\
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & & : & \[
\bar{g} / \mathrm{cc} .
\] & : & ISU & & \[
x_{39}^{2}
\] \\
\hline 1.00 & & & 1.360 & & 0.58 & & 22.80 \\
\hline 1.50 & & & 1.345 & & 1.02 & & 39.82 \\
\hline 2.00 & & & 1.332 & & 0.96 & & 37.68 \\
\hline 2.50 & & & 1.336 & & 1.03 & & 40.25 \\
\hline 3.00 & & & 1.321 & & 2.23 & & 87.15 \\
\hline 3.50 & & & 1.333 & & 1.91 & & 74.68 \\
\hline 4.00 & & & 1.311 & & 2.47 & & 96.40 \\
\hline 4.50 & & & 1.320 & & 2.39 & & 93.31 \\
\hline 5.00 & & & 1.295 & & 3.16 & & 123.47 \\
\hline 5.50 & & & 1.291 & & 3.10 & & 121.14 \\
\hline 6.00 & & & 1.316 & & 5.52 & & 215.39 \\
\hline 6.25 & & & 1.293 & & 4.45 & & 173.79 \\
\hline 6.50 & & & 1.281 & & 3.67 & & 143.19 \\
\hline 6.75 & & & 1.285 & & 4.80 & & 187.56 \\
\hline 7.00 & & & 1.206 & & 7.47 & & 291.69 \\
\hline 7.25 & & & 0.966 & & 7.60 & & 296.44 \\
\hline 7.50 & & & 0.637 & & 7.26 & & 673.42 \\
\hline 7.75 & & & 0.342 & & 2.54 & & 489.38 \\
\hline 8.00 & & & 0.113 & & 6.96 & & 271.47 \\
\hline 8.50 & & & 0.093 & & 0.46 & & 18.07 \\
\hline 9.00 & & & 0.030 & & 0.72 & & 28.22 \\
\hline
\end{tabular}

Table 10. Reduced data for run \#2.

Table 10 (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & : & \[
\mathrm{g} \cdot / \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 5.00 & & 1.196 & & 9.17 & & 357.64 \\
\hline 5.50 & & 1.192 & & 9.00 & & 351.24 \\
\hline 6.00 & & 1.191 & & 10.47 & & 408.37 \\
\hline 6.50 & & 1.174 & & 11.06 & & 431.56 \\
\hline 7.00 & & 1.063 & & 7.71 & & 300.81 \\
\hline 7.50 & & 0.967 & & 9.32 & & 363.78 \\
\hline 7.75 & & 0.812 & & 9.79 & & 381.91 \\
\hline 8.00 & & 0.691 & & 15.53 & & 605.98 \\
\hline 8.25 & & 0.632 & & 18.26 & & 712.30 \\
\hline 8.50 & & 0.555 & & 25.39 & & 990.28 \\
\hline 8.75 & & 0.533 & & 30.66 & & 1195.97 \\
\hline 9.00 & & 0.467 & & 21.16 & & 825.43 \\
\hline 9.25 & & 0.298 & & 16.16 & & 630.53 \\
\hline 9.50 & & 0.272 & & 1.5 .91 & & 620.79 \\
\hline 10.00 & & 0.161 & & 7.54 & & 294.29 \\
\hline 10.25 & & 0.089 & & 1.44 & & 56.35 \\
\hline 10.50 & & 0.094 & & 1.97 & & 77.13 \\
\hline 11.00 & & 0.07 G & & 1.16 & & 45.39 \\
\hline 11.50 & & 0.073 & & 1.00 & & 39.32 \\
\hline 12.00 & & 0.064 & & 1.33 & & 51.88 \\
\hline
\end{tabular}

Table 11. Feduced data for run \#3.

Table ll. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
H \\
inches
\end{tabular} & : & \[
\overline{\bar{P}}
\] & ; & ISU & : & \[
x_{39}^{2}
\] \\
\hline 8.00 & & 0.652 & & 7.98 & & 311.27 \\
\hline 8.50 & & 0.575 & & 12.10 & & 472.20 \\
\hline 9.00 & & 0.557 & & 13.82 & & 539.33 \\
\hline 9.25 & & 0.556 & & 29.00 & & 113.13 \\
\hline 9.50 & & 0.480 & & 20.24 & & 789.48 \\
\hline 9.75 & & 0.505 & & 13.59 & & 530.04 \\
\hline 10.00 & & 0.432 & & 11.79 & & 460.12 \\
\hline 10.25 & & 0.451 & & 19.13 & & 746.37 \\
\hline 10.50 & & 0.407 & & 25.01 & & 975.42 \\
\hline 10.75 & & 0.354 & & 9.89 & & 385.80 \\
\hline 11.00 & & 0.365 & & 12.31 & & 480.47 \\
\hline 11.25 & & 0.318 & & 6.85 & & 267.37 \\
\hline 11.50 & & 0.283 & & 11.33 & & 441.89 \\
\hline 11.75 & & 0.273 & & 7.23 & & 282.15 \\
\hline 12.00 & & 0.237 & & 4.01 & & 156.42 \\
\hline 12.25 & & 0.205 & & 1.69 & & 65.97 \\
\hline 12.50 & & 0.209 & & 1.84 & & 71.78 \\
\hline 13.00 & & 0.116 & & 1.21 & & 47.38 \\
\hline
\end{tabular}

Table l2. Reduced data for run \#4.

