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SYNOPSIS

An "exact" method and three approximate methods for the analysis of the

behavior of members subjected to bending moments and axial compression are

reviewed on the basis of elastic theory. Sample problems that are frequently

encountered in steel structures are treated. The effects of lateral and

torsional buckling are not included. Two design methods that are adopted in

the AISC (14) and AASHO (15) Specifications are described and a design

example is worked in order to illustrate the design procedure according to

the AISC Specifications (14).

INTRODUCTION

This paper contains a review of analysis and design procedures for

steel members subjected to combined bending and compression. The bending

may arise from transverse forces and/or from known eccentricities of the

axial loads at one or both ends. These kinds of members are generally

referred to as beam-columns. Beam-columns are commonly analyzed and

designed as isolated members, whereas in practice they are usually parts

of a frame. In framed steel structures, there are three categories of

individual members:

(1) Beams. Beams are members subjected to forces which predominantly

produce bending.

(2) Columns. Columns are members axially loaded predominantly in

compression.

(3) Beam-columns. Beam-columns are members whose loads are a combina-

tion of the loads on beams and columns as stated above.

When the bending is small compared with the axial force, the bending



can often be neglected and the member can be treated as a centrally loaded

column. On the other hand, when the axial force is small compared with the

bending, the axial force may be negligible and the problem becomes that of

beam analysis.

The basic equation for analyzing a beam-column problem is based on the

relationship between the moment and the curvature of a beam, i.e., Ely" = -M,

and takes into account the compressive forces. In the equation Ely" = -M,

E, I, y" , and M are modulus of elasticity, moment of inertia, curvature, and

moment, respectively. Professor N. M. Newmark (1) has developed a numeri-

cal approach which provides a means for obtaining an approximate but satis-

factory solution for beam-columns. The energy approach is also an approxi-

mate solution, but it is a convenient method when the loadings are

complicated

.

Early solution of beam-column problems have been reviewed by Bleich

(2). Ketter, Kaminsky, and Beedle (3) have presented a method for determin-

ing the plastic behavior of laterally supported wide-flange shapes under

combined axial forces and moments. Galambos (4) and Ketter (5) have

presented numerically determined interaction curves for the maximum strength

of beam-columns under various end conditions, including the effect of resid-

ual stress. The effect of end restraint on the eccentrically loaded column

has been explored by Bijaard, Winter, Fisher and iMason (6). Two approximate

methods for estimating the strength of beam-columns have been reviewed by B.

G. Johnston (7), the first method is based on the concept that the load

which produces the initiation of yielding in the fiber subjected to the

Numbers in parentheses refer to the numbered references in the biblio-
graphy.



maximum stress provides a lower bound of the failure load, and the second

method is based upon the interaction equations.



METHODS OF ANALYSES

The purpose of the following analyses is to show the procedures for

finding the maximum deflection and maximum bending moment of a member sub-

jected to moment and axial compression simultaneously. The general method

is an "exact" method, while the numerical method and the energy method are

approximate methods.

GENERAL METHOD

By neglecting the effects of shearing deformations and axial shortening

of the beam the differential equation (8) of the axis of the beam-column as

shown in Fig. 1 can be expressed in the following alternate forms

Ely" = - M ,

Ely" 1 + Py' = - V ,

Ely ,v/ + Py" = q .

(1)

(2)

(3)

The differential equations can be solved by use of the given boundary condi-

tions, and consequently the deflections, bending moments, and end rotations

may be obtained. Three examples of the use of this method are given in the

following sections.

The bending moments and forces shown in Fig. 1 are assumed to be posi-

tive in the directions shown unless otherwise noted.
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Fig. 1. Sign conventions



Beam-column with Uniform Lateral Loads

Fig. 2. Beam-column with uniform lateral loads.

The governing differential equation for the behavior of a beam sub-

jected to transverse and axial loads is

IV
El y + Py" = q .

The general solution of this differential equation is

2
Q x

y = A cos kx + B sin kx + C x + D + *
,

, 2 P

(3)

in which
EI

*

(4)

(5)

The arbitrary constants A, B, C, and D are evaluated from the boundary con-

ditions of the beam. Since the deflection and bending moment are zero at

the ends of the beam, the conditions are

y = y" = at x = and x = L .

From the two conditions at x = 0, we obtain

A = - D =
2

k P

and the conditions at x = L give

q 1 - cos kLy _ 1_

, 2__ sin kL
k P

-_SJL
2P



Substituting these values of the constants into Eq . 4, the equation for the

deflection curve is found to be

y
=

Elk
4

sin kx + sin k(L-x)
sin kL

- 1

2EIk'

x ( L-x

)

(6)

Letting x=L/2 in Eq. 6, the deflection at the center-line of the beam is

found to be

A = (y) J^k f,(u) ,

where

and f
x
(u)

x=L/2 384 EI 1

u - kL/2 ,

12(2 sec u - 2 - u
2

)

5u4

(7)

(8)

(9)

By taking the first derivative of Eq. 6, we obtain an equation for the slope

at any point on the beam. Letting x=0 yields

3

9 = 9,
a b (y')_n ?7T7 f o<">

where f
2
(u) =

x=0 24E1 2

3 (tan u - u)

3
u

(10)

(11)

The bending moment at the center of the beam is given by

2

M = " E1( *
M)
x=L/2

qL

where f
3
(u)

8

2(1 - cos u)

f,(u) , (12)

(13)

u cos u

The first factors on the right-hand sides of Eqs. 7, 10, and 12 are the

values produced by a uniform load acting alone, and the second factors

f.(u), f„(u), and f»(u) represent the effects of the axial compression

forces.

Tables of these functions have been provided in the Appendix of

Reference 8.



Beam-column with a Concentrated Lateral Load

Fig. 3. Beam-column with a concentrated load.

The bending moments in the left- and right-hand portions of the beam in

Fig. 3 are, respectively,

M
L

= 9£ x Py
, M . q a - sJ (L_X) + Py §

R L

Using Eq. 1, we have

Ely" = - . x - Py , and

Eiy- Qih - c)
(L - x) - Py

The general solutions of these equations are

Qc
y = A cos kx + B sin kx - rr x , and (14)

y = C cos kx + D sin kx - Q (L-c)(L-x)
PL

(15)

By use of the end conditions y = at x = and at x = L, we obtain

A =
, C = - D tan kL .

