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NOMENCLATURE

English symbols

a gslope of elastic modulus-temperature relationship
divided by reference elastic modulus.

alx) coefficlient of (n-—l)th derivative in nth order
differential equation such as equation (14)

An coefficients of linearly independent solutions in the
general solution.

d
b(x) coefficient of (n-2)n derivative in equation (14).
C1 coefficients of powers of x in the power series
J solution,

Eo elastic modulus at reference temperature.

E(T) elastic modulus as a function of temperature.

E(x) elastic modulus as a function of length.

f(x) function representing variation of elastic modulus

with length.

I moment of lnertia of the cross section of the beam.

L length of beam,

1 root of the indicial equation.

t time variable.

iy temperature.

To reference temperature.

T(x) temperature as a function of length,

T(t) function of time as defined by equation (&),

U deflection at any polnt x

T(x) function of axial coordinate representing deflection,
defined by equation (&)

yix,t) vertical displacement of beam,

b.q non dimentional axial cocordinate,



wl

vi

actual length coordinate.

Greek symbols

temperature parameter as defined by equation (12)
elgenvalues of the problem as defined by equation (7)
mass density of the beam per unit length. -

separation constant, square of natural fréquency as
defined by equation (7)



CHAPTER I
INTRODUCTION

The use of lighter structural materisals in aerospace
Industry has created a need for analysing the vibraticn problen
based on non-homogeneous elastic theory. The elastic modulus of
these light structural materials varies considerably wilth
temperature. Typically, the temperature gradlent along the beam
may be the result of aerodynamic heating.

Marangoni, Fauconneau and Seclpio (l)* have analysed the
effects of non-homogeneity on transverse vibrational frequencies
of uniform beams. They have used upper and lower bounding
techniques, the Rayleigh Ritz method for upper bounds and the
method of second projection for lower bounds, to effectively
bracket the eigenvalues; Walker and Huang (2) have analysed
Vibration and Stabillity of rockets (tapered beam), which leads
to the same type of mathematical model as the non-homogeneocus
beam. They have used_Frobenius' method to get a series solution
to the linear differsntial equation with nonconstant coefficients.

This report demonstrates the use of Frobenius' method for
any vibration problem leading to a linear differential equation
with nonconstant coefficients. The nonhomogeneous beam is
taken as a typical case leading to such a differential equation

formulation, In fact, most cases involving variation of

# Numbers in parentheées refer to the numbers in the list of
references,



density, Moment of Ine:r*tia, modulus of elastlicity etc'. can be
handled by this method. This method seems most direct and
stralghtforward. Greater accuracy can be expected since, this
method does not invole large matrix operations. Most other
methods yield large matrices to work with, which cause round-
off errors. The results obtalined are comared with those

obtained by Marangonl, Fauconneau and Scipio.



CHAPTER 11
FORMULATION OF THE PROBLEM

Consider a uniform beam of length L and sublected to a
steady temperature distrihution T{X) causing the modulus of
elasticity to become & function E(X) of X. Experimental
investigations on the varlation of modulus of elasticity with
temperature conducted by Garrick (&), Spinner (5) and Hoff (6)
show that a linear relationship between elastic modulus and
temperature provides & good correlation for wide temperature
ranges for most engineering materials, The relationship can

be glven as
B(1) = B, [ 1-a(r-1,)] (1)

Therefore, knowing T(X), we can get E(X) from equation (1).
Neglecting the effect of rotary inertia, which is small for the
lower modes and small amplitude of vibrations, the equation of

motion for the beam can be written as

32 [, FF %5 | .
é-_-_;é-[E(}:)I 5;_;%:]: -?5';% (2)
A7

Xl
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with the boundary conditions,

a) Simply Supported beami
¥y _
0x2

b) Beam with clamped ends:

i

¥ = 4, 0 at ¥=0 and ¥ = L (3a)

?:0, %“%_:-0 at'i'

¢) Beam with free ends:

0 and ¥ =1L (3b)

i

- p
.a_zlgo,fz[m}'):[.a.l:l=0ati=0and§ L (el

% % A%
Depending on what E(X) is, we will get a differential equation
with variable coefficients. A similar formulation will result

from variation in density and/or moment of inertia also.

Assuming a product solution of the form,

¥(%,t) = T(x) T(t) (4)
where U is a function of X alone and T is a function of

t alone.

Substituting equation (4) in (2), we get a set of ordinary
differential equations

a2 [E(E) I dz'g]_n2 T(%) = O {5)
o ¥ ox
a7

and S5 4 OF T(t) = O (6)
3 dt ]



from equation (6) we see that {1, the constant parameter, is the
frequency of vibration. Substituting E _f(x) for E(%) in

equation (5) we get,

— o

d';E‘? Y dia

It is convenlent to transform equation (5a) into dimensionless

&

form. Using the transformations,

we get the formulation in dimensionless form,

2 2
4 £(x) 23] = (7)
dx dx

with the boundary conditlons,

a) Simply supported beam:

*

U=0 and U" = 0 at x = 0 and x = 1 (8)
b) Beam with clamped endsi

U= 0 and U' = 0 gt x = 0 and x = 1 (9)
¢) Bear with free ends:

U" = 0 and é% [f(x) U"] = 0at x=0 and x = 1 (10)

¥ Primes denote derivatives with respect to x



In the problem that is worked here, a linear temperature
distribution along the length of the beam 1s considered.
Nevertheless, other temperature distributions like parabolic,
trignometric etc. can be handled along similar lines.

