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ABSTRACT A number of research groups have proposed methods for ballistocardiogram (BCG) peak
detection toward the identification of individual cardiac cycles. However, objective comparisons of these
proposed methods are lacking. This paper, therefore, conducts a systematic and objective performance
evaluation and comparison of several of these approaches. Five peak-detection methods (three replicated
from the literature and two adapted from code provided by the methods’ authors) are compared using
data from 30 volunteers. A basic cross-correlation approach was also included as a sixth method. Two
high-performing methods were identified: the method proposed by Sadek ef al. and the method proposed
by Briiser er al. The first achieved the highest average peak-detection rate of 94%, the lowest average
false alarm rate of 0.0552 false alarms per second, and a relatively small mean absolute error between
the real and detected peaks: 0.0175 seconds. The second method achieved the lowest mean absolute error
of 0.0088 seconds between the real and detected peaks, an average peak-detection success rate of 89%, and
0.0766 false alarms per second. All metrics are averaged across participants.

INDEX TERMS Ballistocardiogram, heartbeat, heartbeat interval, heart rate, heart rate variability, load cells,

statistical signal analysis, wavelets.

I. INTRODUCTION

Heart Rate (HR) and Heart Rate Variability (HRV) have
proven to be useful for sleep staging [1]-[5] and other sleep
quality assessments [6], [7]. HRV is used for long-term heart
health monitoring and other clinical research [8], [9]. In [8],
HRYV is used to investigate relationships between cardiac
autonomic modulations and breast cancer, and in [9], HRV
is investigated as a subjective measure of well-being.

HRYV assessment requires the identification of individual
cardiac cycles toward the calculation of the times between
every two consecutive heart beats. The time required for
a heartbeat is often obtained, e.g., by identifying consecu-
tive R peaks of an electrocardiogram (ECG) or consecutive
peaks of a photoplethysmogram (PPG). These methods of
heartbeat detection require the user to wear electrodes or a
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finger-mounted optical sensor, respectively. As a result, they
are not ideal approaches for long-term monitoring.

Ballistocardiography, the measurement of micro-
movements of the body due to blood ejection from the heart,
is a promising alternative for pulse rate and HRV assessment.
This general field has seen recent research interest [10] in
terms of non-contact health monitoring, and a number of
related peak detection and/or heartbeat interval estimation
methods are proposed in the literature [11]-[28].

A few studies have performed small-scale comparisons
of peak detection methods. For example, [24] quotes the
performance of seven existing methods and [29] compares
methods intended for camera-based sensors. Several groups
have compared their proposed approach with previous meth-
ods from their own or affiliated labs [20], [27], [30], [31].
The “multi-method” algorithm [14], which runs four peak-
detection algorithms on a ballistocardiogram (BCG) segment
and fuses results from the three best-performing methods,

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

53945

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-4688-7976
https://orcid.org/0000-0002-4293-3090

IEEE Access

A. Suliman et al.: Performance Comparison for BCG Peak Detection Methods

could be considered a comparison. However, it focuses on
the overall performance of three fused methods as a single
method. Finally, [32] compares the performance of the “Max-
imal Overlap Discrete Wavelet Transform (MODWT)” [27]
with performances of three other signal processing tech-
niques using the mean absolute error (MAE) between the
resulting ECG-based and BCG-based pulse rates.

Based on this early review, a broad quantitative perfor-
mance comparison of signal processing methods proposed
by different research groups is lacking. Further, a consensus
does not exist in this research community regarding which
peak detection method best serves as a gold standard for
performance comparisons. Such comparisons would be well
served by (1) acommon data set with which multiple methods
could be tested and (2) access to original source code that
would allow for accurate code replication. This paper pro-
poses a framework where the performance of different BCG
peak detection methods and their associated signal processing
techniques can be objectively evaluated in terms of peak
detection efficiency and sensitivity.

This work compares five BCG peak detection methods,
where three are recreated from the literature [24], [25], [31]
and two are adapted from original code [20], [27]. The
original codes from the mentioned studies were modified
to address differences in sensing methods and sampling fre-
quencies. The authors recently conducted a pilot study involv-
ing five participants in [33] to compare three peak detection
methods [20], [24], [31]. The present study extends that work
to include the performance of two additional methods [25],
[27], where data from total of 30 participants supplement
the original data in [33]. For clarity in this paper, each of
these five methods is referred to by the last name of the
corresponding first author: Lee et al. [24], Lydon et al. [20],
Briiser er al. [31], Alvarado-Serrano et al. [25] and Sadek
et al. [27]. A simple technique based on cross correlation
(XCOR) is also included as a baseline for comparison.

This work contributes

« a comparison of five peak-detection techniques applied
to load-cell data,

« two proposed peak-detection methods for use in HRV
applications,

« performance benchmarks for researchers who seek to
improve peak-detection performance and/or develop
new BCG peak-detection approaches, and

« a portfolio of replicated algorithms for the peak detec-
tion methods presented here.

An overview of the signal processing and peak detection
approaches utilized here is provided in Section I of the sup-
plemental material. The reader is encouraged to refer to the
original work for further details. When possible, the authors
have preserved the terms originally employed in each study.

The rest of this paper is organized as follows. The Methods
section describes the participant demographics, data collec-
tion approach, and performance metrics. That section also
details the algorithm comparisons, including parameter opti-
mization steps. The Results section reports the outcomes of
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these comparisons, and the Discussion section comments on
these results, the limitations of these analyses, and future
work.

Il. METHODS

A. DATA RECORDING

Thirty healthy volunteers participated in this study: four-
teen male (ages 30.9 £ 6.3 years) and sixteen female (ages
46.0 £+ 18.5 years). Participants provided informed consent,
and the recording process was performed in accordance with
Kansas State University Institutional Review Board protocol
No. 9386. Each participant laid on their back on a full-
size bed with a stiff mattress. BCGs were recorded using
four Measurement Specialties FX1902 load cells positioned
beneath the corner bedposts. The signal conditioning cir-
cuitry employed bandpass filters with corner frequencies
of 0.05 and 35 Hz—these circuits are further described in [34].
ECGs were simultaneously recorded using a GE Datex-
Ohmeda Cardiocap”™/5 patient monitor. The conditioned
BCGs and ECGs were digitized at 250 Hz using a National
Instruments (NI) 9220 16-bit multichannel data acquisition
system, and these data were transferred to a local PC with
an NI 9184 Ethernet chassis controlled by a LabVIEW vir-
tual instrument. Data were visually inspected, and segments
corrupted by motion artifacts were removed prior to heartbeat
interval identification. From that point, all available data were
included in the study.

B. SIGNAL SOURCE SELECTION

For each participant, a signal quality index (SQI) [35] was
calculated for each of the four BCG segments acquired from
the load cells, and then the BCG segment with the highest
SQI was selected. That segment was then preprocessed as
specified in each peak-detection method’s original paper.
SQI calculation details are provided in Section IV of the
supplemental material.