Similarly, using the fact that the slopes and deflections of each segment

must be equal at the point of application of the load Q, i.e. y y and
L K

y' = y' at x = L - c, we obtain
L K



Q sin kc Q sin k ( L-c

)

Pk sin kL ' Pk tan kL
" *

Substituting these values of the constants into Eqs. 14 and 15, we obtain

the following equations for the two portions of the deflection curve:

_ Q sin kc . . Qc n ^ ^ . ,,,.
*L Pk sin kL

^"kx-^x, 0<x<L-c (16)

yR
' SM^ - «^, - «U-iU-l . L-c_< X <L «»„

By taking the first and second derivatives of Eqs. 16 and 17, the expres-

sions (8) for slope and curvature can be obtained. In the particular case

of a load applied at the center of the beam, the maximum deflection, end

rotation, and the maximum bending moment are obtained by substituting c=L/2

and the appropriate values of x into Eq. 16. This procedure gives

A =
(
3"x.l/2

= Sn •
£
2

(u)
•

(I8)

2

9 = 9, = (y«) _ = f^TT • f, (u) , (19)
a b ' x=0 16E1 3

M = - EKy") ,., = * ^"^
. (20)

r x=l,/2 4 u

Again, the second factors on the right-hand sides of Eqs. 18 to 20, f (u),

f_(u), and (tan u)/u are the effects of the axial compression on the beam.



Beam-column with Couples

M,

r^
&K *b

P f * -) \—:a^~
If B^P
-Z*^fer

-Li
A B

(a) (b)

Fig. 4. Beam-column with couples.

If two couples M and M, are applied at the ends A and B respectively,

the bending moment at any section in the beam is

M - M.

M = M - -~ X + Py .

a L J (21a)

Using Eq. 1, we obtain

M - M
Ely" = - M + -*-: — x - Py

a Li

The general solution of this differential equation is

M - Mu M
. , n • i a b a

y - A cos kx + B sin kx + — x -

EIk
2
L Elk

(21b)

By using the condition y = at x = and x = L, we obtain

A =
M
a

P '
B = r— — (M, - M cos kL)

Psin kL b a

By substituting these values of A and B into Eq. 21b, we obtain

sin k(L-x) L-x
sin kL L

M,
sin kx
sin k L

x

L
(22)

The bending moments M and M, may arise from eccentrically applied
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compressive forces P acting as shown in Fig. 4b. By substituting M = P e

and ML
= P e L in Eq . 22, we obtain

b b

,
sin k( L-x) L-x s sin kx x,

y = e ( ;

—

~— - —— ) + e, (~

—

— - r) .

a sin kL L b sin kL L
(23)

The end rotations 9 and 9 in Fig. 4a are obtained by taking the first

derivative of Eq. 22 and letting x=0 and x=L, respectively. The rotations

may be expressed as

M L ML
9
a

=
(y>x=0

=
3E1

f
4
(u) +

biT
£
5
(U)

•
(24)

M L ML
-

( y ,}
x=L

=
6il

£
5
(u) +

3il
£
4
(U)

'
(25)

where f i s 1- A __1__.
f , (u) = — (— - 7 — ) ,4 2u 2u tan 2u

(26)

f c (u) = - (—
:

— - —
5 u sin 2u 2u

) . (27)

Again, the factors f/(u) and f,-(u) in Eqs. 26 and 27 are the results of the

effects of the axial compressive forces on the beam. In the case of two

equal couples M = M = M , we obtain from Eq. 22

y = ML 2

8EI 2
u cos u

. 2ux,
cos(u - ~— ) - COS u

la

(28)

The deflection at the center of the beam is obtained by substituting

x=L/2 in Eq. 28; this gives

A =
( ^x=L/2

ML t c *

8EI
£
3
(U) (29)

Tables of these functions have been furnished in the Appendix of

Reference 8.
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The end rotations are obtained by taking the first derivative of Eq . 28 and

substituting x=0; this yields

6 = *h = <y'>
n = TFT '

^^ ' (30)
a b x=0 2E1 u

The maximum bending moment is obtained by taking the second derivative of

Eq. 28 and substituting x=L/2, from which

M . = - EKy") f .„ = M • sec u . (31)
£ x=L/2

From the examples given above, it may be seen that the deflections,

bending moments, and end rotations are linear functions of lateral loadings

or applied couples. This indicates that the principle of superposition,

which is widely used when lateral loads act alone on a beam, can also be

applied in the case of the combined axial and lateral loads, but with the

restraint that the axial forces should act with lateral load superposed.

The center deflections under three conditions of loading (i.e. uniform

load, one concentrated load at the center-line, and two equal end moments)

are given in Eqs. 7, 18, and 29 respectively. In each case, the deflection

is equal to the product of two factors, the first factor being the deflec-

tion without axial load and the second factor being an amplification factor

which is the effect of the axial compression and thus depends on the value

of "P/P ". An approximate expression (8) for the amplification factors

f.(u), f (u), f (u) is

1 - P/P
cr

where P is the critical load. For a simply supported beam, the critical

load is



12

2
TT EI

cr

This approximate expression for the amplification factor can be used with

good accuracy, in place of f (u), f (u), and f„(u). For values of P/P

less than 0.6, the error is less than 2 per cent (8).
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ENERGY METHOD

The energy method is widely used in structural mechanics; it represents

a unique mathematical application of the basic law of conservation of

energy. In applying this method to beam-column problems, it is necessary

to assume a deflection curve for the beam-column which satisfies the end

conditions of the beam. A deflection curve often used is expressed by

y = Z a sin — , (32)
n L

n

where the a are the undetermined maximum amplitudes of the corresponding

sine curves. Assuming a virtual deflection da of the beam, the strain
n

energy of the beam will increase an amount equal to AU while the external

loads do work equal to AT. Letting

AU = AT , (33)

where U = ^—7* = f
1 (y")

2
dx

,
(34)

2EI 2

the coefficient a can be determined, and consequently the deflections, end

rotations, and bending moments can be found. The three examples given

before are treated by this method in the following sections.



Beam-column with Uniform Lateral Loads
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P A

dc

1 I I 1 1 1 1 II KSI I I I I I fI I II I 1 D B P

Fig. 5. Beam-column with uniform lateral loads

Using Eq. 32, the strain energy of bending of a beam is

u = II !