Table 12. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & : & \[
\mathrm{g} \cdot / \mathrm{cc} .
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 9.00 & & 1.275 & & 3.69 & & 143.93 \\
\hline 9.25 & & 1.261 & & 4.41 & & 172.24 \\
\hline 9.50 & & 1.248 & & 4.06 & & 158.69 \\
\hline 9.75 & & 1.191 & & 6.45 & & 251.55 \\
\hline 10.00 & & 1.095 & & 7.87 & & 307.06 \\
\hline 10.25 & & . 0.859 & & 6.38 & & 249.17 \\
\hline 10.50 & & 0.704 & & 22.21 & & 866.27 \\
\hline 10.75 & & 0.605 & & 20.30 & & 791.73 \\
\hline 11.00 & & 0.288 & & 13.57 & & 529.57 \\
\hline 11.25 & & 0.132 & & 4.07 & & 158.82 \\
\hline 11.50 & & 0.038 & & 3.46 & & 135.17 \\
\hline 12.00 & & -0.003 & & 0.87 & & 34.28 \\
\hline
\end{tabular}

Table 13. Reduced date for run \#5.

Table 13. (concl.).
\begin{tabular}{ccccc}
\hline \hline H & \(:\) & \(\bar{p}\) & & \\
Inches & g./cc & \(:\) & ISU & \(:\) \\
\hline 11.00 & 0.747 & & 11.32 & \\
11.25 & 0.749 & 16.34 & 441.77 \\
11.50 & 0.730 & 14.65 & 637.55 \\
11.75 & 0.708 & 17.14 & 727.36 \\
12.00 & 0.661 & 23.09 & 668.84 \\
12.25 & 0.598 & 25.86 & 900.56 \\
12.50 & 0.510 & 38.33 & 1008.60 \\
12.75 & 0.481 & 30.85 & 1495.02 \\
13.00 & 0.409 & 39.40 & 1203.30 \\
& & & & 1536.83 \\
\hline
\end{tabular}

Table 14. Reduced data for run \#6.

Table 15. Reduced data for run \#7.

Table 16. Reduced data for run \#8.

Table 17. Reduced data for run \#9.

Table 18. Reduced data for run \# 10*.

Table 18. (concl.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H inches & : & \[
g \cdot / c c
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 6.00 & & 0.906 & & 8.04 & & 313.65 \\
\hline 6.25 & & 0.874 & & 13.50 & & 518.55 \\
\hline 6.50 & & 0.886 & & 10.45 & & 407.91 \\
\hline 6.75 & & 0.799 & & 16.09 & & 627.73 \\
\hline 7.00 & & 0.786 & & 21.61 & & 843.05 \\
\hline 7.50 & & 0.598 & & 19.59 & & 764.24 \\
\hline 8.00 & & 0.470 & & 27.32 & & 1065.48 \\
\hline 8.50 & & 0.360 & & 19.78 & & 771.65 \\
\hline 9.00 & & 0.247 & & 30.60 & & 1193.68 \\
\hline 9.50 & & 0.136 & & 8.38 & & 326.86 \\
\hline 10.00 & & 0.120 & & 9.65 & & 376.72 \\
\hline 10.50 & & 0.101 & & 7.80 & & 304.44 \\
\hline 11.00 & & 0.065 & & 1.96 & & 76.82 \\
\hline 12.00 & & 0.032 & & 0.69 & & 26.92 \\
\hline 13.00 & & 0.025 & & 1.01 & & 39.50 \\
\hline
\end{tabular}

Equipment drifted and calibration is slightly in error.
Table 19. Keduced data for run \#11*.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed helght: & 6.20 ln. & \[
\begin{aligned}
& \text { Alr } \\
& \text { veloclty: } 90
\end{aligned}
\] & & & \[
\begin{gathered}
\text { Particle } \\
\text { size: }
\end{gathered}
\] & \[
\begin{array}{r}
0 \% 40 \mathrm{mesh}, \\
100 \% 80 \mathrm{mesh} .
\end{array}
\] \\
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & & \[
\mathrm{g} \cdot / \mathrm{c} \cdot \mathrm{c} .
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 0.990 & & 6.14 & & 827.56 \\
\hline 1.50 & & 1.002 & & 5.07 & & 601.75 \\
\hline 2.00 & & 1.012 & & 7.76 & & 657.95 \\
\hline 2.50 & & 0.924 & & 7.28 & & 419.14 \\
\hline 3.00 & & 0.961 & & 8.05 & & 705.38 \\
\hline 3.50 & & 0.948 & & 10.67 & & 460.15 \\
\hline 4.00 & & 0.973 & & 8.87 & & 259.97 \\
\hline 4.50 & & 1.030 & & 12.87 & & 433.12 \\
\hline 5.00 & & 1.007 & & 10.52 & & 464.07 \\
\hline 5.50 & & 1.039 & & 18.12 & & 246.36 \\
\hline 6.00 & & 0.981 & & 7.32 & & 170.20 \\
\hline 6.50 & & 0.901 & & 12.11 & & 286.50 \\
\hline 7.00 & & 0.788 & & 15.67 & & 159.86 \\
\hline 7.25 & & 0.739 & & 18.84 & & 103.84 \\
\hline 7.50 & & 0.662 & & 17.45 & & 239.60 \\
\hline 7.75 & & 0.578 & & 21.21 & & 197.87 \\
\hline 8.00 & & 0.555 & & 15.42 & & 302.76 \\
\hline 8.25 & & 0.488 & & 16.87 & & 284.19 \\
\hline 8.50 & & 0.407 & & 10.74 & & 313.99 \\
\hline
\end{tabular}