The temperature distribution along the length of the beam

1s &s shown in Fig. 2.

4
Tx) 4
G
o ¥
Rl i-0
Plg, 2
Mathematically, T(x) = T, + x(T1 5 To) (11)
Substituting equation {(11) in (1) we get,
EB(x) = Eo El-a(Tl-Tolxl

et a = a(Tl - Tb), 6 Eway (12)

- then E(x) = Eo(l - ax) = E f(x)

(o = 0 means that there ls no temperature variation along the
beam, and o = 1 means that the temperature difference has reached
a point of 'zero elasticity' which 1s a non~practicable‘case)

Substituting for £(x) in equation (7) we get,

2 ax?

2 2
g [(1 - 0x) Q—gl - AU =0
ax



l.es (1 ~ax)U™ - 20U™ - AU = O (13)

with the appropriate boundary conditions such as equations (8),

(9) and (10).



CHAPTER III
DISCUSSION OF THE SOLUTION

Frobenius' method (7) is used to obtain a series solution
to the differential egquation. Changling the formulation to the

form,
Ut 4 alys) U™ & BlxiU = 6 | (14)

one can show easlly that a(x) and b(i) are both anslytic with

radius of convergence %. Therefore, the power series solution

obtalned is convergent for the entire range of x, 0 £ x S 1. (8)
It is interesting to note that a different formulation

of the same problem with temperature distribution viewed as

shown in Fig. 3 1s,

[1 =0l =x)] U™ 4 22U™ - U= 0 (13a)
where o = a(To - Tl)
2.4
by =.ﬂ.L ?, E. 1s the elastic modulus at reference
Ell 1
temperature Tl.
T(x,)'k
To
T
S 4
Q-Q ¥ 0



The series solution by Frobtenius' method is convergent only for

l-a
a

cases with a 2 0.5. Sometimes changing the form of the equation

Ix| < » Therefore, with tnis formulation, one cannot handle
helps in getting a desired type of solution (7).
Frobenlus® method conslists of assuming solutions of the

form,

o I =1
Ur+l - m_fl c:m,r_'_1 T (15)

where r is a root of the indiclal equation, and Cl.r+1 # 0

(The summation is taken over the range 1 to = in order to
malntaln close correspondance with subscripted variables in the
conputer program. The subscript r+l also stems from the same
reasoning. )

We will get as many roots as the order of %the differentisl
equation. Each root will give one linea»ly indevendent solution.
Differentiating equation (15) with resvect to x we get,

=]

£ C (mer-1) xX™T-2 (16a)

]

It

U= 5 C o (mrl), T~ (16b)

U= % Cm r*l(m+r—1}3 xm+ruq_ (16¢c)

< i ALY
and ™. § ¢ le(m+rm134 X

1 R

(164)

where {(m+r-1) Trepresents descending factorial (with n terms)
L7 5 ¥

&oé';e(m-%»r-l_)n = (m+r-1)(I2+I‘-'2)s.o({'”'-;-l‘-ln)

= 2a1n0 = 0

it

(10)4

10:9.8.:7. 5 " and {233



Substituting from equations (16c), (16d) and (15) in (13) we

get,

el
(1%
mfl cm,r+1 (m+r 1)4 p's

- o 2 . X
amil Cm’r+1i]m+r 1)), + 2(mx 1)3]x _

o
~AE B =1 _ o (17)
Wil m, T+l
Since equation (17) is satisfied identically for all values
of x, the coefficients of all powers of x should be zero.
Equating the coefficlent of lowest power of x to zero, we get

the indieclal equation

C1,141 r(r-1)(r-2)(r-3) = 0

Therefore we have the roots of indiclial equation as
r=0,1, 2 and 3

Wayland (9) suggests that when the roots of the indicial equatio
differ by an integer, the solution with lowest root be tried
first, If this solution yields more than one arbitrary paramete
then the portion of the solution involving each parameter
represents one linearly independent solution which corresponds
to the solution from higher root (differing by an integer). If
however, this solution for the lowest root does not turn out to
be a finite solution then the method of variation of parameters
(7) has to be resorted to, starting from the highest root.

Equating the coefficients of higher powers of x in equation

10

I

T



iy

(17), we get the recurrence relations for the coefficients of

the infinite series,

e Cpy pyy [(mir-2)y + 2(mir-2),]

Cm.rwl = (m+r-1)4
_ %S, 7(2:133 (m+r"3), For m=2, 3,4
(18)
ool ' _ N Couily,ryl L8 Conl,pyl (m#T=2) 5 (mer-3)
m, r4l (mer-1), (mer-1),
for all m % 5 (19)

1. Consider the solution corresponding to r=0

.

we have U, = T C xm'l
1 w] 5

where C for m = 2, 3;eee¢, ® are glven by equations (18) or

m,l
{(19). 4nd Cll’ which is arbitrary, be 1.

a(1)(0) 5(-1)

021 = (1)4 = Indeterminate
Cohe(1)a(0
031 = e 2152)3( i = Indeterminate
Caq(2)4(1
041 = . 31(353 ) = Indeterminatg
ACyy « Cyy(3)5(2)
C £ b
51 (%), (5],
AC o C.q(4),(3)
21 51 3

Thus, this solution involves Cqqs Coy Cyqs and C,, as arbitrary

1
constants. In fact, Coy in this solution (coefficient of x)

13
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corresponds to Cqp, (coefficient of x in the solution with r=l).