'

(
„)2 dx

2
t

ei r

2
I

l r
- 2

l. n

2 2
n tt n tt x

12

n
L
2

sin dx ,

or
EITT 4 2

U = r— 2 n a
/T 3 n
4L n

(35)

The strain energy increase due to the virtual change da in a is

AU = 4^ da
EITT 4

= r— * n a da
Ba n „.3 n n

n 2L

(36)

The horizontal displacement (9) of end B, which is equal to the difference

between the length of the deflection curve and the length of the initial

straight form, is

i r 2
s = -

:
(y' ) dx

2
b

77- 2 a n
4L n

n

(37)

The change in s due to the virtual change of da in a is& & n n
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2

ds = -r da = —7 * n a da . (38)
da n 2L n n

Work done by the axial force P is

AT, = P • ds = ^7- • n
2

a da . (39)
1 2L n n

Work done by the uniform lateral load is

AT„ = (q dcHAy) = ^r - da , for odd values of n. (40)
2 v x=c 11 n n

Substituting the values of AU and AT (sum of AT and AT ) in Eq. 33 gives

4

a = —7— "T

—

Z , for odd values of n, (41)
n

TT EI n (n - °L )

where ok = P/P
cr

Substituting this value of a into Eq. 32, yields the equation for deflec-

tion curve.

4
4qL _ 1 n -tt x , , _

,

y = —t— i* -3

—

-Z sin —— . (42)

TT EI n=odd n (n - o< )

Using only the first term of Eq . 42, the deflection at the center of a beam

is

A (v)
^ql

4
1 = 5.03 qL

A
1 .,-.

^ y x=L/2 J ri (1 - « ) 384 EI (1 - o< )

*

TT EI

The bending moment at the center of the member is

M = SL
2
- , pZ = flk! + 3.03 qL

A
P

8 ^ 8 384 EI (1 - U )
'



Beam-column with a Concentrated Load
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Fig. 6. Beam-column with a concentrated load.

Assuming that the deflection curve is as expressed in Eq. 32, the

change in strain energy of the beam due to the change da in a is
n n

AU =
EITT

2L
3

n a da
n n

(36)

Work done by the external forces P and Q due to the change da in a is° n n

given by the following equation:

AT = P • ds + Q • (Ay)
x=c

Pit 2 n it c ,——— n a da + Q • sin —r— da
2L n n L n

By use of the fact that AU = AT, we obtain

1
3

20L
*
n tt-^t 2,2

TT El n (n - o( )

Substituting this value into Eq. 32 we obtain

3

sin
n ttc

(45)

12QL~

4 * 2 2
TT El n n (n - (X )

ntr c . nir x
sin ~ sin ~*j

Li A-j

(46)

The center deflection and center moment respectively are given by the follow-

ing expressions:

om J
l QftA or

J

(47)
2QL

3
1 .986 QL

3
1

y x=L/2 _4_. 1 - o< 48 EI 1 - X »

TT EI

M = 2L =
QL .986 QL P

M
4 * ™ 4 48 EI (1 - cX ) '

(48)
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Beam-column with Couples

A * a
Mi

B >
l_

P . A ^ a

(a)

B _ P P A

y (b) y (c)

Fig. 7. Beam-column with couples.

In order to simplify the problem, we may divide the problem of Fig. 7a

into two problems as shown in Fig. 7b and 7c by applying the principle of

superposition. In solving the problem of Fig. 7b, we use Eq. 32 as the

assumed deflection curve; then the change in strain energy due to the

virtual change dain a is the same as that given in Eq. 36. Work done by

the axial force P and the applied couple M due to the virtual change da

in a is expressed as
n r

AT = P • ds M • d© .

a a

The term ds has been given in Eq. 38 and d9 is the angular displacement due

to the virtual change da in a ; this may be expressed as

de
"* a

da
x=0

nTT .

L n
(49)

from which the following equation is obtained
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M n-rr 2 2

AT = -~ da + " """
• a da . (50)

L n 2L n n

Setting AU = AT, we obtain

2M L
2

a
n

= -^ f . (51)
TT
J
EI n (n - o( )

Using this value in Eq. 32, the following result is obtained

2M L
2

a v 1 nTT x ._..
y = r £ sin —— . (52)

TT
J
EI n n (n - « )

The deflection curve of the beam in Fig. 6c is obtained by using (L-x)

instead of x and M, instead of M in Eq. 54, which gives

b v 1 , n IT ( L-x

)

/c ~.
y = —z— Z sin : fc

. (53)
TT

J
EI n n (n - <X )

By applying the principle of superposition, the deflection curve of the beam

in Fig. 6a is found to be

2M L
2

,
2M, L

2
, „ .

a „ 1 nnx b v 1 nTT (L-x) ,_. .

y = - I sin — + —-— I sin r . (54)

TT EI n n(n - cX) TT^EI n n(n - o<

)

For the case of two equal moments M = ML = M , the deflection curve is

4M L
2

Q „ 1 .
nTT X ,rcw

y = —-— 2 sin — . (55)
TT
J
EI n=odd n (n - o< )

Since the series is a rapidly converging one we can obtain reasonable

approximations to the center deflection and center moment by taking the

first terra of the series, as indicated in the following equations

4 M L
2

, 1.03 M L
2

. _ / v o 1 o_ 1 , a >

X=L/2
=

"rT
1^ 1

"
1^ =

8ei r^^ •
(56)

1.03 ML2

M = M+P-A = M+ QC. T

°
"J

~
. (57)

o o 8E1 1 - ctf
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NUMERICAL METHOD

By applying the conjugate-beam method, Newmark (1) has developed a

numerical procedure for the determination of deflections and moments of a

beam-column with lateral load. This procedure eliminates much of the

mathematics of the "exact" differential equation approach or the finite

difference approximations. When the bar has a cross section which varies

along the span or has a complicated distributed loading, a numerical proce-

dure of successive approximations is quite useful. The purpose of this

section is to compute the deflections and the moments of a beam-column by

use of Newmark' s numerical procedure.