Table 19. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\stackrel{\mathrm{H}}{\text { inches }}
\] & : & \[
\mathrm{g} \cdot \overline{\mathrm{\ell}} \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 8.75 & & 0.366 & & 18.08 & & 416.18 \\
\hline 9.00 & & 0.343 & & 11.79 & & 346.21 \\
\hline 9.25 & & 0.296 & & 6.66 & & 501.93 \\
\hline 9.50 & & 0.285 & & 11.10 & & 410.51 \\
\hline 9.75 & & 0.251 & & 11.89 & & 706.83 \\
\hline 10.00 & & 0.199 & & 6.31 & & 285.63 \\
\hline 10.50 & & 0.155 & & 4.36 & & 472.42 \\
\hline 11.00 & & 0.134 & & 7.34 & & 611.39 \\
\hline 11.50 & & 0.110 & & 4.09 & & 735.09 \\
\hline 12.00 & & 0.076 & & 2.66 & & 680.61 \\
\hline 13.00 & & 0.017 & & 1.39 & & 54.21 \\
\hline
\end{tabular}

Equipment drifted and calibration is slightly in error.

Table 20. Reduced data for run \#12.
\begin{tabular}{|c|c|c|c|c|}
\hline Packed bed helght: & \[
9.35 \mathrm{in} .
\] & \[
\begin{aligned}
& \text { Alr } \\
& \text { velocity: } 30
\end{aligned}
\] & \(\mathrm{ft} / \mathrm{mln}\). & Particle 0\% 40 meeh, s1ze: \(100 \% 80 \mathrm{mesh}\). \\
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & : & \[
\overline{\mathrm{e}} / \mathrm{cc}
\] & : ISU & \[
x_{3 q}^{2}
\] \\
\hline 1.00 & & 1.206 & 2.67 & 104.42 \\
\hline 1.50 & & 1.215 & 5.28 & \(206.0{ }^{\text {r }}\) \\
\hline 2.00 & & 1.216 & 3.38 & 132.02 \\
\hline 2.50 & & 1.185 & 3.30 & 128.86 \\
\hline 3.00 & & 1.198 & 6.06 & 236.55 \\
\hline 3.50 & & 1.154 & 3.88 & 151.59 \\
\hline 4.00 & & 1.168 & 7.05 & 275.32 \\
\hline 4.50 & & 1.189 & 7.73 & 301.60 \\
\hline 5.00 & & 1.117 & 9.86 & 384.64 \\
\hline 5.50 & & 1.147 & 7.19 & 280.47 \\
\hline 6.00 & & 1.151 & 8.53 & 332.71 \\
\hline 6.50 & & 1.192 & 7.54 & 294.11 \\
\hline 7.00 & & 1.174 & 9.31 & 363.27 \\
\hline 7.50 & & 1.165 & 4.23 & 165.28 \\
\hline 8.00 & & 1.173 & 9.91 & 386.53 \\
\hline 8.50 & & 1.183 & 9.78 & 381.68 \\
\hline 9.00 & & 1.213 & 4.79 & 187.10 \\
\hline 9.25 & & 1.172 & 13.09 & 510.68 \\
\hline 9.50 & & 1.177 & 10.60 & 413.46 \\
\hline 9.75 & & 1.183 & 8.11 & 316.45 \\
\hline 10.00 & & 1.134 & 10.25 & 399.80 \\
\hline
\end{tabular}

Table 20. (concl.).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
H \\
inches
\end{tabular} & \[
: \quad \overline{\mathrm{g} .} \overline{\mathrm{cc}}
\] & : & ISU & : & \[
X_{39}^{2}
\] \\
\hline 10.50 & 1.049 & & 8.83 & & 344.75 \\
\hline 11.00 & 0.926 & & 11.48 & & 448.09 \\
\hline 11.50 & 0.671 & & 22.28 & & 869.29 \\
\hline 12.00 & 0.371 & & 28.99 & & 1130.63 \\
\hline 12.50 & 0.212 & & 20.28 & & 790.93 \\
\hline 13.00 & 0.059 & & 9.16 & & 357.32 \\
\hline 13.50 & 0.045 & & 22.50 & & 877.65 \\
\hline
\end{tabular}

Table 21. Reduced data for run \#13.

Table 2l. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & : & \[
g \cdot / c c
\] & \(:\) & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 13.50 & & 0.382 & & 28.79 & & 1123.09 \\
\hline 14.00 & & 0.319 & & 29.65 & & 1156.43 \\
\hline 14.50 & & 0.279 & & 50.28 & & 1961.10 \\
\hline 15.00 & & 0.202 & & 30.73 & & 1198.48 \\
\hline
\end{tabular}

Table 22. Reduced data for run \#14.

Table 23. Reduced data for run \#15.