C. GROUND TRUTH PEAK LABELING

The most prominent BCG peaks, termed “J peaks,” identify
heartbeat times. Simultaneously-recorded ECG R peaks were
used as visual aids to identify BCG J peaks (except for three
participants for whom ECG was not available). Due to vari-
ability in R-to-I intervals [36], and consequently R-to-J inter-
vals, automated ECG-based J-peak annotation was avoided.
Instead, given labeling conventions as in [37], [38], and with
R peaks as visual references, two sets of 100 consecutive
J peaks from two separate two-minute-long BCG sections
were visually identified and annotated for use as ground truth
(GT) peaks. The first set was used to optimize each peak-
detection method, and the second set was used to evaluate the
method’s performance. For the three BCG recordings where
simultaneous ECG data were unavailable, only BCG sections
with visually indisputable J peaks as depicted in Fig. 1 were
included in the study.
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FIGURE 1. BCG excerpt with annotated J peaks for the 15t (bottom) and
3t (top) participants for whom a simultaneous ECG was unavailable.

D. PERFORMANCE METRICS

A detection percentage (Det.) parameter is used as a sen-
sitivity parameter to quantify the ability of an algorithm to
correctly identify J peaks (i.e., a true positive rate). A false
alarm rate (FAR) parameter represents the counter metric,
or specificity. Any temporal shift introduced by a signal
processing step was corrected so that the detected peaks in the
BCG segment would align in time with their corresponding
GT peaks. A detection, or true positive (TP), is defined as a
detected peak that is within d = 0.06 sec of the GT peak [33].
While Sprager and Zazula [ 14] suggest 0.075 sec instead, this
stricter criteria improves specificity and exceeds the IEC stan-
dard for ECG QRS detection used in [14]. If multiple peaks
are detected within a target window, the positive peak closest
to the GT peak is considered a TP, and the rest are counted as
false positives (FPs). Likewise, peaks detected outside of the
specified window are considered FPs. Unsuccessful detection
within the target window near the GT peak is counted as a
missed event or false negative (FN). The FAR is then defined
as the number of all FP events between the first and last GT
peaks divided by the time between the first and last GT peaks
in seconds and is reported as counts/sec. The third metric
considered in this study is the efficiency, r, as proposed in
[14], which is defined in Eq. 1 as

r=J3rsry-r (1)

where ry and r, represent sensitivity and precision, respec-
tively, and r, is the variability score. These parameters are
defined in [14] as

o= —— @
TP + FN
= TP ’ 3
TP + FP
and
ro =P(|tg, — (tr, + 7)| < d), )

where P is the probability, 74, and #,, are the i’ time indices of
the detected and GT peaks, respectively, and T is the average
time between detected and GT peaks if R peaks are used as
GT peaks [14]. Since visually annotated J peaks are used as
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GT peaks, T is dropped and Eq. 4 becomes
ry = P(|ta, — 1| < d) 5)

Looking at Egs. 2 and 5, however, one can see that Eq. 5 is
numerically equivalent to Eq. 2, i.e., r, = ry, and therefore a
modified definition for r, is considered in this work to avoid
duplication in Eq. 1. The modified definition proposed here is
the ratio of the number of detections within d/2 to the number
of detections within d:
P(|tg —t.| <d/2 Pty —t.| <d/2

Fowod = ( di "l| / ) — (|d1 r,| / ) (6)

Iy s

which leads to

rmod:e/rs‘rp'rvmad’ @)

and the efficiency for each method is computed using Eq. 7
instead of Eq. 1.

The fourth proposed metric is the MAE between the GT
peak times and the detected peak times (MAE,). This metric
provides insight into J peak temporal jitter. The last perfor-
mance measure is the Absolute Error (AbsErr) between each
HBI based on GT peaks (HBIgr) and each HBI based on
detected J peaks (HBIg,;). It is calculated using Eq. 8. Here,
n is the total number of HBIs based on detected peaks from
all participant BCGs.

AbsErr, = |HBIgr, — HBlyer,

®)

Mean ROC Curves

0.4 0.5 0.6
FAR (cnt/sec)

Lee - - -LeeUS Lydon
—o— Briiser Sadek-MPP e Cross Correlation

--A--Lydon DS

FIGURE 2. Mean ROC curves for the Lee, Lee-US, Lydon, Lydon-DS, Briiser,
Sadek-MPP and XCOR methods. The -DS & -US methods are down- or
up-sampled to match the original publication.

E. PARAMETER SELECTION AND OPTIMIZATION

Authors of some papers that present peak-detection methods
either do not report one or more parameters, or the reported
parameters lead to non-optimal performance when utilized
with these BCG datasets. Reporting poor performance for
a method would be arguably unfair if a simple parameter
change would have made it competitive. Therefore, when
replicating or adapting each method, the authors had to first
optimize the method’s performance by varying parameter
values. To that end, a range of parameter values were iter-
ated to obtain a set of Det. and FAR pairs for each method
when applied to the first segment of a BCG with its asso-
ciated GT peaks. The obtained Det. and FAR pairs were
used to create receiver operating characteristic (ROC) curves.
Parameter values were selected to maximize the area under
the curve (AUC) for each of the ROC curves (see Fig. 2).
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The plots include only the ROC curves for those methods
that were able to produce smooth curves for detection rates
above 65%. The factors limiting the depiction of ROC curves
to detection rates above 65%, and only for certain methods,
are discussed in IV-A and IV-D, respectively.

Since the Lee and Lydon methods were originally tested
on BCGs sampled at 1000 and 100 Hz, respectively,
an up-sampled and down-sampled BCG were utilized in
this work in addition to direct application on our 250 Hz
data. These two scenarios are labeled “Lee-US” (up-sampled
BCG) and “Lydon-DS”’ (down-sampled BCG). This step was
taken to rule out the effects of a sampling frequency mis-
match. The same approach was applied with the Alvarado
and Sadek methods, but it led to incomparable perfor-
mances, so the results were not reported. For the Sadek
method, a “minimum peak prominence” (MPP) parameter
was evaluated in addition to the original ‘““minimum peak dis-
tance” (MPD) parameter utilized with the MATLAB ““find-
peaks()” function. This scenario was labeled “Sadek-MPP”’
and was included in the results as a comparable method to the
other methods that used MPP.

BCG1,, & GT peaksl,,

l HBi—trai
Method rain [ Performance
Measurement

Det. & FAR
Update
-
Parameter(s) No
lYes
Initial Record Optimal
Parameter Parameter
Value(s)

FIGURE 3. Performance optimization process. The path labeled
“HBg_¢rain” indicates the detected heartbeats used to train the
parameters to optimize the performance of a method.

The optimization process is illustrated by the flowchart
in Fig. 3. BCG1,, is the first two-minute-long BCG segment
from the m” participant, including its associated GT peaks
(GT peaksl,,); the result from that segment is detected heart-
beats (HB,). The parameter(s) noted in the flow chart are
summarized in Table 1.

The rationale for picking these parameters and the other
details of the optimizations are provided in Section II of
the supplemental material. Also, a summary of the wavelet
basis functions and the number of participants for whom
these functions resulted in an optimal performance (with the
Alvarado and Sadek methods) are provided in Tables 1 and 2,
respectively, in section III of the supplemental material.

F. TESTING PHASE
After the parameters were optimized, performance met-

rics were computed when using the second BCG seg-
ment, BCG2,,, and its associated GT peaks, GT peaks2,,.
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TABLE 1. List of parameters to be optimized for each method.