The relationship between the distributed load q, shear force V, moment

M, slope 9, and deflection y of beams are well known. They can be expressed

as follows:

dv
q dx

V
dM
dx

m_ 19
El dx

9
dy_

dx

or = jqdx ,

(58)

r
or M =

i vdx
,

9 =
J EI

dx
'

or y = 9dx .

From the above equations, the shears, moments, slopes and deflections

of a beam can be determined by successive numerical integration.

In using this method, a beam is divided into segments and the distrib-

uted loading is reduced to equivalent concentrated loads at each division

point, or station along the beam. The equivalent concentrated loads at

stations are equal and opposite to the reactions at the stations when the
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segments of the beam between the stations are treated as simply supported

beams. The variation of the distributed load (10) can be assumed to be:

(1) Linear between stations (Fig. 8a, b)

,

(2) A second-degree Parabola (Fig. 8c, d).

An example is given in Table 1 to illustrate the application of New-

mark's numerical method. The steps for computing deflections and moments in

a beam-column are as follows:

1. Compute deflections and moments due to lateral loads alone:

a. Obtain the values of moment at each station.

b. Compute the M/EI values which are the fictitious loadings in the

conjugate beam.

c. Compute equivalent concentrated loads "R" at each division point

by using Fig. 8c and d.

d. Calculate "Average Slopes" which are the fictitious shearing forces

in the conjugate beam. Due to symmetry, the reaction at the left

support is equal to one-half of the equivalent concentrated load

"R", i.e.,

(6.84 + 8.54 + 7.42) +
J

(7.92) = 26.76 .

e. Compute deflections, "y ", which are the fictitious moments in the

conjugate beam due to the lateral loads alone and are obtained by

the following equation:

where

M. = M. . + V, • d ,

d = segment length,

V = Fictitious shearing forces in conjugate beam

between station "j" and "j-l", and



nra mn

nra
7 (2a+b)
o

R = 7 (a+Ab+c)
n 6

mn 7 (2b+a)
o

(a) (b)

nm ran

nra

mn

24

d

(7a+6b-c)

24

(c)

(3a+10b-c)

R = 7- Ca+lOb+c)
n 12

Id)

Fig. 8. Equivalent concentrated load.

21

b

n

d d

"1 U
\

d d
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j = Station number.

Calculation of buckling load:

a. The procedure is to estimate a reasonable trial deflected configura-

tion and calculate the trial bending moments produced by the axial

load. Due to symmetry, the values of y, selected in Table 1 are
lc

ordinates to a sine curve. The deflections produced by these bend-

ing moments are then computed (same procedures as stated in Step 1

above) and compared with the estimated trial deflections. The

ratios of the assumed deflections y to the computed deflections

y must equal one for the stable configuration to exist (11).

Considering the maximum and minimum values of the ratios, we see

that the upper and lower limits for P arer cr

15.35 EI j s 17 EI

L
2

< « L
2

•

b. The results can be improved by repeating the cycle of calculations.

The second cycle begins with the deflections y , which are propor-

tional to the deflections y found from the first cycle of computa-

tions. These values can be multiplied by any constant factor in

order to adjust the order of magnitude of the figures. In this

case, they are multiplied by 100/376 in order to give a as the

deflection at the center. The results of the second cycle show that

the load P is between the values
cr

16.4 EI ^ / 16.7 EI

L
2

< Cr<
L
2

'

To obtain a more accurate result, we can calculate average values

(8) of the deflections y„ and y_ as follows:
2a 2c
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2a nv
3= I

L
{

Cy
2a

) d x ,

'^c'av
=

1

L

r
L

(y2c
> dx .

ind

(60)

Replacing the above equations by summations, we obtain

(y„ ) = 7 L (y„ ) • Ax , andy 2a av L '2a

(y, ) = f 2 (y_ ) • Ax .

2c av L y 2c

Since the segment length Ax is constant, we have

(y 2a
}

av _ 2(42 + 74 + 93) + 100 EI = 16.58 El

(y_ ) 2(164 + 287 358) 383 '

.2
" .2y 2c av Pd L

Equating the average values of y and y gives
2a 2c

16.58 EI

" ' L
2

'

For beams subjected to both lateral and axial loads, the deflections

due to lateral load alone will be amplified in the case of axial

compression or reduced in the case of axial tension. An approxima-

tion of the amplification factor (8, 10, 11) is given by

1

1 - P/P ' •

cr

while the reduction factor is

1

1 + T/P '

cr

where T is axial tension.

3. Calculation of total deflections and moments:

a. Estimate total deflection y, and thus additional deflections ,yla

due to axial load, as shown in Table 1.
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b. Compute the additional deflections y due to axial load, and check

with the estimated ones from Step a.

c. If the computed additional deflections .y do not agree within an

allowable limit with the estimated ,y , then the computed deflec-
1 a r

tions are used as estimated ones to repeat Step b until close agree-

ment is reached.

d. The total moments are equal to the sums of the moments due to

lateral loads alone and the moments due to axial forces with total

deflections.
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MOMENT DISTRIBUTION

The axial compression in a slender member modifies the stiffness fac-

tors, carry-over factors, and fixed-end moments as used in the standard

moment distribution method. Witen the effect of axial force is considered

in the analysis, it does not alter the basic procedures used in standard

moment distribution; all that is necessary is to replace the usual values

for the stiffness factors, carry-over factors, and fixed-end moment coeffi-

cients by factors which have been determined for a beam-column. For example,

a compressive force will reduce the rotational stiffness of a beam as com-

pared to the same beam with no axial force. As the compressive force

increases, the stiffness continues to decrease and when the axial force

reaches the buckling load the beam will have no resistance to rotation at

one end and the stiffness will have become zero.

Sign Convention

A special sign convention will be used in this section. The bending

moments, end rotations, and axial forces shown in Fig. 9 are assumed to be

positive.

Fig. 9. Sign convention.
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Fig. 10. Beam-column with far end fixed.

The stiffness K is defined as the value of the moment required to

rotate the near end of the beam through a unit angle when the far end is

fixed. The "near end" of the member is the end of the member where the

joint is being balanced and the "far end" is the opposite end (12).

Eqs. 24 and 25 can be modified to suit the sign convention used in this

section by changing the signs of © and M . The modified equations are
3. cl

9

9,

M L ML
3E1 V U)

" Ml V U)
•

and

M L ML
oilV u) + 3H f

4
(u)

'

(61)

In order to determine the stiffness factor for a beam with the far

end fixed (Fig. 10), all that is necessary is to substitute 9=1 and
a.