Table 23. Reduced data for run \#15.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H inches & : & \[
\mathrm{g} \cdot / \mathrm{ec}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 3.00 & & 1.037 & & 7.81 & & 304.86 \\
\hline 3.50 & & 1.016 & & 7.40 & & 288.97 \\
\hline 3.75 & & 0.988 & & 7.65 & & 298.47 \\
\hline 4.00 & & 0.862 & & 6.85 & & 267.15 \\
\hline 4.25 & & 0.716 & & 10.24 & & 399.70 \\
\hline 4.50 & & 0.562 & & 7.09 & & 276.73 \\
\hline 4.75 & & 0.428 & & 12.18 & & 475.39 \\
\hline 5.00 & & 0.314 & & 4.59 & & 179.38 \\
\hline 5.25 & & 0.228 & & 8.18 & & 319.32 \\
\hline 5.75 & & 0.011 & & 4.44 & & 173.27 \\
\hline 6.00 & & 0.052 & & 4.28 & & 167.27 \\
\hline 6.50 & & 0.033 & & 2.06 & & 80.59 \\
\hline 7.00 & & 0.017 & & 0.53 & & 20.81 \\
\hline
\end{tabular}

Table 24. Reduced data for run \#16.

** Run \#l7 was a calibration check.

Table 25. Reduced data for run \#18.

Table 26. Reduced data for run \#19.

Table 26. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { Inches }}{\mathrm{H}}
\] & : & \[
\overline{e^{\prime}} / \mathrm{cc}
\] & : & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 7.00 & & 1.051 & & 8.43 & & 496.51 \\
\hline 7.25 & & 1.016 & & 10.18 & & 414.63 \\
\hline 7.50 & & 0.944 & & 6.63 & & 258.68 \\
\hline 7.75 & & 0.811 & & 9.34 & & 364.55 \\
\hline 8.00 & & 0.710 & & 11.54 & & 450.08 \\
\hline 8.25 & & 0.669 & & 18.09 & & 705.61 \\
\hline 8.50 & & 0.553 & & 25.53 & & 995.83 \\
\hline 8.75 & & 0.485 & & 19.07 & & 744.00 \\
\hline 9.00 & & 0.414 & & 15.39 & & 600.52 \\
\hline 9.50 & & 0.307 & & 16.80 & & 655.36 \\
\hline 10.50 & & 0.078 & & 31.80 & & 124.31 \\
\hline
\end{tabular}

Table 27. Reduced data for run \(\# 20\).

Table 27. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { inches }}{H}
\] & \[
\begin{aligned}
& : \\
& :
\end{aligned}
\] & \[
\mathrm{e} \cdot / \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 10.50 & & 0.283 & & 9.25 & & 361.06 \\
\hline 11.00 & & 0.173 & & 9.70 & & 378.45 \\
\hline 11.50 & & 0.100 & & 9.10 & & 355.23 \\
\hline 12.00 & & 0.073 & & 8.03 & & 313.35 \\
\hline 12.50 & & 0.024 & & 1.86 & & 72.86 \\
\hline
\end{tabular}

Table 28. Reduced data for run \#2l.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed height: & 6.50 in. & \[
\begin{gathered}
\text { Alr } \\
\text { velocity: } 30
\end{gathered}
\] & & /min. & \begin{tabular}{l}
rticle \\
size:
\end{tabular} & \(90 \% 40\) mesh. \(10 \% 80\) mesh. \\
\hline H inches & : & \[
g \cdot \bar{\rho}_{\mathrm{cc}}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 1.307 & & 3.19 & & 124.48 \\
\hline 1.50 & & 1.309 & & 2.83 & & 110.41 \\
\hline 2.00 & & 1.290 & & 3.21 & & 125.46 \\
\hline 2.50 & & 1.290 & & 3.76 & & 146.69 \\
\hline 3.00 & & 1.267 & & 4.19 & & 163.50 \\
\hline 3.50 & & 1.265 & & 3.91 & & 152.66 \\
\hline 4.00 & & 1.255 & & 5.63 & & 219.65 \\
\hline 4.50 & & 1.248 & & 5.36 & & 209.15 \\
\hline 5.00 & & 1.260 & & 4.66 & & 181.80 \\
\hline 5.50 & & 1.252 & & 4.12 & & 160.82 \\
\hline 6.00 & & 1.252 & & 5.24 & & 204.57 \\
\hline 6.50 & & 1.239 & & 6.16 & & 240.59 \\
\hline 7.00 & & 1.199 & & 9.88 & & 385.37 \\
\hline 7.25 & & 1.088 & & 7.03 & & 274.41 \\
\hline 7.50 & & 0.982 & & 12.63 & & 492.75 \\
\hline 7.75 & & 0.652 & & 13.56 & & 528.87 \\
\hline 8.00 & & 0.491 & & 22.79 & & 888.95 \\
\hline 8.25 & & 0.329 & & 13.05 & & 508.96 \\
\hline 8.50 & & 0.191 & & 4.84 & & 189.04 \\
\hline 9.00 & & 0.036 & & 2.18 & & 85.38 \\
\hline
\end{tabular}

Table 29. Reduced data for run \#22.