Method
Lee, Lydon, XCOR
Lee, Lydon, XCOR, Sadek

Parameters Used

Moving-average Lengths

“Minimum peak prominence” (MPP)

Briiser Sliding window overlap percentage, thg
Alvarado Wavelet basis function;

Wavelet decomposition level
Sadek Wavelet decomposition level;

“minimum peak distance” (MPD);

“Analysis Window” size

TABLE 2. Performance metrics for the various peak-detection methods.
Det.: detection rate in %, FAR: False Alarm Rate in alarms

per second (cnt/sec), MAEp: Mean Absolute Error between GT peak times
and detected J peak times in seconds, and r,,,4: Efficiency in %.

Methods Det. FAR MAE,, | I'noa
(%) (cnt/sec) (sec) (%)
Lee 82.86 0.1047 0.0203 54.72
Lee-US 82.52 0.1028 0.0232 | 57.36
Lydon 86.35 0.0810 0.0175 66.06
Lydon-DS 81.52 0.0946 0.0184 | 60.84
Briiser 88.93 0.0766 0.0088 | 49.92
Alvarado 79.38 0.1714 0.0312 | 33.07
Sadek 94.17 0.0552 0.0175 | 44.97
Sadek-MPP | 70.24 0.1920 0.0175 | 42.69
XCOR 89.17 0.1787 0.0103 52.37
Recorded
Optimal
Parameters, —
BCG2,, &
GT peaks2m HBd—test
Performance Performance

FIGURE 4. Performance evaluation based on the obtained parameters.
The path labeled “HB4_¢s; " indicates the detected heartbeats used to
test the performance of a method in conjunction with the parameters
obtained in the optimization process, e.g., recorded optimal parameters.

These data were not used during the optimization process,
so the peak-detection performance relative to these data
should be a fair estimate of each method’s ability. Fig. 4
illustrates this process further.

IIl. RESULTS
The performance metrics described in Section II-D are sum-
marized in Table 2. The columns report averages taken across
the number of participants: aggregate results for Det. in per-
cent, FAR in counts per second, MAE,, in seconds, and ry;oq
in percent. Each row addresses a method noted in this paper.
The modified Bland-Altman plots in Figs. 5 and 6 dis-
play the HBI Error of each method on the dependent axis.
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-0.1
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0.6 0.7 0.8 0.9 1 1.1 1.2 13 14 1.5 1.6
Ground Truth HBI (sec)

(e)
FIGURE 5. Modified Bland-Altman plots for the Lee, Lee-US, Lydon,

Lydon-DS, and Briiser methods from top to bottom, respectively. (a) Lee.
(b) Lee-US. (c) Lydon. (d) Lydon-DS. (e) Briiser.

The independent axis represents the HBI based on GT peaks
as per recommendations in [39]. Each plot is based on aggre-
gated HBI data for all 30 participants.

IV. DISCUSSION
A. LEE METHOD
The advantages of this method are its relatively low FAR and
its low sensitivity to the sampling rate, as noted in Table 2 (the
performance metrics are not much different for the Lee and
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(d)
FIGURE 6. Modified Bland-Altman plots for the Alvarado, Sadek,

Sadek-MPP, and XCOR methods from top to bottom, respectively.
(a) Alvarado. (b) Sadek. (c) Sadek-MPP. (d) XCOR.

Lee-US methods). This method also has the second highest
efficiency (1,04 ) for both sampling rates. The method’s disad-
vantages are its relatively low detection power and its second-
highest MAE,,. The Lee and Lee-US methods produce the
most dispersed Bland-Altman plots (see the top two panels
of Fig. 5). Lee’s method as replicated in this work is also sen-
sitive to parameter variations, and this sensitivity increases in
the case of an up-sampled BCG.

Since the next peak detection “analysis window”” is based
on the last peak detected in the previous window, it is not
possible to create smooth ROC curves for larger ranges of the
MPP values. Consequently, a complete ROC curve could not
be produced during the optimization step. An example ROC
curve for a wider range of MPP values is depicted in Fig. 7,
where MPP was varied from Se-4 to 10e-4 for participant 23.
To address this issue, smaller ranges of parameter values were
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Lee and participant # 23
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FIGURE 7. Top: ROC curve; Middle and bottom: Det. and FAR, respectively,
vs minimum peak prominence (MPP) for a range of 5e-4 to 10e-4 for
participant 23.

used to produce smooth ROC curve segments with detection
rates exceeding 80% and FAR values below 0.2 cnt/sec.
Exceptions were made for two participants because the
parameter ranges needed to be as small as 2.2e-3 to 2.9¢-3 in
one case (participant number 6) and 3.2e-5 to 5e-5 in another
case (participant number 3). Consequently, the Det. dropped
to well below 80% and the effects were more pronounced in
the Lee-US ROC curves, as can be seen in the second panel
of Fig. 2. Similarly, for the Lee-US method applied to one
participant’s data, the FAR had to exceed 0.2 counts/sec to
make a non-zero detection.

The method is prone to false positives introduced by end
effects from filtering during each window. This problem can
be alleviated by either performing preprocessing prior to
windowing or by introducing an MA filter on the output. The
latter was chosen but led to two MA length parameters that
required optimization. Contrary to the initial study [33], per-
formance was substantially improved by setting this second
parameter in a subject-specific manner.

B. LYDON METHOD

The advantages of this method are that it offers the high-
est Iyyod, the third lowest FAR and MAE,, and the easiest
implementation after the XCOR method. The original code
is also accessible. This method produced smooth ROC curves
during the optimization process and was much less sensitive
to variations in MPP values compared to the Lee method. The
disadvantages of this method are its relatively low detection
rate and the fact that it produces the second most dispersed
Bland-Altman plots (3¢ and 4" panels of Fig. 5). In addition,
the existence of two lengths for the MA filters, which need to
be adjusted for different participants, adds to its complexity
for real-time peak detection. Comparing the two sampling
rate scenarios for this method, an improved performance
arises in the Lydon method when compared to the Lydon-DS
approach. This can be due to distortion/loss of information
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from down-sampling the BCG or the notion that this method
may perform better with BCGs recorded at higher sampling
rates.

C. BRUSER METHOD

The advantages of this method are that it has the lowest
MAE),, the second lowest FAR, and the third highest detec-
tion rate, plus it produces the second least dispersed Bland-
Altman plot (see the 5" panel in Fig. 5). This method
is also less sensitive to parameter variations and produces
good combinations of Det. and FAR for a larger range of
parameter values. The ROC curves stay mostly near detection
rates higher than 85%, with corresponding FARs as low as
0.07 counts/sec.

0.1

0.05

HBI Error (sec)

e HBI Error «ee mean-+1.96std of Error Mean Error

-0.1 -

T oW o T .
PUALT LR MR BL ] L . I I I

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 15 1.6
Ground Truth HBI (sec)

FIGURE 8. Modified Bland-Altman plot for the Briiser method when HBIs
estimated by this method are used.