C_., corresponds to 013 (coefficients of x°

31

For computing the coefficlents on a computer. however, it is

term) and Cyy to Cqyypye
easier to equate Czl, 031, 041 to zero and generate the solutions
corresponding to these seperately for the roots r = 1,2 and 3
from the recurrence relations (18) and (19).

. Thus the recurrence relations (18) and (19) give four

solutions,
U, = 21 Cm g =1 corresponding to the root r = 0
U2 = mfl Cm'2 i corresponding to the root r = 1
U3 = 21 Cm 3 xm+1 corresponding to the root r = 2_
and U4 = mﬁl C b xm+2 cor?esponding to the root r = 3

The C's are given by equations (18) and (19) and the indeterminate
terms equated to zero for computational ease.,

It turns out that the coefficlents C 12° 013, 14° C22,
023, Czh’ 032, 033 and 034 are zeros.

Now the general solution to equation (13) is

: L
e T &0 (20)
n-1 n n _

where the An are determined by the boundary conditions.

Simply Supported Beam:

Substituting the boundary conditions (8) in equation (20)
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we get,
AlUl(O) + AZH;(O) + ABpg(O) e A%EZ(O) =0 .(213)
4(0) + A H5(0) + AUS(0) 4 aYf(0) = O (21b)
F1U1(1) + A3U5(1) + A5U5(1) + 80, (1) = © (21c)
JU(L) 4 AU5(1) & K3U(1) 4 ARUL(L) = O (214)

where Un(k) represents U, at x = k, an%/&ndicates, that

the term goes to zero.

Equations (21a) and (21b) give A1 = A3 = 0. Subsequently,

equations (21c) and (21d) yield the characteristic equation,

U2(1) U4(1)
U;(:L) Uﬂ(l)

where U2 and Uu are functions of a, A , and x. And the soluticns

to equation (12) is

U~ AU +A4ULI-

272
U,(1)
Iy
= Ay [Uu RINEN) UZJ ke

" For a particuiar value of a, the As satisfying equation (22) are
the eigenvaluss of the problem and equation (23) gives

eigenvectors corresponding to the respective eigenvalues.
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CHAPTER IV
THE SOLUTION AND RESULTS

The problem was solved on IBM 360/50 system. The computer
program (refer appendlx) consists of a function subprogram FUN
that evaluates the value of characteristic equation and two
subroutine subprograms, ROOT for finding the eigenvalues (roots
of truncated infinite serles) and EIGEN for giving the mode
shape, glven the eigenvalue. The subprogram FUN evaluates all
the coefficients of the series solutlons untll they reduce to
10—20 in absolute value., Since the coefficients grow in magnitude
with increasing values of A, more and more terms of the power
series will be necessary at higher frequencies for maintaining
the desired accuracy of the solutiqn. This subprogram cannot be
of a general nature since the recurrence expression is declded hy
the differential equation formulation and the characteristic
equation takes 1its shape'from the boundary conditions of the
problem. Nevertheless, for changes in boundary condltlons,
necessary changes in the program are falrly easy. The subprograns
FUN and EIGEN included in the appendix dre for linear temperature
variation along a simply supported beam. The cards that need to
be changed for different temperature variatlons and boundary
conditions carry an identification in columns 73 through 80.

The variable names and sﬁbscripts correspond very closely to

those 1in this report and therefore the program is self

explanetory.
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The subroutine ROOT is quite general in nature. 1t gives
the roots of any function, given an initial value, increment,
final value aﬁd accuracy deslired, It also prints out values of
the function at varlious values of the argument during its root
finding process.

The subroutine EIGEN evaluates the coefficients of the series
in the same manner as does the FUN, but instead of evaluating
the value of characteristic equation, it evaluates the values of
U at various x values according to equation (23).

The first three eigenvalues, corresponding to the first
three modes of vibration, were obtained for a values of 0.25,
0.50 and 0.75. Table I gives first three elgenvalues for varlous
values of a. The eigenvalue A being equal tO'Qéégf'. Fig. l4a,
which is a graph of kl(a) divided by A4 (0) Vs. a° shows the
effect of the temperature gradient on the first natural frequency
of the simply supported beam., Fig. 4b and 4c show the effect of
& on the second and third frequency of the simply supported beam.
As expected, the frequency lowers with decrease in E i.e.
incfease in a.

The elgenvectors, for various « values are tabulated in
Tables II. The mode shapes are normalised with respect to a
convenlient element so that the effect of temperature variation
can be readily noticed. The mode shapes for a = 0.50 are plotted
in Fig. 5. The mode spape gives a good indication of the order
of frequency. This is essential since it is posslble to miss

two consecutive eigenvalues in the root finding process of the
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ROOT subroutine, 1f the two eigenvalues lie within the prescribed
interval.