Table 30. Reduced data for run \#23.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed helght: & \[
6.50 \mathrm{in}
\] & \[
\begin{aligned}
& \text { hirg } \\
& \text { velocity: } 90
\end{aligned}
\] & & \[
/ \mathrm{min} .
\] & \[
\begin{gathered}
\text { Particle } \\
\text { size: }
\end{gathered}
\] & \(90 \% 40\) mesh, 10\% 80 mesh. \\
\hline \[
\begin{gathered}
\mathrm{H} \\
\text { Inches }
\end{gathered}
\] & : & \[
\mathrm{g} \cdot / \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 1.065 & & 2.05 & & 80.16 \\
\hline 1.50 & & 1.079 & & 3.95 & & \(154 \cdot 27\) \\
\hline 2.00 & & 1.043 & & 3.83 & & 149.61 \\
\hline 3.00 & & 0.947 & & 5.11 & & 199.66 \\
\hline 3.50 & & 0.893 & & 4.74 & & 184.97 \\
\hline 4.00 & & 0.843 & & 15.44 & & 602.21 \\
\hline 4.50 & & 0.808 & & 15.74 & & 613.93 \\
\hline
\end{tabular}

Table 30. (concl.).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\underset{\text { H }}{\text { inches }}
\] & \[
: \quad \mathrm{g} . \overline{\mathrm{\rho}} \mathrm{cc} .
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 5.00 & 0.847 & & 13.48 & & 525.75 \\
\hline 5.50 & 0.813 & & 14.64 & & 571.32 \\
\hline 6.00 & 0.799 & & 13.13 & & 512.15 \\
\hline 6.50 & 0.821 & & 19.86 & & 774.63 \\
\hline 7.00 & 0.717 & & 16.11 & & 628.55 \\
\hline 7.50 & 0.573 & & 7.31 & & 285.17 \\
\hline 7.75 & 0.586 & & 16.93 & & 660.51 \\
\hline 8.00 & 0.520 & & 10.73 & & 418.62 \\
\hline 8.25 & 0.465 & & 10.31 & & 402.41 \\
\hline 8.50 & 0.447 & & 19.11 & & 745.37 \\
\hline 8.75 & 0.400 & & 15.01 & & 585.72 \\
\hline 9.00 & 0.346 & & 11.45 & & 446.56 \\
\hline 9.25 & 0.293 & & 14.50 & & 565.55 \\
\hline 9.50 & 0.260 & & 15.93 & & 621.54 \\
\hline 10.00 & 0.220 & & 15.19 & & 592.49 \\
\hline 10.50 & 0.094 & & 10.73 & & 418.50 \\
\hline 11.50 & 0.039 & & 5.91 & & 230.82 \\
\hline
\end{tabular}

Table 31. Reduced data for run \#24:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed height: & 6.50 in . & \[
\begin{aligned}
& \text { Alr } \\
& \text { velocity; } 30
\end{aligned}
\] & & \[
/ \mathrm{min} \text {. }
\] & \[
\begin{gathered}
\text { Particle } \\
\text { size: }
\end{gathered}
\] & \(2 \% 40 \mathrm{mesh}\), 98\% 80 mesh. \\
\hline H inches & & \[
\mathrm{g} \cdot / \mathrm{cc}
\] & & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 1.205 & & & & 116.72 \\
\hline 1.50 & & 1.206 & & & & 126.16 \\
\hline 2.00 & & 1.183 & & & & 134.31 \\
\hline 2.50 & & 1.187 & & & & 159.28 \\
\hline 3.00 & & 1.133 & & & & 208.21 \\
\hline 3.50 & & 1.138 & & & & 280.26 \\
\hline 4.00 & & 1.095 & & & & 199.56 \\
\hline 4.50 & & 1.108 & & & & 233.60 \\
\hline 5.00 & & 1.101 & & & & 295.27 \\
\hline 5.50 & & 1.133 & & 5. & & 197.83 \\
\hline 6.00 & & 1.129 & & & & 294.00 \\
\hline 6.50 & & 1.102 & & & & 325.47 \\
\hline 7.00 & & 1.112 & & 10. & & 425.00 \\
\hline 7.25 & & 1.044 & & & & 200.86 \\
\hline 7.50 & & 0.978 & & 10. & & 417.57 \\
\hline 7.75 & & 0.783 & & & & 222.96 \\
\hline 8.00 & & 0.656 & & 21. & & 833.43 \\
\hline
\end{tabular}

Table 31. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H inches & : & \[
\mathrm{s} \cdot / \mathrm{cc}
\] & : & ISU & : & \(x^{2} 9\) \\
\hline 8.25 & & 0.501 & & 14.39 & & 561.56 \\
\hline 8.50 & & 0.423 & & 17.04 & & 664.67 \\
\hline 8.75 & & 0.299 & & 13.70 & & 534.53 \\
\hline 9.00 & & 0.215 & & 14.27 & & 556.64 \\
\hline
\end{tabular}

Table 32. Reduoed data for run \#25.