9, = into Eq. 61 and then solve for the moment M . This moment, which is
b a

equal to the stiffness K , , is given by the expression

ab
4E1
L

3 f
4
(u)

4[f
4
(u)J

2
- [f

5
(u)]

2
(Far end fixed) (62)

Also, the ratio of the moment, M , at the fixed end to the moment, M , at
o a
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the near end gives the carry-over factor

Wh

1

f
5
(u)

C L = -
. (For far end fixed) (63)

ab 2 f . lu)

en the axial force P becomes zero, the values of f,(u) and f c (u) become
4 5

unity and the above two expressions for K , and C , reduce to 4E1/L and 1/2,
ab ab

respectively. Theoretically, when the axial force P reaches the critical

buckling value for a beam column with one end fixed and the other end simply

supported (Fig. 10), the stiffness factor becomes zero and the carry-over

factor approaches infinity (12).

If the far end of the beam-column is simply supported instead of fixed,

the end rotations can be obtained by letting M = 0. Then Eq. 61 gives

M L

*a
=

5il V u)
'

and (64)

M L

9
b

= " off V u) '

The stiffness factor can be obtained by setting 9 = 1 in Eq. 64 and solving
£1

for M , which gives
a &

3E1 1
K , = —— -—;—

- . (Far end simply supported) (65)
ab L f . (u) r

When the axial force is zero (u = 0) the stiffness is 3EI/L and when it is

equal to the critical buckling load for a beam-column with simply supported

ends (u = "FT /2) the stiffness is zero.
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i 1 L

(a)

1 t i

(c) 9,

(d)

Fig. 11. Fixed-end beam with axial load.

The fixed-end moments can be obtained by superposing the solutions of

the problems shown in Fig. lib, c, and d. In order to cancel the effects of

the end rotations, moments must be applied at the ends. In Fig. lie, a

moment M ' is applied at the left end to rotate the axis of the member to
a rr

the horizontal and the right end of the member is assumed to be held against

rotation thus, inducing a moment M, '
. These two moments can be expressed as

M • = -K .9 •
,a ab a



n

and

M, ' = M ' C ,
= -K .C .9 '

.

b a ab ab ab a

In Fig. lid, the left end of the member is held against rotation and a

moment N is applied at the right end to remove the angle 9 . This gives

n i

b ba b

and

M " = M.
"

C, = -K u C L 9 '
.

a b ba ba ba b

By superposing the results of Fig. lib, c, and d, the fixed-end moments are

M = M ' + M " = -K .9 '-K.C. 9 '
,

a a a abababab
and (66)

M, = M,
' + M." = -K. 9 '-K C 9 .

b b b babababa

If the member is assumed to have constant cross-section, the stiffness and

carry-over factors at each end of the member will be the same and the above

expressions can be written as (12)

M = -K . (9 ' C . &. '
) . and

a ab a ab b

(67)
i

M, = -K . (9, C , 9 ) .

d ab b ab a

Uniform Load

For the case of a fixed-ended beam-column with a uniform load the

angles of rotation of the ends must be found for the simply supported beam-

column as shown in Fig. 2 and Eq. 10. These angles are

3

e -e. --ffer Mu) . (68)
a b 24E1 2
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Substituting Eqs. 62, 63 and 68 into Eq. 67, the fixed-end moments (12) are

M
a

= A =

?T f
6
(u)

'
(69)

where

f,(u) = ~ (1 - r-^— ) . (70)
6 2 tan u

u

Concentrated Load at Center of Beam-column

In the case of this loading, the end rotations of the simply supported

beam-column are (refer to Eq. 19)

QL
2

a b 16EI 3

Using Eqs. 62, 63, 71 and 67, the fixed-end moments become (12)

where

\ • -\ " * £
7
(U)

•
<72>

£ (u , . 2
(
1=E2S_U)

. (73)
' u sin u
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Fixed-end Moments Due to Joint Translation

(a)

Fig. 12. Fixed-end moments due to joint translation.

By using the same procedures as in deriving "Fixed-end Moments" dis-

cussed above, the fixed-end moments due to joint translation shown in Fig.

12a can be obtained by superposing the results of Fig. 12b, c, and d. The

equations, which are necessary for this case, can be expressed as

= K
ab I '

M
b

K
ab

C
ab L

;

" A ' A
b ba L a ba ba L
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and

M«
= M + M "

= (K , * K, C, ) 7 ,a a a ab ba ba L

M. = M, + M.
"

= (K. + K UC J 7 .

b b b ba ab ab L

(74)

If the member is of constant cross-section, the stiffness and carry-over

factors are the same at each end, and Eq. 74 is reduced to

M
Q

= Mk " K k (1 c J 7 • (75)
a b ab ab L

After substitution of the relationships given in Eqs . 62 and 63 for the

stiffness and carry-over factors, Eq. 75 becomes

M - m 6EIA ,
,M

a " M
b

= ~T f
8
(u)

»

Li

where

2
c , . u sin u t-,c\f Q (u) = ——, . (76)
8 3(sin u - u cos u)

The same general procedure as for standard moment distribution, but

modified to make use of the superposition method, can be used in analyzing a

structure with sidesway.

Following the superposition technique of analysis, the moments in the

frames shown in Fig. 13a and b are determined first. The frame in Fig. 13b

is supported against joint translation and subjected to the same loads as

acting on the original frame. The frame in Fig. 13c is subjected to an

i

arbitrary horizontal displacement A and then held against further joint

translation. Both of these frames are analyzed by moment distribution con-

sidering the beam-column effect in the members. Therefore, it is necessary

to make an initial estimate of the axial forces in each member.
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T*TTT"»

J_J
P

3 1

TTTTrf

(a)

rhrrt

LAr4- R°
i i-*' i r/

///»*»

(b) (c)

Fig. 13. Rigid frame with sidesway.