Double precisicn arithmatlic is used in woirking the problem.
Thie difference in results from single precision tec double
rrecision i1s very significant at higher freguencies. It is
interesting to see that, the percentage reductlcn due to the
temperature variation 1s almost same for af least‘the first
three eigenvalues. Therefore the graphs in Plg. 4a, by & be
leook similar. The results tabulated in Table I compare very well
with those obtained by Marangoni, Fauconneau and Scipio (1)
using bounding techniques. The solution by Frobenius' method
requires about half the amount of work as the obounding techniques
with the additional advantase of being a very straightforward

method.



Table I

Effect of modulus variation on the first
three eigenvalues of a simply supported beam

Order of 1 2 3
Eigenvalue
&= Ol 197 . 409091 1558.5455 7890.1364
a = 0.25 84,989636 1358.6533 6876,2367
@ = 0.50 71.901079 1144,7606 5785,9472
a= 0.75 57,584701 904 ,76278 4551,9378
1.00
0.75
Al(a) 0,20 |
11(05
0.25
0 0.25 0.50 0.75  1.00

o ——>

17

a)



1.00 ' ; '
0.757 1
lg(il) L
) 0.50
0.257
b)
0:25 0.50 0.75 1.00
B s
1.00 ¥ -+
0.75¢1
ko) 8. 4 _
@ T T
i 3T‘)‘o
0.25}
c)
0 0.25 0,50 o 5e T T.00

o
Flg. U4a, U4b, Uc. Effect of modulus variation on first three
eigenvalues of sinply suvpported beamn,

18



Table 1I a

First mode shape of a simply supporied
beam for different temperature gradients

SRels R = 0.0 o = 0.25 @ = 0.50 @ = 0.75
X = 0.0 0.0 0.0 0.0 0.0
% 8 Oal -0.309 ~0.300 -0.289 -0.278
X = 0.2 -0.588 ~0.57k ~0.560 ~0.537
X = 0.3 -0.809 -0.798 ~0.778 ~0.758
x = 0.4 -0.951 ~0.946 -0,932 -0.919
x = 0.5 -1.000 ~1.000 ~1.000 -1.000
X = 0.6 -0.951 ~0.960 ~0.970 -0.988
X = 0.7 -0.809 -0.825 -0.842 -0.875
X = 0.8 -0.588 ~0.601 -0.620 -0,660
X = 0.9 -0.309 ~0.318 -0.331 -0.358
e Dol -0.000 ~0.000 -0.000 -0.000
0.0 0.5 1.0

Fig. 5a. First mode shape of a simply supported
beam for o = 0.50. _



Table 11

Second mode shape of a simply supported beam
for different temperature gradients

Deflection

43 @ = 0.0 a = 0.25 o = 0450 a = 0.75

X = 0.0 0.0 0.0 0.0 0.0

x = 0.1 -0.618 -0.595 -0.568 -0.535
X = 0.2 -1.000 -0.977 -0,948 -0.911
x = 0.3 ~1.000 -1.000 -1,000 . =1.000
x= 0.4 ~0,618 -0.649 -0.688 -0,745
X = 0.5 0.0 -0.046 -0.,110 =0.205
X = 0.6 0.618 0.584 0.532 0. 449
X = 0.7 1.000 0.996 0.987 0.966
X = 0.8 1,000 1.023 1.055 1.110
X = 0.9 0.618 0.641 0.679 0.751
x=1.0 0.000 0.000 0.000 0.000

Fig. 5v. OSecond node shape of a simply supported
beam for a = 0.50.



Table 1l ¢

Third mode shape of a simply supported beam for
different temperature gradients

Deflection

ot @ = 0.0 a = 0.25 a = 0.50 o = 0.75
x = 0.0 0.0 .0 0.0 Q.0
x = 0.1 -0.809 -0.785 -0.764 ~0.753
Xx= 0.2 ~-0.951 ~0.956 -0.970 -1.011
% i D3 ~0.309  -0.365 0.4 ~0.561
x = 0.4 .0.588 0.528 0.447 0.323
X = 0.5 1.000 1.000 1.000 1.000
x = 0.6 0.588 0.651 0.741 0.894
X = 0.7 -0.309 -0.250 -0.161 0.001
X = 0.8 -0.951 ~0.949 -0.953 -0.959
£ o= Dl -0.809 -0.841 -0.899 -1.033
x = 1.0 ~0.000 ~0.000 ~0.000 -0.000
0.0 0.5 5.0

Fig. 5¢. Third mode shape of a simply supported
beam for o = 0.50.



CHAPTER V

ILLUSTRATIVE CASES

1. Beam with Clamped Ends (linear temperature

Imposing the boundary conditions (9) from

(20) appearing on page 12, we get,

A U1(0) + AU,(0) + ABUB(O) + AU, (0)
A UI(0) + AUS(0) + AJUL(O) + &, U)

2z 33

AU, (1) + AU, (1) + AJUS() + A,U,(1)
3(1) + 4,08 (1)

AlUi(l) e AzUé(l) s A3U3

]

o o o O

it

variation)

22

page 5 on equation

from equations (24) we get the characteristic equation,

U3(1) Uu(l}
U;(l) U&(l)

and the mode shape can be expressed as

U= A3U3 + A4U4

Uy(1)
Agl Uy - 0,00 U

]

First three elgenvalues for a = 0.25y 0,50 2and 0.75 were

(24)

(25)

(26)

calculated and are tabulated in Table III. The first three mode

shapes for varlous ¢ values are tabulated in Table IV. Fig. 7

shows the mode shapes for a = 0.50.