Table 33. Reduced data for run \#乏6.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed he 1 ght: & \[
6.50 \mathrm{in.}
\] & \[
\begin{aligned}
& \text { A1r } \\
& \text { velocity: } 90
\end{aligned}
\] & & min. & \[
\begin{gathered}
\text { Particle } \\
\text { eize: }
\end{gathered}
\] & \[
\begin{aligned}
& 2 \% 40 \text { mesh, } \\
& 98 \% 80 \text { meeh. }
\end{aligned}
\] \\
\hline H inchee & & E./cc. & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 0.948 & & 3.72 & & 145.22 \\
\hline 1.50 & & 0.944 & & 3.53 & & 137.75 \\
\hline 2.00 & & 0.929 & & 6.02 & & 234.81 \\
\hline 2.50 & & 0.958 & & 5.67 & & 221.16 \\
\hline 3.00 & & 0.934 & & 12.67 & & 494.29 \\
\hline 3.50 & & 0.974 & & 13.27 & & 517.65 \\
\hline 4.00 & & 0.967 & & 11.95 & & 466.16 \\
\hline 4.50 & & 1.012 & & 11.52 & & 449.64 \\
\hline 5.00 & & 1.012 & & 7.57 & & 295.51 \\
\hline 5.50 & & 0.985 & & 9.17 & & 357.82 \\
\hline 6.00 & & 1.027 & & 7.99 & & 311.68 \\
\hline 6.50 & & 1.004 & & 8.68 & & 338.68 \\
\hline 7.00 & & 0.938 & & 8.00 & & 312.36 \\
\hline 7.50 & & 0.741 & & 14.41 & & 562.17 \\
\hline 7.75 & & 0.649 & & 13.65 & & 532.65 \\
\hline 8.00 & & 0.630 & & 12.82 & & 500.13 \\
\hline 8.25 & & 0.535 & & 10.57 & & 412.48 \\
\hline 8.50 & & 0.471 & & 11.15 & & 435.09 \\
\hline 8.75 & & 0.435 & & 20.29 & & 791.41 \\
\hline 9.00 & & 0.380 & & 12.30 & & 479.78 \\
\hline 9.25 & & 0.359 & & 20.87 & & 814.12 \\
\hline 9.50 & & 0.316 & & 10.87 & & 424.29 \\
\hline 9.75 & & 0.290 & & 23.68 & & 923.70 \\
\hline 10.00 & & 0.234 & & 6.64 & & 259.17 \\
\hline 10.50 & & 0.213 & & 9.70 & & 378.52 \\
\hline 11.00 & & 0.184 & & 10.38 & & 405.06 \\
\hline 11.50 & & 0.099 & & 7.52 & & 293.62 \\
\hline 12.00 & & 0.072 & & 3.32 & & 129.57 \\
\hline 12.50 & & 0.053 & & 2.60 & & 101.68 \\
\hline 13.00 & & 0.040 & & 1.71 & & 66.77 \\
\hline
\end{tabular}

Table 34. Reduced data for run \#27.

Tabls 34. (conc1.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\frac{H}{\text { inches }}
\] & ! & \[
\overline{\mathrm{e}} / \mathrm{cc} .
\] & : & ISU & ! & \[
\chi_{39}^{2}
\] \\
\hline 4.50 & & 1.145 & & 7.04 & & 74.68 \\
\hline 5.00 & & 1.132 & & 4.82 & & 88.12 \\
\hline 5.50 & & 1.146 & & 8.63 & & 36.83 \\
\hline 6.00 & & 1.155 & & 7.98 & & 11.50 \\
\hline 6.25 & & 1.166 & & 7.58 & & 5. 62 \\
\hline 6.50 & & 1.160 & & 9.73 & & 79.60 \\
\hline 6.75 & & 1.159 & & 8.17 & & 18.97 \\
\hline 7.00 & & 1.139 & & 8.90 & & 47.44 \\
\hline 7.50 & & 1.025 & & 8.56 & & 33.90 \\
\hline 8.00 & & 0.726 & & 16.20 & & 2.09 \\
\hline 8.50 & & 0.414 & & 16.75 & & 53.46 \\
\hline 9.00 & & 0.270 & & 12.45 & & 85.71 \\
\hline 9.50 & & 0.095 & & 4.39 & & 71.37 \\
\hline 10.00 & & 0.042 & & 2.83 & & 10.42 \\
\hline 11.00 & & 0.004 & & 0.98 & & 38.39 \\
\hline
\end{tabular}

Table 35. Reduced data for run \#28.

Table 36. Reduced data for run \#29.

Table 37. Reduced data for run \#30.

Table 37. (concl.).

Table 38. Reduced data for run \#3l.

Table 38. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{H} \\
\text { inches }
\end{gathered}
\] & : & \[
\mathrm{g} \cdot / \mathrm{cc}
\] & : & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 8.50 & & 0.385 & & 23.92 & & 933.21 \\
\hline 8.75 & & 0.325 & & 14.31 & & 558.14 \\
\hline 9.00 & & 0.278 & & 11.81 & & 460.86 \\
\hline 9.50 & & 0.190 & & 17.63 & & 687.81 \\
\hline 10.00 & & 0.089 & & 9.86 & & 384.66 \\
\hline 10.50 & & 0.031 & & 4.23 & & 165.17 \\
\hline 11.00 & & 0.007 & & 2.78 & & 108.44 \\
\hline
\end{tabular}

Table 39. Reduced data for run \#32.

Table 39. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
H \\
inches
\end{tabular} & : & \[
g_{5} / \mathrm{cc}
\] & : & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 12.00 & & 0.057 & & 4.80 & & 187.45 \\
\hline 12.50 & & 0.034 & & 1.71 & & 66.75 \\
\hline 13.00 & & 0.017 & & 2.81 & & 109.65 \\
\hline
\end{tabular}

Table 40. Reduced data for run \#33.