This estimate, which can be made by an approximate analysis of the original

structure, gives a value of the factor "kL" for each member of the frame,

and the factor "kL" is held constant throughout the analyses of the frames

shown in Fig. 13b and c. The superposition equations to be used are the

same as in the standard moment distribution calculations. For the notations

shown in Fig. 13, the equation

R° - aR =0

determines the constant of proportionality "a" and the equation

M = Mu + aM

(77)

(78)

determines the moments M in the original structure, assuming that M° and M

represent moments in the frames of Fig. 13b and c, respectively. After

determining the moments in the original frame, the values of the axial

forces in the members are revised to more accurate values and the entire

process repeated if necessary.
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DESIGN METHODS

Two simple approximate methods have been developed for estimating the

strength of beam-columns. The first method, generally referred to as the

secant formula method, is based upon the concept that the load which pro-

duces initiation of yielding in the fibers subjected to maximum stress

provides a lower bound to the failure load. The second method is to consider

the member as a cross between a beam under pure bending and a column under

pure axial load, its two limiting cases (13).

SECANT FORMULA METHOD

As stated above, the secant formula method specifies that the maximum

stress in the beam-column, modified by a factor of safety, may not exceed

the yield stress of the material. The formulas developed for this procedure

apply only to members that fail by bending in the plane of the applied

loads. The procedure applies best for material having a linear elastic

stress-strain relationship.

^"F
p

(a)

P

(b)

X

1

1J

1 1

1 k

e
b

Fig. 14. Notation for eccentrically loaded members
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The first step in developing the secant formula is the analysis of

maximum combined stress produced by axial load, applied bending moment, and

bending moment due to deflection. Consider the case of two eccentrically

applied compressive forces P with unequal eccentricities as shown in Fig.

14b, the deflection curve has been derived in Eq. 23.

sin k(L-x) L-x . s_i_n_kx x
y = e l ;

~— - —— ) + e. (—" — - ~)
, (23)

a sin kL L b sin kL L

in which e denotes the larger eccentricity and e , the smaller one.

e b
By letting t = —

, the deflection curve is reduced to
ea

.t-coskL
. , . 1-t ,, ,__.

y = e ( :

~ sin kx + cos kx ~— x - 1) . (79)J a sin kL L

Substituting Eq. 79 into Eq. 21a, we find that the expression for bending

moment at any section in the member, after some rearrangement, is

™ r t — cos kL , ,i /o«nM = P e I
;
— sin kx + cos kxj . (80)

a sin kL J

Taking the first derivative of M with respect to x and setting dM/dx , we

find the location of the maximum moment as

1 t - cos kL
x = r arc tan ;

—
.

k sin kL

Substituting this back into Eq. 80, after some manipulation we obtain the

maximum moment,

1^
M P e (

C - a C
°f

kL + L
) . (81)

max a sin kL

The maximum fiber stress in the member is equal to
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p M c
f _ max
max A 1

£ - f a.* ¥ Vt2 - 2t c

:r
kL^ . <62>mnx A 2 sin kL

r

where c i6 the distance from the neutral axis to the extreme fiber in com-

pression. It is this stress which is to be set equal to the yield point

stress f to determine the yield point load P , thus
y y

fy_ + f£ //t
2

- 2t cos kL.±_l m f . (83)
A 2 sin kL y

r

The limiting average stress F for design use can be obtained from Eq. 83 by
fit

replacing P with nF A (where n is the factor of safety) and then solving

for F , thus
a

f /n
Y

. (84)

2
/~~2

1 + e c/r // t - 2t cos kL + 1 esc kL
a

In Appendix C of the AASHO Specifications (1965 edition) we find formula A,

which is almost identical with Eq. 84

f /n
p

f
s

= S 7 " I * (85)

1 (0.25 + e c/r ) B cosec 6
a T

where B is the factor similar to r/t - 2t cos kL + 1 and <}> replaces kL.

2
The term 0.25 which is added to the nondimensional factor e c/r is to

a

account for the effects of all imperfections, such as initial crookedness,

nonhomogeneity , and residual stress.

Equations 84 and 85 are quite difficult to use for design, and their
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main use is in plotting column curves such ns those in Appendix C of the

AASHO Specifications. Such curves ore reasonably easy to use for the trial

and error design of beam columns.

For the particular case in which the eccentricity of the load is a con-

stant value e, we set t = 1, and after some slight manipulation Eq. 82

reduces to the well-known secant formula:

c P [ ec kL-,
, _, ,

f = r [1 + -r sec —J , (86)
max A 2 2 J

r

and the corresponding expression for allowable stress for design use is

f /n

F = r* . (87)
a

1 (ec/r ) sec (kL/2)

The secant formula suggested by Column Research Council (7) is

e c i

—
f = 7 [1 + (^ + -^r-) sec £- /fr] , (88)
max A 2 2 2r n AEJ

r r

and the corresponding expression for allowable stress is

f /n
Jt

1 + (ec/r + e c/r ) sec (L/2r) JnV /E

F
«

=
:

—

—2 V
'o

where e is the assumed equivalent eccentricity representing the effects of

all defects.

A good approximation for the maximum moment in a beam-column can be

found from the following equation:

PA
M = M * 1

^~~
»

(90)
max o 1 - P/P

cr

where M and A are the moment and deflection, respectively, without regard
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to the added moment caused by deflection. Eq. 90 can conveniently be

written as:

1 + vj; P/P
M
max

= M (

cr
6 1- P/P ) ,

cr
(91)

in which, for a simply supported constant-section member,

F £ El

* = °— " 1 •

M L
o

If the approximate maximum moment given by Eq. 91 is used to determine the

maximum combined stress in a beam-column, the following formula is obtained

max
I .

f

l + *<X M
o°

A 1 - 0( ' 1
(92)

where o< = P/P
cr

Since formulas for lateral deflection A under different loading conditions
o

are available in handbooks, Eq. 92 greatly simplifies calculation of maximum

stress in beam-columns. Several values of ^ for various conditions are

given (7) in Table 2.

Table 2. Parameter <\j in Eqs. 91 and 92.