Table III

Effect of modultus variation on the first
three eigenvalues of a beam with clamped ends

Order of

Eigenvalue 1 . 3
o= 0.0 500456393 3803'153?0 1“61?-630
a = 0.25 _b35.76258 3312.5285 12732.884
a = 0,50 364.75663 2778.2510  10688,285
a = 0.75 281.72376 2160.3328 8335.5640
1.00 !
On?fi’ T
(o)
e 0, 50
0.25% T
0 028 0.50 0.75 1.00

a)



1.00 t —+

}uz(a) 0.501

0.2571
b)

0 0.25 0.50 0.75 1.00
1.00 "

Aqla) g
0.501
13105

0.251

&)

0 0.25 0.50 0.75 1.00
o ——

Fig. 6a, €éb, 6c. Effect of modulus variation on first three
elgenvalues of a beam with clamped ends.

2L



Table IV a

Pirst mode shape of a beam with clamped
ends for different temperature gradients

Deflzgtion a = 0,0 a = 0.25 a = 0,50 a = 0.75
X = 0,0 0.0 0.0 0.0 0.0
X = 041 ~0,119 -0.111 -0.101 ~0.090
x= 0,2 ~0.390 ~0.370 -0.344 -0.313
x = 0.3 -0.691 -0.666 -0.634 . =0.592
X = 0.4 -0.916 -0.900 -0.877 -0.8435
X = 0.5 «1.000 -1.000 ~1.000 ~1,000
x = 0.6 ~0.916 -0.934 -0.959 -1.001
X = 0.7 -0.691 -0.717 ~0.758 -0.830
x = 0.8 ~0.390 0414 ~0.450 -0.522
X = 0.9 ~0.119 -0.129 -0.145 ~0.179
X = 1.0 ~0.000 -0.000 -0.000 - -0.000
0.0 0.5 1.0

Flg, 7a, First mode shape of 2 beam with clamped
ends for a = 0.50



Table IV b

Second mode shape of a team wlth clamped ends
~ for different temperature gradlents

ks = 0.0 a = 0.25 & = 0.50 & = 0.75

X = 0.0 0.0 0.0 0.0 0.0

X = 0.1 -0.303 -0.285 -0.265 -0.240
X = 0.2 -0.802 -0.77k -0.741 -0.699
Xe= 0.3 -1.000 -1.000 -1.000 1,000
X = 0.0 -0.688 ~0.734 ~0.793 -0.881
X = 0.5 0.0 -0.068 -0.163 -0.316
x = 0.6 0.688 0.644 0.577 0.453
X = 0.7 1.000 1.006 1.012 1.009
X = 0.8 0.802 0.839 0.897 1.001
X = 0.9 0.303 0.326 0.366 0.451
X = 1.0 0.000 0.000 0.000 0.000

0.0 | 015///<//”’ﬂ"_"“i\\\\\T\\\5}.0

Fig. 7b. S8econd mode shape of a beam with clamped ends
for a = 0.50.




Table IV c

Third mode shape of a beam with clamped ends
for different temperature gradients

Deflection

< o= 0.0 a = 0.25 @ = 0.50 @ = 0.75
x = 0.0 0.0 0.0 0.0 0.0
% = Dl -0.548 -0.519 -0,493 -0.476
% = 0.2 -1.073 -1.060 -1.058 -1.097
x = 0.3 -0.618 -0.683 ~0.773 -0.939
x = 0.4 0.447 0.361 0.245 0.053
X = 0.5 1.000 1.000 1.000 1.000
x = 0.6 0. 447 0.536 0.666 0.899
% = BaF -0.617 -0.552 ~0. 451 ~0.257
x = 0.8 1,072 -1.093 ~1.136 ~1.227
X = 0.9 ° =0.549 -0.585 -0.659 -0.838
X = 1.0 ~0.000 -0.000 -0.000 ~0,000
0.0 0.5 Jll

Fig. 7c. Third‘mode shape of a beam With clamped ends
fOI‘ a4 = 0.50-




2., Beam with Free Ends (Linear temperature variation)

The boundary conditions (9) for a beam with free ends are,

U"(0) = U™(1) = 0O _ (272
a 4%y

and L | (l=gx) == |= O at x = 0 and x = 1
dx dxz

l.e. - aU" 4 (leax)U™ =0 at x = 0 and x = 1

Sinde U"(0) and U"(1) are zeros and (1l-ax) # 0, we get,
U™ (0) =U" (1) =0 (27b)

Substituting the boundary conditions (27) in (20) we get,

H%W)+%%N)+%%m)+%%m)

AlUf'L"(o) + AZUE'(O) + ABU'B"(O) + AuUﬂ'(O) =

AlU{(l) + AZUE(l) + ABUg(l) + &aUﬂ(l) =

AlUi%l) o+ Azugﬁl) + ﬂjUng) o+ A4U£K1) =

1]