Table 41. Reduced data for run \#34.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Packed bod helght: & \[
6.50
\] & 1n. & \[
\begin{aligned}
& \text { A1r } \\
& \text { velocity: }
\end{aligned}
\] & & \[
\mathrm{ft} \cdot / \mathrm{min} .
\] & \[
\begin{gathered}
\text { Particle } \\
\text { size: }
\end{gathered}
\] & \[
\begin{aligned}
& 10 \% 40 \text { mesh, } \\
& 90 \% 80 \text { mesh. }
\end{aligned}
\] \\
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & & : & \[
\mathrm{g} \cdot / \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & & 1.064 & & 3.20 & & 125.02 \\
\hline 1.50 & & & 1.069 & & 4.50 & & 175.68 \\
\hline 2.00 & & & 1.068 & & 7.33 & & 285.99 \\
\hline 3.00 & & & 1.064 & & 7.31 & & 285.11 \\
\hline 4.00 & & & 1.070 & & 9.77 & & 381.14 \\
\hline 5.00 & & & 1.074 & & 12.16 & & 474.14 \\
\hline 5.50 & & & 1.108 & & 11.50 & & 448.69 \\
\hline 6.00 & & & 1.086 & & 9.10 & & 354.99 \\
\hline 6.25 & & & 1.074 & & 8.36 & & 326.14 \\
\hline 6.50 & & & 1.078 & & 12.75 & & 497.47 \\
\hline 6.75 & & & 1.032 & & 10.86 & & 423.58 \\
\hline 7.00 & & & 1.032 & & 15.03 & & 586.46 \\
\hline 7.50 & & & 0.792 & & 15.74 & & 614.15 \\
\hline 8.00 & & & 0.668 & & 11.11 & & 433.54 \\
\hline 8.50 & & & 0.556 & & 17.96 & & 700.49 \\
\hline 9.00 & & & 0.442 & & 12.27 & & 478.64 \\
\hline 9.50 & & & 0.346 & & 19.75 & & 770.55 \\
\hline 10.00 & & & 0.260 & & 9.13 & & 356.18 \\
\hline 10.50 & & & 0.148 & & 59,08 & & 382.60 \\
\hline 11.00 & & & 0.141 & & 4.84 & & 188.93 \\
\hline 12.00 & & & 0.060 & & 1.72 & & 67.33 \\
\hline 13.00 & & & 0.022 & & 0.71 & & 27.71 \\
\hline
\end{tabular}

Table 42. Reduced data for run \#35.

Table 42. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\frac{\mathrm{H}}{\text { inches }}
\] & : & \[
\overline{g_{2}} \cdot \mathrm{cc}
\] & : & ISU & : & \[
x_{39}^{2}
\] \\
\hline 6.50 & & 0.976 & & 9.80 & & 382.58 \\
\hline 6.75 & & 0.909 & & 9.42 & & 367.66 \\
\hline 7.00 & & 0.794 & & 14.98 & & 584.46 \\
\hline 7.50 & & 0.717 & & 16.96 & & 661.59 \\
\hline 8.00 & & 0.610 & & 13.65 & & 532.66 \\
\hline 9.00 & & 0.438 & & 10.23 & & 399.05 \\
\hline 10.00 & & 0.292 & & 14.60 & & 569.73 \\
\hline 10.50 & & 0.248 & & 6.49 & & 253.38 \\
\hline 11.00 & & 0.207 & & 10.41 & & 406.05 \\
\hline 12.00 & & 0.115 & & 3.49 & & 136.24 \\
\hline 13.00 & & 0.082 & & 8.58 & & 334.71 \\
\hline 14.00 & & 0.057 & & 0.67 & & 26.49 \\
\hline 15.00 & & 0.032 & & 1.28 & & 50.30 \\
\hline
\end{tabular}

Table 43. Reduced data for run \#36.

Table 44. Reduced data for run \#37.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Packed bed height: & 6.50 in. & \[
\begin{gathered}
\text { Air } \\
\text { velocity: }
\end{gathered}
\] & \[
60 \mathrm{f}
\] & \[
\mathrm{ft} . / \mathrm{min} .{ }^{\mathrm{Pa}}
\] & rticle s1ze: & \[
\begin{aligned}
& \hline 98 \% 40 \mathrm{mesh}, \\
& 2 \% 80 \mathrm{mesh} .
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\mathrm{H} \\
\text { inches }
\end{gathered}
\] & : & & : & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 1.00 & & 1.243 & & 2.90 & & 113.34 \\
\hline 1.50 & & 1.235 & & 1.87 & & 73.05 \\
\hline 2.00 & & 1.214 & & 3.83 & & 149.54 \\
\hline 3.00 & & 1.173 & & 6.62 & & 258.51 \\
\hline 4.00 & & 1.164 & & 11.28 & & 440.23 \\
\hline 4.50 & & 1.179 & & 14.03 & & 547.50 \\
\hline 5.00 & & 1.144 & & 11.57 & & 451.23 \\
\hline 5.50 & & 1.178 & & 10.93 & & 426.31 \\
\hline 6.00 & & 1.131 & & 9.88 & & 345.63 \\
\hline 6.25 & & 1.139 & & 11.91 & & 464.83 \\
\hline 6.50 & & 1.150 & & 11.12 & & 433.94 \\
\hline 6.75 & & 1.079 & & 6.48 & & 252.81 \\
\hline 7.00 & & 1.058 & & 9.13 & & 356.31 \\
\hline 7.50 & & 0.964 & & 17.52 & & 683.32 \\
\hline 8.00 & & 0.719 & & 14.40 & & 561.76 \\
\hline 8.50 & & 0.603 & & 17.85 & & 696.28 \\
\hline 9.00 & & 0.470 & & 25.63 & & 999.92 \\
\hline 9.50 & & 0.294 & & 18.87 & & 735.93 \\
\hline 10.00 & & 0.166 & & 15.37 & & 599.70 \\
\hline 11.00 & & 0.042 & & 1.86 & & 72.70 \\
\hline
\end{tabular}