Interestingly, the version of Briiser’s Method replicated for
this work seems to produce better Bland-Altman plots when
its detected peaks (“‘anchor points” in the original work) are
used instead of the directly estimated HBIs, although this
method primarily focuses on direct HBI estimation. Fig. 8
displays the modified Bland-Altman plot obtained from the
aggregate HBI estimates. The Bland-Altman plot in this fig-
ure is more dispersed when compared to the Bland-Altman
plot for the Briiser method in Fig. 5. Also note that the
“mean41.96std”” lines have moved outside of the limits
(—0.1 to 0.1 on the dependent axis) used for Bland-Altman
plots in this paper.

Since this study primarily focuses on peak-detection per-
formance, including the Bland-Altman plots due to HBIs
obtained from detected peaks should still be sensible.
With a single subject-specific parameter to control, this
method could be attractive for longitudinal peak detection
applications.

A disadvantage of this method is that it has the third lowest
I'moq after the Alvarado and Sadek methods based on the
numbers in Table 2. The statistical approach taken in this
method to determine HBI estimates makes this method more
interesting for long-term longitudinal studies, since more per-
sonalized estimators can be trained and better decisions can
be made when picking suitable HBIs. On the other hand, this
same approach makes this method less attractive for short-
term HRV estimation applications, since prior data must be
accumulated to enhance the estimators used when picking
good HBI estimates.
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D. ALVARADO METHOD

The advantage of this method is that it offers subject-
independent amplitude and interval thresholds, owing to the
adaptive nature of its peak detection algorithm, as opposed
to the “findpeaks()” algorithm used in the other methods
(except for Briiser’s method). Out of the six wavelet basis
functions evaluated when optimizing this method, ““bior2.2”
resulted in the best performance for 13 BCGs. This suggests
that it may be possible to deduce an optimal wavelet for
a group of people with certain characteristics. This method
also produces the least dispersed Bland-Altman plot: the 15
panel in Fig. 6. The disadvantages of this method are that it
produces the lowest 1,04, the lowest Det. after Sadek-MPP,
the third highest FAR after XCOR and Sadek-MPP, and the
highest MAE,,. Alvarado’s method is also highly sensitive to
wavelet decomposition scale selection in a non-linear fashion.
For example, when changing from scale 68 to either 67 or
69 for a particular participant, the FAR will jump from zero
t0 0.66 or 0.63 counts/sec, respectively. Due to this non-linear
sensitivity, a smooth ROC curve was not possible.

For the BCG data employed here, the originally-proposed
5" decomposition level performed poorly, yielding an aver-
age detection rate of 27% and 0.89 counts/sec FAR. Different
wavelet decomposition scales were therefore investigated.
The best-performing scales were often much higher (between
19 and 76).

E. SADEK METHOD

For Sadek’s method, the Sadek and Sadek-MPP implemen-
tations will be discussed separately. The advantages of the
Sadek algorithm are that it offers the highest detection rate,
the lowest FAR, and the third lowest MAE,, plus it pro-
duces the third least dispersed Bland-Altman plot (panel
two in Fig. 6). This method is also attractive because the
code is publicly accessible. One disadvantage is that this
method produces the third lowest r,,,7. It also needs prior
HBI data from a participant for proper “minimum peak
distance” (MPD) selection, making short-term HRV studies
impossible. In addition, this method lacks a means to find
an optimal MPD value in the long run. Briiser’s method, for
instance, handles this automatically using statistical estima-
tors. Because this parameter is fixed, the Sadek method may
not be suitable for long-term or longitudinal studies due to
changes in the underlying heart rate.

The advantage of the Sadek-MPP method is that it can be
used for long-term longitudinal HRV studies, because once
an optimal MPP is obtained, the MPP will not change unless
the participant changes. The method’s less dispersed Bland-
Altman plot can be an advantage but is misleading due to the
low number of detections obtained with this method; Bland-
Altman plots do not account for misses. Other disadvantages
of this method are that it offers the highest FAR, the lowest
Det., the second-lowest 1,04, and a relatively high MAE,,.

The wavelet proposed in the original work, ‘“symS8”,
appears to result in better performance for both the Sadek and
Sadek-MPP methods when applied to these participant data.
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The wavelet decomposition scales do not vary significantly,
and a wavelet decomposition scale of 6 seems to produce opti-
mal results for 17 participants. This implies the possibility to
identify a subject-independent scale for a group of individuals
who share similar physiological and body composition traits.
Note, though, that transitioning from the optimal scale to
the neighboring scale impacts the performance severely. For
example, a transition from scale 5 to scale 6 for participant
8 causes the detection rate to drop from 100 % to 32% and
the FAR to increase from O to 0.64 counts/sec.

In this method, similar results are obtained whether or not
windowing is applied. However, if windowing is applied,
a 10-second window length as proposed in the original work
is not always optimal. While the authors applied the win-
dowing step when using an MPD to be consistent with the
original work, this step was skipped when using an MPP.
This can be justified because when windowing is applied after
wavelet decomposition, end effects will not exist for each
window and therefore will not affect the performance of the
method. Also, the MATLAB ““findpeaks()”” function applies
windowing anyway, which partly explains why windowing
does not affect performance in the first place.

Down-sampling these BCG data to the originally proposed
sampling rate (50 Hz) severely impacts the performance of
this method. For example, the average Det. drops to 13% and
the average FAR jumps to 0.8855 counts/sec when tested with
an MPD. Based on this observation, the Sadek-MPP method
was not tested with a down-sampled BCG. Consequently,
results for down-sampled data were not considered in the
evaluation process.

F. CROSS-CORRELATION METHOD

The advantages of this method are that it offers the second
highest detection rate, the second lowest MAE,, a relatively
high 1,04, and minimal design complexity. The performance
of this method is much less sensitive to parameter variations
when compared to methods that use MPPs. As a result,
it provides a larger range of parameter variations toward
smoother ROC curves. As mentioned in the Methods section,
the lengths of the MA filters were subject-independent except
for the case of one participant whose data were later removed
from the study since they caused this method to produce zero
Det./FAR pairs. The disadvantages of this method are that
its FAR is the second highest, and it produces a relatively
more dispersed Bland-Altman plot-see panel four in Fig. 6.
The fact that it failed to find a non-zero Det./FAR pair for
the BCG of a particular participant is another negative point,
although those BCG data caused the Lee and Lydon methods
to perform poorly as well.

G. LIMITATIONS

While considerable effort has been expended to accurately
replicate each method, the possibility of error remains. Orig-
inal code was not available from most of the affiliated authors
(except for the authors of [20] and [27]), and some details nec-
essary to replicate the methods were missing from each paper.
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Therefore, it is sensible to note that the results presented in
this study relate to the performance of the authors’ replica-
tions of each method. The parameter optimization process
was included to mitigate the effects caused by inconsistencies
in method implementations relative to the algorithms created
for the original papers.

An occasional small modification was necessary to avoid
unfairly penalizing a given method. For example, a simple
MA filter was added to the Lee and Lydon methods, since
their performance would otherwise have been very poor.
Some parameters either were not listed in the original publi-
cations or were obviously inappropriate for these BCG data;
these parameters were adjusted through the parameter opti-
mization step described earlier. For many parameters, though,
the published values were used directly without investigating
other settings. Notably, the filter types, orders, and corner fre-
quencies were implemented as published. Optimizing these
parameters may have led to increased performance for some
methods, but doing so would substantially increase the com-
plexity of the optimization. While some methods originally
included an automatic motion artifact removal step, that step
was skipped in this study since the BCG segments selected
for this work were already free of motion artifact.