I
o O (] o]

(28)

from equations (28) we get the characteristic equation,

U"(l) Ull(‘l)
o i = 0 (29)
Ul(l) Uz(l)

The mode shape 1is given by
U = AlUl o+ AZUE

s, |u, - 22y - (30)
22 "o 2 3

Table V gives first three eigenvalues for o = 0.25, 0,50, and

0,72, Fig. 9 gives the mode shapes for a = 0.50. :

28

)




29

Table V

Effect of modulus variation on the first
three eigenvalues of a beam with free ends

Order of
Eigenvalue 1 2 3
a= 0.0 500.56393 3803.5370 14617.630
a = 0,25 437.08963 3317.5037 12743.582
= 0.50 371,14705 2802.3870 10740.483
a = 0.75 300.82009 2234,2973 8498.7080
1,00 ;
0.75¢
11(3)
TITBT 0.50 ¢t
Oc25 T Ny a)
0 0.25 0.50 0.75 1.00




1.00 —t :
0,75+ !
kz(a) i 2 1
x,(0) )
O¢25 "
b)
0 0.25 0450 0.75 1.00
: A i
1'00
0.751
Aq(a) b, 0
o3
I?TES
0-25"
‘0)
0 0+25 0.50 0.75 1.00
S

iz, 8a, 8b, 8c. Effect of modulus variation on first three

elgenvalues of a beam with free ends.
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Table VI a

First mode shape of a beam with. free
ends for different temperature gradicnts

CheLs peal ¢ = 0.0 @ = 0.25 @ = 0.50 & = 0.75
X = 0.0 ~1,646 -1,617 -1.585 -1.546
X = 0.1 -0.884 -0.878 -0.875 -0.864
X = 0.2 -0.161 -0.172 -0.186 -0.206
X e 0.3 0.448 0.429 0.405 0.373
X = 0.4 0.856 0.842 0.824 0.800
X = 0.5 1.000 1.000 1.000 1.000
x = 0.6 0.856 0.870 0.890 0.921
xe 0.7 0.448 0.467 0.496 0.543
X = 0,8 ~0,161 ~0.148 -0.130 -0.098
x ='o.9 -0.884 -0.891 ~0.901 ~0.920
X = 1,0 ~1.646 -1.676 -1,726 -1.815

0.0 - ///T////i/ﬂig:;ﬁh‘\\\\i\\\\‘ 1.0

Fig. 9a. PFirst mode shape of a beam with free ends
for a = 0.50.
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Table VI b

Second mode shape of & beam wlth free
ends for different temperature gradients

Deflection

at a = 0.0 o = 0.25 a = 0.50 a = 0.75
x = 0.0 ~1.510 -1.505 ~1.507 -1.523
x = 0.1 -0.344 ~0.366 -0,396 -0.441
i = 0.2 0.600 0.572 6.537 0.488
x= 0.3 1.000 1.000 1.000 1.000
X = 0.4 0.729 0,770 0.824 0.902
X = 0.5 0.0 0.053 ©0.130° 0.249
x= 0.6 ~0.729 ~0.706 -0.671 -0.602
X = 0.7 -1.000 -1.025 | -1.062 -1.113
x = 0,8 -0.600 ~0.646 -0,718 ~0.842
x = 0.9 0.344 0.330 0.308 {261
A e 1ol 1.510 1.560 1,643 1.800

Fig. 9b. Second mode shape of a beam with free ends for
a = 0-50- :



Table VI ¢

Third mode shape of & beam with free ends for
different temperature gradients

- ai @ = 0,0 & = 0.25 @ = 0.50 @ = 0.75
x = 0.0 -1.406 -1.388 -1.385 -1.427
& = Gl 0.073 0.042 0.001 ~0.056
X = 0.2 0.904 0.884 0.865 0.859
X = 0.3 0.558 0.607 0.675 0.785
X = 0.4 -0.461 0,390 -0.293 -0.144
X = 0.5 ~1.000 -1.000  ~1.000 -1.000
X =.0.6 -0.461 -0.536 -0.64Y -0.826
X = 0.7 0.558 0.507 0.432 0.291
X = 0.8 0.905 0.930 0.977 1.068
X = 0.9 0.077 0.109 0.167 0.287
x = 1.0 -1.401 -1.439 ~1:510 -1.691

0.0 0.5 o 1.0

Flg. 9c. Third mode shape of a beam with free ends
a =.0.50| i
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CHAPTER VI
CONCLUSION

Graphs such as Fig. 4, 6 & 8 are of immediate importance
to designers. Knowing the frequency of vibration of a uniform
beam, one can obtain directly the frequency corresponding to
the particular a value for a problem. When temperature
distributions other than the few analysed in papers (1) are
encountered, Frobenius' method leads to a fairly straightforwarad
and direct approach. One must use care when considering the
radius of convergence of the solution. There are standard
techniques to test the radius of convergence of the power series
expansions of the functions a(x), the coefficieﬁt of next to the
highest derivative; b(x), the coefficlent of the derivative
next to that, etc; (Ref. Equation (14) on page 8)., The radius
of convergence of the solution ié’the minimum of the radius of
convergence of the power series expansions for a(x), b{x) etc.
When the variation of elastic modulus with temperature is

not linear, we have to use the following expression to get E(x)