Table 45. Reduced data for run \#38.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Packed bed holght: & \[
6.50 \mathrm{in} .
\] & \[
\begin{aligned}
& \text { Air } \\
& \text { velocity: } 90
\end{aligned}
\] & \[
\mathrm{ft} . / \mathrm{min} .
\] & \[
\begin{gathered}
\text { Particle } \\
\text { size: }
\end{gathered}
\] & \[
\begin{array}{r}
98 \% \\
\hline 90 \text { mesh, } \\
2 \% \text { mesh. }
\end{array}
\] \\
\hline \[
\begin{gathered}
\mathrm{H} \\
\text { inches }
\end{gathered}
\] & \[
:
\] & \[
\mathrm{g} \cdot \sum_{\mathrm{cc}}^{\mathrm{F}}
\] & ISU & : & \[
x_{39}^{2}
\] \\
\hline 1.00 & & 1.121 & 5.17 & & 201.97 \\
\hline 1.50 & & 1.132 & 5.87 & & 229.16 \\
\hline 2.00 & & 1.107 & 9.44 & & 368.22 \\
\hline 2.50 & & 1.078 & 5.98 & & 233.60 \\
\hline 3.00 & & 1.046 & 8.12 & & 317.00 \\
\hline 3.50 & & 1.083 & 11.24 & & 438.48 \\
\hline 4.00 & & 1.099 & 11.99 & & 467.62 \\
\hline 4.50 & & 1.050 & 14.22 & & 554.76 \\
\hline 5.00 & & 1.079 & 24.21 & & 944.32 \\
\hline 5.50 & & 1.022 & 12.49 & & 487.13 \\
\hline 6.00 & & 0.999 & 22.53 & & 879.05 \\
\hline 6.50 & & 0.981 & 13.40 & & 522.86 \\
\hline 7.00 & & 0.879 & 14.48 & & 565.09 \\
\hline
\end{tabular}

Table 45. (concl.).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { inches }}{\mathrm{H}}
\] & : & \[
\overline{\mathrm{p}} / \mathrm{cc}
\] & : & ISU & : & \[
\chi_{39}^{2}
\] \\
\hline 7.50 & & 0.767 & & 17.98 & & 701.30 \\
\hline 7.75 & & 0.750 & & 20.63 & & 804.69 \\
\hline 8.00 & & 0.675 & & 10.32 & & 402.84 \\
\hline 8.25 & & 0.603 & & 12.62 & & 492.26 \\
\hline 8.50 & & 0.589 & & 17.95 & & 700.09 \\
\hline 8.75 & & 0.542 & & 14.50 & & 565.52 \\
\hline 9.00 & & 0.504 & & 16.01 & & 624.48 \\
\hline 9.25 & & 0.511 & & 46.82 & & 1826.24 \\
\hline 9.50 & & 0.448 & & 21.95 & & 856.13 \\
\hline 9.75 & & 0.391 & & 16.69 & & 651.19 \\
\hline 10.00 & & 0.359 & & 29.29 & & 1142.48 \\
\hline 10.50 & & 0.294 & & 20.40 & & 795.87 \\
\hline 11.00 & & 0.235 & & 22.49 & & 877.17 \\
\hline 11.50 & & 0.178 & & 32.07 & & 1251.10 \\
\hline 12.00 & & 0.119 & & 20.22 & & 788.81 \\
\hline 12.50 & & 0.041 & & 6.86 & & 267.92 \\
\hline 13.00 & & 0.008 & & 1.94 & & 75.67 \\
\hline
\end{tabular}

DYNAMIC CHARAGTERISTICS OF GAS-SOLIDS FLUIDIZED BEDS USING RADIOACTIVE ISOTOPE TECHNIQUES
by

JOE JACKSON STEWART
B. S., Purdue University, 1959

AN ABSTRACT OF A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY
OF AGRICULTURE AND APPLIED SCIENCE

A radiation attenuation method was used to determine density fluctuations in gas-solids fluidized beds. A beam of gamma-radiation was directed through the fluidizing column, and density fluctuations were determined by detecting, measuring, and recording the portion of r-radiation which was not attenuated by the fluidized bed.

A statistical approach to the study of bed quality was used. Data were subjected to a \(\chi^{2}\) test for goodness of fit , and an index of atability and uniformity (ISU) was defined ae the ratio of the variance in the density of the fiuldized bed to the variance in density of a packed bed with the same average density as the fluidized bed.

Vertical profiles of the average density and ISU were ueed to investigate the effect of the following operational variables upon bed quality: gas velocity, height in bed, 1. e., the height above the distributor, packed bed height, particle eize and bed composition. A detailed discussion of the effect of these varim ables is given.

It was found that gas velocity and height in bed had a more pronounced effect upon bed stability and uniformity than did the packed bed height, particle size, and bed composition. Better bed quality was characteristic of shallow beds and low gas velocity. The stability of the fluidized bed was found to decrease with increasing helght above the distributor, indicating that bubbles grow as they move up the column. The point at which the bubbles break the dense-phase eurface, 1.e., the fluidized bed helght, was characterized by a peak in the ISU
profiles. This point was satisfactorily correlated with the inflection point of the vertical portion of the average density profile; and thus a precise moasurement of bed expansion could be made. At low gas velocities, coarse particles produced better bed stability and uniformity than fine particles; however, this trend appeared to reverse as the gas veloclty was increased. Channeling became prevalent at hich velocities.

The IBM-650 computer was used in the statistical analysis of data, and a complete description of the program is given.```