As mentioned in the Methods section, BCG selection
(i.e., one signal out of four available load cell signals) was
based on the signal with the highest SQI. While this step was
performed with the goal to select the best BCG, a higher SQI
did not necessarily result in better algorithm performance.
Nonetheless, the performance comparison is still reasonable,
since the same BCG data were presented to all methods.

The overall low 1,44 as noted in Table 2 is due to the r,,,,
factor in Eq. 7, which is defined in Eq. 6. Eq. 6 is relatively
strict at present. Ultimately, however, the research goal is to
place limits on the HRV estimate error rather than the time-
domain jitter. Further study will be required to elucidate this
relationship.

A Bland-Altman plot compares only one performance
aspect: the error between a GT value and an estimate. Since
false alarm events are ignored, similar plots can be obtained
for two methods with similar jitters but very different Det. and
FAR values. The authors therefore suggest that Bland-Altman
plots are suitable but not fully sufficient for this type of
method comparison.

Since the BCG ground truth peaks were not based on
the R peaks of ECG data, the mean relative error between
the R-to-R intervals (RRIs) and the heartbeat intervals
(HBIs) [40] was not used as a performance criterion in this
work. Here, the authors believe that MAE,, is a good replace-
ment for this measure.

H. FUTURE WORK

The role of sensor modality is unclear in terms of perfor-
mance differences between these peak-detection methods.
The Lee method was originally proposed for use with load
cell data, consistent with this work. Lydon et al. used water
pressure sensors in their original work, but the Lydon method
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can clearly be successfully used with load cell-based BCGs,
since Lydon’s method outperformed Lee’s method in this
study. Similarly, Briiser’s method, though originally designed
for data acquired with electromechanical films, had a high
number of detections and a low timing jitter. This suggests
that Briiser’s method may be more robust to sensor changes
than the other techniques. On the contrary, the Alvarado
and Sadek-MPP methods, originally proposed for fiber-optic
based sensors, performed poorly. Perhaps the sensor modality
mismatch is one reason. Further study is needed.

The existence of at least one subject-dependent parameter
for each method suggests that these methods will achieve
their best performance in long-term and longitudinal studies
only if the parameters are personalized for each user. Since
each data set for this study originated from a single session,
the authors cannot speak to the stability of these parameters
over time.

In this study, a timing jitter up to 0.06 sec (when comparing
a candidate peak to a GT peak) resulted in the tally of a
detected peak. However, it is not yet clear how much timing
jitter can be allowed before an HRV feature estimated using
these detected peaks will become useless. Further studies are
necessary to assess the impact of timing jitter on the quality
of the HRV features.

As mentioned earlier, the results of this study are based on
BCGs with no motion artifacts. When processing longer BCG
segments, where motion artifacts are unavoidable, an auto-
matic motion detection algorithm such as in [41] may prove
useful. The preferred peak-detection method as identified
by this work can then be applied to the remaining clean
BCG data.

BCGs are not the only unobtrusive signals used for heart-
beat detection. Several other non-contact heartbeat detec-
tion methods have been proposed in the literature, such
as capacitive ECGs [42]-[47], mattress-based PPGs [48],
PPG imaging [49]-[54], optical Doppler or laser-based tech-
niques (e.g., for tracking the cardiac chamber or arterial wall
movements) [55]-[60], thermography [61]-[64], video-based
motion analysis [65], [66] (see [29] for a thorough review),
and high frequency electromagnetic fields [67]-[71] (see [72]
for a review and elaboration of some of these approaches).
The platform developed for this work may show promise
when comparing the performance of heartbeat detection
methods applied to data acquired using these other sensing
modalities.

V. CONCLUSION

This paper compared the peak-detection performance of var-
ious algorithms when applied to ballistocardiographic data
acquired from load cells placed under the corner posts of
a bed. No single method excelled in all comparison cate-
gories. However, Briiser’s method had the lowest timing jitter,
the second lowest false alarm rate, and the third highest detec-
tion power. Sadek’s method also exhibited good performance,
offering the highest detection power, the lowest false alarm
rate, and the third lowest timing jitters; it would be a strong
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candidate if not for its high dependence on the “minimum
peak distance” parameter, which requires prior knowledge of
an individual’s heartbeat interval. On the other hand, Sadek’s
method does have a subject-independent wavelet basis func-
tion which would be desirable if a robust scheme to train the
“minimum peak distance” could be developed. Interestingly,
the simple XCOR method presented by the authors would be
in third place, as it yielded the second highest detection power
and the second lowest timing jitter. However, the high false
alarm rate reported by this method requires attention. The
code that implements the framework proposed in this study
is accessible upon request to the corresponding author. A link
to Code Ocean repository will be available in the future.

ACKNOWLEDGMENTS

Opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies. Human
subjects work affiliated with this research was approved by
the Kansas State University Institutional Review Board under
protocol No. 9386. The authors acknowledge and appreciate
the cooperation of Dr. Skubic and her team, as well as
Dr. Mokhtari and his team, for providing the original code
for the Lydon and Sadek methods, respectively.

REFERENCES

[1] E. Yuda, Y. Yoshida, R. Sasanabe, H. Tanaka, T. Shiomi, and J. Hayano,
“Sleep stage classification by a combination of actigraphic and heart rate
signals,” J. Low Power Electron. Appl., vol. 7, no. 4, p. 28, 2017.

[2] J. Hayano, E. Yuda, and Y. Yoshida, ““Sleep stage classification by com-
bination of actigraphic and heart rate signals,” in Proc. IEEE Int. Conf.
Consum. Electron.-Taiwan (ICCE-TW), Jun. 2017, pp. 387-388.

[3] S. Nurmi, T. Saaresranta, T. Koivisto, U. Meriheind, and L. Palva, “Val-
idation of an accelerometer based BCG method for sleep analysis,”
Aalto Univ., Helsinki, Finland, Tech. Rep., 2016. [Online]. Available:
https://aaltodoc.aalto.fi:443/handle/123456789/21176

[4] H.Ni, T. Zhao, X. Zhou, Z. Wang, L. Chen, and J. Yang, “‘Analyzing sleep
stages in home environment based on ballistocardiography,” in Proc. Int.
Conf. Health Inf. Sci. Cham, Switzerland: Springer, 2015, pp. 56-68.

[5] M. Xiao, H. Yan, J. Song, Y. Yang, and X. Yang, “Sleep stages classifi-
cation based on heart rate variability and random forest,” Biomed. Signal
Process. Control, vol. 8, no. 6, pp. 624-633, 2013.

[6] Z. Dong, X. Li, and W. Chen, “Frequency network analysis of heart
rate variability for obstructive apnea patient detection,” IEEE J. Biomed.
Health Inform., vol. 22, no. 6, pp. 1895-1905, Nov. 2018.

[7]1 D. W. Jung, S. H. Hwang, H. N. Yoon, Y.-J. G. Lee, D.-U. Jeong, and
K. S. Park, “Nocturnal awakening and sleep efficiency estimation using
unobtrusively measured ballistocardiogram,” IEEE Trans. Biomed. Eng.,
vol. 61, no. 1, pp. 131-138, Jan. 2014.