E(x) =J’BETT) aTxx) dx 4 Constant

Which will give E(x) in the form Eo(x)‘- f{x) which can
be substituted in the formulation (7)
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APFENDIX

iy

THE Ve EROcRAY
IEPLICET
REAL =& LAFDDA

1C1 FCRMAY (1HL)

11C FORVAYATICIGERVALUE CORROIPCHDINMG

1 Elbc8o Ty g 18X PALPHA = YWF5.2//77)

ALPHA = (.0

ALPHA = ALPHA 2 025

LAFBLA = 1.0E-(02

KOURT = O

CELI = S20.90

CGEL = L,.,2%

CELX = C.C1

KRN = 1o0E4+01
201 CAaLL
1YSy Yie Gy ALPEAR)
KCUNT = KOUNT + 1
LRITE {3:L1G) KOUNT,
CALL FIGEN (LAMDDAG

ANALYS

1S G-
BEAl % 8

(L0

i

2G¢

!

215 LAMEGA,

ALPHA)

.E' LP! :i":

TRETE (3:101)

LAIDLA = LAKEES + 1040

I LERURTLT.3) GO TO 201

F U SLPHALT.Ce T4 ) CU TC 200

NON--LGCHOGENRETLS UNIFCAN BEAY

T Moy Y5110

AT %y

ROUT VLANECAS BELIs CCEL OCLAE, XHAY, l.v, X5, XL s



CoOoOOOO0

aNaRaleNel

c

106
1C1
105

3C0

3a¢s

155

201

- 200

2¢2

2{3
21¢

35¢

36¢

3a7c

38¢

FUNCTION' FUN (LAMBDAy; ALPHA)

THIS SUBPROGRAVM EVALUATES THE COEFFICIENTS OF THE POKER

SERIES SOLUTICAKS TO THE CIFFERENTIAL EQUATION AND

EVALUATES THE RESIDUAL OF THE CHARACTERISTIC EQUATIOh

AT TRIAL EIGENVALUES

IMPLICIT REAL % 8 lA~HsD-21
REAL *8 LAMBDA
corrcn CLLED044)

FOGRMAT (1H-=)

FCGRIMAT (1HL)

FCREAT | 8E16.8)

BC 309 K = 1,4
CIITK) = lsg i
DC 305 K = 2:+4

CC 305 K = 1.3
ClHyK) = Qo0

K= 4

DO 185 N = 2,4
ClKyK) = ALPHA % CIM-]1 9h] # {HeK~4) /7 (MH+K-2)

ONLY THE SCLUTICNS U2 AND U4 ARE REQUIRED FOR THE SivPLY

SUPPORTED BEAV

K IS EGUAL TG R + 1 TN THE RECURRENCE EXPRESSION
STATEMENTS 201 AND 203

K = 2

BC 20C & = 5,10CC

CiFsK} = LAMBLA%CIM-4 K)/ {{MeK=2 1 (M4K=3 ) Z (HEK~4) *
LiM+K=5}))+ ALPHA * C{H-1,K) * (F+K-4) / (#+K-21
TEST IF CUEFFICIENT HAS BECCHE SUFFICIENTLY SMALL
IF (DABS ( CUFeK) JelTe 1.0E-2C ) GC TO 202
CONTINUE

NCCOEFF = M

K =4

¢a 223 M 5y KNCCEFF

Cl{itgKY = LAMBCAZC(H~4 K1/ (L{M4R~2 % (RAR-3 (2%~ 4) %
LiH+K=5))+ ALPHA % C(M-1,K) % [M¥K-4) / (M+K-2)

U2 = Goil

CC 352 W = 1,KCCEFF
uz = uz + C{H;Zl

U4 = 0.0

EC 360 M = 14NCCEFF

Ua = UG & CiMg4)

Uz 20067 = Q.0

CC 370 B = 24KCCEFF

vz 20t = Lz 2CCT + - Ci{My2Y & M % (B=1)
Ue 2007 = Q3 ‘

O 3EC ¥ = 1.NCCEFF

U4 2007 = U4 2CCT + ClM,4) % (#42) =% {P*l!
Fum = uy2 % U4 2C0T - U4 # Uz 2C0OT
RETURN

END



aNeNaRe)

sl alsRaReNaly

10C
101
1¢2
145
106

30C
3C5

195

201

20¢
202

2c3

36
361

400

SUBROLTIME EIGEN (LAHBCA, ALPHA)

THIS SUAROUTIRE EVALUATES THE MODE SHAPE,
CIVEN THE EIGEAVALUEL

IFPLICIY REAL * 8 {A-H;0-17)

REAL 8 LAMBDA '

COMMCN C{LCOD,.4)

FCRMAY {1H-)

FCRFAT {1H1)

FORMAT (8E1GeB) :

FCREAT (/7% ANC THE CORROSPUNDING EIGENVECTOR 15t}
FORMAT (/7 LOXe'U =23C16.8+s9%4 AT X = 415,22 )