Loading condition

Constant moment + 0.233

Concentrated lateral
load at midspan - 0.178

Uniform lateral load + 0.028

7*

Each loading condition shown in Table 2 is assumed to act simultaneously

with axial compression forces.
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If Eq. 92 is used for the same design case as that of Eq. 90 (equal

eccentricities e, M - Pe, and ^ ~ + 0.233), the allowable stress becomes

f /n
F - ^ (93)
a

,
1 + 0.233ntx , ec *

1 + (

1 - nC*
}

2
r

This equation gives results in close agreement with those obtained from Eq

,

89. The results are within IV. for nc* less then 0.8, and within 2.5/, for

0.8 < ncx < 0.95 (7).
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INTERACTION FORMULA METHOD

This method is based on the use of interaction formulas for beam-

columns subjected to bending in the weak direction, and for beam-columns

subjected to strong-direction bending provided that they are adequately

braced against lateral buckling. Interaction formulas have a simple form,

are convenient to use, and have a wide scope of application. Allowable

stresses determined from interaction formulas vary continuously and in a

smooth transition from stresses for concentrically loaded columns at one

limit to stresses for beams at the other. Formulas for combined stresses

used in AISC Specifications are based on this method.

The strength of members subjected to bending combined with compression

forces can be expressed conveniently by interaction formulas in terms of

the ratios P/P and M/M , where
u u

P = compression forces at actual failure,

P = ultimate load for the centrally loaded column for buckling in the

plane of the applied moment,

M = maximum bending moment at actual failure, and

M = ultimate bending moment in the absence of axial load,
u °

The following equation is the basis for several such interaction formulas:

§-«-« i.
u u

In the elastic range, an approximation of the maximum bending moment

for beam-columns subjected to combined bending and compression producing

maximum moment at or near the center of the member may be obtained from Eq.

91 by setting ty
= 0.
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M

M
max

=
1 - (P/P )

'
(95)

cr

where P = applied axial load,

P = elastic critical load for buckling in the plane of applied
moment, and

M = maximum applied moment, not including contribution of axial
load interacting with deflections.

Substituting Eq. 95 into Eq. 94 gives

M
1 1 . (96)

P M 1- (P/P )Ju u cr

For eccentrically loaded columns having equal end eccentricities e at both

ends, Eq. 96 may be expressed as

P P e— + — t - 1 (97)
P M [1 - (P/P )Ju u cr

Galambos and Ketter (4) presented dimensionless interaction curves for

the ultimate strength of typical wide-flange beam-columns bent in the strong

direction and having (a) equal axial-load eccentricities at both ends, and

(b) eccentricity at one end only. The parameters used for the maximum-

strength formulas are P/P and M/M , and the interaction formulas take the
y U

following form:

M P P 2A— *B — + C(— ) * 1 , (98)

u y y

where A, B, and C are empirical coefficients that are functions of L/r and

of loading conditions, and P is the column axial load at the fully yielded

condition (P = A f ).
y y

The A1SC Specifications (14) use a complete tabulation of the



46

Galambos-Kcttcr coefficients of Eq . 98 for beam columns loaded as described

in the preceding paragraph.

For the case of strong-direction bending, where a beam-column is bent

in double curvature by moments producing plastic hinges at both ends, the

A1SC recommends a strength formula that can be written as

M

p y

This equation is independent of L/r, and M is the plastic moment

(M = Z f , where Z is the plastic modulus).
P y

For designing a beam-column subjected to unequal end moments, it may be

over conservative to use the maximum of these in an interaction formula for

design of the member, especially where the end moments are of opposite sign.

This is because the interaction formula assumes the maximum moment to be at

or near the center of the span. The AISC Specifications present an approx-

imate expression of "equivalent uniform moment," which can be expressed as

follows

:

M M

ZT
9

- - 0.6 + 0.4 r* * 0.4 , (99)
M M
a a

where M is the equivalent uniform moment, and M, /M is the ratio of the
eq b a

smaller to larger moments at the ends of the member.

In AISC specifications section 1.6.1. the interaction equations are in

the form

f C f K

f+ ^ * i ,
(100)

a
(1 - ~) FKl

F' b
e



Isi

and

f £ K
-* * 1 , (101)

O.o F 1,
y b

where f and f, are the axial and bending stresses under the combined load-
a b

ing, F and F, are the allowable stresses for the axially loaded column and° a b J

beam, respectively, F' is the critical stress according to Euler's column

theory, and C is a coefficient which is expressed as

C = 0.6 + 0.4 (M./M )
2 0.4 .

m b a

In the case of biaxial bending, the design interaction equation is

written as

f C f K C f K
_§. +

mx bx my bY ± i (102 )

F (1 - f /F' ) i\ (1 - f /F' ) F u
l

'
^ 1UZ;

a a ex bx a ey by

where the subscripts, x and y, refer to the x and y axes.

The great usefulness and versatility of interaction formulas arises

from the possibility of including a variety of conditions in at least an

approximate manner. For instance, if the danger of lateral buckling under

applied moment exists, the allowable stress F, can be reduced accordingly.

Interaction formulas also allow consideration of end effects such as

partial or complete fixity, or sideway. A member with these end effects can

be designed safely by replacing the restrained beam-column by an equivalent,

hinged-end beam-column having a length equal to the effective length of the

real, restrained beam-column, and analyzing this equivalent beam-column for

axial compression.

An example illustrating the interaction formula concept is presented in

the following section.
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EXAMPLE

P ro b 1 em :

A column in a steel building frame is, according to an analysis, sub-

jected to an axial force of 300 kips and a moment of 200 k-ft at the lower

end, 150 k-ft at the upper end. There is no moment about the other axis,

and the frame is braced against sidesway buckling in the plane of the load-

ing and in the plane perpendicular to it. Story height is 18 ft. Use A-36

steel and design the member according to AISC Specifications (14).

300 k.

18 ft

200 k-ft.

300 k.

Solution

:

For a quick estimate of the range of member size, consider the moment

of 200 kip-ft alone, and compute the required section modulus as

req F.

200 x 12

22
109 in

3
,

Assume that, owing to the presence of axial force, twice this value

3
is reasonable and look for a member with section modulus of about 200 in .

Entering the Tables on pages 1-12 (AISC), the 14 \F shapes are found to be
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suitable for this size. Accordingly, consider a 14 IF 127, for which

A = 37.33 in
2

,

S = 202.0 in
,

1 = 1476.6 in
4

,

r =6.29, and
x

r = 3.76.
y

Since sidesway buckling is prevented, assume that the effective length

factor K to be 0.65 according to Table C. 1.8.2.

On the basis of these data calculate the slenderness ratios:

L 18 x 12 _. . L 18 x 12 e_ .