[8] C. Arab et al., “Cardiac autonomic modulation impairments in advanced
breast cancer patients,” Clin. Res. Cardiol., vol. 107, no. 10, pp. 924-936,
2018.

[9] K. Boman, ‘“Heart rate variability: A possible measure of subjective well-
being?” Univ. Skovde, School Bioscience, Skovde, Sweden, Tech. Rep.,
2018.

[10] X. Feng, Y. Xu, M. Dong, and P. Levy, “Non-contact home health mon-
itoring based on low-cost high-performance accelerometers,” in Proc.
2nd IEEE/ACM Int. Conf. Connected Health, Appl., Syst. Eng. Technol.,
Jul. 2017, pp. 356-364.

[11] J. M. Kortelainen and J. Virkkala, “FFT averaging of multichannel BCG
signals from bed mattress sensor to improve estimation of heart beat inter-
val,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2007,
pp. 6685-6688.

[12] D. C. Mack, J. T. Patrie, P. M. Suratt, R. A. Felder, and M. Alwan,
“Development and preliminary validation of heart rate and breathing rate
detection using a passive, ballistocardiography-based sleep monitoring
system,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 1, pp. 111-120,
Jan. 2009.

VOLUME 7, 2019

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27])

(28]

[29]

(30]

(31]

(32]

(33]

J. M. Kortelainen, M. O. Mendez, A. M. Bianchi, M. Matteucci, and
S. Cerutti, “Sleep staging based on signals acquired through bed sen-
sor,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 3, pp. 776-785,
May 2010.

S. Sprager and D. Zazula, ‘“Heartbeat and respiration detection from
optical interferometric signals by using a multimethod approach,” IEEE
Trans. Biomed. Eng., vol. 59, no. 10, pp. 2922-2929, Oct. 2012.

C. Briiser, S. Winter, and S. Leonhardt, “Unsupervised heart rate vari-
ability estimation from ballistocardiograms,” in Proc. 7th Int. Workshop
Biosignal Interpretation, 2012, pp. 1-6.

C. Briiser, S. Winter, and S. Leonhardt, “How speech processing can
help with beat-to-beat heart rate estimation in ballistocardiograms,”
in Proc. IEEE Int. Symp. Med. Meas. Appl. (MeMeA), May 2013,
pp. 12-16.

A. Vehkaoja, S. Rajala, P. Kumpulainen, and J. Lekkala, “Correlation
approach for the detection of the heartbeat intervals using force sen-
sors placed under the bed posts,” J. Med. Eng. Technol., vol. 37, no. 5,
pp. 327-333,2013.

Y. Yao, C. Bruser, U. Pietrzyk, S. Leonhardt, S. van Waasen, and
M. Schiek, “Model-based verification of a non-linear separation scheme
for ballistocardiography,” IEEE J. Biomed. Health Inform., vol. 18, no. 1,
pp. 174-182, Jan. 2014.

Y. Yao, J. Schiefer, S. van Waasen, and M. Schiek, “A non-parametric
model for Ballistocardiography,” in Proc. IEEE Workshop Stat. Signal
Process. (SSP), Jun./Jul. 2014, pp. 69-72.

K. Lydon et al., “Robust heartbeat detection from in-home ballisto-
cardiogram signals of older adults using a bed sensor,” in Proc. 37th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015,
pp. 7175-7179.

1. Sadek, J. Biswas, V. F. S. Fook, and M. Mokhtari, “‘Automatic heart rate
detection from FBG sensors using sensor fusion and enhanced empirical
mode decomposition,” in Proc. IEEE Int. Symp. Signal Process. Inf. Tech-
nol. (ISSPIT), Dec. 2015, pp. 349-353.

M. Krej, L. Dziuda, and F. W. Skibniewski, “A method of detecting
heartbeat locations in the ballistocardiographic signal from the fiber-
optic vital signs sensor,” IEEE J. Biomed. Health Inform., vol. 19, no. 4,
pp. 1443-1450, Jul. 2015.

J. Paalasmaa, H. Toivonen, and M. Partinen, ‘“Adaptive heartbeat modeling
for beat-to-beat heart rate measurement in ballistocardiograms,” IEEE J.
Biomed. Health Inform., vol. 19, no. 6, pp. 1945-1952, Nov. 2015.

W. K. Lee, H. Yoon, C. Han, K. M. Joo, and K. S. Park, “Physiological sig-
nal monitoring bed for infants based on load-cell sensors,” Sensors, vol. 16,
no. 3, p. 409, Mar. 2016. [Online]. Available: http://www.mdpi.com/
1424-8220/16/3/409

C. Alvarado-Serrano, P. S. Luna-Lozano, and R. Pallas-Areny, “An algo-
rithm for beat-to-beat heart rate detection from the BCG based on the
continuous spline wavelet transform,” Biomed. Signal Process. Control,
vol. 27, pp. 96-102, May 2016.

1. Sadek et al., ““Sensor data quality processing for vital signs with oppor-
tunistic ambient sensing,” in Proc. 38th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC), Aug. 2016, pp. 2484-2487.

1. Sadek, J. Biswas, B. Abdulrazak, Z. Haihong, and M. Mokhtari, “Con-
tinuous and unconstrained vital signs monitoring with ballistocardiogram
sensors in headrest position,” in Proc. IEEE EMBS Int. Conf. Biomed.
Health Inform. (BHI), Feb. 2017, pp. 289-292.

1. Sadek, J. Bellmunt, M. Kodys, B. Abdulrazak, and M. Mokhtari, “Novel
unobtrusive approach for sleep monitoring using fiber optics in an ambient
assisted living platform,” in Proc. Int. Conf. Smart Homes Health Telem-
atics. Cham, Switzerland: Springer, 2017, pp. 48—60.

A. Al-Naji, K. Gibson, S.-H. Lee, and J. Chahl, “Monitoring of car-
diorespiratory signal: Principles of remote measurements and review of
methods,” IEEE Access, vol. 5, pp. 15776-15790, 2017.

L. R. Paniagua, “Short-term heart rate variability as a general indicator
of health estimated by ballisocardiography using a hydraulic bed sen-
sor in elder care,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Missouri,
Columbia, MO, USA, 2016.

C. Briiser, S. Winter, and S. Leonhardt, “Robust inter-beat interval estima-
tion in cardiac vibration signals,” Physiol. Meas., vol. 34, no. 2, p. 123,
2013.

1. Sadek and J. Biswas, “Nonintrusive heart rate measurement using ballis-
tocardiogram signals: A comparative study,” Signal, Image Video Process.,
vol. 13, no. 3, pp. 475482, 2018.

A. Suliman, C. Carlson, S. Warren, and D. Thompson, “Performance
evaluation of processing methods for ballistocardiogram peak detection,”
in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Jul. 2018, pp. 502-505.

53953



IEEE Access

A. Suliman et al.: Performance Comparison for BCG Peak Detection Methods

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

C. Carlson et al., “‘Bed-based instrumentation for unobtrusive sleep quality
assessment in severely disabled autistic children,” in Proc. 38th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 4909-4912.