CC 300 K = 1.4
Cll1:K} = 1.0 ‘
CC 205 M = 244

CC 3495 K = 1,3
C{HgK} = 000

K =4 ;

L 195 B = 2,4

CMeK} = ALPHA % C(H-1,K) % (M4K=4) /7 (H4K=2)

ONLY THE SOLUTICNS U2 AND U4 ARE RECUIRED FCR THE SIMPLY
SUPPCRTED BEAM '

K IS EGUAL TGO R + 1 IN THE RECURRENCE EXPRESSION
STATEZENTS 201 AND 203

K= 2
CC 200 M = 5,1CCO
CiFyK) = LAMBCASCIN=~6,, K}/ ({M+F=2) 5 {Me K= )2 {M4ti-4) %

LUEH4K=-5F1)+ ALPHA * CH{M~14K) * (M+K-4) f {(M1K-2)

TERT IF COEZFFICIENT R&S BELCEE SUFFICIENT LY SEALL
IF (CABS & CUl¥MsK) }obT. 1.0E-20 ) GO TO 2(2
CONTINUE

NCCEFF = M

ERITE (3:132) (CUMK) o = 14NCCEFF)

WRITE (3,139)

K=&

CC 203 M = 5:NCCEFF :

ClhyK) = LAMBEAZCUH-4 o)/ L {HARh=2) % (M4 K-35 (M4K-4) %

TIM+K=5) 3¢ ALPHA = C(M-1,K) ¥ (MeK~4) / (H4K-2)

WRITE (3,102} (C{MyK)F = 1NCCEFF)

L2 = C,2

LO 350 ¢ = 14KCCEFT

U2 = Uz ¢« C{kM,2)

U4 = L.0

L0 3e¢< ¥ = 1,NCCEFF

Ug = Uas & C{Me4)

A2 = -L4/0U2 -
ERITE (3,105

X = =Gl

X = K ¢ (sl



41C -
80C

420

L

81¢

U2 CF ¥ = 0.0

EC 41C H = L¢NCCEFF

ACD = ClHg2) % X %% M

IF ((DABS(ACD)elLYe1.CE-20) oAND.
uz GF X = U2 CF X + ATOD

CONTINUE

U4 CF X = 0.0

CO 420 M = 1,.NCCEFF

ACD = C{Hs6) & X 2x(l+2)

IF ({DABSEADD)oLT.10E-20% o ARE.
Us CF X = U4 CF X + ACC

UOF X = U4 OF X + A2 & U2 OF X
WRITE (3,1406) U OF X X

IF { X.1T..99 ) GO TO 400

RETURN :

END

{ADD«MEeDe2) } GC TC BZU

[ACD.NE.CeD} ) GC TC 810



OO0

SUBRULTINE ROOY(X,DELICOEL,CELX s XKBARSILAST s XS XL oV Sy
YL IPRINYV ¢ ALPHA)

THIS SUCROUTINE CALLS FUN (XsALPHA) AND FINLCS THE

ROOTS CF THE TRANSCENDEHTAL EQUATICN FUN(X;ALPHA)

IPRINT=1 PRINTS XSy XLs¥SeYLe IPRINT=0 DOES NCY PRINT,

CEL1 IS THE INITTAL INCREMENT ’

. LDEL IS THE FACTOR FOR DIVIDING THE INTERVAL

4
105

10

g8

.8%
1900

11¢
12¢

13C

14C

15¢Q

500

Gil
502
51C

DELX IS THE ACCULRACY ON THE SOLUTION

XAX IS THE MAXIMUM THAT THE ARCUMENT X MAY BECCHE
ILAST IS THE NUMBER OF RCCTS DESIRED

IFPLICIT REAL * 8 (A-H,0-2)

FORPMAT (//774E20.87//%)

FCRMAT (*-RESICUAL OF THE CHARACTERISTIC ECGUATICN =t,
1E16.85 15X VAT LAMNBDA =7,[16.8)

Tul=2 ‘

X=X-DELT - ‘

DEL = CELI

X = X 4+ DEL

Y = FUN Xy ALFHA )
KRITE {3,105) YoX
IFLY) 95550066

ZAZ=",15-’3

GC 10 160

2AZ=41.10

X§ = X

¥S = Y .

TF{XCTXNNAKY €D TO 510
X = X %+ DEL

Y = FUN (X ALFREA )
WRITE (3:105) YeX
TFLZAZEYY 110,500,100

XL = X
YL = ¥
X = A8 — ¥YS®{{XAL-XSI/(YL-Y5}))

TFLAL=X5-DELX) €00,1304133
Y = FUN (X¢ ALPFA )

KRITE (3,195) YuX

CEL = DEL*CDEL

IF(ZAZSY) 140,500,140

L= X

YL = ¥

X = ¥ - DEL

Y = FUN (Xs ALFEA )

HRITE (3,105 Y¢X
IFIZAZHY) 140,5CC150

X5 = X
¥YS = ¥
GC o 126
Iul=fui+l

IFLIPRINTEQ.C) GO TO S33
HR{TE[’j'Iil ‘n’.S-.XL,YS,Yi
CONTIRUE

IFCILASY-TUL) £10,%15,10
CCNTIMUE

RETURN
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