T =
"6T2T~

= 34 ' 4 7"
= T^6~ = 57 - 5

•

x y

Effective slenderness ratios:

— = 0.65 x 34.4 = 23 ,
r
x

— = 0.65 x 57.5 = 38 .

r
y

Allowable axial stress:

(Table 1-36)

F = 20.41 ksi ;ax

F = 19.35 ksi .

ay

Axial stress:

f _ I - 300 . A , ..
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Reduction factor:

M
C
m

0.6 + 0.4 (^) = 0.6 + 0.A (^§§) = 0.3 < 0.4
,

use C = 0.4
m

Amplification factor:

— = 23 , F 1 = 281.88 ksi ,

r
x

F' 281.88
U,y/1

*

e

Allowable bending stress: (sec. 1.5.1.4.5)

Fu = !^/?°° = 56 ksi > 0.6 F , use F, =0.6 F = 22 ksi
b Ld/A

f y b y

Bending stress:

M
c max _ 200 x 12 . , QO . .

f
b

= T" " "202
= U * 88 kSl *

Check interaction formulas:

a 8 04

F
=

1935
= °* 416> °' 13

»
use Formula ( 7).

a

Formula (7a)

-8-^+ °' 4 (1I ' 88 > = 0.416*0.222 = 0.638< 1 .

19.35 0.971 (22)
^

Formula (7b)

8.04 . 11.88
22 22

= 0.366 + 0.54 = 0.906< 1.0 .
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This is considerably less than unity and a smaller size is needed.

Following the same procedure shown above, further trials may be carried

out in tabular form. From the above results in Formulas k7&> and l7b;, it

is evident that Formula (7a) controls the case. vSo , accordingly, calculate

only the terms needed for Formula v7a) in the further trials.

Member f /22 f u/Fu Sum
a b b

14 \F 119

14 UF 111

34.99 189.4 8.59 12.7 22

32.65 176.3 9.19 13.6 22

0.39 0.577 0.967

0.418 0.619 1.037

From these results, it can be seen that 14 UF 111 is overstressed . There-

fore the column will be made of 14 VF" 119.
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CONCLUSION

The foregoing material demonstrates the means of analysis and design of

beam-columns. In addition to the four methods for the analysis of the

behavior of beam-columns discussed above, there are many other methods for

solving a beam-column problem.

The general method which is derived on the basis of the differential

equations of beam-columns gives a theoretical and "exact" solution of the

problem. From a practical viewpoint, a large number of laterally applied

loads or changes in section leads to a solution by the general method which

is probably no more precise or applicable than the solution obtained by one

of the approximate methods.

The energy method uses a single mathematical expression for the assumed

deflection which holds for the entire length of the beam. With this method

it is not necessary to discuss separately each portion of the deflection

curve between consecutive loads, yet it gives a good approximate solution

for the problem. This method of analysis is especially useful in the case

of a member with simply supported ends, of a member with complicated load-

ings, and of a member with various cross-sections.

The numerical method is also an approximate method with a high degree

of accuracy. The problem that can be solved by using the numerical proce-

dure as described is almost unrestricted by the type of loading.

The basic principle of the general method may be extended to solve

rigid frame problems by using the modified moment distribution method.

The expression for the secant formula is complicated in form and is

quite difficult to use for design. The main purpose of the secant formula

is to plot column curves such as shown in the AASHO Specifications (15).
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Such curves are reasonably easy to use for the design of bcara-columna by

trial and error.

The interaction formula is easy to use for design and is applicable for

a variety of loading conditions.
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NOTATION

a, b, c, d Numerical coefficients, distances

A Cross-sectional area

c Distance from neutral axis to extreme fiber of beam

e , e, , e Eccentricity
a b J

E iModulus of elasticity

f (u), f (u) Amplification factors for beam-columns

1 Moment of inertia

k Axial load factor for beam-column

K Stiffness factor, effective length factor

L Length, span

m, n Integers, numerical factors

M Bending moment, couple

M , M, Bending moments at end A and B, respectively

n Factor of safety

P Axial force in beam-column

P Critical buckling load
cr 6

Q Concentrated force

q Intensity of distributed load

r Radius of gyration

R Shearing force in conjugate beam

o •

R , R Reactive force

s Horizontal displacement, distance

S Section modulus

t Numerical ratio

T Work, tension force
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u Axial load factor for beam-columns (u = kL/2)

U Strain energy

V Shearing force in beam

x, y Rectangular coordinates

y'
,
y"... First derivative, second derivative, etc.

Z Plastic modulus

c< Numerical factor, ratio

L Deflection

e , e. End slopes, rotations
a b r

<\> Numerical factor
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Beam-columns arc members which are subjected to combined bending and

axial compression. The bending may arise from lateral loads, couples

applied at any point on the beam, or from end moments caused by eccentricity

of the axial loads at one or both ends of the member.

The purposes of this paper are to review the appropriate methods for

analyzing beam-column problems, namely, the general method, the energy

method, the numerical method, and the moment distribution and to discuss

adequate procedures for designing steel beam-columns.

The general method or "exact" method is based on the relationship

between moment and curvature of a beam, Ely" = -M, and takes into account

the compressive forces. By solving this differential equation with known

boundary conditions, the maximum deflection and moment can be obtained.

The energy method is widely used in the field of structural mechanics,

and represents a unique mathematical application of the basic law of con-

servation of energy. By assuming the elastic curve to be described by,

y = L & sin(n~ x/L), the external work done by physically applied external

forces or moments may be set equal to the potential energy stored through

the action of the internal forces and the elastic strain mechanisms of the

beam-column. The coefficients "a " can be determined, and the maximum
n

moment obtained.

The numerical method was first presented by N. M. Newmark. It provides

a means of obtaining an approximate solution for beam-columns with complex

loading.

The theoretical principle of the general method can be extended to

calculate the modified stiffness and carry-over factors for use in the method

of modified moment distribution. The modified moment distribution method



can then be used to solve rigid frame problems.

Two approaches to the design of steel beam-columns are described in

this paper. Criteria for these methods are the CRC (Column Research

Council) design guide (7), AASHO (15), and A1SC (14) Specifications. Three

sample problems are analyzed and one design example is given to illustrate

the design procedure according to the A1SC Specifications.