A. O. Bicen and O. T. Inan, “A signal quality index for ballistocardio-
gram recordings based on electrocardiogram RR intervals and matched
filtering,” in Proc. IEEE EMBS Int. Conf. Biomed. Health Inform. (BHI),
Mar. 2018, pp. 145-148.

X. Zhang, L. Zhang, K. Wang, C. Yu, T. Zhu, and J. Tang, “A rapid
approach to assess cardiac contractility by ballistocardiogram and elec-
trocardiogram,” Biomed. Eng./Biomedizinische Technik, vol. 63, no. 2,
pp. 113-122, 2016.

I. Starr, A. Rawson, H. A. Schroeder, and N. Joseph, *“Studies on the esti-
mation of cardiac ouptut in man, and of abnormalities in cardiac function,
from the heart’s recoil and the blood’s impacts; the ballistocardiogram,”
Amer. J. Physiol.-Legacy Content, vol. 127, no. 1, pp. 1-28, 1939.

W. R. Scarborough et al., “Proposals for ballistocardiographic nomen-
clature and conventions: Revised and extended: Report of commit-
tee on ballistocardiographic terminology,” Circulation, vol. 14, no. 3,
pp. 435-450, 1956.

J. S. Krouwer, “Why bland-altman plots should use X, not (Y+X)/2 when
X is a reference method,” Statist. Med., vol. 27, no. 5, pp. 778-780, 2008.
C. Briiser, J. M. Kortelainen, S. Winter, M. Tenhunen, J. Pirkki, and
S. Leonhardt, “Improvement of force-sensor-based heart rate estimation
using multichannel data fusion,” IEEE J. Biomed. Health Inform., vol. 19,
no. 1, pp. 227-235, Jan. 2015.

A. Alivar et al., “Motion artifact detection and reduction in bed-based
ballistocardiogram,” IEEE Access, vol. 7, pp. 13693-13703, 2019.

H.J. Lee, S. M. Lee, K. M. Lee, and K. S. Park, ‘“Performance evaluation
of electrocardiogram measured using capacitive textiles on a bed,” in Proc.
BIODEVICES, 2011, pp. 436-439.

K.-F. Wu and Y.-T. Zhang, “Contactless and continuous monitoring of
heart electric activities through clothes on a sleeping bed,” in Proc. Int.
Conf. Inf. Technol. Appl. Biomed. (ITAB), 2008, pp. 282-285.

Y. G. Lim, K. K. Kim, and K. S. Park, “ECG recording on a bed during
sleep without direct skin-contact,” IEEE Trans. Biomed. Eng., vol. 54,
no. 4, pp. 718-725, Apr. 2007.

Y. G. Lim et al., “Monitoring physiological signals using nonintrusive
sensors installed in daily life equipment,” Biomed. Eng. Lett., vol. 1, no. 1,
pp. 11-20, 2011.

M. Ishijima, “Monitoring of electrocardiograms in bed without utilizing
body surface electrodes,” IEEE Trans. Biomed. Eng., vol. 40, no. 6,
pp. 593-594, Jun. 1993.

B. Chamadiya, K. Mankodiya, M. Wagner, and U. G. Hofmann, “Textile-
based, contactless ECG monitoring for non-ICU clinical settings,” J. Ambi-
ent Intell. Humaniz. Comput., vol. 4, no. 6, pp. 791-800, Dec. 2013.

M. Y. M. Wong, E. P. MacPherson, and Y. T. Zhang, “Contactless and
continuous monitoring of heart rate based on photoplethysmography on a
mattress,” Physiol. Meas., vol. 31, no. 7, p. 1065, 2010.

K. Humphreys, T. Ward, and C. Markham, ‘“Noncontact simultaneous
dual wavelength photoplethysmography: A further step toward noncon-
tact pulse oximetry,” Rev. Sci. Instrum., vol. 78, no. 4, Apr. 2007,
Art. no. 044304.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, ‘“Non-contact, automated
cardiac pulse measurements using video imaging and blind source sepa-
ration,” Opt. Express, vol. 18, no. 10, pp. 10762-10774, 2010.

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and
Y. Zhu, “Motion-compensated noncontact imaging photoplethysmogra-
phy to monitor cardiorespiratory status during exercise,” J. Biomed. Opt.,
vol. 16, no. 7, 2011, Art. no. 077010.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncon-
tact, multiparameter physiological measurements using a webcam,” IEEE
Trans. Biomed. Eng., vol. 58, no. 1, pp. 7-11, Jan. 2011.

L. Kong et al., “Non-contact detection of oxygen saturation based on
visible light imaging device using ambient light,” Opt. Express, vol. 21,
no. 15, pp. 17464-17471, 2013.

U. S. Freitas, “Remote camera-based pulse oximetry,” in Proc. 6th Int.
Conf. eHealth, Telemedicine, Social Med. (¢eTELEMED), 2014, pp. 59-63.
A. Aubert et al., “Laser method for recording displacement of the heart
and chest wall,” Med. Eng. Phys., vol. 6, no. 2, pp. 134-140, 1984.

H. Hong and M. D. Fox, “Noninvasive detection of cardiovascular
pulsations by optical Doppler techniques,” Proc. SPIE, vol. 2, no. 4,
pp. 382-391, 1997.

C. C. Wang et al., “Human life signs detection using high-sensitivity
pulsed laser vibrometer,” IEEE Sensors J., vol. 7, no. 9, pp. 1370-1376,
Sep. 2007.

53954

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

S. Casaccia, E. J. Sirevaag, E. Richter, J. A. O’Sullivan, L. Scalise, and
J. W. Rohrbaugh, “Decoding carotid pressure waveforms recorded by laser
Doppler vibrometry: Effects of rebreathing,” in Proc. AIP Conf., vol. 1600,
no. 1, 2014, pp. 298-312.

S. Casaccia, “Measurement of physiological parameters in the human body
by non-contact technique: Laser Doppler vibrometry,” Ph.D. dissertation,
Universita Politecnica delle Marche, Ancona, Italy, 2015.

U. Morbiducci, L. Scalise, M. De Melis, and M. Grigioni, “Optical vibro-
cardiography: A novel tool for the optical monitoring of cardiac activity,”
Ann. Biomed. Eng., vol. 35, no. 1, pp. 45-58, Jan. 2007.

I. Fujimasa, T. Chinzei, and I. Saito, “Converting far infrared image
information to other physiological data,” IEEE Eng. Med. Biol. Mag.,
vol. 19, no. 3, pp. 71-76, May 2000.

1. Pavlidis and J. Levine, “Thermal image analysis for polygraph testing,”
IEEE Eng. Med. Biol. Mag., vol. 21, no. 6, pp. 56-64, Nov. 2002.

M. Garbey, N. Sun, A. Merla, and I. Pavlidis, “Contact-free measurement
of cardiac pulse based on the analysis of thermal imagery,” IEEE Trans.
Biomed. Eng., vol. 54, no. 8, pp. 1418-1426, Aug. 2007.

L. Zhou, M. Yin, X. Xu, X. Yuan, and X. Liu, “Non-contact detection of
human heart rate with kinect,” Cluster Comput., pp. 1-8, Jan. 2018.

K. Nakajima, T. Maekawa, and H. Miike, “Detection of apparent skin
motion using optical flow analysis: Blood pulsation signal obtained from
optical flow sequence,” Rev. Sci. Instrum., vol. 68, no. 2, pp. 1331-1336,
1997.

A. Al-Naji and J. Chahl, “Remote optical cardiopulmonary signal extrac-
tion with noise artifact removal, multiple subject detection & long-
distance,” IEEE Access, vol. 6, pp. 11573-11595, 2018.

R. Vas, C. R. Joyner, D. E. Pittman, and T. C. Gay, “The displacement
cardiograph,” IEEE Trans. Biomed. Eng., vol. BME-23, no. 1, pp. 49-54,
Jan. 1976.

D. L. Wilson and D. B. Geselowitz, “Physical principles of the displace-
ment cardiograph including a new device sensitive to variations in torso
resistivity,” IEEE Trans. Biomed. Eng., vol. BME-28, no. 10, pp. 702-710,
Oct. 1981.

R. Guardo, S. Trudelle, A. Adler, C. Boulay, and P. Savard, “Contact-
less recording of cardiac related thoracic conductivity changes,” in Proc.
17th Int. Conf. Eng. Med. Biol. Soc., vol. 2, 1995, pp. 1581-1582.

F. Liebold, M. Hamsch, and C. Igney, “Contact-less human vital sign
monitoring with a 12 channel synchronous parallel processing magnetic
impedance measurement system,” in Proc. 4th Eur. Conf. Int. Fed. Med.
Biol. Eng. Berlin, Germany: Springer, 2009, pp. 1070-1073.

A. Cordes, J. Foussier, D. Pollig, and S. Leonhardt, “A portable mag-
netic induction measurement system (PIMS),” Biomedizinische Tech-
nik/Biomed. Eng., vol. 57, no. 2, pp. 131-138, 2012.

C. Briiser, C. H. Antink, T. Wartzek, M. Walter, and S. Leonhardt, “Ambi-
ent and unobtrusive cardiorespiratory monitoring techniques,” IEEE Rev.
Biomed. Eng., vol. 8, pp. 3043, 2015.

AHMAD SULIMAN (S’14) received the B.S.
degree in electrical and electronics engineering
from Kabul University, Kabul, in 2003, and the
M.S. degree in electrical and computer engineer-
ing with a focus on embedded systems and controls
from Kansas State University (KSU), Manhattan,
KS, USA, in 2010, where he is currently pursuing
the Ph.D. degree in electrical engineering with a
focus on biomedical devices.

From 2004 to 2008, he involved in mobile

telecommunication systems with the Siemens AG Telecommunications
Department local branch, Kabul. From 2011 to 2014, he was a Lecturer with
Kabul University, where he taught several senior level courses in electrical
engineering. From 2014 to 2017, he was a Graduate Research Assistant with
the KSU Medical Component Design Laboratory and the Brain and Body
Sensing Laboratory. His research interests include analog and digital signal
processing in low frequency signal applications, particularly biomedical
signals, low-noise circuit design, and systems engineering for unobtrusive
biomedical applications.

Dr. Suliman is a member of the IEEE Engineering in Medicine and
Biology Society.

VOLUME 7, 2019



A. Suliman et al.: Performance Comparison for BCG Peak Detection Methods

IEEE Access

CHARLES CARLSON (S’14) received the B.S.
degree in physics from Fort Hays State University,
in 2013, and the B.S. and M..S. degrees in electrical
engineering from Kansas State University (KSU),
in 2013 and 2015, respectively, where he is cur-
rently pursuing the Ph.D. degree in electrical
engineering.

He is currently a Graduate Teaching and
Research Assistant in electrical and computer
engineering with the KSU. He is also with the
KSU Medical Component Design Laboratory and is interested in engineering
education, biotechnology, and bioinstrumentation.

Mr. Carlson is a member of the American Society for Engineering Educa-
tion and the IEEE Engineering in Medicine and Biology Society.

CARL J. ADE received the B.S. degree in biology
from Kansas Wesleyan University, in 2004, and the
M.S. degree in Kinesiology and the Ph.D. degree
in Anatomy and Physiology from Kansas State
University, in 2008 and 2013, respectively.

He is currently an Assistant Professor with the
Department of Kinesiology, Kansas State Univer-
sity. He directs the Clinical Integrative Physiology
Laboratory, a National Institutes of Health and
National Aeronautics and Space Administration
funded research and teaching facility focused primary on understanding
the development of heart failure and cardiovascular disease associated
with cancer-associated treatments (i.e, chemotherapy, immunotherapy, hor-
mone deprivation, and radiation), and the cardiovascular consequences of
long-duration spaceflight.

VOLUME 7, 2019

STEVE WARREN received the B.S. and M.S.
degrees in electrical engineering from Kansas
State University, in 1989 and 1991, respectively,
and the Ph.D. degree in electrical engineering from
The University of Texas at Austin, in 1994.

He is currently a Professor with the Department
of Electrical and Computer Engineering, Kansas
State University. He directs the Medical Compo-
nent Design Laboratory, a National Science Foun-
dation funded research and teaching facility that
supports the development of health monitoring technologies. His researches
focus on (1) plug-and-play, point-of-care health systems that use interoper-
ability standards, and (2) wearable sensors and signal processing techniques
to determine human and animal well-being.

Dr. Warren is a member of the American Society for Engineering Educa-
tion and the Institute of Electrical and Electronics Engineers. He serves as
the Faculty Advisor for the KSU Student Chapter of the IEEE Engineering
in Medicine and Biology Society, and he is the Program Coordinator for the
KSU undergraduate degree in biomedical engineering.

DAVID E. THOMPSON (S’06-M’13) received
the B.S. degree in electrical engineering from
Kansas State University, in 2006, and the M.S.
degree in biomedical engineering, the M.S.E.
degree in electrical engineering: systems, and the
Ph.D. degree in biomedical engineering from the
University of Michigan, Ann Arbor, in 2009, 2011,
and 2012, respectively.

From 2012 to 2013, he was a Postdoctoral
Research Fellow at the University of Michigan.
In 2014, he became an Assistant Professor of electrical and computer
engineering at Kansas State University. He has authored sixteen full-length
scientific articles. His research interests include brain-computer interfaces,
performance measurement, and non-invasive sensing. He was a found-
ing member of the Brain-Computer Interface Society. At Kansas State,
he founded the Brain and Body Sensing Laboratory. He was a Goldwater
Scholar, Fulbright Fellow to Japan, and National Science Foundation
Graduate Research Fellow.

53955



	INTRODUCTION
	METHODS
	DATA RECORDING
	SIGNAL SOURCE SELECTION
	GROUND TRUTH PEAK LABELING
	PERFORMANCE METRICS
	PARAMETER SELECTION AND OPTIMIZATION
	TESTING PHASE

	RESULTS
	DISCUSSION
	LEE METHOD
	LYDON METHOD
	BRÜSER METHOD
	ALVARADO METHOD
	SADEK METHOD
	CROSS-CORRELATION METHOD
	LIMITATIONS
	FUTURE WORK

	CONCLUSION
	REFERENCES
	Biographies
	AHMAD SULIMAN
	CHARLES CARLSON
	CARL J. ADE
	STEVE WARREN
	DAVID E. THOMPSON


